|
--- |
|
base_model: nicholasKluge/Aira-2-1B1 |
|
co2_eq_emissions: |
|
emissions: 1.78 |
|
geographical_location: United States of America |
|
hardware_used: NVIDIA A100-SXM4-40GB |
|
source: CodeCarbon |
|
training_type: fine-tuning |
|
datasets: |
|
- nicholasKluge/instruct-aira-dataset |
|
inference: false |
|
language: |
|
- en |
|
library_name: transformers |
|
license: apache-2.0 |
|
metrics: |
|
- accuracy |
|
model_creator: nicholasKluge |
|
model_name: Aira-2-1B1 |
|
pipeline_tag: text-generation |
|
quantized_by: afrideva |
|
tags: |
|
- alignment |
|
- instruction tuned |
|
- text generation |
|
- conversation |
|
- assistant |
|
- gguf |
|
- ggml |
|
- quantized |
|
- q2_k |
|
- q3_k_m |
|
- q4_k_m |
|
- q5_k_m |
|
- q6_k |
|
- q8_0 |
|
widget: |
|
- example_title: Greetings |
|
text: <|startofinstruction|>How should I call you?<|endofinstruction|> |
|
- example_title: Machine Learning |
|
text: <|startofinstruction|>Can you explain what is Machine Learning?<|endofinstruction|> |
|
- example_title: Ethics |
|
text: <|startofinstruction|>Do you know anything about virtue ethics?<|endofinstruction|> |
|
- example_title: Advise |
|
text: <|startofinstruction|>How can I make my girlfriend happy?<|endofinstruction|> |
|
--- |
|
# nicholasKluge/Aira-2-1B1-GGUF |
|
|
|
Quantized GGUF model files for [Aira-2-1B1](https://huggingface.co/nicholasKluge/Aira-2-1B1) from [nicholasKluge](https://huggingface.co/nicholasKluge) |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [aira-2-1b1.fp16.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.fp16.gguf) | fp16 | 2.20 GB | |
|
| [aira-2-1b1.q2_k.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q2_k.gguf) | q2_k | 482.15 MB | |
|
| [aira-2-1b1.q3_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q3_k_m.gguf) | q3_k_m | 549.86 MB | |
|
| [aira-2-1b1.q4_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q4_k_m.gguf) | q4_k_m | 667.83 MB | |
|
| [aira-2-1b1.q5_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q5_k_m.gguf) | q5_k_m | 782.06 MB | |
|
| [aira-2-1b1.q6_k.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q6_k.gguf) | q6_k | 903.43 MB | |
|
| [aira-2-1b1.q8_0.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q8_0.gguf) | q8_0 | 1.17 GB | |
|
|
|
|
|
|
|
## Original Model Card: |
|
# Aira-2-1B1 |
|
|
|
`Aira-2` is the second version of the Aira instruction-tuned series. `Aira-2-1B1` is an instruction-tuned GPT-style model based on [TinyLlama-1.1B](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-480k-1T). The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc). |
|
|
|
Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo). |
|
|
|
## Details |
|
|
|
- **Size:** 1,261,545,472 parameters |
|
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset) |
|
- **Language:** English |
|
- **Number of Epochs:** 3 |
|
- **Batch size:** 4 |
|
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8) |
|
- **GPU:** 1 NVIDIA A100-SXM4-40GB |
|
- **Emissions:** 1.78 KgCO2 (Singapore) |
|
- **Total Energy Consumption:** 3.64 kWh |
|
|
|
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model. |
|
|
|
## Usage |
|
|
|
Three special tokens are used to mark the user side of the interaction and the model's response: |
|
|
|
`<|startofinstruction|>`What is a language model?`<|endofinstruction|>`A language model is a probability distribution over a vocabulary.`<|endofcompletion|>` |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-1B1') |
|
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-1B1') |
|
|
|
aira.eval() |
|
aira.to(device) |
|
|
|
question = input("Enter your question: ") |
|
|
|
inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token, return_tensors="pt").to(device) |
|
|
|
responses = aira.generate(**inputs, |
|
bos_token_id=tokenizer.bos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
do_sample=True, |
|
top_k=50, |
|
max_length=500, |
|
top_p=0.95, |
|
temperature=0.7, |
|
num_return_sequences=2) |
|
|
|
print(f"Question: 👤 {question}\n") |
|
|
|
for i, response in enumerate(responses): |
|
print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}') |
|
``` |
|
|
|
The model will output something like: |
|
|
|
```markdown |
|
>>>Question: 👤 What is the capital of Brazil? |
|
|
|
>>>Response 1: 🤖 The capital of Brazil is Brasília. |
|
>>>Response 2: 🤖 The capital of Brazil is Brasília. |
|
``` |
|
|
|
## Limitations |
|
|
|
🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful. |
|
|
|
🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes. |
|
|
|
## Evaluation |
|
|
|
| Model (TinyLlama) | Average | [ARC](https://arxiv.org/abs/1803.05457) | [TruthfulQA](https://arxiv.org/abs/2109.07958) | [ToxiGen](https://arxiv.org/abs/2203.09509) | |
|
|---------------------------------------------------------------|-----------|-----------------------------------------|------------------------------------------------|---------------------------------------------| |
|
| [Aira-2-1B1](https://huggingface.co/nicholasKluge/Aira-2-1B1) | **42.55** | 25.26 | **50.81** | **51.59** | |
|
| TinyLlama-1.1B-intermediate-step-480k-1T | 37.52 | **30.89** | 39.55 | 42.13 | |
|
|
|
|
|
* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). |
|
|
|
## Cite as 🤗 |
|
|
|
```latex |
|
|
|
@misc{nicholas22aira, |
|
doi = {10.5281/zenodo.6989727}, |
|
url = {https://huggingface.co/nicholasKluge/Aira-2-1B1}, |
|
author = {Nicholas Kluge Corrêa}, |
|
title = {Aira}, |
|
year = {2023}, |
|
publisher = {HuggingFace}, |
|
journal = {HuggingFace repository}, |
|
} |
|
|
|
``` |
|
|
|
## License |
|
|
|
The `Aira-2-1B1` is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details. |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nicholasKluge__Aira-2-1B1) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 25.19 | |
|
| ARC (25-shot) | 23.21 | |
|
| HellaSwag (10-shot) | 26.97 | |
|
| MMLU (5-shot) | 24.86 | |
|
| TruthfulQA (0-shot) | 50.63 | |
|
| Winogrande (5-shot) | 50.28 | |
|
| GSM8K (5-shot) | 0.0 | |
|
| DROP (3-shot) | 0.39 | |