|
--- |
|
base_model: mychen76/tinyllama-colorist-v2 |
|
inference: false |
|
license: apache-2.0 |
|
model_creator: mychen76 |
|
model_name: tinyllama-colorist-v2 |
|
quantized_by: afrideva |
|
tags: |
|
- gguf |
|
- ggml |
|
- quantized |
|
- q2_k |
|
- q3_k_m |
|
- q4_k_m |
|
- q5_k_m |
|
- q6_k |
|
- q8_0 |
|
pipeline_tag: text-generation |
|
--- |
|
# mychen76/tinyllama-colorist-v2-GGUF |
|
|
|
Quantized GGUF model files for [tinyllama-colorist-v2](https://huggingface.co/mychen76/tinyllama-colorist-v2) from [mychen76](https://huggingface.co/mychen76) |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [tinyllama-colorist-v2.q2_k.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q2_k.gguf) | q2_k | 482.15 MB | |
|
| [tinyllama-colorist-v2.q3_k_m.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q3_k_m.gguf) | q3_k_m | 549.85 MB | |
|
| [tinyllama-colorist-v2.q4_k_m.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q4_k_m.gguf) | q4_k_m | 667.82 MB | |
|
| [tinyllama-colorist-v2.q5_k_m.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q5_k_m.gguf) | q5_k_m | 782.05 MB | |
|
| [tinyllama-colorist-v2.q6_k.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q6_k.gguf) | q6_k | 903.42 MB | |
|
| [tinyllama-colorist-v2.q8_0.gguf](https://huggingface.co/afrideva/tinyllama-colorist-v2-GGUF/resolve/main/tinyllama-colorist-v2.q8_0.gguf) | q8_0 | 1.17 GB | |
|
|
|
|
|
|
|
## Original Model Card: |
|
MODEL: "mychen76/tinyllama-colorist-v2" - is a finetuned TinyLlama model using color dataset. |
|
|
|
MOTIVATION: A fun experimental model for using TinyLlama as Llama2 replacement for resource constraint environment. |
|
|
|
PROMPT FORMAT: "<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant:"" |
|
|
|
MODEL USAGE: |
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
from transformers import pipeline |
|
|
|
def print_color_space(hex_color): |
|
def hex_to_rgb(hex_color): |
|
hex_color = hex_color.lstrip('#') |
|
return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4)) |
|
r, g, b = hex_to_rgb(hex_color) |
|
print(f'{hex_color}: \033[48;2;{r};{g};{b}m \033[0m') |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id_colorist_final) |
|
pipe = pipeline( |
|
"text-generation", |
|
model=model_id_colorist_final, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
from time import perf_counter |
|
start_time = perf_counter() |
|
|
|
prompt = formatted_prompt('give me a pure brown color') |
|
sequences = pipe( |
|
prompt, |
|
do_sample=True, |
|
temperature=0.1, |
|
top_p=0.9, |
|
num_return_sequences=1, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=12 |
|
) |
|
for seq in sequences: |
|
print(f"Result: {seq['generated_text']}") |
|
|
|
output_time = perf_counter() - start_time |
|
print(f"Time taken for inference: {round(output_time,2)} seconds") |
|
|
|
``` |
|
Result: #807070 |
|
``` |
|
Result: <|im_start|>user |
|
give me a pure brown color<|im_end|> |
|
<|im_start|>assistant: #807070<|im_end> |
|
|
|
Time taken for inference: 0.19 seconds |
|
``` |
|
|
|
Dataset: "burkelibbey/colors" |