|
--- |
|
base_model: intfloat/multilingual-e5-small |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:867042 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: An air strike. |
|
sentences: |
|
- מר פרקינסון היה מזועזע אם היה יודע איך מר פוקס מתנהג. |
|
- 'Sonia: Jangan berkata begitu.' |
|
- En luftattack. |
|
- source_sentence: >- |
|
The European Parliament has recently called for a guarantee that 40 % of the |
|
10 % target will come from sources that do not compete with food production. |
|
sentences: |
|
- >- |
|
L' ordre du jour appelle l' examen du projet définitif d' ordre du jour tel |
|
qu' il a été établi par la Conférence des présidents, le jeudi 13 janvier, |
|
conformément à l' article 110 du règlement. |
|
- >- |
|
می توانم با تمام وجود به این باور داشته باشم؟ می توانم در این باره چنین |
|
خشمگین باشم؟" |
|
- >- |
|
Europaparlamentet ba nylig om en garanti for at 40 % av de 10 % kommer fra |
|
kilder som ikke konkurrerer med matvareproduksjon. |
|
- source_sentence: In effect, this adds to the length of the workday and to its tensions. |
|
sentences: |
|
- >- |
|
Musimy wysłuchać opinii zainteresowanych stron, które rozwiązanie jest |
|
najatrakcyjniejsze dla spółek. |
|
- Вам надо держать себя в руках. |
|
- درحقیقت ، یہ دنبھر کے کام اور اس سے وابستہ دباؤ میں اضافہ کرتا ہے ۔ |
|
- source_sentence: >- |
|
A few HIV positive mothers NOT in their first pregnancy (one was in her |
|
ninth). |
|
sentences: |
|
- >- |
|
Beberapa ibu mengidap HIV positif TIDAK di kehamilan pertama mereka (salah |
|
satunya bahkan di kehamilan kesembilan). |
|
- Taigi, manau, kad taip ir pristatysiu jus – kaip pasakorę". |
|
- הוא איפשר ראייה לשני מיליון אנשים ללא תשלום. |
|
- source_sentence: >- |
|
What do they think it is that prevents the products of human ingenuity from |
|
being themselves, fruits of the tree of life, and hence, in some sense, |
|
obeying evolutionary rules? |
|
sentences: |
|
- >- |
|
Կարծում եք ի՞նչն է խանգարում, որ մարդկային հնարամտության արդյունքները իրենք |
|
էլ լինեն կյանքի ծառի պտուղներ և այդպիսով ինչ-որ իմաստով ենթարկվեն |
|
էվոլուցիայի կանոններին: |
|
- >- |
|
Ja mēs varētu aktivēt šūnas, mēs varētu redzēt, kādus spēkus tās var |
|
atbrīvot, ko tās var ierosināt un ko stiprināt. Ja mēs tās varētu izslēgt, |
|
- (Smiech) No dobre, idem do Ameriky. |
|
datasets: |
|
- agentlans/en-translations |
|
--- |
|
|
|
# SentenceTransformer based on intfloat/multilingual-e5-small |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("agentlans/multilingual-e5-small-aligned") |
|
# Run inference |
|
sentences = [ |
|
'What do they think it is that prevents the products of human ingenuity from being themselves, fruits of the tree of life, and hence, in some sense, obeying evolutionary rules?', |
|
'Կարծում եք ի՞նչն է խանգարում, որ մարդկային հնարամտության արդյունքները իրենք էլ լինեն կյանքի ծառի պտուղներ և այդպիսով ինչ-որ իմաստով ենթարկվեն էվոլուցիայի կանոններին:', |
|
'(Smiech) No dobre, idem do Ameriky.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 867,042 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 21.83 tokens</li><li>max: 177 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 24.92 tokens</li><li>max: 229 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>I like English best of all subjects.</code> | <code>Tykkään englannista eniten kaikista aineista.</code> | |
|
| <code>We shall offer negotiations. Quite right.</code> | <code>- Oferecer-nos-emos para negociar.</code> | |
|
| <code>It was soon learned that Zelaya had been taken to Costa Rica, where he continued to call himself as the legal head of state.</code> | <code>Al snel werd bekend dat Zelaya naar Costa Rica was overgebracht, waar hij zich nog steeds het officiële staatshoofd noemde.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `num_train_epochs`: 1 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | |
|
|:------:|:------:|:-------------:| |
|
| 0.0046 | 500 | 0.0378 | |
|
| 0.0092 | 1000 | 0.0047 | |
|
| 0.0138 | 1500 | 0.006 | |
|
| 0.0185 | 2000 | 0.0045 | |
|
| 0.0231 | 2500 | 0.0027 | |
|
| 0.0277 | 3000 | 0.005 | |
|
| 0.0323 | 3500 | 0.0045 | |
|
| 0.0369 | 4000 | 0.005 | |
|
| 0.0415 | 4500 | 0.0066 | |
|
| 0.0461 | 5000 | 0.0029 | |
|
| 0.0507 | 5500 | 0.0041 | |
|
| 0.0554 | 6000 | 0.0064 | |
|
| 0.0600 | 6500 | 0.0044 | |
|
| 0.0646 | 7000 | 0.0039 | |
|
| 0.0692 | 7500 | 0.0025 | |
|
| 0.0738 | 8000 | 0.0026 | |
|
| 0.0784 | 8500 | 0.0036 | |
|
| 0.0830 | 9000 | 0.0027 | |
|
| 0.0877 | 9500 | 0.0015 | |
|
| 0.0923 | 10000 | 0.003 | |
|
| 0.0969 | 10500 | 0.0013 | |
|
| 0.1015 | 11000 | 0.002 | |
|
| 0.1061 | 11500 | 0.0038 | |
|
| 0.1107 | 12000 | 0.0017 | |
|
| 0.1153 | 12500 | 0.0029 | |
|
| 0.1199 | 13000 | 0.0032 | |
|
| 0.1246 | 13500 | 0.0036 | |
|
| 0.1292 | 14000 | 0.004 | |
|
| 0.1338 | 14500 | 0.0036 | |
|
| 0.1384 | 15000 | 0.0025 | |
|
| 0.1430 | 15500 | 0.0022 | |
|
| 0.1476 | 16000 | 0.0017 | |
|
| 0.1522 | 16500 | 0.0019 | |
|
| 0.1569 | 17000 | 0.0022 | |
|
| 0.1615 | 17500 | 0.0028 | |
|
| 0.1661 | 18000 | 0.0033 | |
|
| 0.1707 | 18500 | 0.0025 | |
|
| 0.1753 | 19000 | 0.0014 | |
|
| 0.1799 | 19500 | 0.0033 | |
|
| 0.1845 | 20000 | 0.0023 | |
|
| 0.1891 | 20500 | 0.0023 | |
|
| 0.1938 | 21000 | 0.0009 | |
|
| 0.1984 | 21500 | 0.0043 | |
|
| 0.2030 | 22000 | 0.0021 | |
|
| 0.2076 | 22500 | 0.0025 | |
|
| 0.2122 | 23000 | 0.0017 | |
|
| 0.2168 | 23500 | 0.0024 | |
|
| 0.2214 | 24000 | 0.0021 | |
|
| 0.2261 | 24500 | 0.0023 | |
|
| 0.2307 | 25000 | 0.0014 | |
|
| 0.2353 | 25500 | 0.0027 | |
|
| 0.2399 | 26000 | 0.0025 | |
|
| 0.2445 | 26500 | 0.0022 | |
|
| 0.2491 | 27000 | 0.0022 | |
|
| 0.2537 | 27500 | 0.0024 | |
|
| 0.2583 | 28000 | 0.0035 | |
|
| 0.2630 | 28500 | 0.0032 | |
|
| 0.2676 | 29000 | 0.0048 | |
|
| 0.2722 | 29500 | 0.0008 | |
|
| 0.2768 | 30000 | 0.0027 | |
|
| 0.2814 | 30500 | 0.004 | |
|
| 0.2860 | 31000 | 0.0013 | |
|
| 0.2906 | 31500 | 0.002 | |
|
| 0.2953 | 32000 | 0.0016 | |
|
| 0.2999 | 32500 | 0.0027 | |
|
| 0.3045 | 33000 | 0.0014 | |
|
| 0.3091 | 33500 | 0.0022 | |
|
| 0.3137 | 34000 | 0.0017 | |
|
| 0.3183 | 34500 | 0.0022 | |
|
| 0.3229 | 35000 | 0.0026 | |
|
| 0.3275 | 35500 | 0.003 | |
|
| 0.3322 | 36000 | 0.0022 | |
|
| 0.3368 | 36500 | 0.0022 | |
|
| 0.3414 | 37000 | 0.0018 | |
|
| 0.3460 | 37500 | 0.0028 | |
|
| 0.3506 | 38000 | 0.0018 | |
|
| 0.3552 | 38500 | 0.0037 | |
|
| 0.3598 | 39000 | 0.003 | |
|
| 0.3645 | 39500 | 0.002 | |
|
| 0.3691 | 40000 | 0.001 | |
|
| 0.3737 | 40500 | 0.0015 | |
|
| 0.3783 | 41000 | 0.0023 | |
|
| 0.3829 | 41500 | 0.0017 | |
|
| 0.3875 | 42000 | 0.0034 | |
|
| 0.3921 | 42500 | 0.0016 | |
|
| 0.3967 | 43000 | 0.0019 | |
|
| 0.4014 | 43500 | 0.0015 | |
|
| 0.4060 | 44000 | 0.0026 | |
|
| 0.4106 | 44500 | 0.0012 | |
|
| 0.4152 | 45000 | 0.0014 | |
|
| 0.4198 | 45500 | 0.0027 | |
|
| 0.4244 | 46000 | 0.0016 | |
|
| 0.4290 | 46500 | 0.0027 | |
|
| 0.4337 | 47000 | 0.0033 | |
|
| 0.4383 | 47500 | 0.0023 | |
|
| 0.4429 | 48000 | 0.0024 | |
|
| 0.4475 | 48500 | 0.0019 | |
|
| 0.4521 | 49000 | 0.0017 | |
|
| 0.4567 | 49500 | 0.004 | |
|
| 0.4613 | 50000 | 0.0036 | |
|
| 0.4659 | 50500 | 0.001 | |
|
| 0.4706 | 51000 | 0.0016 | |
|
| 0.4752 | 51500 | 0.0024 | |
|
| 0.4798 | 52000 | 0.0009 | |
|
| 0.4844 | 52500 | 0.0011 | |
|
| 0.4890 | 53000 | 0.0018 | |
|
| 0.4936 | 53500 | 0.0012 | |
|
| 0.4982 | 54000 | 0.0012 | |
|
| 0.5029 | 54500 | 0.0014 | |
|
| 0.5075 | 55000 | 0.0025 | |
|
| 0.5121 | 55500 | 0.0016 | |
|
| 0.5167 | 56000 | 0.0015 | |
|
| 0.5213 | 56500 | 0.002 | |
|
| 0.5259 | 57000 | 0.0008 | |
|
| 0.5305 | 57500 | 0.0017 | |
|
| 0.5351 | 58000 | 0.0015 | |
|
| 0.5398 | 58500 | 0.0009 | |
|
| 0.5444 | 59000 | 0.0019 | |
|
| 0.5490 | 59500 | 0.0014 | |
|
| 0.5536 | 60000 | 0.0028 | |
|
| 0.5582 | 60500 | 0.0014 | |
|
| 0.5628 | 61000 | 0.0032 | |
|
| 0.5674 | 61500 | 0.0013 | |
|
| 0.5721 | 62000 | 0.002 | |
|
| 0.5767 | 62500 | 0.0018 | |
|
| 0.5813 | 63000 | 0.0015 | |
|
| 0.5859 | 63500 | 0.0008 | |
|
| 0.5905 | 64000 | 0.0021 | |
|
| 0.5951 | 64500 | 0.0008 | |
|
| 0.5997 | 65000 | 0.002 | |
|
| 0.6043 | 65500 | 0.0023 | |
|
| 0.6090 | 66000 | 0.0022 | |
|
| 0.6136 | 66500 | 0.0013 | |
|
| 0.6182 | 67000 | 0.0011 | |
|
| 0.6228 | 67500 | 0.0014 | |
|
| 0.6274 | 68000 | 0.0027 | |
|
| 0.6320 | 68500 | 0.002 | |
|
| 0.6366 | 69000 | 0.0013 | |
|
| 0.6413 | 69500 | 0.0026 | |
|
| 0.6459 | 70000 | 0.0014 | |
|
| 0.6505 | 70500 | 0.0017 | |
|
| 0.6551 | 71000 | 0.0023 | |
|
| 0.6597 | 71500 | 0.0025 | |
|
| 0.6643 | 72000 | 0.0013 | |
|
| 0.6689 | 72500 | 0.0008 | |
|
| 0.6735 | 73000 | 0.0017 | |
|
| 0.6782 | 73500 | 0.0022 | |
|
| 0.6828 | 74000 | 0.0021 | |
|
| 0.6874 | 74500 | 0.0008 | |
|
| 0.6920 | 75000 | 0.0007 | |
|
| 0.6966 | 75500 | 0.0038 | |
|
| 0.7012 | 76000 | 0.0011 | |
|
| 0.7058 | 76500 | 0.0016 | |
|
| 0.7105 | 77000 | 0.0013 | |
|
| 0.7151 | 77500 | 0.0042 | |
|
| 0.7197 | 78000 | 0.0009 | |
|
| 0.7243 | 78500 | 0.0004 | |
|
| 0.7289 | 79000 | 0.0006 | |
|
| 0.7335 | 79500 | 0.0007 | |
|
| 0.7381 | 80000 | 0.0014 | |
|
| 0.7428 | 80500 | 0.002 | |
|
| 0.7474 | 81000 | 0.0017 | |
|
| 0.7520 | 81500 | 0.0014 | |
|
| 0.7566 | 82000 | 0.0015 | |
|
| 0.7612 | 82500 | 0.0013 | |
|
| 0.7658 | 83000 | 0.001 | |
|
| 0.7704 | 83500 | 0.0019 | |
|
| 0.7750 | 84000 | 0.0009 | |
|
| 0.7797 | 84500 | 0.0021 | |
|
| 0.7843 | 85000 | 0.0015 | |
|
| 0.7889 | 85500 | 0.001 | |
|
| 0.7935 | 86000 | 0.0008 | |
|
| 0.7981 | 86500 | 0.0039 | |
|
| 0.8027 | 87000 | 0.0018 | |
|
| 0.8073 | 87500 | 0.0009 | |
|
| 0.8120 | 88000 | 0.0018 | |
|
| 0.8166 | 88500 | 0.0008 | |
|
| 0.8212 | 89000 | 0.0007 | |
|
| 0.8258 | 89500 | 0.0009 | |
|
| 0.8304 | 90000 | 0.002 | |
|
| 0.8350 | 90500 | 0.001 | |
|
| 0.8396 | 91000 | 0.0007 | |
|
| 0.8442 | 91500 | 0.0008 | |
|
| 0.8489 | 92000 | 0.0021 | |
|
| 0.8535 | 92500 | 0.0013 | |
|
| 0.8581 | 93000 | 0.0009 | |
|
| 0.8627 | 93500 | 0.002 | |
|
| 0.8673 | 94000 | 0.0012 | |
|
| 0.8719 | 94500 | 0.0034 | |
|
| 0.8765 | 95000 | 0.0027 | |
|
| 0.8812 | 95500 | 0.0006 | |
|
| 0.8858 | 96000 | 0.002 | |
|
| 0.8904 | 96500 | 0.0005 | |
|
| 0.8950 | 97000 | 0.0009 | |
|
| 0.8996 | 97500 | 0.0007 | |
|
| 0.9042 | 98000 | 0.0015 | |
|
| 0.9088 | 98500 | 0.0006 | |
|
| 0.9134 | 99000 | 0.0004 | |
|
| 0.9181 | 99500 | 0.0006 | |
|
| 0.9227 | 100000 | 0.0031 | |
|
| 0.9273 | 100500 | 0.0013 | |
|
| 0.9319 | 101000 | 0.0024 | |
|
| 0.9365 | 101500 | 0.0006 | |
|
| 0.9411 | 102000 | 0.0017 | |
|
| 0.9457 | 102500 | 0.0007 | |
|
| 0.9504 | 103000 | 0.0012 | |
|
| 0.9550 | 103500 | 0.0011 | |
|
| 0.9596 | 104000 | 0.0007 | |
|
| 0.9642 | 104500 | 0.0004 | |
|
| 0.9688 | 105000 | 0.0021 | |
|
| 0.9734 | 105500 | 0.0027 | |
|
| 0.9780 | 106000 | 0.0016 | |
|
| 0.9826 | 106500 | 0.0022 | |
|
| 0.9873 | 107000 | 0.0017 | |
|
| 0.9919 | 107500 | 0.0009 | |
|
| 0.9965 | 108000 | 0.0008 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.0 |
|
- Transformers: 4.46.3 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.1.1 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |