|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- code |
|
- mathematics |
|
datasets: |
|
- ajibawa-2023/Code-290k-ShareGPT |
|
- m-a-p/Code-Feedback |
|
- microsoft/orca-math-word-problems-200k |
|
- teknium/openhermes |
|
model-index: |
|
- name: Code-Mistral-7B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 64.59 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 85.29 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 65.0 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 54.64 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 82.24 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 68.08 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
**Code-Mistral-7B** |
|
|
|
|
|
This Model is trained on refined version of my dataset [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT). |
|
|
|
Besides this it is trained on following datasets: |
|
|
|
[Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback) |
|
|
|
[orca-math-word-problems-200k](https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k) |
|
|
|
[Openhermes](https://huggingface.co/datasets/teknium/openhermes) |
|
|
|
The idea was to check how this Model will perform with both Code & Maths datasets. This model is very good with Coding. |
|
Maths is still hit & miss but you can test out this model. |
|
|
|
This Model is trained on massive datasets so the results are very good. |
|
I have used ChatML prompt format. |
|
|
|
Kindly note this is qLoRA version, a rare exception. |
|
|
|
**GGUF & Exllama** |
|
|
|
GGUF: [Link](https://huggingface.co/bartowski/Code-Mistral-7B-GGUF) |
|
|
|
Exllama v2: [Link](https://huggingface.co/bartowski/Code-Mistral-7B-exl2) |
|
|
|
Special Thanks to [Bartowski](https://huggingface.co/bartowski) for quantizing this model. |
|
|
|
|
|
**Training:** |
|
|
|
Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took almost 33 Hours. Axolotl codebase was used for training purpose. |
|
Entire data is trained on Mistral. |
|
|
|
**Example Prompt:** |
|
This model uses **ChatML** prompt format. |
|
|
|
``` |
|
<|im_start|>system |
|
You are a helpful AI assistant.<|im_end|> |
|
<|im_start|>user |
|
{prompt}<|im_end|> |
|
<|im_start|>assistant |
|
|
|
``` |
|
You can modify above Prompt as per your requirement. |
|
|
|
|
|
I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development. |
|
|
|
Thank you for your love & support. |
|
|
|
|
|
**Example Output** |
|
|
|
|
|
**C++** |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/jcmEZSRX7s7-B_ZybWwwN.jpeg) |
|
|
|
**Error Resolving** |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/iy89IxjiZXAY4Id-ieLg7.jpeg) |
|
|
|
**Matrices** |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/zFfq9lBA63wQzy0tP3_hd.jpeg) |
|
|
|
**Machine Learning** |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/Nv8dCpNxRtJGkOuulKzmn.jpeg) |
|
|
|
|
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Code-Mistral-7B) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |69.97| |
|
|AI2 Reasoning Challenge (25-Shot)|64.59| |
|
|HellaSwag (10-Shot) |85.29| |
|
|MMLU (5-Shot) |65.00| |
|
|TruthfulQA (0-shot) |54.64| |
|
|Winogrande (5-shot) |82.24| |
|
|GSM8k (5-shot) |68.08| |
|
|
|
|