metadata
library_name: transformers
license: apache-2.0
base_model: alex-miller/ODABert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: cls-pooled-gender
results: []
cls-pooled-gender
This model is a fine-tuned version of alex-miller/ODABert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2146
- Accuracy: 0.9522
- F1: 0.9388
- Precision: 0.9093
- Recall: 0.9703
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5237 | 1.0 | 342 | 0.3170 | 0.9047 | 0.8842 | 0.8167 | 0.9638 |
0.2785 | 2.0 | 684 | 0.2489 | 0.9388 | 0.9226 | 0.8831 | 0.9658 |
0.2301 | 3.0 | 1026 | 0.2242 | 0.9537 | 0.9402 | 0.9171 | 0.9645 |
0.2071 | 4.0 | 1368 | 0.2169 | 0.9517 | 0.9381 | 0.9091 | 0.9690 |
0.1941 | 5.0 | 1710 | 0.2146 | 0.9522 | 0.9388 | 0.9093 | 0.9703 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1