|
--- |
|
language: es |
|
license: cc-by-4.0 |
|
library_name: span-marker |
|
tags: |
|
- span-marker |
|
- token-classification |
|
- ner |
|
- named-entity-recognition |
|
- generated_from_span_marker_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
widget: |
|
- text: George Washington fue a Washington. |
|
pipeline_tag: token-classification |
|
base_model: xlm-roberta-large |
|
model-index: |
|
- name: SpanMarker with xlm-roberta-large on conll2002 |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Named Entity Recognition |
|
dataset: |
|
name: conll2002 |
|
type: unknown |
|
split: eval |
|
metrics: |
|
- type: f1 |
|
value: 0.8911398300151355 |
|
name: F1 |
|
- type: precision |
|
value: 0.8981459751232105 |
|
name: Precision |
|
- type: recall |
|
value: 0.8842421441774492 |
|
name: Recall |
|
--- |
|
|
|
# SpanMarker with xlm-roberta-large on conll2002 |
|
|
|
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. This SpanMarker model uses [xlm-roberta-large](https://huggingface.co/models/xlm-roberta-large) as the underlying encoder. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Model Type:** SpanMarker |
|
- **Encoder:** [xlm-roberta-large](https://huggingface.co/models/xlm-roberta-large) |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Maximum Entity Length:** 8 words |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
- **Language:** es |
|
- **License:** cc-by-4.0 |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) |
|
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) |
|
|
|
### Model Labels |
|
|
|
| Label | Examples | |
|
|:------|:------------------------------------------------------------------| |
|
| LOC | "Melbourne", "Australia", "Victoria" | |
|
| MISC | "CrimeNet", "Ciudad", "Ley" | |
|
| ORG | "Commonwealth", "Tribunal Supremo", "EFE" | |
|
| PER | "Abogado General del Estado", "Daryl Williams", "Abogado General" | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
```python |
|
from span_marker import SpanMarkerModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SpanMarkerModel.from_pretrained("alvarobartt/span-marker-xlm-roberta-large-conll-2002-es") |
|
# Run inference |
|
entities = model.predict("George Washington fue a Washington.") |
|
``` |
|
</details> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:----------------------|:----|:--------|:-----| |
|
| Sentence length | 1 | 31.8052 | 1238 | |
|
| Entities per sentence | 0 | 2.2586 | 160 | |
|
|
|
### Training Hyperparameters |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 2 |
|
|
|
### Training Results |
|
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |
|
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| |
|
| 0.0587 | 50 | 0.4612 | 0.0280 | 0.0007 | 0.0014 | 0.8576 | |
|
| 0.1174 | 100 | 0.0512 | 0.5 | 0.0002 | 0.0005 | 0.8609 | |
|
| 0.1761 | 150 | 0.0254 | 0.7622 | 0.5494 | 0.6386 | 0.9278 | |
|
| 0.2347 | 200 | 0.0177 | 0.7840 | 0.7135 | 0.7471 | 0.9483 | |
|
| 0.2934 | 250 | 0.0153 | 0.8072 | 0.7944 | 0.8007 | 0.9662 | |
|
| 0.3521 | 300 | 0.0175 | 0.8439 | 0.7544 | 0.7966 | 0.9611 | |
|
| 0.4108 | 350 | 0.0103 | 0.8828 | 0.8108 | 0.8452 | 0.9687 | |
|
| 0.4695 | 400 | 0.0105 | 0.8674 | 0.8433 | 0.8552 | 0.9724 | |
|
| 0.5282 | 450 | 0.0098 | 0.8651 | 0.8477 | 0.8563 | 0.9745 | |
|
| 0.5869 | 500 | 0.0092 | 0.8634 | 0.8306 | 0.8467 | 0.9736 | |
|
| 0.6455 | 550 | 0.0106 | 0.8556 | 0.8581 | 0.8568 | 0.9758 | |
|
| 0.7042 | 600 | 0.0096 | 0.8712 | 0.8521 | 0.8616 | 0.9733 | |
|
| 0.7629 | 650 | 0.0090 | 0.8791 | 0.8420 | 0.8601 | 0.9740 | |
|
| 0.8216 | 700 | 0.0082 | 0.8883 | 0.8799 | 0.8840 | 0.9769 | |
|
| 0.8803 | 750 | 0.0081 | 0.8877 | 0.8604 | 0.8739 | 0.9763 | |
|
| 0.9390 | 800 | 0.0087 | 0.8785 | 0.8738 | 0.8762 | 0.9763 | |
|
| 0.9977 | 850 | 0.0084 | 0.8777 | 0.8653 | 0.8714 | 0.9767 | |
|
| 1.0563 | 900 | 0.0081 | 0.8894 | 0.8713 | 0.8803 | 0.9767 | |
|
| 1.1150 | 950 | 0.0078 | 0.8944 | 0.8708 | 0.8825 | 0.9768 | |
|
| 1.1737 | 1000 | 0.0079 | 0.8973 | 0.8722 | 0.8846 | 0.9776 | |
|
| 1.2324 | 1050 | 0.0080 | 0.8792 | 0.8780 | 0.8786 | 0.9783 | |
|
| 1.2911 | 1100 | 0.0082 | 0.8821 | 0.8574 | 0.8696 | 0.9767 | |
|
| 1.3498 | 1150 | 0.0075 | 0.8928 | 0.8697 | 0.8811 | 0.9774 | |
|
| 1.4085 | 1200 | 0.0076 | 0.8919 | 0.8803 | 0.8860 | 0.9792 | |
|
| 1.4671 | 1250 | 0.0078 | 0.8846 | 0.8695 | 0.8770 | 0.9781 | |
|
| 1.5258 | 1300 | 0.0074 | 0.8944 | 0.8845 | 0.8894 | 0.9792 | |
|
| 1.5845 | 1350 | 0.0076 | 0.8922 | 0.8856 | 0.8889 | 0.9796 | |
|
| 1.6432 | 1400 | 0.0072 | 0.9004 | 0.8799 | 0.8900 | 0.9790 | |
|
| 1.7019 | 1450 | 0.0076 | 0.8944 | 0.8889 | 0.8916 | 0.9800 | |
|
| 1.7606 | 1500 | 0.0074 | 0.8962 | 0.8861 | 0.8911 | 0.9800 | |
|
| 1.8192 | 1550 | 0.0072 | 0.8988 | 0.8886 | 0.8937 | 0.9809 | |
|
| 1.8779 | 1600 | 0.0074 | 0.8962 | 0.8833 | 0.8897 | 0.9797 | |
|
| 1.9366 | 1650 | 0.0071 | 0.8976 | 0.8849 | 0.8912 | 0.9799 | |
|
| 1.9953 | 1700 | 0.0071 | 0.8981 | 0.8842 | 0.8911 | 0.9799 | |
|
|
|
### Framework Versions |
|
|
|
- Python: 3.10.12 |
|
- SpanMarker: 1.3.1.dev |
|
- Transformers: 4.33.2 |
|
- PyTorch: 2.0.1+cu118 |
|
- Datasets: 2.14.5 |
|
- Tokenizers: 0.13.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
``` |
|
@software{Aarsen_SpanMarker, |
|
author = {Aarsen, Tom}, |
|
license = {Apache-2.0}, |
|
title = {{SpanMarker for Named Entity Recognition}}, |
|
url = {https://github.com/tomaarsen/SpanMarkerNER} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |