alyzbane's picture
End of training
30ac9c0 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: vit-base-patch16-224-finetuned-barkley
    results: []

vit-base-patch16-224-finetuned-barkley

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0036
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0
  • Top1 Accuracy: 1.0
  • Error Rate: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Top1 Accuracy Error Rate
1.6093 1.0 38 1.4340 0.4769 0.4342 0.4066 0.4149 0.4342 0.5851
1.2908 2.0 76 1.1747 0.6587 0.6118 0.6160 0.6161 0.6118 0.3839
1.0409 3.0 114 0.9174 0.7382 0.7303 0.7293 0.7425 0.7303 0.2575
0.781 4.0 152 0.6528 0.8632 0.8618 0.8622 0.8650 0.8618 0.1350
0.5429 5.0 190 0.4112 0.9417 0.9408 0.9405 0.9443 0.9408 0.0557
0.328 6.0 228 0.2229 0.9809 0.9803 0.9802 0.9811 0.9803 0.0189
0.1837 7.0 266 0.1181 0.9871 0.9868 0.9868 0.9878 0.9868 0.0122
0.1131 8.0 304 0.0680 0.9937 0.9934 0.9934 0.9944 0.9934 0.0056
0.0526 9.0 342 0.0387 0.9937 0.9934 0.9934 0.9944 0.9934 0.0056
0.0283 10.0 380 0.0328 0.9873 0.9868 0.9869 0.9878 0.9868 0.0122
0.019 11.0 418 0.0224 0.9873 0.9868 0.9868 0.9889 0.9868 0.0111
0.0148 12.0 456 0.0201 0.9873 0.9868 0.9868 0.9889 0.9868 0.0111
0.0095 13.0 494 0.0396 0.9871 0.9868 0.9868 0.9878 0.9868 0.0122
0.007 14.0 532 0.0048 1.0 1.0 1.0 1.0 1.0 0.0
0.011 15.0 570 0.0036 1.0 1.0 1.0 1.0 1.0 0.0
0.0071 16.0 608 0.0092 0.9936 0.9934 0.9934 0.9941 0.9934 0.0059
0.0103 17.0 646 0.0148 0.9936 0.9934 0.9934 0.9944 0.9934 0.0056

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1