|
--- |
|
license: mit |
|
language: |
|
- ru |
|
- kbd |
|
datasets: |
|
- anzorq/kbd-ru |
|
widget: |
|
- text: Я иду домой. |
|
example_title: Я иду домой. |
|
- text: Дети играют во дворе. |
|
example_title: Дети играют во дворе. |
|
- text: Сколько тебе лет? |
|
example_title: Сколько тебе лет? |
|
- text: На следующий день мы отправились в путь. |
|
example_title: На следующий день мы отправились в путь. |
|
tags: |
|
- translation |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# m2m100_ru_kbd_44K |
|
|
|
This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on a ru-kbd dataset, containing 44K sentences from books, textbooks, dictionaries etc.. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9399 |
|
- Bleu: 22.389 |
|
- Gen Len: 16.562 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| |
|
| 2.2391 | 0.18 | 1000 | 1.9921 | 7.4066 | 16.377 | |
|
| 1.8436 | 0.36 | 2000 | 1.6756 | 9.3443 | 18.428 | |
|
| 1.63 | 0.53 | 3000 | 1.5361 | 10.9057 | 17.134 | |
|
| 1.5205 | 0.71 | 4000 | 1.3994 | 12.6061 | 17.471 | |
|
| 1.4471 | 0.89 | 5000 | 1.3107 | 14.4452 | 16.985 | |
|
| 1.1915 | 1.07 | 6000 | 1.2462 | 15.1903 | 16.544 | |
|
| 1.1165 | 1.25 | 7000 | 1.1917 | 16.3859 | 17.044 | |
|
| 1.0654 | 1.43 | 8000 | 1.1351 | 17.617 | 16.481 | |
|
| 1.0464 | 1.6 | 9000 | 1.0939 | 18.649 | 16.517 | |
|
| 1.0376 | 1.78 | 10000 | 1.0603 | 18.2567 | 17.152 | |
|
| 1.0027 | 1.96 | 11000 | 1.0184 | 20.6011 | 16.875 | |
|
| 0.7741 | 2.14 | 12000 | 1.0159 | 20.4801 | 16.488 | |
|
| 0.7566 | 2.32 | 13000 | 0.9899 | 21.6967 | 16.681 | |
|
| 0.7346 | 2.49 | 14000 | 0.9738 | 21.8249 | 16.679 | |
|
| 0.7397 | 2.67 | 15000 | 0.9555 | 21.569 | 16.608 | |
|
| 0.6919 | 2.85 | 16000 | 0.9441 | 22.4658 | 16.493 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.0 |
|
- Pytorch 1.10.0+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|
|
--- |
|
|
|
# Model inference |
|
### 1. Install dependencies |
|
```bash |
|
pip install transformers sentencepiece torch ctranslate2 |
|
``` |
|
|
|
### 2. Inference |
|
|
|
|
|
## CTranslate2 model (quantized model, much faster inference) |
|
First, download the files for the model in ctranslate2 format: |
|
```Python |
|
from huggingface_hub import hf_hub_download |
|
|
|
hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='config.json', local_dir='./') |
|
hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='model.bin', local_dir='./') |
|
hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='sentencepiece.bpe.model', local_dir='./') |
|
hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='shared_vocabulary.json', local_dir='./') |
|
``` |
|
|
|
Run inference: |
|
```Python |
|
import ctranslate2 |
|
import transformers |
|
|
|
translator = ctranslate2.Translator("ctranslate2") # Ensure correct path to the ctranslate2 model directory |
|
tokenizer = transformers.AutoTokenizer.from_pretrained("anzorq/m2m100_418M_ft_ru-kbd_44K") |
|
tgt_lang="zu" |
|
|
|
def translate(text, num_beams=4, num_return_sequences=4): |
|
num_return_sequences = min(num_return_sequences, num_beams) |
|
|
|
source = tokenizer.convert_ids_to_tokens(tokenizer.encode(text)) |
|
target_prefix = [tokenizer.lang_code_to_token[tgt_lang]] |
|
results = translator.translate_batch( |
|
[source], |
|
target_prefix=[target_prefix], |
|
beam_size=num_beams, |
|
num_hypotheses=num_return_sequences |
|
) |
|
|
|
translations = [] |
|
for hypothesis in results[0].hypotheses: |
|
target = hypothesis[1:] |
|
decoded_sentence = tokenizer.decode(tokenizer.convert_tokens_to_ids(target)) |
|
translations.append(decoded_sentence) |
|
|
|
return text, translations |
|
|
|
# Test the translation |
|
text = "Текст для перевода" |
|
print(translate(text)) |
|
``` |
|
|
|
## Vanilla model |
|
```Python |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K" |
|
tgt_lang="zu" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_path) |
|
|
|
def translate(text, num_beams=4, num_return_sequences=4): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
num_return_sequences = min(num_return_sequences, num_beams) |
|
|
|
translated_tokens = model.generate( |
|
**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences |
|
) |
|
|
|
translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens] |
|
return text, translations |
|
|
|
# Test the translation |
|
text = "Текст для перевода" |
|
print(translate(text)) |
|
``` |