anton-l's picture
anton-l HF staff
Upload README.md
8c9615d
metadata
language:
  - ka
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - robust-speech-event
  - hf-asr-leaderboard
datasets:
  - common_voice
model-index:
  - name: wav2vec2-xls-r-1b-ka
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          type: mozilla-foundation/common_voice_8_0
          name: Common Voice ka
          args: ka
        metrics:
          - type: wer
            value: 7.39778066580026
            name: WER LM
          - type: cer
            value: 1.1882089427096434
            name: CER LM
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: ka
        metrics:
          - name: Test WER
            type: wer
            value: 22.61
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: ka
        metrics:
          - name: Test WER
            type: wer
            value: 21.58

wav2vec2-xls-r-1b-ka

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the /WORKSPACE/DATA/KA/NOIZY_STUDENT_2/ - KA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1022
  • Wer: 0.1527
  • Cer: 0.0221

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.2839 6.45 400 0.2229 0.3609 0.0557
0.9775 12.9 800 0.1271 0.2202 0.0317
0.9045 19.35 1200 0.1268 0.2030 0.0294
0.8652 25.8 1600 0.1211 0.1940 0.0287
0.8505 32.26 2000 0.1192 0.1912 0.0276
0.8168 38.7 2400 0.1086 0.1763 0.0260
0.7737 45.16 2800 0.1098 0.1753 0.0256
0.744 51.61 3200 0.1054 0.1646 0.0239
0.7114 58.06 3600 0.1034 0.1573 0.0228
0.6773 64.51 4000 0.1022 0.1527 0.0221

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2
  • Datasets 1.18.4.dev0
  • Tokenizers 0.11.0