metadata
language:
- ka
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
- hf-asr-leaderboard
datasets:
- common_voice
model-index:
- name: wav2vec2-xls-r-1b-ka
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_8_0
name: Common Voice ka
args: ka
metrics:
- type: wer
value: 7.39778066580026
name: WER LM
- type: cer
value: 1.1882089427096434
name: CER LM
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: ka
metrics:
- name: Test WER
type: wer
value: 22.61
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ka
metrics:
- name: Test WER
type: wer
value: 21.58
wav2vec2-xls-r-1b-ka
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the /WORKSPACE/DATA/KA/NOIZY_STUDENT_2/ - KA dataset. It achieves the following results on the evaluation set:
- Loss: 0.1022
- Wer: 0.1527
- Cer: 0.0221
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.2839 | 6.45 | 400 | 0.2229 | 0.3609 | 0.0557 |
0.9775 | 12.9 | 800 | 0.1271 | 0.2202 | 0.0317 |
0.9045 | 19.35 | 1200 | 0.1268 | 0.2030 | 0.0294 |
0.8652 | 25.8 | 1600 | 0.1211 | 0.1940 | 0.0287 |
0.8505 | 32.26 | 2000 | 0.1192 | 0.1912 | 0.0276 |
0.8168 | 38.7 | 2400 | 0.1086 | 0.1763 | 0.0260 |
0.7737 | 45.16 | 2800 | 0.1098 | 0.1753 | 0.0256 |
0.744 | 51.61 | 3200 | 0.1054 | 0.1646 | 0.0239 |
0.7114 | 58.06 | 3600 | 0.1034 | 0.1573 | 0.0228 |
0.6773 | 64.51 | 4000 | 0.1022 | 0.1527 | 0.0221 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0