wav2vec2-large-mms-1b-kyrgyz-colab
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2384
- Wer: 0.2312
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.9324 | 0.2347 | 100 | 0.3080 | 0.2811 |
0.4397 | 0.4695 | 200 | 0.2887 | 0.2666 |
0.4336 | 0.7042 | 300 | 0.2816 | 0.2581 |
0.4064 | 0.9390 | 400 | 0.2602 | 0.2518 |
0.3604 | 1.1737 | 500 | 0.2447 | 0.2433 |
0.3752 | 1.4085 | 600 | 0.2603 | 0.2457 |
0.3801 | 1.6432 | 700 | 0.2531 | 0.2433 |
0.4021 | 1.8779 | 800 | 0.2418 | 0.2441 |
0.3807 | 2.1127 | 900 | 0.2625 | 0.2431 |
0.3764 | 2.3474 | 1000 | 0.2421 | 0.2410 |
0.3669 | 2.5822 | 1100 | 0.2423 | 0.2422 |
0.3529 | 2.8169 | 1200 | 0.2447 | 0.2337 |
0.3432 | 3.0516 | 1300 | 0.2351 | 0.2345 |
0.3535 | 3.2864 | 1400 | 0.2469 | 0.2331 |
0.3481 | 3.5211 | 1500 | 0.2353 | 0.2355 |
0.3301 | 3.7559 | 1600 | 0.2414 | 0.2309 |
0.3696 | 3.9906 | 1700 | 0.2384 | 0.2312 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for arfik/wav2vec2-large-mms-1b-kyrgyz-colab
Base model
facebook/mms-1b-all