arfik's picture
End of training
93fed4f verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-mms-1b-kyrgyz-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ky
          split: test
          args: ky
        metrics:
          - name: Wer
            type: wer
            value: 0.23120079630802642

wav2vec2-large-mms-1b-kyrgyz-colab

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2384
  • Wer: 0.2312

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.9324 0.2347 100 0.3080 0.2811
0.4397 0.4695 200 0.2887 0.2666
0.4336 0.7042 300 0.2816 0.2581
0.4064 0.9390 400 0.2602 0.2518
0.3604 1.1737 500 0.2447 0.2433
0.3752 1.4085 600 0.2603 0.2457
0.3801 1.6432 700 0.2531 0.2433
0.4021 1.8779 800 0.2418 0.2441
0.3807 2.1127 900 0.2625 0.2431
0.3764 2.3474 1000 0.2421 0.2410
0.3669 2.5822 1100 0.2423 0.2422
0.3529 2.8169 1200 0.2447 0.2337
0.3432 3.0516 1300 0.2351 0.2345
0.3535 3.2864 1400 0.2469 0.2331
0.3481 3.5211 1500 0.2353 0.2355
0.3301 3.7559 1600 0.2414 0.2309
0.3696 3.9906 1700 0.2384 0.2312

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0