arieg's picture
End of training
12a7623
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_keras_callback
model-index:
  - name: arieg/bw_spec_cls_4_01_noise_200_confirm
    results: []

arieg/bw_spec_cls_4_01_noise_200_confirm

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0143
  • Train Sparse Categorical Accuracy: 1.0
  • Validation Loss: 0.0140
  • Validation Sparse Categorical Accuracy: 1.0
  • Epoch: 19

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 14400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Sparse Categorical Accuracy Validation Loss Validation Sparse Categorical Accuracy Epoch
0.6064 0.9569 0.2224 1.0 0
0.1543 1.0 0.1168 1.0 1
0.0979 1.0 0.0858 1.0 2
0.0769 1.0 0.0709 1.0 3
0.0647 1.0 0.0603 1.0 4
0.0558 1.0 0.0528 1.0 5
0.0490 1.0 0.0465 1.0 6
0.0434 1.0 0.0414 1.0 7
0.0387 1.0 0.0369 1.0 8
0.0347 1.0 0.0332 1.0 9
0.0312 1.0 0.0300 1.0 10
0.0282 1.0 0.0272 1.0 11
0.0256 1.0 0.0248 1.0 12
0.0234 1.0 0.0226 1.0 13
0.0214 1.0 0.0207 1.0 14
0.0196 1.0 0.0190 1.0 15
0.0181 1.0 0.0176 1.0 16
0.0167 1.0 0.0162 1.0 17
0.0155 1.0 0.0150 1.0 18
0.0143 1.0 0.0140 1.0 19

Framework versions

  • Transformers 4.35.0
  • TensorFlow 2.14.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1