arieg's picture
End of training
12a7623
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_keras_callback
model-index:
- name: arieg/bw_spec_cls_4_01_noise_200_confirm
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# arieg/bw_spec_cls_4_01_noise_200_confirm
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0143
- Train Sparse Categorical Accuracy: 1.0
- Validation Loss: 0.0140
- Validation Sparse Categorical Accuracy: 1.0
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 14400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:|
| 0.6064 | 0.9569 | 0.2224 | 1.0 | 0 |
| 0.1543 | 1.0 | 0.1168 | 1.0 | 1 |
| 0.0979 | 1.0 | 0.0858 | 1.0 | 2 |
| 0.0769 | 1.0 | 0.0709 | 1.0 | 3 |
| 0.0647 | 1.0 | 0.0603 | 1.0 | 4 |
| 0.0558 | 1.0 | 0.0528 | 1.0 | 5 |
| 0.0490 | 1.0 | 0.0465 | 1.0 | 6 |
| 0.0434 | 1.0 | 0.0414 | 1.0 | 7 |
| 0.0387 | 1.0 | 0.0369 | 1.0 | 8 |
| 0.0347 | 1.0 | 0.0332 | 1.0 | 9 |
| 0.0312 | 1.0 | 0.0300 | 1.0 | 10 |
| 0.0282 | 1.0 | 0.0272 | 1.0 | 11 |
| 0.0256 | 1.0 | 0.0248 | 1.0 | 12 |
| 0.0234 | 1.0 | 0.0226 | 1.0 | 13 |
| 0.0214 | 1.0 | 0.0207 | 1.0 | 14 |
| 0.0196 | 1.0 | 0.0190 | 1.0 | 15 |
| 0.0181 | 1.0 | 0.0176 | 1.0 | 16 |
| 0.0167 | 1.0 | 0.0162 | 1.0 | 17 |
| 0.0155 | 1.0 | 0.0150 | 1.0 | 18 |
| 0.0143 | 1.0 | 0.0140 | 1.0 | 19 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1