|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: arieg/bw_spec_cls_4_01_s_200 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# arieg/bw_spec_cls_4_01_s_200 |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0157 |
|
- Train Sparse Categorical Accuracy: 1.0 |
|
- Validation Loss: 0.0151 |
|
- Validation Sparse Categorical Accuracy: 1.0 |
|
- Epoch: 19 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 14400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |
|
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| |
|
| 0.7760 | 0.8944 | 0.3046 | 1.0 | 0 | |
|
| 0.2006 | 1.0 | 0.1346 | 1.0 | 1 | |
|
| 0.1136 | 1.0 | 0.0957 | 1.0 | 2 | |
|
| 0.0865 | 1.0 | 0.0768 | 1.0 | 3 | |
|
| 0.0712 | 1.0 | 0.0652 | 1.0 | 4 | |
|
| 0.0611 | 1.0 | 0.0565 | 1.0 | 5 | |
|
| 0.0532 | 1.0 | 0.0498 | 1.0 | 6 | |
|
| 0.0471 | 1.0 | 0.0441 | 1.0 | 7 | |
|
| 0.0420 | 1.0 | 0.0395 | 1.0 | 8 | |
|
| 0.0376 | 1.0 | 0.0355 | 1.0 | 9 | |
|
| 0.0339 | 1.0 | 0.0321 | 1.0 | 10 | |
|
| 0.0307 | 1.0 | 0.0291 | 1.0 | 11 | |
|
| 0.0279 | 1.0 | 0.0266 | 1.0 | 12 | |
|
| 0.0255 | 1.0 | 0.0243 | 1.0 | 13 | |
|
| 0.0233 | 1.0 | 0.0223 | 1.0 | 14 | |
|
| 0.0214 | 1.0 | 0.0205 | 1.0 | 15 | |
|
| 0.0198 | 1.0 | 0.0190 | 1.0 | 16 | |
|
| 0.0183 | 1.0 | 0.0175 | 1.0 | 17 | |
|
| 0.0169 | 1.0 | 0.0163 | 1.0 | 18 | |
|
| 0.0157 | 1.0 | 0.0151 | 1.0 | 19 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- TensorFlow 2.14.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|