whisper-base-hi-4 / README.md
arun100's picture
End of training
356e220 verified
metadata
language:
  - hi
license: apache-2.0
base_model: arun100/whisper-base-hi-3
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Whisper Base Hindi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_0 hi
          type: mozilla-foundation/common_voice_16_0
          config: hi
          split: test
          args: hi
        metrics:
          - name: Wer
            type: wer
            value: 27.6637932833796

Whisper Base Hindi

This model is a fine-tuned version of arun100/whisper-base-hi-3 on the mozilla-foundation/common_voice_16_0 hi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4681
  • Wer: 27.6638

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1251 13.16 1000 0.4681 27.6638
0.0812 26.32 2000 0.5046 28.2065
0.0584 39.47 3000 0.5393 28.3046
0.0441 52.63 4000 0.5639 28.4924
0.0392 65.79 5000 0.5734 28.5863

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0