whisper-base-th-2 / README.md
arun100's picture
End of training
8814c1c verified
metadata
license: apache-2.0
base_model: arun100/whisper-base-th-1
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Base Thai (2)
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs th_th
          type: google/fleurs
          config: th_th
          split: test
          args: th_th
        metrics:
          - name: Wer
            type: wer
            value: 53.662828506943114

Whisper Base Thai (2)

This model is a fine-tuned version of arun100/whisper-base-th-1 on the google/fleurs th_th dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5628
  • Wer: 53.6628

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5011 35.0 500 0.5963 59.8868
0.3648 71.0 1000 0.5613 55.9542
0.2732 107.0 1500 0.5504 54.4585
0.2081 142.0 2000 0.5502 53.6705
0.1627 178.0 2500 0.5558 53.8273
0.133 214.0 3000 0.5628 53.6628
0.1112 249.0 3500 0.5696 54.0798
0.0973 285.0 4000 0.5749 53.9995
0.0906 321.0 4500 0.5783 54.1487
0.0874 357.0 5000 0.5793 54.2290

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0