aswincandra's picture
Update README.md
96da7e7
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - FastJobs/Visual_Emotional_Analysis
metrics:
  - accuracy
model-index:
  - name: rgai_emotion_recognition
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.58125

rgai_emotion_recognition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the FastJobs/Visual_Emotional_Analysis dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3077
  • Accuracy: 0.5813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0698 1.0 25 2.0921 0.1125
1.973 2.0 50 1.9930 0.1938
1.8091 3.0 75 1.8374 0.3937
1.5732 4.0 100 1.6804 0.475
1.4087 5.0 125 1.5660 0.5125
1.2653 6.0 150 1.4769 0.5375
1.1443 7.0 175 1.4084 0.55
0.9888 8.0 200 1.3633 0.5625
0.9029 9.0 225 1.3305 0.55
0.8372 10.0 250 1.3077 0.5813
0.7569 11.0 275 1.2983 0.5625
0.6886 12.0 300 1.2806 0.5687
0.6216 13.0 325 1.2718 0.5687
0.6385 14.0 350 1.2700 0.5563
0.6029 15.0 375 1.2693 0.5625

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3