avinasht's picture
End of training
fec7216 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: deberta-v3-base-Label_B-768-epochs-5
    results: []

deberta-v3-base-Label_B-768-epochs-5

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0609
  • Accuracy: 0.9876
  • F1: 0.9876
  • Precision: 0.9877
  • Recall: 0.9876

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.1209 0.9995 1066 0.3304 0.9204 0.9188 0.9333 0.9204
0.0639 2.0 2133 0.1217 0.9658 0.9658 0.9688 0.9658
0.0208 2.9995 3199 0.0540 0.9856 0.9856 0.9858 0.9856
0.002 4.0 4266 0.0609 0.9876 0.9876 0.9877 0.9876
0.0003 4.9977 5330 0.0786 0.9847 0.9847 0.9850 0.9847

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0