|
# LayoutXLM finetuned on XFUN.ja |
|
|
|
```python |
|
import torch |
|
import numpy as np |
|
from PIL import Image, ImageDraw, ImageFont |
|
from pathlib import Path |
|
from itertools import chain |
|
from tqdm.notebook import tqdm |
|
from pdf2image import convert_from_path |
|
from transformers import LayoutXLMProcessor, LayoutLMv2ForTokenClassification |
|
|
|
import os |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
labels = [ |
|
'O', |
|
'B-QUESTION', |
|
'B-ANSWER', |
|
'B-HEADER', |
|
'I-ANSWER', |
|
'I-QUESTION', |
|
'I-HEADER' |
|
] |
|
id2label = {v: k for v, k in enumerate(labels)} |
|
label2id = {k: v for v, k in enumerate(labels)} |
|
|
|
def unnormalize_box(bbox, width, height): |
|
return [ |
|
width * (bbox[0] / 1000), |
|
height * (bbox[1] / 1000), |
|
width * (bbox[2] / 1000), |
|
height * (bbox[3] / 1000), |
|
] |
|
|
|
def iob_to_label(label): |
|
label = label[2:] |
|
if not label: |
|
return 'other' |
|
return label |
|
|
|
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'} |
|
|
|
def infer(image, processor, model, label2color): |
|
# Use this if you're loading images |
|
# image = Image.open(img_path).convert("RGB") |
|
|
|
image = image.convert("RGB") # loading PDFs |
|
encoding = processor(image, return_offsets_mapping=True, return_tensors="pt", truncation=True, max_length=514) |
|
offset_mapping = encoding.pop('offset_mapping') |
|
outputs = model(**encoding) |
|
predictions = outputs.logits.argmax(-1).squeeze().tolist() |
|
token_boxes = encoding.bbox.squeeze().tolist() |
|
|
|
width, height = image.size |
|
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 |
|
|
|
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] |
|
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] |
|
draw = ImageDraw.Draw(image) |
|
|
|
font = ImageFont.load_default() |
|
|
|
for prediction, box in zip(true_predictions, true_boxes): |
|
predicted_label = iob_to_label(prediction).lower() |
|
draw.rectangle(box, outline=label2color[predicted_label]) |
|
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) |
|
|
|
return image |
|
|
|
processor = LayoutXLMProcessor.from_pretrained('beomus/layoutxlm') |
|
model = LayoutLMv2ForTokenClassification.from_pretrained("beomus/layoutxlm") |
|
|
|
|
|
# imgs = [img_path for img_path in Path('/your/path/imgs/').glob('*.jpg')] |
|
|
|
imgs = [convert_from_path(img_path) for img_path in Path('/your/path/pdfs/').glob('*.pdf')] |
|
imgs = list(chain.from_iterable(imgs)) |
|
|
|
|
|
outputs = [infer(img_path, processor, model, label2color) for img_path in tqdm(imgs)] |
|
|
|
# type(outputs[0]) -> PIL.Image.Image |
|
``` |