Albert-base-v2-emotion
Model description:
Albert is A Lite BERT architecture that has significantly fewer parameters than a traditional BERT architecture.
Albert-base-v2 finetuned on the emotion dataset using HuggingFace Trainer with below Hyperparameters
learning rate 2e-5,
batch size 64,
num_train_epochs=8,
Model Performance Comparision on Emotion Dataset from Twitter:
Model | Accuracy | F1 Score | Test Sample per Second |
---|---|---|---|
Distilbert-base-uncased-emotion | 93.8 | 93.79 | 398.69 |
Bert-base-uncased-emotion | 94.05 | 94.06 | 190.152 |
Roberta-base-emotion | 93.95 | 93.97 | 195.639 |
Albert-base-v2-emotion | 93.6 | 93.65 | 182.794 |
How to Use the model:
from transformers import pipeline
classifier = pipeline("text-classification",model='bhadresh-savani/albert-base-v2-emotion', return_all_scores=True)
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
print(prediction)
"""
Output:
[[
{'label': 'sadness', 'score': 0.010403595864772797},
{'label': 'joy', 'score': 0.8902180790901184},
{'label': 'love', 'score': 0.042532723397016525},
{'label': 'anger', 'score': 0.041297927498817444},
{'label': 'fear', 'score': 0.011772023513913155},
{'label': 'surprise', 'score': 0.0037756056990474463}
]]
"""
Dataset:
Training procedure
Eval results
{
'test_accuracy': 0.936,
'test_f1': 0.9365658988006296,
'test_loss': 0.15278364717960358,
'test_runtime': 10.9413,
'test_samples_per_second': 182.794,
'test_steps_per_second': 2.925
}
Reference:
- Downloads last month
- 16,649
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.