robert-base-emotion
Model description:
roberta is Bert with better hyperparameter choices so they said it's Robustly optimized Bert during pretraining.
roberta-base finetuned on the emotion dataset using HuggingFace Trainer with below Hyperparameters
learning rate 2e-5,
batch size 64,
num_train_epochs=8,
Model Performance Comparision on Emotion Dataset from Twitter:
Model | Accuracy | F1 Score | Test Sample per Second |
---|---|---|---|
Distilbert-base-uncased-emotion | 93.8 | 93.79 | 398.69 |
Bert-base-uncased-emotion | 94.05 | 94.06 | 190.152 |
Roberta-base-emotion | 93.95 | 93.97 | 195.639 |
Albert-base-v2-emotion | 93.6 | 93.65 | 182.794 |
How to Use the model:
from transformers import pipeline
classifier = pipeline("text-classification",model='bhadresh-savani/roberta-base-emotion', return_all_scores=True)
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
print(prediction)
"""
Output:
[[
{'label': 'sadness', 'score': 0.002281982684507966},
{'label': 'joy', 'score': 0.9726489186286926},
{'label': 'love', 'score': 0.021365027874708176},
{'label': 'anger', 'score': 0.0026395076420158148},
{'label': 'fear', 'score': 0.0007162453257478774},
{'label': 'surprise', 'score': 0.0003483477921690792}
]]
"""
Dataset:
Training procedure
Colab Notebook follow the above notebook by changing the model name to roberta
Eval results
{
'test_accuracy': 0.9395,
'test_f1': 0.9397328860104454,
'test_loss': 0.14367154240608215,
'test_runtime': 10.2229,
'test_samples_per_second': 195.639,
'test_steps_per_second': 3.13
}
Reference:
- Downloads last month
- 1,175
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bhadresh-savani/roberta-base-emotion
Dataset used to train bhadresh-savani/roberta-base-emotion
Space using bhadresh-savani/roberta-base-emotion 1
Evaluation results
- Accuracy on emotiontest set verified0.931
- Precision Macro on emotiontest set verified0.917
- Precision Micro on emotiontest set verified0.931
- Precision Weighted on emotiontest set verified0.936
- Recall Macro on emotiontest set verified0.874
- Recall Micro on emotiontest set verified0.931
- Recall Weighted on emotiontest set verified0.931
- F1 Macro on emotiontest set verified0.882
- F1 Micro on emotiontest set verified0.931
- F1 Weighted on emotiontest set verified0.930