|
--- |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: 'Question: Please write a function in Python that performs bubble sort.\n\nAnswer:' |
|
example_title: Bubble sort |
|
group: Python |
|
license: bigcode-openrail-m |
|
datasets: |
|
- bigcode/commitpackft |
|
- bigcode/oasst-octopack |
|
metrics: |
|
- code_eval |
|
library_name: transformers |
|
tags: |
|
- code |
|
model-index: |
|
- name: OctoCoder |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalSynthesize Python |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 46.2 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalSynthesize JavaScript |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 39.2 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalSynthesize Java |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 38.2 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalSynthesize Go |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 30.4 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalSynthesize C++ |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 35.6 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalSynthesize Rust |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 23.4 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalSynthesize Average |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 35.5 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix Python |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 30.4 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix JavaScript |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 28.4 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix Java |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 30.6 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix Go |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 30.2 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix C++ |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 26.1 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix Rust |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 16.5 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalFix Average |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 27.0 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalExplain Python |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 35.1 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalExplain JavaScript |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 24.5 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalExplain Java |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 27.3 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalExplain Go |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 21.1 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalExplain C++ |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 24.1 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalExplain Rust |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 14.8 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode/humanevalpack |
|
name: HumanEvalExplain Average |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 24.5 |
|
verified: false |
|
--- |
|
|
|
![Octopack](https://github.com/bigcode-project/octopack/blob/31f3320f098703c7910e43492c39366eeea68d83/banner.png?raw=true) |
|
|
|
# Table of Contents |
|
|
|
1. [Model Summary](#model-summary) |
|
2. [Use](#use) |
|
3. [Training](#training) |
|
4. [Citation](#citation) |
|
|
|
# Model Summary |
|
|
|
> OctoCoder is an instruction tuned model with 15.5B parameters created by finetuning StarCoder on CommitPackFT & OASST as described in the OctoPack paper. |
|
|
|
- **Repository:** [bigcode-project/octopack](https://github.com/bigcode-project/octopack) |
|
- **Paper:** [OctoPack: Instruction Tuning Code Large Language Models](https://arxiv.org/abs/2308.07124) |
|
- **Languages:** 80+ Programming languages |
|
- **OctoPack🐙🎒:** |
|
<table> |
|
<tr> |
|
<th>Data</t> |
|
<th><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a></th> |
|
<td>4TB of GitHub commits across 350 programming languages</td> |
|
</tr> |
|
<tr> |
|
<th></t> |
|
<th><a href=https://huggingface.co/datasets/bigcode/commitpackft>CommitPackFT</a></th> |
|
<td>Filtered version of CommitPack for high-quality commit messages that resemble instructions</td> |
|
</tr> |
|
<tr> |
|
<th>Model</t> |
|
<th><a href=https://huggingface.co/bigcode/octocoder>OctoCoder</a></th> |
|
<td>StarCoder (16B parameters) instruction tuned on CommitPackFT + OASST</td> |
|
</tr> |
|
<tr> |
|
<th></t> |
|
<th><a href=https://huggingface.co/bigcode/octogeex>OctoGeeX</a></th> |
|
<td>CodeGeeX2 (6B parameters) instruction tuned on CommitPackFT + OASST</td> |
|
</tr> |
|
<tr> |
|
<th>Evaluation </t> |
|
<th><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack</a></th> |
|
<td>Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages</td> |
|
</tr> |
|
</table> |
|
|
|
|
|
# Use |
|
|
|
## Intended use |
|
|
|
The model follows instructions provided in the input. You should always preface your input with "Question: " and finish it with "Answer:", for example: "Question: Please write a function in Python that performs bubble sort.\n\nAnswer:" |
|
|
|
**Feel free to share your generations in the Community tab!** |
|
|
|
## Generation |
|
```python |
|
# pip install -q transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
checkpoint = "bigcode/octocoder" |
|
device = "cuda" # for GPU usage or "cpu" for CPU usage |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) |
|
|
|
inputs = tokenizer.encode("Question: Please write a function in Python that performs bubble sort.\n\nAnswer:", return_tensors="pt").to(device) |
|
outputs = model.generate(inputs) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
# Training |
|
|
|
## Model |
|
|
|
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective |
|
- **Steps:** 250k pretraining & 30 instruction tuning |
|
- **Pretraining tokens:** 1 trillion pretraining & 2M instruction tuning |
|
- **Precision:** bfloat16 |
|
|
|
## Hardware |
|
|
|
- **Pretraining:** |
|
- **GPUs:** 512 Tesla A100 |
|
- **Training time:** 24 days |
|
- **Instruction tuning:** |
|
- **GPUs:** 8 Tesla A100 |
|
- **Training time:** 4 hours |
|
|
|
## Software |
|
|
|
- **Orchestration:** [Megatron-LM/Transformers](https://github.com/bigcode-project/octopack#training) |
|
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) |
|
|
|
# Citation |
|
|
|
```bibtex |
|
@article{muennighoff2023octopack, |
|
title={OctoPack: Instruction Tuning Code Large Language Models}, |
|
author={Niklas Muennighoff and Qian Liu and Armel Zebaze and Qinkai Zheng and Binyuan Hui and Terry Yue Zhuo and Swayam Singh and Xiangru Tang and Leandro von Werra and Shayne Longpre}, |
|
journal={arXiv preprint arXiv:2308.07124}, |
|
year={2023} |
|
} |
|
``` |