pii-ner / README.md
blaze999's picture
Training complete
728d9bc verified
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: pii-ner
    results: []

pii-ner

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5816
  • Precision: 0.3789
  • Recall: 0.2054
  • F1: 0.2664
  • Accuracy: 0.9580

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.3048 1.0 14 0.7370 0.0088 0.0438 0.0147 0.7632
0.7328 2.0 28 0.2553 0.0 0.0 0.0 0.9350
0.2676 3.0 42 0.2095 0.7353 0.1684 0.2740 0.9658
0.0976 4.0 56 0.2309 0.9091 0.2020 0.3306 0.9683
0.0664 5.0 70 0.2471 0.9242 0.2054 0.3361 0.9685
0.1703 6.0 84 0.2893 0.9091 0.2020 0.3306 0.9683
0.1196 7.0 98 0.2559 0.8841 0.2054 0.3333 0.9683
0.1805 8.0 112 0.2691 0.9091 0.2020 0.3306 0.9683
0.1669 9.0 126 0.2651 0.9242 0.2054 0.3361 0.9685
0.2296 10.0 140 0.3022 0.9242 0.2054 0.3361 0.9685
0.1731 11.0 154 0.2879 0.9091 0.2020 0.3306 0.9682
0.1983 12.0 168 0.2824 0.8824 0.2020 0.3288 0.9682
0.0873 13.0 182 0.3495 0.9091 0.2020 0.3306 0.9683
0.4 14.0 196 0.3905 0.9104 0.2054 0.3352 0.9683
0.2142 15.0 210 0.4198 0.9104 0.2054 0.3352 0.9683
0.2092 16.0 224 0.4395 0.9091 0.2020 0.3306 0.9682
0.0803 17.0 238 0.4003 0.9104 0.2054 0.3352 0.9682
0.1509 18.0 252 0.4904 0.9104 0.2054 0.3352 0.9683
0.1382 19.0 266 0.5018 0.9091 0.2020 0.3306 0.9682
0.0554 20.0 280 0.5128 0.9104 0.2054 0.3352 0.9682
0.0595 21.0 294 0.5363 0.9104 0.2054 0.3352 0.9682
0.0339 22.0 308 0.5518 0.9104 0.2054 0.3352 0.9682
0.0292 23.0 322 0.5613 0.8133 0.2054 0.3280 0.9674
0.0368 24.0 336 0.5555 0.9104 0.2054 0.3352 0.9682
0.0224 25.0 350 0.5709 0.3885 0.2054 0.2687 0.9585
0.0122 26.0 364 0.5753 0.3789 0.2054 0.2664 0.9580
0.0332 27.0 378 0.5800 0.3789 0.2054 0.2664 0.9580
0.02 28.0 392 0.5810 0.3789 0.2054 0.2664 0.9580
0.0155 29.0 406 0.5816 0.3789 0.2054 0.2664 0.9580
0.0157 30.0 420 0.5816 0.3789 0.2054 0.2664 0.9580

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2