metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:700000
- loss:DenoisingAutoEncoderLoss
base_model: intfloat/e5-base-unsupervised
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: >-
in Freeview no extra therefore minimal Also the is wide decent, plus they
and.
sentences:
- >-
Pokémon-GX (Japanese: ポケモンGX Pokémon GX), officially written Pokémon-GX,
are a variant of Pokémon in the Pokémon Trading Card Game. They were
first introduced in the Sun & Moon expansion (the Collection Sun and
Collection Moon expansions in Japan). Pokémon-GX have a stylized.
graphic on the card name.
- >-
The Cape Colony (Dutch: Kaapkolonie) was a Dutch East India Company
colony in Southern Africa, centered on the Cape of Good Hope, whence it
derived its name. The original colony and its successive states that the
colony was incorporated into occupied much of modern South Africa.
- >-
Avtex is expensive, but you get built in Freeview, Freesat and built in
DVD player, which means no extra boxes, and therefore minimal wiring.
Also the viewing angle is wide and a decent picture quality, plus they
are light and designed for mobile use.
- source_sentence: >-
as power Yes can use transmission of power steering But, sure you check
the manufacturer's the a
sentences:
- >-
Can you use transmission fluid as a substitute for power steering fluid?
Yes, you can use transmission fluid in place of a power steering fluid.
But, make sure you check the car manufacturer's recommendations before
using the ATF as a substitute.
- how much kwh does an xbox one use?
- >-
what is the difference between demerara cane sugar and turbinado cane
sugar?
- source_sentence: >-
(number 'Step: Ensure date to (and number is set Date 2 formula to add the
number months start.'
sentences:
- >-
Being a medical doctor is really great. It's stimulating and
interesting. Medical doctors have a significant degree of autonomy over
their schedules and time. Medical doctors know that they get to help
people solve problems every single day.
- how much is an air conditioner for a house?
- >-
['=EDATE(start date, number of months)', 'Step 1: Ensure the starting
date is properly formatted – go to Format Cells (press Ctrl + 1) and
make sure the number is set to Date.', 'Step 2: Use the =EDATE(C3,C5)
formula to add the number of specified months to the start date.']
- source_sentence: many days can
sentences:
- how many days after can you have morning after pill?
- is gender an independent variable?
- >-
The current standard is about 30 days, which means that some teachers
and support staff may be brought on board before the results of their
criminal background check are completed. The issue, as reported in this
article, is the lag time between state and federal background checks.
- source_sentence: ligand ion channels located?
sentences:
- >-
Share on Pinterest Recent research suggests that chocolate may have some
health benefits. Chocolate receives a lot of bad press because of its
high fat and sugar content. Its consumption has been associated with
acne, obesity, high blood pressure, coronary artery disease, and
diabetes.
- where are ligand gated ion channels located?
- >-
Duvets tend to be warm but surprisingly lightweight. The duvet cover
makes it easier to change bedding looks and styles. You won't need to
wash your duvet very often, just wash the cover regularly. Additionally,
duvets tend to be fluffier than comforters, and can simplify bed making
if you choose the European style.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on intfloat/e5-base-unsupervised
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.7651793859211248
name: Pearson Cosine
- type: spearman_cosine
value: 0.7524804428249002
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7393361318996702
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7326262473219208
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7402295162714656
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7335305408258518
name: Spearman Euclidean
- type: pearson_dot
value: 0.5002878735642248
name: Pearson Dot
- type: spearman_dot
value: 0.4986010870846151
name: Spearman Dot
- type: pearson_max
value: 0.7651793859211248
name: Pearson Max
- type: spearman_max
value: 0.7524804428249002
name: Spearman Max
SentenceTransformer based on intfloat/e5-base-unsupervised
This is a sentence-transformers model finetuned from intfloat/e5-base-unsupervised. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/e5-base-unsupervised
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/E5-base-unsupervised-TSDAE-2")
# Run inference
sentences = [
'ligand ion channels located?',
'where are ligand gated ion channels located?',
"Duvets tend to be warm but surprisingly lightweight. The duvet cover makes it easier to change bedding looks and styles. You won't need to wash your duvet very often, just wash the cover regularly. Additionally, duvets tend to be fluffier than comforters, and can simplify bed making if you choose the European style.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7652 |
spearman_cosine | 0.7525 |
pearson_manhattan | 0.7393 |
spearman_manhattan | 0.7326 |
pearson_euclidean | 0.7402 |
spearman_euclidean | 0.7335 |
pearson_dot | 0.5003 |
spearman_dot | 0.4986 |
pearson_max | 0.7652 |
spearman_max | 0.7525 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 700,000 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 15.73 tokens
- max: 55 tokens
- min: 8 tokens
- mean: 36.05 tokens
- max: 131 tokens
- Samples:
sentence_0 sentence_1 Quality such a has components with applicable high objective system measure component improvements
Quality in such a system has three components: high accuracy, compliance with applicable standards, and high customer satisfaction. The objective of the system is to measure each component and achieve improvements.
include
does qbi include capital gains?
They have a . parietal is in, as becomes and pigments after four to is believed and in circadian cycles
They have a third eye. The parietal eye is only visible in hatchlings, as it becomes covered in scales and pigments after four to six months. Its function is a subject of ongoing research, but it is believed to be useful in absorbing ultraviolet rays and in setting circadian and seasonal cycles.
- Loss:
DenoisingAutoEncoderLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 2multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | sts-test_spearman_cosine |
---|---|---|---|
0 | 0 | - | 0.7211 |
0.0114 | 500 | 9.4957 | - |
0.0229 | 1000 | 7.4063 | - |
0.0343 | 1500 | 7.0225 | - |
0.0457 | 2000 | 6.6991 | - |
0.0571 | 2500 | 6.4054 | - |
0.0686 | 3000 | 6.1933 | - |
0.08 | 3500 | 5.999 | - |
0.0914 | 4000 | 5.8471 | - |
0.1 | 4375 | - | 0.4610 |
0.1029 | 4500 | 5.6876 | - |
0.1143 | 5000 | 5.5934 | - |
0.1257 | 5500 | 5.4877 | - |
0.1371 | 6000 | 5.4034 | - |
0.1486 | 6500 | 5.3016 | - |
0.16 | 7000 | 5.2169 | - |
0.1714 | 7500 | 5.1351 | - |
0.1829 | 8000 | 5.0605 | - |
0.1943 | 8500 | 4.9851 | - |
0.2 | 8750 | - | 0.6490 |
0.2057 | 9000 | 4.9024 | - |
0.2171 | 9500 | 4.8722 | - |
0.2286 | 10000 | 4.7955 | - |
0.24 | 10500 | 4.7435 | - |
0.2514 | 11000 | 4.6742 | - |
0.2629 | 11500 | 4.6447 | - |
0.2743 | 12000 | 4.5964 | - |
0.2857 | 12500 | 4.5186 | - |
0.2971 | 13000 | 4.5024 | - |
0.3 | 13125 | - | 0.7121 |
0.3086 | 13500 | 4.4336 | - |
0.32 | 14000 | 4.3767 | - |
0.3314 | 14500 | 4.3454 | - |
0.3429 | 15000 | 4.3067 | - |
0.3543 | 15500 | 4.2627 | - |
0.3657 | 16000 | 4.2323 | - |
0.3771 | 16500 | 4.208 | - |
0.3886 | 17000 | 4.1622 | - |
0.4 | 17500 | 4.113 | 0.7375 |
0.4114 | 18000 | 4.1097 | - |
0.4229 | 18500 | 4.0666 | - |
0.4343 | 19000 | 4.0311 | - |
0.4457 | 19500 | 4.0241 | - |
0.4571 | 20000 | 3.9991 | - |
0.4686 | 20500 | 3.9873 | - |
0.48 | 21000 | 3.9439 | - |
0.4914 | 21500 | 3.9281 | - |
0.5 | 21875 | - | 0.7502 |
0.5029 | 22000 | 3.9047 | - |
0.5143 | 22500 | 3.89 | - |
0.5257 | 23000 | 3.8671 | - |
0.5371 | 23500 | 3.85 | - |
0.5486 | 24000 | 3.8336 | - |
0.56 | 24500 | 3.8081 | - |
0.5714 | 25000 | 3.8049 | - |
0.5829 | 25500 | 3.7587 | - |
0.5943 | 26000 | 3.769 | - |
0.6 | 26250 | - | 0.7530 |
0.6057 | 26500 | 3.7488 | - |
0.6171 | 27000 | 3.7218 | - |
0.6286 | 27500 | 3.7128 | - |
0.64 | 28000 | 3.7104 | - |
0.6514 | 28500 | 3.6706 | - |
0.6629 | 29000 | 3.6602 | - |
0.6743 | 29500 | 3.658 | - |
0.6857 | 30000 | 3.665 | - |
0.6971 | 30500 | 3.6439 | - |
0.7 | 30625 | - | 0.7561 |
0.7086 | 31000 | 3.6411 | - |
0.72 | 31500 | 3.6141 | - |
0.7314 | 32000 | 3.6172 | - |
0.7429 | 32500 | 3.5975 | - |
0.7543 | 33000 | 3.5827 | - |
0.7657 | 33500 | 3.5836 | - |
0.7771 | 34000 | 3.5484 | - |
0.7886 | 34500 | 3.5275 | - |
0.8 | 35000 | 3.5587 | 0.7553 |
0.8114 | 35500 | 3.5371 | - |
0.8229 | 36000 | 3.5334 | - |
0.8343 | 36500 | 3.5168 | - |
0.8457 | 37000 | 3.483 | - |
0.8571 | 37500 | 3.4755 | - |
0.8686 | 38000 | 3.4943 | - |
0.88 | 38500 | 3.4699 | - |
0.8914 | 39000 | 3.4732 | - |
0.9 | 39375 | - | 0.7560 |
0.9029 | 39500 | 3.4572 | - |
0.9143 | 40000 | 3.4518 | - |
0.9257 | 40500 | 3.4298 | - |
0.9371 | 41000 | 3.4215 | - |
0.9486 | 41500 | 3.4176 | - |
0.96 | 42000 | 3.4353 | - |
0.9714 | 42500 | 3.4137 | - |
0.9829 | 43000 | 3.4037 | - |
0.9943 | 43500 | 3.4157 | - |
1.0 | 43750 | - | 0.7554 |
1.0057 | 44000 | 3.393 | - |
1.0171 | 44500 | 3.4092 | - |
1.0286 | 45000 | 3.3861 | - |
1.04 | 45500 | 3.3976 | - |
1.0514 | 46000 | 3.3769 | - |
1.0629 | 46500 | 3.3444 | - |
1.0743 | 47000 | 3.3598 | - |
1.0857 | 47500 | 3.3556 | - |
1.0971 | 48000 | 3.3548 | - |
1.1 | 48125 | - | 0.7549 |
1.1086 | 48500 | 3.3278 | - |
1.12 | 49000 | 3.3309 | - |
1.1314 | 49500 | 3.3459 | - |
1.1429 | 50000 | 3.3353 | - |
1.1543 | 50500 | 3.3192 | - |
1.1657 | 51000 | 3.3022 | - |
1.1771 | 51500 | 3.3189 | - |
1.1886 | 52000 | 3.301 | - |
1.2 | 52500 | 3.2785 | 0.7542 |
1.2114 | 53000 | 3.2996 | - |
1.2229 | 53500 | 3.2863 | - |
1.2343 | 54000 | 3.2916 | - |
1.2457 | 54500 | 3.272 | - |
1.2571 | 55000 | 3.2896 | - |
1.2686 | 55500 | 3.2694 | - |
1.28 | 56000 | 3.2848 | - |
1.2914 | 56500 | 3.2528 | - |
1.3 | 56875 | - | 0.7554 |
1.3029 | 57000 | 3.2622 | - |
1.3143 | 57500 | 3.2515 | - |
1.3257 | 58000 | 3.2385 | - |
1.3371 | 58500 | 3.2341 | - |
1.3486 | 59000 | 3.2275 | - |
1.3600 | 59500 | 3.2538 | - |
1.3714 | 60000 | 3.2329 | - |
1.3829 | 60500 | 3.2322 | - |
1.3943 | 61000 | 3.2039 | - |
1.4 | 61250 | - | 0.7530 |
1.4057 | 61500 | 3.212 | - |
1.4171 | 62000 | 3.2127 | - |
1.4286 | 62500 | 3.1956 | - |
1.44 | 63000 | 3.202 | - |
1.4514 | 63500 | 3.2046 | - |
1.4629 | 64000 | 3.2105 | - |
1.4743 | 64500 | 3.1915 | - |
1.4857 | 65000 | 3.176 | - |
1.4971 | 65500 | 3.1852 | - |
1.5 | 65625 | - | 0.7541 |
1.5086 | 66000 | 3.1988 | - |
1.52 | 66500 | 3.1714 | - |
1.5314 | 67000 | 3.1816 | - |
1.5429 | 67500 | 3.1745 | - |
1.5543 | 68000 | 3.1674 | - |
1.5657 | 68500 | 3.1887 | - |
1.5771 | 69000 | 3.1567 | - |
1.5886 | 69500 | 3.1775 | - |
1.6 | 70000 | 3.1696 | 0.7535 |
1.6114 | 70500 | 3.154 | - |
1.6229 | 71000 | 3.1553 | - |
1.6343 | 71500 | 3.1675 | - |
1.6457 | 72000 | 3.1516 | - |
1.6571 | 72500 | 3.1569 | - |
1.6686 | 73000 | 3.1403 | - |
1.6800 | 73500 | 3.1667 | - |
1.6914 | 74000 | 3.1545 | - |
1.7 | 74375 | - | 0.7529 |
1.7029 | 74500 | 3.1736 | - |
1.7143 | 75000 | 3.1447 | - |
1.7257 | 75500 | 3.1567 | - |
1.7371 | 76000 | 3.1682 | - |
1.7486 | 76500 | 3.149 | - |
1.76 | 77000 | 3.1522 | - |
1.7714 | 77500 | 3.1412 | - |
1.7829 | 78000 | 3.1268 | - |
1.7943 | 78500 | 3.1476 | - |
1.8 | 78750 | - | 0.7524 |
1.8057 | 79000 | 3.1669 | - |
1.8171 | 79500 | 3.1432 | - |
1.8286 | 80000 | 3.1603 | - |
1.8400 | 80500 | 3.1347 | - |
1.8514 | 81000 | 3.1209 | - |
1.8629 | 81500 | 3.1302 | - |
1.8743 | 82000 | 3.1423 | - |
1.8857 | 82500 | 3.1481 | - |
1.8971 | 83000 | 3.1262 | - |
1.9 | 83125 | - | 0.7525 |
1.9086 | 83500 | 3.1484 | - |
1.92 | 84000 | 3.1331 | - |
1.9314 | 84500 | 3.122 | - |
1.9429 | 85000 | 3.1272 | - |
1.9543 | 85500 | 3.1435 | - |
1.9657 | 86000 | 3.1431 | - |
1.9771 | 86500 | 3.1457 | - |
1.9886 | 87000 | 3.1286 | - |
2.0 | 87500 | 3.1352 | 0.7525 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
DenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}