wnc-pretrain / README.md
charisgao's picture
wnc-pretrained-bias-classifier
accd84b verified
metadata
library_name: transformers
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: pretrain_model
    results: []

pretrain_model

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6409
  • Precision: 0.6385
  • Recall: 0.6046
  • F1: 0.6211
  • Accuracy: 0.6354

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.6994 0.0061 250 0.6909 0.5946 0.1740 0.2692 0.5296
0.6935 0.0122 500 0.6461 0.6368 0.5923 0.6138 0.6288
0.6862 0.0184 750 0.6710 0.6268 0.6416 0.6341 0.6313
0.6629 0.0245 1000 0.8414 0.5772 0.7777 0.6626 0.6056
0.6729 0.0306 1250 0.6509 0.6373 0.5992 0.6177 0.6306

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3