|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: pretrain_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pretrain_model |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6409 |
|
- Precision: 0.6385 |
|
- Recall: 0.6046 |
|
- F1: 0.6211 |
|
- Accuracy: 0.6354 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.6994 | 0.0061 | 250 | 0.6909 | 0.5946 | 0.1740 | 0.2692 | 0.5296 | |
|
| 0.6935 | 0.0122 | 500 | 0.6461 | 0.6368 | 0.5923 | 0.6138 | 0.6288 | |
|
| 0.6862 | 0.0184 | 750 | 0.6710 | 0.6268 | 0.6416 | 0.6341 | 0.6313 | |
|
| 0.6629 | 0.0245 | 1000 | 0.8414 | 0.5772 | 0.7777 | 0.6626 | 0.6056 | |
|
| 0.6729 | 0.0306 | 1250 | 0.6509 | 0.6373 | 0.5992 | 0.6177 | 0.6306 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|