|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# model |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.8504 |
|
- Precision: 0.2663 |
|
- Recall: 0.2503 |
|
- F1: 0.2580 |
|
- Accuracy: 0.8740 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0738 | 0.4292 | 100 | 3.5742 | 0.3714 | 0.1080 | 0.1673 | 0.9059 | |
|
| 0.0518 | 0.8584 | 200 | 3.6916 | 0.4130 | 0.1059 | 0.1686 | 0.9086 | |
|
| 0.0464 | 1.2876 | 300 | 2.9332 | 0.3185 | 0.2461 | 0.2777 | 0.8879 | |
|
| 0.0313 | 1.7167 | 400 | 3.4018 | 0.3495 | 0.1568 | 0.2165 | 0.9007 | |
|
| 0.0262 | 2.1459 | 500 | 3.6431 | 0.3581 | 0.1599 | 0.2211 | 0.9014 | |
|
| 0.0374 | 2.5751 | 600 | 3.2736 | 0.3184 | 0.2139 | 0.2559 | 0.8911 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|