metadata
license: apache-2.0
base_model: dslim/distilbert-NER
tags:
- generated_from_trainer
datasets:
- conll2012_ontonotesv5
metrics:
- accuracy
- f1
model-index:
- name: distilbert-NER-finetuned
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2012_ontonotesv5
type: conll2012_ontonotesv5
config: english_v4
split: validation
args: english_v4
metrics:
- name: Accuracy
type: accuracy
value: 0.886927374301676
- name: F1
type: f1
value: 0.48622047244094485
distilbert-NER-finetuned
This model is a fine-tuned version of dslim/distilbert-NER on the conll2012_ontonotesv5 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4199
- Accuracy: 0.8869
- F1: 0.4862
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.7537 | 1.0 | 81 | 0.5239 | 0.8635 | 0.4186 |
0.4601 | 2.0 | 162 | 0.4479 | 0.88 | 0.4790 |
0.3613 | 3.0 | 243 | 0.4199 | 0.8869 | 0.4862 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1