metadata
widget:
- text: Climate change is just a natural phenomenon
- example_title: 2.1 Contrarian claim
license: mit
language:
- en
metrics:
- f1
pipeline_tag: text-classification
tags:
- climate
- misinformation
Taxonomy Augmented CARDS
Taxonomy
Metrics
Category | CARDS | Augmented CARDS | Support |
---|---|---|---|
0_0 | 70.9 | 81.5 | 1049 |
1_1 | 60.5 | 70.4 | 28 |
1_2 | 40 | 44.4 | 20 |
1_3 | 37 | 48.6 | 61 |
1_4 | 62.1 | 65.6 | 27 |
1_6 | 56.7 | 59.7 | 41 |
1_7 | 46.4 | 52 | 89 |
2_1 | 68.1 | 69.4 | 154 |
2_3 | 36.7 | 25 | 22 |
3_1 | 38.5 | 34.8 | 8 |
3_2 | 61 | 74.6 | 31 |
3_3 | 54.2 | 65.4 | 23 |
4_1 | 38.5 | 49.4 | 103 |
4_2 | 37.6 | 28.6 | 61 |
4_4 | 30.8 | 54.5 | 46 |
4_5 | 19.7 | 39.4 | 50 |
5_1 | 32.8 | 38.2 | 96 |
5_2 | 38.6 | 53.5 | 498 |
5.3 | - | 62.9 | 200 |
Macro Average | 43.69 | 53.57 | 2407 |
Code
To run the model, you need to first evaluate the binary classification model, as shown below:
# Models
MAX_LEN = 256
BINARY_MODEL_DIR = "crarojasca/BinaryAugmentedCARDS"
TAXONOMY_MODEL_DIR = "crarojasca/TaxonomyAugmentedCARDS"
# Loading tokenizer
tokenizer = AutoTokenizer.from_pretrained(
BINARY_MODEL_DIR,
max_length = MAX_LEN, padding = "max_length",
return_token_type_ids = True
)
# Loading Models
## 1. Binary Model
print("Loading binary model: {}".format(BINARY_MODEL_DIR))
config = AutoConfig.from_pretrained(BINARY_MODEL_DIR)
binary_model = AutoModelForSequenceClassification.from_pretrained(BINARY_MODEL_DIR, config=config)
binary_model.to(device)
## 2. Taxonomy Model
print("Loading taxonomy model: {}".format(TAXONOMY_MODEL_DIR))
config = AutoConfig.from_pretrained(TAXONOMY_MODEL_DIR)
taxonomy_model = AutoModelForSequenceClassification.from_pretrained(TAXONOMY_MODEL_DIR, config=config)
taxonomy_model.to(device)
# Load Dataset
id2label = {
0: '1_1', 1: '1_2', 2: '1_3', 3: '1_4', 4: '1_6', 5: '1_7', 6: '2_1',
7: '2_3', 8: '3_1', 9: '3_2', 10: '3_3', 11: '4_1', 12: '4_2', 13: '4_4',
14: '4_5', 15: '5_1', 16: '5_2', 17: '5_3'
}
text = "Climate change is just a natural phenomenon"
tokenized_text = tokenizer(text, return_tensors = "pt")
# Running Binary Model
outputs = binary_model(**tokenized_text)
binary_score = outputs.logits.softmax(dim = 1)
binary_prediction = torch.argmax(outputs.logits, axis=1)
binary_predictions = binary_prediction.to('cpu').item()
# Running Taxonomy Model
outputs = taxonomy_model(**tokenized_text)
taxonomy_score = outputs.logits.softmax(dim = 1)
taxonomy_prediction = torch.argmax(outputs.logits, axis=1)
taxonomy_prediction = taxonomy_prediction.to('cpu').item()
prediction = "0_0" if binary_prediction==0 else id2label[taxonomy_prediction]
prediction