metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: Young woman in riding gear on top of horse.
sentences:
- Italy’s centre-left splinters in presidential vote
- The woman is riding on the brown horse.
- Mali's Interim President Sworn Into Office
- source_sentence: Sony reports record annual loss
sentences:
- A woman is playing a flute.
- A man and a woman kiss.
- Sony forecasts record annual loss of $6.4bn
- source_sentence: A clear plastic chair in front of a bookcase.
sentences:
- Allen defends self against Farrow's abuse claims
- Ehud Olmert sentenced to six years in Israel
- a clear plastic chair in front of book shelves.
- source_sentence: KLCI Futures traded mixed at mid-day
sentences:
- KL shares mixed at mid-day
- NATO helicopter makes hard landing in E. Afghanistan
- Sewol ferry crew faces trial
- source_sentence: We in Britain think differently to Americans.
sentences:
- south korea has had a bullet train system since the 1980s.
- Originally Posted by zaf We in Britain think differently to Americans.
- Car bombings kill 13 civilians in Iraqi capital
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.9075334661878893
name: Pearson Cosine
- type: spearman_cosine
value: 0.9060484206473507
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.9075334589342524
name: Pearson Cosine
- type: spearman_cosine
value: 0.9060484206473507
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'We in Britain think differently to Americans.',
'Originally Posted by zaf We in Britain think differently to Americans.',
'south korea has had a bullet train system since the 1980s.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets: `` and
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | |
---|---|---|
pearson_cosine | 0.9075 | 0.9075 |
spearman_cosine | 0.906 | 0.906 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,749 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 6 tokens
- mean: 14.16 tokens
- max: 45 tokens
- min: 5 tokens
- mean: 14.18 tokens
- max: 49 tokens
- min: 0.0
- mean: 0.54
- max: 1.0
- Samples:
sentence_0 sentence_1 label US Senate to vote on fiscal cliff deal as deadline nears
Fiscal cliff: House delays vote on fiscal cliff deal - live
0.5599999904632569
This is America, my friends, and it should not happen here," he said to loud applause.
"This is America, my friends, and it should not happen here."
0.65
Books To Help Kids Talk About Boston Marathon News
Report of two explosions at finish line of Boston Marathon
0.1600000023841858
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | spearman_cosine | sts-dev_spearman_cosine |
---|---|---|---|---|
0 | 0 | - | 0.8811 | - |
0.1 | 18 | - | - | 0.8816 |
0.2 | 36 | - | - | 0.8834 |
0.3 | 54 | - | - | 0.8847 |
0.4 | 72 | - | - | 0.8894 |
0.5 | 90 | - | - | 0.8933 |
0.6 | 108 | - | - | 0.8966 |
0.7 | 126 | - | - | 0.9005 |
0.8 | 144 | - | - | 0.9020 |
0.9 | 162 | - | - | 0.9010 |
1.0 | 180 | - | - | 0.9001 |
1.1 | 198 | - | - | 0.9022 |
1.2 | 216 | - | - | 0.9018 |
1.3 | 234 | - | - | 0.9015 |
1.4 | 252 | - | - | 0.9029 |
1.5 | 270 | - | - | 0.9044 |
1.6 | 288 | - | - | 0.9049 |
1.7 | 306 | - | - | 0.9051 |
1.8 | 324 | - | - | 0.9033 |
1.9 | 342 | - | - | 0.9039 |
2.0 | 360 | - | - | 0.9050 |
2.1 | 378 | - | - | 0.9042 |
2.2 | 396 | - | - | 0.9041 |
2.3 | 414 | - | - | 0.9040 |
2.4 | 432 | - | - | 0.9048 |
2.5 | 450 | - | - | 0.9045 |
2.6 | 468 | - | - | 0.9046 |
2.7 | 486 | - | - | 0.9047 |
2.7778 | 500 | 0.0153 | - | - |
2.8 | 504 | - | - | 0.9057 |
2.9 | 522 | - | - | 0.9065 |
3.0 | 540 | - | - | 0.9074 |
3.1 | 558 | - | - | 0.9073 |
3.2 | 576 | - | - | 0.9065 |
3.3 | 594 | - | - | 0.9046 |
3.4 | 612 | - | - | 0.9057 |
3.5 | 630 | - | - | 0.9069 |
3.6 | 648 | - | - | 0.9062 |
3.7 | 666 | - | - | 0.9061 |
3.8 | 684 | - | - | 0.9050 |
3.9 | 702 | - | - | 0.9050 |
4.0 | 720 | - | - | 0.9048 |
4.1 | 738 | - | - | 0.9052 |
4.2 | 756 | - | - | 0.9055 |
4.3 | 774 | - | - | 0.9060 |
4.4 | 792 | - | - | 0.9059 |
4.5 | 810 | - | - | 0.9064 |
4.6 | 828 | - | - | 0.9063 |
4.7 | 846 | - | - | 0.9063 |
4.8 | 864 | - | - | 0.9067 |
4.9 | 882 | - | - | 0.9059 |
5.0 | 900 | - | - | 0.9052 |
5.1 | 918 | - | - | 0.9061 |
5.2 | 936 | - | - | 0.9057 |
5.3 | 954 | - | - | 0.9053 |
5.4 | 972 | - | - | 0.9060 |
5.5 | 990 | - | - | 0.9050 |
5.5556 | 1000 | 0.0051 | - | - |
5.6 | 1008 | - | - | 0.9053 |
5.7 | 1026 | - | - | 0.9052 |
5.8 | 1044 | - | - | 0.9056 |
5.9 | 1062 | - | - | 0.9062 |
6.0 | 1080 | - | - | 0.9056 |
6.1 | 1098 | - | - | 0.9054 |
6.2 | 1116 | - | - | 0.9058 |
6.3 | 1134 | - | - | 0.9058 |
6.4 | 1152 | - | - | 0.9056 |
6.5 | 1170 | - | - | 0.9057 |
6.6 | 1188 | - | - | 0.9055 |
6.7 | 1206 | - | - | 0.9055 |
6.8 | 1224 | - | - | 0.9053 |
6.9 | 1242 | - | - | 0.9053 |
7.0 | 1260 | - | - | 0.9053 |
7.1 | 1278 | - | - | 0.9057 |
7.2 | 1296 | - | - | 0.9055 |
7.3 | 1314 | - | - | 0.9053 |
7.4 | 1332 | - | - | 0.9056 |
7.5 | 1350 | - | - | 0.9059 |
7.6 | 1368 | - | - | 0.9060 |
7.7 | 1386 | - | - | 0.9057 |
7.8 | 1404 | - | - | 0.9058 |
7.9 | 1422 | - | - | 0.9057 |
8.0 | 1440 | - | - | 0.9058 |
8.1 | 1458 | - | - | 0.9059 |
8.2 | 1476 | - | - | 0.9060 |
8.3 | 1494 | - | - | 0.9056 |
8.3333 | 1500 | 0.0031 | - | - |
8.4 | 1512 | - | - | 0.9057 |
8.5 | 1530 | - | - | 0.9060 |
8.6 | 1548 | - | - | 0.9058 |
8.7 | 1566 | - | - | 0.9060 |
8.8 | 1584 | - | - | 0.9062 |
8.9 | 1602 | - | - | 0.9061 |
9.0 | 1620 | - | - | 0.9061 |
9.1 | 1638 | - | - | 0.9061 |
9.2 | 1656 | - | - | 0.9059 |
9.3 | 1674 | - | - | 0.9060 |
9.4 | 1692 | - | - | 0.9061 |
9.5 | 1710 | - | - | 0.9061 |
9.6 | 1728 | - | - | 0.9061 |
9.7 | 1746 | - | - | 0.9060 |
9.8 | 1764 | - | - | 0.9061 |
9.9 | 1782 | - | - | 0.9061 |
10.0 | 1800 | - | 0.9060 | 0.9060 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}