Datasets:
annotations_creators:
- machine-generated
language:
- ar
- es
- fr
- de
- hi
- it
- ja
- nl
- pt
language_creators:
- found
license_details: https://huggingface.co/datasets/AmazonScience/xtr-wiki_qa/blob/main/LICENSE.md
multilinguality:
- multilingual
- translation
pretty_name: xtr-wiki_qa
size_categories:
- 100K<n<1M
source_datasets:
- extended|wiki_qa
tags:
- as2
- answer sentence selection
- text retrieval
- question answering
task_categories:
- question-answering
- text-retrieval
task_ids:
- open-domain-qa
license: cdla-permissive-2.0
Xtr-WikiQA
Table of Contents
Dataset Description
- Homepage: Amazon Science
- Paper: Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages
- Point of Contact: Yoshitomo Matsubara
Dataset Summary
Xtr-WikiQA is an Answer Sentence Selection (AS2) dataset in 9 non-English languages, proposed in our paper accepted at ACL 2023 (Findings): Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages. This dataset is based on an English AS2 dataset, WikiQA (Original, Hugging Face). For translations, we used Amazon Translate.
Languages
- Arabic (ar)
- Spanish (es)
- French (fr)
- German (de)
- Hindi (hi)
- Italian (it)
- Japanese (ja)
- Dutch (nl)
- Portuguese (pt)
File location: tsv/
Dataset Structure
Data Instances
This is an example instance from the Arabic training split of Xtr-WikiQA dataset.
{
"QuestionID": "Q1",
"Question": "ููู ุชุชุดูู ุงููููู ุงูุฌููุฏูุฉุ",
"DocumentID": "D1",
"DocumentTitle": "ููู ุฌููุฏู",
"SentenceID": "D1-0",
"Sentence": "ููู ุฌููุฏู ู
ุบู
ูุฑ ุฌุฒุฆููุง ุนูู ููุฑ ุจูุฑูุชู ู
ูุฑููู ุงูุฌููุฏู.",
"Label": 0
}
All the translated instances in tsv files are listed in the same order of the original (native) instances in the WikiQA dataset.
For example, the 2nd instance in tsv/ar-train.tsv
(Arabic-translated from English)
corresponds to the 2nd instance in WikiQA-train.tsv
(English).
Data Fields
Each instance (a QA pair) consists of the following fields:
QuestionID
: Question ID (str)Question
: Question to be answered (str)DocumentID
: Document ID (str)DocumentTitle
: Document title (str)SentenceID
: Answer sentence in the document (str)Sentence
: Answer sentence in the document (str)Label
: Label that indicates the answer sentence correctly answers the question (int, 1: correct, 0: incorrect)
Data Splits
#Questions | #Sentences | ||||||
---|---|---|---|---|---|---|---|
train | dev | test | train | dev | test | ||
Each language | 873 | 126 | 243 | 8,671 | 1,130 | 2,351 |
See our paper for more details about the statistics of the datasets.
Dataset Creation
Source Data
The source of Xtr-WikiQA dataset is WikiQA.
Additional Information
Licensing Information
Citation Information
@inproceedings{gupta2023cross-lingual,
title={{Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages}},
author={Gupta, Shivanshu and Matsubara, Yoshitomo and Chadha, Ankit and Moschitti, Alessandro},
booktitle={Findings of the Association for Computational Linguistics: ACL 2023},
pages={14078--14092},
year={2023}
}
Contributions
- Shivanshu Gupta
- Yoshitomo Matsubara
- Ankit Chadha
- Alessandro Moschitti