metadata
license: apache-2.0
task_categories:
- question-answering
- summarization
- text-generation
language:
- en
size_categories:
- 1K<n<10K
configs:
- config_name: L-CiteEval-Data_narrativeqa
data_files:
- split: test
path: L-CiteEval-Data/narrativeqa.json
- config_name: L-CiteEval-Data_natural_questions
data_files:
- split: test
path: L-CiteEval-Data/natural_questions.json
- config_name: L-CiteEval-Data_hotpotqa
data_files:
- split: test
path: L-CiteEval-Data/hotpotqa.json
- config_name: L-CiteEval-Data_2wikimultihopqa
data_files:
- split: test
path: L-CiteEval-Data/2wikimultihopqa.json
- config_name: L-CiteEval-Data_gov_report
data_files:
- split: test
path: L-CiteEval-Data/gov_report.json
- config_name: L-CiteEval-Data_multi_news
data_files:
- split: test
path: L-CiteEval-Data/multi_news.json
- config_name: L-CiteEval-Data_qmsum
data_files:
- split: test
path: L-CiteEval-Data/qmsum.json
- config_name: L-CiteEval-Data_locomo
data_files:
- split: test
path: L-CiteEval-Data/locomo.json
- config_name: L-CiteEval-Data_dialsim
data_files:
- split: test
path: L-CiteEval-Data/dialsim.json
- config_name: L-CiteEval-Data_niah
data_files:
- split: test
path: L-CiteEval-Data/niah.json
- config_name: L-CiteEval-Data_counting_stars
data_files:
- split: test
path: L-CiteEval-Data/counting_stars.json
- config_name: L-CiteEval-Length_narrativeqa
data_files:
- split: test
path: L-CiteEval-Length/narrativeqa.json
- config_name: L-CiteEval-Length_hotpotqa
data_files:
- split: test
path: L-CiteEval-Length/hotpotqa.json
- config_name: L-CiteEval-Length_gov_report
data_files:
- split: test
path: L-CiteEval-Length/gov_report.json
- config_name: L-CiteEval-Length_locomo
data_files:
- split: test
path: L-CiteEval-Length/locomo.json
- config_name: L-CiteEval-Length_counting_stars
data_files:
- split: test
path: L-CiteEval-Length/counting_stars.json
- config_name: L-CiteEval-Hardness_narrativeqa
data_files:
- split: test
path: L-CiteEval-Hardness/narrativeqa.json
- config_name: L-CiteEval-Hardness_hotpotqa
data_files:
- split: test
path: L-CiteEval-Hardness/hotpotqa.json
- config_name: L-CiteEval-Hardness_gov_report
data_files:
- split: test
path: L-CiteEval-Hardness/gov_report.json
- config_name: L-CiteEval-Hardness_locomo
data_files:
- split: test
path: L-CiteEval-Hardness/locomo.json
- config_name: L-CiteEval-Hardness_counting_stars
data_files:
- split: test
path: L-CiteEval-Hardness/counting_stars.json
L-CITEEVAL: DO LONG-CONTEXT MODELS TRULY LEVERAGE CONTEXT FOR RESPONDING?
Benchmark Quickview
L-CiteEval is a multi-task long-context understanding with citation benchmark, covering 5 task categories, including single-document question answering, multi-document question answering, summarization, dialogue understanding, and synthetic tasks, encompassing 11 different long-context tasks. The context lengths for these tasks range from 8K to 48K.
Data Prepare
Load Data
from datasets import load_dataset
datasets = ["narrativeqa", "natural_questions", "hotpotqa", "2wikimultihopqa", "goc_report", "multi_news", "qmsum", "locomo", "dialsim", "counting_stars", "niah"]
for dataset in datasets:
### Load L-CiteEval
data = load_dataset('Jonaszky123/L-CiteEval', f"L-CiteEval-Data_{dataset}")
### Load L-CiteEval-Length
data = load_dataset('Jonaszky123/L-CiteEval', f"L-CiteEval-Length_{dataset}")
### Load L-CiteEval-Hardness
data = load_dataset('Jonaszky123/L-CiteEval', f"L-CiteEval-Hardness_{dataset}")
All data in L-CiteEval follows the format below:
{
"id": "The identifier for the data entry",
"question": "The task question, such as for single-document QA. In summarization tasks, this may be omitted",
"answer": "The correct or expected answer to the question, used for evaluating correctness",
"docs": "Context divided into fixed-length chunks"
"length": "The context length"
"hardness": "The level of difficulty in L-CiteEval-Hardness, which can be easy, medium and hard"
}
You can find evaluation code in our github.
Citation
If you find our work helpful, please cite our paper:
@misc{tang2024lciteeval,
title={L-CiteEval: Do Long-Context Models Truly Leverage Context for Responding?},
author={Zecheng Tang and Keyan Zhou and Juntao Li and Baibei Ji and Jianye Hou and Min Zhang},
year={2024},
eprint={2410.02115},
archivePrefix={arXiv},
primaryClass={cs.CL}
}