|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- question-answering |
|
- summarization |
|
- text-generation |
|
language: |
|
- en |
|
size_categories: |
|
- 1K<n<10K |
|
configs: |
|
- config_name: L-CiteEval-Data_narrativeqa |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Data/narrativeqa.json" |
|
- config_name: L-CiteEval-Data_natural_questions |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Data/natural_questions.json" |
|
- config_name: L-CiteEval-Data_hotpotqa |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Data/hotpotqa.json" |
|
- config_name: L-CiteEval-Data_2wikimultihopqa |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Data/2wikimultihopqa.json" |
|
- config_name: L-CiteEval-Data_gov_report |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Data/gov_report.json" |
|
- config_name: L-CiteEval-Data_multi_news |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Data/multi_news.json" |
|
- config_name: L-CiteEval-Data_qmsum |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Data/qmsum.json" |
|
- config_name: L-CiteEval-Data_locomo |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Data/locomo.json" |
|
- config_name: L-CiteEval-Data_dialsim |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Data/dialsim.json" |
|
- config_name: L-CiteEval-Data_niah |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Data/niah.json" |
|
- config_name: L-CiteEval-Data_counting_stars |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Data/counting_stars.json" |
|
- config_name: L-CiteEval-Length_narrativeqa |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Length/narrativeqa.json" |
|
- config_name: L-CiteEval-Length_hotpotqa |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Length/hotpotqa.json" |
|
- config_name: L-CiteEval-Length_gov_report |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Length/gov_report.json" |
|
- config_name: L-CiteEval-Length_locomo |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Length/locomo.json" |
|
- config_name: L-CiteEval-Length_counting_stars |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Length/counting_stars.json" |
|
- config_name: L-CiteEval-Hardness_narrativeqa |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Hardness/narrativeqa.json" |
|
- config_name: L-CiteEval-Hardness_hotpotqa |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Hardness/hotpotqa.json" |
|
- config_name: L-CiteEval-Hardness_gov_report |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Hardness/gov_report.json" |
|
- config_name: L-CiteEval-Hardness_locomo |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Hardness/locomo.json" |
|
- config_name: L-CiteEval-Hardness_counting_stars |
|
data_files: |
|
- split: test |
|
path: "L-CiteEval-Hardness/counting_stars.json" |
|
--- |
|
|
|
# L-CITEEVAL: DO LONG-CONTEXT MODELS TRULY LEVERAGE CONTEXT FOR RESPONDING? |
|
[Paper](https://arxiv.org/abs/2410.02115)   [Github](https://github.com/ZetangForward/L-CITEEVAL)   [Zhihu](https://zhuanlan.zhihu.com/p/817442176) |
|
|
|
## Benchmark Quickview |
|
*L-CiteEval* is a multi-task long-context understanding with citation benchmark, covering **5 task categories**, including single-document question answering, multi-document question answering, summarization, dialogue understanding, and synthetic tasks, encompassing **11 different long-context tasks**. The context lengths for these tasks range from **8K to 48K**. |
|
![](assets/dataset.png) |
|
|
|
|
|
## Data Prepare |
|
#### Load Data |
|
``` |
|
from datasets import load_dataset |
|
|
|
datasets = ["narrativeqa", "natural_questions", "hotpotqa", "2wikimultihopqa", "goc_report", "multi_news", "qmsum", "locomo", "dialsim", "counting_stars", "niah"] |
|
|
|
for dataset in datasets: |
|
### Load L-CiteEval |
|
data = load_dataset('Jonaszky123/L-CiteEval', f"L-CiteEval-Data_{dataset}") |
|
|
|
### Load L-CiteEval-Length |
|
data = load_dataset('Jonaszky123/L-CiteEval', f"L-CiteEval-Length_{dataset}") |
|
|
|
### Load L-CiteEval-Hardness |
|
data = load_dataset('Jonaszky123/L-CiteEval', f"L-CiteEval-Hardness_{dataset}") |
|
``` |
|
|
|
<!-- You can get the L-CiteEval data from [🤗 Hugging face](). Once downloaded, place the data in the dataset folder. --> |
|
|
|
All data in L-CiteEval follows the format below: |
|
``` |
|
{ |
|
"id": "The identifier for the data entry", |
|
"question": "The task question, such as for single-document QA. In summarization tasks, this may be omitted", |
|
"answer": "The correct or expected answer to the question, used for evaluating correctness", |
|
"docs": "Context divided into fixed-length chunks" |
|
"length": "The context length" |
|
"hardness": "The level of difficulty in L-CiteEval-Hardness, which can be easy, medium and hard" |
|
} |
|
``` |
|
|
|
You can find evaluation code in our github. |
|
|
|
## Citation |
|
If you find our work helpful, please cite our paper: |
|
``` |
|
@misc{tang2024lciteeval, |
|
title={L-CiteEval: Do Long-Context Models Truly Leverage Context for Responding?}, |
|
author={Zecheng Tang and Keyan Zhou and Juntao Li and Baibei Ji and Jianye Hou and Min Zhang}, |
|
year={2024}, |
|
eprint={2410.02115}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|