prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# Lint as: python3 # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for schedules.py.""" from absl.testing import absltest from absl.testing import parameterized import jax import numpy as np from rlax._src import schedules @parameterized.named_parameters( ('JitOnp', jax.jit, lambda t: t), ('NoJitOnp', lambda fn: fn, lambda t: t), ('JitJnp', jax.jit, jax.device_put), ('NoJitJnp', lambda fn: fn, jax.device_put)) class PolynomialTest(parameterized.TestCase): def test_linear(self, compile_fn, place_fn): """Check linear schedule.""" # Get schedule function. schedule_fn = schedules.polynomial_schedule(10., 20., 1, 10) # Optionally compile. schedule_fn = compile_fn(schedule_fn) # Test that generated values equal the expected schedule values. generated_vals = [] for count in range(15): # Optionally convert to device array. step_count = place_fn(count) # Compute next value. generated_vals.append(schedule_fn(step_count)) # Test output. expected_vals = np.array(list(range(10, 20)) + [20] * 5, dtype=np.float32) np.testing.assert_allclose( expected_vals,
np.array(generated_vals)
numpy.array
# -*- coding: utf-8 -*- import numpy as np import time # Rotating hyperplane dataset def create_hyperplane_dataset(n_samples, n_dim=2, plane_angle=0.45): w = np.dot(np.array([[np.cos(plane_angle), -np.sin(plane_angle)], [np.sin(plane_angle),
np.cos(plane_angle)
numpy.cos
"""Functions copypasted from newer versions of numpy. """ from __future__ import division, print_function, absolute_import import warnings import sys import numpy as np from numpy.testing.nosetester import import_nose from scipy._lib._version import NumpyVersion if NumpyVersion(np.__version__) > '1.7.0.dev': _assert_warns = np.testing.assert_warns else: def _assert_warns(warning_class, func, *args, **kw): r""" Fail unless the given callable throws the specified warning. This definition is copypasted from numpy 1.9.0.dev. The version in earlier numpy returns None. Parameters ---------- warning_class : class The class defining the warning that `func` is expected to throw. func : callable The callable to test. *args : Arguments Arguments passed to `func`. **kwargs : Kwargs Keyword arguments passed to `func`. Returns ------- The value returned by `func`. """ with warnings.catch_warnings(record=True) as l: warnings.simplefilter('always') result = func(*args, **kw) if not len(l) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) if not l[0].category is warning_class: raise AssertionError("First warning for %s is not a " "%s( is %s)" % (func.__name__, warning_class, l[0])) return result def assert_raises_regex(exception_class, expected_regexp, callable_obj=None, *args, **kwargs): """ Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by callable when invoked with arguments args and keyword arguments kwargs. Name of this function adheres to Python 3.2+ reference, but should work in all versions down to 2.6. Notes ----- .. versionadded:: 1.8.0 """ __tracebackhide__ = True # Hide traceback for py.test nose = import_nose() if sys.version_info.major >= 3: funcname = nose.tools.assert_raises_regex else: # Only present in Python 2.7, missing from unittest in 2.6 funcname = nose.tools.assert_raises_regexp return funcname(exception_class, expected_regexp, callable_obj, *args, **kwargs) if NumpyVersion(np.__version__) >= '1.10.0': from numpy import broadcast_to else: # Definition of `broadcast_to` from numpy 1.10.0. def _maybe_view_as_subclass(original_array, new_array): if type(original_array) is not type(new_array): # if input was an ndarray subclass and subclasses were OK, # then view the result as that subclass. new_array = new_array.view(type=type(original_array)) # Since we have done something akin to a view from original_array, we # should let the subclass finalize (if it has it implemented, i.e., is # not None). if new_array.__array_finalize__: new_array.__array_finalize__(original_array) return new_array def _broadcast_to(array, shape, subok, readonly): shape = tuple(shape) if np.iterable(shape) else (shape,) array =
np.array(array, copy=False, subok=subok)
numpy.array
from linlearn import BinaryClassifier, MultiClassifier from linlearn.robust_means import Holland_catoni_estimator, gmom, alg2 import numpy as np import gzip import logging import pickle from datetime import datetime import sys import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from scipy.special import logsumexp, softmax import os import itertools from tqdm import tqdm import joblib import time def ensure_directory(directory): if not os.path.exists(directory): os.makedirs(directory) ensure_directory('exp_archives/') file_handler = logging.FileHandler(filename='exp_archives/classif_exp.log') stdout_handler = logging.StreamHandler(sys.stdout) handlers = [file_handler, stdout_handler] logging.basicConfig( level=logging.INFO, format="%(asctime)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S", handlers=handlers ) save_results = False save_fig= True dataset="MNIST" logging.info(64*"=") logging.info("Running new experiment session ON GPU with dataset : %s" % dataset) logging.info(64*"=") m_SVRG = 50 step_size = 0.01 max_iter = 10 fit_intercept = True n_samples = 1000 n_repeats = 2 logging.info("Parameters are : n_repeats = %d , n_samples = %d , max_ter = %d , fit_intercept=%r , m_SVRG = %d" % (n_repeats, n_samples or 0, max_iter, fit_intercept, m_SVRG)) if not save_results: logging.info("WARNING : results will NOT be saved at the end of this session") def _images(path): """Return images loaded locally.""" with gzip.open(path) as f: # First 16 bytes are magic_number, n_imgs, n_rows, n_cols pixels = np.frombuffer(f.read(), 'B', offset=16) return pixels.reshape(-1, 784).astype('float64') / 255 def _labels(path): """Return labels loaded locally.""" with gzip.open(path) as f: # First 8 bytes are magic_number, n_labels integer_labels = np.frombuffer(f.read(), 'B', offset=8) def _onehot(integer_labels): """Return matrix whose rows are onehot encodings of integers.""" n_rows = len(integer_labels) n_cols = integer_labels.max() + 1 onehot = np.zeros((n_rows, n_cols), dtype='uint8') onehot[np.arange(n_rows), integer_labels] = 1 return onehot return _onehot(integer_labels) mnist_train_images_file = "mnist_data/train-images-idx3-ubyte.gz" mnist_train_labels_file = "mnist_data/train-labels-idx1-ubyte.gz" mnist_test_images_file = "mnist_data/t10k-images-idx3-ubyte.gz" mnist_test_labels_file = "mnist_data/t10k-labels-idx1-ubyte.gz" logging.info("loading data ...") X_train = _images(mnist_train_images_file)[:n_samples] y_train = _labels(mnist_train_labels_file)[:n_samples] X_test = _images(mnist_test_images_file) y_test = _labels(mnist_test_labels_file) def l1_apply_single(x, t): if x > t: return x - t elif x < -t: return x + t else: return 0.0 def sample_objectives(X, y, w, fit_intercept=fit_intercept, lnlearn=False): if fit_intercept: w0 = w[0] if lnlearn else w[0,:] w1 = w[1] if lnlearn else w[1:,:] else: w0 = 0 w1 = w scores = X @ w1 + w0 scores = np.hstack((scores, np.zeros((X.shape[0], 1)))) obj = (-scores[np.arange(X.shape[0]), np.argmax(y, axis=1)] + logsumexp(scores, axis=1)) return obj def objective(X, y, w, fit_intercept=fit_intercept, lnlearn=False): return sample_objectives(X, y, w, fit_intercept=fit_intercept, lnlearn=lnlearn).mean() def gradient(X, y, w, fit_intercept=fit_intercept): scores = X @ w[1:,:] + w[0,:] if fit_intercept else X @ w scores = np.hstack((scores, np.zeros((X.shape[0], 1)))) sftmax = softmax(scores, axis=1) - y#np.hstack((y, np.zeros((X.shape[0], 1)))) if fit_intercept: return np.vstack((sftmax[:,:-1].sum(axis=0), X.T @ sftmax[:,:-1]))/X.shape[0] else: return (X.T @ sftmax[:,:-1])/X.shape[0] # np.vstack((np.ones((X.shape[0], 1)) @ sftmax[:,:-1], X.T @ sftmax[:,:-1] def sample_gradients(X, y, w, fit_intercept=fit_intercept): scores = X @ w[1:,:] + w[0,:] if fit_intercept else X @ w scores = np.hstack((scores, np.zeros((X.shape[0], 1)))) sftmax = softmax(scores, axis=1) - y#np.hstack((y, np.zeros((X.shape[0], 1)))) if fit_intercept: return np.concatenate( (sftmax[:,np.newaxis,:-1], np.einsum("ij, ik->ijk", X, sftmax[:,:-1])), axis=1) else: return np.einsum("ij, ik->ijk", X, sftmax[:,:-1]) # def train_loss(w): return objective(X_train, y_train, w, fit_intercept=fit_intercept) # def test_loss(w): return objective(X_test, y_test, w, fit_intercept=fit_intercept) # # def linlearn_train_loss(w): return objective(X_train, y_train, w, fit_intercept=fit_intercept, lnlearn=True) # def linlearn_test_loss(w): return objective(X_test, y_test, w, fit_intercept=fit_intercept, lnlearn=True) # linlearn_tracked_funs = [linlearn_train_loss, linlearn_test_loss] linlearn_algorithms = ["mom_cgd", "catoni_cgd", "tmean_cgd"] def train_loss(w, algo_name=""): return objective(X_train, y_train, w, fit_intercept=fit_intercept, lnlearn=algo_name in linlearn_algorithms) def test_loss(w, algo_name=""): return objective(X_test, y_test, w, fit_intercept=fit_intercept, lnlearn=algo_name in linlearn_algorithms) tracked_funs = [train_loss, test_loss] class Record(object): def __init__(self, shape, capacity): self.record = np.zeros(capacity) if shape == 1 else np.zeros(tuple([capacity] + list(shape))) self.cursor = 0 def update(self, value): self.record[self.cursor] = value self.cursor += 1 def __len__(self): return self.record.shape[0] def tmean_cgd(X_train, y_train, batch_size=500): mom_logreg = MultiClassifier(tol=1e-17, max_iter=max_iter, strategy="tmean", fit_intercept=fit_intercept, thresholding=False, step_size=step_size*batch_size/1000, loss="multilogistic", batch_size=batch_size) mom_logreg.fit(X_train, y_train, tracked_funs=linlearn_tracked_funs) n_iter = len(mom_logreg.optimization_result_.tracked_funs[0]) n_batches = X_train.shape[0] // batch_size + int(X_train.shape[0] % batch_size > 0) gradient_counts = [(i // n_batches)*X_train.shape[0] + (i % n_batches)*batch_size for i in range(n_iter)] return mom_logreg.optimization_result_.tracked_funs + [gradient_counts] # def catoni_cgd(X_train, y_train, batch_size=500): # mom_logreg = MultiClassifier(tol=1e-17, max_iter=max_iter, strategy="catoni", fit_intercept=fit_intercept, # thresholding=False, step_size=step_size*batch_size/1000, loss="multilogistic", batch_size=batch_size) # mom_logreg.fit(X_train, y_train, tracked_funs=linlearn_tracked_funs) # # n_iter = len(mom_logreg.optimization_result_.tracked_funs[0]) # n_batches = X_train.shape[0] // batch_size + int(X_train.shape[0] % batch_size > 0) # gradient_counts = [(i // n_batches)*X_train.shape[0] + (i % n_batches)*batch_size for i in range(n_iter)] # # return mom_logreg.optimization_result_.tracked_funs + [gradient_counts] def catoni_cgd(X_train, y_train, l1_penalty=1): mom_logreg = MultiClassifier(tol=1e-17, max_iter=max_iter, strategy="catoni", fit_intercept=fit_intercept, penalty="l1", C=l1_penalty, step_size=step_size, loss="multilogistic") param_record = Record((X_train.shape[1]+int(fit_intercept), y_train.shape[1]-1), max_iter) time_record = Record(1, max_iter) if fit_intercept: param_tracker = lambda w : param_record.update(np.vstack(w)) else: param_tracker = lambda w : param_record.update(w) mom_logreg.fit(X_train, y_train, trackers=[param_tracker, lambda _:time_record.update(time.time())]) return param_record, time_record # def mom_cgd(X_train, y_train, batch_size=500): # mom_logreg = MultiClassifier(tol=1e-17, max_iter=max_iter, strategy="mom", fit_intercept=fit_intercept, # thresholding=False, step_size=step_size*batch_size/1000, loss="multilogistic", batch_size=batch_size) # mom_logreg.fit(X_train, y_train, tracked_funs=linlearn_tracked_funs) # # n_iter = len(mom_logreg.optimization_result_.tracked_funs[0]) # n_batches = X_train.shape[0] // batch_size + int(X_train.shape[0] % batch_size > 0) # gradient_counts = [(i // n_batches) * X_train.shape[0] + (i % n_batches) * batch_size for i in # range(n_iter)] # # return mom_logreg.optimization_result_.tracked_funs + [gradient_counts] def mom_cgd(X_train, y_train, l1_penalty=1): mom_logreg = MultiClassifier(tol=1e-17, max_iter=max_iter, strategy="mom", fit_intercept=fit_intercept, penalty="l1", C=l1_penalty, step_size=step_size, loss="multilogistic") param_record = Record((X_train.shape[1]+int(fit_intercept), y_train.shape[1]-1), max_iter) time_record = Record(1, max_iter) if fit_intercept: param_tracker = lambda w : param_record.update(np.vstack(w)) else: param_tracker = lambda w : param_record.update(w) mom_logreg.fit(X_train, y_train, trackers=[param_tracker, lambda _:time_record.update(time.time())]) return param_record, time_record # def SVRG(X, y, grad, m, w0=None, T=max_iter, fit_intercept=fit_intercept, tracked_funs=tracked_funs): # if w0 is None: # w0 = np.zeros((X.shape[1] + int(fit_intercept), y.shape[1]-1)) # w_tilde = w0 # wt = w0 # step = step_size*(X.shape[0]/m + 2)/1000 # tracks = [[obj(w0)] for obj in tracked_funs] + [[0]] # for i in tqdm(range((T*500)//(X.shape[0] + 2*m) + 1), desc="SVRG"): # mu = grad(X, y, w_tilde, fit_intercept=fit_intercept) # additional_gradients = X.shape[0] # for j in range(m): # ind = np.random.randint(X.shape[0]) # X_ind, y_ind = X[ind:ind+1,:], y[ind:ind+1,:] # wt -= step*(grad(X_ind, y_ind, wt, fit_intercept=fit_intercept) - grad(X_ind, y_ind, w_tilde, fit_intercept=fit_intercept) + mu) # additional_gradients += 2 # for idx, obj in enumerate(tracked_funs): # tracks[idx].append(obj(wt)) # tracks[-1].append(tracks[-1][-1] + additional_gradients) # additional_gradients = 0 # w_tilde = wt # return tracks def SVRG(X, y, w0=None, T=max_iter, fit_intercept=fit_intercept): if w0 is None: w0 = np.zeros((X.shape[1] + int(fit_intercept), y.shape[1]-1)) w_tilde = w0 wt = w0 step = step_size/(X.shape[0]) m = X.shape[0] param_record = Record((X.shape[1]+int(fit_intercept), y.shape[1]-1), max_iter) time_record = Record(1, max_iter) for i in tqdm(range(T), desc="SVRG"): mu = gradient(X, y, w_tilde, fit_intercept=fit_intercept) for j in range(m): ind = np.random.randint(X.shape[0]) X_ind, y_ind = X[ind:ind+1,:], y[ind:ind+1] wt -= step*(gradient(X_ind, y_ind, wt, fit_intercept=fit_intercept) - gradient(X_ind, y_ind, w_tilde, fit_intercept=fit_intercept) + mu) w_tilde = wt param_record.update(wt) time_record.update(time.time()) return param_record, time_record def SGD(X, y, w0=None, T=max_iter, fit_intercept=fit_intercept): if w0 is None: w0 = np.zeros((X.shape[1] + int(fit_intercept), y.shape[1]-1)) wt = w0 step = step_size/(X.shape[0]) param_record = Record((X.shape[1]+int(fit_intercept), y.shape[1]-1), max_iter) time_record = Record(1, max_iter) for i in tqdm(range(T), desc="SGD"): index =
np.random.randint(X.shape[0])
numpy.random.randint
import numpy as np import scipy.stats import os import logging from astropy.tests.helper import pytest, catch_warnings from astropy.modeling import models from astropy.modeling.fitting import _fitter_to_model_params from stingray import Powerspectrum from stingray.modeling import ParameterEstimation, PSDParEst, \ OptimizationResults, SamplingResults from stingray.modeling import PSDPosterior, set_logprior, PSDLogLikelihood, \ LogLikelihood try: from statsmodels.tools.numdiff import approx_hess comp_hessian = True except ImportError: comp_hessian = False try: import emcee can_sample = True except ImportError: can_sample = False try: import matplotlib.pyplot as plt can_plot = True except ImportError: can_plot = False class LogLikelihoodDummy(LogLikelihood): def __init__(self, x, y, model): LogLikelihood.__init__(self, x, y, model) def evaluate(self, parse, neg=False): return np.nan class OptimizationResultsSubclassDummy(OptimizationResults): def __init__(self, lpost, res, neg, log=None): if log is None: self.log = logging.getLogger('Fitting summary') self.log.setLevel(logging.DEBUG) if not self.log.handlers: ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) self.log.addHandler(ch) self.neg = neg if res is not None: self.result = res.fun self.p_opt = res.x else: self.result = None self.p_opt = None self.model = lpost.model class TestParameterEstimation(object): @classmethod def setup_class(cls): np.random.seed(100) m = 1 nfreq = 100 freq = np.arange(nfreq) noise = np.random.exponential(size=nfreq) power = noise * 2.0 ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.norm = "leahy" cls.ps = ps cls.a_mean, cls.a_var = 2.0, 1.0 cls.model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.norm(loc=cls.a_mean, scale=cls.a_var).pdf(amplitude) cls.priors = {"amplitude": p_amplitude} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) def test_par_est_initializes(self): pe = ParameterEstimation() def test_parest_stores_max_post_correctly(self): """ Make sure the keyword for Maximum A Posteriori fits is stored correctly as a default. """ pe = ParameterEstimation() assert pe.max_post is True, "max_post should be set to True as a default." def test_object_works_with_loglikelihood_object(self): llike = PSDLogLikelihood(self.ps.freq, self.ps.power, self.model, m=self.ps.m) pe = ParameterEstimation() res = pe.fit(llike, [2.0]) assert isinstance(res, OptimizationResults), "res must be of " \ "type OptimizationResults" def test_fit_fails_when_object_is_not_posterior_or_likelihood(self): x = np.ones(10) y = np.ones(10) pe = ParameterEstimation() with pytest.raises(TypeError): res = pe.fit(x, y) def test_fit_fails_without_lpost_or_t0(self): pe = ParameterEstimation() with pytest.raises(TypeError): res = pe.fit() def test_fit_fails_without_t0(self): pe = ParameterEstimation() with pytest.raises(TypeError): res = pe.fit(np.ones(10)) def test_fit_fails_with_incorrect_number_of_parameters(self): pe = ParameterEstimation() t0 = [1, 2] with pytest.raises(ValueError): res = pe.fit(self.lpost, t0) def test_fit_method_works_with_correct_parameter(self): pe = ParameterEstimation() t0 = [2.0] res = pe.fit(self.lpost, t0) def test_fit_method_fails_with_too_many_tries(self): lpost = LogLikelihoodDummy(self.ps.freq, self.ps.power, self.model) pe = ParameterEstimation() t0 = [2.0] with pytest.raises(Exception): res = pe.fit(lpost, t0, neg=True) def test_compute_lrt_fails_when_garbage_goes_in(self): pe = ParameterEstimation() t0 = [2.0] with pytest.raises(TypeError): pe.compute_lrt(self.lpost, t0, None, t0) with pytest.raises(ValueError): pe.compute_lrt(self.lpost, t0[:-1], self.lpost, t0) def test_compute_lrt_sets_max_post_to_false(self): t0 = [2.0] pe = ParameterEstimation(max_post=True) assert pe.max_post is True delta_deviance, opt1, opt2 = pe.compute_lrt(self.lpost, t0, self.lpost, t0) assert pe.max_post is False assert delta_deviance < 1e-7 @pytest.mark.skipif("not can_sample", "not can_plot") def test_sampler_runs(self): pe = ParameterEstimation() if os.path.exists("test_corner.pdf"): os.unlink("test_corner.pdf") with catch_warnings(RuntimeWarning): sample_res = pe.sample(self.lpost, [2.0], nwalkers=50, niter=10, burnin=50, print_results=True, plot=True) assert os.path.exists("test_corner.pdf") assert sample_res.acceptance > 0.25 assert isinstance(sample_res, SamplingResults) # TODO: Fix pooling with the current setup of logprior # @pytest.mark.skipif("not can_sample", "not can_plot") # def test_sampler_pooling(self): # pe = ParameterEstimation() # if os.path.exists("test_corner.pdf"): # os.unlink("test_corner.pdf") # with catch_warnings(RuntimeWarning): # sample_res = pe.sample(self.lpost, [2.0], nwalkers=50, niter=10, # burnin=50, print_results=True, plot=True, # pool=True) @pytest.mark.skipif("can_sample") def test_sample_raises_error_without_emcee(self): pe = ParameterEstimation() with pytest.raises(ImportError): sample_res = pe.sample(self.lpost, [2.0]) def test_simulate_lrt_fails_in_superclass(self): pe = ParameterEstimation() with pytest.raises(NotImplementedError): pe.simulate_lrts(None, None, None, None, None) class TestOptimizationResults(object): @classmethod def setup_class(cls): np.random.seed(1000) m = 1 nfreq = 100 freq = np.arange(nfreq) noise = np.random.exponential(size=nfreq) power = noise * 2.0 ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.n = freq.shape[0] ps.df = freq[1] - freq[0] ps.norm = "leahy" cls.ps = ps cls.a_mean, cls.a_var = 2.0, 1.0 cls.model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.norm(loc=cls.a_mean, scale=cls.a_var).pdf(amplitude) cls.priors = {"amplitude": p_amplitude} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) cls.fitmethod = "powell" cls.max_post = True cls.t0 = np.array([2.0]) cls.neg = True cls.opt = scipy.optimize.minimize(cls.lpost, cls.t0, method=cls.fitmethod, args=cls.neg, tol=1.e-10) cls.opt.x = np.atleast_1d(cls.opt.x) cls.optres = OptimizationResultsSubclassDummy(cls.lpost, cls.opt, neg=True) def test_object_initializes_correctly(self): res = OptimizationResults(self.lpost, self.opt, neg=self.neg) assert hasattr(res, "p_opt") assert hasattr(res, "result") assert hasattr(res, "deviance") assert hasattr(res, "aic") assert hasattr(res, "bic") assert hasattr(res, "model") assert isinstance(res.model, models.Const1D) assert res.p_opt == self.opt.x, "res.p_opt must be the same as opt.x!" assert np.isclose(res.p_opt[0], 2.0, atol=0.1, rtol=0.1) assert res.model == self.lpost.model assert res.result == self.opt.fun mean_model = np.ones_like(self.lpost.x) * self.opt.x[0] assert np.allclose(res.mfit, mean_model), "res.model should be exactly " \ "the model for the data." def test_compute_criteria_works_correctly(self): res = OptimizationResults(self.lpost, self.opt, neg = self.neg) test_aic = res.result+ 2.0*res.p_opt.shape[0] test_bic = res.result + res.p_opt.shape[0] * \ np.log(self.lpost.x.shape[0]) test_deviance = -2 * self.lpost.loglikelihood(res.p_opt, neg=False) assert np.isclose(res.aic, test_aic, atol=0.1, rtol=0.1) assert np.isclose(res.bic, test_bic, atol=0.1, rtol=0.1) assert np.isclose(res.deviance, test_deviance, atol=0.1, rtol=0.1) def test_merit_calculated_correctly(self): res = OptimizationResults(self.lpost, self.opt, neg=self.neg) test_merit = np.sum(((self.ps.power - 2.0)/2.0)**2.) assert np.isclose(res.merit, test_merit, rtol=0.2) def test_compute_statistics_computes_mfit(self): assert hasattr(self.optres, "mfit") is False self.optres._compute_statistics(self.lpost) assert hasattr(self.optres, "mfit") def test_compute_model(self): self.optres._compute_model(self.lpost) assert hasattr(self.optres, "mfit"), "OptimizationResult object should have mfit " \ "attribute at this point!" _fitter_to_model_params(self.model, self.opt.x) mfit_test = self.model(self.lpost.x) assert np.allclose(self.optres.mfit, mfit_test) def test_compute_statistics_computes_all_statistics(self): self.optres._compute_statistics(self.lpost) assert hasattr(self.optres, "merit") assert hasattr(self.optres, "dof") assert hasattr(self.optres, "sexp") assert hasattr(self.optres, "ssd") assert hasattr(self.optres, "sobs") test_merit = np.sum(((self.ps.power - 2.0)/2.0)**2.) test_dof = self.ps.n - self.lpost.npar test_sexp = 2.0 * self.lpost.x.shape[0] * len(self.optres.p_opt) test_ssd = np.sqrt(2.0*test_sexp) test_sobs = np.sum(self.ps.power - self.optres.p_opt[0]) assert np.isclose(test_merit, self.optres.merit, rtol=0.2) assert test_dof == self.optres.dof assert test_sexp == self.optres.sexp assert test_ssd == self.optres.ssd assert np.isclose(test_sobs, self.optres.sobs, atol=0.01, rtol=0.01) def test_compute_criteria_returns_correct_attributes(self): self.optres._compute_criteria(self.lpost) assert hasattr(self.optres, "aic") assert hasattr(self.optres, "bic") assert hasattr(self.optres, "deviance") npar = self.optres.p_opt.shape[0] test_aic = self.optres.result + 2. * npar test_bic = self.optres.result + npar * np.log(self.ps.freq.shape[0]) test_deviance = -2 * self.lpost.loglikelihood(self.optres.p_opt, neg=False) assert np.isclose(test_aic, self.optres.aic) assert np.isclose(test_bic, self.optres.bic) assert np.isclose(test_deviance, self.optres.deviance) def test_compute_covariance_with_hess_inverse(self): self.optres._compute_covariance(self.lpost, self.opt) assert np.allclose(self.optres.cov, np.asarray(self.opt.hess_inv)) assert np.allclose(self.optres.err, np.sqrt(np.diag(self.opt.hess_inv))) @pytest.mark.skipif("comp_hessian") def test_compute_covariance_without_comp_hessian(self): self.optres._compute_covariance(self.lpost, None) assert self.optres.cov is None assert self.optres.err is None @pytest.mark.skipif("not comp_hessian") def test_compute_covariance_with_hess_inverse(self): optres = OptimizationResultsSubclassDummy(self.lpost, self.opt, neg=True) optres._compute_covariance(self.lpost, self.opt) if comp_hessian: phess = approx_hess(self.opt.x, self.lpost) hess_inv = np.linalg.inv(phess) assert np.allclose(optres.cov, hess_inv) assert np.allclose(optres.err, np.sqrt(np.diag(np.abs(hess_inv)))) def test_print_summary_works(self, logger, caplog): self.optres._compute_covariance(self.lpost, None) self.optres.print_summary(self.lpost) assert 'Parameter amplitude' in caplog.text assert "Fitting statistics" in caplog.text assert "number of data points" in caplog.text assert "Deviance [-2 log L] D =" in caplog.text assert "The Akaike Information Criterion of " \ "the model is" in caplog.text assert "The Bayesian Information Criterion of " \ "the model is" in caplog.text assert "The figure-of-merit function for this model" in caplog.text assert "Summed Residuals S =" in caplog.text assert "Expected S" in caplog.text assert "merit function" in caplog.text if can_sample: class SamplingResultsDummy(SamplingResults): def __init__(self, sampler, ci_min=0.05, ci_max=0.95, log=None): if log is None: self.log = logging.getLogger('Fitting summary') self.log.setLevel(logging.DEBUG) if not self.log.handlers: ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) self.log.addHandler(ch) # store all the samples self.samples = sampler.get_chain(flat=True) chain_ndims = sampler.get_chain().shape self.nwalkers = float(chain_ndims[0]) self.niter = float(chain_ndims[1]) # store number of dimensions self.ndim = chain_ndims[2] # compute and store acceptance fraction self.acceptance = np.nanmean(sampler.acceptance_fraction) self.L = self.acceptance * self.samples.shape[0] class TestSamplingResults(object): @classmethod def setup_class(cls): m = 1 nfreq = 100 freq = np.arange(nfreq) noise = np.random.exponential(size=nfreq) power = noise * 2.0 ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.norm = "leahy" cls.ps = ps cls.a_mean, cls.a_var = 2.0, 1.0 cls.model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.norm(loc=cls.a_mean, scale=cls.a_var).pdf( amplitude) cls.priors = {"amplitude": p_amplitude} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) cls.fitmethod = "BFGS" cls.max_post = True cls.t0 = [2.0] cls.neg = True pe = ParameterEstimation() res = pe.fit(cls.lpost, cls.t0) cls.nwalkers = 50 cls.niter = 100 np.random.seed(200) p0 = np.array( [np.random.multivariate_normal(res.p_opt, res.cov) for i in range(cls.nwalkers)]) cls.sampler = emcee.EnsembleSampler(cls.nwalkers, len(res.p_opt), cls.lpost, args=[False]) with catch_warnings(RuntimeWarning): _, _, _ = cls.sampler.run_mcmc(p0, cls.niter) def test_can_sample_is_true(self): assert can_sample def test_sample_results_object_initializes(self): s = SamplingResults(self.sampler) assert s.samples.shape[0] == self.nwalkers * self.niter assert s.acceptance > 0.25 assert np.isclose(s.L, s.acceptance * self.nwalkers * self.niter) def test_check_convergence_works(self): s = SamplingResultsDummy(self.sampler) s._check_convergence(self.sampler) assert hasattr(s, "rhat") rhat_test = 0.038688 assert np.isclose(rhat_test, s.rhat[0], atol=0.02, rtol=0.1) s._infer() assert hasattr(s, "mean") assert hasattr(s, "std") assert hasattr(s, "ci") test_mean = 2.0 test_std = 0.2 assert np.isclose(test_mean, s.mean[0], rtol=0.1) assert np.isclose(test_std, s.std[0], atol=0.01, rtol=0.01) assert s.ci.size == 2 def test_infer_computes_correct_values(self): s = SamplingResults(self.sampler) @pytest.fixture() def logger(): logger = logging.getLogger('Some.Logger') logger.setLevel(logging.INFO) return logger class TestPSDParEst(object): @classmethod def setup_class(cls): m = 1 nfreq = 100 freq = np.linspace(1, 10.0, nfreq) rng = np.random.RandomState(100) # set the seed for the random number generator noise = rng.exponential(size=nfreq) cls.model = models.Lorentz1D() + models.Const1D() cls.x_0_0 = 2.0 cls.fwhm_0 = 0.05 cls.amplitude_0 = 1000.0 cls.amplitude_1 = 2.0 cls.model.x_0_0 = cls.x_0_0 cls.model.fwhm_0 = cls.fwhm_0 cls.model.amplitude_0 = cls.amplitude_0 cls.model.amplitude_1 = cls.amplitude_1 p = cls.model(freq) np.random.seed(400) power = noise*p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1]-freq[0] ps.norm = "leahy" cls.ps = ps cls.a_mean, cls.a_var = 2.0, 1.0 cls.a2_mean, cls.a2_var = 100.0, 10.0 p_amplitude_1 = lambda amplitude: \ scipy.stats.norm(loc=cls.a_mean, scale=cls.a_var).pdf(amplitude) p_x_0_0 = lambda alpha: \ scipy.stats.uniform(0.0, 5.0).pdf(alpha) p_fwhm_0 = lambda alpha: \ scipy.stats.uniform(0.0, 0.5).pdf(alpha) p_amplitude_0 = lambda amplitude: \ scipy.stats.norm(loc=cls.a2_mean, scale=cls.a2_var).pdf(amplitude) cls.priors = {"amplitude_1": p_amplitude_1, "amplitude_0": p_amplitude_0, "x_0_0": p_x_0_0, "fwhm_0": p_fwhm_0} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) cls.fitmethod = "powell" cls.max_post = True cls.t0 = [cls.x_0_0, cls.fwhm_0, cls.amplitude_0, cls.amplitude_1] cls.neg = True def test_fitting_with_ties_and_bounds(self, capsys): double_f = lambda model : model.x_0_0 * 2 model = self.model.copy() model += models.Lorentz1D(amplitude=model.amplitude_0, x_0 = model.x_0_0 * 2, fwhm = model.fwhm_0) model.x_0_0 = self.model.x_0_0 model.amplitude_0 = self.model.amplitude_0 model.amplitude_1 = self.model.amplitude_1 model.fwhm_0 = self.model.fwhm_0 model.x_0_2.tied = double_f model.fwhm_0.bounds = [0, 10] model.amplitude_0.fixed = True p = model(self.ps.freq) noise = np.random.exponential(size=len(p)) power = noise*p ps = Powerspectrum() ps.freq = self.ps.freq ps.power = power ps.m = self.ps.m ps.df = self.ps.df ps.norm = "leahy" pe = PSDParEst(ps, fitmethod="TNC") llike = PSDLogLikelihood(ps.freq, ps.power, model) true_pars = [self.x_0_0, self.fwhm_0, self.amplitude_1, model.amplitude_2.value, model.fwhm_2.value] res = pe.fit(llike, true_pars, neg=True) compare_pars = [self.x_0_0, self.fwhm_0, self.amplitude_1, model.amplitude_2.value, model.fwhm_2.value] assert np.allclose(compare_pars, res.p_opt, rtol=0.5) def test_par_est_initializes(self): pe = PSDParEst(self.ps) assert pe.max_post is True, "max_post should be set to True as a default." def test_fit_fails_when_object_is_not_posterior_or_likelihood(self): x = np.ones(10) y = np.ones(10) pe = PSDParEst(self.ps) with pytest.raises(TypeError): res = pe.fit(x, y) def test_fit_fails_without_lpost_or_t0(self): pe = PSDParEst(self.ps) with pytest.raises(TypeError): res = pe.fit() def test_fit_fails_without_t0(self): pe = PSDParEst(self.ps) with pytest.raises(TypeError): res = pe.fit(np.ones(10)) def test_fit_fails_with_incorrect_number_of_parameters(self): pe = PSDParEst(self.ps) t0 = [1,2] with pytest.raises(ValueError): res = pe.fit(self.lpost, t0) @pytest.mark.skipif("not can_plot") def test_fit_method_works_with_correct_parameter(self): pe = PSDParEst(self.ps) lpost = PSDPosterior(self.ps.freq, self.ps.power, self.model, self.priors, m=self.ps.m) t0 = [2.0, 1, 1, 1] res = pe.fit(lpost, t0) assert isinstance(res, OptimizationResults), "res must be of type " \ "OptimizationResults" pe.plotfits(res, save_plot=True) assert os.path.exists("test_ps_fit.png") os.unlink("test_ps_fit.png") pe.plotfits(res, save_plot=True, log=True) assert os.path.exists("test_ps_fit.png") os.unlink("test_ps_fit.png") pe.plotfits(res, res2=res, save_plot=True) assert os.path.exists("test_ps_fit.png") os.unlink("test_ps_fit.png") def test_compute_lrt_fails_when_garbage_goes_in(self): pe = PSDParEst(self.ps) t0 = [2.0, 1, 1, 1] with pytest.raises(TypeError): pe.compute_lrt(self.lpost, t0, None, t0) with pytest.raises(ValueError): pe.compute_lrt(self.lpost, t0[:-1], self.lpost, t0) def test_compute_lrt_works(self): t0 = [2.0, 1, 1, 1] pe = PSDParEst(self.ps, max_post=True) assert pe.max_post is True delta_deviance, _, _ = pe.compute_lrt(self.lpost, t0, self.lpost, t0) assert pe.max_post is False assert np.absolute(delta_deviance) < 1.5e-4 def test_simulate_lrts_works(self): m = 1 nfreq = 100 freq = np.linspace(1, 10, nfreq) rng = np.random.RandomState(100) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.norm = "leahy" loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_all = np.atleast_2d(np.ones(5) * 2.0).T model2 = models.PowerLaw1D() + models.Const1D() model2.x_0_0.fixed = True loglike2 = PSDLogLikelihood(ps.freq, ps.power, model2, 1) pe = PSDParEst(ps) lrt_obs, res1, res2 = pe.compute_lrt(loglike, [2.0], loglike2, [2.0, 1.0, 2.0], neg=True) lrt_sim = pe.simulate_lrts(s_all, loglike, [2.0], loglike2, [2.0, 1.0, 2.0], seed=100) assert (lrt_obs > 0.4) and (lrt_obs < 0.6) assert np.all(lrt_sim < 10.0) and np.all(lrt_sim > 0.01) def test_compute_lrt_fails_with_wrong_input(self): pe = PSDParEst(self.ps) with pytest.raises(AssertionError): lrt_sim = pe.simulate_lrts(np.arange(5), self.lpost, [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]) def test_generate_model_data(self): pe = PSDParEst(self.ps) m = self.model _fitter_to_model_params(m, self.t0) model = m(self.ps.freq) pe_model = pe._generate_model(self.lpost, [self.x_0_0, self.fwhm_0, self.amplitude_0, self.amplitude_1]) assert np.allclose(model, pe_model) def generate_data_rng_object_works(self): pe = PSDParEst(self.ps) sim_data1 = pe._generate_data(self.lpost, [self.x_0_0, self.fwhm_0, self.amplitude_0, self.amplitude_1], seed=1) sim_data2 = pe._generate_data(self.lpost, [self.x_0_0, self.fwhm_0, self.amplitude_0, self.amplitude_1], seed=1) assert np.allclose(sim_data1.power, sim_data2.power) def test_generate_data_produces_correct_distribution(self): model = models.Const1D() model.amplitude = 2.0 p = model(self.ps.freq) seed = 100 rng = np.random.RandomState(seed) noise = rng.exponential(size=len(p)) power = noise*p ps = Powerspectrum() ps.freq = self.ps.freq ps.power = power ps.m = 1 ps.df = self.ps.freq[1]-self.ps.freq[0] ps.norm = "leahy" lpost = PSDLogLikelihood(ps.freq, ps.power, model, m=1) pe = PSDParEst(ps) rng2 = np.random.RandomState(seed) sim_data = pe._generate_data(lpost, [2.0], rng2) assert np.allclose(ps.power, sim_data.power) def test_generate_model_breaks_with_wrong_input(self): pe = PSDParEst(self.ps) with pytest.raises(AssertionError): pe_model = pe._generate_model([1, 2, 3, 4], [1, 2, 3, 4]) def test_generate_model_breaks_for_wrong_number_of_parameters(self): pe = PSDParEst(self.ps) with pytest.raises(AssertionError): pe_model = pe._generate_model(self.lpost, [1, 2, 3]) def test_pvalue_calculated_correctly(self): a = [1, 1, 1, 2] obs_val = 1.5 pe = PSDParEst(self.ps) pval = pe._compute_pvalue(obs_val, a) assert np.isclose(pval, 1./len(a)) def test_calibrate_lrt_fails_without_lpost_objects(self): pe = PSDParEst(self.ps) with pytest.raises(TypeError): pval = pe.calibrate_lrt(self.lpost, [1, 2, 3, 4], np.arange(10), np.arange(4)) def test_calibrate_lrt_fails_with_wrong_parameters(self): pe = PSDParEst(self.ps) with pytest.raises(ValueError): pval = pe.calibrate_lrt(self.lpost, [1, 2, 3, 4], self.lpost, [1, 2, 3]) def test_calibrate_lrt_works_as_expected(self): m = 1 nfreq = 100 freq = np.linspace(1, 10, nfreq) rng = np.random.RandomState(100) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.norm = "leahy" loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_all = np.atleast_2d(np.ones(10) * 2.0).T model2 = models.PowerLaw1D() + models.Const1D() model2.x_0_0.fixed = True loglike2 = PSDLogLikelihood(ps.freq, ps.power, model2, 1) pe = PSDParEst(ps) pval = pe.calibrate_lrt(loglike, [2.0], loglike2, [2.0, 1.0, 2.0], sample=s_all, max_post=False, nsim=5, seed=100) assert pval > 0.001 @pytest.mark.skipif("not can_sample") def test_calibrate_lrt_works_with_sampling(self): m = 1 nfreq = 100 freq = np.linspace(1, 10, nfreq) rng = np.random.RandomState(100) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.norm = "leahy" lpost = PSDPosterior(ps.freq, ps.power, model, m=1) p_amplitude_1 = lambda amplitude: \ scipy.stats.norm(loc=2.0, scale=1.0).pdf(amplitude) p_alpha_0 = lambda alpha: \ scipy.stats.uniform(0.0, 5.0).pdf(alpha) p_amplitude_0 = lambda amplitude: \ scipy.stats.norm(loc=self.a2_mean, scale=self.a2_var).pdf( amplitude) priors = {"amplitude": p_amplitude_1} priors2 = {"amplitude_1": p_amplitude_1, "amplitude_0": p_amplitude_0, "alpha_0": p_alpha_0} lpost.logprior = set_logprior(lpost, priors) model2 = models.PowerLaw1D() + models.Const1D() model2.x_0_0.fixed = True lpost2 = PSDPosterior(ps.freq, ps.power, model2, 1) lpost2.logprior = set_logprior(lpost2, priors2) pe = PSDParEst(ps) with catch_warnings(RuntimeWarning): pval = pe.calibrate_lrt(lpost, [2.0], lpost2, [2.0, 1.0, 2.0], sample=None, max_post=True, nsim=10, nwalkers=10, burnin=10, niter=10, seed=100) assert pval > 0.001 def test_find_highest_outlier_works_as_expected(self): mp_ind = 5 max_power = 1000.0 ps = Powerspectrum() ps.freq = np.arange(10) ps.power = np.ones_like(ps.freq) ps.power[mp_ind] = max_power ps.m = 1 ps.df = ps.freq[1]-ps.freq[0] ps.norm = "leahy" pe = PSDParEst(ps) max_x, max_ind = pe._find_outlier(ps.freq, ps.power, max_power) assert np.isclose(max_x, ps.freq[mp_ind]) assert max_ind == mp_ind def test_compute_highest_outlier_works(self): mp_ind = 5 max_power = 1000.0 ps = Powerspectrum() ps.freq = np.arange(10) ps.power = np.ones_like(ps.freq) ps.power[mp_ind] = max_power ps.m = 1 ps.df = ps.freq[1]-ps.freq[0] ps.norm = "leahy" model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.norm(loc=1.0, scale=1.0).pdf( amplitude) priors = {"amplitude": p_amplitude} lpost = PSDPosterior(ps.freq, ps.power, model, 1) lpost.logprior = set_logprior(lpost, priors) pe = PSDParEst(ps) res = pe.fit(lpost, [1.0]) res.mfit = np.ones_like(ps.freq) max_y, max_x, max_ind = pe._compute_highest_outlier(lpost, res) assert np.isclose(max_y[0], 2*max_power) assert np.isclose(max_x[0], ps.freq[mp_ind]) assert max_ind == mp_ind def test_simulate_highest_outlier_works(self): m = 1 nfreq = 100 seed = 100 freq = np.linspace(1, 10, nfreq) rng = np.random.RandomState(seed) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.norm = "leahy" nsim = 5 loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_all = np.atleast_2d(np.ones(nsim) * 2.0).T pe = PSDParEst(ps) maxpow_sim = pe.simulate_highest_outlier(s_all, loglike, [2.0], max_post=False, seed=seed) assert maxpow_sim.shape[0] == nsim assert np.all(maxpow_sim > 9.00) and np.all(maxpow_sim < 31.0) def test_calibrate_highest_outlier_works(self): m = 1 nfreq = 100 seed = 100 freq = np.linspace(1, 10, nfreq) rng = np.random.RandomState(seed) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.norm = "leahy" nsim = 5 loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_all = np.atleast_2d(
np.ones(nsim)
numpy.ones
"""Test correlation and distance correlation estimators.""" import numpy as np from frites.estimator import CorrEstimator, DcorrEstimator array_equal = np.testing.assert_array_equal class TestCorrEstimator(object): def test_corr_definition(self): """Test definition of correlation estimator.""" CorrEstimator() def test_corr_estimate(self): """Test getting the core function.""" x, y = np.random.rand(10, 1, 100), np.random.rand(10, 1, 100) cat = np.array([0] * 50 + [1] * 50) est = CorrEstimator() for func in [0, 1]: if func == 0: # estimator.get_function() fcn = est.get_function() elif func == 1: # estimator.estimate fcn = est.estimate # no categories array_equal(fcn(x[0, 0, :], y[0, 0, :]).shape, (1, 1)) array_equal(fcn(x[0, :, :], y[0, 0, :]).shape, (1, 1)) array_equal(fcn(x, y).shape, (1, 10)) # with categories array_equal(fcn(x[0, 0, :], y[0, 0, :], categories=cat).shape, (2, 1)) array_equal(fcn(x[0, :, :], y[0, 0, :], categories=cat).shape, (2, 1)) array_equal(fcn(x, y, categories=cat).shape, (2, 10)) def test_corr_functional(self): """Functional test of the correlation.""" fcn = CorrEstimator().get_function() # no categories x, y = np.random.rand(2, 1, 100), np.random.rand(100) x[1, ...] += y.reshape(1, -1) corr = fcn(x, y).ravel() assert corr[0] < corr[1] # with categories x, y = np.random.rand(100),
np.random.rand(100)
numpy.random.rand
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import json import os import re import numpy as np import tensorflow as tf from googleapiclient import discovery from googleapiclient import errors from oauth2client.client import GoogleCredentials from sklearn.model_selection import train_test_split from tensorflow.contrib.learn.python.learn import learn_runner from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.contrib.training.python.training import hparam from google.cloud.storage import blob, bucket, client import trainer.dataset import trainer.model import trainer.ml_helpers import trainer.top_words def generate_experiment_fn(**experiment_args): """Create an experiment function. Args: experiment_args: keyword arguments to be passed through to experiment See `tf.contrib.learn.Experiment` for full args. Returns: A function: (tf.contrib.learn.RunConfig, tf.contrib.training.HParams) -> Experiment This function is used by learn_runner to create an Experiment which executes model code provided in the form of an Estimator and input functions. """ def _experiment_fn(config, hparams): index_to_component = {} if hparams.train_file: with open(hparams.train_file) as f: if hparams.trainer_type == 'spam': training_data = trainer.ml_helpers.spam_from_file(f) else: training_data = trainer.ml_helpers.component_from_file(f) else: training_data = trainer.dataset.fetch_training_data(hparams.gcs_bucket, hparams.gcs_prefix, hparams.trainer_type) tf.logging.info('Training data received. Len: %d' % len(training_data)) if hparams.trainer_type == 'spam': X, y = trainer.ml_helpers.transform_spam_csv_to_features( training_data) else: top_list = trainer.top_words.make_top_words_list(hparams.job_dir) X, y, index_to_component = trainer.ml_helpers \ .transform_component_csv_to_features(training_data, top_list) tf.logging.info('Features generated') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) train_input_fn = tf.estimator.inputs.numpy_input_fn( x=trainer.model.feature_list_to_dict(X_train, hparams.trainer_type), y=np.array(y_train), num_epochs=hparams.num_epochs, batch_size=hparams.train_batch_size, shuffle=True ) eval_input_fn = tf.estimator.inputs.numpy_input_fn( x=trainer.model.feature_list_to_dict(X_test, hparams.trainer_type), y=
np.array(y_test)
numpy.array
# Copyright (c) 2017 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import ctypes import numpy import sys from ctypes import CFUNCTYPE, POINTER, c_double, c_int, c_int32, c_void_p, c_size_t from numpy.ctypeslib import ndpointer from .common import SubSolver from ..model import walk_shape from ..reparametrization import Reparametrization class LPSolver(SubSolver): def get_repametrization(self): raise NotImplementedError class TRWS(LPSolver): DEFAULT_PARAMETERS = { 'max_iterations': 2000, 'threads': 1, } def __init__(self, model, parameters=None): super().__init__(model, parameters) self._init_library() self.model = model self._energy = self._energy_create(model.number_of_variables, model.shape, sum(1 for x in model.factors if x.number_of_variables > 1)) edge_counter = 0 for i, factor in enumerate(model.factors): if factor.number_of_variables == 1: self._energy_add_unary(self._energy, factor.variables[0], factor.data) elif factor.number_of_variables == 2: self._energy_add_pairwise(self._energy, edge_counter, *factor.variables, factor.data) edge_counter += 1 else: raise RuntimeError('Unsupported factor arity.') self._energy_finalize(self._energy) self._solver = self._solver_create(self._energy) def __del__(self): if self._energy: self._energy_destroy(self._energy) self._energy = None if self._solver: self._solver_destroy(self._solver) self._solver = None def _init_library(self): self._lib = ctypes.cdll.LoadLibrary('libcombilp_trws_stub.so') self._energy_create = self._lib.combilp_trws_stub_energy_create self._energy_create.argtypes = [c_int32, ndpointer(dtype=c_int32), c_int32] self._energy_create.restype = c_void_p self._energy_add_unary = self._lib.combilp_trws_stub_energy_add_unary self._energy_add_unary.argtypes = [c_void_p, c_int32, ndpointer(dtype=c_double)] self._energy_add_pairwise = self._lib.combilp_trws_stub_energy_add_pairwise self._energy_add_pairwise.argtypes = [c_void_p, c_int32, c_int32, c_int32, ndpointer(dtype=c_double)] self._energy_finalize = self._lib.combilp_trws_stub_energy_finalize self._energy_finalize.argtypes = [c_void_p] self._energy_destroy = self._lib.combilp_trws_stub_energy_destroy self._energy_destroy.argtypes = [c_void_p] self._solver_create = self._lib.combilp_trws_stub_solver_create self._solver_create.argtypes = [c_void_p] self._solver_create.restype = c_void_p self._solve = self._lib.combilp_trws_stub_solve self._solve.argtypes = [c_void_p, c_int, c_int] self._solver_destroy = self._lib.combilp_trws_stub_destroy_solver self._solver_destroy.argtypes = [c_void_p] self._get_backward_messages = self._lib.combilp_trws_stub_get_backward_messages self._get_backward_messages.argtypes = [c_void_p, c_int32, ndpointer(dtype=c_double)] def solve(self): self._solve(self._solver, self.parameters['max_iterations'], self.parameters['threads']) def get_repametrization(self): repa = Reparametrization(self.model) edge_counter = 0 for i, factor in enumerate(self.model.factors): if factor.number_of_variables == 2: self._get_backward_messages(self._solver, edge_counter, repa.get_factor(i, 0)) edge_counter += 1 # recompute forward messages values = repa.get_factor_value(i) repa_values = repa.get_factor(i, 1) for label in range(factor.shape[1]): minimum = values[:,label].min() repa_values[label] = minimum return repa class SRMP(LPSolver): DEFAULT_PARAMETERS = { 'max_iterations': 2000, } def __init__(self, model, parameters=None): super().__init__(model, parameters) self._init_library() self._solver = self._create(self.model.number_of_variables, self.model.shape) for factor in self.model.factors: assert(factor.data.flags.c_contiguous) self._add_factor(self._solver, factor.number_of_variables, factor.variables, factor.data) def __del__(self): if self._solver: self._destroy(self._solver) self._solver = None def _init_library(self): self._lib = ctypes.cdll.LoadLibrary('libcombilp_srmp_stub.so') self._message_func_type = CFUNCTYPE(None, c_size_t, POINTER(c_int32), c_int32, POINTER(c_double), POINTER(c_double)) self._message_func_type.from_param = self._message_func_type self._create = self._lib.combilp_srmp_stub_create self._create.argtypes = [c_int32,
ndpointer(dtype=c_int32)
numpy.ctypeslib.ndpointer
import argparse import os import pickle as pkl import numpy as np import scipy.sparse as smat from pecos.core.base import clib from pecos.utils import smat_util from pecos.utils.cluster_util import ClusterChain from pecos.xmc import MLModel from pecos.xmc.xlinear import XLinearModel def parse_arguments(): parser = argparse.ArgumentParser( prog="Evaluate how well our model is good at semantic disentablement." ) parser.add_argument( "-x", "--inst-path", type=str, required=True, metavar="PATH", help="path to npz file of feature matrix", ) parser.add_argument( "--y-origin", type=str, required=True, metavar="PATH", help="path to the npz file of the original label matrix", ) parser.add_argument( "--y-binned", type=str, required=True, metavar="PATH", help="path to the binned label matrix", ) parser.add_argument( "-m", "--model-folder", type=lambda p: os.path.abspath(p), required=True, metavar="DIR", help="path to the model folder", ) parser.add_argument( "--binned-mapper", type=str, required=True, help="path to the mapper file", ) parser.add_argument( "--pseudo-label-mapper", type=str, default=None, help="path to pseudo label mapper. If None, this variable is ignored.", ) parser.add_argument( "--unused-labels", type=str, default=None, help="path to unused label set. If None, this variable is ignored.", ) parser.add_argument( "-b", "--beam-size", type=int, required=True, help="Beam size to calculate the matching matrix.", ) args = parser.parse_args() return args def get_matching_matrix(xlinear_model, Xt, beam_size=10): """Compute the matching matrix. The matching matrix indicates which cluster(s) are selected for data point in X. The final results is a sparse matrix of shape N x C, where N is the number of data, and C is the number of clusters. Args: xlinear_model: the pretrained model. Xt: the feature matrix. beam_size: beam size for inference. Returns: The matching matrix in CSR format. """ matching_result = [] batch_size = 8192 * 16 kwargs = { "beam_size": beam_size, "only_topk": 30, "post_processor": "l3-hinge", } model_chain = xlinear_model.model.model_chain for i in range((Xt.shape[0] - 1) // batch_size + 1): beg, end = i * batch_size, (i + 1) * batch_size end = min(end, Xt.shape[0]) X_selected = Xt[beg:end] csr_codes = None for level in range(len(model_chain) - 1): cur_model = model_chain[level] level_pred = cur_model.predict( X_selected, csr_codes=csr_codes, only_topk=beam_size, post_processor=kwargs["post_processor"], ) csr_codes = level_pred matching_result.append(csr_codes) matching_result = smat.vstack(matching_result, format="csr") return matching_result def positive_instances(Xt, Yt, underlying_label_ids): """Find the instances having some particular label ids. For all labels in `underlying_label_ids`, return the list of instances containing that label as ground-truth. Args: Xt: The feature matrix of shape N x d, where N is number of instances, d is feature dimension. Yt: The label matrix of shape N x L, L is the size of label space. underlying_label_ids: The set of target labels. Returns: A list of positive instance ids and their feature vectors. """ row_ids_list = [] Xt_subsets = [] for label_id in underlying_label_ids: row_ids = Yt.indices[Yt.indptr[label_id] : Yt.indptr[label_id + 1]] Xt_subsets.append(Xt[row_ids]) row_ids_list.append(row_ids) return row_ids_list, Xt_subsets def label_id_to_cluster_id(label_id, C, unused_labels): """Map the label id to the cluster id according to clustering matrix. Args: label_id: the label id. C: the cluster matrix of shape L x C. unused_labels: used to adjust the label id. Returns: the cluster id. """ # count how many unused labels that are smaller than label_id offset = sum([l < label_id for l in unused_labels]) row_id = label_id - offset assert C.indptr[row_id] + 1 == C.indptr[row_id + 1] cluster_id = C.indices[C.indptr[row_id]] return cluster_id def match( xlinear_model, beam_size, instance_ids_list, X_subsets, cid1, cid2, ): """Given two clusters, distribute all instances to two groups. Separate all input features `X_subsets` into two subsets `x_cid1` and `x_cid2`, according to the prediction results from `xlinear_model`. If the scores of an instance in `cid1` is higher than `cid2`, than this instance is assigned to group1. Args: xlinear_model: the model. beam_size: beam size for inference. instance_ids_list: the instance id of `X_subsets`. X_subsets: the feature matrix. cid1, cid2: the cluster ids of two clusters. Returns: the instance ids of two subsets. """ x_cid1 = [] x_cid2 = [] for instance_ids, X_subset in zip(instance_ids_list, X_subsets): matching_matrix = get_matching_matrix( xlinear_model, X_subset, beam_size, ).toarray() mask = matching_matrix[:, cid1] > matching_matrix[:, cid2] x_cid1.extend(instance_ids[mask]) x_cid2.extend(instance_ids[~mask]) return x_cid1, x_cid2 def random_baseline(S1, S2): """A random baseline that assigns all instances randomly to two groups. Args: S1, S2: the ground truth assignment according to their semantic meanings. Returns: VI scores of this random baseline. """ S = np.concatenate((S1, S2), axis=0) experiment = [] for _ in range(100): np.random.shuffle(S) selector = np.random.randn(len(S)) > 0 K1 = S[selector] K2 = S[~selector] vi_sample = VI(S1, S2, K1, K2) experiment.append(vi_sample) return np.mean(experiment) def VI(S1, S2, K1, K2): """Computes the Variation of Information(VI) between two clusters. See: https://en.wikipedia.org/wiki/Variation_of_information for more information. Args: S1, S2: the set of ground truth clusters. K1, K2: the predicted clusters. Returns: the VI score. """ assert len(S1) + len(S2) == len(K1) + len(K2) n = len(S1) + len(S2) eps = 1.0e-8 p1 = len(S1) / n + eps p2 = len(S2) / n + eps q1 = len(K1) / n + eps q2 = len(K2) / n + eps r11 = len(
np.intersect1d(S1, K1)
numpy.intersect1d
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den =
N.array([1,2,2])
numpy.array
""" Implement optics algorithms for optical phase tomography using GPU <NAME> <EMAIL> <NAME> <EMAIL> October 22, 2018 """ import numpy as np import arrayfire as af import contexttimer from opticaltomography import settings from opticaltomography.opticsmodel import MultiTransmittance, MultiPhaseContrast from opticaltomography.opticsmodel import Defocus, Aberration from opticaltomography.opticsutil import ImageRotation, calculateNumericalGradient from opticaltomography.regularizers import Regularizer np_complex_datatype = settings.np_complex_datatype np_float_datatype = settings.np_float_datatype af_float_datatype = settings.af_float_datatype af_complex_datatype = settings.af_complex_datatype class AlgorithmConfigs: """ Class created for all parameters for tomography solver """ def __init__(self): self.method = "FISTA" self.stepsize = 1e-2 self.max_iter = 20 self.error = [] self.reg_term = 0.0 #L2 norm #FISTA self.fista_global_update = False self.restart = False #total variation regularization self.total_variation = False self.reg_tv = 1.0 #lambda self.max_iter_tv = 15 self.order_tv = 1 self.total_variation_gpu = False #lasso self.lasso = False self.reg_lasso = 1.0 #positivity constraint self.positivity_real = (False, "larger") self.positivity_imag = (False, "larger") self.pure_real = False self.pure_imag = False #aberration correction self.pupil_update = False self.pupil_global_update = False self.pupil_step_size = 1.0 self.pupil_update_method = "gradient" #batch gradient update self.batch_size = 1 #random order update self.random_order = False class PhaseObject3D: """ Class created for 3D objects. Depending on the scattering model, one of the following quantities will be used: - Refractive index (RI) - Transmittance function (Trans) - PhaseContrast - Scattering potential (V) shape: shape of object to be reconstructed in (x,y,z), tuple voxel_size: size of each voxel in (x,y,z), tuple RI_obj: refractive index of object(Optional) RI: background refractive index (Optional) slice_separation: For multislice algorithms, how far apart are slices separated, array (Optional) """ def __init__(self, shape, voxel_size, RI_obj = None, RI = 1.0, slice_separation = None): assert len(shape) == 3, "shape should be 3 dimensional!" self.shape = shape self.RI_obj = RI * np.ones(shape, dtype = np_complex_datatype) if RI_obj is None else RI_obj.astype(np_complex_datatype) self.RI = RI self.pixel_size = voxel_size[0] self.pixel_size_z = voxel_size[2] if slice_separation is not None: #for discontinuous slices assert len(slice_separation) == shape[2]-1, "number of separations should match with number of layers!" self.slice_separation = np.asarray(slice_separation).astype(np_float_datatype) else: #for continuous slices self.slice_separation = self.pixel_size_z * np.ones((shape[2]-1,), dtype = np_float_datatype) def convertRItoTrans(self, wavelength): k0 = 2.0 * np.pi / wavelength self.trans_obj = np.exp(1.0j*k0*(self.RI_obj - self.RI)*self.pixel_size_z) def convertRItoPhaseContrast(self): self.contrast_obj = self.RI_obj - self.RI def convertRItoV(self, wavelength): k0 = 2.0 * np.pi / wavelength self.V_obj = k0**2 * (self.RI**2 - self.RI_obj**2) def convertVtoRI(self, wavelength): k0 = 2.0 * np.pi / wavelength B = -1.0 * (self.RI**2 - self.V_obj.real/k0**2) C = -1.0 * (-1.0 * self.V_obj.imag/k0**2/2.0)**2 RI_obj_real = ((-1.0 * B + (B**2-4.0*C)**0.5)/2.0)**0.5 RI_obj_imag = -0.5 * self.V_obj.imag/k0**2/RI_obj_real self.RI_obj = RI_obj_real + 1.0j * RI_obj_imag class TomographySolver: """ Highest level solver object for tomography problem phase_obj_3d: phase_obj_3d object defined from class PhaseObject3D fx_illu_list: illumination angles in x, default = [0] (on axis) fy_illu_list: illumination angles in y rotation_angle_list: angles of rotation in tomogrpahy propagation_distance_list: defocus distances for each illumination """ def __init__(self, phase_obj_3d, fx_illu_list = [0], fy_illu_list = [0], rotation_angle_list = [0], propagation_distance_list = [0], **kwargs): self.phase_obj_3d = phase_obj_3d self.wavelength = kwargs["wavelength"] #Rotation angels and objects self.rot_angles = rotation_angle_list self.number_rot = len(self.rot_angles) self.rotation_pad = kwargs.get("rotation_pad", True) #Illumination angles assert len(fx_illu_list) == len(fy_illu_list) self.fx_illu_list = fx_illu_list self.fy_illu_list = fy_illu_list self.number_illum = len(self.fx_illu_list) #Aberation object self._aberration_obj = Aberration(phase_obj_3d.shape[:2], phase_obj_3d.pixel_size,\ self.wavelength, kwargs["na"], pad = False) #Defocus distances and object self.prop_distances = propagation_distance_list self._defocus_obj = Defocus(phase_obj_3d.shape[:2], phase_obj_3d.pixel_size, **kwargs) self.number_defocus = len(self.prop_distances) #Scattering models and algorithms self._opticsmodel = {"MultiTrans": MultiTransmittance, "MultiPhaseContrast": MultiPhaseContrast, } self._algorithms = {"GradientDescent": self._solveFirstOrderGradient, "FISTA": self._solveFirstOrderGradient } self.scat_model_args = kwargs def setScatteringMethod(self, model = "MultiTrans"): """ Define scattering method for tomography model: scattering models, it can be one of the followings: "MultiTrans", "MultiPhaseContrast"(Used in the paper) """ self.scat_model = model if hasattr(self, '_scattering_obj'): del self._scattering_obj if model == "MultiTrans": self.phase_obj_3d.convertRItoTrans(self.wavelength) self.phase_obj_3d.convertRItoV(self.wavelength) self._x = self.phase_obj_3d.trans_obj if np.any(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 1, \ flag_gpu_inout = True, flag_inplace = True) elif model == "MultiPhaseContrast": if not hasattr(self.phase_obj_3d, 'contrast_obj'): self.phase_obj_3d.convertRItoPhaseContrast() self._x = self.phase_obj_3d.contrast_obj if np.any(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 0, \ flag_gpu_inout = True, flag_inplace = True) else: if not hasattr(self.phase_obj_3d, 'V_obj'): self.phase_obj_3d.convertRItoV(self.wavelength) self._x = self.phase_obj_3d.V_obj if np.any(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 0, \ flag_gpu_inout = True, flag_inplace = True) self._scattering_obj = self._opticsmodel[model](self.phase_obj_3d, **self.scat_model_args) def forwardPredict(self, field = False): """ Uses current object in the phase_obj_3d to predict the amplitude of the exit wave Before calling, make sure correct object is contained """ obj_gpu = af.to_array(self._x) with contexttimer.Timer() as timer: forward_scattered_predict= [] if self._scattering_obj.back_scatter: back_scattered_predict = [] for rot_idx in range(self.number_rot): forward_scattered_predict.append([]) if self._scattering_obj.back_scatter: back_scattered_predict.append([]) if self.rot_angles[rot_idx] != 0: self._rot_obj.rotate(obj_gpu, self.rot_angles[rot_idx]) for illu_idx in range(self.number_illum): fx_illu = self.fx_illu_list[illu_idx] fy_illu = self.fy_illu_list[illu_idx] fields = self._forwardMeasure(fx_illu, fy_illu, obj = obj_gpu) if field: forward_scattered_predict[rot_idx].append(np.array(fields["forward_scattered_field"])) if self._scattering_obj.back_scatter: back_scattered_predict[rot_idx].append(
np.array(fields["back_scattered_field"])
numpy.array
# coding: utf-8 # ### Compute results for task 1 on the humour dataset. # # Please see the readme for instructions on how to produce the GPPL predictions that are required for running this script. # # Then, set the variable resfile to point to the ouput folder of the previous step. # import string import pandas as pd import os, logging, csv from nltk.tokenize import word_tokenize from scipy.stats.mstats import spearmanr, pearsonr import numpy as np # Where to find the predictions and gold standard resfile = './results/experiment_humour_2019-02-26_20-44-52/results-2019-02-26_20-44-52.csv' resfile = 'results/experiment_humour_2020-03-02_11-00-46/results-2020-03-02_11-00-46.csv' # Load the data data = pd.read_csv(resfile, usecols=[0,1,2]) ids = data['id'].values bws = data['bws'].values gppl = data['predicted'].values # ### Ties in the BWS Scores contribute to the discrepeancies between BWS and GPPL # # GPPL scores are all unique, but BWS contains many ties. # Selecting only one of the tied items increases the Spearman correlation. # # Find the ties in BWS. Compute correlations between those tied items for the GPPL scores vs. original BWS scores and GPPL vs. scaled BWS scores. # Do the ties contribute a lot of the differences in the overall ranking? # Another way to test if the ties contribute differences to the ranking: # Select only one random item from each tie and exclude the rest, then recompute. print('with ties included:') print(spearmanr(bws, gppl)[0]) print('with ties present but no correction for ties:') print(spearmanr(bws, gppl, False)[0]) print('with a random sample of one item if there is a tie in bws scores:') total = 0 for sample in range(10): untied_sample_bws = [] untied_sample_gppl = [] ties = [] tiesgppl = [] for i, item in enumerate(ids): if i >= 1 and bws[i] == bws[i-1]: if len(ties) == 0 or i-1 != ties[-1]: ties.append(i-1) # the previous one should be added to the list if we have just recognised it as a tie ties.append(i) #randomly choose whether to keep the previous item or this one if np.random.rand() < 0.5: pass else: untied_sample_bws.pop() untied_sample_gppl.pop() untied_sample_bws.append(bws[i]) untied_sample_gppl.append(gppl[i]) else: untied_sample_bws.append(bws[i]) untied_sample_gppl.append(gppl[i]) if i >= 1 and gppl[i] == gppl[i-1]: if len(tiesgppl) == 0 or i-1 != tiesgppl[-1]: tiesgppl.append(i-1) # the previous one should be added to the list if we have just recognised it as a tie tiesgppl.append(i) rho = spearmanr(untied_sample_bws, untied_sample_gppl)[0] total += rho print(rho) print('Number of BWS tied items = %i' % len(ties)) print('Number of GPPL tied items = %i' % len(tiesgppl)) sample_size = len(untied_sample_bws) print('Mean for samples without ties = %f' % (total / 10)) print('Correlations for random samples of the same size (%i), allowing ties: ' % sample_size) total = 0 for sample in range(10): # take a random sample, without caring about ties randidxs = np.random.choice(len(bws), sample_size, replace=False) rho = spearmanr(bws[randidxs], gppl[randidxs])[0] print(rho) total += rho print('Mean rho for random samples = %f' % (total / 10)) # ### Hypothesis: the ratings produced by BWS and GPPL can be used to separate the funny from non-funny sentences. # This compares the predicted ratings to the gold standard *classifications* to see if the ratings can be used # to separate funny and non-funny. # load the discrete labels def get_cats(fname): with open(os.path.join('./data/pl-humor-full', fname), 'r') as f: for line in f: line = line.strip() for c in string.punctuation + ' ' + '\xa0': line = line.replace(c, '') # line = line.replace(' ', '').strip() # line = line.replace('"', '') # this is probably borked by tokenization? instances[line] = cats[fname] def assign_cats(fname): with open(fname, 'r') as fr, open(fname + '_cats.csv', 'w') as fw: reader = csv.DictReader(fr) writer = csv.DictWriter(fw, fieldnames=['id', 'bws', 'predicted', 'category', 'sentence']) writer.writeheader() for row in reader: sentence = row['sentence'].strip() for c in string.punctuation + ' ': sentence = sentence.replace(c, '') # sentence = row['sentence'].replace(' ','').strip() # sentence = sentence.replace('`', '\'') # this is probably borked by tokenization? # sentence = sentence.replace('"', '') # this is probably borked by tokenization? row['category'] = instances[sentence] writer.writerow(row) cats = dict() cats['jokes_heterographic_puns.txt'] = 'hetpun' cats['jokes_homographic_puns.txt'] = 'hompun' cats['jokes_nonpuns.txt'] = 'nonpun' cats['nonjokes.txt'] = 'non' instances = dict() for fname in cats.keys(): get_cats(fname) assign_cats(resfile) catfile = os.path.expanduser(resfile + '_cats.csv') #'./results/experiment_humour_2019-02-28_16-39-36/cats/results-2019-02-28_20-45-25.csv') cats = pd.read_csv(catfile, index_col=0, usecols=[0,3]) cat_list = np.array([cats.loc[instance].values[0] if instance in cats.index else 'unknown' for instance in ids]) gfunny = (cat_list == 'hompun') | (cat_list == 'hetpun') gunfunny = (cat_list == 'nonpun') | (cat_list == 'non') print('Number of funny = %i, non-funny = %i' % (np.sum(gfunny), np.sum(gunfunny) ) ) # check classification accuracy -- how well does our ranking separate the two classes from sklearn.metrics import roc_auc_score gold = np.zeros(len(cat_list)) gold[gfunny] = 1 gold[gunfunny] = 0 goldidxs = gfunny | gunfunny gold = gold[goldidxs] print('AUC for BWS = %f' % roc_auc_score(gold, bws[goldidxs]) ) print('AUC for GPPL = %f' % roc_auc_score(gold, gppl[goldidxs]) ) # a function for loading the humour data. def load_crowd_data_TM(path): """ Read csv and create preference pairs of tokenized sentences. :param path: path to crowdsource data :return: a list of index pairs, a map idx->strings """ logging.info('Loading crowd data...') pairs = [] idx_instance_list = [] with open(path, 'r') as f: reader = csv.reader(f, delimiter='\t') next(reader) # skip header row for line_no, line in enumerate(reader): answer = line[1] A = word_tokenize(line[2]) B = word_tokenize(line[3]) # add instances to list (if not alreay in it) if A not in idx_instance_list: idx_instance_list.append(A) if B not in idx_instance_list: idx_instance_list.append(B) # add pairs to list (in decreasing preference order) if answer == 'A': pairs.append((idx_instance_list.index(A), idx_instance_list.index(B))) if answer == 'B': pairs.append((idx_instance_list.index(B), idx_instance_list.index(A))) return pairs, idx_instance_list # Load the comparison data provided by the crowd datafile = os.path.expanduser('./data/pl-humor-full/results.tsv') pairs, idxs = load_crowd_data_TM(datafile) pairs = np.array(pairs) np.savetxt(os.path.expanduser('./data/pl-humor-full/pairs.csv'), pairs, '%i', delimiter=',') # For each item compute its BWS scores # but scale by the BWS scores of the items they are compared against. # This should indicate whether two items with same BWS score should # actually be ranked differently according to what they were compared against. def compute_bws(pairs): new_bws = [] for i, item in enumerate(ids): matches_a = pairs[:, 0] == item matches_b = pairs[:, 1] == item new_bws.append((np.sum(matches_a) - np.sum(matches_b)) / float(np.sum(matches_a) + np.sum(matches_b))) return new_bws # ### Agreement and consistency of annotators # Table 3: For the humour dataset, compute the correlation between the gold standard and the BWS scores with subsets of data. # Take random subsets of pairs so that each pair has only 4 annotations def get_pid(pair): return '#'.join([str(i) for i in sorted(pair)]) def compute_mean_correlation(nannos): nreps = 10 mean_rho = 0 for rep in range(nreps): pair_ids = list([get_pid(pair) for pair in pairs]) upair_ids =
np.unique(pair_ids)
numpy.unique
# -*- coding: utf-8 -*- from . import plot_settings as pls from . import plots as pl import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches import logging from matplotlib.colors import LinearSegmentedColormap, colorConverter from scipy.stats.kde import gaussian_kde try: from scipy.ndimage import gaussian_filter except ImportError: gaussian_filter = None def find_best_para(para_trace, bins): ''' find the best parameter and its 1-sigma/2-sigma for (non) Gaussian distribution ''' para_trace ,bins = para_trace, bins para_trace = np.sort(para_trace) hist = np.histogram(para_trace, bins) bins, x = hist[0], hist[1] sort_bin_nums = np.sort(bins) best_bins = sort_bin_nums[-7:] # top 7 best_bins_nums = np.r_[ np.where(bins==best_bins[0])[0], \ np.where(bins==best_bins[1])[0], np.where(bins==best_bins[2])[0], \ np.where(bins==best_bins[3])[0], np.where(bins==best_bins[4])[0], \ np.where(bins==best_bins[5])[0], np.where(bins==best_bins[6])[0] ] # use the everage of top 7 best_para = (x[min(best_bins_nums)] + x[max(best_bins_nums) +1])/2. left = np.where(para_trace <= best_para)[0] right = np.where(para_trace > best_para)[0] para_err_left = best_para - para_trace[int(len(left) * (1-0.6826))] para_err_right = para_trace[int(len(right) * 0.6826) + len(left)] - best_para para = np.r_[best_para, para_err_left, para_err_right] return para def find_best_para_plt(para_trace, bins): para_trace ,bins = para_trace, bins para_trace = np.sort(para_trace) plt.figure() hist = plt.hist(para_trace, bins) bins, x = hist[0], hist[1] sort_bin_nums = np.sort(bins) best_bins = sort_bin_nums[-7:] # top 7 best_bins_nums = np.r_[ np.where(bins==best_bins[0])[0], \ np.where(bins==best_bins[1])[0], np.where(bins==best_bins[2])[0], \ np.where(bins==best_bins[3])[0], np.where(bins==best_bins[4])[0], \ np.where(bins==best_bins[5])[0], np.where(bins==best_bins[6])[0] ] # use the everage of top 7 best_para = (x[min(best_bins_nums)] + x[max(best_bins_nums) +1])/2. left = np.where(para_trace <= best_para)[0] right = np.where(para_trace > best_para)[0] para_err_left = best_para - para_trace[int(len(left) * (1-0.6826))] para_err_right = para_trace[int(len(right) * 0.6826) + len(left)] - best_para para = np.r_[best_para, para_err_left, para_err_right] return para def find_best_para2(para_trace, bins): para_trace ,bins = para_trace, bins para_trace = np.sort(para_trace) hist = np.histogram(para_trace, bins) bins, x = hist[0], hist[1] sort_bin_nums = np.sort(bins) best_bins = sort_bin_nums[-7:] # top 7 best_bins_nums = np.r_[ np.where(bins==best_bins[0])[0], \ np.where(bins==best_bins[1])[0], np.where(bins==best_bins[2])[0], \ np.where(bins==best_bins[3])[0], np.where(bins==best_bins[4])[0], \ np.where(bins==best_bins[5])[0], np.where(bins==best_bins[6])[0] ] # use the everage of top 7 best_para = (x[min(best_bins_nums)] + x[max(best_bins_nums) +1])/2. left = np.where(para_trace <= best_para)[0] right = np.where(para_trace > best_para)[0] para_err_left1 = best_para - para_trace[int(len(left) * (1-0.6826))] para_err_right1 = para_trace[int(len(right) * 0.6826) + len(left)] - best_para para_err_left2 = best_para - para_trace[int(len(left) * (1-0.9544))] para_err_right2 = para_trace[int(len(right) * 0.9544) + len(left)] - best_para para = np.r_[best_para, para_err_left2,para_err_left1, para_err_right1,para_err_right2] return para def _quantile(x, q, weights=None): """ Compute sample quantiles with support for weighted samples. This is a copy of quantile in corner (https://github.com/dfm/corner.py). Copyright (c) 2013-2015 <NAME>. Note ---- When ``weights`` is ``None``, this method simply calls numpy's percentile function with the values of ``q`` multiplied by 100. Parameters ---------- x : array_like[nsamples,] The samples. q : array_like[nquantiles,] The list of quantiles to compute. These should all be in the range ``[0, 1]``. weights : Optional[array_like[nsamples,]] An optional weight corresponding to each sample. These Returns ------- quantiles : array_like[nquantiles,] The sample quantiles computed at ``q``. Raises ------ ValueError For invalid quantiles; ``q`` not in ``[0, 1]`` or dimension mismatch between ``x`` and ``weights``. """ x =
np.atleast_1d(x)
numpy.atleast_1d
from __future__ import division import pytest import numpy as np import cudf as pd import fast_carpenter.masked_tree as m_tree @pytest.fixture def tree_no_mask(infile, full_event_range): return m_tree.MaskedUprootTree(infile, event_ranger=full_event_range) @pytest.fixture def tree_w_mask_bool(infile, event_range): mask = np.ones(event_range.entries_in_block, dtype=bool) mask[::2] = False return m_tree.MaskedUprootTree(infile, event_ranger=event_range, mask=mask) @pytest.fixture def tree_w_mask_int(infile, event_range): mask = np.ones(event_range.entries_in_block, dtype=bool) mask[::2] = False mask =
np.where(mask)
numpy.where
import pytest import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.metrics.tests.test_ranking import make_prediction from sklearn.utils.validation import check_consistent_length from mcc_f1 import mcc_f1_curve def test_mcc_f1_curve(): # Test MCC and F1 values for all points of the curve y_true, _, probas_pred = make_prediction(binary=True) mcc, f1, thres = mcc_f1_curve(y_true, probas_pred) check_consistent_length(mcc, f1, thres) expected_mcc, expected_f1 = _mcc_f1_calc(y_true, probas_pred, thres) assert_array_almost_equal(f1, expected_f1) assert_array_almost_equal(mcc, expected_mcc) def _mcc_f1_calc(y_true, probas_pred, thresholds): # Alternative calculation of (unit-normalized) MCC and F1 scores pp = probas_pred ts = thresholds tps = np.array([np.logical_and(pp >= t, y_true == 1).sum() for t in ts]) fps = np.array([np.logical_and(pp >= t, y_true == 0).sum() for t in ts]) tns = np.array([np.logical_and(pp < t, y_true == 0).sum() for t in ts]) fns = np.array([np.logical_and(pp < t, y_true == 1).sum() for t in ts]) with np.errstate(divide='ignore', invalid='ignore'): f1s = 2*tps / (2*tps + fps + fns) d = np.sqrt((tps+fps)*(tps+fns)*(tns+fps)*(tns+fns)) d =
np.array([1 if di == 0 else di for di in d])
numpy.array
import re import os import numpy as np import pandas as pd import scipy.stats as sps pd.options.display.max_rows = 4000 pd.options.display.max_columns = 4000 def write_txt(str, path): text_file = open(path, "w") text_file.write(str) text_file.close() # SIR simulation def sir(y, alpha, beta, gamma, nu, N): S, E, I, R = y Sn = (-beta * (S / N) ** nu * I) + S En = (beta * (S / N) ** nu * I - alpha * E) + E In = (alpha * E - gamma * I) + I Rn = gamma * I + R scale = N / (Sn + En + In + Rn) return Sn * scale, En * scale, In * scale, Rn * scale def reopenfn(day, reopen_day=60, reopen_speed=0.1, reopen_cap = .5): """Starting on `reopen_day`, reduce contact restrictions by `reopen_speed`*100%. """ if day < reopen_day: return 1.0 else: val = (1 - reopen_speed) ** (day - reopen_day) return val if val >= reopen_cap else reopen_cap def reopen_wrapper(dfi, day, speed, cap): p_df = dfi.reset_index() p_df.columns = ['param', 'val'] ro = dict(param = ['reopen_day', 'reopen_speed', 'reopen_cap'], val = [day, speed, cap]) p_df = pd.concat([p_df, pd.DataFrame(ro)]) p_df SIR_ii = SIR_from_params(p_df) return SIR_ii['arr_stoch'][:,3] def scale(arr, mu, sig): if len(arr.shape)==1: arr = np.expand_dims(arr, 0) arr = np.apply_along_axis(lambda x: x-mu, 1, arr) arr = np.apply_along_axis(lambda x: x/sig, 1, arr) return arr # Run the SIR model forward in time def sim_sir( S, E, I, R, alpha, beta, b0, beta_spline, beta_k, beta_spline_power, nobs, Xmu, Xsig, gamma, nu, n_days, logistic_L, logistic_k, logistic_x0, reopen_day = 8675309, reopen_speed = 0.0, reopen_cap = 1.0, ): N = S + E + I + R s, e, i, r = [S], [E], [I], [R] if len(beta_spline) > 0: knots = np.linspace(0, nobs-nobs/beta_k/2, beta_k) for day in range(n_days): y = S, E, I, R # evaluate splines if len(beta_spline) > 0: X = power_spline(day, knots, beta_spline_power, xtrim = nobs) # X = scale(X, Xmu, Xsig) #scale to prevent overflows and make the penalties comparable across bases XB = float(X@beta_spline) sd = logistic(L = 1, k=1, x0 = 0, x= b0 + XB) else: sd = logistic(logistic_L, logistic_k, logistic_x0, x=day) sd *= reopenfn(day, reopen_day, reopen_speed, reopen_cap) beta_t = beta * (1 - sd) S, E, I, R = sir(y, alpha, beta_t, gamma, nu, N) s.append(S) e.append(E) i.append(I) r.append(R) s, e, i, r = np.array(s), np.array(e), np.array(i), np.array(r) return s, e, i, r # # compute X scale factor. first need to compute who X matrix across all days # nobs = 100 # n_days = 100 # beta_spline_power = 2 # beta_spline = np.random.uniform(size = len(knots)) # X = np.stack([power_spline(day, knots, beta_spline_power, xtrim = nobs) for day in range(n_days)]) # # need to be careful with this: apply the scaling to the new X's when predicting def power_spline(x, knots, n, xtrim): if x > xtrim: #trim the ends of the spline to prevent nonsense extrapolation x = xtrim + 1 spl = x - np.array(knots) spl[spl<0] = 0 spl = spl/(xtrim**n)#scaling -- xtrim is the max number of days, so the highest value that the spline could have return spl**n ''' Plan: beta_t = L/(1 + np.exp(XB)) ''' def logistic(L, k, x0, x): return L / (1 + np.exp(-k * (x - x0))) def qdraw(qvec, p_df): """ Function takes a vector of quantiles and returns marginals based on the parameters in the parameter data frame It returns a bunch of parameters for inputting into SIR It'll also return their probability under the prior """ assert len(qvec) == p_df.shape[0] outdicts = [] for i in range(len(qvec)): if p_df.distribution.iloc[i] == "constant": out = dict(param=p_df.param.iloc[i], val=p_df.base.iloc[i], prob=1) else: # Construct this differently for different distributoons if p_df.distribution.iloc[i] == "gamma": p = (qvec[i], p_df.p1.iloc[i], 0, p_df.p2.iloc[i]) elif p_df.distribution.iloc[i] == "beta": p = (qvec[i], p_df.p1.iloc[i], p_df.p2.iloc[i]) elif p_df.distribution.iloc[i] == "uniform": p = (qvec[i], p_df.p1.iloc[i], p_df.p1.iloc[i] + p_df.p2.iloc[i]) elif p_df.distribution.iloc[i] == "norm": p = (qvec[i], p_df.p1.iloc[i], p_df.p2.iloc[i]) out = dict( param=p_df.param.iloc[i], val=getattr(sps, p_df.distribution.iloc[i]).ppf(*p), ) # does scipy not have a function to get the density from the quantile? p_pdf = (out["val"],) + p[1:] out.update({"prob": getattr(sps, p_df.distribution.iloc[i]).pdf(*p_pdf)}) outdicts.append(out) return pd.DataFrame(outdicts) def jumper(start, jump_sd): probit = sps.norm.ppf(start) probit += np.random.normal(size=len(probit), scale=jump_sd) newq = sps.norm.cdf(probit) return newq def compute_census(projection_admits_series, mean_los): """Compute Census based on exponential LOS distribution.""" census = [0] for a in projection_admits_series.values: c = float(a) + (1 - 1 / float(mean_los)) * census[-1] census.append(c) return np.array(census[1:]) def SIR_from_params(p_df): """ This function takes the output from the qdraw function """ n_hosp = int(p_df.val.loc[p_df.param == "n_hosp"]) incubation_days = float(p_df.val.loc[p_df.param == "incubation_days"]) hosp_prop = float(p_df.val.loc[p_df.param == "hosp_prop"]) ICU_prop = float(p_df.val.loc[p_df.param == "ICU_prop"]) vent_prop = float(p_df.val.loc[p_df.param == "vent_prop"]) hosp_LOS = float(p_df.val.loc[p_df.param == "hosp_LOS"]) ICU_LOS = float(p_df.val.loc[p_df.param == "ICU_LOS"]) vent_LOS = float(p_df.val.loc[p_df.param == "vent_LOS"]) recovery_days = float(p_df.val.loc[p_df.param == "recovery_days"]) mkt_share = float(p_df.val.loc[p_df.param == "mkt_share"]) region_pop = float(p_df.val.loc[p_df.param == "region_pop"]) logistic_k = float(p_df.val.loc[p_df.param == "logistic_k"]) logistic_L = float(p_df.val.loc[p_df.param == "logistic_L"]) logistic_x0 = float(p_df.val.loc[p_df.param == "logistic_x0"]) nu = float(p_df.val.loc[p_df.param == "nu"]) beta = float( p_df.val.loc[p_df.param == "beta"] ) # get beta directly rather than via doubling time # assemble the coefficient vector for the splines beta_spline = np.array(p_df.val.loc[p_df.param.str.contains('beta_spline_coef')]) #this evaluates to an empty array if it's not in the params if len(beta_spline) > 0: b0 = float(p_df.val.loc[p_df.param == "b0"]) beta_spline_power = np.array(p_df.val.loc[p_df.param == "beta_spline_power"]) nobs = float(p_df.val.loc[p_df.param == "nobs"]) beta_k = int(p_df.loc[p_df.param == "beta_spline_dimension", 'val']) Xmu = p_df.loc[p_df.param == "Xmu", 'val'].iloc[0] Xsig = p_df.loc[p_df.param == "Xsig", 'val'].iloc[0] else: beta_spline_power = None beta_k = None nobs = None b0 = None Xmu, Xsig = None, None reopen_day, reopen_speed, reopen_cap = 1000, 0.0, 1.0 if "reopen_day" in p_df.param.values: reopen_day = int(p_df.val.loc[p_df.param == "reopen_day"]) if "reopen_speed" in p_df.param.values: reopen_speed = float(p_df.val.loc[p_df.param == "reopen_speed"]) if "reopen_cap" in p_df.param.values: reopen_cap = float(p_df.val.loc[p_df.param == "reopen_cap"]) alpha = 1 / incubation_days gamma = 1 / recovery_days total_infections = n_hosp / mkt_share / hosp_prop n_days = 200 # Offset by the incubation period to start the sim # that many days before the first hospitalization # Estimate the number Exposed from the number hospitalized # on the first day of non-zero covid hospitalizations. from scipy.stats import expon # Since incubation_days is exponential in SEIR, we start # the time `offset` days before the first hospitalization # We determine offset by allowing enough time for the majority # of the initial exposures to become infected. offset = expon.ppf( 0.99, 1 / incubation_days ) # Enough time for 95% of exposed to become infected offset = int(offset) s, e, i, r = sim_sir( S=region_pop - total_infections, E=total_infections, I=0.0, # n_infec / detection_prob, R=0.0, alpha=alpha, beta=beta, b0=b0, beta_spline = beta_spline, beta_k = beta_k, beta_spline_power = beta_spline_power, Xmu = Xmu, Xsig = Xsig, nobs = nobs, gamma=gamma, nu=nu, n_days=n_days + offset, logistic_L=logistic_L, logistic_k=logistic_k, logistic_x0=logistic_x0 + offset, reopen_day=reopen_day, reopen_speed=reopen_speed, reopen_cap=reopen_cap ) arrs = {} for sim_type in ["mean", "stochastic"]: if sim_type == "mean": ds = np.diff(i) + np.diff(r) # new infections is delta i plus delta r ds = np.array([0] + list(ds)) ds = ds[offset:] hosp_raw = hosp_prop ICU_raw = hosp_raw * ICU_prop # coef param vent_raw = ICU_raw * vent_prop # coef param hosp = ds * hosp_raw * mkt_share icu = ds * ICU_raw * mkt_share vent = ds * vent_raw * mkt_share elif sim_type == "stochastic": # Sampling Stochastic Observation ds = np.diff(i) +
np.diff(r)
numpy.diff
import numpy as np import matplotlib.pyplot as plt import os import warnings from datetime import date from math import e def calc_rate(data1, data2): if(data2 == 0): return data1 else: if(data1 < data2): return (data2 / data1) * -1 else: return data1 / data2 def calc_mort_rate(data1, data2): if(data2 == 0): return 0 else: return data1 / data2 def compute_data(parsed_data): days = np.array([]) new_cases = np.array([]) cases_growth_factor = np.array([]) new_deaths = np.array([]) deaths_growth_factor = np.array([]) new_tests = np.array([]) tests_growth_factor = np.array([]) new_recovered = np.array([]) recovered_growth_factor = np.array([]) new_hospitalized = np.array([]) hospitalized_growth_factor = np.array([]) mortality_rate = np.array([]) active_cases = np.array([]) for i, entry in enumerate(parsed_data[0]): if(i == 0): new_cases = np.append(new_cases, parsed_data[1][i] - 0) cases_growth_factor = np.append(cases_growth_factor, 0) new_deaths = np.append(new_deaths, parsed_data[2][i] - 0) deaths_growth_factor = np.append(deaths_growth_factor, 0) new_tests = np.append(new_tests, parsed_data[3][i] - 0) tests_growth_factor = np.append(tests_growth_factor, 0) new_recovered = np.append(new_recovered, parsed_data[4][i] - 0) recovered_growth_factor = np.append(recovered_growth_factor, 0) new_hospitalized = np.append(new_hospitalized, parsed_data[5][i] - 0) hospitalized_growth_factor = np.append(hospitalized_growth_factor, 0) mortality_rate = np.append(mortality_rate, calc_mort_rate(parsed_data[2][i], parsed_data[1][i])) active_cases = np.append(active_cases, (parsed_data[1][i] - parsed_data[4][i] - parsed_data[2][i])) days = np.append(days, i) continue new_cases = np.append(new_cases, parsed_data[1][i] - parsed_data[1][i-1]) cases_growth_factor = np.append(cases_growth_factor, calc_rate(parsed_data[1][i], parsed_data[1][i-1])) new_deaths = np.append(new_deaths, parsed_data[2][i] - parsed_data[2][i-1]) deaths_growth_factor = np.append(deaths_growth_factor, calc_rate(parsed_data[2][i], parsed_data[2][i-1])) new_tests = np.append(new_tests, parsed_data[3][i] - parsed_data[3][i-1]) tests_growth_factor = np.append(tests_growth_factor, calc_rate(parsed_data[3][i], parsed_data[3][i-1])) new_recovered = np.append(new_recovered, parsed_data[4][i] - parsed_data[4][i-1]) recovered_growth_factor = np.append(recovered_growth_factor, calc_rate(parsed_data[4][i], parsed_data[4][i-1])) new_hospitalized = np.append(new_hospitalized, parsed_data[5][i] - parsed_data[5][i-1]) hospitalized_growth_factor = np.append(hospitalized_growth_factor, calc_rate(parsed_data[5][i], parsed_data[5][i-1])) mortality_rate = np.append(mortality_rate, calc_mort_rate(parsed_data[2][i], parsed_data[1][i])) active_cases = np.append(active_cases, (parsed_data[1][i] - parsed_data[4][i] - parsed_data[2][i])) days = np.append(days, i) parsed_data.append(days) parsed_data.append(new_cases) parsed_data.append(cases_growth_factor) parsed_data.append(new_deaths) parsed_data.append(deaths_growth_factor) parsed_data.append(new_recovered) parsed_data.append(recovered_growth_factor) parsed_data.append(new_hospitalized) parsed_data.append(hospitalized_growth_factor) parsed_data.append(new_tests) parsed_data.append(tests_growth_factor) parsed_data.append(mortality_rate) parsed_data.append(active_cases) return parsed_data def logistic_fn(population): day_counter = 1 days = np.array([]) logistic = np.array([]) current_cases = 1 while (day_counter < 60): days = np.append(days, day_counter) log_fn = population / (1 + ((population / current_cases) - 1) * e ** (-0.38 * day_counter)) print(log_fn) logistic = np.append(logistic, log_fn) day_counter += 1 return (days, logistic) def difference(parsed_data, day1, day2): print("Data difference between:", parsed_data[0][day1], 'and', parsed_data[0][day2]) print("\u0394Days:\t", parsed_data[6][day2] - parsed_data[6][day1]) print("\u0394Cases:\t", parsed_data[1][day2] - parsed_data[1][day1]) print("\u0394Deaths: ", parsed_data[2][day2] - parsed_data[2][day1]) print("\u0394Recov.: ", parsed_data[4][day2] - parsed_data[4][day1]) print("\u0394Hospi.: ", parsed_data[5][day2] - parsed_data[5][day1]) print("\u0394Tests:\t", parsed_data[3][day2] - parsed_data[3][day1]) def projection(next_days, days_passed, parsed_data): total_cases = float(parsed_data[1][len(parsed_data[1])-1]) total_deaths = float(parsed_data[2][len(parsed_data[2])-1]) total_tests = float(parsed_data[3][len(parsed_data[4])-1]) total_recovered = float(parsed_data[4][len(parsed_data[4])-1]) total_hospitalized = float(parsed_data[5][len(parsed_data[5])-1]) total_active = float(parsed_data[18][len(parsed_data[18])-1]) counter = 0 avg_cases_gf = 0.0 avg_deaths_gf = 0.0 avg_tests_gf = 0.0 avg_recovered_gf = 0.0 avg_hospitalized_gf = 0.0 avg_active_gf = 0.0 while(counter < days_passed): avg_cases_gf += parsed_data[8][len(parsed_data[8]) - 1 - counter] avg_deaths_gf += parsed_data[10][len(parsed_data[10]) - 1 - counter] avg_tests_gf += parsed_data[16][len(parsed_data[16]) - 1 - counter] avg_recovered_gf += parsed_data[12][len(parsed_data[12]) - 1 - counter] avg_hospitalized_gf += parsed_data[14][len(parsed_data[14]) - 1 - counter] avg_active_gf += parsed_data[18][len(parsed_data[18]) - 1 - counter] counter += 1 avg_cases_gf /= days_passed avg_deaths_gf /= days_passed avg_tests_gf /= days_passed avg_recovered_gf /= days_passed avg_hospitalized_gf /= days_passed avg_active_gf /= days_passed print('Avg Cases Growth Factor (past', days_passed ,'days):', round(avg_cases_gf, 5)) print('Avg Deaths Growth Factor (past', days_passed ,'days):', round(avg_deaths_gf, 5)) print('Avg Tests Growth Factor (past', days_passed ,'days):', round(avg_tests_gf, 5)) print('Avg Recovered Growth Factor (past', days_passed ,'days):', round(avg_recovered_gf, 5)) print('Avg Hospitalized Growth Factor (past', days_passed ,'days):', round(avg_hospitalized_gf, 5)) print('Avg Active Cases Growth Factor (past', days_passed ,'days):', round(avg_active_gf, 5)) counter = 0 while(counter < next_days): total_cases = total_cases * avg_cases_gf total_deaths = total_deaths * avg_deaths_gf total_tests = total_tests * avg_tests_gf total_recovered = total_recovered * avg_recovered_gf total_hospitalized = total_hospitalized * avg_hospitalized_gf total_active = total_active * avg_active_gf counter += 1 print("Projections for the next", next_days, "days:") print("Cases:", round(total_cases)) print("Active:", round(total_active)) print("Deaths:", round(total_deaths)) print("Tests:", round(total_tests)) print("Recovered:", round(total_recovered)) print("Hospitalized:", round(total_hospitalized)) def linear_regression(x, y): x_nums = [i for i in range(0, len(x))] #create list of integers given that original x are string values n = len(x_nums) #number of elements in x axis (same as y axis) add_x = sum(x_nums) #add all x axis elements add_y = sum(y) #add all y axis elements add_x_sqr = sum([i**2 for i in x_nums]) #add all y axis elements squared add_xy = sum([x_nums[i] * y[i] for i in range(0, n)]) #add the product of each corresponding pair from x_nums and y slope = (n * add_xy - add_x * add_y) / (n * add_x_sqr - add_x**2) #compute slope of linear regression y_intercept = (add_y * add_x_sqr - add_x * add_xy) / (n * add_x_sqr - add_x**2) #compute the y intercept of the linear regression lin_reg_x = [i for i in range(0, len(x_nums))] #create list of elements from 0 to length of x_nums lin_reg_y = [slope * i + y_intercept for i in lin_reg_x] #replace x value in equation to find the y in linear regression return [slope, y_intercept, lin_reg_y] #return slope, y_intercept, and linear regression list for y def plot_graph(x, y, color, x_label, y_label, chart_title, file_name='', save=False, log_view=False, trend=False): plt.figure(figsize=(14,10)) plt.ticklabel_format(style='plain') plt.title(chart_title, fontdict={'fontsize' : 25}) if(log_view): plt.yscale('log') if(trend): lin_reg_result = linear_regression(x, y) lin_reg_equation = str(lin_reg_result[0])[:10] + 'X ' if(lin_reg_result[1] >= 0): lin_reg_equation += '+' lin_reg_equation += str(lin_reg_result[1])[:10] plt.plot(x, lin_reg_result[2], color + '--', label = lin_reg_equation) plt.legend(loc='upper left') plt.plot(x, y, 'ko', x, y, color) plt.xlabel(x_label) plt.ylabel(y_label) plt.grid() if(save): warnings.filterwarnings('ignore') plt.savefig('../export/graphs/' + file_name) else: plt.show() def plot_graph_all(parsed_data, chart_title, from_day, to_day, file_name='', save=False): plt.figure(figsize=(14,10)) plt.ticklabel_format(style='plain') plt.title(chart_title, fontdict={'fontsize' : 25}) plt.plot(parsed_data[4][from_day:to_day], parsed_data[1][from_day:to_day], 'ko') plt.plot(parsed_data[4][from_day:to_day], parsed_data[1][from_day:to_day], 'b', label = "Cases") plt.plot(parsed_data[4][from_day:to_day], parsed_data[2][from_day:to_day], 'ko') plt.plot(parsed_data[4][from_day:to_day], parsed_data[2][from_day:to_day], 'r', label = "Deaths") plt.plot(parsed_data[4][from_day:to_day], parsed_data[4][from_day:to_day], 'ko') plt.plot(parsed_data[4][from_day:to_day], parsed_data[4][from_day:to_day], 'g', label = "Recovered") plt.plot(parsed_data[4][from_day:to_day], parsed_data[18][from_day:to_day], 'ko') plt.plot(parsed_data[4][from_day:to_day], parsed_data[18][from_day:to_day], 'k', label = "Active Cases") plt.legend(loc="upper left") plt.xlabel("Days") plt.grid() if(save): warnings.filterwarnings('ignore') plt.plotplt.savefig('../export/graphs/' + file_name) else: plt.show() def print_cases(header, data): np.set_printoptions(precision=3) print('%10s'%(header[0]), end = '') print('%9s'%(header[1]), end = '') print('%13s'%(header[2]), end = '') print('%13s'%(header[3]), end = '') print('%13s'%(header[4]), end = '') print('%13s'%(header[18])) for i in range(len(data[0])): print('%10s'%(data[0][i]), '%8s'%(data[6][i]), '%12s'%(data[1][i]), '%12s'%(data[7][i]), '%12s'%(str(data[8][i])[:8]), '%12s'%(data[18][i])) def print_deaths(header, data): np.set_printoptions(precision=3) print('%10s'%(header[0]), end = '') print('%9s'%(header[1]), end = '') print('%13s'%(header[5]), end = '') print('%13s'%(header[6]), end = '') print('%13s'%(header[7]), end = '') print('%13s'%(header[5])) for i in range(len(data[0])): print('%10s'%(data[0][i]), '%8s'%(data[6][i]), '%12s'%(data[2][i]), '%12s'%(data[9][i]), '%12s'%(data[10][i]), '%12s'%(data[17][i])) def print_tests(header, data): np.set_printoptions(precision=3) print('%10s'%(header[0]), end = '') print('%9s'%(header[1]), end = '') print('%13s'%(header[14]), end = '') print('%13s'%(header[15]), end = '') print('%13s'%(header[16])) for i in range(len(data[0])): print('%10s'%(data[0][i]), '%8s'%(data[6][i]), '%12s'%(data[3][i]), '%12s'%(data[15][i]), '%12s'%(data[16][i])) def print_recovered(header, data):
np.set_printoptions(precision=3)
numpy.set_printoptions
################################################################################ # Copyright (c) 2009-2019, National Research Foundation (Square Kilometre Array) # # Licensed under the BSD 3-Clause License (the "License"); you may not use # this file except in compliance with the License. You may obtain a copy # of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Coordinate conversions not found in PyEphem.""" from __future__ import print_function, division, absolute_import import numpy as np # -------------------------------------------------------------------------------------------------- # --- Geodetic coordinate transformations # -------------------------------------------------------------------------------------------------- def lla_to_ecef(lat_rad, long_rad, alt_m): """Convert WGS84 spherical coordinates to ECEF cartesian coordinates. This converts a position on the Earth specified in geodetic latitude, longitude and altitude to earth-centered, earth-fixed (ECEF) cartesian coordinates. This code assumes the WGS84 earth model, described in [NIMA2004]_. Parameters ---------- lat_rad : float or array Latitude (customary geodetic, not geocentric), in radians long_rad : float or array Longitude, in radians alt_m : float or array Altitude, in metres above WGS84 ellipsoid Returns ------- x_m, y_m, z_m : float or array X, Y, Z coordinates, in metres References ---------- .. [NIMA2004] National Imagery and Mapping Agency, "Department of Defense World Geodetic System 1984," NIMA TR8350.2, Page 4-4, last updated June, 2004. """ # WGS84 Defining Parameters a = 6378137.0 # semi-major axis of Earth in m f = 1.0 / 298.257223563 # flattening of Earth # WGS84 derived geometric constants e2 = 2 * f - f ** 2 # first eccentricity squared # intermediate calculation # (normal, or prime vertical radius of curvature) R = a / np.sqrt(1.0 - e2 * np.sin(lat_rad) ** 2) x_m = (R + alt_m) * np.cos(lat_rad) * np.cos(long_rad) y_m = (R + alt_m) * np.cos(lat_rad) * np.sin(long_rad) z_m = ((1.0 - e2) * R + alt_m) * np.sin(lat_rad) return x_m, y_m, z_m def ecef_to_lla(x_m, y_m, z_m): """Convert ECEF cartesian coordinates to WGS84 spherical coordinates. This converts an earth-centered, earth-fixed (ECEF) cartesian position to a position on the Earth specified in geodetic latitude, longitude and altitude. This code assumes the WGS84 earth model. Parameters ---------- x_m, y_m, z_m : float or array X, Y, Z coordinates, in metres Returns ------- lat_rad : float or array Latitude (customary geodetic, not geocentric), in radians long_rad : float or array Longitude, in radians alt_m : float or array Altitude, in metres above WGS84 ellipsoid Notes ----- Based on the most accurate algorithm according to Zhu [zhu]_, which is summarised by Kaplan [kaplan]_ and described in the Wikipedia entry [geo]_. .. [zhu] <NAME>, "Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates," Aerospace and Electronic Systems, IEEE Transactions on, vol. 30, pp. 957-961, 1994. .. [kaplan] Kaplan, "Understanding GPS: principles and applications," 1 ed., Norwood, MA 02062, USA: Artech House, Inc, 1996. .. [geo] Wikipedia entry, "Geodetic system", 2009. """ # WGS84 Defining Parameters a = 6378137.0 # semi-major axis of Earth in m f = 1.0 / 298.257223563 # flattening of Earth # WGS84 derived geometric constants b = a * (1.0 - f) # semi-minor axis in m e2 = 2 * f - f ** 2 # first eccentricity squared ep2 = f * (2.0 - f) / (1.0 - f) ** 2 # second eccentricity squared # Define squared terms for convenience a2, b2 = a ** 2, b ** 2 x2, y2, z2 = x_m ** 2, y_m ** 2, z_m ** 2 r = np.sqrt(x2 + y2) E2 = a2 - b2 F = 54.0 * b2 * z2 G = r ** 2 + (1 - e2) * z2 - e2 * E2 C = (e2 ** 2 * F * r ** 2) / (G ** 3) S = (1.0 + C + np.sqrt(C ** 2 + 2 * C)) ** (1. / 3.) P = F / (3.0 * (S + 1.0 / S + 1.0) ** 2 * G ** 2) Q =
np.sqrt(1.0 + 2.0 * e2 ** 2 * P)
numpy.sqrt
README.md exists but content is empty.
Downloads last month
28