prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import warnings import numpy as np import pandas as pd import xarray import scipy.stats as st import numba try: import pymc3 as pm except: pass import arviz as az import arviz.plots.plot_utils import scipy.ndimage import skimage import matplotlib._contour from matplotlib.pyplot import get_cmap as mpl_get_cmap import bokeh.application import bokeh.application.handlers import bokeh.models import bokeh.palettes import bokeh.plotting import colorcet try: import datashader as ds import datashader.bokeh_ext except ImportError as e: warnings.warn( f"""DataShader import failed with error "{e}". Features requiring DataShader will not work and you will get exceptions.""" ) from . import utils from . import image from . import az_utils try: from . import stan except: warnings.warn( "Could not import `stan` submodule. Perhaps pystan or cmdstanpy is not properly installed." ) def plot_with_error_bars( centers, confs, names, marker_kwargs={}, line_kwargs={}, **kwargs ): """Make a horizontal plot of centers/conf ints with error bars. Parameters ---------- centers : array_like, shape (n,) Array of center points for error bar plot. confs : array_like, shape (n, 2) Array of low and high values of confidence intervals names : list of strings Names of the variables for the plot. These give the y-ticks. marker_kwargs : dict, default {} Kwargs to be passed to p.circle() for plotting centers. line_kwargs : dict, default {} Kwargs passsed to p.line() to plot the confidence interval. kwargs : dict Any addition kwargs are passed to bokeh.plotting.figure(). Returns ------- output : Bokeh figure Plot of error bars. """ n = len(names) if len(centers) != n: raise ValueError("len(centers) ≠ len(names)") if confs.shape != (n, 2): raise ValueError("Shape of `confs` must be (len(names), 2).") if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 50 * n if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 450 line_width = kwargs.pop("line_width", 2) p = bokeh.plotting.figure(y_range=names[::-1], **kwargs) p.circle(x=centers, y=names, **marker_kwargs) for conf, name in zip(confs, names): p.line(x=conf, y=[name, name], line_width=2) return p def fill_between( x1=None, y1=None, x2=None, y2=None, show_line=True, patch_kwargs={}, line_kwargs={}, p=None, **kwargs, ): """ Create a filled region between two curves. Parameters ---------- x1 : array_like Array of x-values for first curve y1 : array_like Array of y-values for first curve x2 : array_like Array of x-values for second curve y2 : array_like Array of y-values for second curve show_line : bool, default True If True, show the lines on the edges of the fill. patch_kwargs : dict Any kwargs passed into p.patch(), which generates the fill. line_kwargs : dict Any kwargs passed into p.line() in generating the line around the fill. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. kwargs All other kwargs are passed to bokeh.plotting.figure() in creating the figure. Returns ------- output : bokeh.plotting.Figure instance Plot populated with fill-between. """ if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 275 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 350 if p is None: p = bokeh.plotting.figure(**kwargs) line_width = patch_kwargs.pop("line_width", 0) line_alpha = patch_kwargs.pop("line_alpha", 0) p.patch( x=np.concatenate((x1, x2[::-1])), y=np.concatenate((y1, y2[::-1])), line_width=line_width, line_alpha=line_alpha, **patch_kwargs, ) if show_line: line_width = line_kwargs.pop("line_width", 2) p.line(x1, y1, line_width=line_width, **line_kwargs) p.line(x2, y2, line_width=line_width, **line_kwargs) return p def qqplot( data, gen_fun, n_samples=1000, args=(), patch_kwargs={}, line_kwargs={}, diag_kwargs={}, p=None, **kwargs, ): """ Parameters ---------- data : array_like, shape (N,) Array of data to be used in making Q-Q plot. gen_fun : function Function to randomly draw a new data set out of the model distribution parametrized by the MLE. Must have call signature `gen_fun(*args, size)`. `size` is the number of samples to draw. n_samples : int, default 1000 Number of samples to draw using gen_fun(). args : tuple, default () Arguments to be passed to gen_fun(). show_line : bool, default True If True, show the lines on the edges of the filled region. patch_kwargs : dict Any kwargs passed into p.patch(), which generates the fill. line_kwargs : dict Any kwargs passed into p.line() in generating the line around the fill. diag_kwargs : dict Any kwargs to be passed into p.line() in generating diagonal reference line of Q-Q plot. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. kwargs All other kwargs are passed to bokeh.plotting.figure() in creating the figure. """ if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 275 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 350 x = np.sort(data) theor_x = np.array([np.sort(gen_fun(*args, len(x))) for _ in range(n_samples)]) # Upper and lower bounds low_theor, up_theor = np.percentile(theor_x, (2.5, 97.5), axis=0) if p is None: p = bokeh.plotting.figure(**kwargs) if "fill_alpha" not in patch_kwargs: patch_kwargs["fill_alpha"] = 0.5 p = fill_between( x, up_theor, x, low_theor, patch_kwargs=patch_kwargs, line_kwargs=line_kwargs, show_line=True, p=p, ) # Plot 45 degree line color = diag_kwargs.pop("color", "black") alpha = diag_kwargs.pop("alpha", 0.5) line_width = diag_kwargs.pop("line_width", 4) p.line([0, x.max()], [0, x.max()], line_width=line_width, color=color, alpha=alpha) return p def ecdf( data=None, p=None, x_axis_label=None, y_axis_label="ECDF", title=None, plot_height=300, plot_width=450, staircase=False, complementary=False, x_axis_type="linear", y_axis_type="linear", **kwargs, ): """ Create a plot of an ECDF. Parameters ---------- data : array_like One-dimensional array of data. Nan's are ignored. conf_int : bool, default False If True, display a confidence interval on the ECDF. ptiles : list, default [2.5, 97.5] The percentiles to use for the confidence interval. Ignored it `conf_int` is False. n_bs_reps : int, default 1000 Number of bootstrap replicates to do to compute confidence interval. Ignored if `conf_int` is False. fill_color : str, default 'lightgray' Color of the confidence interbal. Ignored if `conf_int` is False. fill_alpha : float, default 1 Opacity of confidence interval. Ignored if `conf_int` is False. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. x_axis_label : str, default None Label for the x-axis. Ignored if `p` is not None. y_axis_label : str, default 'ECDF' or 'ECCDF' Label for the y-axis. Ignored if `p` is not None. title : str, default None Title of the plot. Ignored if `p` is not None. plot_height : int, default 300 Height of plot, in pixels. Ignored if `p` is not None. plot_width : int, default 450 Width of plot, in pixels. Ignored if `p` is not None. staircase : bool, default False If True, make a plot of a staircase ECDF (staircase). If False, plot the ECDF as dots. complementary : bool, default False If True, plot the empirical complementary cumulative distribution functon. x_axis_type : str, default 'linear' Either 'linear' or 'log'. y_axis_type : str, default 'linear' Either 'linear' or 'log'. kwargs Any kwargs to be passed to either p.circle or p.line, for `staircase` being False or True, respectively. Returns ------- output : bokeh.plotting.Figure instance Plot populated with ECDF. """ # Check data to make sure legit data = utils._convert_data(data) # Data points on ECDF x, y = _ecdf_vals(data, staircase, complementary) # Instantiate Bokeh plot if not already passed in if p is None: y_axis_label = kwargs.pop("y_axis_label", "ECCDF" if complementary else "ECDF") p = bokeh.plotting.figure( plot_height=plot_height, plot_width=plot_width, x_axis_label=x_axis_label, y_axis_label=y_axis_label, x_axis_type=x_axis_type, y_axis_type=y_axis_type, title=title, ) if staircase: # Line of steps p.line(x, y, **kwargs) # Rays for ends if complementary: p.ray(x[0], 1, None, np.pi, **kwargs) p.ray(x[-1], 0, None, 0, **kwargs) else: p.ray(x[0], 0, None, np.pi, **kwargs) p.ray(x[-1], 1, None, 0, **kwargs) else: p.circle(x, y, **kwargs) return p def histogram( data=None, bins=10, p=None, density=False, kind="step", line_kwargs={}, patch_kwargs={}, **kwargs, ): """ Make a plot of a histogram of a data set. Parameters ---------- data : array_like 1D array of data to make a histogram out of bins : int, array_like, or one of 'exact' or 'integer' default 10 Setting for `bins` kwarg to be passed to `np.histogram()`. If `'exact'`, then each unique value in the data gets its own bin. If `integer`, then integer data is assumed and each integer gets its own bin. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. density : bool, default False If True, normalized the histogram. Otherwise, base the histogram on counts. kind : str, default 'step' The kind of histogram to display. Allowed values are 'step' and 'step_filled'. line_kwargs : dict Any kwargs to be passed to p.line() in making the line of the histogram. patch_kwargs : dict Any kwargs to be passed to p.patch() in making the fill of the histogram. kwargs : dict All other kwargs are passed to bokeh.plotting.figure() Returns ------- output : Bokeh figure Figure populated with histogram. """ if data is None: raise RuntimeError("Input `data` must be specified.") # Instantiate Bokeh plot if not already passed in if p is None: y_axis_label = kwargs.pop("y_axis_label", "density" if density else "count") if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 275 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 400 y_range = kwargs.pop("y_range", bokeh.models.DataRange1d(start=0)) p = bokeh.plotting.figure(y_axis_label=y_axis_label, y_range=y_range, **kwargs) if bins == "exact": a = np.unique(data) if len(a) == 1: bins = np.array([a[0] - 0.5, a[0] + 0.5]) else: bins = np.concatenate( ( (a[0] - (a[1] - a[0]) / 2,), (a[1:] + a[:-1]) / 2, (a[-1] + (a[-1] - a[-2]) / 2,), ) ) elif bins == "integer": if np.any(data != np.round(data)): raise RuntimeError("'integer' bins chosen, but data are not integer.") bins = np.arange(data.min() - 1, data.max() + 1) + 0.5 # Compute histogram f, e = np.histogram(data, bins=bins, density=density) e0 = np.empty(2 * len(e)) f0 = np.empty(2 * len(e)) e0[::2] = e e0[1::2] = e f0[0] = 0 f0[-1] = 0 f0[1:-1:2] = f f0[2:-1:2] = f if kind == "step": p.line(e0, f0, **line_kwargs) if kind == "step_filled": x2 = [e0.min(), e0.max()] y2 = [0, 0] p = fill_between(e0, f0, x2, y2, show_line=True, p=p, patch_kwargs=patch_kwargs) return p def predictive_ecdf( samples, data=None, diff=False, percentiles=[80, 60, 40, 20], color="blue", data_color="orange", data_staircase=True, data_size=2, x=None, discrete=False, p=None, **kwargs, ): """Plot a predictive ECDF from samples. Parameters ---------- samples : Numpy array or xarray, shape (n_samples, n) or xarray DataArray A Numpy array containing predictive samples. data : Numpy array, shape (n,) or xarray DataArray If not None, ECDF of measured data is overlaid with predictive ECDF. diff : bool, default True If True, the ECDFs minus median of the predictive ECDF are plotted. percentiles : list, default [80, 60, 40, 20] Percentiles for making colored envelopes for confidence intervals for the predictive ECDFs. Maximally four can be specified. color : str, default 'blue' One of ['green', 'blue', 'red', 'gray', 'purple', 'orange']. There are used to make the color scheme of shading of percentiles. data_color : str, default 'orange' String representing the color of the data to be plotted over the confidence interval envelopes. data_staircase : bool, default True If True, plot the ECDF of the data as a staircase. Otherwise plot it as dots. data_size : int, default 2 Size of marker (if `data_line` if False) or thickness of line (if `data_staircase` is True) of plot of data. x : Numpy array, default None Points at which to evaluate the ECDF. If None, points are automatically generated based on the data range. discrete : bool, default False If True, the samples take on discrete values. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. kwargs All other kwargs are passed to bokeh.plotting.figure(). Returns ------- output : Bokeh figure Figure populated with glyphs describing range of values for the ECDF of the samples. The shading goes according to percentiles of samples of the ECDF, with the median ECDF plotted as line in the middle. """ if type(samples) != np.ndarray: if type(samples) == xarray.core.dataarray.DataArray: samples = samples.squeeze().values else: raise RuntimeError("Samples can only be Numpy arrays and xarrays.") if len(percentiles) > 4: raise RuntimeError("Can specify maximally four percentiles.") # Build ptiles percentiles = np.sort(percentiles)[::-1] ptiles = [pt for pt in percentiles if pt > 0] ptiles = ( [50 - pt / 2 for pt in percentiles] + [50] + [50 + pt / 2 for pt in percentiles[::-1]] ) ptiles_str = [str(pt) for pt in ptiles] if color not in ["green", "blue", "red", "gray", "purple", "orange", "betancourt"]: raise RuntimeError( "Only allowed colors are 'green', 'blue', 'red', 'gray', 'purple', 'orange'" ) colors = { "blue": ["#9ecae1", "#6baed6", "#4292c6", "#2171b5", "#084594"], "green": ["#a1d99b", "#74c476", "#41ab5d", "#238b45", "#005a32"], "red": ["#fc9272", "#fb6a4a", "#ef3b2c", "#cb181d", "#99000d"], "orange": ["#fdae6b", "#fd8d3c", "#f16913", "#d94801", "#8c2d04"], "purple": ["#bcbddc", "#9e9ac8", "#807dba", "#6a51a3", "#4a1486"], "gray": ["#bdbdbd", "#969696", "#737373", "#525252", "#252525"], "betancourt": [ "#DCBCBC", "#C79999", "#B97C7C", "#A25050", "#8F2727", "#7C0000", ], } data_range = samples.max() - samples.min() if discrete and x is None: x = np.arange(samples.min(), samples.max() + 1) elif x is None: x = np.linspace( samples.min() - 0.05 * data_range, samples.max() + 0.05 * data_range, 400 ) ecdfs = np.array([_ecdf_arbitrary_points(sample, x) for sample in samples]) df_ecdf = pd.DataFrame() for ptile in ptiles: df_ecdf[str(ptile)] = np.percentile( ecdfs, ptile, axis=0, interpolation="higher" ) df_ecdf["x"] = x if data is not None and diff: ecdfs = np.array( [_ecdf_arbitrary_points(sample, np.sort(data)) for sample in samples] ) ecdf_data_median = np.percentile(ecdfs, 50, axis=0, interpolation="higher") if diff: for ptile in filter(lambda item: item != "50", ptiles_str): df_ecdf[ptile] -= df_ecdf["50"] df_ecdf["50"] = 0.0 if p is None: x_axis_label = kwargs.pop("x_axis_label", "x") y_axis_label = kwargs.pop("y_axis_label", "ECDF difference" if diff else "ECDF") if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 325 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 400 p = bokeh.plotting.figure( x_axis_label=x_axis_label, y_axis_label=y_axis_label, **kwargs ) for i, ptile in enumerate(ptiles_str[: len(ptiles_str) // 2]): if discrete: x, y1 = cdf_to_staircase(df_ecdf["x"].values, df_ecdf[ptile].values) _, y2 = cdf_to_staircase( df_ecdf["x"].values, df_ecdf[ptiles_str[-i - 1]].values ) else: x = df_ecdf["x"] y1 = df_ecdf[ptile] y2 = df_ecdf[ptiles_str[-i - 1]] fill_between( x, y1, x, y2, p=p, show_line=False, patch_kwargs=dict(color=colors[color][i]), ) # The median as a solid line if discrete: x, y = cdf_to_staircase(df_ecdf["x"], df_ecdf["50"]) else: x, y = df_ecdf["x"], df_ecdf["50"] p.line(x, y, line_width=2, color=colors[color][-1]) # Overlay data set if data is not None: x_data, y_data = _ecdf_vals(data, staircase=False) if diff: # subtracting off median wrecks y-coords for duplicated x-values... y_data -= ecdf_data_median # ...so take only unique values,... unique_x = np.unique(x_data) # ...find the (correct) max y-value for each... unique_inds = np.searchsorted(x_data, unique_x, side="right") - 1 # ...and use only that going forward y_data = y_data[unique_inds] x_data = unique_x if data_staircase: x_data, y_data = cdf_to_staircase(x_data, y_data) p.line(x_data, y_data, color=data_color, line_width=data_size) else: p.circle(x_data, y_data, color=data_color, size=data_size) return p def predictive_regression( samples, samples_x, data=None, diff=False, percentiles=[80, 60, 40, 20], color="blue", data_kwargs={}, p=None, **kwargs, ): """Plot a predictive regression plot from samples. Parameters ---------- samples : Numpy array, shape (n_samples, n_x) or xarray DataArray Numpy array containing predictive samples of y-values. sample_x : Numpy array, shape (n_x,) data : Numpy array, shape (n, 2) or xarray DataArray If not None, the measured data. The first column is the x-data, and the second the y-data. These are plotted as points over the predictive plot. diff : bool, default True If True, the predictive y-values minus the median of the predictive y-values are plotted. percentiles : list, default [80, 60, 40, 20] Percentiles for making colored envelopes for confidence intervals for the predictive ECDFs. Maximally four can be specified. color : str, default 'blue' One of ['green', 'blue', 'red', 'gray', 'purple', 'orange']. There are used to make the color scheme of shading of percentiles. data_kwargs : dict Any kwargs to be passed to p.circle() when plotting the data points. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. kwargs All other kwargs are passed to bokeh.plotting.figure(). Returns ------- output : Bokeh figure Figure populated with glyphs describing range of values for the the samples. The shading goes according to percentiles of samples, with the median plotted as line in the middle. """ if type(samples) != np.ndarray: if type(samples) == xarray.core.dataarray.DataArray: samples = samples.squeeze().values else: raise RuntimeError("Samples can only be Numpy arrays and xarrays.") if type(samples_x) != np.ndarray: if type(samples_x) == xarray.core.dataarray.DataArray: samples_x = samples_x.squeeze().values else: raise RuntimeError("`samples_x` can only be Numpy array or xarray.") if len(percentiles) > 4: raise RuntimeError("Can specify maximally four percentiles.") # Build ptiles percentiles = np.sort(percentiles)[::-1] ptiles = [pt for pt in percentiles if pt > 0] ptiles = ( [50 - pt / 2 for pt in percentiles] + [50] + [50 + pt / 2 for pt in percentiles[::-1]] ) ptiles_str = [str(pt) for pt in ptiles] if color not in ["green", "blue", "red", "gray", "purple", "orange", "betancourt"]: raise RuntimeError( "Only allowed colors are 'green', 'blue', 'red', 'gray', 'purple', 'orange'" ) colors = { "blue": ["#9ecae1", "#6baed6", "#4292c6", "#2171b5", "#084594"], "green": ["#a1d99b", "#74c476", "#41ab5d", "#238b45", "#005a32"], "red": ["#fc9272", "#fb6a4a", "#ef3b2c", "#cb181d", "#99000d"], "orange": ["#fdae6b", "#fd8d3c", "#f16913", "#d94801", "#8c2d04"], "purple": ["#bcbddc", "#9e9ac8", "#807dba", "#6a51a3", "#4a1486"], "gray": ["#bdbdbd", "#969696", "#737373", "#525252", "#252525"], "betancourt": [ "#DCBCBC", "#C79999", "#B97C7C", "#A25050", "#8F2727", "#7C0000", ], } if samples.shape[1] != len(samples_x): raise ValueError( "`samples_x must have the same number of entries as `samples` does columns." ) # It's useful to have data as a data frame if data is not None: if type(data) == tuple and len(data) == 2 and len(data[0]) == len(data[1]): data = np.vstack(data).transpose() df_data = pd.DataFrame(data=data, columns=["__data_x", "__data_y"]) df_data = df_data.sort_values(by="__data_x") # Make sure all entries in x-data in samples_x if diff: if len(samples_x) != len(df_data) or not np.allclose( np.sort(samples_x), df_data["__data_x"].values ): raise ValueError( "If `diff=True`, then samples_x must match the x-values of `data`." ) df_pred = pd.DataFrame( data=np.percentile(samples, ptiles, axis=0).transpose(), columns=[str(ptile) for ptile in ptiles], ) df_pred["__x"] = samples_x df_pred = df_pred.sort_values(by="__x") if p is None: x_axis_label = kwargs.pop("x_axis_label", "x") y_axis_label = kwargs.pop("y_axis_label", "y difference" if diff else "y") if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 325 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 400 p = bokeh.plotting.figure( x_axis_label=x_axis_label, y_axis_label=y_axis_label, **kwargs ) for i, ptile in enumerate(ptiles_str[: len(ptiles_str) // 2]): if diff: y1 = df_pred[ptile] - df_pred["50"] y2 = df_pred[ptiles_str[-i - 1]] - df_pred["50"] else: y1 = df_pred[ptile] y2 = df_pred[ptiles_str[-i - 1]] fill_between( x1=df_pred["__x"], x2=df_pred["__x"], y1=y1, y2=y2, p=p, show_line=False, patch_kwargs=dict(fill_color=colors[color][i]), ) # The median as a solid line if diff: p.line( df_pred["__x"], np.zeros_like(samples_x), line_width=2, color=colors[color][-1], ) else: p.line(df_pred["__x"], df_pred["50"], line_width=2, color=colors[color][-1]) # Overlay data set if data is not None: data_color = data_kwargs.pop("color", "orange") data_alpha = data_kwargs.pop("alpha", 1.0) data_size = data_kwargs.pop("size", 2) if diff: p.circle( df_data["__data_x"], df_data["__data_y"] - df_pred["50"], color=data_color, size=data_size, alpha=data_alpha, **data_kwargs, ) else: p.circle( df_data["__data_x"], df_data["__data_y"], color=data_color, size=data_size, alpha=data_alpha, **data_kwargs, ) return p def sbc_rank_ecdf( sbc_output=None, parameters=None, diff=True, ptile=99.0, bootstrap_envelope=False, n_bs_reps=None, show_envelope=True, show_envelope_line=True, color_by_warning_code=False, staircase=False, p=None, marker_kwargs={}, envelope_patch_kwargs={}, envelope_line_kwargs={}, palette=None, show_legend=True, **kwargs, ): """Make a rank ECDF plot from simulation-based calibration. Parameters ---------- sbc_output : DataFrame Output of bebi103.stan.sbc() containing results from an SBC calculation. parameters : list, default None List of parameters to include in the SBC rank ECDF plot. If None, use all parameters. diff : bool, default True If True, plot the ECDF minus the ECDF of a Uniform distribution. Otherwise, plot the ECDF of the rank statistic from SBC. ptile : float, default 99 Which precentile to use as the envelope in the plot. bootstrap_envelope : bool, default False If True, use bootstrapping on the appropriate Uniform distribution to compute the envelope. Otherwise, use the Gaussian approximation for the envelope. n_bs_reps : bool, default None Number of bootstrap replicates to use when computing the envelope. If None, n_bs_reps is determined from the formula int(max(n, max(L+1, 100/(100-ptile))) * 100), where n is the number of simulations used in the SBC calculation. show_envelope : bool, default True If True, display the envelope encompassing the ptile percent confidence interval for the SBC ECDF. show_envelope_line : bool, default True If True, and `show_envelope` is also True, plot a line around the envelope. color_by_warning_code : bool, default False If True, color glyphs by diagnostics warning code instead of coloring the glyphs by parameter staircase : bool, default False If True, plot the ECDF as a staircase. Otherwise, plot with dots. p : bokeh.plotting.Figure instance, default None Plot to which to add the SBC rank ECDF plot. If None, create a new figure. marker_kwargs : dict, default {} Dictionary of kwargs to pass to `p.circle()` or `p.line()` when plotting the SBC ECDF. envelope_patch_kwargs : dict Any kwargs passed into p.patch(), which generates the fill of the envelope. envelope_line_kwargs : dict Any kwargs passed into p.line() in generating the line around the fill of the envelope. palette : list of strings of hex colors, or single hex string If a list, color palette to use. If a single string representing a hex color, all glyphs are colored with that color. Default is colorcet.b_glasbey_category10 from the colorcet package. show_legend : bool, default True If True, show legend. kwargs : dict Any kwargs passed to `bokeh.plotting.figure()` when creating the plot. Returns ------- output : bokeh.plotting.Figure instance A plot containing the SBC plot. Notes ----- .. You can see example SBC ECDF plots in Fig. 14 b and c in this paper: https://arxiv.org/abs/1804.06788 """ if sbc_output is None: raise RuntimeError("Argument `sbc_output` must be specified.") # Defaults if palette is None: palette = colorcet.b_glasbey_category10 elif palette not in [list, tuple]: palette = [palette] if "x_axis_label" not in kwargs: kwargs["x_axis_label"] = "rank statistic" if "y_axis_label" not in kwargs: kwargs["y_axis_label"] = "ECDF difference" if diff else "ECDF" if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 275 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 450 toolbar_location = kwargs.pop("toolbar_location", "above") if "fill_color" not in envelope_patch_kwargs: envelope_patch_kwargs["fill_color"] = "gray" if "fill_alpha" not in envelope_patch_kwargs: envelope_patch_kwargs["fill_alpha"] = 0.5 if "line_color" not in envelope_line_kwargs: envelope_line_kwargs["line_color"] = "gray" if "color" in "marker_kwargs" and color_by_warning_code: raise RuntimeError( "Cannot specify marker color when `color_by_warning_code` is True." ) if staircase and color_by_warning_code: raise RuntimeError("Cannot color by warning code for staircase ECDFs.") if parameters is None: parameters = list(sbc_output["parameter"].unique()) elif type(parameters) not in [list, tuple]: parameters = [parameters] L = sbc_output["L"].iloc[0] df = sbc_output.loc[ sbc_output["parameter"].isin(parameters), ["parameter", "rank_statistic", "warning_code"], ] n = (df["parameter"] == df["parameter"].unique()[0]).sum() if show_envelope: x, y_low, y_high = _sbc_rank_envelope( L, n, ptile=ptile, diff=diff, bootstrap=bootstrap_envelope, n_bs_reps=n_bs_reps, ) p = fill_between( x1=x, x2=x, y1=y_high, y2=y_low, patch_kwargs=envelope_patch_kwargs, line_kwargs=envelope_line_kwargs, show_line=show_envelope_line, p=p, **kwargs, ) else: p = bokeh.plotting.figure(**kwargs) if staircase: dfs = [] for param in parameters: if diff: x_data, y_data = _ecdf_diff( df.loc[df["parameter"] == param, "rank_statistic"], L, staircase=True, ) else: x_data, y_data = _ecdf_vals( df.loc[df["parameter"] == param, "rank_statistic"], staircase=True ) dfs.append( pd.DataFrame( data=dict(rank_statistic=x_data, __ECDF=y_data, parameter=param) ) ) df = pd.concat(dfs, ignore_index=True) else: df["__ECDF"] = df.groupby("parameter")["rank_statistic"].transform(_ecdf_y) df["warning_code"] = df["warning_code"].astype(str) if diff: df["__ECDF"] -= (df["rank_statistic"] + 1) / L if staircase: color = marker_kwargs.pop("color", palette) if type(color) == str: color = [color] * len(parameters) elif "color" not in marker_kwargs: color = palette else: color = [marker_kwargs.pop("color")] * len(parameters) if color_by_warning_code: if len(color) < len(df["warning_code"].unique()): raise RuntimeError( "Not enough colors in palette to cover all warning codes." ) elif len(color) < len(parameters): raise RuntimeError("Not enough colors in palette to cover all parameters.") if staircase: plot_cmd = p.line else: plot_cmd = p.circle if color_by_warning_code: for i, (warning_code, g) in enumerate(df.groupby("warning_code")): if show_legend: plot_cmd( source=g, x="rank_statistic", y="__ECDF", color=color[i], legend_label=warning_code, **marker_kwargs, ) else: plot_cmd( source=g, x="rank_statistic", y="__ECDF", color=color[i], **marker_kwargs, ) else: for i, (param, g) in enumerate(df.groupby("parameter")): if show_legend: plot_cmd( source=g, x="rank_statistic", y="__ECDF", color=color[i], legend_label=param, **marker_kwargs, ) else: plot_cmd( source=g, x="rank_statistic", y="__ECDF", color=color[i], **marker_kwargs, ) if show_legend: p.legend.click_policy = "hide" p.legend.location = "bottom_right" return p def parcoord_plot( samples=None, pars=None, transformation=None, color_by_chain=False, palette=None, line_kwargs={}, divergence_kwargs={}, xtick_label_orientation="horizontal", **kwargs, ): """ Make a parallel coordinate plot of MCMC samples. The x-axis is the parameter name and the y-axis is the value of the parameter, possibly transformed to so the scale of all parameters are similar. Parameters ---------- samples : ArviZ InferenceData instance or xarray Dataset instance Result of MCMC sampling. pars : list of strings List of variables to include in the plot. transformation : function, str, or dict, default None A transformation to apply to each set of samples. The function must take a single array as input and return an array as the same size. If None, nor transformation is done. If a dictionary, each key is the variable name and the corresponding value is a function for the transformation of that variable. Alternatively, if `transformation` is `'minmax'`, the data are scaled to range from zero to one, or if `transformation` is `'rank'`, the rank of the each data is used. color_by_chain : bool, default False If True, color the lines by chain. palette : list of strings of hex colors, or single hex string If a list, color palette to use. If a single string representing a hex color, all glyphs are colored with that color. Default is colorcet.b_glasbey_category10 from the colorcet package. line_kwargs: dict Dictionary of kwargs to be passed to `p.multi_line()` in making the plot of non-divergent samples. divergence_kwargs: dict Dictionary of kwargs to be passed to `p.multi_line()` in making the plot of divergent samples. xtick_label_orientation : str or float, default 'horizontal' Orientation of x tick labels. In some plots, horizontally labeled ticks will have label clashes, and this can fix that. kwargs Any kwargs to be passed to `bokeh.plotting.figure()` when instantiating the figure. Returns ------- output : Bokeh plot Parallel coordinates plot. """ # Default properties if palette is None: palette = colorcet.b_glasbey_category10 line_width = line_kwargs.pop("line_width", 0.5) alpha = line_kwargs.pop("alpha", 0.02) line_join = line_kwargs.pop("line_join", "bevel") if "color" in line_kwargs and color_by_chain: raise RuntimeError( "Cannot specify line color and also color by chain. If coloring by chain, use `palette` kwarg to specify color scheme." ) color = line_kwargs.pop("color", "black") divergence_line_join = divergence_kwargs.pop("line_join", "bevel") divergence_line_width = divergence_kwargs.pop("line_width", 1) divergence_color = divergence_kwargs.pop("color", "orange") divergence_alpha = divergence_kwargs.pop("alpha", 1) if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 175 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 600 toolbar_location = kwargs.pop("toolbar_location", "above") if "x_range" in kwargs: raise RuntimeError("Cannot specify x_range; this is inferred.") if not color_by_chain: palette = [color] * len(palette) if type(samples) != az.data.inference_data.InferenceData: raise RuntimeError("Input must be an ArviZ InferenceData instance.") if not hasattr(samples, "posterior"): raise RuntimeError("Input samples do not have 'posterior' group.") if not ( hasattr(samples, "sample_stats") and hasattr(samples.sample_stats, "diverging") ): warnings.warn("No divergence information available.") pars, df = _sample_pars_to_df(samples, pars) if transformation == "minmax": transformation = { par: lambda x: (x - x.min()) / (x.max() - x.min()) if x.min() < x.max() else 0.0 for par in pars } elif transformation == "rank": transformation = {par: lambda x: st.rankdata(x) for par in pars} if transformation is None: transformation = {par: lambda x: x for par in pars} if callable(transformation) or transformation is None: transformation = {par: transformation for par in pars} for col, trans in transformation.items(): df[col] = trans(df[col]) df = df.melt(id_vars=["divergent__", "chain__", "draw__"]) p = bokeh.plotting.figure( x_range=bokeh.models.FactorRange(*pars), toolbar_location=toolbar_location, **kwargs, ) # Plots for samples that were not divergent ys = np.array( [ group["value"].values for _, group in df.loc[~df["divergent__"]].groupby(["chain__", "draw__"]) ] ) if len(ys) > 0: ys = [y for y in ys] xs = [list(df["variable"].unique())] * len(ys) p.multi_line( xs, ys, line_width=line_width, alpha=alpha, line_join=line_join, color=[palette[i % len(palette)] for i in range(len(ys))], **line_kwargs, ) # Plots for samples that were divergent ys = np.array( [ group["value"].values for _, group in df.loc[df["divergent__"]].groupby(["chain__", "draw__"]) ] ) if len(ys) > 0: ys = [y for y in ys] xs = [list(df["variable"].unique())] * len(ys) p.multi_line( xs, ys, alpha=divergence_alpha, line_join=line_join, color=divergence_color, line_width=divergence_line_width, **divergence_kwargs, ) p.xaxis.major_label_orientation = xtick_label_orientation return p def trace_plot(samples=None, pars=None, palette=None, line_kwargs={}, **kwargs): """ Make a trace plot of MCMC samples. Parameters ---------- samples : ArviZ InferenceData instance or xarray Dataset instance Result of MCMC sampling. pars : list of strings List of variables to include in the plot. palette : list of strings of hex colors, or single hex string If a list, color palette to use. If a single string representing a hex color, all glyphs are colored with that color. Default is colorcet.b_glasbey_category10 from the colorcet package. line_kwargs: dict Dictionary of kwargs to be passed to `p.multi_line()` in making the plot of non-divergent samples. kwargs Any kwargs to be passed to `bokeh.plotting.figure()`. Returns ------- output : Bokeh gridplot Set of chain traces as a Bokeh gridplot. """ if type(samples) != az.data.inference_data.InferenceData: raise RuntimeError("Input must be an ArviZ InferenceData instance.") if not hasattr(samples, "posterior"): raise RuntimeError("Input samples do not have 'posterior' group.") pars, df = _sample_pars_to_df(samples, pars) # Default properties if palette is None: palette = colorcet.b_glasbey_category10 line_width = line_kwargs.pop("line_width", 0.5) alpha = line_kwargs.pop("alpha", 0.5) line_join = line_kwargs.pop("line_join", "bevel") if "color" in line_kwargs: raise RuntimeError( "Cannot specify line color. Specify color scheme with `palette` kwarg." ) if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 150 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 600 x_axis_label = kwargs.pop("x_axis_label", "step") if "y_axis_label" in kwargs: raise RuntimeError( "`y_axis_label` cannot be specified; it is inferred from samples." ) if "x_range" not in kwargs: kwargs["x_range"] = [df["draw__"].min(), df["draw__"].max()] plots = [] grouped = df.groupby("chain__") for i, par in enumerate(pars): p = bokeh.plotting.figure(x_axis_label=x_axis_label, y_axis_label=par, **kwargs) for i, (chain, group) in enumerate(grouped): p.line( group["draw__"], group[par], line_width=line_width, line_join=line_join, color=palette[i], *line_kwargs, ) plots.append(p) if len(plots) == 1: return plots[0] # Link ranges for i, p in enumerate(plots[:-1]): plots[i].x_range = plots[-1].x_range return bokeh.layouts.gridplot(plots, ncols=1) def corner( samples=None, pars=None, labels=None, datashade=False, plot_width=150, plot_ecdf=False, cmap="black", color_by_chain=False, palette=None, divergence_color="orange", alpha=0.02, single_param_color="black", bins=20, show_contours=False, contour_color="black", bins_2d=50, levels=None, weights=None, smooth=0.02, extend_contour_domain=False, plot_width_correction=50, plot_height_correction=40, xtick_label_orientation="horizontal", ): """ Make a corner plot of MCMC results. Heavily influenced by the corner package by <NAME>. Parameters ---------- samples : Pandas DataFrame or ArviZ InferenceData instance Results of sampling. pars : list List of variables as strings included in `samples` to construct corner plot. labels : list, default None List of labels for the respective variables given in `pars`. If None, the variable names from `pars` are used. datashade : bool, default False Whether or not to convert sampled points to a raster image using Datashader. plot_width : int, default 150 Width of each plot in the corner plot in pixels. The height is computed from the width to make the plots roughly square. plot_ecdf : bool, default False If True, plot ECDFs of samples on the diagonal of the corner plot. If False, histograms are plotted. cmap : str, default 'black' Valid colormap string for DataShader or for coloring Bokeh glyphs. color_by_chain : bool, default False If True, color the glyphs by chain index. palette : list of strings of hex colors, or single hex string If a list, color palette to use. If a single string representing a hex color, all glyphs are colored with that color. Default is the default color cycle employed by Altair. Ignored is `color_by_chain` is False. divergence_color : str, default 'orange' Color to use for showing points where the sampler experienced a divergence. alpha : float, default 1.0 Opacity of glyphs. Ignored if `datashade` is True. single_param_color : str, default 'black' Color of histogram or ECDF lines. bins : int, default 20 Number of bins to use in constructing histograms. Ignored if `plot_ecdf` is True. show_contours : bool, default False If True, show contour plot on top of samples. contour_color : str, default 'black' Color of contour lines bins_2d : int, default 50 Number of bins in each direction for binning 2D histograms when computing contours. levels : list of floats, default None Levels to use when constructing contours. By default, these are chosen according to this principle from <NAME>: http://corner.readthedocs.io/en/latest/pages/sigmas.html weights : default None Value to pass as `weights` kwarg to np.histogram2d(), used in constructing contours. smooth : int or None, default 1 Width of smoothing kernel for making contours. plot_width_correction : int, default 50 Correction for width of plot taking into account tick and axis labels. extend_contour_domain : bool, default False If True, extend the domain of the contours a little bit beyond the extend of the samples. This is done in the corner package, but I prefer not to do it. plot_width_correction : int, default 50 Correction for width of plot taking into account tick and axis labels. plot_height_correction : int, default 40 Correction for height of plot taking into account tick and axis labels. xtick_label_orientation : str or float, default 'horizontal' Orientation of x tick labels. In some plots, horizontally labeled ticks will have label clashes, and this can fix that. Returns ------- output : Bokeh gridplot Corner plot as a Bokeh gridplot. """ # Default properties if palette is None: palette = colorcet.b_glasbey_category10 if color_by_chain: if datashade: raise NotImplementedError( "Can only color by chain if `datashade` is False." ) if cmap not in ["black", None]: warnings.warn("Ignoring cmap values to color by chain.") if divergence_color is None: divergence_color = cmap if type(samples) == pd.core.frame.DataFrame: df = samples if pars is None: pars = [col for col in df.columns if len(col) < 2 or col[-2:] != "__"] else: pars, df = _sample_pars_to_df(samples, pars) if color_by_chain: # Have to convert datatype to string to play nice with Bokeh df["chain__"] = df["chain__"].astype(str) factors = tuple(df["chain__"].unique()) cmap = bokeh.transform.factor_cmap("chain__", palette=palette, factors=factors) # Add dummy divergent column if no divergence information is given if "divergent__" not in df.columns: df = df.copy() df["divergent__"] = 0 # Add dummy chain column if no divergence information is given if "chain__" not in df.columns: df = df.copy() df["chain__"] = 0 if len(pars) > 6: raise RuntimeError("For space purposes, can show only six variables.") for col in pars: if col not in df.columns: raise RuntimeError("Column " + col + " not in the columns of DataFrame.") if labels is None: labels = pars elif len(labels) != len(pars): raise RuntimeError("len(pars) must equal len(labels)") if len(pars) == 1: x = pars[0] if plot_ecdf: if datashade: if plot_width == 150: plot_height = 200 plot_width = 300 else: plot_width = 200 plot_height = 200 x_range, _ = _data_range(df, pars[0], pars[0]) p = bokeh.plotting.figure( x_range=x_range, y_range=[-0.02, 1.02], plot_width=plot_width, plot_height=plot_height, ) x_ecdf, y_ecdf = _ecdf_vals(df[pars[0]], staircase=True) df_ecdf = pd.DataFrame(data={pars[0]: x_ecdf, "ECDF": y_ecdf}) _ = datashader.bokeh_ext.InteractiveImage( p, _create_line_image, df=df_ecdf, x=x, y="ECDF", cmap=single_param_color, ) else: p = ecdf( df[pars[0]], staircase=True, line_width=2, line_color=single_param_color, ) else: p = histogram( df[pars[0]], bins=bins, density=True, line_kwargs=dict(line_width=2, line_color=single_param_color), x_axis_label=pars[0], ) p.xaxis.major_label_orientation = xtick_label_orientation return p if not datashade: if len(df) > 10000: raise RuntimeError( "Cannot render more than 10,000 samples without DataShader." ) elif len(df) > 5000: warnings.warn("Rendering so many points without DataShader is ill-advised.") plots = [[None for _ in range(len(pars))] for _ in range(len(pars))] for i, j in zip(*np.tril_indices(len(pars))): pw = plot_width ph = plot_width if j == 0: pw += plot_width_correction if i == len(pars) - 1: ph += plot_height_correction x = pars[j] if i != j: y = pars[i] x_range, y_range = _data_range(df, x, y) plots[i][j] = bokeh.plotting.figure( x_range=x_range, y_range=y_range, plot_width=pw, plot_height=ph ) if datashade: _ = datashader.bokeh_ext.InteractiveImage( plots[i][j], _create_points_image, df=df, x=x, y=y, cmap=cmap ) plots[i][j].circle( df.loc[df["divergent__"] == 1, x], df.loc[df["divergent__"] == 1, y], size=2, color=divergence_color, ) else: if divergence_color is None: plots[i][j].circle(df[x], df[y], size=2, alpha=alpha, color=cmap) else: plots[i][j].circle( source=df.loc[df["divergent__"] == 0, [x, y, "chain__"]], x=x, y=y, size=2, alpha=alpha, color=cmap, ) plots[i][j].circle( df.loc[df["divergent__"] == 1, x], df.loc[df["divergent__"] == 1, y], size=2, color=divergence_color, ) if show_contours: xs, ys = contour_lines_from_samples( df[x].values, df[y].values, bins=bins_2d, smooth=smooth, levels=levels, weights=weights, extend_domain=extend_contour_domain, ) plots[i][j].multi_line(xs, ys, line_color=contour_color, line_width=2) else: if plot_ecdf: x_range, _ = _data_range(df, x, x) plots[i][i] = bokeh.plotting.figure( x_range=x_range, y_range=[-0.02, 1.02], plot_width=pw, plot_height=ph, ) if datashade: x_ecdf, y_ecdf = _ecdf_vals(df[x], staircase=True) df_ecdf = pd.DataFrame(data={x: x_ecdf, "ECDF": y_ecdf}) _ = datashader.bokeh_ext.InteractiveImage( plots[i][i], _create_line_image, df=df_ecdf, x=x, y="ECDF", cmap=single_param_color, ) else: plots[i][i] = ecdf( df[x], p=plots[i][i], staircase=True, line_width=2, line_color=single_param_color, ) else: x_range, _ = _data_range(df, x, x) plots[i][i] = bokeh.plotting.figure( x_range=x_range, y_range=bokeh.models.DataRange1d(start=0.0), plot_width=pw, plot_height=ph, ) f, e = np.histogram(df[x], bins=bins, density=True) e0 = np.empty(2 * len(e)) f0 = np.empty(2 * len(e)) e0[::2] = e e0[1::2] = e f0[0] = 0 f0[-1] = 0 f0[1:-1:2] = f f0[2:-1:2] = f plots[i][i].line(e0, f0, line_width=2, color=single_param_color) plots[i][j].xaxis.major_label_orientation = xtick_label_orientation # Link axis ranges for i in range(1, len(pars)): for j in range(i): plots[i][j].x_range = plots[j][j].x_range plots[i][j].y_range = plots[i][i].x_range # Label axes for i, label in enumerate(labels): plots[-1][i].xaxis.axis_label = label for i, label in enumerate(labels[1:]): plots[i + 1][0].yaxis.axis_label = label if plot_ecdf: plots[0][0].yaxis.axis_label = "ECDF" # Take off tick labels for i in range(len(pars) - 1): for j in range(i + 1): plots[i][j].xaxis.major_label_text_font_size = "0pt" if not plot_ecdf: plots[0][0].yaxis.major_label_text_font_size = "0pt" for i in range(1, len(pars)): for j in range(1, i + 1): plots[i][j].yaxis.major_label_text_font_size = "0pt" grid = bokeh.layouts.gridplot(plots, toolbar_location="left") return grid def contour( X, Y, Z, levels=None, p=None, overlaid=False, cmap=None, overlay_grid=False, fill=False, fill_palette=None, fill_alpha=0.75, line_kwargs={}, **kwargs, ): """ Make a contour plot, possibly overlaid on an image. Parameters ---------- X : 2D Numpy array Array of x-values, as would be produced using np.meshgrid() Y : 2D Numpy array Array of y-values, as would be produced using np.meshgrid() Z : 2D Numpy array Array of z-values. levels : array_like Levels to plot, ranging from 0 to 1. The contour around a given level contains that fraction of the total probability if the contour plot is for a 2D probability density function. By default, the levels are given by the one, two, three, and four sigma levels corresponding to a marginalized distribution from a 2D Gaussian distribution. p : bokeh plotting object, default None If not None, the contour are added to `p`. This option is not allowed if `overlaid` is True. overlaid : bool, default False If True, `Z` is displayed as an image and the contours are overlaid. cmap : str or list of hex colors, default None If `im` is an intensity image, `cmap` is a mapping of intensity to color. If None, default is 256-level Viridis. If `im` is a color image, then `cmap` can either be 'rgb' or 'cmy' (default), for RGB or CMY merge of channels. overlay_grid : bool, default False If True, faintly overlay the grid on top of image. Ignored if overlaid is False. line_kwargs : dict, default {} Keyword arguments passed to `p.multiline()` for rendering the contour. kwargs Any kwargs to be passed to `bokeh.plotting.figure()`. Returns ------- output : Bokeh plotting object Plot populated with contours, possible with an image. """ if len(X.shape) != 2 or Y.shape != X.shape or Z.shape != X.shape: raise RuntimeError("All arrays must be 2D and of same shape.") if overlaid and p is not None: raise RuntimeError("Cannot specify `p` if showing image.") # Set defaults x_axis_label = kwargs.pop("x_axis_label", "x") y_axis_label = kwargs.pop("y_axis_label", "y") if "line_color" not in line_kwargs: if overlaid: line_kwargs["line_color"] = "white" else: line_kwargs["line_color"] = "black" line_width = line_kwargs.pop("line_width", 2) if p is None: if overlaid: frame_height = kwargs.pop("frame_height", 300) frame_width = kwargs.pop("frame_width", 300) title = kwargs.pop("title", None) p = image.imshow( Z, cmap=cmap, frame_height=frame_height, frame_width=frame_width, x_axis_label=x_axis_label, y_axis_label=y_axis_label, x_range=[X.min(), X.max()], y_range=[Y.min(), Y.max()], no_ticks=False, flip=False, return_im=False, ) else: if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 300 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 300 p = bokeh.plotting.figure( x_axis_label=x_axis_label, y_axis_label=y_axis_label, **kwargs ) # Set default levels if levels is None: levels = 1.0 - np.exp(-np.arange(0.5, 2.1, 0.5) ** 2 / 2) # Compute contour lines if fill or line_width: xs, ys = _contour_lines(X, Y, Z, levels) # Make fills. This is currently not supported if fill: raise NotImplementedError("Filled contours are not yet implemented.") if fill_palette is None: if len(levels) <= 6: fill_palette = bokeh.palettes.Greys[len(levels) + 3][1:-1] elif len(levels) <= 10: fill_palette = bokeh.palettes.Viridis[len(levels) + 1] else: raise RuntimeError( "Can only have maximally 10 levels with filled contours" + " unless user specifies `fill_palette`." ) elif len(fill_palette) != len(levels) + 1: raise RuntimeError( "`fill_palette` must have 1 more entry" + " than `levels`" ) p.patch( xs[-1], ys[-1], color=fill_palette[0], alpha=fill_alpha, line_color=None ) for i in range(1, len(levels)): x_p = np.concatenate((xs[-1 - i], xs[-i][::-1])) y_p = np.concatenate((ys[-1 - i], ys[-i][::-1])) p.patch(x_p, y_p, color=fill_palette[i], alpha=fill_alpha, line_color=None) p.background_fill_color = fill_palette[-1] # Populate the plot with contour lines p.multi_line(xs, ys, line_width=line_width, **line_kwargs) if overlay_grid and overlaid: p.grid.level = "overlay" p.grid.grid_line_alpha = 0.2 return p def ds_line_plot( df, x, y, cmap="#1f77b4", plot_height=300, plot_width=500, x_axis_label=None, y_axis_label=None, title=None, margin=0.02, ): """ Make a datashaded line plot. Parameters ---------- df : pandas DataFrame DataFrame containing the data x : Valid column name of Pandas DataFrame Column containing the x-data. y : Valid column name of Pandas DataFrame Column containing the y-data. cmap : str, default '#1f77b4' Valid colormap string for DataShader and for coloring Bokeh glyphs. plot_height : int, default 300 Height of plot, in pixels. plot_width : int, default 500 Width of plot, in pixels. x_axis_label : str, default None Label for the x-axis. y_axis_label : str, default None Label for the y-axis. title : str, default None Title of the plot. Ignored if `p` is not None. margin : float, default 0.02 Margin, in units of `plot_width` or `plot_height`, to leave around the plotted line. Returns ------- output : datashader.bokeh_ext.InteractiveImage Interactive image of plot. Note that you should *not* use bokeh.io.show() to view the image. For most use cases, you should just call this function without variable assignment. """ if x_axis_label is None: if type(x) == str: x_axis_label = x else: x_axis_label = "x" if y_axis_label is None: if type(y) == str: y_axis_label = y else: y_axis_label = "y" x_range, y_range = _data_range(df, x, y, margin=margin) p = bokeh.plotting.figure( plot_height=plot_height, plot_width=plot_width, x_range=x_range, y_range=y_range, x_axis_label=x_axis_label, y_axis_label=y_axis_label, title=title, ) return datashader.bokeh_ext.InteractiveImage( p, _create_line_image, df=df, x=x, y=y, cmap=cmap ) def ds_point_plot( df, x, y, cmap="#1f77b4", plot_height=300, plot_width=500, x_axis_label=None, y_axis_label=None, title=None, margin=0.02, ): """ Make a datashaded point plot. Parameters ---------- df : pandas DataFrame DataFrame containing the data x : Valid column name of Pandas DataFrame Column containing the x-data. y : Valid column name of Pandas DataFrame Column containing the y-data. cmap : str, default '#1f77b4' Valid colormap string for DataShader and for coloring Bokeh glyphs. plot_height : int, default 300 Height of plot, in pixels. plot_width : int, default 500 Width of plot, in pixels. x_axis_label : str, default None Label for the x-axis. y_axis_label : str, default None Label for the y-axis. title : str, default None Title of the plot. Ignored if `p` is not None. margin : float, default 0.02 Margin, in units of `plot_width` or `plot_height`, to leave around the plotted line. Returns ------- output : datashader.bokeh_ext.InteractiveImage Interactive image of plot. Note that you should *not* use bokeh.io.show() to view the image. For most use cases, you should just call this function without variable assignment. """ if x_axis_label is None: if type(x) == str: x_axis_label = x else: x_axis_label = "x" if y_axis_label is None: if type(y) == str: y_axis_label = y else: y_axis_label = "y" x_range, y_range = _data_range(df, x, y, margin=margin) p = bokeh.plotting.figure( plot_height=plot_height, plot_width=plot_width, x_range=x_range, y_range=y_range, x_axis_label=x_axis_label, y_axis_label=y_axis_label, title=title, ) return datashader.bokeh_ext.InteractiveImage( p, _create_points_image, df=df, x=x, y=y, cmap=cmap ) def mpl_cmap_to_color_mapper(cmap): """ Convert a Matplotlib colormap to a bokeh.models.LinearColorMapper instance. Parameters ---------- cmap : str A string giving the name of the color map. Returns ------- output : bokeh.models.LinearColorMapper instance A linear color_mapper with 25 gradations. Notes ----- .. See https://matplotlib.org/examples/color/colormaps_reference.html for available Matplotlib colormaps. """ cm = mpl_get_cmap(cmap) palette = [rgb_frac_to_hex(cm(i)[:3]) for i in range(256)] return bokeh.models.LinearColorMapper(palette=palette) def _ecdf_vals(data, staircase=False, complementary=False): """Get x, y, values of an ECDF for plotting. Parameters ---------- data : ndarray One dimensional Numpy array with data. staircase : bool, default False If True, generate x and y values for staircase ECDF (staircase). If False, generate x and y values for ECDF as dots. complementary : bool If True, return values for ECCDF. Returns ------- x : ndarray x-values for plot y : ndarray y-values for plot """ x = np.sort(data) y = np.arange(1, len(data) + 1) / len(data) if staircase: x, y = cdf_to_staircase(x, y) if complementary: y = 1 - y elif complementary: y = 1 - y + 1 / len(y) return x, y @numba.jit(nopython=True) def _ecdf_arbitrary_points(data, x): """Give the value of an ECDF at arbitrary points x.""" y = np.arange(len(data) + 1) / len(data) return y[np.searchsorted(np.sort(data), x, side="right")] def _ecdf_from_samples(df, name, ptiles, x): """Compute ECDFs and percentiles from samples.""" df_ecdf = pd.DataFrame() df_ecdf_vals = pd.DataFrame() grouped = df.groupby(["chain", "chain_idx"]) for i, g in grouped: df_ecdf_vals[i] = _ecdf_arbitrary_points(g[name].values, x) for ptile in ptiles: df_ecdf[str(ptile)] = df_ecdf_vals.quantile( ptile / 100, axis=1, interpolation="higher" ) df_ecdf["x"] = x return df_ecdf def cdf_to_staircase(x, y): """Convert discrete values of CDF to staircase for plotting. Parameters ---------- x : array_like, shape (n,) x-values for concave corners of CDF y : array_like, shape (n,) y-values of the concave corvners of the CDF Returns ------- x_staircase : array_like, shape (2*n, ) x-values for staircase CDF. y_staircase : array_like, shape (2*n, ) y-values for staircase CDF. """ # Set up output arrays x_staircase = np.empty(2 * len(x)) y_staircase = np.empty(2 * len(x)) # y-values for steps y_staircase[0] = 0 y_staircase[1::2] = y y_staircase[2::2] = y[:-1] # x- values for steps x_staircase[::2] = x x_staircase[1::2] = x return x_staircase, y_staircase @numba.jit(nopython=True) def _y_ecdf(data, x): y = np.arange(len(data) + 1) / len(data) return y[np.searchsorted(np.sort(data), x, side="right")] @numba.jit(nopython=True) def _draw_ecdf_bootstrap(L, n, n_bs_reps=100000): x = np.arange(L + 1) ys = np.empty((n_bs_reps, len(x))) for i in range(n_bs_reps): draws = np.random.randint(0, L + 1, size=n) ys[i, :] = _y_ecdf(draws, x) return ys def _sbc_rank_envelope(L, n, ptile=95, diff=True, bootstrap=False, n_bs_reps=None): x = np.arange(L + 1) y = st.randint.cdf(x, 0, L + 1) std = np.sqrt(y * (1 - y) / n) if bootstrap: if n_bs_reps is None: n_bs_reps = int(max(n, max(L + 1, 100 / (100 - ptile))) * 100) ys = _draw_ecdf_bootstrap(L, n, n_bs_reps=n_bs_reps) y_low, y_high = np.percentile(ys, [50 - ptile / 2, 50 + ptile / 2], axis=0) else: y_low = np.concatenate( (st.norm.ppf((50 - ptile / 2) / 100, y[:-1], std[:-1]), (1.0,)) ) y_high = np.concatenate( (st.norm.ppf((50 + ptile / 2) / 100, y[:-1], std[:-1]), (1.0,)) ) # Ensure that ends are appropriate y_low = np.maximum(0, y_low) y_high = np.minimum(1, y_high) # Make "staircase" stepped ECDFs _, y_low = cdf_to_staircase(x, y_low) x_staircase, y_high = cdf_to_staircase(x, y_high) if diff: _, y = cdf_to_staircase(x, y) y_low -= y y_high -= y return x_staircase, y_low, y_high def _ecdf_diff(data, L, staircase=False): x, y = _ecdf_vals(data) y_uniform = (x + 1) / L if staircase: x, y = cdf_to_staircase(x, y) _, y_uniform = cdf_to_staircase(np.arange(len(data)), y_uniform) y -= y_uniform return x, y def _get_cat_range(df, grouped, order, color_column, horizontal): if order is None: if isinstance(list(grouped.groups.keys())[0], tuple): factors = tuple( [tuple([str(k) for k in key]) for key in grouped.groups.keys()] ) else: factors = tuple([str(key) for key in grouped.groups.keys()]) else: if type(order[0]) in [list, tuple]: factors = tuple([tuple([str(k) for k in key]) for key in order]) else: factors = tuple([str(entry) for entry in order]) if horizontal: cat_range = bokeh.models.FactorRange(*(factors[::-1])) else: cat_range = bokeh.models.FactorRange(*factors) if color_column is None: color_factors = factors else: color_factors = tuple(sorted(list(df[color_column].unique().astype(str)))) return cat_range, factors, color_factors def _cat_figure( df, grouped, plot_height, plot_width, x_axis_label, y_axis_label, title, order, color_column, tooltips, horizontal, val_axis_type, ): fig_kwargs = dict( plot_height=plot_height, plot_width=plot_width, x_axis_label=x_axis_label, y_axis_label=y_axis_label, title=title, tooltips=tooltips, ) cat_range, factors, color_factors = _get_cat_range( df, grouped, order, color_column, horizontal ) if horizontal: fig_kwargs["y_range"] = cat_range fig_kwargs["x_axis_type"] = val_axis_type else: fig_kwargs["x_range"] = cat_range fig_kwargs["y_axis_type"] = val_axis_type return bokeh.plotting.figure(**fig_kwargs), factors, color_factors def _cat_source(df, cats, cols, color_column): if type(cats) in [list, tuple]: cat_source = list(zip(*tuple([df[cat].astype(str) for cat in cats]))) labels = [", ".join(cat) for cat in cat_source] else: cat_source = list(df[cats].astype(str).values) labels = cat_source if type(cols) in [list, tuple, pd.core.indexes.base.Index]: source_dict = {col: list(df[col].values) for col in cols} else: source_dict = {cols: list(df[cols].values)} source_dict["cat"] = cat_source if color_column in [None, "cat"]: source_dict["__label"] = labels else: source_dict["__label"] = list(df[color_column].astype(str).values) source_dict[color_column] = list(df[color_column].astype(str).values) return bokeh.models.ColumnDataSource(source_dict) def _tooltip_cols(tooltips): if tooltips is None: return [] if type(tooltips) not in [list, tuple]: raise RuntimeError("`tooltips` must be a list or tuple of two-tuples.") cols = [] for tip in tooltips: if type(tip) not in [list, tuple] or len(tip) != 2: raise RuntimeError("Invalid tooltip.") if tip[1][0] == "@": if tip[1][1] == "{": cols.append(tip[1][2 : tip[1].find("}")]) elif "{" in tip[1]: cols.append(tip[1][1 : tip[1].find("{")]) else: cols.append(tip[1][1:]) return cols def _cols_to_keep(cats, val, color_column, tooltips): cols = _tooltip_cols(tooltips) cols += [val] if type(cats) in [list, tuple]: cols += list(cats) else: cols += [cats] if color_column is not None: cols += [color_column] return list(set(cols)) def _check_cat_input(df, cats, val, color_column, tooltips, palette, kwargs): if df is None: raise RuntimeError("`df` argument must be provided.") if cats is None: raise RuntimeError("`cats` argument must be provided.") if val is None: raise RuntimeError("`val` argument must be provided.") if type(palette) not in [list, tuple]: raise RuntimeError("`palette` must be a list or tuple.") if val not in df.columns: raise RuntimeError(f"{val} is not a column in the inputted data frame") cats_array = type(cats) in [list, tuple] if cats_array: for cat in cats: if cat not in df.columns: raise RuntimeError(f"{cat} is not a column in the inputted data frame") else: if cats not in df.columns: raise RuntimeError(f"{cats} is not a column in the inputted data frame") if color_column is not None and color_column not in df.columns: raise RuntimeError(f"{color_column} is not a column in the inputted data frame") cols = _cols_to_keep(cats, val, color_column, tooltips) for col in cols: if col not in df.columns: raise RuntimeError(f"{col} is not a column in the inputted data frame") bad_kwargs = ["x", "y", "source", "cat", "legend"] if kwargs is not None and any([key in kwargs for key in bad_kwargs]): raise RuntimeError(", ".join(bad_kwargs) + " are not allowed kwargs.") if val == "cat": raise RuntimeError("`'cat'` cannot be used as `val`.") if val == "__label" or (cats == "__label" or (cats_array and "__label" in cats)): raise RuntimeError("'__label' cannot be used for `val` or `cats`.") return cols def _outliers(data): bottom, middle, top = np.percentile(data, [25, 50, 75]) iqr = top - bottom outliers = data[(data > top + 1.5 * iqr) | (data < bottom - 1.5 * iqr)] return outliers def _box_and_whisker(data): middle = data.median() bottom = data.quantile(0.25) top = data.quantile(0.75) iqr = top - bottom top_whisker = data[data <= top + 1.5 * iqr].max() bottom_whisker = data[data >= bottom - 1.5 * iqr].min() return pd.Series( { "middle": middle, "bottom": bottom, "top": top, "top_whisker": top_whisker, "bottom_whisker": bottom_whisker, } ) def _box_source(df, cats, val, cols): """Construct a data frame for making box plot.""" # Need to reset index for use in slicing outliers df_source = df.reset_index(drop=True) if type(cats) in [list, tuple]: level = list(range(len(cats))) else: level = 0 if cats is None: grouped = df_source else: grouped = df_source.groupby(cats) # Data frame for boxes and whiskers df_box = grouped[val].apply(_box_and_whisker).unstack().reset_index() source_box = _cat_source( df_box, cats, ["middle", "bottom", "top", "top_whisker", "bottom_whisker"], None ) # Data frame for outliers df_outliers = grouped[val].apply(_outliers).reset_index(level=level) df_outliers[cols] = df_source.loc[df_outliers.index, cols] source_outliers = _cat_source(df_outliers, cats, cols, None) return source_box, source_outliers def _ecdf_y(data, complementary=False): """Give y-values of an ECDF for an unsorted column in a data frame. Parameters ---------- data : Pandas Series Series (or column of a DataFrame) from which to generate ECDF values complementary : bool, default False If True, give the ECCDF values. Returns ------- output : Pandas Series Corresponding y-values for an ECDF when plotted with dots. Notes ----- .. This only works for plotting an ECDF with points, not for staircase ECDFs """ if complementary: return 1 - data.rank(method="first") / len(data) + 1 / len(data) else: return data.rank(method="first") / len(data) def _point_ecdf_source(data, val, cats, cols, complementary, colored): """DataFrame for making point-wise ECDF.""" df = data.copy() if complementary: col = "__ECCDF" else: col = "__ECDF" if cats is None or colored: df[col] = _ecdf_y(df[val], complementary) else: df[col] = df.groupby(cats)[val].transform(_ecdf_y, complementary) cols += [col] return _cat_source(df, cats, cols, None) def _ecdf_collection_dots( df, val, cats, cols, complementary, order, palette, show_legend, y, p, **kwargs ): _, _, color_factors = _get_cat_range(df, df.groupby(cats), order, None, False) source = _point_ecdf_source(df, val, cats, cols, complementary, False) if "color" not in kwargs: kwargs["color"] = bokeh.transform.factor_cmap( "cat", palette=palette, factors=color_factors ) if show_legend: kwargs["legend"] = "__label" p.circle(source=source, x=val, y=y, **kwargs) return p def _ecdf_collection_staircase( df, val, cats, complementary, order, palette, show_legend, p, **kwargs ): grouped = df.groupby(cats) color_not_in_kwargs = "color" not in kwargs if order is None: order = list(grouped.groups.keys()) grouped_iterator = [ (order_val, grouped.get_group(order_val)) for order_val in order ] for i, g in enumerate(grouped_iterator): if show_legend: if type(g[0]) == tuple: legend = ", ".join([str(c) for c in g[0]]) else: legend = str(g[0]) else: legend = None if color_not_in_kwargs: kwargs["color"] = palette[i % len(palette)] ecdf( g[1][val], staircase=True, p=p, legend=legend, complementary=complementary, **kwargs, ) return p def _display_clicks(div, attributes=[], style="float:left;clear:left;font_size=0.5pt"): """Build a suitable CustomJS to display the current event in the div model.""" return bokeh.models.CustomJS( args=dict(div=div), code=""" var attrs = %s; var args = []; for (var i=0; i<attrs.length; i++ ) { args.push(Number(cb_obj[attrs[i]]).toFixed(4)); } var line = "<span style=%r>[" + args.join(", ") + "], </span>\\n"; var text = div.text.concat(line); var lines = text.split("\\n") if ( lines.length > 35 ) { lines.shift(); } div.text = lines.join("\\n"); """ % (attributes, style), ) def _data_range(df, x, y, margin=0.02): x_range = df[x].max() - df[x].min() y_range = df[y].max() - df[y].min() return ( [df[x].min() - x_range * margin, df[x].max() + x_range * margin], [df[y].min() - y_range * margin, df[y].max() + y_range * margin], ) def _create_points_image(x_range, y_range, w, h, df, x, y, cmap): cvs = ds.Canvas( x_range=x_range, y_range=y_range, plot_height=int(h), plot_width=int(w) ) agg = cvs.points(df, x, y, agg=ds.reductions.count()) return ds.transfer_functions.dynspread( ds.transfer_functions.shade(agg, cmap=cmap, how="linear") ) def _create_line_image(x_range, y_range, w, h, df, x, y, cmap=None): cvs = ds.Canvas( x_range=x_range, y_range=y_range, plot_height=int(h), plot_width=int(w) ) agg = cvs.line(df, x, y) return ds.transfer_functions.dynspread(ds.transfer_functions.shade(agg, cmap=cmap)) def _contour_lines(X, Y, Z, levels): """ Generate lines for contour plot. """ # Compute the density levels. Zflat = Z.flatten() inds = np.argsort(Zflat)[::-1] Zflat = Zflat[inds] sm = np.cumsum(Zflat) sm /= sm[-1] V = np.empty(len(levels)) for i, v0 in enumerate(levels): try: V[i] = Zflat[sm <= v0][-1] except: V[i] = Zflat[0] V.sort() m = np.diff(V) == 0 while np.any(m): V[np.where(m)[0][0]] *= 1.0 - 1e-4 m = np.diff(V) == 0 V.sort() # Make contours c = matplotlib._contour.QuadContourGenerator(X, Y, Z, None, True, 0) xs = [] ys = [] for level in V: paths = c.create_contour(level) for line in paths: xs.append(line[:, 0]) ys.append(line[:, 1]) return xs, ys def contour_lines_from_samples( x, y, smooth=0.02, levels=None, bins=50, weights=None, extend_domain=False ): """ Get lines for a contour plot from (x, y) samples. Parameters ---------- x : array_like, shape (n,) x-values of samples. y : array_like, shape (n,) y-values of samples. smooth : float, default 0.02 Smoothing parameter for Gaussian smoothing of contour. A Gaussian filter is applied with standard deviation given by `smooth * bins`. If None, no smoothing is done. levels : float, list of floats, or None The levels of the contours. To enclose 95% of the samples, use `levels=0.95`. If provided as a list, multiple levels are used. If None, `levels` is approximated [0.12, 0.39, 0.68, 0.86]. bins : int, default 50 Binning of samples into square bins is necessary to construct the contours. `bins` gives the number of bins in each direction. weights : array_like, shape (n,), default None Weights to apply to each sample in constructing the histogram. Default is `None`, such that all samples are equally weighted. extend_domain : bool, default False If True, extend the domain of the contours beyond the domain of the min and max of the samples. This can be useful if the contours might clash with the edges of a plot. Returns ------- xs : list of arrays Each array is the x-values for a plotted contour ys : list of arrays Each array is the y-values for a plotted contour Notes ----- .. The method proceeds as follows: the samples are binned. The counts of samples landing in bins are thought of as values of a function f(xb, yb), where (xb, yb) denotes the center of the respective bins. This function is then optionally smoothed using a Gaussian blur, and then the result is used to construct a contour plot. .. Based heavily on code from the corner package by <NAME>. """ # The code in this function is based on the corner package by <NAME>. # Following is the copyright notice from that pacakge. # # Copyright (c) 2013-2016 <NAME> # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # The views and conclusions contained in the software and documentation are those # of the authors and should not be interpreted as representing official policies, # either expressed or implied, of the FreeBSD Project. if type(bins) != int or bins <= 0: raise ValueError("`bins` must be a positive integer.") data_range = [[x.min(), x.max()], [y.min(), y.max()]] # Choose the default "sigma" contour levels. if levels is None: levels = 1.0 - np.exp(-0.5 * np.arange(0.5, 2.1, 0.5) ** 2) elif type(levels) not in [list, tuple, np.ndarray]: levels = [levels] for level in levels: if level <= 0 or level > 1: raise ValueError("All level values must be between zero and one.") # We'll make the 2D histogram to directly estimate the density. try: H, X, Y = np.histogram2d( x.flatten(), y.flatten(), bins=bins, range=list(map(np.sort, data_range)), weights=weights, ) except ValueError: raise ValueError( "2D histogram generation failed. It could be that one of your sampling ranges has no dynamic range." ) if smooth is not None: H = scipy.ndimage.gaussian_filter(H, smooth * bins) # Compute the bin centers. X1, Y1 = 0.5 * (X[1:] + X[:-1]), 0.5 * (Y[1:] + Y[:-1]) # Extend the array for the sake of the contours at the plot edges. if extend_domain: H2 = H.min() + np.zeros((H.shape[0] + 4, H.shape[1] + 4)) H2[2:-2, 2:-2] = H H2[2:-2, 1] = H[:, 0] H2[2:-2, -2] = H[:, -1] H2[1, 2:-2] = H[0] H2[-2, 2:-2] = H[-1] H2[1, 1] = H[0, 0] H2[1, -2] = H[0, -1] H2[-2, 1] = H[-1, 0] H2[-2, -2] = H[-1, -1] X2 = np.concatenate( [ X1[0] + np.array([-2, -1]) * np.diff(X1[:2]), X1, X1[-1] + np.array([1, 2]) * np.diff(X1[-2:]), ] ) Y2 = np.concatenate( [ Y1[0] + np.array([-2, -1]) *
np.diff(Y1[:2])
numpy.diff
''' Greedy Randomised Adaptive Search Procedure classes and functions. ''' import numpy as np import time class FixedRCLSizer: ''' Fixed sized RCL list. When r = 1 then greedy When r = len(tour) then random ''' def __init__(self, r): self.r = r def get_size(self): ''' Returns an int representing the size of the required RCL ''' return self.r class RandomRCLSizer: ''' Probabilitic selection of the RCL size Uniform probability. ''' def __init__(self, r_list, random_seed=None): self.r_list = r_list self.rng = np.random.default_rng(random_seed) def get_size(self, size=None): ''' Returns a randomly selected RCL size ''' return self.rng.choice(self.r_list, size=size) class SemiGreedyConstructor: ''' Semi-greedy construction of a tour. For a city i creates a restricted candidate list of size r i.e the r shortest distances from city i. Next city is chosen with equal probability. Repeats until tour is constructed. ''' def __init__(self, rcl_sizer, tour, matrix, random_seed=None): ''' Constructor Params: ------ rcl_sizer: object sizes the restricted candidate list tour: np.ndarray vector of city indexes included in problem matrix: np.ndarray matrix of travel costs random_seed: int used to control sampling and provides a reproducible result. ''' # size of rcl self.rcl_sizer = rcl_sizer # cities in a tour self.tour = tour # travel cost matrix self.matrix = matrix # create random number generator self.rng = np.random.default_rng(random_seed) def build(self): ''' Semi-greedy contruction of tour Returns: -------- np.array ''' # first city in tour solution = np.array([self.tour[0]]) # it is an iterative (construction) procedure for i in range(len(self.tour)-1): # get the RCL size r = self.rcl_sizer.get_size() # get the RCL rcl = self.get_rcl(r, solution, solution[-1]) # select the next city next_city = self.random_from_rcl(rcl) # update the solution solution = np.append(solution, np.array([next_city])) return solution def get_rcl(self, r, solution, from_city): ''' Restricted candidate list for final city in current solution Params: ------- solution: np.ndarray vector of current partially constructed solution from_city: int index of city used to construct rcl. Returns: ------- np.array ''' # get indexes of cities not in solution mask = self.tour[~np.in1d(self.tour, solution)] # get indexes of r smallest travels costs if mask.shape[0] > r: # partition the vector for remaining cities - faster than sorting idx = np.argpartition(self.matrix[from_city][mask], len(mask) - r)[-r:] rcl = mask[idx] else: # handle when r < n cities remaining rcl = mask return rcl def random_from_rcl(self, rcl): ''' Select a city at random from rcl. Return city index in self.matrix Params: ------- rcl: np.ndarray restricted candidate list vector of candidate city indexes. ''' return self.rng.choice(rcl) class GRASP: ''' Greedy Randomised Adaptive Search Procedure algorithm for the Travelling Salesman Problem. The class has the following properties .best: float the best cost .best_solution: np.ndarray the best tour found ''' def __init__(self, constructor, local_search, max_iter=1000, time_limit=np.inf): ''' Constructor Parameters: --------- constructor: object semi-greedy construction heuristic local_search: object local search heuristic e.g. `HillClimber` max_iter: int, optional (default=1000) The maximum number of iterations (restarts) of GRASP time_limit: float64, optional (default=np.inf) The maximum allowabl run time. ''' # semi greedy tour construction method self.constructor = constructor # local search procedure self.local_search = local_search # max runtime budget for GRASP self.max_iter = max_iter self.time_limit = time_limit # init solution self.best_solution = None self.best = None def solve(self): ''' Run GRASP Returns: ------- None ''' self.best_solution = None self.best = -np.inf i = 0 start = time.time() while i < self.max_iter and ((time.time() - start) < self.time_limit): i += 1 # construction phase solution = self.constructor.build() # Improve solution via local search self.local_search.set_init_solution(solution) self.local_search.solve() current_solution = self.local_search.best_solutions[0] current = self.local_search.best_cost # check if better than current solution if current > self.best: self.best = current self.best_solution = current_solution class MonitoredLocalSearch: ''' Extends a local search class and provides the observer pattern. An external object can observe the local search object and catch the termination event (end of local search). The observer is notified and passed the results of the local search. Use cases: ---------- In GRASP this is useful for an algorithm sizing the RCL and learning on average how different sizes of RCL perform. ''' def __init__(self, local_search): ''' Constructor: Params: ------ local_search: Object Must implement .solve(), best_cost, best_solution ''' self.local_search = local_search self.observers = [] def register_observer(self, observer): ''' register an object to observe the local search The observer should implement local_search_terminated(*args, **kwargs) ''' self.observers.append(observer) def set_init_solution(self, solution): ''' Set the initial solution Params: -------- solution: np.ndarray vector representing the initial solution ''' self.local_search.set_init_solution(solution) def solve(self): ''' Run the local search. At the end of the run all observers are notified. ''' # run local search self.local_search.solve() # notify observers after search terminates. best = self.local_search.best_cost solution = self.local_search.best_solutions[0] self.notify_observers(best, solution) def notify_observers(self, *args, **kwargs): ''' Observers must implement `local_search_terminated()` method. Params: ------ *args: list variable number of arguments **kwargs: dict key word arguments ''' for o in self.observers: o.local_search_terminated(*args, **kwargs) def _get_best_cost(self): ''' best cost from internal local_search object ''' return self.local_search.best_cost def _get_best_solutions(self): ''' get best solutions from local_search object ''' return self.local_search.best_solutions best_cost = property(_get_best_cost, doc='best cost') best_solutions = property(_get_best_solutions, doc='best solution') class ReactiveRCLSizer: ''' Dynamically update the probability of selecting a value of r for the size of the RCL. Implements Reactive GRASP. ''' def __init__(self, r_list, local_search, freq=None, random_seed=None): ''' Constructor Params: ------- r_list: list vector of sizes for RCL e.g. [1, 2, 3, 4, 5] local_search: MonitoredLocalSearch local_search to monitor freq: int, optional (default=None) Frequency in iterations at which the probabilities are updated. When set to None it defaults to the length of r_list * 2 random_seed: int, optional (default=None) Control random sampling for reproducible result ''' # list of r sizes self.r_list = r_list # set of indexes to work with probabilities self.elements = np.arange(len(r_list)) # probability of choosing r (initially uniform) self.probs = np.full(len(r_list), 1/len(r_list)) # mean performance of size r self.means = np.full(len(r_list), 1.0) # runs of size r self.allocations = np.full(len(r_list), 0) # local search to monitor self.local_search = local_search # frequency of updating probs if freq is None: self.freq = len(self.r_list) else: self.freq = freq # number of iterations within frequency self.iter = 0 # current r index self.index = -1 # to init run one of each r value self.init = True # imcumbent solution cost self.best_cost = -np.inf # register sizer as observer of the local search local_search.register_observer(self) # random no. gen self.rng = np.random.default_rng(random_seed) def local_search_terminated(self, *args, **kwargs): ''' Termination of the local search ''' # iteration complete self.iter += 1 # get the best cost found in the iteration iter_cost = args[0] # record iteration took plaxe with index i self.allocations[self.index] += 1 # update running mean mean_x = self.means[self.index] n = self.allocations[self.index] self.means[self.index] += (iter_cost - mean_x) / n self.update_r() # update incumbent cost if required if iter_cost > self.best_cost: self.best_cost = iter_cost # update probs if freq met. if self.iter >= self.freq and not self.init: self.iter = 0 self.update_probability() def update_probability(self): ''' Let $q_i = f^* / A_i$ and $p_i = `\dfrac{q_i}{\sum_{j=1}^{m} q_j}$ where $f^*$ is the incumbent (cost) $A_i$ is the mean cost found with r_i larger q_i indicates more suitable values of r_i ''' q = self.best_cost / self.means self.probs = q / q.sum() def update_r(self): ''' update the size of r Note that the implementation ensures that all r values are run for at least one iteration of the algorithm. ''' # initial bit of logic makes sure there is at least one run of all probabilities if self.init: self.index += 1 if self.index >= len(self.r_list): self.init = False self.index = self.rng.choice(self.elements, p=self.probs) else: self.index = self.rng.choice(self.elements, p=self.probs) def get_size(self): ''' Return the selected size of the RCL The selection is done using a discrete distribution self.r_probs. ''' return self.r_list[self.index] class RandomPlusGreedyConstructor(SemiGreedyConstructor): ''' Random + semi-greedy construction of a tour. The first n cities of a tour are randomly constructed. The remaining cities are seleted using the standard semi-greedy approach. For a city i creates a restricted candidate list of size r i.e the r shortest distances from city i. Next city is chosen with equal probability. Repeats until tour is constructed. ''' def __init__(self, rcl_sizer, tour, matrix, p_rand=0.2, random_seed=None): ''' RandomPlusGreedy Constructor method Params: ------ rcl_sizer: object sizes the restricted candidate list tour: np.ndarray vector of city indexes included in problem matrix: np.ndarray matrix of travel costs p_rand: float, optional (default=0.2) Proportion of tour that is randomly constructed random_seed: int used to control sampling provides a reproducible result. ''' # super class init super().__init__(rcl_sizer, tour, matrix, random_seed) # proportion of tour that is randomly constructed self.p_rand = p_rand self.n_rand = int(p_rand * len(tour)) self.n_greedy = len(tour) - self.n_rand - 1 def build(self): ''' Random followed by semi-greedy contruction of tour Returns: -------- np.array ''' # first city in tour solution = np.array([self.tour[0]]) # next n_rand cities are random rand = self.rng.choice(self.tour[1:], size=self.n_rand, replace=False) solution = np.append(solution, rand) # remaining cities are semi-greedy for i in range(self.n_greedy): r = self.rcl_sizer.get_size() rcl = self.get_rcl(r, solution, solution[-1]) next_city = self.random_from_rcl(rcl) solution = np.append(solution, np.array([next_city])) return solution class ConstructorWithMemory: ''' Provides a construction heuristic with a short term memory ''' def __init__(self, constructor, memory_size=100): '''Constructor method Params: ------- constructor: Object Implements build() and returns a solution memory_size, int, optional (default=100) size of tabu list ''' self.constructor = constructor self.memory_size = memory_size # memory implemented as list self.history = [] def build(self): ''' Run the stochastic construction heuristic Re-runs heuristic if results is within memory Returns: -------- np.ndarray ''' solution = self.constructor.build() while str(solution) in self.history: solution = self.constructor.build() # if at capacity remove oldest solution if len(self.history) >= self.memory_size: self.history.pop(0) self.history.append(str(solution)) return solution class EliteSet: ''' Tracks and updates an elite set of solutions produced by a local search. ''' def __init__(self, local_search=None, max_size=10, min_delta=0): ''' Constructor Params: ------- local_search: MonitoredLocalSearch The local search that produces candidates for the elite set. max_size: int, optional (default=10) maximum entries in the elite set min_delta: int, optional (Default=0) The min cardinality difference between tours to allow entry E.g. a = [1, 2, 3, 4, 5]; b = [1, 3, 4, 2, 5]. delta = 3. Vary delta > 0 to increase diversity (but may limit entry) ''' if local_search is not None: self.local_search = local_search local_search.register_observer(self) self.min_delta = min_delta self.max_size = max_size # data structures for elite solutions self.solutions = None self.costs = None self.n_updates = 0 @property def is_empty(self): return self.solutions is None def is_elite(self, solution): ''' Is the solution a member of the elite set Params: ------ solution: np.ndarray TSP solutution Returns: -------- bool ''' if self.solutions is None: return False else: result = np.where((self.solutions==solution).all(axis=1))[0] return len(result) > 0 def local_search_terminated(self, *args, **kwargs): '''' Termination of the local search ''' s = args[1] s_cost = args[0] self.update(s, s_cost) def init_elite_set(self, s, s_cost): ''' Initalise the elite set ''' self.solutions = np.array([s]) self.costs = np.array([s_cost]) def update(self, s, s_cost): ''' Update the elite set to maximise performance and diversity Params: ------- s: np.ndarray TSP tour s_cost: float TSP tour cost Returns: ------- Tuple: np.ndarray, np.ndarray elite_set, elite_costs ''' if self.solutions is None: self.init_elite_set(s, s_cost) elif len(self.solutions) < self.max_size: delta = (s != self.solutions).sum(axis=1).min() if delta > self.min_delta: self.solutions = np.append(self.solutions, [s], axis=0) self.costs =
np.append(self.costs, [s_cost], axis=0)
numpy.append
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME>,Morgane Functions in this python file are related to plotting different stages of the calcium imaging analysis pipeline. Most of the save the result in the corresponding folder of the particular step. """ # %% Importation import pylab as pl import caiman as cm import matplotlib.pyplot as plt import math import numpy as np from caiman.motion_correction import high_pass_filter_space from caiman.source_extraction.cnmf.cnmf import load_CNMF import Analysis_tools.metrics as metrics import logging import os import datetime import Analysis_tools.analysis_files_manipulation as fm from caiman.source_extraction.cnmf.initialization import downscale from Database.database_connection import database mycursor = database.cursor() def plot_movie_frame(decoded_file): """ This function creates an image for visual inspection of cropping points. """ m = cm.load(decoded_file) pl.imshow(m[0, :, :], cmap='gray') return def plot_movie_frame_cropped(cropped_file): """ This function creates an image for visual inspections of cropped frame """ m = cm.load(cropped_file) pl.imshow(m[0, :, :], cmap='gray') return def get_fig_gSig_filt_vals(cropped_file, gSig_filt_vals): """ Plot original cropped frame and several versions of spatial filtering for comparison :param cropped_file :param gSig_filt_vals: array containing size of spatial filters that will be applied :return: figure """ m = cm.load(cropped_file) temp = cm.motion_correction.bin_median(m) N = len(gSig_filt_vals) fig, axes = plt.subplots(int(math.ceil((N + 1) / 2)), 2) axes[0, 0].imshow(temp, cmap='gray') axes[0, 0].set_title('unfiltered') axes[0, 0].axis('off') for i in range(0, N): gSig_filt = gSig_filt_vals[i] m_filt = [high_pass_filter_space(m_, (gSig_filt, gSig_filt)) for m_ in m] temp_filt = cm.motion_correction.bin_median(m_filt) axes.flatten()[i + 1].imshow(temp_filt, cmap='gray') axes.flatten()[i + 1].set_title(f'gSig_filt = {gSig_filt}') axes.flatten()[i + 1].axis('off') if N + 1 != axes.size: for i in range(N + 1, axes.size): axes.flatten()[i].axis('off') # Get output file paths sql = "SELECT mouse,session,trial,is_rest,cropping_v,decoding_v,motion_correction_v FROM Analysis WHERE cropping_main=%s " val = [cropped_file, ] mycursor.execute(sql, val) myresult = mycursor.fetchall() data = [] for x in myresult: data += x file_name = f"mouse_{data[0]}_session_{data[1]}_trial_{data[2]}.{data[3]}.v{data[5]}.{data[4]}.{data[6]}" data_dir = 'data/interim/motion_correction/' output_meta_gSig_filt = data_dir + f'meta/figures/frame_gSig_filt/{file_name}.png' fig.savefig(output_meta_gSig_filt) return fig def plot_crispness_for_parameters(selected_rows=None): """ This function plots crispness for all the selected rows motion correction states. The idea is to compare crispness results :param selected_rows: analysis states for which crispness is required to be plotted :return: figure that is also saved """ crispness_mean_original, crispness_corr_original, crispness_mean, crispness_corr = metrics.compare_crispness( selected_rows) total_states_number = len(selected_rows) fig, axes = plt.subplots(1, 2) axes[0].set_title('Summary image = Mean') axes[0].plot(np.arange(1, total_states_number, 1), crispness_mean_original) axes[0].plot(np.arange(1, total_states_number, 1), crispness_mean) axes[0].legend(('Original', 'Motion_corrected')) axes[0].set_ylabel('Crispness') axes[1].set_title('Summary image = Corr') axes[1].plot(np.arange(1, total_states_number, 1), crispness_corr_original) axes[1].plot(np.arange(1, total_states_number, 1), crispness_corr) axes[1].legend(('Original', 'Motion_corrected')) axes[1].set_ylabel('Crispness') # Get output file paths data_dir = 'data/interim/motion_correction/' sql = "SELECT mouse,session,trial,is_rest,cropping_v,decoding_v,motion_correction_v FROM Analysis WHERE motion_correction_main=%s " val = [selected_rows, ] mycursor.execute(sql, val) myresult = mycursor.fetchall() data = [] for x in myresult: data += x file_name = f"mouse_{data[0]}_session_{data[1]}_trial_{data[2]}.{data[3]}.v{data[5]}.{data[4]}.{data[6]}" output_meta_crispness = data_dir + f'meta/figures/crispness/{file_name}.png' fig.savefig(output_meta_crispness) return fig def plot_corr_pnr(mouse_row, parameters_source_extraction): """ Plots the summary images correlation and pnr. Also the pointwise product between them (used in Caiman paper Zhou et al 2018) :param mouse_row: :param parameters_source_extraction: parameters that will be used for source extraction. the relevant parameter here are min_corr and min_pnr because the source extraction algorithm is initialized (initial cell templates) in all values that surpasses that threshold :return: figure """ input_mmap_file_path = eval(mouse_row.loc['motion_correction_output'])['main'] # Load memory mappable input file if os.path.isfile(input_mmap_file_path): Yr, dims, T = cm.load_memmap(input_mmap_file_path) # logging.debug(f'{index} Loaded movie. dims = {dims}, T = {T}.') images = Yr.T.reshape((T,) + dims, order='F') else: logging.warning(f'{mouse_row.name} .mmap file does not exist. Cancelling') # Determine output paths step_index = db.get_step_index('motion_correction') data_dir = 'data/interim/source_extraction/trial_wise/' # Check if the summary images are already there gSig = parameters_source_extraction['gSig'][0] corr_npy_file_path, pnr_npy_file_path = fm.get_corr_pnr_path(mouse_row.name, gSig_abs=(gSig, gSig)) if corr_npy_file_path != None and os.path.isfile(corr_npy_file_path): # Already computed summary images logging.info(f'{mouse_row.name} Already computed summary images') cn_filter = np.load(corr_npy_file_path) pnr = np.load(pnr_npy_file_path) else: # Compute summary images t0 = datetime.datetime.today() logging.info(f'{mouse_row.name} Computing summary images') cn_filter, pnr = cm.summary_images.correlation_pnr(images[::1], gSig=parameters_source_extraction['gSig'][0], swap_dim=False) # Saving summary images as npy files corr_npy_file_path = data_dir + f'meta/corr/{db.create_file_name(3, mouse_row.name)}_gSig_{gSig}.npy' pnr_npy_file_path = data_dir + f'meta/pnr/{db.create_file_name(3, mouse_row.name)}_gSig_{gSig}.npy' with open(corr_npy_file_path, 'wb') as f: np.save(f, cn_filter) with open(pnr_npy_file_path, 'wb') as f: np.save(f, pnr) fig = plt.figure(figsize=(15, 15)) min_corr = round(parameters_source_extraction['min_corr'], 2) min_pnr = round(parameters_source_extraction['min_pnr'], 1) max_corr = round(cn_filter.max(), 2) max_pnr = 20 # continuous cmap = 'viridis' fig, axes = plt.subplots(1, 3, sharex=True) corr_fig = axes[0].imshow(np.clip(cn_filter, min_corr, max_corr), cmap=cmap) axes[0].set_title('Correlation') fig.colorbar(corr_fig, ax=axes[0]) pnr_fig = axes[1].imshow(
np.clip(pnr, min_pnr, max_pnr)
numpy.clip
# Here's an attempt to recode the perl script that threads the QTL finding wrapper into python. # Instead of having a wrapper to call python scripts, we'll use a single script to launch everything. This avoids having to reparse the data (even though it is fast). # Ok, so now we're going to try a heuristic to accelerate the QTL addition step. # The heuristic will be to scan every X QTLs instead of every single one. Once we find a good one, we only scan the x*2 positions around the top hit. I am hoping that this will give at least 2 times faster searches. import string import numpy as np from scipy import linalg import sys import csv import itertools import time import random import argparse import os cwd = os.getcwd() import psutil process = psutil.Process(os.getpid()) import multiprocessing as mp from multiprocessing import Pool #sys.path.append('/n/desai_lab/users/klawrence/BBQ/alldata') #sys.path.append('/n/home00/nnguyenba/scripts/BBQ/alldata') try: sys.path.append('/n/home00/nnguyenba/scripts/BBQ/alldata') except: sys.path.append('/n/holyscratch01/desai_lab/nnguyenba/BBQ/all_data') pass from spore_defs import * # Read SNP map #SNP_reader = csv.reader(open('/n/desai_lab/users/klawrence/BBQ/alldata/BYxRM_nanopore_SNPs.txt','r'),delimiter='\t') #SNP_reader = csv.reader(open('/n/home00/nnguyenba/scripts/BBQ/alldata/BYxRM_nanopore_SNPs.txt','r'),delimiter='\t') SNP_reader = csv.reader(open('/n/holyscratch01/desai_lab/nnguyenba/BBQ/all_data/BYxRM_nanopore_SNPs.txt','r'),delimiter='\t') genome_str = genome_str_to_int(next(SNP_reader)) SNP_list = genome_to_chroms(genome_str) num_chroms = len(SNP_list) num_SNPs = [len(x) for x in SNP_list] num_SNPs_total = sum(num_SNPs) #print(num_SNPs,file=sys.stdout,flush=True) #print(num_SNPs_total,file=sys.stdout,flush=True) chrom_startpoints = get_chrom_startpoints(genome_str) chrom_endpoints = get_chrom_endpoints(genome_str) # print(chrom_startpoints) [0, 996, 4732, 5291, 9327, 11187, 12476, 16408, 18047, 20126, 23101, 26341, 30652, 33598, 35398, 39688] # print(chrom_endpoints) [994, 4730, 5289, 9325, 11185, 12474, 16406, 18045, 20124, 23099, 26339, 30650, 33596, 35396, 39686, 41608] # print(num_SNPs) [995, 3735, 558, 4035, 1859, 1288, 3931, 1638, 2078, 2974, 3239, 4310, 2945, 1799, 4289, 1921] #exit() # Systematically check every positions from argparse import ArgumentParser, SUPPRESS # Disable default help parser = ArgumentParser(add_help=False) required = parser.add_argument_group('required arguments') optional = parser.add_argument_group('optional arguments') # Add back help optional.add_argument( '-h', '--help', action='help', default=SUPPRESS, help='show this help message and exit' ) required.add_argument('--fit', help='Plain text two-column file containing the fitnesses and the standard errors.') optional.add_argument('--log', help='Plain text file logging the progress of the QTL search.', default="output.txt") optional.add_argument('--oCV', help='Outside cross-validation value (k = 0-9)', type=int, default=0) optional.add_argument('--iCV', help='Inside cross-validation value (l = 0-8)', type=int, default=0) optional.add_argument('--model', help='Whether to fit on the training set (m = 0), on the train+test set (m = 1) or on the complete data (m = 2)', type=int, default=0) optional.add_argument('--dir', help='Directory where intermediate files are found.', default=cwd) optional.add_argument('--scratch', help='Local scratch directory', default='/n/holyscratch01/desai_lab/nnguyenba/BBQ/all_data/genomes/') optional.add_argument('--refine', help='Refine every X QTLs, default is 5. 0 means never refine.', default=5, type=int) optional.add_argument('--unweighted', help='Only run the forward search on unweighted data.', default=0, type=int) optional.add_argument('--cpu', help='Number of threads to run on.', default=16, type=int) optional.add_argument('--nosave', help='Set to 1 to avoid saving the npy progress files.', default=0, type=int) optional.add_argument('--maxqtl', help='Number of QTLs to find.', default=300, type=int) optional.add_argument('--downsample', help='Number of segregants to downsample.', default=0, type=int) optional.add_argument('--sporelist', help='Restrict searches to a list of spores.') args = parser.parse_args() print(args, file=sys.stderr) outside_CV = args.oCV # Goes from 0 to 9 # k = 10 inside_CV = args.iCV # Goes from 0 to 8 # l = 9 if(outside_CV > 9 or outside_CV < 0): print("--oCV must be [0,9]") exit() if(inside_CV > 8 or inside_CV < 0): print("--iCV must be [0,8]") exit() if(~np.isin(args.model , range(3))): print("--model must be [0,2]") exit() if(args.refine == 0): args.refine = np.Infinity # Read in the fitness data fitnesses_data = np.loadtxt(args.fit) # Parse and see if it has standard errors if(len(fitnesses_data.shape) != 2 or args.unweighted == 1): # No errors found, assume all errors the same. if(len(fitnesses_data.shape) == 1): fitnesses_data = np.reshape(fitnesses_data,(-1,1)) fitnesses = fitnesses_data[:,0] errors = np.ones(len(fitnesses_data)) else: fitnesses = fitnesses_data[:,0] errors = fitnesses_data[:,1] errors = np.square(errors) errors = np.reciprocal(errors) seed = 100000 np.random.seed(seed) # This allows us to keep the same cross validation sets. # If we are restricting search to a list of spores, then need to parse the list of spores. sporelist = np.array(range(len(fitnesses))) if(args.sporelist): sporelist = np.loadtxt(args.sporelist, dtype=int) # First let's take care of the outside CV if(args.downsample > 0 and args.downsample < len(sporelist)): #fitnesses = fitnesses[0:args.downsample] #errors = errors[0:args.downsample] sporelist = sporelist[0:args.downsample] perm = np.random.permutation(sporelist) train_perm = perm.copy() if(args.model != 2): train_perm = np.delete(train_perm, np.r_[outside_CV/10 * len(sporelist):(outside_CV + 1)/10 * len(sporelist)].astype(int),axis=0) validation_perm = np.take(perm, np.r_[outside_CV/10 * len(sporelist):(outside_CV + 1)/10 * len(sporelist)].astype(int)) if(args.model != 1): # Ok now let's take care of the inside CV # To do this, we split the train_perm into a train/test permutation test_perm = np.take(train_perm, np.r_[inside_CV/9 * len(train_perm):(inside_CV + 1)/9 * len(train_perm)].astype(int)) train_perm = np.delete(train_perm, np.r_[inside_CV/9 * len(train_perm):(inside_CV + 1)/9 * len(train_perm)].astype(int)) # We're doing a k*l fold validation procedure, where l = k-1. # This allows us to only create 10 test sets, and only 10 validation sets, so the cross validation loops do not explode. # For example, let the 80 - 10 - 10 (train - test - validation) split # We can use the same validation for the following split: 10 - 80 -10 (test - train - validation) # Now looking at that split, we can use the same test to do the following: 10 - 10 - 80 (test - validation - train) # We will only 'train' on a subset of the data train_set = np.take(fitnesses,train_perm) # This is 80% of the fitness data errors = np.take(errors,train_perm) phenotypes = train_set[~np.isnan(train_set)] # Is a numpy.ndarray mean_phenotypes = np.mean(phenotypes) TSS = np.sum((phenotypes-mean_phenotypes)**2) errors = errors[~np.isnan(train_set)] num_usable_spores = len(phenotypes) # Open all the genotype files genotypes_file = [] num_lines_genotypes = [] chr_to_scan = [] start = time.perf_counter() for i in range(16): #genotypes_file.append(np.load(str(args.scratch) + "/chr"+str(i+1)+"_pos_major.npy", mmap_mode="r")) # Uses 30 gb. Need to load once to cache into memory. Then subsequent searches are near instant. genotypes_file.append(np.load(str(args.scratch) + "/chr"+str(i+1)+"_pos_major.npy")) num_lines_genotypes.append(genotypes_file[i].shape[0]) chr_to_scan.append(i) print(str(i) + " " + str(time.perf_counter() - start) + " " + str(process.memory_info().rss/1024/1024),file=sys.stderr) # Here we will handle whether the script has been restart or whether we are starting from scratch. # Open the log file. current_likelihood = np.Infinity current_pos_line = "" current_beta_line = "" current_progress_line = "" flag_refined_pos = 0 geno_file = "" Q_file = "" R_file = "" num_QTLs = 0 if(os.path.isfile(args.dir + "/" + args.log)): with open(args.dir + "/" + args.log,'r') as readfile: linecount = 0 for line in readfile: line = line.rstrip() if(linecount % 4 == 0): current_likelihood = line elif(linecount % 4 == 1): current_pos_line = line elif(linecount % 4 == 2): current_beta_line = line elif(linecount % 4 == 3): current_progress_line = line linecount = linecount + 1 # split the progress_line into the relevant flags if(linecount > 0): arr = current_progress_line.split("\t") geno_file = arr[0] Q_file = arr[1] R_file = arr[2] if(arr[3] == "find_new"): flag_refined_pos = 1 # Need to refine num_QTLs = int(arr[4]) # Read in the file of previous computations if we have found QTLs before. Otherwise, generate them. prev_pos = [] prev_genotypes = [] prev_pos = np.array(prev_pos, dtype=np.int32) prev_genotypes = np.array(prev_genotypes) q = [] r = [] if(num_QTLs != 0): # This is restarting. prev_pos = np.fromstring(current_pos_line, dtype=int, sep=" ") flag_load_prev = 0 try: prev_genotypes = np.load(args.dir + "/" + geno_file) except: flag_load_prev = 1 pass size_of_prev_genome = (prev_pos.size) # Consistent prev_pos and prev_genotypes? if(flag_load_prev == 1 or prev_genotypes.shape[1] != size_of_prev_genome): # We have to remake it from the prev_pos line. prev_genotypes = np.ones((num_usable_spores,size_of_prev_genome)) for pos_index in range(len(prev_pos)): pos = prev_pos[pos_index] chr_qtl = np.searchsorted(np.array(chrom_startpoints), pos+0.5) start_of_chr = chrom_startpoints[chr_qtl-1] pos_in_chr = pos - start_of_chr pos_line = genotypes_file[chr_qtl-1][pos_in_chr] pos_line = np.take(pos_line, train_perm) pos_line = pos_line[~np.isnan(train_set)] prev_genotypes[:,pos_index] = pos_line.copy() base_genotypes = np.ones((num_usable_spores,1+size_of_prev_genome)) base_genotypes[:,1:] = prev_genotypes # First index is the intercept. q,r = np.linalg.qr(base_genotypes * np.sqrt(np.reshape(errors,(num_usable_spores,1)))) else: # Do we have q,r? flag_remake = 0 if(os.path.isfile(args.dir + "/" + Q_file) and os.path.isfile(args.dir + "/" + R_file)): #q = np.load(args.dir + "/" + Q_file) #r = np.load(args.dir + "/" + R_file) try: q = np.load(args.dir + "/" + Q_file) except: flag_remake = 1 pass try: r = np.load(args.dir + "/" + R_file) except: flag_remake = 1 pass else: flag_remake = 1 if(flag_remake == 1): # Remake base_genotypes = np.ones((num_usable_spores,1+size_of_prev_genome)) base_genotypes[:,1:] = prev_genotypes # First index is the intercept. q,r = np.linalg.qr(base_genotypes * np.sqrt(np.reshape(errors,(num_usable_spores,1)))) else: size_of_prev_genome = 0 # Ok, we've now reloaded all the previous computations. # Set up computation settings poolcount = args.cpu*2 num_chrom_to_scan = len(genotypes_file) def find_QTL(num): lowest_RSS = np.Infinity genome_at_lowest_RSS = [] pos_index_at_lowest_RSS = 0 last_q = [] #start = time.clock() for chr in range(num_chrom_to_scan): loc = chrom_startpoints[chr_to_scan[chr]] for i in range(0 + num, num_lines_genotypes[chr_to_scan[chr]], poolcount): if(np.isin(loc+i, prev_pos)): continue genome_line = genotypes_file[chr_to_scan[chr]][i] # Remove genomes that have no phenotypes # We need to remove genomes that have no phenotypes and genomes that aren't in the train set genomes = np.take(genome_line,train_perm) genomes = genomes[~np.isnan(train_set)] genomes = np.reshape(genomes,(num_usable_spores,1)) # A N row by 1 column matrix WX = genomes * np.sqrt(np.reshape(errors,(num_usable_spores,1))) # X = X * sqrt(W) -> N by 1 QtX = np.dot(np.transpose(q),WX) # Gets the scale for each vectors in Q. # Q^t * X -> k by 1 QtX_Q = np.einsum('ij,j->i',q,np.ravel(QtX)) # Dot product of Q and Q^t * X, but shaped as a single vector. This is the sum of all the projections of the new genotype on Q orthogonalized = WX-np.reshape(QtX_Q,(num_usable_spores,1)) # Orthogonalize: Remove the projections from the real vector. new_q = orthogonalized/np.linalg.norm(orthogonalized) # Orthonormalize: Now do final conversion. # This gets the last column of Q. # We only need the last column of Q to get the new residuals. We'll assemble the full Q or the full R if we need it (i.e. to obtain betas). q_upTy = np.einsum('i,i', np.ravel(new_q), phenotypes * np.sqrt(errors)) q_upq_upTy = np.ravel(new_q) * q_upTy predicted_fitnesses = initial_predicted_fitnesses + q_upq_upTy/np.sqrt(errors) # Scale the intercept term mean_predicted_fitnesses =
np.mean(predicted_fitnesses)
numpy.mean
""" registerSegments.py --------------- Main Function for registering (aligning) colored point clouds with ICP/feature matching as well as pose graph optimizating """ # import png from PIL import Image import csv import open3d as o3d import pymeshlab import numpy as np import cv2 import os import glob from utils.ply import Ply from utils.camera import * from registration import icp, feature_registration, match_ransac, rigid_transform_3D from tqdm import trange from pykdtree.kdtree import KDTree import time import sys from config.registrationParameters import * from config.segmentationParameters import SEG_INTERVAL, STARTFRAME, SEG_METHOD,ANNOTATION_INTERVAL from config.DataAcquisitionParameters import SERIAL,camera_intrinsics import pandas as pd # Set up parameters for registration # voxel sizes use to down sample raw pointcloud for fast ICP voxel_size = VOXEL_SIZE max_correspondence_distance_coarse = voxel_size * 15 max_correspondence_distance_fine = voxel_size * 1.5 # Set up parameters for post-processing # Voxel size for the complete mesh voxel_Radius = VOXEL_R # Point considered an outlier if more than inlier_Radius away from other points inlier_Radius = voxel_Radius * 2.5 # search for up to N frames for registration, odometry only N=1, all frames N = np.inf N_Neighbours = K_NEIGHBORS def post_process(originals, voxel_Radius, inlier_Radius): """ Merge segments so that new points will not be add to the merged model if within voxel_Radius to the existing points, and keep a vote for if the point is issolated outside the radius of inlier_Radius at the timeof the merge Parameters ---------- originals : List of open3d.Pointcloud classe 6D pontcloud of the segments transformed into the world frame voxel_Radius : float Reject duplicate point if the new point lies within the voxel radius of the existing point inlier_Radius : float Point considered an outlier if more than inlier_Radius away from any other points Returns ---------- points : (n,3) float The (x,y,z) of the processed and filtered pointcloud colors : (n,3) float The (r,g,b) color information corresponding to the points vote : (n, ) int The number of vote (seen duplicate points within the voxel_radius) each processed point has reveived """ for point_id in trange(len(originals)): if point_id == 0: vote = np.zeros(len(originals[point_id].points)) points = np.array(originals[point_id].points,dtype = np.float64) colors = np.array(originals[point_id].colors,dtype = np.float64) else: points_temp = np.array(originals[point_id].points,dtype = np.float64) colors_temp = np.array(originals[point_id].colors,dtype = np.float64) dist , index = nearest_neighbour(points_temp, points) new_points = np.where(dist > voxel_Radius) points_temp = points_temp[new_points] colors_temp = colors_temp[new_points] inliers = np.where(dist < inlier_Radius) vote[(index[inliers],)] += 1 vote = np.concatenate([vote, np.zeros(len(points_temp))]) points = np.concatenate([points, points_temp]) colors = np.concatenate([colors, colors_temp]) return (points,colors,vote) def surface_reconstruction_screened_poisson(path): ms = pymeshlab.MeshSet() ms.load_new_mesh(path) ms.compute_normals_for_point_sets() ms.surface_reconstruction_screened_poisson() ms.save_current_mesh(path) filtered_mesh = o3d.io.read_point_cloud(path) return filtered_mesh def full_registration(pcds_down,cads,depths, max_correspondence_distance_coarse,max_correspondence_distance_fine): """ perform pairwise registration and build pose graph for up to N_Neighbours Parameters ---------- pcds_down : List of open3d.Pointcloud instances Downampled 6D pontcloud of the unalligned segments max_correspondence_distance_coarse : float The max correspondence distance used for the course ICP during the process of coarse to fine registration max_correspondence_distance_fine : float The max correspondence distance used for the fine ICP during the process of coarse to fine registration Returns ---------- pose_graph: an open3d.PoseGraph instance Stores poses of each segment in the node and pairwise correlation in vertice """ global N_Neighbours pose_graph = o3d.pipelines.registration.PoseGraph() odometry = np.identity(4) pose_graph.nodes.append(o3d.pipelines.registration.PoseGraphNode(odometry)) n_pcds = len(pcds_down) for source_id in trange(n_pcds): for target_id in range(source_id + 1, min(source_id + N_Neighbours,n_pcds)): # derive pairwise registration through feature matching color_src = cads[source_id] depth_src = depths[source_id] color_dst = cads[target_id] depth_dst = depths[target_id] res = feature_registration((color_src, depth_src), (color_dst, depth_dst)) if res is None: # if feature matching fails, perform pointcloud matching transformation_icp, information_icp = icp( pcds_down[source_id], pcds_down[target_id],max_correspondence_distance_coarse, max_correspondence_distance_fine, method = RECON_METHOD) else: transformation_icp = res information_icp = o3d.pipelines.registration.get_information_matrix_from_point_clouds( pcds_down[source_id], pcds_down[target_id], max_correspondence_distance_fine, transformation_icp) information_icp *= 1.2 ** (target_id - source_id - 1) if target_id == source_id + 1: # odometry odometry = np.dot(transformation_icp, odometry) pose_graph.nodes.append(o3d.pipelines.registration.PoseGraphNode(np.linalg.inv(odometry))) pose_graph.edges.append(o3d.pipelines.registration.PoseGraphEdge(source_id, target_id, transformation_icp, information_icp, uncertain=False)) else: # loop closure pose_graph.edges.append(o3d.pipelines.registration.PoseGraphEdge(source_id, target_id, transformation_icp, information_icp, uncertain=True)) return pose_graph def joints_full_registration(pcds_down, LinkOrientations, LinkPositions): """ perform pairwise registration using robot end-effector poses and build pose graph Parameters ---------- pcds_down : List of open3d.Pointcloud instances Downampled 6D pontcloud of the unalligned segments LinkOrientations : List of end-effector Orientations LinkPositions : List of end-effector positions Returns ---------- pose_graph: an open3d.PoseGraph instance Stores poses of each segment in the node and pairwise correlation in vertice """ global N_Neighbours pose_graph = o3d.pipelines.registration.PoseGraph() odometry = np.identity(4) pose_graph.nodes.append(o3d.pipelines.registration.PoseGraphNode(odometry)) n_pcds = len(pcds_down) for source_id in trange(n_pcds): for target_id in range(source_id + 1, min(source_id + N_Neighbours, n_pcds)): R1 , R2 = LinkOrientations[source_id] , LinkOrientations[target_id] T1 , T2 = LinkPositions[source_id] , LinkPositions[target_id] transformation_icp = calculate_transformation(R1 , R2, T1, T2) information_icp = o3d.pipelines.registration.get_information_matrix_from_point_clouds( pcds_down[source_id], pcds_down[target_id], max_correspondence_distance_fine, transformation_icp) if target_id == source_id + 1: # odometry odometry = np.dot(transformation_icp, odometry) pose_graph.nodes.append(o3d.pipelines.registration.PoseGraphNode(np.linalg.inv(odometry))) pose_graph.edges.append(o3d.pipelines.registration.PoseGraphEdge(source_id, target_id, transformation_icp, information_icp, uncertain=False)) else: # loop closure pose_graph.edges.append(o3d.pipelines.registration.PoseGraphEdge(source_id, target_id, transformation_icp, information_icp, uncertain=True)) return pose_graph def calculate_transformation(R1, R2, T1, T2): R = np.dot(R2, np.linalg.inv(R1)) T = T2 - np.dot(T1, np.dot(np.linalg.inv(R1).T, R2.T)) transformation_icp = [[R[0][0],R[0][1],R[0][2],T[0]], [R[1][0],R[1][1],R[1][2],T[1]], [R[2][0],R[2][1],R[2][2],T[2]], [0,0,0,1]] return transformation_icp def load_robot_joints(path, keyframe_ids): robot_joints = pd.read_csv(path+"/robot_joints.csv", index_col='filenames') LinkR = robot_joints['LinkRotationMatrices'] LinkPositions = robot_joints['LinkPositions'] Rs=[] Ts=[] for filename in keyframe_ids: R = list(map(float, LinkR[filename][1:len(LinkR[filename]) - 1].split(','))) R = np.reshape(np.array(R), [3, 3]) T = np.array(list(map(float, LinkPositions[filename][1:len(LinkPositions[filename]) - 1].split(',')))) Rs.append(R) Ts.append(T) return Rs, Ts def load_object_states(path, keyframe_ids): robot_joints = pd.read_csv(path+"/robot_joints.csv", index_col='filenames') ObjectR = robot_joints['ObjectRotationMatrices'] ObjectPositions = robot_joints['ObjectPositions'] Rs=[] Ts=[] for filename in keyframe_ids: R = list(map(float, ObjectR[filename][1:len(ObjectR[filename]) - 1].split(','))) R= np.reshape(
np.array(R)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- """ clusting_test.py Description: """ __author__ = "<NAME>" __copyright__ = "Copyright 2021, <NAME>" __credits__ = ["<NAME>"] __license__ = "" __version__ = "1.0.0" __maintainer__ = "<NAME>" __email__ = "" __status__ = "Prototype" # Standard Libraries # import datetime # Third-Party Packages # import numpy as np from sklearn.cluster import MeanShift # Local Packages # from src.hdf5xltek import * # Definitions # # Functions # def find_spikes(x, c, top=5000, bottom=-5000, b=None): high = np.asarray(x[:, c] > top).nonzero() low = np.asarray(x[:, c] < bottom).nonzero() bounds = np.append(high[0], low[0], 0) bounds = np.sort(bounds) X = bounds.reshape(-1, 1) ms = MeanShift(bandwidth=b) ms.fit(X) labels = ms.labels_ c_centers = ms.cluster_centers_ sep = separate_clusters(X, labels) return labels, c_centers, sep def separate_clusters(x, labels): n_clusters = len(np.unique(labels)) sep = [[] for i in range(n_clusters)] for v, c in zip(x, labels): sep[int(c)].append(int(v)) return sep # Main # if __name__ == "__main__": v_c = list(range(72, 80)) # v_c = [30, 59, 51, 43, 35] first = datetime.datetime(2018, 10, 17, 9, 34, 00) second = datetime.datetime(2018, 10, 17, 12, 5, 30) study = HDF5XLTEKstudy('EC188') d, f, g = study.data_range_time(first, second, frame=True) print(study.find_time(datetime.datetime(2019, 1, 24, 9, 40, 4))) fs = d[0].frames[0].sample_rate task = d[0][5576000:7700000, :] all_viewer = EEGScanner(d[0][8934000:11750000], v_c, ylim=2000, show=True) #all_viewer = eegscanner.eegscanner(task, v_c, show=True) task2 = [d[0][8934000:9269000], d[0][9450000:9686000], d[0][9750000:10060000], d[0][10060000:10380000], d[0][10380000:11000000], d[0][11000000:11500000], d[0][11500000:11750000]] tests = [task[:420000, :], task[420000:715000, :], task[715000:1020000, :], task[1020000:1300000, :], task[1300000:1560000, :], task[1560000:1830000, :], task[1830000:, :]] all_t = tests+task2 #all_t = task2 pre = 128 length = 128 total = length+pre meme = [] s_chans = [79, 79, 79, 79, 79, 79, 72, 72, 72, 72, 72, 72, 72, 72] # s_chans = [51, 51, 3, 3, 79, 51, 51] # valid = ((0, -3), (4, -1), (0, -1), (0, -1), (0, -1), (0, -1), (0, -1), (0, -1)) inx = np.transpose(np.arange(32 - 1, 0 - 1, -1).reshape(4, 8)).flatten() inx2 = np.transpose(np.arange(64 - 1, 32 - 1, -1).reshape(4, 8)).flatten() cn1 = [['32: parstriangularis', '24: Parsopercularis', '16: Parsopercularis', '8: Precentral'], ['31: parstriangularis', '23: Parsopercularis', '15: Precentral', '7: Precentral'], ['30: parstriangularis', '22: Parsopercularis', '14: Precentral', '6: Precentral'], ['29: parstriangularis', '21: Precentral', '13: Precentral', '5: Postcentral'], ['28: Superiortemporal', '20: Superiortemporal', '12: Superiortemporal', '4: Superiortemporal'], ['27: Middletemporal', '19: Middletemporal', '11: Middletemporal', '3:Superiortemporal'], ['26: Middletemporal', '18: Middletemporal', '10: Middletemporal', '2: Middletemporal'], ['25: Middletemporal', '17: Middletemporal', '9: Middletemporal', '1: Middletemporal']] cn1 = np.array(cn1, str) #cn2 = np.transpose(np.arange(64 - 1, 32 - 1, -1).reshape(4, 8)) + 1 cn2 = [['64: Postcentral', '56: Supramarginal', '48: Postcentral', '40: Supramarginal'], ['63: Postcentral', '55: Supramarginal', '47: Supramarginal', '39: Supramarginal'], ['62: Postcentral', '54: Supramarginal', '46: Supramarginal', '38: Supramarginal'], ['61: Superiortemporal', '53: Supramarginal', '45: Supramarginal', '37: Superiortemporal'], ['60: Superiortemporal', '52: Superiortemporal', '44: Superiortemporal', '36: Superiortemporal'], ['59: Middletemporal', '51: Middletemporal', '43: Middletemporal', '35: Middletemporal'], ['58: Middletemporal', '50: Middletemporal', '42: Middletemporal', '34: Middletemporal'], ['57: Middletemporal', '49: Inferiortemporal', '41: Middletemporal', '33: Middletemporal']] cn2 = np.array(cn2, str) t_name = ['PMGC1 and PMGC2', 'PMGC2 and PMGC3', 'PMGC3 and PMGC4', 'PMGC4 and PMGC5', 'PMGC5 and PMGC6', 'PMGC6 and PMGC7', 'PMGC7 and PMGC8', 'TGA4 and TGA12', 'TGB28 and TGA4', 'TGB20 and TGB28', 'TGB12 and TGB20', 'TGA4 and TGA12', 'TGB4 and TGB12', 'TGB28 and TGB29'] # t_name = ['TGA4 and TGA12', 'TGB28 and TGA4', 'TGB20 and TGB28', 'TGB12 and TGB20', 'TGA4 and TGA12', # 'TGB4 and TGB12', 'TGB28 and TGB29'] for t, c, n in zip(all_t[8:], s_chans[8:], t_name[8:]): me = np.ndarray((total, task.shape[1], 0)) one = np.ndarray((total, 0)) bins = [] lab, cent, sep = find_spikes(t, c, top=4000, bottom=-4000, b=1000) indices = [int(x) for x in cent] indices.sort() mx = [x-50+np.argmax(t[x-50:x+50,c],0) for x in indices] # ind = indices[v[0]:v[1]] for i in mx: start = i-pre finish = i+length bins.append(t[start:finish, :]) me = np.append(me,
np.expand_dims(bins[-1], 2)
numpy.expand_dims
import json from .helper import get_labels, replace_values import cv2 from pathlib import Path import numpy as np import pdb import os def check_labels(params): json_path=params["json_path"] image_ext=params["image_ext"] file_name_function = params["file_name_function"] features = params["features"] root_path = params["root_path"] img_path = params["img_path"] paint_color = params["paint_color"] replacements = params["replacements"] declined_file_name = params["declined_file_name"] if os.path.isfile(declined_file_name): declined_labels = list(
np.load(declined_file_name)
numpy.load
# -*- coding: utf-8 -*- """ Created on 16/05/16 @author: <NAME> Program to calculate lick indices """ import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline import astropy.units as u from astropy import constants __all__ = ["Lick"] class Lick(): """ Class to measure Lick indices. Computation of the Lick indices in a given spectrum. Position of the passbands are determined by redshifting the position of the bands to the systemic velocity of the galaxy spectrum. ================= Input parameters: ================= wave (array): Wavelength of the spectrum given. galaxy (array): Galaxy spectrum in arbitrary units. bands0 (array) : Definition of passbands for Lick indices at rest wavelengths. Units should be consistent with wavelength array. vel (float, optional): Systemic velocity of the spectrum in km/s. Defaults to zero. dw (float, optinal): Extra wavelength to be considered besides bands for interpolation. Defaults to 2 wavelength units. =========== Attributes: =========== bands (array): Wavelengths of the bands after shifting to the systemic velocity of the galaxy. """ def __init__(self, wave, galaxy, bands0, vel=None, dw=None, units=None): self.galaxy = galaxy self.wave = wave.to(u.AA).value self.vel = vel self.bands0 = bands0.to(u.AA).value if dw is None: self.dw = 2 if vel is None: self.vel = 0 * u.km / u.s self.units = units if units is not None else \ np.ones(len(self.bands0)) * u.AA ckms = constants.c.to("km/s") # c = 299792.458 # Speed of light in km/s self.bands = self.bands0 * np.sqrt((1 + self.vel.to("km/s")/ckms) /(1 - self.vel.to("km/s")/ckms)) def classic_integration(self): """ Calculation of Lick indices using spline integration. =========== Attributes: =========== R (array): Raw integration values for the Lick indices. Ia (array): Indices measured in equivalent widths. Im (array): Indices measured in magnitudes. classic (array): Indices measured according to the conventional units mixturing equivalent widths and magnitudes. """ self.R =
np.zeros(self.bands._shape[0])
numpy.zeros
import warnings import sys from matplotlib import pyplot as plt from matplotlib.colors import LinearSegmentedColormap import matplotlib as mpl import matplotlib.colors as mplcolors import numpy as np import matplotlib.ticker as mtik import types try: import scipy.ndimage from scipy.stats import norm haveScipy = True except ImportError: haveScipy = False PYVER = sys.version_info[0] MPLVER = int(mpl.__version__.split('.')[0]) __all__ = ['plotGTC'] #################### Create a full GTC def plotGTC(chains, **kwargs): r"""Make a great looking Giant Triangle Confusogram (GTC) with one line of code! A GTC is a lot like a triangle (or corner) plot, but you get to put as many sets of data, and overlay as many truths as you like. That's what can make it so *confusing*! Parameters ---------- chains : array-like[nSamples,nDims] or a list[[nSamples1,nDims], [nSamples2,nDims], ...] All chains (where a chain is [nSamples,nDims]) in the list must have the same number of dimensions. Note: If you are using ``emcee`` (http://dan.iel.fm/emcee/current/) - and you should! - each element of chains is an ``EnsembleSampler.flatchain`` object. Keyword Arguments ----------------- weights : array-like[nSamples] or a list[[nSamples1], ...] Weights for the sample points. The number of 1d arrays passed must correspond to the number of `chains`, and each `weights` array must have the same length nSamples as its corresponding chain. chainLabels : array-like[nChains] A list of text labels describing each chain passed to chains. len(chainLabels) must equal len(chains). chainLabels supports LaTex commands enclosed in $..$. Additionally, you can pass None as a label. Default is ``None``. paramNames : list-like[nDims] A list of text labels describing each dimension of chains. len(paramNames) must equal nDims=chains[0].shape[1]. paramNames supports LaTex commands enclosed in $..$. Additionally, you can pass None as a label. Default is None, however if you pass a ``pandas.DataFrame`` object, `paramNames` defaults to the ``DataFrame`` column names. truths : list-like[nDims] or [[nDims], ...] A list of parameter values, one for each parameter in `chains` to highlight in the GTC parameter space, or a list of lists of values to highlight in the parameter space. For each set of truths passed to `truths`, there must be a value corresponding to every dimension in `chains`, although any value may be ``None``. Default is ``None``. truthLabels : list-like[nTruths] A list of labels, one for each list passed to truths. truthLabels supports LaTex commands enclosed in $..$. Additionally, you can pass ``None`` as a label. Default is ``None``. truthColors : list-like[nTruths] User-defined colors for the truth lines, must be one per set of truths passed to `truths`. Default color is gray ``#4d4d4d`` for up to three lines. truthLineStyles : list-like[nTruths] User-defined line styles for the truth lines, must be one per set of truths passed to `truths`. Default line styles are ``['--',':','dashdot']``. priors : list of tuples [(mu1, sigma1), ...] Each tuple describes a Gaussian to be plotted over that parameter's histogram. The number of priors must equal the number of dimensions in `chains`. Default is ``None``. plotName : string A path to save the GTC to in pdf form. Default is ``None``. nContourLevels : int The number of contour levels to plot in the 2d histograms. May be 1, 2, or 3. Default is 2. sigmaContourLevels : bool Whether you want 2d "sigma" contour levels (39%, 86%, 99%) instead of the standard contour levels (68%, 95%, 99%). Default is ``False``. nBins : int An integer describing the number of bins used to compute the histograms. Default is 30. smoothingKernel : float Size of the Gaussian smoothing kernel in bins. Default is 1. Set to 0 for no smoothing. filledPlots2d : bool Whether you want the 2d contours to be filled Default is ``True``. filledPlots1d : bool Whether you want the 1d histograms to be filled Default is ``True``. plotDensity : bool Whether you want to see the 2d density of points. Default is ``False``. figureSize : float or string A number in inches describing the length = width of the GTC, or a string indicating a predefined journal setting and whether the figure will span one column or the full page width. Default is 70/dpi where ``dpi = plt.rcParams['figure.dpi']``. Options to choose from are ``'APJ_column'``, ``'APJ_page'``, ``'MNRAS_column'``, ``'MNRAS_page'``, ``'AandA_column'``, ``'AandA_page'``. panelSpacing : string Options are ``'loose'`` or ``'tight'``. Determines whether there is some space between the subplots of the GTC or not. Default is ``'tight'``. legendMarker : string Options are ``'All'``, ``'None'``, ``'Auto'``. ``'All'`` and ``'None'`` force-show or force-hide all label markers. ``'Auto'`` shows label markers if two or more truths are plotted. paramRanges : list of tuples [nDim] Set the boundaries of each parameter range. Must provide a tuple for each dimension of `chains`. If ``None`` is provided for a parameter, the range defaults to the width of the histogram. labelRotation : tuple [2] Rotate the tick labels by 45 degrees for less overlap. Sets the x- and y-axis separately. Options are ``(True,True)``, ``(True,False)``, ``(False,True)``, ``(False,False)``, ``None``. Using ``None`` sets to default ``(True,True)``. tickShifts : tuple [2] Shift the x/y tick labels horizontally/vertically by a fraction of the tick spacing. Example tickShifts = (0.1, 0.05) shifts the x-tick labels right by ten percent of the tick spacing and shifts the y-tick labels up by five percent of the tick spacing. Default is (0.1, 0.1). If tick rotation is turned off for either axis, then the corresponding shift is set to zero. colorsOrder : list-like[nDims] The color order for chains passed to `chains`. Default is ``['blues', 'oranges','greens', 'reds', 'purples', 'browns', 'pinks', 'grays', 'yellows', 'cyans']``. Currently, ``pygtc`` is limited to these color values, so you can reorder them, but can't yet define your own colors. If you really love the old colors, you can get at them by calling: ``['blues_old', 'greens_old', ...]``. do1dPlots : bool Whether or not 1d histrograms are plotted on the diagonal. Default is ``True``. doOnly1dPlot : bool Plot only ONE 1d histogram. If this is True, then chains must have shape ``(samples,1)``. Default is ``False``. mathTextFontSet : string Set font family for rendering LaTex. Default is ``'stixsans'``. Set to ``None`` to use the default setting in your matplotlib rc. See Notes for known issues regarding this keyword. customLabelFont : ``matplotlib.fontdict`` Full customization of label fonts. See matplotlib for full documentation. Default is ``{'family':'Arial', 'size':9}``. customLegendFont : ``matplotlib.fontdict`` Full customization of legend fonts. See matplotlib for full documentation. Default is ``{'family':'Arial', 'size':9}``. customTickFont : ``matplotlib.fontdict`` Full customization of tick label fonts. See matplotlib for full documentation. Default is ``{'family':'Arial', 'size':6}``. Attempting to set the color will result in an error. holdRC : bool Whether or not to reset rcParams back to default. You may wish to set this to ``True`` if you are working in interactive mode (ie with IPython or in a JuPyter notebook) and you want the plots that display to be identical to the plots that save in the pdf. See Notes below for more information. Default is ``False``. Returns ------- fig : ``matplotlib.figure`` object You can do all sorts of fun things with this in terms of customization after it gets returned. If you are using a ``JuPyter`` notebook with inline plotting enabled, you should assign a variable to catch the return or else the figure will plot twice. Note ---- If you are calling ``plotGTC`` from within an interactive python session (ie via IPython or in a JuPyter notebook), the label font in the saved pdf may differ from the plot that appears when calling ``matplotlib.pyplot.show()``. This will happen if the mathTextFontSet keyword sets a value that is different than the one stored in ``rcParams['mathtext.fontset']`` and you are using equations in your labels by enclosing them in $..$. The output pdf will display correctly, but the interactive plot will use whatever is stored in the rcParams default to render the text that is inside the $..$. Unfortunately, this is an oversight in matplotlib's design, which only allows one global location for specifying this setting. As a workaround, you can set ``holdRC = True`` when calling ``plotGTC`` and it will *not* reset your rcParams back to their default state. Thus, when the figure renders in interactive mode, it will match the saved pdf. If you wish to reset your rcParams back to default at any point, you can call ``matplotlib.rcdefaults()``. However, if you are in a jupyter notebook and have set ``%matplotlib inline``, then calling ``matplotlib.rcdefaults()`` may not set things back the way they were, but rerunning the line magic will. This is all due to a bug in matplotlib that is slated to be fixed in the upcoming 2.0 release.""" ##### Figure setting #Set up some colors truthsDefaultColors = ['#4d4d4d', '#4d4d4d', '#4d4d4d'] truthsDefaultLS = ['--',':','dashdot'] colorsDict = { # Match pygtc up to v0.2.4 'blues_old' : ('#4c72b0','#7fa5e3','#b2d8ff'), 'greens_old' : ('#55a868','#88db9b','#bbffce'), 'yellows_old' : ('#f5964f','#ffc982','#fffcb5'), 'reds_old' : ('#c44e52','#f78185','#ffb4b8'), 'purples_old' : ('#8172b2','#b4a5e5','#37d8ff'), # New color scheme, dark colors match matplotlib v2 'blues' : ('#1f77b4','#52aae7','#85ddff'), 'oranges' : ('#ff7f0e','#ffb241','#ffe574'), 'greens' : ('#2ca02c','#5fd35f','#92ff92'), 'reds' : ('#d62728','#ff5a5b','#ff8d8e'), 'purples' : ('#9467bd','#c79af0','#facdff'), 'browns' : ('#8c564b','#bf897e','#f2bcb1'), 'pinks' : ('#e377c2','#ffaaf5','#ffddff'), 'grays' : ('#7f7f7f','#b2b2b2','#e5e5e5'), 'yellows' : ('#bcbd22','#eff055','#ffff88'), 'cyans' : ('#17becf','#4af1ff','#7dffff'), } defaultColorsOrder = ['blues', 'oranges','greens', 'reds', 'purples', 'browns', 'pinks', 'grays', 'yellows', 'cyans'] priorColor = '#333333' #Angle of tick labels tickAngle = 45 #Dictionary of size types or whatever: mplPPI = plt.rcParams['figure.dpi'] #Matplotlib dots per inch figSizeDict = { 'APJ_column' : 245.26653 / mplPPI, 'APJ_page' : 513.11743 / mplPPI, 'MNRAS_column' : 240. / mplPPI, 'MNRAS_page' : 504. / mplPPI, 'AandA_column' : 256.0748 / mplPPI, 'AandA_page' : 523.5307 / mplPPI} ##### Check the validity of the chains argument: # Numpy really doesn't like lists of Pandas DataFrame objects # So if it gets one, extract array vals and throw away the rest dfColNames = None try: # Not a list of DFs, but might be a single DF try: # Check if single numpy 2d chain if chains.ndim == 2: chains = [chains] except: pass # Read in column names from Pandas DataFrame if exists # Also convert DataFrame to simple numpy array to avoid later conflicts if hasattr(chains[0], 'columns'): # Set param names from DataFrame column names, can be overridden later dfColNames = list(chains[0].columns.values) chains = [df.values for df in chains] except ValueError: # Probably a list of pandas DFs if hasattr(chains[0], 'columns') and hasattr(chains[0], 'values'): dfColNames = list(chains[0].columns.values) chains = [df.values for df in chains] # Get number of chains nChains = len(chains) assert nChains<=len(defaultColorsOrder), \ "currently only supports up to "+str(len(defaultColorsOrder))+" chains" # Check that each chain looks reasonable (2d shape) for i in range(nChains): assert len(chains[i].shape)==2, "unexpected shape of chain %d"%(chains[i]) # Number of dimensions (parameters), check all chains have same nDim nDim = len(chains[0][0,:]) for i in range(nChains): nDimi = len(chains[i][0,:]) assert nDimi==nDim, "chain %d has unexpected number of dimensions %d"%(i,nDimi) # Labels for multiple chains, goes in plot legend chainLabels = kwargs.pop('chainLabels', None) if chainLabels is not None: # Convert to list if only one label if __isstr(chainLabels): chainLabels = [chainLabels] # Check that number of labels equals number of chains assert len(chainLabels) == nChains, "chainLabels mismatch with number of chains" # Check that it's a list of strings assert all(__isstr(s) for s in chainLabels), "chainLabels must be list of strings" # Label the x and y axes, supports latex paramNames = kwargs.pop('paramNames', None) if paramNames is not None: # Convert to list if only one name if __isstr(paramNames): paramNames = [paramNames] # Check that number of paramNames equals nDim assert len(paramNames) == nDim, "paramNames mismatch with number of dimensions" # Check that it's a list of strings assert all(__isstr(s) for s in paramNames), "paramNames must be list of strings" elif dfColNames is not None: paramNames = dfColNames # Custom parameter range paramRanges = kwargs.pop('paramRanges', None) if paramRanges is not None: assert len(paramRanges)==nDim, "paramRanges must match number of parameters" # Rotated tick labels labelRotation = kwargs.pop('labelRotation', (True,True)) # Shifted tick labels, Default is nudge by 0.1 * tick spacing shiftX, shiftY = kwargs.pop('tickShifts', (0.1, 0.1)) #If the rotation is turned off, then don't shift the labels if not labelRotation[0]: shiftX = 0 if not labelRotation[1]: shiftY = 0 # User-defined color ordering colorsOrder = kwargs.pop('colorsOrder', defaultColorsOrder) # Convert to list if only one entry if __isstr(colorsOrder): colorsOrder = [colorsOrder] if not all(color in colorsDict.keys() for color in colorsOrder): raise ValueError("Bad color name in colorsOrder=%s, pick from %s"%(colorsOrder,colorsDict.keys())) colors = [colorsDict[cs] for cs in colorsOrder] # Highlight a point (or several) in parameter space by lines truthColors = kwargs.pop('truthColors', truthsDefaultColors) #Default supports up to three truths truthLineStyles = kwargs.pop('truthLineStyles', truthsDefaultLS) truths = kwargs.pop('truths', None) if truths is not None: # Convert to list if needed if len(np.shape(truths))==1: truths = [truths] truths = np.array(truths) assert np.shape(truths)[0]<=len(truthColors), \ "More truths than available colors. Set colors with truthColors = [colors...]" assert np.shape(truths)[0]<=len(truthLineStyles), \ "More truths than available line styles. Set line styles with truthLineStyles = [ls...]" assert np.shape(truths)[1]==nDim, \ "Each list of truths must match number of parameters" # Labels for the different truth lines truthLabels = kwargs.pop('truthLabels', None) #Labels for multiple truths, goes in plot legend if truthLabels is not None: # Convert to list if only one label if __isstr(truthLabels): truthLabels = [truthLabels] # Check that it's a list of strings assert all(__isstr(s) for s in truthLabels), "truthLabels must be list of strings" assert len(truthLabels) == len(truths), "truthLabels mismatch with number of truths" # Show Gaussian PDF on 1d plots (to show Gaussian priors) priors = kwargs.pop('priors', None) if priors is not None: if haveScipy: assert len(priors)==nDim, "List of priors must match number of parameters" for i in range(nDim): if priors[i]: assert priors[i][1]>0, "Prior width must be positive" else: warnings.warn("You need to have scipy installed to display Gaussian priors, ignoring priors keyword.", UserWarning) priors = None # Manage the sample point weights weights = kwargs.pop('weights', None) if weights is None: # Set unit weights if no weights are provided weights = [np.ones(len(chains[i])) for i in range(nChains)] else: if len(weights)==len(chains[0]): weights = [weights] for i in range(nChains): assert len(weights[i])==len(chains[i]), \ "missmatch in chain/weights #%d: len(chain) %d, len(weights) %d"%(i,len(chains[i]),len(weights[i])) # Set plotName to save the plot to plotName plotName = kwargs.pop('plotName', None) #Um... the name of the plot?! if plotName is not None: assert __isstr(plotName), "plotName must be a string type" # Which contour levels to show nContourLevels = kwargs.pop('nContourLevels', 2) assert nContourLevels in [1,2,3], "nContourLevels must be 1, 2, or 3" # Maintain support for older naming convention. TODO: Remove in next major version deprecated_nContourLevels = kwargs.pop('nConfidenceLevels', False) if deprecated_nContourLevels: warnings.warn("nConfidenceLevels has been replaced by nContourLevels", DeprecationWarning) nContourLevels = deprecated_nContourLevels assert nContourLevels in [1,2,3], "nContourLevels must be 1, 2, or 3" # 2d contour levels: (68%, 95%, 99%) or sigma (39%, 86%, 99%) confLevels = (.3173, .0455, .0027) sigmaContourLevels = kwargs.pop('sigmaContourLevels', False) if sigmaContourLevels: confLevels = (.6065, .1353, .0111) # Maintain support for older naming convention. TODO: Remove in next major version deprecated_ConfLevels = kwargs.pop('gaussianConfLevels', False) if deprecated_ConfLevels: warnings.warn("gaussianConfLevels has been replaced by sigmaContourLevels", DeprecationWarning) confLevels = (.6065, .1353, .0111) deprecated_ConfLevels = kwargs.pop('GaussianConfLevels', False) if deprecated_ConfLevels: warnings.warn("GaussianConfLevels has been replaced by sigmaContourLevels", DeprecationWarning) confLevels = (.6065, .1353, .0111) # Data binning and smoothing nBins = kwargs.pop('nBins', 30) # Number of bins for 1d and 2d histograms. 30 works... smoothingKernel = kwargs.pop('smoothingKernel', 1) #Don't you like smooth data? if (smoothingKernel != 0) and (not haveScipy): warnings.warn("Warning: You don't have Scipy installed. Your curves will not be smoothed.", UserWarning) smoothingKernel = 0 if smoothingKernel>=nBins/10: warnings.warn("Wow, that's a huge smoothing kernel! You sure you want" "its scale to be %.1f percent of the plot?!" %(100.*float(smoothingKernel)/float(nBins)), UserWarning) # Filled contours and histograms filledPlots2d = kwargs.pop('filledPlots2d', True) filledPlots1d = kwargs.pop('filledPlots1d', True) # Filled contours and histograms plotDensity = kwargs.pop('plotDensity', False) # Figure size: choose size to fit journal, use reasonable default, or provide your own figureSize = kwargs.pop('figureSize', None) #Figure size descriptor or figure width=height in inches if figureSize is None: # If no figure size is given, use resolution of 70 ppp (pixel per panel) figureWidth = nDim*70. / mplPPI else: # User-defined width=height in inches if not __isstr(figureSize): figureWidth = figureSize else: # Choose from a couple of presets to fit your publication if figureSize in figSizeDict.keys(): figureWidth = figSizeDict[figureSize] else: raise ValueError("figureSize %s unknown"%figureSize) # Space between panels panelSpacing = kwargs.pop('panelSpacing', 'tight') # Marker lines in legend showLegendMarker = False legendMarker = kwargs.pop('legendMarker', 'Auto') assert legendMarker in ('All','None','Auto'), \ "legendMarker must be one of 'All', 'None', 'Auto'" if legendMarker=='Auto': if truthLabels is not None: if len(truthLabels)>1: showLegendMarker = True elif legendMarker=='All': showLegendMarker = True # Plot 1d histograms do1dPlots = kwargs.pop('do1dPlots', True) # Plot ONLY 1d histograms doOnly1dPlot = kwargs.pop('doOnly1dPlot', False) if doOnly1dPlot: for i in range(nChains): assert chains[i].shape[1]==1, \ "Provide chains of shape(Npoints,1) if you only want the 1d histogram" do1dPlots = True # Set font in rcParams (Not in the default file, but just in the running kernel) mathtextTypes = ['cm', 'stix', 'custom', 'stixsans', None] mathTextFontSet = kwargs.pop('mathTextFontSet', 'stixsans') assert mathTextFontSet in mathtextTypes, \ "mathTextFont set must be one of 'cm', 'stix', 'custom', 'stixsans', None." oldMathTextFontSet = plt.rcParams['mathtext.fontset'] if mathTextFontSet is not None: plt.rcParams['mathtext.fontset'] = mathTextFontSet holdRC = kwargs.pop('holdRC', False) assert holdRC in [True, False], "holdRC must be True or False." #Grab the custom fontdicts #Default size is 9 for all labels. defaultFontFamily = 'Arial' defaultLabelFontSize = 9 defaultTickFontSize = 6 customLabelFont = kwargs.pop('customLabelFont', {}) if 'size' not in customLabelFont.keys(): customLabelFont['size'] = defaultLabelFontSize if 'family' not in customLabelFont.keys(): customLabelFont['family'] = defaultFontFamily customLegendFont = kwargs.pop('customLegendFont', {}) if 'size' not in customLegendFont.keys(): customLegendFont['size'] = defaultLabelFontSize if 'family' not in customLegendFont.keys(): customLegendFont['family'] = defaultFontFamily customTickFont = kwargs.pop('customTickFont', {}) if 'size' not in customTickFont.keys(): customTickFont['size'] = defaultTickFontSize if 'family' not in customTickFont.keys(): customTickFont['family'] = defaultFontFamily #Ticks require a FontProperties instead of a font dict tickFontProps = mpl.font_manager.FontProperties(**customTickFont) # Check to see if there are any remaining keyword arguments keys = '' for key in iter(kwargs.keys()): keys = keys + key + ' ' raise NameError("illegal keyword arguments: " + keys) ##### Define colormap myColorMap = setCustomColorMaps(colors) ##### Matplotlib and figure settings axisColor = '#333333' # Create the figure, and empty list for first column / last row fig = plt.figure(figsize=(figureWidth,figureWidth)) axV, axH = [], [] # Minimum and maximum sample for each dimension samplesMin = np.nanmin(np.array([np.nanmin(chains[k], axis=0) for k in range(nChains)]), axis=0) samplesMax = np.nanmax(np.array([np.nanmax(chains[k], axis=0) for k in range(nChains)]), axis=0) # Left and right panel boundaries # Use data limits and override if user-defined panelAxRange = np.vstack((samplesMin, samplesMax)).T for i in range(nDim): if paramRanges is not None: if paramRanges[i]: panelAxRange[i] = paramRanges[i] xTicks, yTicks = nDim*[None], nDim*[None] ########## 2D contour plots if not doOnly1dPlot: for i in range(nDim): # row for j in range(nDim): # column if j<i: ##### Create subplot if do1dPlots: ax = fig.add_subplot(nDim,nDim,(i*nDim)+j+1) else: ax = fig.add_subplot(nDim-1,nDim-1,((i-1)*(nDim-1))+j+1) ##### Draw contours and truths # Extract 2d chains chainsForPlot2D = [[chains[k][:,j], chains[k][:,i]] for k in range(nChains)] # Extract 2d truths truthsForPlot2D = None if truths is not None: truthsForPlot2D = [[truths[k,i], truths[k,j]] for k in range(len(truths))] # Plot! ax = __plot2d(ax, nChains, chainsForPlot2D, weights, nBins, smoothingKernel, filledPlots2d, colors, nContourLevels, confLevels, truthsForPlot2D, truthColors, truthLineStyles, plotDensity, myColorMap) ##### Range ax.set_xlim(panelAxRange[j][0],panelAxRange[j][1]) ax.set_ylim(panelAxRange[i][0],panelAxRange[i][1]) ##### Tick labels without offset and scientific notation ax.get_xaxis().get_major_formatter().set_useOffset(False) ax.get_xaxis().get_major_formatter().set_scientific(False) ax.get_yaxis().get_major_formatter().set_useOffset(False) ax.get_yaxis().get_major_formatter().set_scientific(False) ##### x-labels at bottom of plot only if i==nDim-1: if paramNames is not None: ax.set_xlabel(paramNames[j], fontdict=customLabelFont) else: ax.get_xaxis().set_ticklabels([]) ##### y-labels for left-most panels only if j==0: if paramNames is not None: ax.set_ylabel(paramNames[i], fontdict=customLabelFont) else: ax.get_yaxis().set_ticklabels([]) ##### Panel layout ax.grid(False) try: #This is the matplotlib 2.0 way of doing things ax.set_facecolor('w') except AttributeError: #Fallback to matplotlib 1.5 ax.set_axis_bgcolor('w') for axis in ['top','bottom','left','right']: ax.spines[axis].set_color(axisColor) ax.spines[axis].set_linewidth(1) ##### Global tick properties ax.tick_params(direction='in', top=True, right=True, pad=4, colors=axisColor, size=4, width=.5, labelsize=6) ##### get x limits deltaX = panelAxRange[j,1]-panelAxRange[j,0] ##### Ticks x axis if xTicks[j] is None: # 5 ticks max ax.xaxis.set_major_locator(mtik.MaxNLocator(5)) # Remove xticks that are too close (5% of panel size) to panel edge LoHi = (panelAxRange[j,0]+.05*deltaX, panelAxRange[j,1]-.05*deltaX) tickLocs = ax.xaxis.get_ticklocs() idx = np.where((tickLocs>LoHi[0])&(tickLocs<LoHi[1]))[0] xTicks[j] = tickLocs[idx] ax.xaxis.set_ticks(xTicks[j]) ##### get y limits deltaY = panelAxRange[i,1]-panelAxRange[i,0] ##### Ticks y axis if yTicks[i] is None: # 5 ticks max ax.yaxis.set_major_locator(mtik.MaxNLocator(5)) # Remove xticks that are too close (5% of panel size) to panel edge LoHi = (panelAxRange[i,0]+.05*deltaY, panelAxRange[i,1]-.05*deltaY) tickLocs = ax.yaxis.get_ticklocs() idx = np.where((tickLocs>LoHi[0])&(tickLocs<LoHi[1]))[0] yTicks[i] = tickLocs[idx] ax.yaxis.set_ticks(yTicks[i]) ##### Calculate the position for shifting the x-axis tick labels #Bump all the labels over just a tiny bit so #it looks good! Default is 0.1 * tick spacing #Get the number of ticks to convert #to coordinates of fraction of tick separation numTicksX = len(xTicks[j])-1 #Transform the shift to data coords shiftXdata = 1.0*shiftX*deltaX/numTicksX ##### Rotate tick labels for xLabel in ax.get_xticklabels(): if labelRotation[0]: xLabel.set_rotation(tickAngle) xLabel.set_horizontalalignment('right') #Add a custom attribute to the tick label object xLabel.custom_shift = shiftXdata #Now monkey patch the label's set_x method to force it to #shift the x labels when it gets called during render #Python 3 changes how this gets called if PYVER >= 3: xLabel.set_x = types.MethodType(lambda self, x: mpl.text.Text.set_x(self, x+self.custom_shift), xLabel) else: xLabel.set_x = types.MethodType(lambda self, x: mpl.text.Text.set_x(self, x+self.custom_shift), xLabel, mpl.text.Text) #Update the font if needed xLabel.set_fontproperties(tickFontProps) ##### Calculate the position for shifting the y-axis tick labels #Bump all the labels over just a tiny bit so #it looks good! Default is 0.1 * tick spacing #Get the number of ticks to convert #to coordinates of fraction of tick separation numTicksY = len(yTicks[i])-1 shiftYdata = 1.0*shiftY*deltaY/numTicksY for yLabel in ax.get_yticklabels(): if labelRotation[1]: yLabel.set_rotation(tickAngle) yLabel.set_verticalalignment('top') #Add a custom attribute to the tick label object yLabel.custom_shift = shiftYdata #Now monkey patch the label's set_x method to force it to #shift the x labels when it gets called during render if PYVER >= 3: yLabel.set_y = types.MethodType(lambda self, y: mpl.text.Text.set_y(self, y+self.custom_shift), yLabel) else: yLabel.set_y = types.MethodType(lambda self, y: mpl.text.Text.set_y(self, y+self.custom_shift), yLabel, mpl.text.Text) #Update the font if needed yLabel.set_fontproperties(tickFontProps) ##### First column and last row are needed to align labels if j==0: axV.append(ax) if i==nDim-1: axH.append(ax) if do1dPlots: ########## 1D histograms for i in range(nDim): ##### Create subplot ax = fig.add_subplot(nDim,nDim,(i*nDim)+i+1) ##### Plot histograms, truths, Gaussians # Extract 1d chains chainsForPlot1D = [chains[k][:,i] for k in range(nChains)] # Extract 1d truths truthsForPlot1D = None if truths is not None: truthsForPlot1D = [truths[k,i] for k in range(len(truths))] # Extract 1d prior prior1d = None if priors is not None: if priors[i] and priors[i][1]>0: prior1d = priors[i] # Plot! ax = __plot1d(ax, nChains, chainsForPlot1D, weights, nBins, smoothingKernel, filledPlots1d, colors, truthsForPlot1D, truthColors, truthLineStyles, prior1d, priorColor) ##### Panel layout ax.grid(False) try: #This is the matplotlib 2.0 way of doing things ax.set_facecolor('w') except AttributeError: #Fallback to matplotlib 1.5 ax.set_axis_bgcolor('w') for axis in ['top','bottom','left','right']: ax.spines[axis].set_color(axisColor) ax.spines[axis].set_linewidth(1) ##### Global tick properties ax.tick_params(direction='in', top=True, right=True, pad=4, colors=axisColor, size=4, width=.5, labelsize=6) ##### Tick labels without offset and scientific notation ax.get_xaxis().get_major_formatter().set_useOffset(False) ax.get_xaxis().get_major_formatter().set_scientific(False) ##### No ticks or labels on y-axes, lower limit 0 ax.yaxis.set_ticks([]) ax.set_ylim(bottom=0) ax.xaxis.set_ticks_position('bottom') ##### x-label for bottom-right panel only and a scaling hack if i==nDim-1: if paramNames is not None: ax.set_xlabel(paramNames[i], fontdict=customLabelFont) #Hack to get scaling to work for final 1D plot under MPL < 2.0 if (MPLVER < 2) and (smoothingKernel == 0): max_y = 0 #Loop through the children, find the polygons #and extract the maximum y-value for child in ax.get_children(): if type(child) == plt.Polygon: child_max_y = child.get_xy()[:,1].max() if child_max_y > max_y: max_y = child_max_y #Set upper limit to be 5% above maximum y-value ax.set_ylim(0, max_y*1.05) else: ax.get_xaxis().set_ticklabels([]) #### Set x range ax.set_xlim(panelAxRange[i]) #### Calculate limits and tick spacing deltaX = panelAxRange[i,1]-panelAxRange[i,0] ##### Ticks x axis if i==nDim-1: # 5 ticks max ax.xaxis.set_major_locator(mtik.MaxNLocator(5)) # Remove xticks that are too close (5% of panel size) to panel edge LoHi = (panelAxRange[i,0]+.05*deltaX, panelAxRange[i,1]-.05*deltaX) tickLocs = ax.xaxis.get_ticklocs() idx =
np.where((tickLocs>LoHi[0])&(tickLocs<LoHi[1]))
numpy.where
# -*- coding: utf-8 -*- """ Created on Mon Sep 4 21:44:21 2017 @author: wangronin """ import pdb import warnings import numpy as np from numpy import sqrt, exp, pi from scipy.stats import norm from abc import ABCMeta, abstractmethod # warnings.filterwarnings("error") # TODO: perphas also enable acquisition function engineering here? # meaning the combination of the acquisition functions class InfillCriteria: __metaclass__ = ABCMeta def __init__(self, model, plugin=None, minimize=True): assert hasattr(model, 'predict') self.model = model self.minimize = minimize # change maximization problem to minimization self.plugin = plugin if self.minimize else -plugin if self.plugin is None: self.plugin = np.min(model.y) if minimize else -np.max(self.model.y) @abstractmethod def __call__(self, X): raise NotImplementedError def _predict(self, X): y_hat, sd2 = self.model.predict(X, eval_MSE=True) sd =
sqrt(sd2)
numpy.sqrt
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on Tue Mar 26 11:38:35 2019 @author: <NAME> """ #TODO: add error handling for reading of files #TODO: warning for not finding any features import argparse import cluster_function_prediction_tools as tools import os, sys from Bio import SeqIO import SSN_tools import readFeatureFiles import numpy as np import readInputFiles SSN_pfam_names = ["Thiolase, N-terminal domain","ABC transporter","Acyl transferase domain","AAA domain", "ABC-2 family transporter protein","Acyl-CoA dehydrogenase, C-terminal domain","Acyl-CoA dehydrogenase, N-terminal domain", "Alcohol dehydrogenase GroES-like domain","Alpha/beta hydrolase family","Aminotransferase class I and II", "Beta-ketoacyl synthase, C-terminal domain","Beta-ketoacyl synthase, N-terminal domain","Cytochrome P450","DegT/DnrJ/EryC1/StrS aminotransferase family", "Enoyl-(Acyl carrier protein) reductase","Erythronolide synthase docking","FAD binding domain","Glycosyl transferase family 2", "Glycosyltransferase family 28 N-terminal domain","Glycosyl transferases group 1","Glycosyltransferase like family 2","Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily", "KR domain","Lanthionine synthetase C-like protein", "Major Facilitator Superfamily","Methyltransferase small domain","Methyltransferase domain", "NAD dependent epimerase/dehydratase family","NDP-hexose 2,3-dehydratase", "O-methyltransferase","Oxidoreductase family, C-terminal alpha/beta domain","Oxidoreductase family, NAD-binding Rossmann fold", "Phosphopantetheine attachment site","Polyketide cyclase / dehydrase and lipid transport","Polyketide synthase dehydratase", "Protein of unknown function (DUF1205)", "short chain dehydrogenase","SnoaL-like domain","SpaB C-terminal domain", "Sugar (and other) transporter","transcriptional_regulatory_protein,_c_terminal_domains","Thioesterase superfamily","ubiE/COQ5 methyltransferase family","UDP-glucoronosyl and UDP-glucosyl transferase","YcaO-like family", "Zinc-binding dehydrogenase","pyridine_nucleotide-disulphide_oxidoreductase"] #read arguments given by user parser = argparse.ArgumentParser() parser.add_argument('antismash_results',help='file containing the antismash results for the cluster in a genbank file') parser.add_argument('rgi_results',help='file containing the rgi results for the cluster') parser.add_argument('--output', help='set directory to write predictions to, default write to current directory') parser.add_argument('--seed', help='random seed to use for training classifiers',type=int) parser.add_argument('--no_SSN', help="don't use pfam subfamilies in classification, program will run faster with only small impact on accuracy (default: use sub-PFAMs)", nargs='?', default=False, const=True) parser.add_argument('--blastp_path', help="path to blastp executable, only neeeded if using SSN, default is blastp") parser.add_argument('--write_features', help='set directory to write features to, default do not write features') parser.add_argument('--antismash_version', help='version of antismash used to generate antismash input file, supported versions are 4 and 5, defualt 5') parser.add_argument('--rgi_version', help='version of rgi used to generate antismash input file, supported versions are 3 and 5, default 5') args = parser.parse_args() data_path = os.path.dirname(sys.argv[0]) + "/" if args.write_features == None: write_features = False feature_dir = "" else: write_features = True feature_dir = args.write_features if args.seed == None: seed = 0 else: seed = args.seed if args.blastp_path == None: blastp_path = "blastp" else: blastp_path = args.blastp_path antismash_infilename = args.antismash_results rgi_infilename = args.rgi_results no_SSN = args.no_SSN if args.output == None: out_directory = "./" else: out_directory = args.output if args.rgi_version == "5": rgi_version = 5 elif args.rgi_version == "3": rgi_version = 3 elif args.rgi_version == None: rgi_version = 5 else: print("please enter a valid rgi version, program currently accepts output from versions 3 and 5") exit() antismash_version = 5 if args.antismash_version == "5": antismash_version = 5 elif args.antismash_version == "4": antismash_version = 4 elif args.antismash_version == None: antismash_version = 5 else: print("please enter a valid antismash version, program currently accepts output from versions 4 and 5") exit() #check validity of files and directories given by user if not tools.checkIfFileExists(antismash_infilename, "antismash") or not tools.checkIfFileExists(rgi_infilename, "rgi"): exit() if not os.path.isdir(out_directory): print("The given out directory does not exist, please enter a valid directory") exit() if not os.access(out_directory, os.W_OK): print("You do not have permission to write to the given output directory, please use a different directory") exit() #read the list of features try: training_SSN_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/SSN.csv") if antismash_version == 4: training_pfam_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/PFAM.csv") training_smCOG_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/SMCOG.csv") #SSN_calc_features = readFeatureFiles.readFeatureMatrixFloat("gene_feature_matrices/test_compounds_SSN.csv") training_CDS_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/CDS_motifs.csv") training_pks_nrps_type_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/pks_nrps_type.csv") training_pk_signature_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/pk_signature.csv") training_pk_minowa_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/pk_minowa.csv") training_pk_consensus_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/pk_consensus.csv") training_nrp_stachelhaus_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/nrp_stachelhaus.csv") training_nrp_nrpspredictor_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/nrp_nrpspredictor.csv") training_nrp_pHMM_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/nrp_pHMM.csv") training_nrp_predicat_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/nrp_predicat.csv") training_nrp_sandpuma_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/nrp_sandpuma.csv") elif antismash_version == 5: training_pfam_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/PFAM5.csv") training_smCOG_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/SMCOG5.csv") training_CDS_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/CDS_motifs5.csv") training_pk_consensus_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/pk_nrp_consensus5.csv") if rgi_version == 3: training_card_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/CARD_gene.csv") used_resistance_genes_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/CARD_gene_list.txt") elif rgi_version == 5: training_card_features = readFeatureFiles.readFeatureMatrix(data_path+"feature_matrices/CARD5_genes.csv") used_resistance_genes_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/CARD5_gene_list.txt") is_antibacterial = readFeatureFiles.readClassesMatrix(data_path+"feature_matrices/is_antibacterial.csv") is_antifungal = readFeatureFiles.readClassesMatrix(data_path+"feature_matrices/is_antifungal.csv") is_cytotoxic = readFeatureFiles.readClassesMatrix(data_path+"feature_matrices/is_cytotoxic.csv") is_unknown = readFeatureFiles.readClassesMatrix(data_path+"feature_matrices/is_unknown.csv") targets_gram_pos = readFeatureFiles.readClassesMatrix(data_path+"feature_matrices/targets_gram_pos.csv") targets_gram_neg = readFeatureFiles.readClassesMatrix(data_path+"feature_matrices/targets_gram_neg.csv") full_cluster_list = readFeatureFiles.readClusterList(data_path+"feature_matrices/cluster_list_CARD.txt") except: print("did not find file containing training data, please keep script located in directory downloaded from github") exit() #read the antismash input file try: record = SeqIO.read(open(antismash_infilename, 'rU'),"genbank") except: print("error reading antismash output file") exit() as_features = record.features try: rgi_infile = open(rgi_infilename, 'r') except: print("error reading rgi output file") exit() #make the feature matrices for the cluster training_features =
np.concatenate((training_pfam_features, training_card_features), axis=1)
numpy.concatenate
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # BCDI: tools for pre(post)-processing Bragg coherent X-ray diffraction imaging data # (c) 07/2017-06/2019 : CNRS UMR 7344 IM2NP # (c) 07/2019-present : DESY PHOTON SCIENCE # authors: # <NAME>, <EMAIL> try: import hdf5plugin # for P10, should be imported before h5py or PyTables except ModuleNotFoundError: pass import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp1d from scipy.ndimage.measurements import center_of_mass from bcdi.experiment.detector import create_detector from bcdi.experiment.setup import Setup import bcdi.preprocessing.bcdi_utils as bu import bcdi.graph.graph_utils as gu import bcdi.utils.utilities as util import bcdi.utils.validation as valid helptext = """ Open a series of rocking curve data and track the position of the Bragg peak over the series. Supported beamlines: ESRF ID01, PETRAIII P10, SOLEIL SIXS, SOLEIL CRISTAL, MAX IV NANOMAX. """ scans = np.arange(1460, 1475 + 1, step=3) # list or array of scan numbers scans = np.concatenate((scans, np.arange(1484, 1586 + 1, 3))) scans = np.concatenate((scans, np.arange(1591, 1633 + 1, 3))) scans = np.concatenate((scans, np.arange(1638, 1680 + 1, 3))) root_folder = "D:/data/P10_OER/data/" sample_name = "dewet2_2" # list of sample names. If only one name is indicated, # it will be repeated to match the number of scans save_dir = "D:/data/P10_OER/analysis/candidate_12/" # images will be saved here, leave it to None otherwise (default to root_folder) x_axis = [0.740 for _ in range(16)] for _ in range(10): x_axis.append(0.80) for _ in range(15): x_axis.append(-0.05) for _ in range(15): x_axis.append(0.3) for _ in range(15): x_axis.append(0.8) # values against which the Bragg peak center of mass evolution will be plotted, # leave [] otherwise x_label = "voltage (V)" # label for the X axis in plots, leave '' otherwise comment = "_BCDI_RC" # comment for the saving filename, should start with _ strain_range = 0.00005 # range for the plot of the q value peak_method = ( "max_com" # Bragg peak determination: 'max', 'com', 'max_com' (max then com) ) debug = False # set to True to see more plots ############################### # beamline related parameters # ############################### beamline = ( "P10" # name of the beamline, used for data loading and normalization by monitor ) # supported beamlines: 'ID01', 'SIXS_2018', 'SIXS_2019', 'CRISTAL', 'P10' custom_scan = False # True for a stack of images acquired without scan, # e.g. with ct in a macro (no info in spec file) custom_images = np.arange(11353, 11453, 1) # list of image numbers for the custom_scan custom_monitor = np.ones( len(custom_images) ) # monitor values for normalization for the custom_scan custom_motors = { "eta": np.linspace(16.989, 18.989, num=100, endpoint=False), "phi": 0, "nu": -0.75, "delta": 36.65, } # ID01: eta, phi, nu, delta # CRISTAL: mgomega, gamma, delta # P10: om, phi, chi, mu, gamma, delta # SIXS: beta, mu, gamma, delta rocking_angle = "outofplane" # "outofplane" or "inplane" is_series = False # specific to series measurement at P10 specfile_name = "" # template for ID01: name of the spec file without '.spec' # template for SIXS_2018: full path of the alias dictionnary, # typically root_folder + 'alias_dict_2019.txt' # template for all other beamlines: '' ############################### # detector related parameters # ############################### detector = "Eiger4M" # "Eiger2M" or "Maxipix" or "Eiger4M" x_bragg = 1387 # horizontal pixel number of the Bragg peak, # can be used for the definition of the ROI y_bragg = 809 # vertical pixel number of the Bragg peak, # can be used for the definition of the ROI roi_detector = [ y_bragg - 200, y_bragg + 200, x_bragg - 400, x_bragg + 400, ] # [Vstart, Vstop, Hstart, Hstop] # leave it as None to use the full detector. # Use with center_fft='skip' if you want this exact size. debug_pix = 40 # half-width in pixels of the ROI centered on the Bragg peak hotpixels_file = None # root_folder + 'hotpixels.npz' # non empty file path or None flatfield_file = ( None # root_folder + "flatfield_8.5kev.npz" # non empty file path or None ) template_imagefile = "_master.h5" # template for ID01: 'data_mpx4_%05d.edf.gz' or 'align_eiger2M_%05d.edf.gz' # template for SIXS_2018: 'align.spec_ascan_mu_%05d.nxs' # template for SIXS_2019: 'spare_ascan_mu_%05d.nxs' # template for Cristal: 'S%d.nxs' # template for P10: '_master.h5' # template for NANOMAX: '%06d.h5' # template for 34ID: 'Sample%dC_ES_data_51_256_256.npz' #################################### # q calculation related parameters # #################################### convert_to_q = True # True to convert from pixels to q values using parameters below beam_direction = (1, 0, 0) # beam along z directbeam_x = 476 # x horizontal, cch2 in xrayutilities directbeam_y = 1374 # y vertical, cch1 in xrayutilities direct_inplane = -2.0 # outer angle in xrayutilities direct_outofplane = 0.8 sdd = 1.83 # sample to detector distance in m energy = 10300 # in eV, offset of 6eV at ID01 ################################## # end of user-defined parameters # ################################## ################### # define colormap # ################### bad_color = "1.0" # white bckg_color = "0.7" # grey colormap = gu.Colormap(bad_color=bad_color) my_cmap = colormap.cmap ######################################## # check and initialize some parameters # ######################################## print(f"\n{len(scans)} scans: {scans}") print(f"\n {len(x_axis)} x_axis values provided:") if len(x_axis) == 0: x_axis = np.arange(len(scans)) if len(x_axis) != len(scans): raise ValueError("the length of x_axis should be equal to the number of scans") if isinstance(sample_name, str): sample_name = [sample_name for idx in range(len(scans))] valid.valid_container( sample_name, container_types=(tuple, list), length=len(scans), item_types=str, name="preprocess_bcdi", ) if peak_method not in [ "max", "com", "max_com", ]: raise ValueError('invalid value for "peak_method" parameter') int_sum = [] # integrated intensity in the detector ROI int_max = [] # maximum intensity in the detector ROI zcom = [] # center of mass for the first data axis ycom = [] # center of mass for the second data axis xcom = [] # center of mass for the third data axis tilt_com = [] # center of mass for the incident rocking angle q_com = [] # q value of the center of mass check_roi = [] # a small ROI around the Bragg peak will be stored for each scan, # to see if the peak is indeed # captured by the rocking curve ####################### # Initialize detector # ####################### detector = create_detector( name=detector, template_imagefile=template_imagefile, roi=roi_detector, ) #################### # Initialize setup # #################### setup = Setup( beamline=beamline, detector=detector, energy=energy, rocking_angle=rocking_angle, distance=sdd, beam_direction=beam_direction, custom_scan=custom_scan, custom_images=custom_images, custom_monitor=custom_monitor, custom_motors=custom_motors, is_series=is_series, ) ######################################## # print the current setup and detector # ######################################## print("\n##############\nSetup instance\n##############") print(setup) print("\n#################\nDetector instance\n#################") print(detector) ############################################### # load recursively the scans and update lists # ############################################### flatfield = util.load_flatfield(flatfield_file) hotpix_array = util.load_hotpixels(hotpixels_file) for scan_idx, scan_nb in enumerate(scans, start=1): tmp_str = f"Scan {scan_idx}/{len(scans)}: S{scan_nb}" print(f'\n{"#" * len(tmp_str)}\n' + tmp_str + "\n" + f'{"#" * len(tmp_str)}') # initialize the paths setup.init_paths( sample_name=sample_name[scan_idx - 1], scan_number=scan_nb, root_folder=root_folder, save_dir=save_dir, verbose=True, specfile_name=specfile_name, template_imagefile=template_imagefile, ) # override the saving directory, we want to save results at the same place detector.savedir = save_dir logfile = setup.create_logfile( scan_number=scan_nb, root_folder=root_folder, filename=detector.specfile ) data, mask, frames_logical, monitor = bu.load_bcdi_data( logfile=logfile, scan_number=scan_nb, detector=detector, setup=setup, flatfield=flatfield, hotpixels=hotpix_array, normalize=True, debugging=debug, ) tilt, grazing, inplane, outofplane = setup.diffractometer.goniometer_values( frames_logical=frames_logical, logfile=logfile, scan_number=scan_nb, setup=setup ) nbz, nby, nbx = data.shape if peak_method == "max": piz, piy, pix = np.unravel_index(data.argmax(), shape=(nbz, nby, nbx)) elif peak_method == "com": piz, piy, pix = center_of_mass(data) else: # 'max_com' max_z, max_y, max_x = np.unravel_index(data.argmax(), shape=data.shape) com_z, com_y, com_x = center_of_mass( data[ :, int(max_y) - debug_pix : int(max_y) + debug_pix, int(max_x) - debug_pix : int(max_x) + debug_pix, ] ) # correct the pixel offset due to the ROI defined by debug_pix around the max piz = com_z # the data was not cropped along the first axis piy = com_y + max_y - debug_pix pix = com_x + max_x - debug_pix if debug: fig, _, _ = gu.multislices_plot( data, sum_frames=True, plot_colorbar=True, cmap=my_cmap, title="scan" + str(scan_nb), scale="log", is_orthogonal=False, reciprocal_space=True, ) fig.text( 0.60, 0.30, f"(piz, piy, pix) = ({piz:.1f}, {piy:.1f}, {pix:.1f})", size=12 ) plt.draw() if peak_method == "max_com": fig, _, _ = gu.multislices_plot( data[ :, int(max_y) - debug_pix : int(max_y) + debug_pix, int(max_x) - debug_pix : int(max_x) + debug_pix, ], sum_frames=True, plot_colorbar=True, cmap=my_cmap, title="scan" + str(scan_nb), scale="log", is_orthogonal=False, reciprocal_space=True, ) fig.text( 0.60, 0.30, f"(com_z, com_y, com_x) = ({com_z:.1f}, {com_y:.1f}, {com_x:.1f})", size=12, ) plt.draw() print("") zcom.append(piz) ycom.append(piy) xcom.append(pix) int_sum.append(data.sum()) int_max.append(data.max()) check_roi.append( data[:, :, int(pix) - debug_pix : int(pix) + debug_pix].sum(axis=1) ) interp_tilt = interp1d(np.arange(data.shape[0]), tilt, kind="linear") tilt_com.append(interp_tilt(piz)) ############################## # convert pixels to q values # ############################## if convert_to_q: ( setup.outofplane_angle, setup.inplane_angle, setup.tilt_angle, setup.grazing_angle, ) = (outofplane, inplane, tilt, grazing) # calculate the position of the Bragg peak in full detector pixels bragg_x = detector.roi[2] + pix bragg_y = detector.roi[0] + piy # calculate the position of the direct beam at 0 detector angles x_direct_0 = directbeam_x + setup.inplane_coeff * ( direct_inplane * np.pi / 180 * sdd / detector.pixelsize_x ) # inplane_coeff is +1 or -1 y_direct_0 = ( directbeam_y - setup.outofplane_coeff * direct_outofplane * np.pi / 180 * sdd / detector.pixelsize_y ) # outofplane_coeff is +1 or -1 # calculate corrected detector angles for the Bragg peak bragg_inplane = setup.inplane_angle + setup.inplane_coeff * ( detector.pixelsize_x * (bragg_x - x_direct_0) / sdd * 180 / np.pi ) # inplane_coeff is +1 or -1 bragg_outofplane = ( setup.outofplane_angle - setup.outofplane_coeff * detector.pixelsize_y * (bragg_y - y_direct_0) / sdd * 180 / np.pi ) # outofplane_coeff is +1 or -1 print( f"\nBragg angles before correction (gam, del): ({setup.inplane_angle:.4f}, " f"{setup.outofplane_angle:.4f})" ) print( f"Bragg angles after correction (gam, del): ({bragg_inplane:.4f}, " f"{bragg_outofplane:.4f})" ) # update setup with the corrected detector angles setup.inplane_angle = bragg_inplane setup.outofplane_angle = bragg_outofplane ############################################################## # wavevector transfer calculations (in the laboratory frame) # ############################################################## kin = 2 * np.pi / setup.wavelength * np.asarray(beam_direction) # in lab frame z downstream, y vertical, x outboard kout = ( setup.exit_wavevector ) # in lab.frame z downstream, y vertical, x outboard q = (kout - kin) / 1e10 # convert from 1/m to 1/angstrom q_com.append(np.linalg.norm(q)) print(f"Wavevector transfer of Bragg peak: {q}, Qnorm={np.linalg.norm(q):.4f}") ########################################################## # plot the ROI centered on the Bragg peak for each scan # ########################################################## plt.ion() # plot maximum 7x7 ROIs per figure nb_fig = 1 + len(scans) // 49 if nb_fig == 1: nb_rows = np.floor(np.sqrt(len(scans))) nb_columns = np.ceil(len(scans) / nb_rows) else: nb_rows = 7 nb_columns = 7 scan_counter = 0 for fig_idx in range(nb_fig): fig = plt.figure(figsize=(12, 9)) for idx in range(min(49, len(scans) - scan_counter)): axis = plt.subplot(nb_rows, nb_columns, idx + 1) axis.imshow(np.log10(check_roi[scan_counter])) axis.set_title("S{:d}".format(scans[scan_counter])) scan_counter = scan_counter + 1 plt.tight_layout() plt.pause(0.1) fig.savefig(detector.savedir + f"check-roi{fig_idx+1}" + comment + ".png") ########################################################## # plot the evolution of the center of mass and intensity # ########################################################## fig, ((ax0, ax1, ax2), (ax3, ax4, ax5)) = plt.subplots( nrows=2, ncols=3, figsize=(12, 9) ) ax0.plot(scans, x_axis, "-o") ax0.set_xlabel("Scan number") ax0.set_ylabel(x_label) ax1.scatter(x_axis, int_sum, s=24, c=scans, cmap=my_cmap) ax1.set_xlabel(x_label) ax1.set_ylabel("Integrated intensity") ax1.set_facecolor(bckg_color) ax2.scatter(x_axis, int_max, s=24, c=scans, cmap=my_cmap) ax2.set_xlabel(x_label) ax2.set_ylabel("Maximum intensity") ax2.set_facecolor(bckg_color) ax3.scatter(x_axis, xcom, s=24, c=scans, cmap=my_cmap) ax3.set_xlabel(x_label) if peak_method in ["com", "max_com"]: ax3.set_ylabel("xcom (pixels)") else: # 'max' ax3.set_ylabel("xmax (pixels)") ax3.set_facecolor(bckg_color) ax4.scatter(x_axis, ycom, s=24, c=scans, cmap=my_cmap) ax4.set_xlabel(x_label) if peak_method in ["com", "max_com"]: ax4.set_ylabel("ycom (pixels)") else: # 'max' ax4.set_ylabel("ymax (pixels)") ax4.set_facecolor(bckg_color) plt5 = ax5.scatter(x_axis, zcom, s=24, c=scans, cmap=my_cmap) gu.colorbar(plt5, scale="linear", numticks=min(len(scans), 20), label="scan #") ax5.set_xlabel(x_label) if peak_method in ["com", "max_com"]: ax5.set_ylabel("zcom (pixels)") else: # 'max' ax5.set_ylabel("zmax (pixels)") ax5.set_facecolor(bckg_color) plt.tight_layout() plt.pause(0.1) fig.savefig(detector.savedir + "summary" + comment + ".png") ############################################ # plot the evolution of the incident angle # ############################################ tilt_com = np.asarray(tilt_com) x_axis = np.asarray(x_axis) uniq_xaxis =
np.unique(x_axis)
numpy.unique
import abc from collections import OrderedDict import time import gtimer as gt import numpy as np from rlkit.core import logger, eval_util from rlkit.data_management.env_replay_buffer import MultiTaskReplayBuffer,EnvReplayBuffer from rlkit.data_management.path_builder import PathBuilder from rlkit.samplers.in_place import SMMInPlacePathSampler, InPlacePathSampler,SeedInPlacePathSampler, ExpInPlacePathSampler,ExpInPlacePathSamplerSimple from rlkit.torch import pytorch_util as ptu from rlkit.smm.smm_policy import hard_smm_point from rlkit.smm.smm_sampler import SMMSampler from rlkit.policies.base import ExplorationPolicy import pickle import torch class MetaRLAlgorithm(metaclass=abc.ABCMeta): def __init__( self, env, agent, train_tasks, eval_tasks, meta_batch=64, num_iterations=100, num_train_steps_per_itr=1000, num_initial_steps=100, num_tasks_sample=100, num_steps_prior=100, num_steps_posterior=100, num_extra_rl_steps_posterior=100, num_evals=10, num_steps_per_eval=1000, batch_size=1024, embedding_batch_size=1024, embedding_mini_batch_size=1024, max_path_length=1000, discount=0.99, replay_buffer_size=1000000, reward_scale=1, num_exp_traj_eval=1, update_post_train=1, eval_deterministic=False, render=False, save_replay_buffer=False, save_algorithm=False, save_environment=False, render_eval_paths=False, dump_eval_paths=False, plotter=None, use_SMM=False, load_SMM =False, use_history=False, SMM_path=None, num_skills = 1, seed_sample=False, attention=False, snail=False, sample_interval=5 ): """ :param env: training env :param agent: agent that is conditioned on a latent variable z that rl_algorithm is responsible for feeding in :param train_tasks: list of tasks used for training :param eval_tasks: list of tasks used for eval see default experiment config file for descriptions of the rest of the arguments """ self.env = env self.agent = agent self.exploration_agent = agent # Can potentially use a different policy purely for exploration rather than also solving tasks, currently not being used self.train_tasks = train_tasks self.eval_tasks = eval_tasks self.meta_batch = meta_batch self.num_iterations = num_iterations self.num_train_steps_per_itr = num_train_steps_per_itr self.num_initial_steps = num_initial_steps self.num_tasks_sample = num_tasks_sample self.num_steps_prior = num_steps_prior self.num_steps_posterior = num_steps_posterior self.num_extra_rl_steps_posterior = num_extra_rl_steps_posterior self.num_evals = num_evals self.num_steps_per_eval = num_steps_per_eval self.batch_size = batch_size self.embedding_batch_size = embedding_batch_size self.embedding_mini_batch_size = embedding_mini_batch_size self.max_path_length = max_path_length self.discount = discount self.replay_buffer_size = replay_buffer_size self.reward_scale = reward_scale self.update_post_train = update_post_train self.num_exp_traj_eval = num_exp_traj_eval self.eval_deterministic = eval_deterministic self.render = render self.save_replay_buffer = save_replay_buffer self.save_algorithm = save_algorithm self.save_environment = save_environment self.eval_statistics = None self.render_eval_paths = render_eval_paths self.dump_eval_paths = dump_eval_paths self.plotter = plotter self.use_SMM = use_SMM self.load_SMM = load_SMM self.use_history = use_history, self.SMM_path = SMM_path self.num_skills = num_skills self.seed_sample = seed_sample self.sampler = InPlacePathSampler( env=env, policy=agent, max_path_length=self.max_path_length, ) if self.seed_sample: self.seedsampler = SeedInPlacePathSampler( env=env, policy=agent, max_path_length=self.max_path_length, sample_interval=sample_interval ) if self.use_SMM: self.smm_sampler = SMMSampler( env=env, max_path_length=max_path_length, agent = agent, load_SMM=self.load_SMM, use_history=self.use_history, SMM_path=self.SMM_path, num_skills = self.num_skills ) # separate replay buffers for # - training RL update # - training encoder update self.replay_buffer = MultiTaskReplayBuffer( self.replay_buffer_size, env, self.train_tasks, ) self.enc_replay_buffer = MultiTaskReplayBuffer( self.replay_buffer_size, env, self.train_tasks, ) self._n_env_steps_total = 0 self._n_train_steps_total = 0 self._n_rollouts_total = 0 self._do_train_time = 0 self._epoch_start_time = None self._algo_start_time = None self._old_table_keys = None self._current_path_builder = PathBuilder() self._exploration_paths = [] def make_exploration_policy(self, policy): return policy def make_eval_policy(self, policy): return policy def sample_task(self, is_eval=False): ''' sample task randomly ''' if is_eval: idx = np.random.randint(len(self.eval_tasks)) else: idx = np.random.randint(len(self.train_tasks)) return idx def train(self): ''' meta-training loop ''' self.pretrain() params = self.get_epoch_snapshot(-1) logger.save_itr_params(-1, params) gt.reset() gt.set_def_unique(False) self._current_path_builder = PathBuilder() # at each iteration, we first collect data from tasks, perform meta-updates, then try to evaluate for it_ in gt.timed_for( range(self.num_iterations), save_itrs=True, ): self._start_epoch(it_) self.training_mode(True) if it_ == 0: print('collecting initial pool of data for train and eval') # temp for evaluating for idx in self.train_tasks: self.task_idx = idx self.env.reset_task(idx) if not self.use_SMM: if not self.seed_sample: self.collect_data(self.num_initial_steps, 1, np.inf) else: self.collect_data(self.num_initial_steps, 1, np.inf) self.collect_data_seed(self.num_initial_steps, 1, np.inf,accumulate_context=False) else: self.collect_data_smm(self.num_initial_steps) self.collect_data_policy(self.num_initial_steps, 1, np.inf) # Sample data from train tasks. for i in range(self.num_tasks_sample): idx = np.random.randint(len(self.train_tasks)) self.task_idx = idx self.env.reset_task(idx) self.enc_replay_buffer.task_buffers[idx].clear() if not self.use_SMM: if not self.seed_sample: # collect some trajectories with z ~ prior if self.num_steps_prior > 0: self.collect_data(self.num_steps_prior, 1, np.inf) # collect some trajectories with z ~ posterior if self.num_steps_posterior > 0: self.collect_data(self.num_steps_posterior, 1, self.update_post_train) # even if encoder is trained only on samples from the prior, the policy needs to learn to handle z ~ posterior if self.num_extra_rl_steps_posterior > 0: self.collect_data(self.num_extra_rl_steps_posterior, 1, self.update_post_train, add_to_enc_buffer=False) else: if self.num_steps_prior > 0: self.collect_data(self.num_steps_prior, 1, np.inf) self.collect_data_seed(self.num_steps_prior, 1, np.inf,accumulate_context=False) if self.num_steps_posterior > 0: self.collect_data(self.num_steps_posterior, 1, self.update_post_train) self.collect_data_seed(self.num_steps_posterior, 1, self.update_post_train) if self.num_extra_rl_steps_posterior > 0: self.collect_data(self.num_extra_rl_steps_posterior, 1, self.update_post_train, add_to_enc_buffer=False) self.collect_data_seed(self.num_extra_rl_steps_posterior, 1, self.update_post_train, add_to_enc_buffer=False) else: if self.num_steps_prior > 0: self.collect_data_smm(self.num_steps_prior) self.collect_data_policy(self.num_steps_prior, 1, np.inf) # collect some trajectories with z ~ posterior if self.num_steps_posterior > 0: self.collect_data_smm(self.num_steps_posterior) self.collect_data_policy(self.num_steps_posterior, 1, self.update_post_train) # even if encoder is trained only on samples from the prior, the policy needs to learn to handle z ~ posterior if self.num_extra_rl_steps_posterior > 0: self.collect_data_policy(self.num_extra_rl_steps_posterior, 1, self.update_post_train) # Sample train tasks and compute gradient updates on parameters. for train_step in range(self.num_train_steps_per_itr): indices = np.random.choice(self.train_tasks, self.meta_batch) self._do_training(indices) self._n_train_steps_total += 1 gt.stamp('train') self.training_mode(False) # eval self._try_to_eval(it_) gt.stamp('eval') self._end_epoch() def pretrain(self): """ Do anything before the main training phase. """ pass def collect_data_smm(self,num_samples): ''' Notice that SMM data should only be available for the encoder :param num_samples: number of transitions to sample :return: ''' num_transitions = 0 while num_transitions < num_samples: paths, n_samples = self.smm_sampler.obtain_samples(max_samples=num_samples - num_transitions, max_trajs=np.inf) num_transitions += n_samples self.enc_replay_buffer.add_paths(self.task_idx, paths) self._n_env_steps_total += num_transitions gt.stamp('smm sample') def collect_data_policy(self, num_samples, resample_z_rate, update_posterior_rate): ''' get trajectories from current env in batch mode with given policy collect complete trajectories until the number of collected transitions >= num_samples :param agent: policy to rollout :param num_samples: total number of transitions to sample :param resample_z_rate: how often to resample latent context z (in units of trajectories) :param update_posterior_rate: how often to update q(z | c) from which z is sampled (in units of trajectories) :param add_to_enc_buffer: whether to add collected data to encoder replay buffer ''' # start from the prior self.agent.clear_z() num_transitions = 0 while num_transitions < num_samples: paths, n_samples = self.sampler.obtain_samples(max_samples=num_samples - num_transitions, max_trajs=update_posterior_rate, accum_context=False, resample=resample_z_rate) num_transitions += n_samples self.replay_buffer.add_paths(self.task_idx, paths) if update_posterior_rate != np.inf: context = self.sample_context(self.task_idx) self.agent.infer_posterior(context) self._n_env_steps_total += num_transitions gt.stamp('policy sample') def collect_data(self, num_samples, resample_z_rate, update_posterior_rate, add_to_enc_buffer=True,add_to_policy_buffer=True): ''' get trajectories from current env in batch mode with given policy collect complete trajectories until the number of collected transitions >= num_samples :param agent: policy to rollout :param num_samples: total number of transitions to sample :param resample_z_rate: how often to resample latent context z (in units of trajectories) :param update_posterior_rate: how often to update q(z | c) from which z is sampled (in units of trajectories) :param add_to_enc_buffer: whether to add collected data to encoder replay buffer ''' # start from the prior self.agent.clear_z() num_transitions = 0 while num_transitions < num_samples: paths, n_samples = self.sampler.obtain_samples(max_samples=num_samples - num_transitions, max_trajs=update_posterior_rate, accum_context=False, resample=resample_z_rate) num_transitions += n_samples #for p in paths: # print(p['actions'],p['rewards']) if add_to_policy_buffer: self.replay_buffer.add_paths(self.task_idx, paths) if add_to_enc_buffer: self.enc_replay_buffer.add_paths(self.task_idx, paths) if update_posterior_rate != np.inf: context = self.sample_context(self.task_idx) self.agent.infer_posterior(context) self._n_env_steps_total += num_transitions gt.stamp('sample') def collect_data_seed(self, num_samples, resample_z_rate, update_posterior_rate, add_to_enc_buffer=True,add_to_policy_buffer=True,accumulate_context=True): self.agent.clear_z() num_transitions = 0 while num_transitions < num_samples: paths, n_samples = self.seedsampler.obtain_samples(max_samples=num_samples - num_transitions, max_trajs=1, accum_context=accumulate_context ) num_transitions += n_samples if add_to_policy_buffer: self.replay_buffer.add_paths(self.task_idx, paths) if add_to_enc_buffer: self.enc_replay_buffer.add_paths(self.task_idx, paths) #if update_posterior_rate != np.inf: # context = self.prepare_context(self.task_idx) # self.agent.infer_posterior(context) self._n_env_steps_total += num_transitions gt.stamp('sample') def _try_to_eval(self, epoch): logger.save_extra_data(self.get_extra_data_to_save(epoch)) if self._can_evaluate(): self.evaluate(epoch) params = self.get_epoch_snapshot(epoch) logger.save_itr_params(epoch, params) table_keys = logger.get_table_key_set() if self._old_table_keys is not None: assert table_keys == self._old_table_keys, ( "Table keys cannot change from iteration to iteration." ) self._old_table_keys = table_keys logger.record_tabular( "Number of train steps total", self._n_train_steps_total, ) logger.record_tabular( "Number of env steps total", self._n_env_steps_total, ) logger.record_tabular( "Number of rollouts total", self._n_rollouts_total, ) times_itrs = gt.get_times().stamps.itrs train_time = times_itrs['train'][-1] if not self.use_SMM: sample_time = times_itrs['sample'][-1] else: sample_time = times_itrs['policy sample'][-1] eval_time = times_itrs['eval'][-1] if epoch > 0 else 0 epoch_time = train_time + sample_time + eval_time total_time = gt.get_times().total logger.record_tabular('Train Time (s)', train_time) logger.record_tabular('(Previous) Eval Time (s)', eval_time) logger.record_tabular('Sample Time (s)', sample_time) logger.record_tabular('Epoch Time (s)', epoch_time) logger.record_tabular('Total Train Time (s)', total_time) logger.record_tabular("Epoch", epoch) logger.dump_tabular(with_prefix=False, with_timestamp=False) else: logger.log("Skipping eval for now.") def _can_evaluate(self): """ One annoying thing about the logger table is that the keys at each iteration need to be the exact same. So unless you can compute everything, skip evaluation. A common example for why you might want to skip evaluation is that at the beginning of training, you may not have enough data for a validation and training set. :return: """ # eval collects its own context, so can eval any time return True def _can_train(self): return all([self.replay_buffer.num_steps_can_sample(idx) >= self.batch_size for idx in self.train_tasks]) def _get_action_and_info(self, agent, observation): """ Get an action to take in the environment. :param observation: :return: """ agent.set_num_steps_total(self._n_env_steps_total) return agent.get_action(observation,) def _start_epoch(self, epoch): self._epoch_start_time = time.time() self._exploration_paths = [] self._do_train_time = 0 logger.push_prefix('Iteration #%d | ' % epoch) def _end_epoch(self): logger.log("Epoch Duration: {0}".format( time.time() - self._epoch_start_time )) logger.log("Started Training: {0}".format(self._can_train())) logger.pop_prefix() ##### Snapshotting utils ##### def get_epoch_snapshot(self, epoch): data_to_save = dict( epoch=epoch, exploration_policy=self.exploration_policy, ) if self.save_environment: data_to_save['env'] = self.training_env return data_to_save def get_extra_data_to_save(self, epoch): """ Save things that shouldn't be saved every snapshot but rather overwritten every time. :param epoch: :return: """ if self.render: self.training_env.render(close=True) data_to_save = dict( epoch=epoch, ) if self.save_environment: data_to_save['env'] = self.training_env if self.save_replay_buffer: data_to_save['replay_buffer'] = self.replay_buffer if self.save_algorithm: data_to_save['algorithm'] = self return data_to_save def collect_paths(self, idx, epoch, run): self.task_idx = idx self.env.reset_task(idx) self.agent.clear_z() paths = [] num_transitions = 0 num_trajs = 0 if self.use_SMM: if not self.load_SMM: path, num = self.smm_sampler.obtain_samples(max_samples=self.max_path_length, max_trajs=1, accum_context=True) num_transitions += num self.agent.infer_posterior(self.agent.context) while num_transitions < self.num_steps_per_eval: path, num = self.sampler.obtain_samples(deterministic=self.eval_deterministic, max_samples=self.num_steps_per_eval - num_transitions, max_trajs=1, accum_context=False) paths += path num_transitions += num num_trajs += 1 if num_trajs >= self.num_exp_traj_eval: self.agent.infer_posterior(self.agent.context) else: while num_transitions < self.num_steps_per_eval: path, num = self.smm_sampler.obtain_samples(max_samples=self.max_path_length, max_trajs=1, accum_context=True) num_transitions += num #paths+=path num_trajs += 1 path, num = self.sampler.obtain_samples(deterministic=self.eval_deterministic, max_samples=self.num_steps_per_eval - num_transitions, max_trajs=1, accum_context=False) paths += path num_transitions += num num_trajs += 1 self.agent.infer_posterior(self.agent.context) else: while num_transitions < self.num_steps_per_eval: if self.seed_sample: path, num = self.seedsampler.obtain_samples(deterministic=self.eval_deterministic, max_samples=self.num_steps_per_eval - num_transitions, max_trajs=1, accum_context=True) else: path, num = self.sampler.obtain_samples(deterministic=self.eval_deterministic, max_samples=self.num_steps_per_eval - num_transitions, max_trajs=1, accum_context=True) paths += path num_transitions += num num_trajs += 1 if num_trajs >= self.num_exp_traj_eval: self.agent.infer_posterior(self.agent.context) if self.sparse_rewards: for p in paths: sparse_rewards = np.stack(e['sparse_reward'] for e in p['env_infos']).reshape(-1, 1) p['rewards'] = sparse_rewards goal = self.env._goal for path in paths: path['goal'] = goal # goal if hasattr(self.env,"_pitfall"): pitfall = self.env._pitfall for path in paths: path['pitfall'] = pitfall # save the paths for visualization, only useful for point mass if self.dump_eval_paths: logger.save_extra_data(paths, path='eval_trajectories/task{}-epoch{}-run{}'.format(idx, epoch, run)) return paths def _do_eval(self, indices, epoch): final_returns = [] online_returns = [] for idx in indices: all_rets = [] for r in range(self.num_evals): paths = self.collect_paths(idx, epoch, r) all_rets.append([eval_util.get_average_returns([p]) for p in paths]) final_returns.append(np.mean([np.mean(a) for a in all_rets])) # record online returns for the first n trajectories n = min([len(a) for a in all_rets]) all_rets = [a[:n] for a in all_rets] all_rets = np.mean(np.stack(all_rets), axis=0) # avg return per nth rollout online_returns.append(all_rets) n = min([len(t) for t in online_returns]) online_returns = [t[:n] for t in online_returns] return final_returns, online_returns def evaluate(self, epoch): if self.eval_statistics is None: self.eval_statistics = OrderedDict() ### sample trajectories from prior for debugging / visualization if self.dump_eval_paths: # 100 arbitrarily chosen for visualizations of point_robot trajectories # just want stochasticity of z, not the policy self.agent.clear_z() if not self.use_SMM: prior_paths, _ = self.sampler.obtain_samples(deterministic=self.eval_deterministic, max_samples=self.max_path_length * 20, accum_context=False, resample=1) else: prior_paths, _ = self.smm_sampler.obtain_samples( max_samples=self.max_path_length * 20, ) logger.save_extra_data(prior_paths, path='eval_trajectories/prior-epoch{}'.format(epoch)) ### train tasks # eval on a subset of train tasks for speed indices = np.random.choice(self.train_tasks, len(self.eval_tasks)) eval_util.dprint('evaluating on {} train tasks'.format(len(indices))) ### eval train tasks with posterior sampled from the training replay buffer train_returns = [] for idx in indices: self.task_idx = idx self.env.reset_task(idx) paths = [] for _ in range(self.num_steps_per_eval // self.max_path_length): context = self.sample_context(idx) self.agent.infer_posterior(context) p, _ = self.sampler.obtain_samples(deterministic=self.eval_deterministic, max_samples=self.max_path_length, accum_context=False, max_trajs=1, resample=np.inf) paths += p #for p in paths: # print(p['actions'],p['rewards']) if self.sparse_rewards: for p in paths: sparse_rewards = np.stack(e['sparse_reward'] for e in p['env_infos']).reshape(-1, 1) p['rewards'] = sparse_rewards train_returns.append(eval_util.get_average_returns(paths)) train_returns = np.mean(train_returns) ### eval train tasks with on-policy data to match eval of test tasks train_final_returns, train_online_returns = self._do_eval(indices, epoch) eval_util.dprint('train online returns') eval_util.dprint(train_online_returns) ### test tasks eval_util.dprint('evaluating on {} test tasks'.format(len(self.eval_tasks))) test_final_returns, test_online_returns = self._do_eval(self.eval_tasks, epoch) eval_util.dprint('test online returns') eval_util.dprint(test_online_returns) # save the final posterior self.agent.log_diagnostics(self.eval_statistics) #if hasattr(self.env, "log_diagnostics"): # self.env.log_diagnostics(paths, prefix=None) avg_train_return = np.mean(train_final_returns) avg_test_return = np.mean(test_final_returns) avg_train_online_return = np.mean(np.stack(train_online_returns), axis=0) avg_test_online_return = np.mean(np.stack(test_online_returns), axis=0) self.eval_statistics['AverageTrainReturn_all_train_tasks'] = train_returns self.eval_statistics['AverageReturn_all_train_tasks'] = avg_train_return self.eval_statistics['AverageReturn_all_test_tasks'] = avg_test_return logger.save_extra_data(avg_train_online_return, path='online-train-epoch{}'.format(epoch)) logger.save_extra_data(avg_test_online_return, path='online-test-epoch{}'.format(epoch)) for key, value in self.eval_statistics.items(): logger.record_tabular(key, value) self.eval_statistics = None if self.render_eval_paths: self.env.render_paths(paths) if self.plotter: self.plotter.draw() @abc.abstractmethod def training_mode(self, mode): """ Set training mode to `mode`. :param mode: If True, training will happen (e.g. set the dropout probabilities to not all ones). """ pass @abc.abstractmethod def _do_training(self): """ Perform some update, e.g. perform one gradient step. :return: """ pass class ExpAlgorithm(metaclass=abc.ABCMeta): def __init__( self, env, agent, agent_exp, train_tasks, eval_tasks, encoder, meta_batch=64, num_iterations=100, num_train_steps_per_itr=1000, num_initial_steps=100, num_tasks_sample=100, num_steps_prior=100, num_steps_posterior=100, num_extra_rl_steps_posterior=100, num_evals=10, num_steps_per_eval=1000, batch_size=1024, embedding_batch_size=1024, embedding_mini_batch_size=1024, max_path_length=1000, discount=0.99, replay_buffer_size=1000000, reward_scale=1, num_exp_traj_eval=1, update_post_train=1, eval_deterministic=True, render=False, save_replay_buffer=False, save_algorithm=False, save_environment=False, render_eval_paths=False, dump_eval_paths=False, plotter=None, use_SMM=False, load_SMM =False, use_history=False, SMM_path=None, num_skills = 1, seed_sample=False, snail=False, meta_episode_len=10, num_trajs = 2, num_trajs_eval=1 ): """ :param env: training env :param agent: agent that is conditioned on a latent variable z that rl_algorithm is responsible for feeding in :param train_tasks: list of tasks used for training :param eval_tasks: list of tasks used for eval see default experiment config file for descriptions of the rest of the arguments """ self.env = env self.agent = agent self.exploration_agent = agent_exp # Can potentially use a different policy purely for exploration rather than also solving tasks, currently not being used self.context_encoder = encoder self.train_tasks = train_tasks self.eval_tasks = eval_tasks self.meta_batch = meta_batch self.num_iterations = num_iterations self.num_train_steps_per_itr = num_train_steps_per_itr self.num_initial_steps = num_initial_steps self.num_tasks_sample = num_tasks_sample self.num_steps_prior = num_steps_prior self.num_steps_posterior = num_steps_posterior self.num_extra_rl_steps_posterior = num_extra_rl_steps_posterior self.num_evals = num_evals self.num_steps_per_eval = num_steps_per_eval self.batch_size = batch_size self.embedding_batch_size = embedding_batch_size self.embedding_mini_batch_size = embedding_mini_batch_size self.max_path_length = max_path_length self.discount = discount self.replay_buffer_size = replay_buffer_size self.reward_scale = reward_scale self.update_post_train = update_post_train self.num_exp_traj_eval = num_exp_traj_eval self.eval_deterministic = eval_deterministic self.render = render self.save_replay_buffer = save_replay_buffer self.save_algorithm = save_algorithm self.save_environment = save_environment self.eval_statistics = None self.render_eval_paths = render_eval_paths self.dump_eval_paths = dump_eval_paths self.plotter = plotter self.use_SMM = use_SMM self.load_SMM = load_SMM self.use_history = use_history, self.SMM_path = SMM_path self.num_skills = num_skills self.seed_sample = seed_sample self.meta_episode_len = meta_episode_len self.num_trajs = num_trajs self.num_trajs_eval = num_trajs_eval self.sampler = InPlacePathSampler( env=env, policy=agent, max_path_length=self.max_path_length, ) self.expsampler = ExpInPlacePathSampler( env=env, policy=self.exploration_agent, encoder=self.context_encoder, max_path_length=self.max_path_length, ) # separate replay buffers for # - training RL update # - training encoder update self.replay_buffer = MultiTaskReplayBuffer( self.replay_buffer_size, env, self.train_tasks, ) self.enc_replay_buffer = MultiTaskReplayBuffer( self.replay_buffer_size, env, self.train_tasks, ) self._n_env_steps_total = 0 self._n_train_steps_total = 0 self._n_rollouts_total = 0 self._do_train_time = 0 self._epoch_start_time = None self._algo_start_time = None self._old_table_keys = None self._current_path_builder = PathBuilder() self._exploration_paths = [] def make_exploration_policy(self, policy): return policy def make_eval_policy(self, policy): return policy def sample_task(self, is_eval=False): ''' sample task randomly ''' if is_eval: idx = np.random.randint(len(self.eval_tasks)) else: idx = np.random.randint(len(self.train_tasks)) return idx def train(self): ''' meta-training loop ''' self.pretrain() params = self.get_epoch_snapshot(-1) logger.save_itr_params(-1, params) gt.reset() gt.set_def_unique(False) self._current_path_builder = PathBuilder() # at each iteration, we first collect data from tasks, perform meta-updates, then try to evaluate for it_ in gt.timed_for( range(self.num_iterations), save_itrs=True, ): self._start_epoch(it_) self.training_mode(True) if it_ == 0: print('collecting initial pool of data for train and eval') # temp for evaluating for idx in self.train_tasks: self.task_idx = idx self.env.reset_task(idx) for _ in range(self.num_trajs): self.collect_data_exp(self.meta_episode_len) self.collect_data(self.num_initial_steps, 1, np.inf,add_to_enc_buffer=True) # Sample data from train tasks. for i in range(self.num_tasks_sample): idx = np.random.randint(len(self.train_tasks)) self.task_idx = idx self.env.reset_task(idx) if (it_+1)%5==0: self.enc_replay_buffer.task_buffers[idx].clear() for _ in range(self.num_trajs): self.collect_data_exp(self.meta_episode_len) if self.num_steps_prior > 0: self.collect_data(self.num_steps_prior, 1, np.inf,add_to_enc_buffer=True) # collect some trajectories with z ~ posterior if self.num_steps_posterior > 0: self.collect_data(self.num_steps_posterior, 1, self.update_post_train,add_to_enc_buffer=True) # even if encoder is trained only on samples from the prior, the policy needs to learn to handle z ~ posterior if self.num_extra_rl_steps_posterior > 0: self.collect_data(self.num_extra_rl_steps_posterior, 1, self.update_post_train,) print('collect over') # Sample train tasks and compute gradient updates on parameters. for train_step in range(self.num_train_steps_per_itr): indices = np.random.choice(self.train_tasks, self.meta_batch) self._do_training(indices) self._n_train_steps_total += 1 gt.stamp('train') self.training_mode(False) # eval self._try_to_eval(it_) gt.stamp('eval') self._end_epoch() def pretrain(self): """ Do anything before the main training phase. """ pass def sample_eval(self,indices, context): reward = torch.zeros(context.shape[0],1,1).cuda() rem = 0 for indice in indices: self.env.reset_task(indice) context_i = context[rem,...] context_i = torch.unsqueeze(context_i,0) self.agent.clear_z() self.agent.infer_posterior(context_i) path,_ = self.sampler.obtain_samples(deterministic=self.eval_deterministic, max_samples=self.max_path_length*5,resample=1) reward[rem] = eval_util.get_average_returns(path) rem = rem + 1 return reward def collect_data(self, num_samples, resample_z_rate, update_posterior_rate, add_to_enc_buffer=False): ''' get trajectories from current env in batch mode with given policy collect complete trajectories until the number of collected transitions >= num_samples :param agent: policy to rollout :param num_samples: total number of transitions to sample :param resample_z_rate: how often to resample latent context z (in units of trajectories) :param update_posterior_rate: how often to update q(z | c) from which z is sampled (in units of trajectories) :param add_to_enc_buffer: whether to add collected data to encoder replay buffer ''' # start from the prior self.agent.clear_z() num_transitions = 0 while num_transitions < num_samples: paths, n_samples = self.sampler.obtain_samples(max_samples=num_samples - num_transitions, max_trajs=update_posterior_rate, accum_context=False, resample=resample_z_rate) num_transitions += n_samples self.replay_buffer.add_paths(self.task_idx, paths) if add_to_enc_buffer: self.enc_replay_buffer.add_paths(self.task_idx, paths) if update_posterior_rate != np.inf: context, context_unbatched = self.sample_context(self.task_idx) self.agent.infer_posterior(context) self._n_env_steps_total += num_transitions gt.stamp('sample') def collect_data_exp(self, num_episodes): ''' get trajectories from current env in batch mode with given policy collect complete trajectories until the number of collected transitions >= num_samples :param agent: policy to rollout :param num_samples: total number of transitions to sample :param resample_z_rate: how often to resample latent context z (in units of trajectories) :param update_posterior_rate: how often to update q(z | c) from which z is sampled (in units of trajectories) :param add_to_enc_buffer: whether to add collected data to encoder replay buffer ''' # start from the prior paths, n_samples = self.expsampler.obtain_samples(max_trajs=num_episodes) self.enc_replay_buffer.add_paths(self.task_idx, paths) self._n_env_steps_total += n_samples gt.stamp('sample') def _try_to_eval(self, epoch): logger.save_extra_data(self.get_extra_data_to_save(epoch)) if self._can_evaluate(epoch): self.evaluate(epoch,self.num_trajs) params = self.get_epoch_snapshot(epoch) logger.save_itr_params(epoch, params) table_keys = logger.get_table_key_set() if self._old_table_keys is not None: assert table_keys == self._old_table_keys, ( "Table keys cannot change from iteration to iteration." ) self._old_table_keys = table_keys logger.record_tabular( "Number of train steps total", self._n_train_steps_total, ) logger.record_tabular( "Number of env steps total", self._n_env_steps_total, ) logger.record_tabular( "Number of rollouts total", self._n_rollouts_total, ) times_itrs = gt.get_times().stamps.itrs train_time = times_itrs['train'][-1] if not self.use_SMM: sample_time = times_itrs['sample'][-1] else: sample_time = times_itrs['policy sample'][-1] eval_time = times_itrs['eval'][-1] if epoch > 0 else 0 epoch_time = train_time + sample_time + eval_time total_time = gt.get_times().total logger.record_tabular('Train Time (s)', train_time) logger.record_tabular('(Previous) Eval Time (s)', eval_time) logger.record_tabular('Sample Time (s)', sample_time) logger.record_tabular('Epoch Time (s)', epoch_time) logger.record_tabular('Total Train Time (s)', total_time) logger.record_tabular("Epoch", epoch) logger.dump_tabular(with_prefix=False, with_timestamp=False) else: logger.log("Skipping eval for now.") def _can_evaluate(self,epoch): """ One annoying thing about the logger table is that the keys at each iteration need to be the exact same. So unless you can compute everything, skip evaluation. A common example for why you might want to skip evaluation is that at the beginning of training, you may not have enough data for a validation and training set. :return: """ # eval collects its own context, so can eval any time return True #if (epoch+1)%5==0 else False def _can_train(self): return all([self.replay_buffer.num_steps_can_sample(idx) >= self.batch_size for idx in self.train_tasks]) def _get_action_and_info(self, agent, observation): """ Get an action to take in the environment. :param observation: :return: """ agent.set_num_steps_total(self._n_env_steps_total) return agent.get_action(observation,) def _start_epoch(self, epoch): self._epoch_start_time = time.time() self._exploration_paths = [] self._do_train_time = 0 logger.push_prefix('Iteration #%d | ' % epoch) def _end_epoch(self): logger.log("Epoch Duration: {0}".format( time.time() - self._epoch_start_time )) logger.log("Started Training: {0}".format(self._can_train())) logger.pop_prefix() ##### Snapshotting utils ##### def get_epoch_snapshot(self, epoch): data_to_save = dict( epoch=epoch, exploration_policy=self.exploration_policy, ) if self.save_environment: data_to_save['env'] = self.training_env return data_to_save def get_extra_data_to_save(self, epoch): """ Save things that shouldn't be saved every snapshot but rather overwritten every time. :param epoch: :return: """ if self.render: self.training_env.render(close=True) data_to_save = dict( epoch=epoch, ) if self.save_environment: data_to_save['env'] = self.training_env if self.save_replay_buffer: data_to_save['replay_buffer'] = self.replay_buffer if self.save_algorithm: data_to_save['algorithm'] = self return data_to_save def collect_paths(self, idx, epoch, run): self.task_idx = idx self.env.reset_task(idx) self.agent.clear_z() paths = [] num_transitions = 0 num_trajs = 0 path, num = self.expsampler.obtain_samples(deterministic=self.eval_deterministic, max_trajs=self.num_exp_traj_eval, accum_context_for_agent=True, context_agent = self.agent,split=True) num_transitions += num num_trajs +=self.num_exp_traj_eval paths+=path while num_transitions < self.num_steps_per_eval: path, num = self.sampler.obtain_samples(deterministic=self.eval_deterministic, max_samples=self.num_steps_per_eval - num_transitions, max_trajs=1, accum_context=True) paths += path num_transitions += num num_trajs += 1 self.agent.infer_posterior(self.agent.context) if self.sparse_rewards: for p in paths: sparse_rewards = np.stack(e['sparse_reward'] for e in p['env_infos']).reshape(-1, 1) p['rewards'] = sparse_rewards goal = self.env._goal for path in paths: path['goal'] = goal # goal # save the paths for visualization, only useful for point mass if self.dump_eval_paths: logger.save_extra_data(paths, path='eval_trajectories/task{}-epoch{}-run{}'.format(idx, epoch, run)) return paths def _do_eval(self, indices, epoch): final_returns = [] online_returns = [] for idx in indices: all_rets = [] for r in range(self.num_evals): paths = self.collect_paths(idx, epoch, r) all_rets.append([eval_util.get_average_returns([p]) for p in paths]) final_returns.append(np.mean([
np.mean(a)
numpy.mean
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu May 24 00:10:46 2018 @author: nantanick """ from Shanten import Shanten from mahjong.tile import TilesConverter import random import copy import numpy as np # complete hand # hand = TilesConverter.string_to_34_array(pin='112233999', honors='11177') #unaccounted_tiles = np.array([4]*34)-hand #tenpai #hand = TilesConverter.string_to_34_array(man='284', pin='24667',sou='1136', honors='77') #unaccounted_tiles = np.array([4]*34)-hand #terrible #hand = TilesConverter.string_to_34_array(pin='112233',man='257',sou='345', honors='16') #hand = np.array(TilesConverter.string_to_34_array(man='1894', pin='2378',sou='2345', honors='15')) def simulate_naive(hand, hand_open, unaccounted_tiles): """ #naive simulation hand, hand_open -- hand in 34 format unaccounted_tiles -- all the unused tiles in 34 format turn -- a number from 0-3 (0 is the player) """ shanten = Shanten() hand = list(hand) unaccounted = list(unaccounted_tiles) tiles_left = sum(unaccounted_tiles) unaccounted_nonzero = np.nonzero(unaccounted) #14 in dead wall 13*3= 39 in other hand -> total 53 for i in range(tiles_left - 53): if shanten.calculate_shanten(hand, hand_open) <= 0:#if tenpai return True hand_nonzero = np.nonzero(hand)[0] #discard something random discard = random.choice(hand_nonzero) hand[discard] -= 1 unaccounted_nonzero = np.nonzero(unaccounted)[0] #get a random card draw_tile = random.choice(unaccounted_nonzero) unaccounted[draw_tile] -= 1 hand[draw_tile] +=1 return False def simulate_naive2(hand, hand_open, unaccounted_tiles): """ #naive simulation hand, hand_open -- hand in 34 format unaccounted_tiles -- all the unused tiles in 34 format turn -- a number from 0-3 (0 is the player) """ shanten_calc = Shanten() hand = list(hand) unaccounted = list(unaccounted_tiles) tiles_left = sum(unaccounted_tiles) unaccounted_nonzero = np.nonzero(unaccounted) #14 in dead wall 13*3= 39 in other hand -> total 53 shanten_sum = 0 for i in range(tiles_left - 119): shanten = shanten_calc.calculate_shanten(hand, hand_open) if shanten <= 0:#if tenpai break shanten_sum += shanten hand_nonzero = np.nonzero(hand)[0] #discard something random discard = random.choice(hand_nonzero) hand[discard] -= 1 unaccounted_nonzero = np.nonzero(unaccounted)[0] #get a random card draw_tile = random.choice(unaccounted_nonzero) unaccounted[draw_tile] -= 1 hand[draw_tile] +=1 return shanten_sum def simulate_naive3(hand, hand_open, unaccounted_tiles): """ #naive simulation hand, hand_open -- hand in 34 format unaccounted_tiles -- all the unused tiles in 34 format turn -- a number from 0-3 (0 is the player) """ shanten_calc = Shanten() hand = list(hand) unaccounted = list(unaccounted_tiles) tiles_left = sum(unaccounted_tiles) unaccounted_nonzero = np.nonzero(unaccounted) #14 in dead wall 13*3= 39 in other hand -> total 53 shanten_sum = 0. for i in range(tiles_left - 119): shanten = shanten_calc.calculate_shanten(hand, hand_open) if shanten <= 0:#if tenpai break shanten_sum += shanten**2 hand_nonzero = np.nonzero(hand)[0] #discard something random discard = random.choice(hand_nonzero) hand[discard] -= 1 unaccounted_nonzero = np.nonzero(unaccounted)[0] #get a random card draw_tile = random.choice(unaccounted_nonzero) unaccounted[draw_tile] -= 1 hand[draw_tile] +=1 return shanten_sum def simulate_weighted(hand, hand_open, unaccounted_tiles): """ Does a weighted simulation hand, hand_open -- hand in 34 format unaccounted_tiles -- all the unused tiles in 34 format turn -- a number from 0-3 (0 is the player) """ shanten = Shanten() hand = list(hand) unaccounted = copy.deepcopy(unaccounted_tiles) tiles_left = sum(unaccounted_tiles) #14 in dead wall 13*3= 39 in other hand -> total 53 for i in range(tiles_left): if shanten.calculate_shanten(hand, hand_open) <= 0: #if tenpai return True hand_nonzero = np.nonzero(hand)[0] nonzero_inverted = [4-hand[i] for i in hand_nonzero] weight = np.array(nonzero_inverted)/sum(nonzero_inverted) discard = np.random.choice(hand_nonzero, 1, p = weight, replace=False)[0] hand[discard] -= 1 #print(weight, nonzero_inverted) unaccounted_nonzero = np.nonzero(unaccounted)[0] #get a random card draw_tile = random.choice(unaccounted_nonzero) unaccounted[draw_tile] -= 1 hand[draw_tile] +=1 return False def simulate_weighted2(hand, hand_open, unaccounted_tiles): """ Does a weighted simulation (Incomplete) hand, hand_open -- hand in 34 format unaccounted_tiles -- all the unused tiles in 34 format turn -- a number from 0-3 (0 is the player) """ shanten = Shanten() hand = copy.deepcopy(hand) unaccounted = copy.deepcopy(unaccounted_tiles) tiles_left = sum(unaccounted_tiles) #14 in dead wall 13*3= 39 in other hand -> total 53 for i in range(tiles_left - 53): if shanten.calculate_shanten(hand, None) <= 0: return True weight = [0]*34 for i, count in enumerate(hand): if count >=3: weight[i] = 0 else: weight[i] = 4 - count weight = np.array(weight)/sum(weight) discard = np.random.choice(range(34), 1, p = weight, replace=False)[0] hand[discard] -= 1 #print(weight, nonzero_inverted) unaccounted_nonzero = np.nonzero(unaccounted)[0] #get a random card draw_tile = random.choice(unaccounted_nonzero) unaccounted[draw_tile] -= 1 hand[draw_tile] +=1 return False def simulate_weighted3(hand, hand_open, unaccounted_tiles): """ Does a weighted simulation (Incomplete) hand, hand_open -- hand in 34 format unaccounted_tiles -- all the unused tiles in 34 format turn -- a number from 0-3 (0 is the player) """ shanten_calc = Shanten() hand = list(hand) unaccounted = list(unaccounted_tiles) tiles_left = sum(unaccounted_tiles) unaccounted_nonzero = np.nonzero(unaccounted) #14 in dead wall 13*3= 39 in other hand -> total 53 shanten_sum = 0 for i in range(tiles_left-119): shanten = shanten_calc.calculate_shanten(hand, hand_open) if shanten <= 0:#if tenpai break shanten_sum += shanten hand_nonzero = np.nonzero(hand)[0] nonzero_inverted = [4-hand[i] for i in hand_nonzero] weight = np.array(nonzero_inverted)/sum(nonzero_inverted) discard = np.random.choice(hand_nonzero, 1, p = weight, replace=False)[0] hand[discard] -= 1 #print(weight, nonzero_inverted) unaccounted_nonzero =
np.nonzero(unaccounted)
numpy.nonzero
import random from copy import deepcopy import mazebase # These weird import statements are taken from https://github.com/facebook/MazeBase/blob/23454fe092ecf35a8aab4da4972f231c6458209b/py/example.py#L12 import mazebase.games as mazebase_games import numpy as np from mazebase.games import curriculum from mazebase.games import featurizers from environment.env import Environment from environment.observation import Observation from utils.constant import * class MazebaseWrapper(Environment): """ Wrapper class over maze base environment """ def __init__(self): super(MazebaseWrapper, self).__init__() self.name = MAZEBASE try: # Reference: https://github.com/facebook/MazeBase/blob/3e505455cae6e4ec442541363ef701f084aa1a3b/py/mazebase/games/mazegame.py#L454 small_size = (10, 10, 10, 10) lk = curriculum.CurriculumWrappedGame( mazebase_games.LightKey, curriculums={ 'map_size': mazebase_games.curriculum.MapSizeCurriculum( small_size, small_size, (10, 10, 10, 10) ) } ) game = mazebase_games.MazeGame( games=[lk], featurizer=mazebase_games.featurizers.GridFeaturizer() ) except mazebase.utils.mazeutils.MazeException as e: print(e) self.game = game self.actions = self.game.all_possible_actions() def observe(self): game_observation = self.game.observe() # Logic borrowed from: # https://github.com/facebook/MazeBase/blob/23454fe092ecf35a8aab4da4972f231c6458209b/py/example.py#L192 obs, info = game_observation[OBSERVATION] featurizers.grid_one_hot(self.game, obs) obs =
np.array(obs)
numpy.array
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np from torch.optim.lr_scheduler import MultiStepLR import shutil import random from numpy import linalg as LA from scipy.stats import mode import collections import tqdm import os from architecture import * def batch_shape(model_name, x): """ Return a batch x with a relevant shape for a given model. For example, # MLP x = torch.ones(5, 360) # batch, features # Conv1d x = torch.ones(5, 1, 360) # batch, channel, features # GNN x = torch.ones(5, 360) # batch, features graph = torch.ones(360, 360) # Resnet3d x = torch.ones(5, 1, 100, 100, 100) # batch, channel, dim1, dim2, dim3 """ if model_name == 'MLP' or model_name == 'GNN' or model_name == 'LR': return torch.squeeze(x, dim=1) elif model_name == 'Resnet3d': return torch.unsqueeze(x, dim=1) else: return x def save_checkpoint(state, is_best, folder, filename='checkpoint.pth.tar'): if not os.path.exists(folder): os.makedirs(folder) torch.save(state, folder + filename) if is_best: shutil.copyfile(folder + filename, folder + '/model_best.pth.tar') def load_checkpoint(model, save_path, type='best'): if type == 'best': checkpoint = torch.load('{}/model_best.pth.tar'.format(save_path)) elif type == 'last': checkpoint = torch.load('{}/checkpoint.pth.tar'.format(save_path)) else: assert False, 'type should be in [best, or last], but got {}'.format(type) model.load_state_dict(checkpoint['state_dict']) def compute_accuracy(outputs, y): _, predicted = torch.max(outputs.data, 1) correct = (predicted == y).sum().item() return correct # Train a model for 1 epoch and return its loss. def train(model, criterion, optimizer, data_loader, use_cuda): """ Train a neural network for one epoch. """ model.train() epoch_loss = 0. epoch_acc = 0. epoch_total = 0. for i, (x, y) in enumerate(data_loader): if use_cuda: x = x.cuda() y = y.cuda() # Adapt the batch shape to the model. x = batch_shape(model.name, x) # Zero the parameter gradients. optimizer.zero_grad() # Forward + backward + optimize. outputs = model(x) loss = criterion(outputs, y) loss.backward() optimizer.step() acc = compute_accuracy(outputs.clone().detach(), y) # Statistics. epoch_loss += loss.item() epoch_acc += acc epoch_total += y.size(0) return epoch_loss / (i+1), epoch_acc / epoch_total # Evaluate a model on the validation / test set. def episodic_evaluation(model, data_loader, sampler_infos, use_cuda): """ Return the average accuracy on few-shot tasks (called episodes). A task contains training samples with known labels and query samples. The accuracy is the number of times we correctly predict the labels of the query samples. To attribute a label to a new sample, we consider the outputs of the penultimate layer of model. A label is represented by the average outputs of its training samples. A new sample is labeled in function of the closest label-representative. """ model.eval() n_way = sampler_infos[1] n_shot = sampler_infos[2] epoch_acc = 0. total = 0. with torch.no_grad(): # Iterate over several episodes. for i, (x, y) in enumerate(tqdm.tqdm(data_loader)): # print(i, end='\r') if use_cuda: x = x.cuda() y = y.cuda() # Adapt the batch shape to the model. x = batch_shape(model.name, x) # Retrieve the outputs of the penultimate layer of model of all # samples. outputs = model(x, remove_last_layer=True) # print('outputs shape', outputs.shape) training = outputs[:n_way*n_shot] query = outputs[n_way*n_shot:] train_labels = y[:n_way*n_shot] query_labels = y[n_way*n_shot:] # Compute the vector representative of each class. training = training.reshape(n_way, n_shot, -1).mean(1) train_labels = train_labels[::n_shot] # Find the labels of the query samples. scores = cosine_score(training, query) pred_labels = torch.argmin(scores, dim=1) pred_labels = torch.take(train_labels, pred_labels) # Compute the accuracy. acc = (query_labels == pred_labels).float().sum() epoch_acc += acc total += query_labels.size(0) del training, query return epoch_acc / total # Compute similarities between two sets of vectors. def cosine_score(X, Y): """ Return a score between 0 and 1 (0 for very similar, 1 for not similar at all) between all vectors in X and all vectors in Y. As the score is based on the cosine similarity, all vectors are expected to have positive values only. Parameters: X -- set of vectors (number of vectors, vector size). Y -- set of vectors (number of vectors, vector size). """ scores = 1. - F.cosine_similarity(Y[:, None, :], X[None, :, :], dim=2) return scores def sample_case(data, n_shot, n_way, n_query): """ Return the training and test data of a few-shot task. Parameters: data -- dict whose keys are labels and values are the samples associated with. n_way -- int, number of classes n_shot -- int, number of training examples per class. n_query -- int, number of test examples per class. """ # Randomly sample n_way classes. classes = random.sample(list(data.keys()), n_way) train_data = [] test_data = [] test_labels = [] train_labels = [] # For each class, randomly select training and test examples. for label in classes: samples = random.sample(data[label], n_shot + n_query) train_labels += [label] * n_shot test_labels += [label] * n_query train_data += samples[:n_shot] test_data += samples[n_shot:] train_data = np.array(train_data).astype(np.float32) test_data =
np.array(test_data)
numpy.array
# -*- coding: utf-8 -*- """ Created on Wed Feb 12 2020 Class to read and manipulate CryoSat-2 waveform data Reads CryoSat Level-1b data products from baselines A, B and C Reads CryoSat Level-1b netCDF4 data products from baseline D Supported CryoSat Modes: LRM, SAR, SARin, FDM, SID, GDR INPUTS: full_filename: full path of CryoSat .DBL or .nc file PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python http://www.numpy.org http://www.scipy.org/NumPy_for_Matlab_Users netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html UPDATE HISTORY: Updated 08/2020: flake8 compatible binary regular expression strings Forked 02/2020 from read_cryosat_L1b.py Updated 11/2019: empty placeholder dictionary for baseline D DSD headers Updated 09/2019: added netCDF4 read function for baseline D Updated 04/2019: USO correction signed 32 bit int Updated 10/2018: updated header read functions for python3 Updated 05/2016: using __future__ print and division functions Written 03/2016 """ from __future__ import print_function from __future__ import division import numpy as np import pointCollection as pc import netCDF4 import re import os class data(pc.data): np.seterr(invalid='ignore') def __default_field_dict__(self): """ Define the default fields that get read from the CryoSat-2 file """ field_dict = {} field_dict['Location'] = ['days_J2k','Day','Second','Micsec','USO_Corr', 'Mode_ID','SSC','Inst_config','Rec_Count','Lat','Lon','Alt','Alt_rate', 'Sat_velocity','Real_beam','Baseline','ST_ID','Roll','Pitch','Yaw','MCD'] field_dict['Data'] = ['TD', 'H_0','COR2','LAI','FAI','AGC_CH1','AGC_CH2', 'TR_gain_CH1','TR_gain_CH2','TX_Power','Doppler_range','TR_inst_range', 'R_inst_range','TR_inst_gain','R_inst_gain','Internal_phase', 'External_phase','Noise_power','Phase_slope'] field_dict['Geometry'] = ['dryTrop','wetTrop','InvBar','DAC','Iono_GIM', 'Iono_model','ocTideElv','lpeTideElv','olTideElv','seTideElv','gpTideElv', 'Surf_type','Corr_status','Corr_error'] field_dict['Waveform_20Hz'] = ['Waveform','Linear_Wfm_Multiplier', 'Power2_Wfm_Multiplier','N_avg_echoes'] field_dict['METADATA'] = ['MPH','SPH'] return field_dict def from_dbl(self, full_filename, field_dict=None, unpack=False, verbose=False): """ Read CryoSat Level-1b data from binary formats """ # file basename and file extension of input file fileBasename,fileExtension=os.path.splitext(os.path.basename(full_filename)) # CryoSat file class # OFFL (Off Line Processing/Systematic) # NRT_ (Near Real Time) # RPRO (ReProcessing) # TEST (Testing) # TIxx (Stand alone IPF1 testing) # LTA_ (Long Term Archive) regex_class = 'OFFL|NRT_|RPRO|TEST|TIxx|LTA_' # CryoSat mission products # SIR1SAR_FR: Level 1 FBR SAR Mode (Rx1 Channel) # SIR2SAR_FR: Level 1 FBR SAR Mode (Rx2 Channel) # SIR_SIN_FR: Level 1 FBR SARin Mode # SIR_LRM_1B: Level-1 Product Low Rate Mode # SIR_FDM_1B: Level-1 Product Fast Delivery Marine Mode # SIR_SAR_1B: Level-1 SAR Mode # SIR_SIN_1B: Level-1 SARin Mode # SIR1LRC11B: Level-1 CAL1 Low Rate Mode (Rx1 Channel) # SIR2LRC11B: Level-1 CAL1 Low Rate Mode (Rx2 Channel) # SIR1SAC11B: Level-1 CAL1 SAR Mode (Rx1 Channel) # SIR2SAC11B: Level-1 CAL1 SAR Mode (Rx2 Channel) # SIR_SIC11B: Level-1 CAL1 SARin Mode # SIR_SICC1B: Level-1 CAL1 SARIN Exotic Data # SIR1SAC21B: Level-1 CAL2 SAR Mode (Rx1 Channel) # SIR2SAC21B: Level-1 CAL2 SAR Mode (Rx2 Channel) # SIR1SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR2SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR1LRM_0M: LRM and TRK Monitoring Data from Rx 1 Channel # SIR2LRM_0M: LRM and TRK Monitoring Data from Rx 2 Channel # SIR1SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR2SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR_SIN_0M: SARIN Monitoring Data # SIR_SIC40M: CAL4 Monitoring Data regex_products = ('SIR1SAR_FR|SIR2SAR_FR|SIR_SIN_FR|SIR_LRM_1B|SIR_FDM_1B|' 'SIR_SAR_1B|SIR_SIN_1B|SIR1LRC11B|SIR2LRC11B|SIR1SAC11B|SIR2SAC11B|' 'SIR_SIC11B|SIR_SICC1B|SIR1SAC21B|SIR2SAC21B|SIR1SIC21B|SIR2SIC21B|' 'SIR1LRM_0M|SIR2LRM_0M|SIR1SAR_0M|SIR2SAR_0M|SIR_SIN_0M|SIR_SIC40M') # CRYOSAT LEVEL-1b PRODUCTS NAMING RULES # Mission Identifier # File Class # File Product # Validity Start Date and Time # Validity Stop Date and Time # Baseline Identifier # Version Number regex_pattern = r'(.*?)_({0})_({1})_(\d+T?\d+)_(\d+T?\d+)_(.*?)(\d+)' rx = re.compile(regex_pattern.format(regex_class,regex_products),re.VERBOSE) # extract file information from filename MI,CLASS,PRODUCT,START,STOP,BASELINE,VERSION=rx.findall(fileBasename).pop() # CryoSat-2 Mode record sizes i_size_timestamp = 12 n_SARIN_BC_RW = 1024 n_SARIN_RW = 512 n_SAR_BC_RW = 256 n_SAR_RW = 125 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 # check baseline from file to set i_record_size and allocation function if (BASELINE == 'C'): # calculate total record sizes of each dataset group i_size_timegroup = i_size_timestamp + 4 + 2*2 + 6*4 + 3*3*4 + 3*2 + 4*4 i_size_measuregroup = 8 + 4*17 + 8 i_size_external_corr = 4*13 + 12 i_size_1Hz_LRM = i_size_timestamp + 3*4 + 8 + n_LRM_RW*2 + 2*4 + 2*2 i_size_1Hz_SAR = i_size_timestamp + 4*3 + 8 + n_SAR_RW*2 + 4 + 4 + 2 + 2 i_size_1Hz_SARIN = i_size_timestamp + 4*3 + 8 + n_SARIN_RW*2 + 4 + 4 + 2 + 2 i_size_LRM_waveform = n_LRM_RW*2 + 4 + 4 + 2 + 2 i_size_SAR_waveform = n_SAR_BC_RW*2 + 4 + 4 + 2 + 2 + n_BeamBehaviourParams*2 i_size_SARIN_waveform = n_SARIN_BC_RW*2 + 4 + 4 + 2 + 2 + n_SARIN_BC_RW*2 + \ n_SARIN_BC_RW*4 + n_BeamBehaviourParams*2 # Low-Resolution Mode Record Size i_record_size_LRM_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_LRM_waveform) + i_size_external_corr + \ i_size_1Hz_LRM # SAR Mode Record Size i_record_size_SAR_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SAR_waveform) + i_size_external_corr + \ i_size_1Hz_SAR # SARIN Mode Record Size i_record_size_SARIN_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SARIN_waveform) + i_size_external_corr + \ i_size_1Hz_SARIN # set read function for Baseline C read_cryosat_variables = self.cryosat_baseline_C else: # calculate total record sizes of each dataset group i_size_timegroup = i_size_timestamp + 4 + 2*2+ 6*4 + 3*3*4 + 4 i_size_measuregroup = 8 + 4*17 + 8 i_size_external_corr = 4*13 + 12 i_size_1Hz_LRM = i_size_timestamp + 3*4 + 8 + n_LRM_RW*2 + 2*4 + 2*2 i_size_1Hz_SAR = i_size_timestamp + 4*3 + 8 + n_SAR_RW*2 + 4 + 4 + 2 + 2 i_size_1Hz_SARIN = i_size_timestamp + 4*3 + 8 + n_SARIN_RW*2 + 4 + 4 + 2 + 2 i_size_LRM_waveform = n_LRM_RW*2 + 4 + 4 + 2 + 2 i_size_SAR_waveform = n_SAR_RW*2 + 4 + 4 + 2 + 2 + n_BeamBehaviourParams*2 i_size_SARIN_waveform = n_SARIN_RW*2 + 4 + 4 + 2 + 2 + n_SARIN_RW*2 + \ n_SARIN_RW*4 + n_BeamBehaviourParams*2 # Low-Resolution Mode Record Size i_record_size_LRM_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_LRM_waveform) + i_size_external_corr + \ i_size_1Hz_LRM # SAR Mode Record Size i_record_size_SAR_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SAR_waveform) + i_size_external_corr + \ i_size_1Hz_SAR # SARIN Mode Record Size i_record_size_SARIN_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SARIN_waveform) + i_size_external_corr + \ i_size_1Hz_SARIN # set read function for Baselines A and B read_cryosat_variables = self.cryosat_baseline_AB # get dataset MODE from PRODUCT portion of file name # set record sizes and DS_TYPE for read_DSD function self.MODE = re.findall('(LRM|SAR|SIN)', PRODUCT).pop() if (self.MODE == 'LRM'): i_record_size = i_record_size_LRM_L1b DS_TYPE = 'CS_L1B' elif (self.MODE == 'SAR'): i_record_size = i_record_size_SAR_L1b DS_TYPE = 'CS_L1B' elif (self.MODE == 'SIN'): i_record_size = i_record_size_SARIN_L1b DS_TYPE = 'CS_L1B' # read the input file to get file information fid = os.open(os.path.expanduser(full_filename),os.O_RDONLY) file_info = os.fstat(fid) os.close(fid) # num DSRs from SPH j_num_DSR = np.int32(file_info.st_size//i_record_size) # print file information if verbose: print(full_filename) print('{0:d} {1:d} {2:d}'.format(j_num_DSR,file_info.st_size,i_record_size)) # Check if MPH/SPH/DSD headers if (j_num_DSR*i_record_size == file_info.st_size): print('No Header on file') print('The number of DSRs is: {0:d}'.format(j_num_DSR)) else: print('Header on file') # Check if MPH/SPH/DSD headers if (j_num_DSR*i_record_size != file_info.st_size): # If there are MPH/SPH/DSD headers s_MPH_fields = self.read_MPH(full_filename) j_sph_size = np.int32(re.findall(r'[-+]?\d+',s_MPH_fields['SPH_SIZE']).pop()) s_SPH_fields = self.read_SPH(full_filename, j_sph_size) # extract information from DSD fields s_DSD_fields = self.read_DSD(full_filename, DS_TYPE=DS_TYPE) # extract DS_OFFSET j_DS_start = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['DS_OFFSET']).pop()) # extract number of DSR in the file j_num_DSR = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['NUM_DSR']).pop()) # check the record size j_DSR_size = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['DSR_SIZE']).pop()) # minimum size is start of the read plus number of records to read j_check_size = j_DS_start + (j_DSR_size*j_num_DSR) if verbose: print('The offset of the DSD is: {0:d} bytes'.format(j_DS_start)) print('The number of DSRs is {0:d}'.format(j_num_DSR)) print('The size of the DSR is {0:d}'.format(j_DSR_size)) # check if invalid file size if (j_check_size > file_info.st_size): raise IOError('File size error') # extract binary data from input CryoSat data file (skip headers) fid = open(os.path.expanduser(full_filename), 'rb') cryosat_header = fid.read(j_DS_start) # iterate through CryoSat file and fill output variables CS_L1b_mds = read_cryosat_variables(fid, j_num_DSR) # add headers to output dictionary as METADATA CS_L1b_mds['METADATA'] = {} CS_L1b_mds['METADATA']['MPH'] = s_MPH_fields CS_L1b_mds['METADATA']['SPH'] = s_SPH_fields CS_L1b_mds['METADATA']['DSD'] = s_DSD_fields # close the input CryoSat binary file fid.close() else: # If there are not MPH/SPH/DSD headers # extract binary data from input CryoSat data file fid = open(os.path.expanduser(full_filename), 'rb') # iterate through CryoSat file and fill output variables CS_L1b_mds = read_cryosat_variables(fid, j_num_DSR) # close the input CryoSat binary file fid.close() # if unpacking the units if unpack: CS_l1b_scale = self.cryosat_scaling_factors() # for each dictionary key for group in CS_l1b_scale.keys(): # for each variable for key,val in CS_L1b_mds[group].items(): # check if val is the 20Hz waveform beam variables if isinstance(val, dict): # for each waveform beam variable for k,v in val.items(): # scale variable CS_L1b_mds[group][key][k] = CS_l1b_scale[group][key][k]*v.copy() else: # scale variable CS_L1b_mds[group][key] = CS_l1b_scale[group][key]*val.copy() # calculate GPS time of CryoSat data (seconds since Jan 6, 1980 00:00:00) # from TAI time since Jan 1, 2000 00:00:00 GPS_Time = self.calc_GPS_time(CS_L1b_mds['Location']['Day'], CS_L1b_mds['Location']['Second'], CS_L1b_mds['Location']['Micsec']) # leap seconds for converting from GPS time to UTC time leap_seconds = self.count_leap_seconds(GPS_Time) # calculate dates as J2000 days (UTC) CS_L1b_mds['Location']['days_J2k'] = (GPS_Time - leap_seconds)/86400.0 - 7300.0 # parameters to extract if field_dict is None: field_dict = self.__default_field_dict__() # extract fields of interest using field dict keys for group,variables in field_dict.items(): for field in variables: if field not in self.fields: self.fields.append(field) setattr(self, field, CS_L1b_mds[group][field]) # update size and shape of input data self.__update_size_and_shape__() # return the data and header text return self def from_nc(self, full_filename, field_dict=None, unpack=False, verbose=False): """ Read CryoSat Level-1b data from netCDF4 format data """ # file basename and file extension of input file fileBasename,fileExtension=os.path.splitext(os.path.basename(full_filename)) # CryoSat file class # OFFL (Off Line Processing/Systematic) # NRT_ (Near Real Time) # RPRO (ReProcessing) # TEST (Testing) # TIxx (Stand alone IPF1 testing) # LTA_ (Long Term Archive) regex_class = 'OFFL|NRT_|RPRO|TEST|TIxx|LTA_' # CryoSat mission products # SIR1SAR_FR: Level 1 FBR SAR Mode (Rx1 Channel) # SIR2SAR_FR: Level 1 FBR SAR Mode (Rx2 Channel) # SIR_SIN_FR: Level 1 FBR SARin Mode # SIR_LRM_1B: Level-1 Product Low Rate Mode # SIR_FDM_1B: Level-1 Product Fast Delivery Marine Mode # SIR_SAR_1B: Level-1 SAR Mode # SIR_SIN_1B: Level-1 SARin Mode # SIR1LRC11B: Level-1 CAL1 Low Rate Mode (Rx1 Channel) # SIR2LRC11B: Level-1 CAL1 Low Rate Mode (Rx2 Channel) # SIR1SAC11B: Level-1 CAL1 SAR Mode (Rx1 Channel) # SIR2SAC11B: Level-1 CAL1 SAR Mode (Rx2 Channel) # SIR_SIC11B: Level-1 CAL1 SARin Mode # SIR_SICC1B: Level-1 CAL1 SARIN Exotic Data # SIR1SAC21B: Level-1 CAL2 SAR Mode (Rx1 Channel) # SIR2SAC21B: Level-1 CAL2 SAR Mode (Rx2 Channel) # SIR1SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR2SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR1LRM_0M: LRM and TRK Monitoring Data from Rx 1 Channel # SIR2LRM_0M: LRM and TRK Monitoring Data from Rx 2 Channel # SIR1SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR2SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR_SIN_0M: SARIN Monitoring Data # SIR_SIC40M: CAL4 Monitoring Data regex_products = ('SIR1SAR_FR|SIR2SAR_FR|SIR_SIN_FR|SIR_LRM_1B|SIR_FDM_1B|' 'SIR_SAR_1B|SIR_SIN_1B|SIR1LRC11B|SIR2LRC11B|SIR1SAC11B|SIR2SAC11B|' 'SIR_SIC11B|SIR_SICC1B|SIR1SAC21B|SIR2SAC21B|SIR1SIC21B|SIR2SIC21B|' 'SIR1LRM_0M|SIR2LRM_0M|SIR1SAR_0M|SIR2SAR_0M|SIR_SIN_0M|SIR_SIC40M') # CRYOSAT LEVEL-1b PRODUCTS NAMING RULES # Mission Identifier # File Class # File Product # Validity Start Date and Time # Validity Stop Date and Time # Baseline Identifier # Version Number regex_pattern = r'(.*?)_({0})_({1})_(\d+T?\d+)_(\d+T?\d+)_(.*?)(\d+)' rx = re.compile(regex_pattern.format(regex_class,regex_products),re.VERBOSE) # extract file information from filename MI,CLASS,PRODUCT,START,STOP,BASELINE,VERSION=rx.findall(fileBasename).pop() print(full_filename) if verbose else None # get dataset MODE from PRODUCT portion of file name self.MODE = re.findall(r'(LRM|FDM|SAR|SIN)', PRODUCT).pop() # read level-2 CryoSat-2 data from netCDF4 file CS_L1b_mds = self.cryosat_baseline_D(full_filename, unpack=unpack) # calculate GPS time of CryoSat data (seconds since Jan 6, 1980 00:00:00) # from TAI time since Jan 1, 2000 00:00:00 GPS_Time = self.calc_GPS_time(CS_L1b_mds['Location']['Day'], CS_L1b_mds['Location']['Second'], CS_L1b_mds['Location']['Micsec']) # leap seconds for converting from GPS time to UTC time leap_seconds = self.count_leap_seconds(GPS_Time) # calculate dates as J2000 days (UTC) CS_L1b_mds['Location']['days_J2k'] = (GPS_Time - leap_seconds)/86400.0 - 7300.0 # parameters to extract if field_dict is None: field_dict = self.__default_field_dict__() # extract fields of interest using field dict keys for group,variables in field_dict.items(): for field in variables: if field not in self.fields: self.fields.append(field) setattr(self, field, CS_L1b_mds[group][field]) # update size and shape of input data self.__update_size_and_shape__() # return the data and header text return self def calc_GPS_time(self, day, second, micsec): """ Calculate the GPS time (seconds since Jan 6, 1980 00:00:00) """ # TAI time is ahead of GPS by 19 seconds return (day + 7300.0)*86400.0 + second.astype('f') + micsec/1e6 - 19 def count_leap_seconds(self, GPS_Time): """ Count number of leap seconds that have passed for given GPS times """ # GPS times for leap seconds leaps = [46828800, 78364801, 109900802, 173059203, 252028804, 315187205, 346723206, 393984007, 425520008, 457056009, 504489610, 551750411, 599184012, 820108813, 914803214, 1025136015, 1119744016, 1167264017] # number of leap seconds prior to GPS_Time n_leaps = np.zeros_like(GPS_Time) for i,leap in enumerate(leaps): count = np.count_nonzero(GPS_Time >= leap) if (count > 0): i_records,i_blocks = np.nonzero(GPS_Time >= leap) n_leaps[i_records,i_blocks] += 1.0 return n_leaps def read_MPH(self, full_filename): """ Read ASCII Main Product Header (MPH) block from an ESA PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # check that first line of header matches PRODUCT if not bool(re.match(br'PRODUCT\=\"(.*)(?=\")',file_contents[0])): raise IOError('File does not start with a valid PDS MPH') # read MPH header text s_MPH_fields = {} for i in range(n_MPH_lines): # use regular expression operators to read headers if bool(re.match(br'(.*?)\=\"(.*)(?=\")',file_contents[i])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',file_contents[i]).pop() s_MPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',file_contents[i])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',file_contents[i]).pop() s_MPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # Return block name array to calling function return s_MPH_fields def read_SPH(self, full_filename, j_sph_size): """ Read ASCII Specific Product Header (SPH) block from a PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # compile regular expression operator for reading headers rx = re.compile(br'(.*?)\=\"?(.*)',re.VERBOSE) # check first line of header matches SPH_DESCRIPTOR if not bool(re.match(br'SPH\_DESCRIPTOR\=',file_contents[n_MPH_lines+1])): raise IOError('File does not have a valid PDS DSD') # read SPH header text (no binary control characters) s_SPH_lines = [li for li in file_contents[n_MPH_lines+1:] if rx.match(li) and not re.search(br'[^\x20-\x7e]+',li)] # extract SPH header text s_SPH_fields = {} c = 0 while (c < len(s_SPH_lines)): # check if line is within DS_NAME portion of SPH header if bool(re.match(br'DS_NAME',s_SPH_lines[c])): # add dictionary for DS_NAME field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c]).pop() key = value.decode('utf-8').rstrip() s_SPH_fields[key] = {} for line in s_SPH_lines[c+1:c+7]: if bool(re.match(br'(.*?)\=\"(.*)(?=\")',line)): # data fields within quotes dsfield,dsvalue=re.findall(br'(.*?)\=\"(.*)(?=\")',line).pop() s_SPH_fields[key][dsfield.decode('utf-8')] = dsvalue.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',line)): # data fields without quotes dsfield,dsvalue=re.findall(br'(.*?)\=(.*)',line).pop() s_SPH_fields[key][dsfield.decode('utf-8')] = dsvalue.decode('utf-8').rstrip() # add 6 to counter to go to next entry c += 6 # use regular expression operators to read headers elif bool(re.match(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c]).pop() s_SPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',s_SPH_lines[c])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',s_SPH_lines[c]).pop() s_SPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # add 1 to counter to go to next line c += 1 # Return block name array to calling function return s_SPH_fields def read_DSD(self, full_filename, DS_TYPE=None): """ Read ASCII Data Set Descriptors (DSD) block from a PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # number of text lines in a DSD header n_DSD_lines = 8 # Level-1b CryoSat DS_NAMES within files regex_patterns = [] if (DS_TYPE == 'CS_L1B'): regex_patterns.append(br'DS_NAME\="SIR_L1B_LRM[\s+]*"') regex_patterns.append(br'DS_NAME\="SIR_L1B_SAR[\s+]*"') regex_patterns.append(br'DS_NAME\="SIR_L1B_SARIN[\s+]*"') elif (DS_TYPE == 'SIR_L1B_FDM'): regex_patterns.append(br'DS_NAME\="SIR_L1B_FDM[\s+]*"') # find the DSD starting line within the SPH header c = 0 Flag = False while ((Flag is False) and (c < len(regex_patterns))): # find indice within indice = [i for i,line in enumerate(file_contents[n_MPH_lines+1:]) if re.search(regex_patterns[c],line)] if indice: Flag = True else: c+=1 # check that valid indice was found within header if not indice: raise IOError('Can not find correct DSD field') # extract s_DSD_fields info DSD_START = n_MPH_lines + indice[0] + 1 s_DSD_fields = {} for i in range(DSD_START,DSD_START+n_DSD_lines): # use regular expression operators to read headers if bool(re.match(br'(.*?)\=\"(.*)(?=\")',file_contents[i])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',file_contents[i]).pop() s_DSD_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',file_contents[i])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',file_contents[i]).pop() s_DSD_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # Return block name array to calling function return s_DSD_fields def cryosat_baseline_AB(self, fid, n_records): """ Read L1b MDS variables for CryoSat Baselines A and B """ n_SARIN_RW = 512 n_SAR_RW = 128 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 # Bind all the variables of the l1b_mds together into a single dictionary CS_l1b_mds = {} # CryoSat-2 Time and Orbit Group CS_l1b_mds['Location'] = {} # Time: day part CS_l1b_mds['Location']['Day'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32,fill_value=0) # Time: second part CS_l1b_mds['Location']['Second'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Time: microsecond part CS_l1b_mds['Location']['Micsec'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # USO correction factor CS_l1b_mds['Location']['USO_Corr'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Mode ID CS_l1b_mds['Location']['Mode_ID'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Source sequence counter CS_l1b_mds['Location']['SSC'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Instrument configuration CS_l1b_mds['Location']['Inst_config'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Record Counter CS_l1b_mds['Location']['Rec_Count'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lat'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lon'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Location']['Alt'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instantaneous altitude rate derived from orbit: packed units (mm/s, 1e-3 m/s) CS_l1b_mds['Location']['Alt_rate'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Satellite velocity vector. In ITRF: packed units (mm/s, 1e-3 m/s) # ITRF= International Terrestrial Reference Frame CS_l1b_mds['Location']['Sat_velocity'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Real beam direction vector. In CRF: packed units (micro-m, 1e-6 m) # CRF= CryoSat Reference Frame. CS_l1b_mds['Location']['Real_beam'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Interferometric baseline vector. In CRF: packed units (micro-m, 1e-6 m) CS_l1b_mds['Location']['Baseline'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Measurement Confidence Data Flags # Generally the MCD flags indicate problems when set # If MCD is 0 then no problems or non-nominal conditions were detected # Serious errors are indicated by setting bit 31 CS_l1b_mds['Location']['MCD'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # CryoSat-2 Measurement Group # Derived from instrument measurement parameters CS_l1b_mds['Data'] = {} # Window Delay reference (two-way) corrected for instrument delays CS_l1b_mds['Data']['TD'] = np.ma.zeros((n_records,n_blocks),dtype=np.int64) # H0 Initial Height Word from telemetry CS_l1b_mds['Data']['H_0'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # COR2 Height Rate: on-board tracker height rate over the radar cycle CS_l1b_mds['Data']['COR2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Coarse Range Word (LAI) derived from telemetry CS_l1b_mds['Data']['LAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Fine Range Word (FAI) derived from telemetry CS_l1b_mds['Data']['FAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 1: AGC gain applied on Rx channel 1. # Gain calibration corrections are applied (Sum of AGC stages 1 and 2 # plus the corresponding corrections) (dB/100) CS_l1b_mds['Data']['AGC_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 2: AGC gain applied on Rx channel 2. # Gain calibration corrections are applied (dB/100) CS_l1b_mds['Data']['AGC_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 1: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 2: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Transmit Power in microWatts CS_l1b_mds['Data']['TX_Power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Doppler range correction: Radial component (mm) # computed for the component of satellite velocity in the nadir direction CS_l1b_mds['Data']['Doppler_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: transmit-receive antenna (mm) # Calibration correction to range on channel 1 computed from CAL1. CS_l1b_mds['Data']['TR_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: receive-only antenna (mm) # Calibration correction to range on channel 2 computed from CAL1. CS_l1b_mds['Data']['R_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: transmit-receive antenna (dB/100) # Calibration correction to gain on channel 1 computed from CAL1 CS_l1b_mds['Data']['TR_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: receive-only (dB/100) # Calibration correction to gain on channel 2 computed from CAL1 CS_l1b_mds['Data']['R_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Internal Phase Correction (microradians) CS_l1b_mds['Data']['Internal_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # External Phase Correction (microradians) CS_l1b_mds['Data']['External_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Noise Power measurement (dB/100): converted from telemetry units to be # the noise floor of FBR measurement echoes. # Set to -9999.99 when the telemetry contains zero. CS_l1b_mds['Data']['Noise_power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Phase slope correction (microradians) # Computed from the CAL-4 packets during the azimuth impulse response # amplitude (SARIN only). Set from the latest available CAL-4 packet. CS_l1b_mds['Data']['Phase_slope'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) CS_l1b_mds['Data']['Spares1'] = np.ma.zeros((n_records,n_blocks,4),dtype=np.int8) # CryoSat-2 External Corrections Group CS_l1b_mds['Geometry'] = {} # Dry Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['dryTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Wet Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['wetTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['InvBar'] = np.ma.zeros((n_records),dtype=np.int32) # Delta Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['DAC'] = np.ma.zeros((n_records),dtype=np.int32) # GIM Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_GIM'] = np.ma.zeros((n_records),dtype=np.int32) # Model Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_model'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['ocTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['lpeTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean loading tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['olTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Solid Earth tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['seTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Geocentric Polar tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['gpTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Surface Type: enumerated key to classify surface at nadir # 0 = Open Ocean # 1 = Closed Sea # 2 = Continental Ice # 3 = Land CS_l1b_mds['Geometry']['Surf_type'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare1'] = np.ma.zeros((n_records,4),dtype=np.int8) # Corrections Status Flag CS_l1b_mds['Geometry']['Corr_status'] = np.ma.zeros((n_records),dtype=np.uint32) # Correction Error Flag CS_l1b_mds['Geometry']['Corr_error'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare2'] = np.ma.zeros((n_records,4),dtype=np.int8) # CryoSat-2 Average Waveforms Groups CS_l1b_mds['Waveform_1Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SAR_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SIN'): # SARIN Mode # Same as the LRM/SAR groups but the waveform array is 512 bins instead of # 128 and the number of echoes averaged is different. # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SARIN_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) # CryoSat-2 Waveforms Groups # Beam Behavior Parameters Beam_Behavior = {} # Standard Deviation of Gaussian fit to range integrated stack power. Beam_Behavior['SD'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack Center: Mean of Gaussian fit to range integrated stack power. Beam_Behavior['Center'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack amplitude parameter scaled in dB/100. Beam_Behavior['Amplitude'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # 3rd moment: providing the degree of asymmetry of the range integrated # stack power distribution. Beam_Behavior['Skewness'] = np.zeros((n_records,n_blocks),dtype=np.int16) # 4th moment: Measure of peakiness of range integrated stack power distribution. Beam_Behavior['Kurtosis'] = np.zeros((n_records,n_blocks),dtype=np.int16) Beam_Behavior['Spare'] = np.zeros((n_records,n_blocks,n_BeamBehaviourParams-5),dtype=np.int16) # CryoSat-2 mode specific waveforms CS_l1b_mds['Waveform_20Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Averaged Power Echo Waveform [128] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Averaged Power Echo Waveform [128] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SAR_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior elif (self.MODE == 'SIN'): # SARIN Mode # Averaged Power Echo Waveform [512] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior # Coherence [512]: packed units (1/1000) CS_l1b_mds['Waveform_20Hz']['Coherence'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.int16) # Phase Difference [512]: packed units (microradians) CS_l1b_mds['Waveform_20Hz']['Phase_diff'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.int32) # for each record in the CryoSat file for r in range(n_records): # CryoSat-2 Time and Orbit Group for b in range(n_blocks): CS_l1b_mds['Location']['Day'].data[r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Second'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Micsec'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['USO_Corr'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Mode_ID'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Location']['SSC'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Location']['Inst_config'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Rec_Count'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Lat'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Lon'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Alt'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Alt_rate'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Sat_velocity'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['Real_beam'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['Baseline'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['MCD'][r,b] = np.fromfile(fid,dtype='>u4',count=1) # CryoSat-2 Measurement Group # Derived from instrument measurement parameters for b in range(n_blocks): CS_l1b_mds['Data']['TD'][r,b] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Data']['H_0'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['COR2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['LAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['FAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['AGC_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['AGC_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_gain_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_gain_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TX_Power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Doppler_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['R_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['R_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Internal_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['External_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Noise_power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Phase_slope'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Spares1'][r,b,:] = np.fromfile(fid,dtype='>i1',count=4) # CryoSat-2 External Corrections Group CS_l1b_mds['Geometry']['dryTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['wetTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['InvBar'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['DAC'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Iono_GIM'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Iono_model'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['ocTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['lpeTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['olTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['seTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['gpTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Surf_type'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Spare1'][r,:] = np.fromfile(fid,dtype='>i1',count=4) CS_l1b_mds['Geometry']['Corr_status'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Corr_error'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Spare2'][r,:] = np.fromfile(fid,dtype='>i1',count=4) # CryoSat-2 Average Waveforms Groups if (self.MODE == 'LRM'): # Low-Resolution Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Waveform_1Hz']['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_LRM_RW) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_1Hz']['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (self.MODE == 'SAR'): # SAR Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Waveform_1Hz']['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_SAR_RW) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_1Hz']['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (self.MODE == 'SIN'): # SARIN Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Waveform_1Hz']['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_SARIN_RW) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_1Hz']['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) # CryoSat-2 Waveforms Groups if (self.MODE == 'LRM'): # Low-Resolution Mode for b in range(n_blocks): CS_l1b_mds['Waveform_20Hz']['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_LRM_RW) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) elif (self.MODE == 'SAR'): # SAR Mode for b in range(n_blocks): CS_l1b_mds['Waveform_20Hz']['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_SAR_RW) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['SD'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Center'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Amplitude'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Skewness'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Kurtosis'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Spare'][r,b,:] = np.fromfile(fid,dtype='>i2',count=(n_BeamBehaviourParams-5)) elif (self.MODE == 'SIN'): # SARIN Mode for b in range(n_blocks): CS_l1b_mds['Waveform_20Hz']['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_SARIN_RW) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['SD'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Center'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Amplitude'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Skewness'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Kurtosis'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Spare'][r,b,:] = np.fromfile(fid,dtype='>i2',count=(n_BeamBehaviourParams-5)) CS_l1b_mds['Waveform_20Hz']['Coherence'][r,b,:] = np.fromfile(fid,dtype='>i2',count=n_SARIN_RW) CS_l1b_mds['Waveform_20Hz']['Phase_diff'][r,b,:] = np.fromfile(fid,dtype='>i4',count=n_SARIN_RW) # set the mask from day variables mask_20Hz = CS_l1b_mds['Location']['Day'].data == CS_l1b_mds['Location']['Day'].fill_value Location_keys = [key for key in CS_l1b_mds['Location'].keys() if not re.search(r'Spare',key)] Data_keys = [key for key in CS_l1b_mds['Data'].keys() if not re.search(r'Spare',key)] Geometry_keys = [key for key in CS_l1b_mds['Geometry'].keys() if not re.search(r'Spare',key)] Wfm_1Hz_keys = [key for key in CS_l1b_mds['Waveform_1Hz'].keys() if not re.search(r'Spare',key)] Wfm_20Hz_keys = [key for key in CS_l1b_mds['Waveform_20Hz'].keys() if not re.search(r'Spare',key)] for key in Location_keys: CS_l1b_mds['Location'][key].mask = mask_20Hz.copy() for key in Data_keys: CS_l1b_mds['Data'][key].mask = mask_20Hz.copy() # return the output dictionary return CS_l1b_mds def cryosat_baseline_C(self, fid, n_records): """ Read L1b MDS variables for CryoSat Baseline C """ n_SARIN_BC_RW = 1024 n_SARIN_RW = 512 n_SAR_BC_RW = 256 n_SAR_RW = 128 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 # Bind all the variables of the l1b_mds together into a single dictionary CS_l1b_mds = {} # CryoSat-2 Time and Orbit Group CS_l1b_mds['Location'] = {} # Time: day part CS_l1b_mds['Location']['Day'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32,fill_value=0) # Time: second part CS_l1b_mds['Location']['Second'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Time: microsecond part CS_l1b_mds['Location']['Micsec'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # USO correction factor CS_l1b_mds['Location']['USO_Corr'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Mode ID CS_l1b_mds['Location']['Mode_ID'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Source sequence counter CS_l1b_mds['Location']['SSC'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Instrument configuration CS_l1b_mds['Location']['Inst_config'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Record Counter CS_l1b_mds['Location']['Rec_Count'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lat'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lon'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Location']['Alt'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instantaneous altitude rate derived from orbit: packed units (mm/s, 1e-3 m/s) CS_l1b_mds['Location']['Alt_rate'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Satellite velocity vector. In ITRF: packed units (mm/s, 1e-3 m/s) # ITRF= International Terrestrial Reference Frame CS_l1b_mds['Location']['Sat_velocity'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Real beam direction vector. In CRF: packed units (micro-m/s, 1e-6 m/s) # CRF= CryoSat Reference Frame. CS_l1b_mds['Location']['Real_beam'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Interferometric baseline vector. In CRF: packed units (micro-m/s, 1e-6 m/s) CS_l1b_mds['Location']['Baseline'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Star Tracker ID CS_l1b_mds['Location']['ST_ID'] = np.ma.zeros((n_records,n_blocks),dtype=np.int16) # Antenna Bench Roll Angle (Derived from star trackers) # packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Roll'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Antenna Bench Pitch Angle (Derived from star trackers) # packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Pitch'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Antenna Bench Yaw Angle (Derived from star trackers) # packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Yaw'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Measurement Confidence Data Flags # Generally the MCD flags indicate problems when set # If MCD is 0 then no problems or non-nominal conditions were detected # Serious errors are indicated by setting bit 31 CS_l1b_mds['Location']['MCD'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) CS_l1b_mds['Location']['Spares'] = np.ma.zeros((n_records,n_blocks,2),dtype=np.int16) # CryoSat-2 Measurement Group # Derived from instrument measurement parameters CS_l1b_mds['Data'] = {} # Window Delay reference (two-way) corrected for instrument delays CS_l1b_mds['Data']['TD'] = np.ma.zeros((n_records,n_blocks),dtype=np.int64) # H0 Initial Height Word from telemetry CS_l1b_mds['Data']['H_0'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # COR2 Height Rate: on-board tracker height rate over the radar cycle CS_l1b_mds['Data']['COR2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Coarse Range Word (LAI) derived from telemetry CS_l1b_mds['Data']['LAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Fine Range Word (FAI) derived from telemetry CS_l1b_mds['Data']['FAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 1: AGC gain applied on Rx channel 1. # Gain calibration corrections are applied (Sum of AGC stages 1 and 2 # plus the corresponding corrections) (dB/100) CS_l1b_mds['Data']['AGC_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 2: AGC gain applied on Rx channel 2. # Gain calibration corrections are applied (dB/100) CS_l1b_mds['Data']['AGC_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 1: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 2: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Transmit Power in microWatts CS_l1b_mds['Data']['TX_Power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Doppler range correction: Radial component (mm) # computed for the component of satellite velocity in the nadir direction CS_l1b_mds['Data']['Doppler_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: transmit-receive antenna (mm) # Calibration correction to range on channel 1 computed from CAL1. CS_l1b_mds['Data']['TR_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: receive-only antenna (mm) # Calibration correction to range on channel 2 computed from CAL1. CS_l1b_mds['Data']['R_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: transmit-receive antenna (dB/100) # Calibration correction to gain on channel 1 computed from CAL1 CS_l1b_mds['Data']['TR_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: receive-only (dB/100) # Calibration correction to gain on channel 2 computed from CAL1 CS_l1b_mds['Data']['R_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Internal Phase Correction (microradians) CS_l1b_mds['Data']['Internal_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # External Phase Correction (microradians) CS_l1b_mds['Data']['External_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Noise Power measurement (dB/100) CS_l1b_mds['Data']['Noise_power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Phase slope correction (microradians) # Computed from the CAL-4 packets during the azimuth impulse response # amplitude (SARIN only). Set from the latest available CAL-4 packet. CS_l1b_mds['Data']['Phase_slope'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) CS_l1b_mds['Data']['Spares1'] = np.ma.zeros((n_records,n_blocks,4),dtype=np.int8) # CryoSat-2 External Corrections Group CS_l1b_mds['Geometry'] = {} # Dry Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['dryTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Wet Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['wetTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['InvBar'] = np.ma.zeros((n_records),dtype=np.int32) # Delta Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['DAC'] = np.ma.zeros((n_records),dtype=np.int32) # GIM Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_GIM'] = np.ma.zeros((n_records),dtype=np.int32) # Model Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_model'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['ocTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['lpeTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean loading tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['olTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Solid Earth tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['seTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Geocentric Polar tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['gpTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Surface Type: enumerated key to classify surface at nadir # 0 = Open Ocean # 1 = Closed Sea # 2 = Continental Ice # 3 = Land CS_l1b_mds['Geometry']['Surf_type'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare1'] = np.ma.zeros((n_records,4),dtype=np.int8) # Corrections Status Flag CS_l1b_mds['Geometry']['Corr_status'] = np.ma.zeros((n_records),dtype=np.uint32) # Correction Error Flag CS_l1b_mds['Geometry']['Corr_error'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare2'] = np.ma.zeros((n_records,4),dtype=np.int8) # CryoSat-2 Average Waveforms Groups CS_l1b_mds['Waveform_1Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SAR_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SIN'): # SARIN Mode # Same as the LRM/SAR groups but the waveform array is 512 bins instead of # 128 and the number of echoes averaged is different. # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SARIN_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) # CryoSat-2 Waveforms Groups # Beam Behavior Parameters Beam_Behavior = {} # Standard Deviation of Gaussian fit to range integrated stack power. Beam_Behavior['SD'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack Center: Mean of Gaussian fit to range integrated stack power. Beam_Behavior['Center'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack amplitude parameter scaled in dB/100. Beam_Behavior['Amplitude'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # 3rd moment: providing the degree of asymmetry of the range integrated # stack power distribution. Beam_Behavior['Skewness'] = np.zeros((n_records,n_blocks),dtype=np.int16) # 4th moment: Measure of peakiness of range integrated stack power distribution. Beam_Behavior['Kurtosis'] = np.zeros((n_records,n_blocks),dtype=np.int16) # Standard deviation as a function of boresight angle (microradians) Beam_Behavior['SD_boresight_angle'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack Center angle as a function of boresight angle (microradians) Beam_Behavior['Center_boresight_angle'] = np.zeros((n_records,n_blocks),dtype=np.int16) Beam_Behavior['Spare'] = np.zeros((n_records,n_blocks,n_BeamBehaviourParams-7),dtype=np.int16) # CryoSat-2 mode specific waveform variables CS_l1b_mds['Waveform_20Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Averaged Power Echo Waveform [128] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Averaged Power Echo Waveform [256] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SAR_BC_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior elif (self.MODE == 'SIN'): # SARIN Mode # Averaged Power Echo Waveform [1024] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SARIN_BC_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior # Coherence [1024]: packed units (1/1000) CS_l1b_mds['Waveform_20Hz']['Coherence'] = np.zeros((n_records,n_blocks,n_SARIN_BC_RW),dtype=np.int16) # Phase Difference [1024]: packed units (microradians) CS_l1b_mds['Waveform_20Hz']['Phase_diff'] = np.zeros((n_records,n_blocks,n_SARIN_BC_RW),dtype=np.int32) # for each record in the CryoSat file for r in range(n_records): # CryoSat-2 Time and Orbit Group for b in range(n_blocks): CS_l1b_mds['Location']['Day'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Second'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Micsec'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['USO_Corr'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Mode_ID'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Location']['SSC'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Location']['Inst_config'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Rec_Count'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Lat'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Lon'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Alt'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Alt_rate'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Sat_velocity'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['Real_beam'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['Baseline'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['ST_ID'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Location']['Roll'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Pitch'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Yaw'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['MCD'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Spares'][r,b,:] = np.fromfile(fid,dtype='>i2',count=2) # CryoSat-2 Measurement Group # Derived from instrument measurement parameters for b in range(n_blocks): CS_l1b_mds['Data']['TD'][r,b] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Data']['H_0'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['COR2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['LAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['FAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['AGC_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['AGC_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_gain_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_gain_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TX_Power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Doppler_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['R_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['R_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Internal_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['External_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Noise_power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Phase_slope'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Spares1'][r,b,:] = np.fromfile(fid,dtype='>i1',count=4) # CryoSat-2 External Corrections Group CS_l1b_mds['Geometry']['dryTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['wetTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['InvBar'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['DAC'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Iono_GIM'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Iono_model'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['ocTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['lpeTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['olTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['seTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['gpTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Surf_type'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Spare1'][r,:] = np.fromfile(fid,dtype='>i1',count=4) CS_l1b_mds['Geometry']['Corr_status'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Corr_error'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Spare2'][r,:] = np.fromfile(fid,dtype='>i1',count=4) # CryoSat-2 Average Waveforms Groups if (self.MODE == 'LRM'): # Low-Resolution Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Waveform_1Hz']['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_LRM_RW) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_1Hz']['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (self.MODE == 'SAR'): # SAR Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Waveform_1Hz']['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_SAR_RW) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_1Hz']['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (self.MODE == 'SIN'): # SARIN Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Waveform_1Hz']['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_SARIN_RW) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_1Hz']['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) # CryoSat-2 Waveforms Groups if (self.MODE == 'LRM'): # Low-Resolution Mode for b in range(n_blocks): CS_l1b_mds['Waveform_20Hz']['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_LRM_RW) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) elif (self.MODE == 'SAR'): # SAR Mode for b in range(n_blocks): CS_l1b_mds['Waveform_20Hz']['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_SAR_BC_RW) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['SD'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Center'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Amplitude'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Skewness'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Kurtosis'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['SD_boresight_angle'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Center_boresight_angle'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Spare'][r,b,:] = np.fromfile(fid,dtype='>i2',count=(n_BeamBehaviourParams-7)) elif (self.MODE == 'SIN'): # SARIN Mode for b in range(n_blocks): CS_l1b_mds['Waveform_20Hz']['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_SARIN_BC_RW) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['SD'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Center'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Amplitude'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Skewness'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Kurtosis'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['SD_boresight_angle'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Center_boresight_angle'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Spare'][r,b,:] = np.fromfile(fid,dtype='>i2',count=(n_BeamBehaviourParams-7)) CS_l1b_mds['Waveform_20Hz']['Coherence'][r,b,:] = np.fromfile(fid,dtype='>i2',count=n_SARIN_BC_RW) CS_l1b_mds['Waveform_20Hz']['Phase_diff'][r,b,:] = np.fromfile(fid,dtype='>i4',count=n_SARIN_BC_RW) # set the mask from day variables mask_20Hz = CS_l1b_mds['Location']['Day'].data == CS_l1b_mds['Location']['Day'].fill_value Location_keys = [key for key in CS_l1b_mds['Location'].keys() if not re.search(r'Spare',key)] Data_keys = [key for key in CS_l1b_mds['Data'].keys() if not re.search(r'Spare',key)] Geometry_keys = [key for key in CS_l1b_mds['Geometry'].keys() if not re.search(r'Spare',key)] Wfm_1Hz_keys = [key for key in CS_l1b_mds['Waveform_1Hz'].keys() if not re.search(r'Spare',key)] Wfm_20Hz_keys = [key for key in CS_l1b_mds['Waveform_20Hz'].keys() if not re.search(r'Spare',key)] for key in Location_keys: CS_l1b_mds['Location'][key].mask = mask_20Hz.copy() for key in Data_keys: CS_l1b_mds['Data'][key].mask = mask_20Hz.copy() # return the output dictionary return CS_l1b_mds def cryosat_baseline_D(self, full_filename, unpack=False): """ Read L1b MDS variables for CryoSat Baseline D (netCDF4) """ # open netCDF4 file for reading fid = netCDF4.Dataset(os.path.expanduser(full_filename),'r') # use original unscaled units unless unpack=True fid.set_auto_scale(unpack) # get dimensions ind_first_meas_20hz_01 = fid.variables['ind_first_meas_20hz_01'][:].copy() ind_meas_1hz_20_ku = fid.variables['ind_meas_1hz_20_ku'][:].copy() n_records = len(ind_first_meas_20hz_01) n_SARIN_D_RW = 1024 n_SARIN_RW = 512 n_SAR_D_RW = 256 n_SAR_RW = 128 n_LRM_RW = 128 n_blocks = 20 # Bind all the variables of the l1b_mds together into a single dictionary CS_l1b_mds = {} # CryoSat-2 Time and Orbit Group CS_l1b_mds['Location'] = {} # MDS Time CS_l1b_mds['Location']['Time'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Time'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) time_20_ku = fid.variables['time_20_ku'][:].copy() # Time: day part CS_l1b_mds['Location']['Day'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Day'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) # Time: second part CS_l1b_mds['Location']['Second'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Second'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) # Time: microsecond part CS_l1b_mds['Location']['Micsec'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Micsec'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) # USO correction factor CS_l1b_mds['Location']['USO_Corr'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['USO_Corr'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) uso_cor_20_ku = fid.variables['uso_cor_20_ku'][:].copy() # Mode ID CS_l1b_mds['Location']['Mode_ID'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Mode_ID'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) flag_instr_mode_op_20_ku =fid.variables['flag_instr_mode_op_20_ku'][:].copy() # Mode Flags CS_l1b_mds['Location']['Mode_flags'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Mode_flags'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) flag_instr_mode_flags_20_ku =fid.variables['flag_instr_mode_flags_20_ku'][:].copy() # Platform attitude control mode CS_l1b_mds['Location']['Att_control'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Att_control'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) flag_instr_mode_att_ctrl_20_ku =fid.variables['flag_instr_mode_att_ctrl_20_ku'][:].copy() # Instrument configuration CS_l1b_mds['Location']['Inst_config'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Inst_config'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) flag_instr_conf_rx_flags_20_ku = fid.variables['flag_instr_conf_rx_flags_20_ku'][:].copy() # acquisition band CS_l1b_mds['Location']['Inst_band'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Inst_band'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) flag_instr_conf_rx_bwdt_20_ku = fid.variables['flag_instr_conf_rx_bwdt_20_ku'][:].copy() # instrument channel CS_l1b_mds['Location']['Inst_channel'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Inst_channel'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) flag_instr_conf_rx_in_use_20_ku = fid.variables['flag_instr_conf_rx_in_use_20_ku'][:].copy() # tracking mode CS_l1b_mds['Location']['Tracking_mode'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Tracking_mode'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) flag_instr_conf_rx_trk_mode_20_ku = fid.variables['flag_instr_conf_rx_trk_mode_20_ku'][:].copy() # Source sequence counter CS_l1b_mds['Location']['SSC'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['SSC'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) seq_count_20_ku = fid.variables['seq_count_20_ku'][:].copy() # Record Counter CS_l1b_mds['Location']['Rec_Count'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Rec_Count'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) rec_count_20_ku = fid.variables['rec_count_20_ku'][:].copy() # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lat'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Lat'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) lat_20_ku = fid.variables['lat_20_ku'][:].copy() # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lon'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Lon'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) lon_20_ku = fid.variables['lon_20_ku'][:].copy() # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Location']['Alt'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Alt'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) alt_20_ku = fid.variables['alt_20_ku'][:].copy() # Instantaneous altitude rate derived from orbit: packed units (mm/s, 1e-3 m/s) CS_l1b_mds['Location']['Alt_rate'] = np.ma.zeros((n_records,n_blocks)) CS_l1b_mds['Location']['Alt_rate'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) orb_alt_rate_20_ku = fid.variables['orb_alt_rate_20_ku'][:].copy() # Satellite velocity vector. In ITRF: packed units (mm/s, 1e-3 m/s) # ITRF= International Terrestrial Reference Frame CS_l1b_mds['Location']['Sat_velocity'] = np.ma.zeros((n_records,n_blocks,3)) CS_l1b_mds['Location']['Sat_velocity'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) sat_vel_vec_20_ku = fid.variables['sat_vel_vec_20_ku'][:].copy() # Real beam direction vector. In CRF: packed units (micro-m/s, 1e-6 m/s) # CRF= CryoSat Reference Frame. CS_l1b_mds['Location']['Real_beam'] = np.ma.zeros((n_records,n_blocks,3)) CS_l1b_mds['Location']['Real_beam'].mask =
np.zeros((n_records,n_blocks),dtype=np.bool)
numpy.zeros
''' Test the helper functions Author: <NAME> - <EMAIL> 2019 ''' import pytest from numpy.random import randint, rand import numpy as np import scipy.io as sio from helpers import * @pytest.fixture(scope="module") def X_lighthouse(): '''Return the lighthouse image X''' return sio.loadmat('test_mat/lighthouse.mat')['X'].astype(float) @pytest.fixture(scope="module") def h_simple(): '''Return the simple 3-tap filter in Handout Section 6.1''' return np.array([1, 2, 1]) / 4 @pytest.fixture(scope="module") def matlab_output(): '''Return the expected outputs from MATLAB''' return sio.loadmat('test_mat/matlabout.mat') @pytest.fixture(scope="module") def pot_ii_dat(): """Return the expected outputs from MATLAB""" return sio.loadmat('test_mat/pot_ii.mat') @pytest.fixture(scope="module") def dwt_idwt_dat(): """Return the expected outputs from MATLAB""" return sio.loadmat('test_mat/dwt_idwt_dat.mat') def X_odd(): '''Return a random 3 x 3 matrix''' return randint(0, 256, (3, 3)) def X_even(): '''Return a random 4 x 4 matrix''' return randint(0, 256, (4, 4)) def h_odd(): '''Return a random filter of length 3''' h = rand(3) - 0.5 return h / sum(h) def h_even(): '''Return a random filter of length 4''' h = rand(4) - 0.5 return h / sum(h) @pytest.mark.parametrize("X, h, align", [ (X, h, align) for X in (X_odd(), X_even()) for h in (h_odd(), h_even()) for align in (True, False) ]) def test_rowdec_random(X, h, align): '''Test if rowdec handles odd and even dimensions correctly and triggers no index out of range errors''' rowdec(X, h, align_with_first=align) @pytest.mark.parametrize("X, h, align", [ (X, h, align) for X in (X_odd(), X_even()) for h in (h_odd(), h_even()) for align in (True, False) ]) def test_rowint_random(X, h, align): '''Test if rowint handles odd and even dimensions correctly and triggers no index out of range errors''' rowint(X, h, align_with_first=align) @pytest.mark.parametrize("X, h, align, expected", [ (np.array([[1, 2, 3, 4]]), np.array([1, 2, 1]) / 4, True, np.array([[1.5, 3]])), (np.array([[1, 2, 3, 4]]), np.array([1, 2, 1]) / 4, False, np.array([[2., 3.5]])), (np.array([[1, 2, 3, 4, 5, 6]]), np.array([2, 3]) / 5, True, np.array([[1.6, 3.6, 5.6]])), (np.array([[1, 2, 3, 4, 5, 6]]), np.array([2, 3]) / 5, False, np.array([[2.6, 4.6]])), ]) def test_rowdec_small(X, h, align, expected): '''Test for accurate answer for small test cases''' assert np.allclose(rowdec(X, h, align_with_first=align), expected) @pytest.mark.parametrize("X, h, align, expected", [ (np.array([[1, 2, 3]]), np.array([1, 2, 1]) / 4, True, np.array([[0.5, 0.75, 1., 1.25, 1.5, 1.5]])), (np.array([[1, 2, 3]]), np.array([1, 2, 1]) / 4, False, np.array([[0.5, 0.5, 0.75, 1., 1.25, 1.5]])), (np.array([[1, 2, 3]]), np.array([2, 3, 2, 3]) / 10, True, np.array([[0.4, 0.9, 0.6, 1.5, 1., 1.8]])), (np.array([[1, 2, 3]]), np.array([2, 3, 2, 3]) / 10, False, np.array([[0.4, 0.9, 0.6, 1.5, 1., 1.8]])), ]) def test_rowint_small(X, h, align, expected): '''Test for accurate answer for small test cases''' assert np.allclose(rowint(X, h, align_with_first=align), expected) def test_rowdec(X_lighthouse, h_simple, matlab_output): '''Compare the output with Matlab using maximum absolute difference''' assert np.max(abs( rowdec(X_lighthouse, h_simple) - matlab_output['rowdecXh'])) == 0 def test_rowint(X_lighthouse, h_simple, matlab_output): '''Compare the output with Matlab using maximum absolute difference''' assert np.max(abs( rowint(X_lighthouse, 2 * h_simple) - matlab_output['rowintX2h'])) == 0 @pytest.mark.parametrize("X, entropy", [ (np.array([[1, -2], [3, -4]]), 2), # log2(4) (np.array([[-0.3, 1.51], [2.3, 0.49]]), 1), # [0, 2, 2, 0] -> log2(2) (np.array([-128, -127.49, 127, 126.49]), 2) # log2(4) ]) def test_bpp(X, entropy): '''Simple tests for bits per pixel''' assert(bpp(X) == entropy) @pytest.mark.parametrize("X, step, Xq", [ (np.array([[1.49, 1.51], [1.51, 1.49]]), 1, np.array([[1, 2], [2, 1]])), (np.array([[1.49, 1.51], [1.51, 1.49]]), 2, np.array([[2, 2], [2, 2]])) ]) def test_quantise(X, step, Xq): '''Simple quantise tests''' assert np.array_equal(quantise(X, step), Xq) @pytest.mark.parametrize("N, C", [ (1, np.array([[1]])), (2, np.array([[1/(2 ** 0.5), 1/(2 ** 0.5)], [np.cos(np.pi/4), np.cos(3 * np.pi/4)]])) ]) def test_dct_ii(N, C): assert np.allclose(dct_ii(N), C) def test_dct_ii_matlabout(matlab_output): assert np.allclose(dct_ii(8), matlab_output['C8']) @pytest.mark.parametrize("N, C", [ (1, np.array([[1.0]])), (2, np.array([[np.cos(np.pi/8), np.cos(3 * np.pi/8)], [np.cos(3 * np.pi/8), np.cos(9 * np.pi/8)]])) ]) def test_dct_iv(N, C): assert np.allclose(dct_iv(N), C) @pytest.mark.parametrize("X, C, Y", [ (np.ones((4, 4)), np.ones((2, 2)), np.array( [[2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2]])), (np.arange(16).reshape((4, 4)), np.eye(2)[::-1], # [[0, 1], [1, 0]] swap every two rows np.array([[4, 5, 6, 7], [0, 1, 2, 3], [12, 13, 14, 15], [8, 9, 10, 11]])), # This should be the test for extend_X_colxfm # (np.ones((3, 3)), np.ones((2, 2)), np.array( # [[2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2]])) ]) def test_colxfm(X, C, Y): assert np.array_equal(Y, colxfm(X, C)) def test_colxfm_matlabout(matlab_output): X, Y, Z, C8 = (matlab_output[key] for key in ('X', 'Y', 'Z', 'C8')) assert np.allclose(Y, colxfm(colxfm(X, C8).T, C8).T) assert np.allclose(Z, colxfm(colxfm(Y.T, C8.T).T, C8.T)) assert np.allclose(X, Z) @pytest.mark.parametrize("Y_regrouped, Y, N", [ (np.array([[1, 1, 2, 2], [1, 1, 2, 2], [3, 3, 4, 4], [3, 3, 4, 4]]), np.array( [[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]), 2), (np.array([[1, 1, 2, 2], [3, 3, 4, 4], [1, 1, 2, 2], [3, 3, 4, 4]]), np.array( [[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]), [1, 2]), (np.array([[1, 2, 1, 2], [1, 2, 1, 2], [3, 4, 3, 4], [3, 4, 3, 4]]), np.array( [[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]), [2, 1]), (np.array([ [0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11], [24, 27, 30, 33, 25, 28, 31, 34, 26, 29, 32, 35], [48, 51, 54, 57, 49, 52, 55, 58, 50, 53, 56, 59], [72, 75, 78, 81, 73, 76, 79, 82, 74, 77, 80, 83], [96, 99, 102, 105, 97, 100, 103, 106, 98, 101, 104, 107], [120, 123, 126, 129, 121, 124, 127, 130, 122, 125, 128, 131], [12, 15, 18, 21, 13, 16, 19, 22, 14, 17, 20, 23], [36, 39, 42, 45, 37, 40, 43, 46, 38, 41, 44, 47], [60, 63, 66, 69, 61, 64, 67, 70, 62, 65, 68, 71], [84, 87, 90, 93, 85, 88, 91, 94, 86, 89, 92, 95], [108, 111, 114, 117, 109, 112, 115, 118, 110, 113, 116, 119], [132, 135, 138, 141, 133, 136, 139, 142, 134, 137, 140, 143]]),
np.arange(144)
numpy.arange
import pandas as pd import os import numpy as np from tqdm import tqdm import torch import argparse from rdkit import Chem from bms.utils import get_file_path from bms.dataset import BMSSumbissionDataset from bms.transforms import get_val_transforms from bms.model import EncoderCNN, DecoderWithAttention from bms.model_config import model_config from bms.utils import load_pretrain_model from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') tqdm.pandas() DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def make_inchi_from_smile(smile): inchi = 'InChI=1S/' try: inchi = Chem.MolToInchi(Chem.MolFromSmiles(smile)) except: pass return inchi def test_loop(data_loader, encoder, decoder, tokenizer, max_seq_length): if decoder.training: decoder.eval() if encoder.training: encoder.eval() text_preds = [] tq = tqdm(data_loader, total=len(data_loader)) for images in tq: images = images.to(DEVICE) with torch.cuda.amp.autocast(): with torch.no_grad(): features = encoder(images) predictions = decoder.predict( features, max_seq_length, tokenizer.token2idx["<sos>"]) predicted_sequence = torch.argmax(predictions.detach().cpu(), -1).numpy() text_preds.append( tokenizer.predict_captions(predicted_sequence)) return
np.concatenate(text_preds)
numpy.concatenate
# This file contains an attempt at actually putting the network trained in EncDec.py to practice import keras import numpy as np import matplotlib.pyplot as plt from keras.models import Model, load_model import pandas as pd import pandas_ml as pdml from matplotlib.widgets import Slider def decode(onehot): return np.argmax(onehot) SNR = 6 M = 64 C = 1 L = 5 graph = False confusion = False graph_pretty = True # Generate random signal of length 32 with 64 possible values siglength = 100000 sig = np.random.randint(0, M, siglength) data = np.array(sig) data = keras.utils.to_categorical(data, num_classes=M) data = data.astype(int) data = np.reshape(data, (data.shape[0], 1, 1, data.shape[1])) # Load model and compile encoder and decoder portions model = load_model('Trained/inputs_'+str(M)+'_L_'+str(L)+'_snr_20.h5') x = keras.layers.Input(shape=(1,1,M)) encoder = Model(x, model.layers[2](model.layers[1](x))) decoder = model.layers[3] encoder.save_weights('encoder_weights.h5') decoder.save_weights('decoder_weights.h5') encoder.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy']) decoder.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy']) encoder.load_weights('encoder_weights.h5') decoder.load_weights('decoder_weights.h5') # Pass input through network and decode output (implement a LUT) predicted = encoder.predict(data) noise = np.random.normal(0, np.sqrt(C/(10**(SNR/10))), predicted.size) noisysig = np.reshape(noise, predicted.shape)+predicted encoded = decoder.predict(noisysig) sig_hat = np.zeros(siglength) for i in range(encoded.shape[0]): sig_hat[i] = decode(encoded[i]) # Check what kind of plot we want if graph == True: if graph_pretty == False: SIG = sig SIG_HAT = sig_hat numpoints = siglength else: SIG = np.zeros(siglength*10-9) SIG[:] = np.nan for n in np.arange(0, siglength*10-9, 10): SIG[n] = (sig[int(n/10)]-M/2) * 5 / (M/2) SIG_HAT = np.zeros(siglength*10-9) SIG_HAT[:] = np.nan for n in np.arange(0, siglength*10-9, 10): SIG_HAT[n] = (sig_hat[int(n/10)]-M/2) * 5 / (M/2) numpoints = siglength*10-9 # Plot both signals sigtoplot = pd.Series(SIG) sigtoplot.set_axis(np.linspace(0.0, 9.9, num=numpoints, endpoint=True), inplace=True) sigtoplot = sigtoplot.interpolate(method='cubic') sigtoplot.plot(linewidth=3, color='red') sigtoplot = pd.Series(SIG_HAT) sigtoplot.set_axis(np.linspace(0.0, 9.9, num=numpoints, endpoint=True), inplace=True) sigtoplot = sigtoplot.interpolate(method='cubic') sigtoplot.plot(linestyle='--', color='black') plt.title('Signal Comparison') plt.ylabel('Signal Voltage') plt.xlabel('Time (s)') plt.legend(['Input', 'Output'], loc='upper left') plt.show() symbol_diff = 0 for n in
np.arange(sig_hat.size)
numpy.arange
from math import sqrt import networkx as nx from sklearn.linear_model import TheilSenRegressor, LinearRegression, HuberRegressor from copy import deepcopy from collections import Counter import numpy as np def class_disbalance(cluster): signal = [] for node in cluster: signal.append(node['signal']) return list(zip(*np.unique(signal, return_counts=True))) def class_disbalance__(cluster): signal = [] for node in cluster: signal.append(node['signal']) return np.unique(signal, return_counts=True) def estimate_start_xyz(cluster, k=3, shift_x=0., shift_y=0., shift_z=-2000.): xs = [] ys = [] zs = [] for i in range(len(cluster)): xs.append(cluster[i]['features']['SX']) ys.append(cluster[i]['features']['SY']) zs.append(cluster[i]['features']['SZ']) xs = np.array(xs) ys = np.array(ys) zs = np.array(zs) argosorted_z = np.argsort(zs) x = np.median(np.median(xs[argosorted_z][:k])) + shift_x y = np.median(np.median(ys[argosorted_z][:k])) + shift_y z = np.median(
np.median(zs[argosorted_z][:k])
numpy.median
# create maps from sqlays import export_sql, import_sql from iscays import isc_xlsx from mpl_toolkits.basemap import Basemap from mpl_toolkits.basemap import maskoceans # brew install geos # pip3 install https://github.com/matplotlib/basemap/archive/master.zip # for DIVA tools # https://github.com/gher-ulg/DivaPythonTools import matplotlib.pyplot as plt from pathlib import Path import pandas as pd import numpy as np import sys, os, glob, re from scipy.interpolate import griddata import scipy.ndimage import matplotlib.tri as tri import math from timeinfo import day_night from datetime import datetime def station_map (dict_cruise_pos, topo_ary, lat_min, lat_max, lon_min, lon_max, label_color): ''' create maps showing the location of stations the form of dictionary should be like below: dict = {'cruise1': ((lat),(lon)), 'cruise2': ((lat),(lon))} ''' ################################################################################# # 1. create map fig, ax = plt.subplots(figsize=(10,10)) m = Basemap(projection='merc', lat_0 = (lat_min+lat_max)/2, lon_0 = (lon_min+lon_max)/2, resolution = 'h', llcrnrlon = lon_min, llcrnrlat = lat_min, urcrnrlon = lon_max, urcrnrlat = lat_max, ax=ax) m.drawcoastlines() m.drawcountries() m.etopo() m.shadedrelief() m.drawmapboundary() m.fillcontinents(color='grey') ################################################################################# # 2. draw lat/lon grid lines every 5 degrees. labels = [left, right, top, bottom] m.drawmeridians(np.arange(lon_min, lon_max, math.ceil(abs((lon_max-lon_min)/3))), labels=[0,1,0,1], fontsize=10) # line for longitude m.drawparallels(np.arange(lat_min, lat_max, math.ceil(abs((lat_max-lat_min)/3))), labels=[1,0,1,0], fontsize=10) # line for latitude ################################################################################# # 3. draw the contour of bathymetry x = topo_ary[:,0] # lat y = topo_ary[:,1] # lon z = topo_ary[:,2] # topo lon, lat = np.meshgrid(np.linspace(np.min(y), np.max(y), 100), np.linspace(np.min(x), np.max(x),100)) topo = griddata((y, x), z, (lon, lat), method='cubic') lon_m, lat_m = m(lon, lat) mask_ocean = topo >= 0 # mask inland topo_ocean = np.ma.masked_array(topo, mask=mask_ocean) #topo_ocean = maskoceans(lon_m, lat_m, topo, inlands=False, grid=10) m.contourf(lon_m, lat_m, topo_ocean, cmap = 'Blues_r') m.contour(lon_m, lat_m, topo_ocean, colors = 'black', linewidths = 0.3) ################################################################################# # 4. locate the station on the map # get the data frame from SQL server and drop the duplication filtered by station name color_list = label_color; c = 0 for cruise, pos in dict_cruise_pos.items(): lat_list = pos[0] lon_list = pos[1] lons_m, lats_m = m(lon_list,lat_list) m.scatter(lons_m,lats_m, marker='o', s=15, label=cruise, color=color_list[c], edgecolors='black') c += 1 ax.legend(loc='upper right') ################################################################################ return ax, m def bathy_data (minlat, maxlat, minlon, maxlon): ''' return an array : [[lat, lon, topo], [lat, lon, topo], ...] data from : https://coastwatch.pfeg.noaa.gov/erddap/griddap/usgsCeSrtm30v6.html ''' import io, csv, json import urllib.request as urllib2 url = 'https://coastwatch.pfeg.noaa.gov/erddap/griddap/srtm30plus_LonPM180.json?z[(%s):100:(%s)][(%s):100:(%s)]'%(minlat, maxlat, minlon, maxlon) response = urllib2.urlopen(url) data = response.read() data_dic = json.loads(data.decode('utf-8')) topo =
np.asarray(data_dic['table']['rows'])
numpy.asarray
import numpy as np import matplotlib.pyplot as plt import os import pydicom as pyd from glob import glob from keras.preprocessing.image import ImageDataGenerator from keras.utils import to_categorical import bisect import random import math from Augmentor import * def import_dicom_data(path): data_path = path + '/images/' annot_path = path + '/labels/' data_list = glob(data_path + '*.dcm') annot_list = glob(annot_path + '*.dcm') N = len(data_list) data = [] annot = [] annot_frames = np.zeros((N)) print('Data Image Resolutions') for i in range(N): x = pyd.read_file(data_list[i]).pixel_array x = x[:len(x) / 2] y = pyd.read_file(annot_list[i]).pixel_array y = y[:len(y) / 2] n_frame = 0 for j in range(y.shape[0]): if np.where(y[j] == 1)[0].size > 0: n_frame += 1 annot_frames[i] = n_frame print(x.shape, n_frame) data.append(x) annot.append(y) return data, annot def zeropad(data, annot, h_max, w_max): # If the data is a list of images of different resolutions # useful in testing if isinstance(data, list): n = len(data) data_pad = np.zeros((n, h_max, w_max)) annot_pad = np.zeros((n, h_max, w_max)) for i in range(n): pad_l1 = (h_max - data[i].shape[0]) // 2 pad_l2 = (h_max - data[i].shape[0]) - (h_max - data[i].shape[0]) // 2 pad_h1 = (w_max - data[i].shape[1]) // 2 pad_h2 = (w_max - data[i].shape[1]) - (w_max - data[i].shape[1]) // 2 data_pad[i] = np.pad(data[i], ((pad_l1, pad_l2), (pad_h1, pad_h2)), 'constant', constant_values=((0, 0), (0, 0))) annot_pad[i] = np.pad(annot[i], ((pad_l1, pad_l2), (pad_h1, pad_h2)), 'constant', constant_values=((0, 0), (0, 0))) # If data is a numpy array with images of same resolution else: pad_l1 = (h_max - data.shape[1]) // 2 pad_l2 = (h_max - data.shape[1]) - (h_max - data.shape[1]) // 2 pad_h1 = (w_max - data.shape[2]) // 2 pad_h2 = (w_max - data.shape[2]) - (w_max - data.shape[2]) // 2 data_pad = np.pad(data, ((0, 0), (pad_l1, pad_l2), (pad_h1, pad_h2)), 'constant', constant_values=((0, 0), (0, 0), (0, 0))) annot_pad = np.pad(annot, ((0, 0), (pad_l1, pad_l2), (pad_h1, pad_h2)), 'constant', constant_values=((0, 0), (0, 0), (0, 0))) return data_pad, annot_pad def data_augment(imgs, lb): p = Pipeline() p.rotate(probability=0.7, max_left_rotation=10, max_right_rotation=10) imgs_temp, lb_temp = np.zeros(imgs.shape), np.zeros(imgs.shape) for i in range(imgs.shape[0]): pil_images = p.sample_with_array(imgs[i], ground_truth=lb[i], mode='L') imgs_temp[i], lb_temp[i] = np.asarray(pil_images[0]), np.asarray(pil_images[1]) return imgs_temp, lb_temp def get_weighted_batch(imgs, labels, batch_size, data_aug, high_skew=False): while 1: thy_re = [np.count_nonzero(labels[i] == 1) * 1.0 / np.prod(labels[i].shape) for i in range(imgs.shape[0])] if high_skew==True: thy_re = [el**2 for el in thy_re] cumul = [thy_re[0]] for item in thy_re[1:]: cumul.append(cumul[-1] + item) total_prob = sum(thy_re) ar_inds = [bisect.bisect_right(cumul, random.uniform(0, total_prob)) for i in range(batch_size)] lb, batch_imgs = labels[ar_inds], imgs[ar_inds] l, r, t, b = 0, batch_imgs.shape[1], 0, batch_imgs.shape[2] for i in range(batch_imgs.shape[1]): if np.all(batch_imgs[:, i, :] == 0): l = i + 1 else: break for i in range(batch_imgs.shape[1] - 1, -1, -1): if np.all(batch_imgs[:, i, :] == 0): r = i else: break for i in range(batch_imgs.shape[2]): if np.all(batch_imgs[:, :, i] == 0): t = i + 1 else: break for i in range(batch_imgs.shape[2] - 1, -1, -1): if np.all(batch_imgs[:, :, i] == 0): b = i else: break l, r, t, b = (l // 16) * 16, math.ceil(r * 1.0 / 16) * 16, (t // 16) * 16, math.ceil(b * 1.0 / 16) * 16 l, r, t, b = int(l), int(r), int(t), int(b) batch_imgs, lb = batch_imgs[:, l:r, t:b], lb[:, l:r, t:b] if (data_aug): batch_imgs, lb = data_augment(batch_imgs, lb) yield np.expand_dims(batch_imgs, axis=3),np.expand_dims(lb, axis=3) def get_weighted_batch_window_2d(imgs, labels, batch_size, data_aug, n_window=0, high_skew=False): # a=0 # if a==0: # print('datagen') while 1: thy_re = [np.count_nonzero(labels[i] == 1) * 1.0 / np.prod(labels[i].shape) for i in range(imgs.shape[0])] if high_skew==True: thy_re = [el**2 for el in thy_re] cumul = [thy_re[0]] for item in thy_re[1:]: cumul.append(cumul[-1] + item) total_prob = sum(thy_re) ar_inds = [bisect.bisect_right(cumul, random.uniform(0, total_prob)) for i in range(batch_size)] if n_window==0: batch_imgs = imgs[ar_inds] # Get n_window frames per index. else: batch_imgs =
np.zeros((batch_size*n_window,imgs.shape[1],imgs.shape[2]))
numpy.zeros
import pandas as pd import numpy as np import scipy as sp import scipy.fftpack import matplotlib.pyplot as plt from scipy import signal as spsig from scipy import ndimage from tqdm import tqdm import math def conv_filter(signal, window_size, filter='gaussian', std=None, num_filtering=1): """ Args: filter : 'gaussian', 'average' """ if filter == 'gaussian': std = std if std is not None else (window_size - 1) / 4 w = spsig.gaussian(window_size, std) w = w / np.sum(w) elif filter == 'average': w = np.ones(window_size) / window_size filtered_sig = signal.copy() for i in range(num_filtering): filtered_sig = np.pad(filtered_sig, (window_size//2, window_size//2), 'reflect') filtered_sig = np.convolve(filtered_sig, w, 'valid') #print('size signal / filtered signal : {0} / {1}'.format(len(signal), len(filtered_sig))) return filtered_sig def gaussian_filter(signal, std, num_filtering=1): filtered_sig = signal.copy() for i in range(num_filtering): filtered_sig = ndimage.gaussian_filter(filtered_sig, std, mode='reflect') return filtered_sig def to_const_filter(signal, filter='median'): if filter == 'median': const = np.median(signal) elif filter == 'average': const = np.average(signal) filtered_sig = np.ones_like(signal) * const return filtered_sig def open_channel_filter(signal, open_channels, oc_to_use=None): if oc_to_use is None: uni_oc, count = np.unique(open_channels, return_counts=True) oc_to_use = uni_oc[np.argmax(count)] filtered_sig = signal.copy() filtered_sig[open_channels != oc_to_use] = np.nan filtered_sig = pd.Series(filtered_sig) filtered_sig = filtered_sig.interpolate(method='linear', limit_direction='both') filtered_sig = filtered_sig.interpolate(method='linear', limit_direction='forward') filtered_sig = filtered_sig.interpolate(method='linear', limit_direction='backward') filtered_sig = filtered_sig.values return filtered_sig def shift(signal, n): fill_val = signal[0] if n > 0 else signal[-1] shifted_sig = np.ones_like(signal) * fill_val if n > 0: shifted_sig[n:] = signal[:-n] else: shifted_sig[:n] = signal[-n:] return shifted_sig def max_log_likelihood(init_value, signal, serch_range, n_div, trunc_range): """ https://www.kaggle.com/statsu/average-signal calculate maximum log likelihood near init_value. """ xgrid = np.linspace(init_value-serch_range, init_value+serch_range, n_div) logll_max = None x_max = None for x in xgrid: tg_sig = signal[np.abs(signal - x) < trunc_range] logll = - np.average((tg_sig - x)**2) / 2 if logll_max is None: logll_max = logll x_max = x elif logll_max < logll: logll_max = logll x_max = x return x_max def distance_from_ave_wo_label(signal, serch_range, n_div, trunc_range, max_channel, sig_dist, dist_coef): init_value = np.median(signal) base_ave_sig = max_log_likelihood(init_value, signal, serch_range, n_div, trunc_range) print('base_ave_sig ', base_ave_sig) # average signals of each open channels ave_sigs = base_ave_sig + np.arange(-max_channel, max_channel + 1) * sig_dist # signal : (time,) # ave_sigs : (max_channel*2-1,) # distance of average signals of each open channels dists = np.exp(- (signal[:,None] - ave_sigs[None,:])**2 / sig_dist**2 * dist_coef) # (time, max_channel*2-1) return dists def distance_from_ave_with_label(signal, open_channels, max_channel, sig_dist, dist_coef, use_ave=True, use_middle=False): uni_oc, count = np.unique(open_channels, return_counts=True) # calc base channel and average signal base_oc = uni_oc[np.argmax(count)] if use_ave: base_ave_sig = np.average(signal[open_channels==base_oc]) else: base_ave_sig = np.median(signal[open_channels==base_oc]) # calc distance of average signals of each open channels if sig_dist is None: second_oc = uni_oc[np.argsort(count)[-2]] if use_ave: second_ave_sig = np.average(signal[open_channels==second_oc]) else: second_ave_sig = np.median(signal[open_channels==second_oc]) sig_dist = np.abs(base_ave_sig - second_ave_sig) / np.abs(base_oc - second_oc) ave_sigs = np.arange(0, max_channel+1) * sig_dist - base_oc * sig_dist + base_ave_sig # middle if use_middle: asigs = [] for i in range(len(ave_sigs)): asigs.append(ave_sigs[i]) if i < len(ave_sigs) - 1: asigs.append((ave_sigs[i] + ave_sigs[i+1])*0.5) ave_sigs = np.array(asigs) # calc dist_coef if dist_coef is None: tg_sig = signal[open_channels==base_oc] if use_ave: s = np.std(tg_sig) else: # normalized interquartile range s = (np.percentile(tg_sig, 75) - np.percentile(tg_sig, 25)) * 0.5 * 1.3490 dist_coef = 1.0 / (2.0 * s ** 2) * sig_dist**2 # signal : (time,) # ave_sigs : (max_channel*2-1,) # distance of average signals of each open channels dists = np.exp(- (signal[:,None] - ave_sigs[None,:])**2 / sig_dist**2 * dist_coef) # (time, max_channel*2-1) return dists def apply_each_group(signal, group, func, args, open_channels=None): num_groups = len(np.unique(group)) sigs = [] start_idx = 0 for gr in tqdm(range(num_groups)): num_element = np.sum(group == gr) if open_channels is None: sig = signal[start_idx : start_idx+num_element] sig = func(sig, *args) else: sig = signal[start_idx : start_idx+num_element] oc = open_channels[start_idx : start_idx+num_element] sig = func(sig, oc, *args) sigs.append(sig) start_idx += num_element sigs = np.concatenate(sigs) return sigs def plot_signal(signal): res = 1 plt.figure(figsize=(20,5)) plt.plot(range(0,len(signal), res), signal[0::res]) plt.xlabel('Row',size=16); plt.ylabel('Signal',size=16) plt.show() return class PreProcess_v1: def __init__(self): self.signal_average = np.array([1.386246,]).astype('float32') self.signal_std = np.array([3.336219,]).astype('float32') self.input_channels = 1 def preprocessing(self, data_df): # signal sig = data_df.signal.values.astype('float32') sig = sig[:, None] # (time, channel) # group group = data_df.group.values.astype('int64') # open_channels if 'open_channels' in data_df.columns: open_channels = data_df.open_channels.values.astype('int64') else: open_channels = None # check self.check_value(sig, group, open_channels) return sig, group, open_channels def check_value(self, sig, group, open_channels): print('ave : data {0} / constant {1}'.format(np.average(sig, axis=0), self.signal_average)) print('std : data {0} / constant {1}'.format(np.std(sig, axis=0), self.signal_std)) class PreProcess_v2: """ no implementation """ def __init__(self): return class PreProcess_v3_0_1: def __init__(self): self.signal_average = np.array([1.3673096e-06,]).astype('float32') self.signal_std = np.array([1.139225,]).astype('float32') self.input_channels = 1 # filter self.window_size = 10001 self.filter='gaussian' self.std = (self.window_size - 1) / 4 self.num_filtering = 1 return def preprocessing(self, data_df): # signal sig = data_df.signal.values sig = sig - apply_each_group(sig, data_df.group.values, conv_filter, [self.window_size, self.filter, self.std, self.num_filtering]) sig = sig[:, None].astype('float32') # (time, channel) # group group = data_df.group.values.astype('int64') # open_channels if 'open_channels' in data_df.columns: open_channels = data_df.open_channels.values.astype('int64') else: open_channels = None # check self.check_value(sig, group, open_channels) #plot_signal(sig) return sig, group, open_channels def check_value(self, sig, group, open_channels): print('ave : data {0} / constant {1}'.format(np.average(sig, axis=0), self.signal_average)) print('std : data {0} / constant {1}'.format(np.std(sig, axis=0), self.signal_std)) class PreProcess_v3_1_5: def __init__(self): self.signal_average = np.array([1.3700463e-06, 1.3901746e+00]).astype('float32') self.signal_std = np.array([1.1374537, 3.1242452]).astype('float32') self.input_channels = 2 # filter self.window_size = 10001 self.filter='gaussian' self.std = (self.window_size - 1) / 4 self.num_filtering = 1 return def preprocessing(self, data_df): # signal sig = data_df.signal.values sig2 = apply_each_group(sig, data_df.group.values, conv_filter, [self.window_size, self.filter, self.std, self.num_filtering]) sig = np.concatenate([(sig-sig2)[:, None], sig2[:, None]], axis=1).astype('float32') # (time, channel) # group group = data_df.group.values.astype('int64') # open_channels if 'open_channels' in data_df.columns: open_channels = data_df.open_channels.values.astype('int64') else: open_channels = None # check self.check_value(sig, group, open_channels) #plot_signal(sig) return sig, group, open_channels def check_value(self, sig, group, open_channels): print('ave : data {0} / constant {1}'.format(np.average(sig, axis=0), self.signal_average)) print('std : data {0} / constant {1}'.format(np.std(sig, axis=0), self.signal_std)) # combine before after class PreProcess_v4_0_1: def __init__(self): self.signal_average = np.array([1.3901746e+00] + [1.3700463e-06]*11).astype('float32') self.signal_std = np.array([3.1242452] + [1.1374537]*11).astype('float32') self.input_channels = 12 # filter self.window_size = 10001 self.filter='gaussian' self.std = (self.window_size - 1) / 4 self.num_filtering = 1 # shift self.shift_lens = (-5, -4, -3, -2, -1, 1, 2, 3, 4, 5) return def preprocessing(self, data_df): # signal sigs = [] sig = data_df.signal.values sig2 = apply_each_group(sig, data_df.group.values, conv_filter, [self.window_size, self.filter, self.std, self.num_filtering]) sigs.append(sig2[:,None]) sig = sig - sig2 sigs.append(sig[:,None]) for sh in self.shift_lens: sigs.append(shift(sig, sh)[:,None]) sigs = np.concatenate(sigs, axis=1).astype('float32') # (time, channel) # group group = data_df.group.values.astype('int64') # open_channels if 'open_channels' in data_df.columns: open_channels = data_df.open_channels.values.astype('int64') else: open_channels = None # check self.check_value(sigs, group, open_channels) #plot_signal(sig) return sigs, group, open_channels def check_value(self, sig, group, open_channels): print('ave : data {0} / constant {1}'.format(np.average(sig, axis=0), self.signal_average)) print('std : data {0} / constant {1}'.format(np.std(sig, axis=0), self.signal_std)) # use signal center of each channel without label class PreProcess_v5_0_0: def __init__(self): self.signal_average = np.array([0]).astype('float32') self.signal_std = np.array([1]).astype('float32') self.input_channels = 21 # filter self.window_size = 10001 self.filter='gaussian' self.std = (self.window_size - 1) / 4 self.num_filtering = 1 # ave_signal_base_open_channel self.serch_range = 0.8 self.n_div = 500 self.trunc_range = 0.3 self.max_channel = 10 self.sig_dist = 1.21 self.dist_coef = 1.0 return def preprocessing(self, data_df): # signal sigs = data_df.signal.values sigs = sigs - apply_each_group(sigs, data_df.group.values, conv_filter, [self.window_size, self.filter, self.std, self.num_filtering]) sigs = apply_each_group(sigs, data_df.group.values, distance_from_ave_wo_label, [self.serch_range, self.n_div, self.trunc_range, self.max_channel, self.sig_dist, self.dist_coef]) sigs = sigs.astype('float32') # group group = data_df.group.values.astype('int64') # open_channels if 'open_channels' in data_df.columns: open_channels = data_df.open_channels.values.astype('int64') else: open_channels = None # check self.check_value(sigs, group, open_channels) #plot_signal(sig) return sigs, group, open_channels def check_value(self, sig, group, open_channels): print('ave : data {0} / constant {1}'.format(np.average(sig, axis=0), self.signal_average)) print('std : data {0} / constant {1}'.format(np.std(sig, axis=0), self.signal_std)) # use signal center of each channel with label class PreProcess_v6_0_0: def __init__(self): self.signal_average = np.array([0]).astype('float32') self.signal_std =
np.array([1])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 26 23:08:32 2021 @author: jimlee """ import csv import numpy as np import math # open the csv file rawData = np.genfromtxt('train.csv', delimiter=',') data = rawData[1:,3:] # data is ready, but need to be reorganized # Test NR print(data[10,0]) ''' Here change the NaN term to 0''' for i in range(data.shape[0]): for j in range(data.shape[1]): if(math.isnan(data[i,j])): data[i,j] = 0 ''' Here change the NaN term to 0''' # Check if NR changed to 0.0 print(data[10,0]) ''' Now We Need To Change The Data To Some Form Like This: Let x be the feature vector(dim = 18x1) And x1_1_0 means that the feature vector on 1/1 0:00 and so on [ x1_1_0 ... x1_1_23 x1_2_0 ... x1_2_23 ... x12_20_0 ... x12_20_23] The dimension of the matrix must be 18x5760 ''' reorganizedData = np.zeros((18,5760)) startRowIndex = 0 startColumnIndex = 0 counter = 1 for i in range(data.shape[0]): if counter % 18 == 0: reorganizedData[:,startColumnIndex:startColumnIndex + 24] = data[startRowIndex:i + 1, :] startRowIndex = i + 1 startColumnIndex = startColumnIndex + 24 counter += 1 '''Now We Have The ReorganizedData, We Have To Seperate the Train_x, Train_y from it''' X = np.zeros((5652, 162)) # Train x y_head = np.zeros((5652,1)) # Train y for month in range(12): for hour in range(471): xi = [] for i in range(hour,hour + 9): xi = np.append(xi,np.transpose(reorganizedData[:, month * 480 + i])) y_head[month * 471 + hour, 0] = reorganizedData[9, month * 480 + hour + 9] X[month * 471 + hour,:] = xi ''' The training data need to be normalized''' for column in range(X.shape[1]): X[:,column] = (X[:,column] - X[:,column].mean()) / math.sqrt(X[:,column].var()) ''' Now we have successfully sample 5652 sets of training data. It's time to do the iteration''' ''' Define the way of training method''' method = "ADAM_CUBIC_MODEL" if method == "ADAGRAD": print("ADAGRAD") X = np.concatenate((np.ones((X.shape[0], 1 )), X) , axis = 1).astype(float) lr = 0.01 w = np.zeros((163,1)) prevGrad = np.zeros((163,1)) eipsilon = 1E-8 # this is for numerical stability for i in range(1, 100000): y = np.dot(X,w) grad = 2 * (np.dot(np.transpose(X),y-y_head)) prevGrad += grad**2 #w = w - lr * grad / (np.sqrt(prevGrad / n)) w -= lr * grad / (np.sqrt(prevGrad) + 1E-8) # 1E-8 is for numerical stable #w -= lr * grad ''' Calculate the error''' if i % 1000 == 0: print("Loss:",np.power(np.sum(np.power(y - y_head, 2 ))/ X.shape[0],0.5)) print(np.dot(np.transpose(y-y_head), (y-y_head))) elif method == "ADAM": print("ADAM") X = np.concatenate((np.ones((X.shape[0], 1 )), X) , axis = 1).astype(float) lr = 0.1 w = np.zeros((163,1)) beta1 = 0.9 beta2 = 0.999 eipsilon = 1E-8 # this is for numerical stability v = np.zeros([163,1]) s = np.zeros([163,1]) for i in range(1, 100000): y =
np.dot(X,w)
numpy.dot
""" This module contains the definition for the high-level Rigol1000z driver. """ import numpy as _np import tqdm as _tqdm import pyvisa as _visa from time import sleep from Rigol1000z.commands import * from typing import List class Rigol1000z(Rigol1000zCommandMenu): """ The Rigol DS1000z series oscilloscope driver. """ def __init__(self, visa_resource: _visa.Resource): # Instantiate The scope as a visa command menu super().__init__(visa_resource) # Initialize IEEE device identifier command in order to determine the model brand, model, serial_number, software_version, *add_args = self._idn_cache.split(",") # Ensure a valid model is being used assert brand == "RIGOL TECHNOLOGIES" assert model in { ScopeModel.DS1104Z_S_Plus, ScopeModel.DS1104Z_Plus, ScopeModel.DS1104Z, # 100MHz models ScopeModel.DS1074Z_S_Plus, ScopeModel.DS1074Z_Plus, # 70MHz models ScopeModel.DS1054Z # 50MHz models } # Define Channels 1-4 self.channel_list: List[Channel] = [Channel(self.visa_resource, c) for c in range(1, 5)] """ A four-item list of commands.Channel objects """ # acquire must be able to count enabled channels self.acquire = Acquire(self.visa_resource, self.channel_list) """ Hierarchy commands.Acquire object """ self.calibrate = Calibrate(self.visa_resource) """ Hierarchy commands.Calibrate object """ self.cursor = Cursor(self.visa_resource) # NC self.decoder = Decoder(self.visa_resource) # NC self.display = Display(self.visa_resource) """ Hierarchy commands.Display object """ self.event_tables = [EventTable(self.visa_resource, et + 1) for et in range(2)] """ A two-item list of commands.EventTable objects used to detect decode events. """ self.function = Function(self.visa_resource) # NC self.ieee488 = IEEE488(self.visa_resource) """ Hierarchy commands.IEEE488 object """ if self.has_digital: self.la = LA(self.visa_resource) # NC self.lan = LAN(self.visa_resource) # NC self.math = Math(self.visa_resource) # NC self.mask = Mask(self.visa_resource) # NC self.measure = Measure(self.visa_resource) """ Hierarchy commands.Measure object """ self.reference = Reference(self.visa_resource) # NC if model in {ScopeModel.DS1104Z_S_Plus, ScopeModel.DS1074Z_S_Plus}: # Only for "S" models self.source = Source(self.visa_resource) # NC self.storage = Storage(self.visa_resource) # NC self.system = System(self.visa_resource) # NC self.trace = Trace(self.visa_resource) # NC self.timebase = Timebase(self.visa_resource) """ Hierarchy commands.Timebase object """ self.trigger = Trigger(self.visa_resource) # NC self.waveform = Waveform(self.visa_resource) """ Hierarchy commands.Waveform object """ def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.visa_resource.close() return False def __del__(self): self.visa_resource.close() def __getitem__(self, i) -> Channel: """ Channels 1 through 4 (or 2 depending on the oscilloscope model) are accessed using `[channel_number]`. e.g. osc[2] for channel 2. Channel 1 corresponds to index 1 (not 0). :param i: Channel number to retrieve :return: """ # assert i in {c.channel for c in self._channels} assert 1 <= i <= 4, 'Not a valid channel.' return self.channel_list[i - 1] def __len__(self): return len(self.channel_list) def autoscale(self): print("Autoscaling can take several seconds to complete") old_timeout = self.visa_resource.timeout self.visa_resource.timeout = None self.visa_write(':aut') wait_for_resp = self.ieee488.operation_complete # Wait for queued response before moving onto next command self.visa_resource.timeout = old_timeout print("Autoscaling complete") def clear(self): self.visa_write(':clear') def run(self): self.visa_write(':run') def stop(self): self.visa_write(':stop') def set_single_shot(self): self.visa_write(':sing') def force(self): self.visa_write(':tfor') def get_channels_enabled(self): return [c.enabled() for c in self.channel_list] # todo: make this more closely knit with the library def get_screenshot(self, filename=None): """ Downloads a screenshot from the oscilloscope. Args: filename (str): The name of the image file. The appropriate extension should be included (i.e. jpg, png, bmp or tif). """ img_format = None # The format image that should be downloaded. # Options are 'jpeg, 'png', 'bmp8', 'bmp24' and 'tiff'. # It appears that 'jpeg' takes <3sec to download # other formats take <0.5sec. # Default is 'png'. try: img_format = filename.split(".")[-1].lower() except KeyError: img_format = "png" assert img_format in ('jpeg', 'png', 'bmp8', 'bmp24', 'tiff') sleep(0.5) # Wait for display to update # Due to the up to 3s delay, we are setting timeout to None for this operation only old_timeout = self.visa_resource.timeout self.visa_resource.timeout = None # Collect the image data from the scope raw_img = self.visa_ask_raw(f':disp:data? on,off,{img_format}', 3850780)[11:-4] self.visa_resource.timeout = old_timeout if filename: try: os.remove(filename) except OSError: pass with open(filename, 'wb') as fs: fs.write(raw_img) return raw_img def get_data(self, mode=EWaveformMode.Normal, filename=None): """ Download the captured voltage points from the oscilloscope. Args: mode (str): 'norm' if only the points on the screen should be downloaded, and 'raw' if all the points the ADC has captured should be downloaded. Default is 'norm'. filename (None, str): Filename the data should be saved to. Default is `None`; the data is not saved to a file. Returns: 2-tuple: A tuple of two lists. The first list is the time values and the second list is the voltage values. """ # Stop scope to capture waveform state self.stop() # Set mode assert mode in {EWaveformMode.Normal, EWaveformMode.Raw} self.waveform.mode = mode # Set transmission format self.waveform.read_format = EWaveformReadFormat.Byte # Create data structures to populate time_series = None all_channel_data = [] # Iterate over possible channels for c in range(1, 5): # Capture the waveform if the channel is enabled if self[c].enabled: self.waveform.source = self[c].name # retrieve the data preable info: PreambleContext = self.waveform.data_premable # Generate the time series for the data time_series =
_np.arange(0, info.points * info.x_increment, info.x_increment)
numpy.arange
# -*- coding: utf-8 -*- from __future__ import division, print_function, unicode_literals __all__ = ["Discontinuity"] import numpy as np from ..pipeline import Pipeline from .prepare import LightCurve class Discontinuity(Pipeline): query_parameters = dict( discont_window=(51, False), discont_duration=(0.4, False), discont_min_sig=(75., False), discont_min_fact=(0.5, False), discont_min_dt=(1.0, False), discont_min_size=(20, False), ) def get_result(self, query, parent_response): lcs = parent_response.light_curves # Parameters. N = query["discont_window"] duration = query["discont_duration"] min_dis_sig = query["discont_min_sig"] min_dis_fact = query["discont_min_fact"] min_dis_dt = query["discont_min_dt"] min_dis_size = query["discont_min_size"] # Pre-allocate some shit. t0 = N // 2 x = np.arange(N) A = np.vander(x, 2) lc_out = [] for k, lc in enumerate(lcs): # Compute the typical time spacing in the LC. dt = int(0.5 * duration / np.median(np.diff(lc.time))) # The step function hypothesis. model1 = np.ones(N) model1[t0:] = -1.0 # The transit hypothesis. model2 = np.zeros(N) model2[t0-dt:t0+dt] = -1.0 # Initialize the work arrays. chi2 = np.empty((len(lc.time) - N, 3)) # Loop over each time and compare the hypotheses. for i in range(len(lc.time) - N): y = np.array(lc.flux[i:i+N]) ivar = 1. / np.array(lc.ferr[i:i+N]) ** 2 # Loop over the different models, do the fit, and compute the # chi^2. for j, model in enumerate((None, model1, model2)): if model is not None: A1 = np.hstack((A, np.atleast_2d(model).T)) else: A1 = np.array(A) ATA = np.dot(A1.T, A1 * ivar[:, None]) w = np.linalg.solve(ATA, np.dot(A1.T, y * ivar)) pred = np.dot(A1, w) chi2[i, j] =
np.sum((pred - y) ** 2 * ivar)
numpy.sum
#!/usr/bin/env python from __future__ import division, print_function import rospy import time import numpy as np import cv2 from scipy.ndimage.filters import gaussian_filter import dougsm_helpers.tf_helpers as tfh from tf import transformations as tft from dougsm_helpers.timeit import TimeIt from ggcnn.ggcnn import predict, process_depth_image from mvp_grasping.grasp_stats import update_batch, update_histogram_angle from mvp_grasping.gridworld import GridWorld from dougsm_helpers.gridshow import gridshow from mvp_grasping.srv import NextViewpoint, NextViewpointResponse, AddFailurePoint, AddFailurePointResponse from sensor_msgs.msg import Image, CameraInfo from std_srvs.srv import Empty as EmptySrv, EmptyResponse as EmptySrvResponse import cv_bridge bridge = cv_bridge.CvBridge() TimeIt.print_output = False class ViewpointEntropyCalculator: """ This class implements the Grid World portion of the Multi-View controller. """ def __init__(self): self.hist_bins_q = rospy.get_param('~histogram/bins/quality') self.hist_bins_a = rospy.get_param('~histogram/bins/angle') self.dist_from_best_scale = rospy.get_param('~cost/dist_from_best_scale') self.dist_from_best_gain = rospy.get_param('~cost/dist_from_best_gain') self.dist_from_prev_view_scale = rospy.get_param('~cost/dist_from_prev_view_scale') self.dist_from_prev_view_gain = rospy.get_param('~cost/dist_from_prev_view_gain') self.height = (rospy.get_param('~height/z1'), rospy.get_param('~height/z2')) # Create a GridWorld where we will store values. self.gw_bounds = np.array([ [rospy.get_param('~histogram/bounds/x1'), rospy.get_param('~histogram/bounds/y1')], [rospy.get_param('~histogram/bounds/x2'), rospy.get_param('~histogram/bounds/y2')] ]) self.gw_res = rospy.get_param('~histogram/resolution') self.reset_gridworld(EmptySrv()) self.hist_mean = 0 self.fgw = GridWorld(self.gw_bounds, self.gw_res) self.fgw.add_grid('failures', 0.0) # Useful meshgrid for distance calculations xs = np.arange(self.gw.bounds[0, 0], self.gw.bounds[1, 0] - 1e-6, self.gw.res) + self.gw.res / 2 ys = np.arange(self.gw.bounds[0, 1], self.gw.bounds[1, 1] - 1e-6, self.gw.res) + self.gw.res / 2 self._xv, self._yv = np.meshgrid(xs, ys) # Get the camera parameters cam_info_topic = rospy.get_param('~camera/info_topic') camera_info_msg = rospy.wait_for_message(cam_info_topic, CameraInfo) self.cam_K = np.array(camera_info_msg.K).reshape((3, 3)) self.img_pub = rospy.Publisher('~visualisation', Image, queue_size=1) rospy.Service('~update_grid', NextViewpoint, self.update_service_handler) rospy.Service('~reset_grid', EmptySrv, self.reset_gridworld) rospy.Service('~add_failure_point', AddFailurePoint, self.add_failure_point_callback) self.base_frame = rospy.get_param('~camera/base_frame') self.camera_frame = rospy.get_param('~camera/camera_frame') self.img_crop_size = rospy.get_param('~camera/crop_size') self.img_crop_y_offset = rospy.get_param('~camera/crop_y_offset') self.cam_fov = rospy.get_param('~camera/fov') self.counter = 0 self.curr_depth_img = None self.curr_img_time = 0 self.last_image_pose = None rospy.Subscriber(rospy.get_param('~camera/depth_topic'), Image, self._depth_img_callback, queue_size=1) def _depth_img_callback(self, msg): """ Doing a rospy.wait_for_message is super slow, compared to just subscribing and keeping the newest one. """ self.curr_img_time = time.time() self.last_image_pose = tfh.current_robot_pose(self.base_frame, self.camera_frame) self.curr_depth_img = bridge.imgmsg_to_cv2(msg) def update_service_handler(self, req): """ Update the GridWorld with a new observation, compute the viewpoint entropy and generate a new command. :param req: Ignored :return: NextViewpointResponse (success flag, best grsap, velocity command) """ # Some initial checks if self.curr_depth_img is None: rospy.logerr('No depth image received yet.') rospy.sleep(0.5) if time.time() - self.curr_img_time > 0.5: rospy.logerr('The Realsense node has died') return NextViewpointResponse() with TimeIt('Total'): with TimeIt('Update Histogram'): # Step 1: Perform a GG-CNN prediction and update the grid world with the observations self.no_viewpoints += 1 depth = self.curr_depth_img.copy() camera_pose = self.last_image_pose cam_p = camera_pose.position self.position_history.append(np.array([cam_p.x, cam_p.y, cam_p.z, 0])) # For display purposes. newpos_pixel = self.gw.pos_to_cell(np.array([[cam_p.x, cam_p.y]]))[0] self.gw.visited[newpos_pixel[0], newpos_pixel[1]] = self.gw.visited.max() + 1 camera_rot = tft.quaternion_matrix(tfh.quaternion_to_list(camera_pose.orientation))[0:3, 0:3] # Do grasp prediction depth_crop, depth_nan_mask = process_depth_image(depth, self.img_crop_size, 300, return_mask=True, crop_y_offset=self.img_crop_y_offset) points, angle, width_img, _ = predict(depth_crop, process_depth=False, depth_nan_mask=depth_nan_mask) angle -= np.arcsin(camera_rot[0, 1]) # Correct for the rotation of the camera angle = (angle + np.pi/2) % np.pi # Wrap [0, pi] # Convert to 3D positions. imh, imw = depth.shape x = ((np.vstack((np.linspace((imw - self.img_crop_size) // 2, (imw - self.img_crop_size) // 2 + self.img_crop_size, depth_crop.shape[1], np.float), )*depth_crop.shape[0]) - self.cam_K[0, 2])/self.cam_K[0, 0] * depth_crop).flatten() y = ((np.vstack((np.linspace((imh - self.img_crop_size) // 2 - self.img_crop_y_offset, (imh - self.img_crop_size) // 2 + self.img_crop_size - self.img_crop_y_offset, depth_crop.shape[0], np.float), )*depth_crop.shape[1]).T - self.cam_K[1,2])/self.cam_K[1, 1] * depth_crop).flatten() pos = np.dot(camera_rot, np.stack((x, y, depth_crop.flatten()))).T + np.array([[cam_p.x, cam_p.y, cam_p.z]]) # Clean the data a bit. pos[depth_nan_mask.flatten() == 1, :] = 0 # Get rid of NaNs pos[pos[:, 2] > 0.17, :] = 0 # Ignore obvious noise. pos[pos[:, 2] < 0.0, :] = 0 # Ignore obvious noise. cell_ids = self.gw.pos_to_cell(pos[:, :2]) width_m = width_img / 300.0 * 2.0 * depth_crop * np.tan(self.cam_fov * self.img_crop_size/depth.shape[0] / 2.0 / 180.0 * np.pi) update_batch([pos[:, 2], width_m.flatten()], cell_ids, self.gw.count, [self.gw.depth_mean, self.gw.width_mean], [self.gw.depth_var, self.gw.width_var]) update_histogram_angle(points.flatten(), angle.flatten(), cell_ids, self.gw.hist) with TimeIt('Calculate Best Grasp'): # Step 2: Compute the position of the best grasp in the GridWorld # Sum over all angles to get the grasp quality only. hist_sum_q = np.sum(self.gw.hist, axis=2) weights = np.arange(0.5/self.hist_bins_q, 1.0, 1/self.hist_bins_q) hist_mean = np.sum(hist_sum_q * weights.reshape((1, 1, -1)), axis=2)/(np.sum(hist_sum_q, axis=2) + 1e-6) hist_mean[self.gw.count == 0] = 0 # Ignore areas we haven't seen yet. hist_mean[0, :] = 0 # Ignore single pixel along each edge. hist_mean[-1, :] = 0 hist_mean[:, 0] = 0 hist_mean[:, -1] = 0 hist_mean -= self.fgw.failures hist_mean = np.clip(hist_mean, 0.0, 1.0) # ArgMax of grasp quality q_am = np.unravel_index(np.argmax(hist_mean), hist_mean.shape) # Interpolate position between the neighbours of the best grasp, weighted by quality q_ama = np.array(q_am) conn_neighbours = np.array([q_ama]) # Disable rounding neighbour_weights = hist_mean[conn_neighbours[:, 0], conn_neighbours[:, 1]] q_am_neigh = self.gw.cell_to_pos(conn_neighbours) q_am_neigh_avg = np.average(q_am_neigh, weights=neighbour_weights, axis=0) q_am_pos = (q_am_neigh_avg[0], q_am_neigh_avg[1]) # This is the grasp center # Perform same weighted averaging of the angles. best_grasp_hist = self.gw.hist[conn_neighbours[:, 0], conn_neighbours[:, 1], :, :] angle_weights = np.sum((best_grasp_hist - 1) * weights.reshape((1, 1, -1)), axis=2) ang_bins = (np.arange(0.5/self.hist_bins_a, 1.0, 1/self.hist_bins_a) * np.pi).reshape(1, -1) # Compute the weighted vector mean of the sin/cos components of the angle predictions # Do double angles so that -np.pi/2 == np.pi/2, then unwrap q_am_ang = np.arctan2( np.sum(np.sin(ang_bins*2) * angle_weights * neighbour_weights.reshape(-1, 1)), np.sum(np.cos(ang_bins*2) * angle_weights * neighbour_weights.reshape(-1, 1)) ) if q_am_ang < 0: q_am_ang += 2*np.pi q_am_ang = q_am_ang/2.0 - np.pi/2 # Get the depth and width at the grasp center q_am_dep = self.gw.depth_mean[q_am] q_am_wid = self.gw.width_mean[q_am] with TimeIt('Calculate Information Gain'): # Step 3: Compute the expected information gain from a viewpoint above every cell in the GridWorld # Compute entropy per cell. hist_p = hist_sum_q / np.expand_dims(np.sum(hist_sum_q, axis=2) + 1e-6, -1) hist_ent = -np.sum(hist_p * np.log(hist_p+1e-6), axis=2) # Treat camera field of view as a Gaussian # Field of view in number gridworld cells fov = int(cam_p.z * 2 * np.tan(self.cam_fov*self.img_crop_size/depth.shape[0]/2.0 / 180.0 * np.pi) / self.gw.res) exp_inf_gain = gaussian_filter(hist_ent, fov/6, truncate=3) # Track changes by KL Divergence (not used/disabled by default) kl_divergence = np.sum(hist_p * np.log((hist_p+1e-6)/(self.gw.hist_p_prev+1e-6)), axis=2) self.gw.hist_p_prev = hist_p kl_divergence[0, :] = 0 kl_divergence[-1, :] = 0 kl_divergence[:, 0] = 0 kl_divergence[:, -1] = 0 norm_i_gain = 1 - np.exp(-1 * kl_divergence.sum()) self.position_history[-1][-1] = norm_i_gain with TimeIt('Calculate Travel Cost'): # Step 4: Compute cost of moving away from the best detected grasp. # Distance from current robot pos. d_from_robot = np.sqrt((self._xv - cam_p.x)**2 + (self._yv - cam_p.y)**2) # Distance from best detected grasp, weighted by the robot's current height (Z axis) d_from_best_q = np.sqrt((self._xv - q_am_pos[0])**2 + (self._yv - q_am_pos[1])**2) # Cost of moving away from the best grasp. height_weight = (cam_p.z - self.height[1])/(self.height[0]-self.height[1]) + 1e-2 height_weight = max(min(height_weight, 1.0), 0.0) best_cost = (d_from_best_q / self.dist_from_best_scale) * (1-height_weight) * self.dist_from_best_gain # Distance from previous viewpoints (dist_from_prev_view_gain is 0 by default) d_from_prev_view = np.zeros(self.gw.shape) for x, y, z, kl in self.position_history: d_from_prev_view += np.clip(1 - (np.sqrt((self._xv - x)**2 + (self._yv - y)**2 + 0*(cam_p.z - z)**2)/self.dist_from_prev_view_scale), 0, 1) * (1-kl) prev_view_cost = d_from_prev_view * self.dist_from_prev_view_gain # Calculate total expected information gain. exp_inf_gain_before = exp_inf_gain.copy() exp_inf_gain -= best_cost exp_inf_gain -= prev_view_cost # Compute local direction of maximum information gain exp_inf_gain_mask = exp_inf_gain.copy() greedy_window = 0.1 exp_inf_gain_mask[d_from_robot > greedy_window] = exp_inf_gain.min() ig_am = np.unravel_index(np.argmax(exp_inf_gain_mask), exp_inf_gain.shape) maxpos = self.gw.cell_to_pos([ig_am])[0] diff = (maxpos - np.array([cam_p.x, cam_p.y]))/greedy_window # Maximum of 1 if
np.linalg.norm(diff)
numpy.linalg.norm
import os import time import numpy as np import cv2 import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from utils import CrossEntropyLoss2d from models import reinforcement_net, reactive_net from scipy import ndimage import matplotlib.pyplot as plt from constants import color_mean, color_std, depth_mean, depth_std, DEPTH_MIN, is_real class Trainer(object): def __init__(self, method, push_rewards, future_reward_discount, is_testing, load_snapshot, snapshot_file, force_cpu): self.method = method # Check if CUDA can be used if torch.cuda.is_available() and not force_cpu: print("CUDA detected. Running with GPU acceleration.") self.use_cuda = True elif force_cpu: print("CUDA detected, but overriding with option '--cpu'. Running with only CPU.") self.use_cuda = False else: print("CUDA is *NOT* detected. Running with only CPU.") self.use_cuda = False # Fully convolutional classification network for supervised learning if self.method == 'reactive': self.model = reactive_net(self.use_cuda) # self.push_rewards = push_rewards # self.future_reward_discount = future_reward_discount # # Initialize Huber loss self.push_criterion = torch.nn.SmoothL1Loss(reduction='none') self.grasp_criterion = torch.nn.BCEWithLogitsLoss(reduction='none') if self.use_cuda: self.push_criterion = self.push_criterion.cuda() self.grasp_criterion = self.grasp_criterion.cuda() # Initialize classification loss # push_num_classes = 3 # 0 - push, 1 - no change push, 2 - no loss # push_class_weights = torch.ones(push_num_classes) # push_class_weights[push_num_classes - 1] = 0 # if self.use_cuda: # self.push_criterion = CrossEntropyLoss2d(push_class_weights.cuda()).cuda() # else: # self.push_criterion = CrossEntropyLoss2d(push_class_weights) # grasp_num_classes = 3 # 0 - grasp, 1 - failed grasp, 2 - no loss # grasp_class_weights = torch.ones(grasp_num_classes) # grasp_class_weights[grasp_num_classes - 1] = 0 # if self.use_cuda: # self.grasp_criterion = CrossEntropyLoss2d(grasp_class_weights.cuda()).cuda() # else: # self.grasp_criterion = CrossEntropyLoss2d(grasp_class_weights) # Fully convolutional Q network for deep reinforcement learning elif self.method == 'reinforcement': self.model = reinforcement_net(self.use_cuda) self.push_rewards = push_rewards self.future_reward_discount = future_reward_discount # Initialize Huber loss self.push_criterion = torch.nn.SmoothL1Loss(reduction='none') # Huber loss self.grasp_criterion = torch.nn.SmoothL1Loss(reduction='none') # Huber loss # self.push_criterion = torch.nn.BCEWithLogitsLoss(reduction='none') # self.grasp_criterion = torch.nn.BCEWithLogitsLoss(reduction='none') if self.use_cuda: self.push_criterion = self.push_criterion.cuda() self.grasp_criterion = self.grasp_criterion.cuda() # Load pre-trained model if load_snapshot: self.model.load_state_dict(torch.load(snapshot_file)) print('Pre-trained model snapshot loaded from: %s' % (snapshot_file)) # Convert model from CPU to GPU if self.use_cuda: self.model = self.model.cuda() # Set model to training mode self.model.train() # Initialize optimizer self.iteration = 0 if is_testing: self.optimizer = torch.optim.SGD(self.model.parameters(), lr=1e-5, momentum=0.9, weight_decay=2e-5) else: self.optimizer = torch.optim.SGD(self.model.parameters(), lr=5e-5, momentum=0.9, weight_decay=2e-5) self.lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=500, gamma=0.5) # Initialize lists to save execution info and RL variables self.executed_action_log = [] self.label_value_log = [] self.reward_value_log = [] self.predicted_value_log = [] self.use_heuristic_log = [] self.is_exploit_log = [] self.clearance_log = [] self.loss_log = [] if is_testing: # self.model.eval() self.batch_size = 2 else: self.batch_size = 8 self.loss_list = [] # Pre-load execution info and RL variables def preload(self, transitions_directory): self.executed_action_log = np.loadtxt( os.path.join( transitions_directory, 'executed-action.log.txt'), delimiter=' ') self.iteration = self.executed_action_log.shape[0] - 2 self.executed_action_log = self.executed_action_log[0:self.iteration, :] self.executed_action_log = self.executed_action_log.tolist() self.label_value_log = np.loadtxt(os.path.join(transitions_directory, 'label-value.log.txt'), delimiter=' ') self.label_value_log = self.label_value_log[0:self.iteration] self.label_value_log.shape = (self.iteration, 1) self.label_value_log = self.label_value_log.tolist() self.predicted_value_log = np.loadtxt( os.path.join( transitions_directory, 'predicted-value.log.txt'), delimiter=' ') self.predicted_value_log = self.predicted_value_log[0:self.iteration] self.predicted_value_log.shape = (self.iteration, 1) self.predicted_value_log = self.predicted_value_log.tolist() self.reward_value_log = np.loadtxt(os.path.join(transitions_directory, 'reward-value.log.txt'), delimiter=' ') self.reward_value_log = self.reward_value_log[0:self.iteration] self.reward_value_log.shape = (self.iteration, 1) self.reward_value_log = self.reward_value_log.tolist() self.use_heuristic_log = np.loadtxt(os.path.join(transitions_directory, 'use-heuristic.log.txt'), delimiter=' ') self.use_heuristic_log = self.use_heuristic_log[0:self.iteration] self.use_heuristic_log.shape = (self.iteration, 1) self.use_heuristic_log = self.use_heuristic_log.tolist() self.is_exploit_log = np.loadtxt(os.path.join(transitions_directory, 'is-exploit.log.txt'), delimiter=' ') self.is_exploit_log = self.is_exploit_log[0:self.iteration] self.is_exploit_log.shape = (self.iteration, 1) self.is_exploit_log = self.is_exploit_log.tolist() self.clearance_log = np.loadtxt(os.path.join(transitions_directory, 'clearance.log.txt'), delimiter=' ') self.clearance_log.shape = (self.clearance_log.shape[0], 1) self.clearance_log = self.clearance_log.tolist() # Compute forward pass through model to compute affordances/Q def forward(self, color_heightmap, depth_heightmap, is_volatile=False, specific_rotation=-1, use_push=True): color_heightmap_pad = np.copy(color_heightmap) depth_heightmap_pad = np.copy(depth_heightmap) # Add extra padding (to handle rotations inside network) diag_length = float(color_heightmap.shape[0]) * np.sqrt(2) diag_length = np.ceil(diag_length / 32) * 32 padding_width = int((diag_length - color_heightmap.shape[0]) / 2) color_heightmap_pad_r = np.pad(color_heightmap_pad[:, :, 0], padding_width, 'constant', constant_values=0) color_heightmap_pad_r.shape = (color_heightmap_pad_r.shape[0], color_heightmap_pad_r.shape[1], 1) color_heightmap_pad_g = np.pad(color_heightmap_pad[:, :, 1], padding_width, 'constant', constant_values=0) color_heightmap_pad_g.shape = (color_heightmap_pad_g.shape[0], color_heightmap_pad_g.shape[1], 1) color_heightmap_pad_b = np.pad(color_heightmap_pad[:, :, 2], padding_width, 'constant', constant_values=0) color_heightmap_pad_b.shape = (color_heightmap_pad_b.shape[0], color_heightmap_pad_b.shape[1], 1) color_heightmap_pad = np.concatenate( (color_heightmap_pad_r, color_heightmap_pad_g, color_heightmap_pad_b), axis=2) depth_heightmap_pad = np.pad(depth_heightmap_pad, padding_width, 'constant', constant_values=0) # Pre-process color image (scale and normalize) image_mean = color_mean image_std = color_std input_color_image = color_heightmap_pad.astype(float) / 255 for c in range(3): input_color_image[:, :, c] = (input_color_image[:, :, c] - image_mean[c]) / image_std[c] # Pre-process depth image (normalize) image_mean = depth_mean image_std = depth_std depth_heightmap_pad.shape = (depth_heightmap_pad.shape[0], depth_heightmap_pad.shape[1], 1) input_depth_image = np.copy(depth_heightmap_pad) input_depth_image[:, :, 0] = (input_depth_image[:, :, 0] - image_mean[0]) / image_std[0] # Construct minibatch of size 1 (b,c,h,w) input_color_image.shape = ( input_color_image.shape[0], input_color_image.shape[1], input_color_image.shape[2], 1) input_depth_image.shape = ( input_depth_image.shape[0], input_depth_image.shape[1], input_depth_image.shape[2], 1) input_color_data = torch.from_numpy(input_color_image.astype(np.float32)).permute(3, 2, 0, 1) input_depth_data = torch.from_numpy(input_depth_image.astype(np.float32)).permute(3, 2, 0, 1) # Pass input data through model output_prob = self.model(input_color_data, input_depth_data, is_volatile, specific_rotation, use_push) if self.method == 'reactive': for rotate_idx in range(len(output_prob)): if rotate_idx == 0: if use_push: push_predictions = output_prob[rotate_idx][0].cpu().data.numpy()[:, 0, int(padding_width):int( color_heightmap_pad.shape[0] - padding_width), int(padding_width):int(color_heightmap_pad.shape[1] - padding_width)] grasp_predictions = output_prob[rotate_idx][1].cpu().data.numpy()[:, 0, int(padding_width):int( color_heightmap_pad.shape[0] - padding_width), int(padding_width):int(color_heightmap_pad.shape[1] - padding_width)] else: push_predictions = 0 grasp_predictions = output_prob[rotate_idx][1].cpu().data.numpy()[:, 0, int(padding_width):int( color_heightmap_pad.shape[0] - padding_width), int(padding_width):int(color_heightmap_pad.shape[1] - padding_width)] else: if use_push: push_predictions = np.concatenate((push_predictions, output_prob[rotate_idx][0].cpu().data.numpy()[ :, 0, int(padding_width):int(color_heightmap_pad.shape[0] - padding_width), int(padding_width):int(color_heightmap_pad.shape[1] - padding_width)]), axis=0) grasp_predictions = np.concatenate((grasp_predictions, output_prob[rotate_idx][1].cpu().data.numpy()[ :, 0, int(padding_width):int(color_heightmap_pad.shape[0] - padding_width), int(padding_width):int( color_heightmap_pad.shape[1] - padding_width)]), axis=0) else: push_predictions = 0 grasp_predictions = np.concatenate((grasp_predictions, output_prob[rotate_idx][1].cpu().data.numpy()[ :, 0, int(padding_width):int(color_heightmap_pad.shape[0] - padding_width), int(padding_width):int( color_heightmap_pad.shape[1] - padding_width)]), axis=0) elif self.method == 'reinforcement': # Return Q values (and remove extra padding) for rotate_idx in range(len(output_prob)): if rotate_idx == 0: if not use_push: push_predictions = 0 grasp_predictions = output_prob[rotate_idx][1].cpu().data.numpy()[:, 0, int(padding_width):int( color_heightmap_pad.shape[0] - padding_width), int(padding_width):int(color_heightmap_pad.shape[1] - padding_width)] else: push_predictions = output_prob[rotate_idx][0].cpu().data.numpy()[:, 0, int(padding_width):int( color_heightmap_pad.shape[0] - padding_width), int(padding_width):int(color_heightmap_pad.shape[1] - padding_width)] grasp_predictions = output_prob[rotate_idx][1].cpu().data.numpy()[:, 0, int(padding_width):int( color_heightmap_pad.shape[0] - padding_width), int(padding_width):int(color_heightmap_pad.shape[1] - padding_width)] else: if not use_push: push_predictions = 0 grasp_predictions = np.concatenate((grasp_predictions, output_prob[rotate_idx][1].cpu().data.numpy()[ :, 0, int(padding_width):int(color_heightmap_pad.shape[0] - padding_width), int(padding_width):int( color_heightmap_pad.shape[1] - padding_width)]), axis=0) else: push_predictions = np.concatenate((push_predictions, output_prob[rotate_idx][0].cpu().data.numpy()[ :, 0, int(padding_width):int(color_heightmap_pad.shape[0] - padding_width), int(padding_width):int(color_heightmap_pad.shape[1] - padding_width)]), axis=0) grasp_predictions = np.concatenate((grasp_predictions, output_prob[rotate_idx][1].cpu().data.numpy()[ :, 0, int(padding_width):int(color_heightmap_pad.shape[0] - padding_width), int(padding_width):int( color_heightmap_pad.shape[1] - padding_width)]), axis=0) return push_predictions, grasp_predictions def get_label_value(self, primitive_action, push_success, grasp_success, change_detected, prev_push_predictions, prev_grasp_predictions, next_color_heightmap, next_depth_heightmap, prev_depth_heightmap, use_push=True): if self.method == 'reactive': # Compute label value label_value = 0 if primitive_action == 'push': if change_detected: next_push_predictions, next_grasp_predictions = self.forward( next_color_heightmap, next_depth_heightmap, is_volatile=True) if np.max(next_grasp_predictions) > np.max(prev_grasp_predictions) * 1.1: current_reward = (np.max(next_grasp_predictions) + np.max(prev_grasp_predictions)) / 2 print("Prediction:", np.max(prev_grasp_predictions), np.max(next_grasp_predictions)) # current_reward = 1 else: future_reward = 0 delta_area = self.push_change_area(prev_depth_heightmap, next_depth_heightmap) if delta_area > 300: # 300 can be changed if current_reward < 0.5: current_reward = 0.5 elif delta_area < -100: current_reward = 0 label_value = 1 elif primitive_action == 'grasp': if grasp_success: label_value = 1 print('Label value: %d' % (label_value)) return label_value, label_value elif self.method == 'reinforcement': # Compute current reward current_reward = 0 if primitive_action == 'push': if change_detected: current_reward = 0.0 elif primitive_action == 'grasp': if grasp_success: current_reward = 1.0 # Compute future reward if not change_detected and not grasp_success: future_reward = 0 else: next_push_predictions, next_grasp_predictions = self.forward( next_color_heightmap, next_depth_heightmap, is_volatile=True, use_push=use_push) future_reward = 0 # no future reward if primitive_action == 'push': if np.max(next_grasp_predictions) > np.max(prev_grasp_predictions) * 1.1: current_reward = (np.max(next_grasp_predictions) + np.max(prev_grasp_predictions)) / 2 else: future_reward = 0 print("Prediction:", np.max(prev_grasp_predictions), np.max(next_grasp_predictions)) delta_area = self.push_change_area(prev_depth_heightmap, next_depth_heightmap) if delta_area > 300: # 300 can be changed if current_reward < 0.8: current_reward = 0.8 elif delta_area < -100: # -100 can be changed current_reward = 0 future_reward = 0 print('Current reward: %f' % (current_reward)) print('Future reward: %f' % (future_reward)) if primitive_action == 'push' and not self.push_rewards: expected_reward = self.future_reward_discount * future_reward print('Expected reward: %f + %f x %f = %f' % (0.0, self.future_reward_discount, future_reward, expected_reward)) else: expected_reward = current_reward + self.future_reward_discount * future_reward print( 'Expected reward: %f + %f x %f = %f' % (current_reward, self.future_reward_discount, future_reward, expected_reward)) return expected_reward, current_reward def get_neg(self, depth_heightmap, label, best_pix_ind): depth_heightmap_pad = np.copy(depth_heightmap) diag_length = float(depth_heightmap.shape[0]) * np.sqrt(2) diag_length = np.ceil(diag_length / 32) * 32 padding_width = int((diag_length - depth_heightmap.shape[0]) / 2) depth_heightmap_pad = np.pad(depth_heightmap_pad, padding_width, 'constant', constant_values=0) depth_heightmap_pad = ndimage.rotate(depth_heightmap_pad, best_pix_ind * (360.0 / 16), reshape=False) label = ndimage.rotate(label, best_pix_ind * (360.0 / 16), axes=(2, 1), reshape=False) label = np.round(label) x_y_idx = np.argwhere(label > 0) for idx in x_y_idx: _, x, y = tuple(idx) if is_real: left_area = depth_heightmap_pad[max(0, x - 4):min(depth_heightmap_pad.shape[0], x + 5), max(0, y - 27):max(0, y - 22)] # 2x3 pixels in each side right_area = depth_heightmap_pad[max(0, x - 4):min(depth_heightmap_pad.shape[0], x + 5), min(depth_heightmap_pad.shape[1] - 1, y + 23):min(depth_heightmap_pad.shape[1], y + 28)] # 2x3 pixels in each side if ((np.sum(left_area > DEPTH_MIN) > 0 and np.sum((left_area - depth_heightmap_pad[x, y]) > -0.05) > 0) or (np.sum(right_area > DEPTH_MIN) > 0 and np.sum((right_area - depth_heightmap_pad[x, y]) > -0.05) > 0)): label[0, x, y] = 0 else: left_area = depth_heightmap_pad[max(0, x - 4):min(depth_heightmap_pad.shape[0], x + 5), max(0, y - 28):max(0, y - 18)] # 2x3 pixels in each side right_area = depth_heightmap_pad[max(0, x - 4):min(depth_heightmap_pad.shape[0], x + 5), min(depth_heightmap_pad.shape[1] - 1, y + 19):min(depth_heightmap_pad.shape[1], y + 29)] # 2x3 pixels in each side if ((np.sum(left_area > DEPTH_MIN) > 0 and np.sum((left_area - depth_heightmap_pad[x, y]) > -0.04) > 0) or (np.sum(right_area > DEPTH_MIN) > 0 and np.sum((right_area - depth_heightmap_pad[x, y]) > -0.04) > 0)): label[0, x, y] = 0 label = ndimage.rotate(label, -best_pix_ind * (360.0 / 16), axes=(2, 1), reshape=False) label = np.round(label) return label # Compute labels and backpropagate def backprop(self, color_heightmap, depth_heightmap, primitive_action, best_pix_ind, label_value, use_push=True): if self.method == 'reactive': # Compute labels label = np.zeros((1, 320, 320)) action_area = np.zeros((224, 224)) action_area[best_pix_ind[1]][best_pix_ind[2]] = 1 tmp_label = np.zeros((224, 224)) tmp_label[action_area > 0] = label_value label[0, 48:(320 - 48), 48:(320 - 48)] = tmp_label # Compute label mask label_weights = np.zeros(label.shape) tmp_label_weights = np.zeros((224, 224)) tmp_label_weights[action_area > 0] = 1 label_weights[0, 48:(320 - 48), 48:(320 - 48)] = tmp_label_weights # Compute loss and backward pass if len(self.loss_list) == 0: self.optimizer.zero_grad() loss_value = 0 if primitive_action == 'grasp' and label_value > 0: neg_loss = [] for i in range(self.model.num_rotations): if i != best_pix_ind[0]: neg_label = self.get_neg(depth_heightmap, label.copy(), i) if neg_label[0, 48:(320 - 48), 48:(320 - 48)][best_pix_ind[1]][best_pix_ind[2]] == 0: _, _ = self.forward(color_heightmap, depth_heightmap, is_volatile=False, specific_rotation=i, use_push=use_push) loss = self.grasp_criterion(self.model.output_prob[0][1].view(1, 1, 320, 320), Variable(torch.from_numpy(neg_label).view(1, 1, 320, 320).float().cuda())) * Variable( torch.from_numpy(label_weights).view(1, 1, 320, 320).float().cuda(), requires_grad=False) loss = loss.sum() neg_loss.append(loss) if len(neg_loss) > 0: self.loss_list.append(sum(neg_loss) / len(neg_loss)) if primitive_action == 'push': if label_value > 0: label_weights *= 2 # to compromise the less push operations # Do forward pass with specified rotation (to save gradients) _, _ = self.forward(color_heightmap, depth_heightmap, is_volatile=False, specific_rotation=best_pix_ind[0], use_push=use_push) if self.use_cuda: loss = self.push_criterion( self.model.output_prob[0][0].view(1, 1, 320, 320), Variable(torch.from_numpy(label).view( 1, 1, 320, 320).float().cuda())) * Variable(torch.from_numpy(label_weights).view( 1, 1, 320, 320).float().cuda(), requires_grad=False) else: loss = self.push_criterion(self.model.output_prob[0][0].view(1, 1, 320, 320), Variable( torch.from_numpy(label).float())) * Variable(torch.from_numpy(label_weights).float(), requires_grad=False) loss = loss.sum() if len(self.loss_list) >= self.batch_size: total_loss = sum(self.loss_list) print('Batch Loss:', total_loss.cpu().item()) self.loss_log.append([self.iteration, total_loss.cpu()]) mean_loss = total_loss / len(self.loss_list) mean_loss.backward() self.loss_list = [] else: self.loss_list.append(loss) # loss.backward() loss_value = loss.cpu().data.numpy() elif primitive_action == 'grasp': if label_value > 0: label_weights *= 4 # Do forward pass with specified rotation (to save gradients) _, _ = self.forward(color_heightmap, depth_heightmap, is_volatile=False, specific_rotation=best_pix_ind[0], use_push=use_push) if self.use_cuda: loss = self.grasp_criterion( self.model.output_prob[0][1].view(1, 1, 320, 320), Variable( torch.from_numpy(label).view(1, 1, 320, 320).float().cuda())) * Variable( torch.from_numpy(label_weights).view(1, 1, 320, 320).float().cuda(), requires_grad=False) else: loss = self.grasp_criterion(self.model.output_prob[0][1].view(1, 320, 320), Variable( torch.from_numpy(label).float())) * Variable(torch.from_numpy(label_weights).float(), requires_grad=False) loss = loss.sum() self.loss_list.append(loss) # loss.backward() loss_value = loss.cpu().data.numpy() opposite_rotate_idx = (best_pix_ind[0] + self.model.num_rotations / 2) % self.model.num_rotations _, _ = self.forward(color_heightmap, depth_heightmap, is_volatile=False, specific_rotation=opposite_rotate_idx, use_push=use_push) if self.use_cuda: loss = self.grasp_criterion( self.model.output_prob[0][1].view(1, 1, 320, 320), Variable( torch.from_numpy(label).view(1, 1, 320, 320).float().cuda())) * Variable( torch.from_numpy(label_weights).view(1, 1, 320, 320).float().cuda(), requires_grad=False) else: loss = self.grasp_criterion(self.model.output_prob[0][1].view(1, 320, 320), Variable( torch.from_numpy(label).float())) * Variable(torch.from_numpy(label_weights).float(), requires_grad=False) loss = loss.sum() if len(self.loss_list) >= self.batch_size: total_loss = sum(self.loss_list) print('Batch Loss:', total_loss.cpu().item()) self.loss_log.append([self.iteration, total_loss.cpu()]) mean_loss = total_loss / len(self.loss_list) mean_loss.backward() self.loss_list = [] else: self.loss_list.append(loss) # loss.backward() loss_value += loss.cpu().data.numpy() loss_value = loss_value / 2 print('Training loss: %f' % (loss_value.sum())) if len(self.loss_list) == 0: self.optimizer.step() self.lr_scheduler.step() elif self.method == 'reinforcement': # Compute labels label = np.zeros((1, 320, 320)) action_area = np.zeros((224, 224)) action_area[best_pix_ind[1]][best_pix_ind[2]] = 1 tmp_label = np.zeros((224, 224)) tmp_label[action_area > 0] = label_value label[0, 48:(320 - 48), 48:(320 - 48)] = tmp_label # Compute label mask label_weights = np.zeros(label.shape) tmp_label_weights = np.zeros((224, 224)) tmp_label_weights[action_area > 0] = 1 label_weights[0, 48:(320 - 48), 48:(320 - 48)] = tmp_label_weights # Compute loss and backward pass if len(self.loss_list) == 0: self.optimizer.zero_grad() loss_value = 0 if primitive_action == 'grasp' and label_value > 0: neg_loss = [] for i in range(self.model.num_rotations): if i != best_pix_ind[0]: neg_label = self.get_neg(depth_heightmap, label.copy(), i) if neg_label[0, 48:(320 - 48), 48:(320 - 48)][best_pix_ind[1]][best_pix_ind[2]] == 0: _, _ = self.forward(color_heightmap, depth_heightmap, is_volatile=False, specific_rotation=i, use_push=use_push) loss = self.grasp_criterion(self.model.output_prob[0][1].view(1, 1, 320, 320), torch.from_numpy(neg_label).view(1, 1, 320, 320).float().cuda()) * Variable( torch.from_numpy(label_weights).view(1, 1, 320, 320).float().cuda()) loss = loss.sum() neg_loss.append(loss) if len(neg_loss) > 0: self.loss_list.append(sum(neg_loss) / len(neg_loss)) if primitive_action == 'push': if label_value > 0: label_weights *= 2 # to compromise the less push operations # Do forward pass with specified rotation (to save gradients) _, _ = self.forward(color_heightmap, depth_heightmap, is_volatile=False, specific_rotation=best_pix_ind[0], use_push=use_push) if self.use_cuda: loss = self.push_criterion( self.model.output_prob[0][0].view(1, 1, 320, 320), Variable(torch.from_numpy(label).view( 1, 1, 320, 320).float().cuda())) * Variable(torch.from_numpy(label_weights).view( 1, 1, 320, 320).float().cuda(), requires_grad=False) else: loss = self.push_criterion(self.model.output_prob[0][0].view(1, 1, 320, 320), Variable( torch.from_numpy(label).float())) * Variable(torch.from_numpy(label_weights).float(), requires_grad=False) loss = loss.sum() if len(self.loss_list) >= self.batch_size: total_loss = sum(self.loss_list) print('Batch Loss:', total_loss.cpu().item()) self.loss_log.append([self.iteration, total_loss.cpu()]) mean_loss = total_loss / len(self.loss_list) mean_loss.backward() self.loss_list = [] else: self.loss_list.append(loss) # loss.backward() loss_value = loss.cpu().data.numpy() elif primitive_action == 'grasp': if label_value > 0: label_weights *= 2 # Do forward pass with specified rotation (to save gradients) _, _ = self.forward(color_heightmap, depth_heightmap, is_volatile=False, specific_rotation=best_pix_ind[0], use_push=use_push) if self.use_cuda: loss = self.grasp_criterion( self.model.output_prob[0][1].view(1, 1, 320, 320), Variable( torch.from_numpy(label).view(1, 1, 320, 320).float().cuda())) * Variable( torch.from_numpy(label_weights).view(1, 1, 320, 320).float().cuda()) else: loss = self.grasp_criterion(self.model.output_prob[0][1].view(1, 320, 320), Variable( torch.from_numpy(label).float())) * Variable(torch.from_numpy(label_weights).float()) loss = loss.sum() self.loss_list.append(loss) # loss.backward() loss_value = loss.cpu().data.numpy() opposite_rotate_idx = (best_pix_ind[0] + self.model.num_rotations / 2) % self.model.num_rotations _, _ = self.forward(color_heightmap, depth_heightmap, is_volatile=False, specific_rotation=opposite_rotate_idx, use_push=use_push) if self.use_cuda: loss = self.grasp_criterion( self.model.output_prob[0][1].view(1, 1, 320, 320), Variable( torch.from_numpy(label).view(1, 1, 320, 320).float().cuda())) * Variable( torch.from_numpy(label_weights).view(1, 1, 320, 320).float().cuda()) else: loss = self.grasp_criterion(self.model.output_prob[0][1].view(1, 320, 320), Variable( torch.from_numpy(label).float())) * Variable(torch.from_numpy(label_weights).float()) loss = loss.sum() if len(self.loss_list) >= self.batch_size: total_loss = sum(self.loss_list) print('Batch Loss:', total_loss.cpu().item()) self.loss_log.append([self.iteration, total_loss.cpu()]) mean_loss = total_loss / len(self.loss_list) mean_loss.backward() self.loss_list = [] else: self.loss_list.append(loss) # loss.backward() loss_value += loss.cpu().data.numpy() loss_value = loss_value / 2 print('Training loss: %f' % (loss_value.sum())) if len(self.loss_list) == 0: self.optimizer.step() self.lr_scheduler.step() def get_prediction_vis(self, predictions, color_heightmap, best_pix_ind): canvas = None num_rotations = predictions.shape[0] for canvas_row in range(int(num_rotations / 4)): tmp_row_canvas = None for canvas_col in range(4): rotate_idx = canvas_row * 4 + canvas_col prediction_vis = predictions[rotate_idx, :, :].copy() # prediction_vis[prediction_vis < 0] = 0 # assume probability # prediction_vis[prediction_vis > 1] = 1 # assume probability prediction_vis = np.clip(prediction_vis, 0, 1) prediction_vis.shape = (predictions.shape[1], predictions.shape[2]) prediction_vis = cv2.applyColorMap((prediction_vis * 255).astype(np.uint8), cv2.COLORMAP_JET) if rotate_idx == best_pix_ind[0]: prediction_vis = cv2.circle( prediction_vis, (int( best_pix_ind[2]), int( best_pix_ind[1])), 7, (0, 0, 255), 2) prediction_vis = ndimage.rotate(prediction_vis, rotate_idx * (360.0 / num_rotations), reshape=False, order=0) background_image = ndimage.rotate(color_heightmap, rotate_idx * (360.0 / num_rotations), reshape=False, order=0) prediction_vis = (0.5 * cv2.cvtColor(background_image, cv2.COLOR_RGB2BGR) + 0.5 * prediction_vis).astype(np.uint8) if tmp_row_canvas is None: tmp_row_canvas = prediction_vis else: tmp_row_canvas = np.concatenate((tmp_row_canvas, prediction_vis), axis=1) if canvas is None: canvas = tmp_row_canvas else: canvas = np.concatenate((canvas, tmp_row_canvas), axis=0) return canvas def push_heuristic(self, depth_heightmap): num_rotations = 16 for rotate_idx in range(num_rotations): rotated_heightmap = ndimage.rotate(depth_heightmap, rotate_idx * (360.0 / num_rotations), reshape=False, order=0) valid_areas = np.zeros(rotated_heightmap.shape) valid_areas[ndimage.interpolation.shift(rotated_heightmap, [0, -25], order=0) - rotated_heightmap > 0.02] = 1 # valid_areas = np.multiply(valid_areas, rotated_heightmap) blur_kernel = np.ones((25, 25), np.float32) / 9 valid_areas = cv2.filter2D(valid_areas, -1, blur_kernel) tmp_push_predictions = ndimage.rotate( valid_areas, -rotate_idx * (360.0 / num_rotations), reshape=False, order=0) tmp_push_predictions.shape = (1, rotated_heightmap.shape[0], rotated_heightmap.shape[1]) if rotate_idx == 0: push_predictions = tmp_push_predictions else: push_predictions = np.concatenate((push_predictions, tmp_push_predictions), axis=0) best_pix_ind = np.unravel_index(np.argmax(push_predictions), push_predictions.shape) return best_pix_ind def grasp_heuristic(self, depth_heightmap): num_rotations = 16 for rotate_idx in range(num_rotations): rotated_heightmap = ndimage.rotate(depth_heightmap, rotate_idx * (360.0 / num_rotations), reshape=False, order=0) valid_areas = np.zeros(rotated_heightmap.shape) valid_areas[np.logical_and(rotated_heightmap - ndimage.interpolation.shift(rotated_heightmap, [0, - 25], order=0) > 0.02, rotated_heightmap - ndimage.interpolation.shift(rotated_heightmap, [0, 25], order=0) > 0.02)] = 1 # valid_areas = np.multiply(valid_areas, rotated_heightmap) blur_kernel = np.ones((25, 25), np.float32) / 9 valid_areas = cv2.filter2D(valid_areas, -1, blur_kernel) tmp_grasp_predictions = ndimage.rotate( valid_areas, -rotate_idx * (360.0 / num_rotations), reshape=False, order=0) tmp_grasp_predictions.shape = (1, rotated_heightmap.shape[0], rotated_heightmap.shape[1]) if rotate_idx == 0: grasp_predictions = tmp_grasp_predictions else: grasp_predictions = np.concatenate((grasp_predictions, tmp_grasp_predictions), axis=0) best_pix_ind = np.unravel_index(
np.argmax(grasp_predictions)
numpy.argmax
import dash from dash import dcc from dash import html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output import plotly.express as px import pandas as pd import numpy as np import requests as r import plotly.graph_objects as go import astropy.coordinates as coord from astropy import units as u import matplotlib.pyplot as plt from whitenoise import WhiteNoise def load_lc(tic): url = "http://tessebs.villanova.edu/static/catalog/lcs_ascii/tic"+str(int(tic)).zfill(10)+".01.norm.lc" lc = r.get(url) lc_data = np.fromstring(lc.text, sep=' ') lc_data = lc_data.reshape(int(len(lc_data)/4), 4) return pd.DataFrame.from_dict({ 'times': lc_data[:,0][::10], 'phases': lc_data[:,1][::10], 'fluxes': lc_data[:,2][::10], 'sigmas': lc_data[:,3][::10] }) def isolate_params_twog(func, model_params): params = {'C': ['C'], 'CE': ['C', 'Aell', 'phi0'], 'CG': ['C', 'mu1', 'd1', 'sigma1'], 'CGE': ['C', 'mu1', 'd1', 'sigma1', 'Aell', 'phi0'], 'CG12': ['C', 'mu1', 'd1', 'sigma1', 'mu2', 'd2', 'sigma2'], 'CG12E1': ['C', 'mu1', 'd1', 'sigma1', 'mu2', 'd2', 'sigma2', 'Aell'], 'CG12E2': ['C', 'mu1', 'd1', 'sigma1', 'mu2', 'd2', 'sigma2', 'Aell'] } param_vals = np.zeros(len(params[func])) for i,key in enumerate(params[func]): param_vals[i] = model_params[key] return param_vals # TODO: make ligeor pip installable and a dependency. Add a static file with model properties # compute 2g and pf model on the fly instead of loading it from file def load_model(tic, model='2g', bins=100): df_row = models[models['TIC']==tic] if model == '2g': from ligeor.models import TwoGaussianModel func = df_row['func'].values[0] twog_func = getattr(TwoGaussianModel, func.lower()) model_params = {} for key in ['C', 'mu1', 'd1', 'sigma1', 'mu2', 'd2', 'sigma2', 'Aell', 'phi0']: model_params[key] = df_row[key].values[0] param_vals = isolate_params_twog(func, model_params) phases = np.linspace(0,1,bins) fluxes = twog_func(phases, *param_vals) return phases, fluxes elif model == 'pf': from ligeor.models import Polyfit phases = np.linspace(0,1,bins) polyfit = Polyfit(phases=phases, fluxes=np.ones_like(phases), sigmas=0.1*
np.ones_like(phases)
numpy.ones_like
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import submission as sub import helper data = np.load('../data/some_corresp.npz') noise_data = np.load('../data/some_corresp_noisy.npz') im1 = plt.imread('../data/im1.png') im2 = plt.imread('../data/im2.png') N = data['pts1'].shape[0] M = 640 pts1, pts2 = noise_data['pts1'], noise_data['pts2'] #bestF, inliers = sub.ransacF(noise_data['pts1'], noise_data['pts2'], M); #np.save('inliers4.npy', inliers) #print('Done!!') inliers = np.load('best_inliers.npy').reshape([-1]) pts1, pts2 = pts1[inliers, :], pts2[inliers, :] p = pts1.shape[0] pts1_h = np.hstack((pts1, np.ones((p, 1)))) pts2_h = np.hstack((pts2, np.ones((p, 1)))) bestFs = sub.sevenpoint(pts1, pts2, M) tol = 0.001 bestF_inlier_count = 0 for F in bestFs: dst = np.diag(pts2_h @ F @ pts1_h.T) inliers =
np.abs(dst)
numpy.abs
#!/usr/bin/python # -*- coding: utf-8 -*- ''' Script that contains 3 functions. These are to be used if we want to proceed to merging of thin layers of the firn column. I suggest we specify in json input if merge is true/false and the thickness threshold ('merge_min'): "merging": true, "merge_min": 5e-3 mergesurf(): for layer[0] and layer[1], to be used in time_evolve() of firn_density_nospin mergenotsurf(): for layers[2:], to be used in time_evolve() of firn_density_nospin mergeall(): for all layers, to be used at the end of firn_density_spin CAUTION: - not used for all variables (e.g. du_dx) - nothing is done considering gas neither for isotopes @author: verjans ''' import numpy as np from constants import * def mergesurf(self,thickmin): ''' This function is to call during time_evolve function of firn_density_nospin. We merge the surface layer[0] with the layer[1] below as long as layer[1] remains under a certain thickness threshold. By applying condition on layer[1] instead of layer[0], we avoid merging all newly accumulated layers in the case we use a RCM forcing on a short time scale. Thickness threshold must be specified and consistent with the one of mergenotsurf(). ''' if ((self.dz[1] < thickmin) or (self.dz[0] < 1e-4)): #test self.rho[1] = (self.rho[1]*self.dz[1]+self.rho[0]*self.dz[0]) / (self.dz[1]+self.dz[0]) self.Tz[1] = (self.Tz[1]*self.mass[1]+self.Tz[0]*self.mass[0]) / (self.mass[1]+self.mass[0]) self.r2[1] = (self.r2[1]*self.mass[1]+self.r2[0]*self.mass[0]) / (self.mass[1]+self.mass[0]) self.age[1] = self.age[1] # suggestion of Max 28Jun, important if we use bdot_mean ### Additive variables: take sum ### self.LWC[1] = (self.LWC[0]+self.LWC[1]) self.PLWC_mem[1] = (self.PLWC_mem[0]+self.PLWC_mem[1]) self.dz[1] += self.dz[0] # add thickness to underlying layer ### Remove the thin surface layer ### self.rho = np.delete(self.rho,0) self.Tz = np.delete(self.Tz,0) self.r2 = np.delete(self.r2,0) self.age = np.delete(self.age,0) self.dz = np.delete(self.dz,0) self.LWC = np.delete(self.LWC,0) self.PLWC_mem = np.delete(self.PLWC_mem,0) ## For Dcon, here we remove the layer that is merged but maybe we want to remove the layer that receives the merging (and keep most recent dcon)## self.Dcon = np.delete(self.Dcon,0) self.rho = np.append(self.rho, self.rho[-1]) self.Tz = np.append(self.Tz, self.Tz[-1]) self.r2 = np.append(self.r2, self.r2[-1]) self.age = np.append(self.age, self.age[-1]) self.dz = np.append(self.dz, self.dz[-1]) self.LWC = np.append(self.LWC, 0.) self.PLWC_mem = np.append(self.PLWC_mem, 0.) self.Dcon = np.append(self.Dcon, self.Dcon[-1]) ### Adjustment of variables ### self.z = self.dz.cumsum(axis=0) self.z = np.delete(np.append(0,self.z),-1) self.gridLen =
np.size(self.z)
numpy.size
import warnings import astropy.units as u import numpy as np import pytest from numpy.testing import assert_allclose from einsteinpy.metric import Schwarzschild, Kerr, KerrNewman from einsteinpy.coordinates import CartesianConversion from einsteinpy.coordinates.utils import four_position, stacked_vec from einsteinpy.geodesic import Geodesic from einsteinpy import constant _c = constant.c.value _G = constant.G.value _Cc = constant.coulombs_const.value def test_str_repr(): """ Tests, if the ``__str__`` and ``__repr__`` messages match """ t = 0. M = 1e25 x_vec = np.array([306., np.pi / 2, np.pi / 2]) v_vec = np.array([0., 0.01, 10.]) ms_cov = Schwarzschild(M=M) x_4vec = four_position(t, x_vec) ms_cov_mat = ms_cov.metric_covariant(x_4vec) init_vec = stacked_vec(ms_cov_mat, t, x_vec, v_vec, time_like=True) end_lambda = 1. step_size = 0.4e-6 geod = Geodesic( metric=ms_cov, init_vec=init_vec, end_lambda=end_lambda, step_size=step_size ) assert str(geod) == repr(geod) @pytest.fixture() def dummy_data(): M = 6e24 t = 0. x_vec = np.array([130.0, np.pi / 2, -np.pi / 8]) v_vec = np.array([0.0, 0.0, 1900.0]) metric = Schwarzschild(M=M) x_4vec = four_position(t, x_vec) metric_mat = metric.metric_covariant(x_4vec) init_vec = stacked_vec(metric_mat, t, x_vec, v_vec, time_like=True) end_lambda = 0.002 step_size = 5e-8 return metric, init_vec, end_lambda, step_size def test_Geodesics_has_trajectory(dummy_data): metric, init_vec, end_lambda, step_size = dummy_data geo = Geodesic( metric=metric, init_vec=init_vec, end_lambda=end_lambda, step_size=step_size ) assert isinstance(geo.trajectory, np.ndarray) @pytest.mark.parametrize( "x_vec, v_vec, t, M, end_lambda, step_size", [ ( np.array([306., np.pi / 2, np.pi / 2]), np.array([0., 0., 951.]), 0., 4e24, 0.002, 0.5e-6, ), ( np.array([1e3, 0.15, np.pi / 2]), np.array([0.1 * _c, 0.5e-5 * _c, 0.5e-4 * _c]), 0., 5.972e24, 0.0001, 0.5e-6, ), ( np.array([50e3, np.pi / 2, np.pi / 2]), np.array([0.1 * _c, 2e-7 * _c, 1e-5]), 0., 5.972e24, 0.001, 5e-6, ), ], ) def test_calculate_trajectory_schwarzschild( x_vec, v_vec, t, M, end_lambda, step_size ): ms_cov = Schwarzschild(M=M) x_4vec = four_position(t, x_vec) ms_cov_mat = ms_cov.metric_covariant(x_4vec) init_vec = stacked_vec(ms_cov_mat, t, x_vec, v_vec, time_like=True) geod = Geodesic( metric=ms_cov, init_vec=init_vec, end_lambda=end_lambda, step_size=step_size, return_cartesian=False ) ans = geod.trajectory testarray = list() for i in ans: x = i[:4] g = ms_cov.metric_covariant(x) testarray.append( g[0][0] * (i[4] ** 2) + g[1][1] * (i[5] ** 2) + g[2][2] * (i[6] ** 2) + g[3][3] * (i[7] ** 2) ) testarray = np.array(testarray, dtype=float) assert_allclose(testarray, 1., 1e-4) def test_calculate_trajectory2_schwarzschild(): # based on the revolution of earth around sun # data from https://en.wikipedia.org/wiki/Earth%27s_orbit t = 0. M = 1.989e30 distance_at_perihelion = 147.10e9 speed_at_perihelion = 30290 angular_vel = (speed_at_perihelion / distance_at_perihelion) x_vec = np.array([distance_at_perihelion, np.pi / 2, 0]) v_vec = np.array([0.0, 0.0, angular_vel]) ms_cov = Schwarzschild(M=M) x_4vec = four_position(t, x_vec) ms_cov_mat = ms_cov.metric_covariant(x_4vec) init_vec = stacked_vec(ms_cov_mat, t, x_vec, v_vec, time_like=True) end_lambda = 3.154e7 geod = Geodesic( metric=ms_cov, init_vec=init_vec, end_lambda=end_lambda, step_size=end_lambda / 2e3, return_cartesian=False ) ans = geod.trajectory # velocity should be 29.29 km/s at aphelion(where r is max) i = np.argmax(ans[:, 1]) # index where radial distance is max v_aphelion = (((ans[i][1] * ans[i][7]) * (u.m / u.s)).to(u.km / u.s)).value assert_allclose(v_aphelion, 29.29, rtol=0.01) def test_calculate_trajectory3_schwarzschild(): # same test as with test_calculate_trajectory2_schwarzschild(), # but initialized with cartesian coordinates # and function returning cartesian coordinates t = 0. M = 1.989e30 distance_at_perihelion = 147.10e9 speed_at_perihelion = 30290 x_sph = CartesianConversion( distance_at_perihelion / np.sqrt(2), distance_at_perihelion / np.sqrt(2), 0., -speed_at_perihelion / np.sqrt(2), speed_at_perihelion / np.sqrt(2), 0. ).convert_spherical() x_vec = x_sph[:3] v_vec = x_sph[3:] ms_cov = Schwarzschild(M=M) x_4vec = four_position(t, x_vec) ms_cov_mat = ms_cov.metric_covariant(x_4vec) init_vec = stacked_vec(ms_cov_mat, t, x_vec, v_vec, time_like=True) end_lambda = 3.154e7 geod = Geodesic( metric=ms_cov, init_vec=init_vec, end_lambda=end_lambda, step_size=end_lambda / 2e3, ) ans = geod.trajectory # velocity should be 29.29 km/s at aphelion(where r is max) R = np.sqrt(ans[:, 1] ** 2 + ans[:, 2] ** 2 + ans[:, 3] ** 2) i = np.argmax(R) # index where radial distance is max v_aphelion = ( (np.sqrt(ans[i, 5] ** 2 + ans[i, 6] ** 2 + ans[i, 7] ** 2) * (u.m / u.s)).to( u.km / u.s ) ).value assert_allclose(v_aphelion, 29.29, rtol=0.01) @pytest.mark.parametrize( "x_vec, v_vec, t, M, end_lambda, step_size, OdeMethodKwargs, return_cartesian", [ ( np.array([306., np.pi / 2, np.pi / 2]), np.array([0., 0.1, 951.]), 0., 4e24, 0.0002, 0.3e-6, {"stepsize": 0.3e-6}, True, ), ( np.array([1e3, 0.15, np.pi / 2]), np.array([_c, 0.5e-5 * _c, 1e-4 * _c]), 0., 5.972e24, 0.0002, 0.5e-6, {"stepsize": 0.5e-6}, False, ), ], ) def test_calculate_trajectory_iterator_schwarzschild( x_vec, v_vec, t, M, end_lambda, step_size, OdeMethodKwargs, return_cartesian ): ms_cov = Schwarzschild(M=M) x_4vec = four_position(t, x_vec) ms_cov_mat = ms_cov.metric_covariant(x_4vec) init_vec = stacked_vec(ms_cov_mat, t, x_vec, v_vec, time_like=True) geod = Geodesic( metric=ms_cov, init_vec=init_vec, end_lambda=end_lambda, step_size=step_size, return_cartesian=return_cartesian ) traj = geod.trajectory traj_iter = geod.calculate_trajectory_iterator(OdeMethodKwargs=OdeMethodKwargs, return_cartesian=return_cartesian) traj_iter_list = list() for _, val in zip(range(50), traj_iter): traj_iter_list.append(val[1]) traj_iter_arr = np.array(traj_iter_list) assert_allclose(traj[:50, :], traj_iter_arr, rtol=1e-10) def test_calculate_trajectory_iterator_RuntimeWarning_schwarzschild(): t = 0. M = 1e25 x_vec = np.array([306., np.pi / 2, np.pi / 2]) v_vec = np.array([0., 0.01, 10.]) ms_cov = Schwarzschild(M=M) x_4vec = four_position(t, x_vec) ms_cov_mat = ms_cov.metric_covariant(x_4vec) init_vec = stacked_vec(ms_cov_mat, t, x_vec, v_vec, time_like=True) end_lambda = 1. stepsize = 0.4e-6 OdeMethodKwargs = {"stepsize": stepsize} geod = Geodesic( metric=ms_cov, init_vec=init_vec, end_lambda=end_lambda, step_size=stepsize, return_cartesian=False ) with warnings.catch_warnings(record=True) as w: it = geod.calculate_trajectory_iterator( OdeMethodKwargs=OdeMethodKwargs, ) for _, _ in zip(range(1000), it): pass assert len(w) >= 1 @pytest.mark.parametrize( "x_vec, v_vec, t, M, a, end_lambda, step_size", [ ( np.array([306., np.pi / 2.05, np.pi / 2]), np.array([0., 0., 951.]), 0., 4e24, 2e-3, 0.001, 0.5e-6, ), ( np.array([1e3, 0.15, np.pi / 2]), np.array([0.1 * _c, 0.5e-5 * _c, 0.5e-4 * _c]), 0., 5.972e24, 2e-3, 0.0001, 0.5e-6, ), ( np.array([50e3, np.pi / 2, np.pi / 2]),
np.array([0.1 * _c, 2e-7 * _c, 1e-5])
numpy.array
import os import sys import json import typing import torch import numpy as np import albumentations import nibabel as nib from skimage import transform from torch.utils.data import random_split from torch.utils.data.dataset import Dataset from warnings import simplefilter from matplotlib import pyplot as plt simplefilter(action='ignore', category=FutureWarning) class GenACDC(Dataset): def __init__(self, data_dir: str, # path to ACDC nii data slice_num: int, data_mode: str, resolution: float ) -> None: super(GenACDC, self).__init__() self.data_dir = data_dir self.slice_num = slice_num self.data_mode = data_mode self.res = resolution self.transform = albumentations.Compose([ albumentations.augmentations.Normalize(mean=0.5, std=0.5, max_pixel_value=1.0)] ) if self.data_mode == 'labeled': self.data = self._load_labeled_data() else: self.data = self._load_unlabeled_data(include_all=True) def __getitem__(self, index: int ) -> typing.Tuple[typing.Any, typing.Any]: img, mask, label = self.data['images'][index], self.data['masks'][index], self.data['labels'][index] augmented_img = self.transform(image=img.numpy().transpose(1, 2, 0)) img = torch.from_numpy(augmented_img['image'].transpose(2, 0, 1)) return img, mask, label def __len__(self) -> int: return len(self.data['images']) def create_labeled_dataset(self, path_to_dir: str, slice_num: int ) -> None: try: os.mkdir(path_to_dir) os.mkdir(path_to_dir + os.sep + 'images') os.mkdir(path_to_dir + os.sep + 'masks') os.mkdir(path_to_dir + os.sep + 'labels') except OSError: print ("Creation of directories in %s failed" % path_to_dir) if slice_num == -1: images = self.data['images'] masks = self.data['masks'] targets = [] for i in range(images.shape[0]): for slice_num in range(images[i].shape[0]): self._save_intensity_image(images[i][slice_num].squeeze(0).numpy(), path_to_dir, self.data['subject_idx'][i], self.data['frame_idx'][i], slice_num) self._save_mask(masks[i][slice_num].squeeze(0).numpy(), path_to_dir, self.data['subject_idx'][i], self.data['frame_idx'][i], slice_num) targets.append(self.data['labels'][i].item()) else: images = self.data['images'][:, slice_num] masks = self.data['masks'][:, slice_num] for i in range(images.shape[0]): self._save_intensity_image(images[i].squeeze(0).numpy(), path_to_dir, self.data['subject_idx'][i], self.data['frame_idx'][i], slice_num) self._save_mask(masks[i].squeeze(0).numpy(), path_to_dir, self.data['subject_idx'][i], self.data['frame_idx'][i], slice_num) targets = self.data['labels'].tolist() with open(path_to_dir + '/labels/' + 'labels.json', 'w') as outfile: outfile.write( '[' + ',\n'.join(json.dumps(i) for i in targets) + ']\n' ) def create_unlabeled_dataset(self, path_to_dir: str, slice_num: int ) -> None: try: os.mkdir(path_to_dir) os.mkdir(path_to_dir + os.sep + 'images') os.mkdir(path_to_dir + os.sep + 'labels') except OSError: print ("Creation of directories in %s failed" % path_to_dir) if slice_num == -1: images = self.data['images'] targets = [] for i in range(images.shape[0]): for slice_num in range(images[i].shape[0]): self._save_intensity_image(images[i][slice_num].squeeze(0).numpy(), path_to_dir, self.data['subject_idx'][i], self.data['frame_idx'][i], slice_num) targets.append(self.data['labels'][i].item()) else: images = self.data['images'][:, slice_num] for i in range(images.shape[0]): self._save_intensity_image(images[i].squeeze(0).numpy(), path_to_dir, self.data['subject_idx'][i], self.data['frame_idx'][i], slice_num) targets = self.data['labels'].tolist() with open(path_to_dir + '/labels/' + 'labels.json', 'w') as outfile: outfile.write( '[' + ',\n'.join(json.dumps(i) for i in targets) + ']\n' ) def _load_labeled_data(self) -> typing.Dict[str, np.array]: td = {} images, masks, labels, subject_idx, frame_idx = self._load_raw_labeled_data() td = { "images": torch.from_numpy(np.float32(images)), "masks": torch.from_numpy(np.float32(masks)), "labels": torch.from_numpy(np.float32(labels)), "subject_idx": torch.from_numpy(subject_idx), "frame_idx": torch.from_numpy(frame_idx) } return td def _load_raw_labeled_data(self) -> typing.List[np.array]: images, masks_lv, masks_rv, masks_myo, labels = [], [], [], [], [] subject_idx, frame_idx = [], [] volumes = list(range(1, 151)) for patient_i in volumes: patient = 'patient%03d' % patient_i patient_folder = os.path.join(self.data_dir, patient) if os.path.exists(patient_folder) == False: continue # retrieve pathology label from patient's Info.cfg file cfg = [f for f in os.listdir(patient_folder) if 'cfg' in f and f.startswith('Info')] label_file = open(os.path.join(patient_folder, cfg[0]), mode = 'r') lines = label_file.readlines() label_file.close() label_char = '' for line in lines: line = line.split(' ') if line[0] == 'Group:': label_char = line[1] if label_char == 'NOR\n': label = 0 elif label_char == 'MINF\n': label = 1 elif label_char == 'DCM\n': label = 2 elif label_char == 'HCM\n': label = 3 else: # RV label = 4 gt = [f for f in os.listdir(patient_folder) if 'gt' in f and f.startswith(patient + '_frame')] ims = [f.replace('_gt', '') for f in gt] for i in range(len(ims)): subject_idx.append(patient_i) frame_idx.append(int(ims[i].split('.')[0].split('frame')[-1])) im = self._process_raw_image(ims[i], patient_folder) im = np.expand_dims(im, axis=-1) m = self._resample_raw_image(gt[i], patient_folder, binary=True) m = np.expand_dims(m, axis=-1) images.append(im) # convert 3-dim mask array to 3 binary mask arrays for lv, rv, myo m_lv = m.copy() m_lv[m != 3] = 0 m_lv[m == 3] = 1 masks_lv.append(m_lv) m_rv = m.copy() m_rv[m != 1] = 0 m_rv[m == 1] = 1 masks_rv.append(m_rv) m_myo = m.copy() m_myo[m != 2] = 0 m_myo[m == 2] = 1 masks_myo.append(m_myo) labels.append(label) # move slice axis to the first position images = [np.moveaxis(im, 2, 0) for im in images] masks_lv = [np.moveaxis(m, 2, 0) for m in masks_lv] masks_rv = [np.moveaxis(m, 2, 0) for m in masks_rv] masks_myo = [np.moveaxis(m, 2, 0) for m in masks_myo] # normalize images for i in range (len(images)): images[i] = (images[i] / 757.4495) * 255.0 # crop images and masks to the same pixel dimensions and concatenate all data images_cropped, masks_lv_cropped = self._crop_same(images, masks_lv, (224, 224)) _, masks_rv_cropped = self._crop_same(images, masks_rv, (224, 224)) _, masks_myo_cropped = self._crop_same(images, masks_myo, (224, 224)) # images_cropped = np.expand_dims(images_cropped[:], axis=0) images_cropped = [np.expand_dims(image, axis=0) for image in images_cropped] images_cropped = np.concatenate(images_cropped, axis=0) masks_cropped = np.concatenate([masks_myo_cropped, masks_lv_cropped, masks_rv_cropped], axis=-1) labels = np.array(labels) subject_idx = np.array(subject_idx) frame_idx = np.array(frame_idx) return images_cropped.transpose(0,1,4,2,3), masks_cropped.transpose(0,1,4,2,3), labels, subject_idx, frame_idx def _load_unlabeled_data(self, include_all: bool=False ) -> typing.Dict[str, torch.Tensor]: td = {} images, labels, subject_idx, frame_idx = self._load_raw_unlabeled_data(include_all) td = { "images": torch.from_numpy(np.float32(images)), "labels": torch.from_numpy(np.float32(labels)), "subject_idx": torch.from_numpy(subject_idx), "frame_idx": torch.from_numpy(frame_idx) } return td def _load_raw_unlabeled_data(self, include_all: bool ) -> np.array: images, labels = [], [] subject_idx, frame_idx = [], [] volumes = list(range(1, 151)) more_than_10_cnt = 0 for patient_i in volumes: patient = 'patient%03d' % patient_i patient_folder = os.path.join(self.data_dir, patient) if os.path.exists(patient_folder) == False: continue # retrieve pathology label from patient's Info.cfg file cfg = [f for f in os.listdir(patient_folder) if 'cfg' in f and f.startswith('Info')] label_file = open(os.path.join(patient_folder, cfg[0]), mode = 'r') lines = label_file.readlines() label_file.close() label_char = '' for line in lines: line = line.split(' ') if line[0] == 'Group:': label_char = line[1] if label_char == 'NOR\n': label = 0 elif label_char == 'MINF\n': label = 1 elif label_char == 'DCM\n': label = 2 elif label_char == 'HCM\n': label = 3 else: #RV label = 4 im_name = patient + '_4d.nii.gz' im = self._process_raw_image(im_name, patient_folder) frames = range(im.shape[-1]) gt = [f for f in os.listdir(patient_folder) if 'gt' in f and not f.startswith('._')] if len(gt) > 0: gt_ims = [f.replace('_gt', '') for f in gt if not f.startswith('._')] else: gt_ims = [f for f in os.listdir(patient_folder) if 'frame' in f and not f.startswith('._')] exclude_frames = [int(gt_im.split('.')[0].split('frame')[1]) for gt_im in gt_ims] if include_all: frames = [f for f in range(im.shape[-1]) if (f > exclude_frames[0] and f < exclude_frames[1]) or f == exclude_frames[0] or f == exclude_frames[1]] else: frames = [f for f in range(im.shape[-1]) if f not in exclude_frames and f > exclude_frames[0] and f < exclude_frames[1]] for frame in frames: subject_idx.append(patient_i) frame_idx.append(frame) im_res = im[:, :, :, frame] if im_res.sum() == 0: print('Skipping blank images') continue im_res = np.expand_dims(im_res, axis=-1) images.append(im_res) labels.append(label) images = [np.moveaxis(im, 2, 0) for im in images] # normalize images for i in range (len(images)): images[i] = np.round((images[i] / 757.4495) * 255.0) zeros = [np.zeros(im.shape) for im in images] images_cropped, _ = self._crop_same(images, zeros, (224, 224)) images_cropped = np.concatenate(np.expand_dims(images_cropped, axis=0), axis=0)#[..., 0] labels = np.array(labels) subject_idx = np.array(subject_idx) frame_idx = np.array(frame_idx) return images_cropped.transpose(0,1,4,2,3), labels, subject_idx, frame_idx def _resample_raw_image(self, # Load raw data (image/mask) and resample to fixed resolution. mask_fname: str, # filename of mask patient_folder: str, # folder containing patient data binary: bool=False # boolean to define binary masks or not )-> np.array: m_nii_fname = os.path.join(patient_folder, mask_fname) new_res = (self.res, self.res) im_nii = nib.load(m_nii_fname) im_data = im_nii.get_data() voxel_size = im_nii.header.get_zooms() sform_matrix = im_nii.header.get_sform() scale_vector = [voxel_size[i] / new_res[i] for i in range(len(new_res))] order = 0 if binary else 1 result = [] dims = im_data.shape if len(dims) < 4: for i in range(im_data.shape[-1]): if i > 5: break im = im_data[..., i] rescaled = transform.rescale(im, scale_vector, order=order, preserve_range=True, mode='constant') rotated = transform.rotate(rescaled, 270.0) result.append(np.expand_dims(np.flip(rotated, axis=0), axis=-1)) else: for i in range(im_data.shape[-1]): inner_im_data = im_data[..., i] all_slices = [] for j in range(inner_im_data.shape[-1]): if j > 5: break im = inner_im_data[..., j] rescaled = transform.rescale(im, scale_vector, order=order, preserve_range=True, mode='constant') rotated = transform.rotate(rescaled, 270.0) all_slices.append(np.expand_dims(rotated, axis=-1)) result.append(np.expand_dims(np.concatenate(all_slices, axis=-1), axis=-1)) return np.concatenate(result, axis=-1) def _process_raw_image(self, # Normalise and crop extreme values of an image im_fname: str, # filename of the image patient_folder: str, # folder of patient data value_crop: bool=True # True/False to crop values between 5/95 percentiles ) -> typing.List: im = self._resample_raw_image(im_fname, patient_folder, binary=False) # crop to 5-95% if value_crop: p5 = np.percentile(im.flatten(), 5) p95 = np.percentile(im.flatten(), 95) im = np.clip(im, p5, p95) return im def _crop_same(self, image_list: list, # List of images. Each element should be 4-dimensional, (slice,height,width,channel) mask_list: list, # List of masks. Each element should be 4-dimensional, (slice,height,width,channel) size: tuple, # Dimensions to crop the images to. mode: str='equal', # [equal, left, right]. Denotes where to crop pixels from. Defaults to middle. pad_mode: str='edge', # ['edge', 'constant']. 'edge' pads using the values of the edge pixels, 'constant' pads with a constant value image_only: bool=False ) -> typing.List[np.array]: min_w = np.min([im.shape[1] for im in image_list]) if size[0] is None else size[0] min_h = np.min([im.shape[2] for im in image_list]) if size[1] is None else size[1] if image_only: img_result = [] for i in range(len(image_list)): im = image_list[i] if im.shape[1] > min_w: im = self._crop(im, 1, min_w, mode) if im.shape[1] < min_w: im = self._pad(im, 1, min_w, pad_mode) if im.shape[2] > min_h: im = self._crop(im, 2, min_h, mode) if im.shape[2] < min_h: im = self._pad(im, 2, min_h, pad_mode) img_result.append(im) return img_result else: img_result, msk_result = [], [] for i in range(len(mask_list)): im = image_list[i] m = mask_list[i] if m.shape[1] > min_w: m = self._crop(m, 1, min_w, mode) if im.shape[1] > min_w: im = self._crop(im, 1, min_w, mode) if m.shape[1] < min_w: m = self._pad(m, 1, min_w, pad_mode) if im.shape[1] < min_w: im = self._pad(im, 1, min_w, pad_mode) if m.shape[2] > min_h: m = self._crop(m, 2, min_h, mode) if im.shape[2] > min_h: im = self._crop(im, 2, min_h, mode) if m.shape[2] < min_h: m = self._pad(m, 2, min_h, pad_mode) if im.shape[2] < min_h: im = self._pad(im, 2, min_h, pad_mode) img_result.append(im) msk_result.append(m) return img_result, msk_result def _crop(self, image: list, dim: int, nb_pixels: int, mode: str ) -> typing.Union[None, list]: diff = image.shape[dim] - nb_pixels if mode == 'equal': l = int(
np.ceil(diff / 2)
numpy.ceil
from collections import defaultdict from functools import reduce import numpy as np import pandas as pd from nltk import word_tokenize from fuzzywuzzy import fuzz import hybrid_search_engine from hybrid_search_engine.utils import text_processing as processing from hybrid_search_engine.utils.exceptions import SearchEngineException class SearchEngine(): def __init__(self, index, documents_df, columns, filtering_columns=[], config=None, nlp_engine=None, syntax_threshold=0.9, semantic_threshold=0.8): self.index = index self.matrix = np.stack(index["token vector"]) self.syntax_threshold = syntax_threshold self.semantic_threshold = semantic_threshold self.document_ids = documents_df[documents_df.columns[0]] self.document_idx_mapping = {id_: i for i, id_ in enumerate(self.document_ids)} self.documents_norm = documents_df[[f"{c} Norm" for c in columns]] self.document_tags = documents_df[filtering_columns] self.default_columns = columns self.filtering_columns = filtering_columns self.doc2token_mapping = self.__create_doc2token_mapping() self.lower = True self.dynamic_idf_reweighting = False self.use_TF = True self.use_IDF = True self.normalize_query = True self.syntax_weight = 0.5 self.semantic_weight = 0.5 self.dynamic_idf_reweighting = False default_weight = 1 / len(columns) self.column_weights = {c: default_weight for c in columns} if config is not None: self.update_config(config) if nlp_engine is None: self.nlp_engine = hybrid_search_engine.nlp_engine else: self.nlp_engine = nlp_engine def __create_doc2token_mapping(self): doc2token_dictionary_mapping = defaultdict(list) for column in self.default_columns: document_ids = self.index[column].values for i, doc_ids in enumerate(document_ids): for doc_id in doc_ids: doc2token_dictionary_mapping[doc_id].append(i) for k in doc2token_dictionary_mapping.keys(): doc2token_dictionary_mapping[k] = list(sorted(set(doc2token_dictionary_mapping[k]))) doc2token_mapping = pd.DataFrame({ "document_id": [k for k in doc2token_dictionary_mapping.keys()], "token_ids": [np.array(v) for k, v in doc2token_dictionary_mapping.items()] }) doc2token_mapping["document_id"] = self.document_ids[doc2token_mapping["document_id"]] doc2token_mapping.set_index(keys="document_id", inplace=True) return doc2token_mapping def __filter_token_by_doc_ids(self, doc_ids): token_ids = self.doc2token_mapping.loc[doc_ids, "token_ids"].values token_ids = np.concatenate(token_ids) token_ids = np.unique(token_ids) return np.sort(token_ids) def update_config(self, config): if "dynamic_idf_reweighting" in config: self.dynamic_idf_reweighting = config["dynamic_idf_reweighting"] else: self.dynamic_idf_reweighting = False if "use_TF" in config: self.use_TF = config["use_TF"] else: self.use_TF = True if "use_IDF" in config: self.use_IDF = config["use_IDF"] else: self.use_IDF = True if "normalize_query" in config: self.normalize_query = config["normalize_query"] else: self.normalize_query = True if "similarity_weight" in config and config["similarity_weight"] is not None: for weight in ["syntax_weight", "semantic_weight"]: if config["similarity_weight"][weight] < 0: raise SearchEngineException(f"{weight} similarity must be greater than 0") self.syntax_weight = config["similarity_weight"]["syntax_weight"] self.semantic_weight = config["similarity_weight"]["semantic_weight"] if "column_weights" in config and config["column_weights"] is not None: for c, weight in config["column_weights"].items(): if weight < 0: raise SearchEngineException(f"{c} weight must be greater than 0") self.column_weights = config["column_weights"] if "lower" in config: self.lower = config["lower"] def find(self, query, doc_ids=[], columns=[], filtering_options={}): processed_query = processing.process_string(query, lower=self.lower) query_tokens = word_tokenize(processed_query) if len(query_tokens) == 0: return f"Unable to process query. Query '{query}' has been reduced to empty string by text processing" if len(columns) == 0: columns = self.default_columns if len(doc_ids) > 0: token_ids = self.__filter_token_by_doc_ids(doc_ids) else: token_ids = self.index.index.values v = [self.nlp_engine(t).vector for t in query_tokens] v = np.array([c / np.linalg.norm(c) for c in v]) v = np.nan_to_num(v) syntax_scores = self.index.loc[token_ids]["token"].apply(syntax_similarity, args=(processed_query,)) semantic_scores = np.matmul(self.matrix[token_ids], v.T) semantic_scores =
np.max(semantic_scores, axis=1)
numpy.max
import gym from scipy.integrate import ode import numpy as np import json from .models import dcmotor_model, converter_models, load_models from ..dashboard import MotorDashboard from ..utils import EulerSolver class _DCMBaseEnv(gym.Env): """ **Description:** An abstract environment for common functions of the DC motors **Observation:** Specified by the concrete motor. It is always a concatenation of the state variables, voltages, torque and next reference values. **Actions:** Depending on the converter type the action space may be discrete or continuous Type: Discrete(2 / 3 / 4) Num Action: Depend on the converter 1Q Converter: (only positive voltage and positive current) - 0: transistor block - 1: positive DC-link voltage applied 2Q Converter: (only positive voltage and both current directions) - 0: both transistors blocking - 1: positive DC-link voltage applied - 2: 0V applied 4Q Converter (both voltage and current directions) - 0: short circuit with upper transistors, 0V applied - 1: positive DC-link voltage - 2: negative DC-link voltage - 3: short circuit with lower transistors, 0V applied Type: Box() Defines the duty cycle for the transistors.\n [0, 1]: 1Q and 2Q\n [-1, 1]: 4Q For an externally excited motor it is a two dimensional box from [-1, 1] or [0, 1] **Reward:** The reward is the cumulative squared error (se) or the cumulative absolute error (ae) between the current value and the current reference of the state variables. Both are also available in a shifted form with an added on such that the reward is positive. More details are given below. The variables are normalised by their maximal values and weighted by the reward_weights. **Starting State:** All observations are assigned a random value. **Episode Termination**: An episode terminates, when all the steps in the reference have been simulated or a limit has been violated. **Attributes:** +----------------------------+----------------------------------------------------------+ | **Name** | **Description** | +============================+==========================================================+ | **state_vars** | Names of all the quantities that can be observed | +----------------------------+----------------------------------------------------------+ | **state_var_positions** | Inverse dict of the state vars. Mapping of key to index. | +----------------------------+----------------------------------------------------------+ | **limits** | Maximum allowed values of the state variables | +----------------------------+----------------------------------------------------------+ | **reward_weights** | Ratio of the weight of the state variable for the reward | +----------------------------+----------------------------------------------------------+ | **on_dashboard** | Flag indicating if the state var is shown on dashboard | +----------------------------+----------------------------------------------------------+ | **noise_levels** | Percentage of the noise power to the signal power | +----------------------------+----------------------------------------------------------+ | **zero_refs** | State variables that get a fixed zero reference | +----------------------------+----------------------------------------------------------+ """ OMEGA_IDX = 0 MOTOR_IDX = None # region Properties @property def tau(self): """ Returns: the step size of the environment Default: 1e-5 for discrete / 1e-4 for continuous action space """ return self._tau @property def episode_length(self): """ Returns: The length of the current episode """ return self._episode_length @episode_length.setter def episode_length(self, episode_length): """ Set the length of the episode in the environment. Must be larger than the prediction horizon. """ self._episode_length = max(self._prediction_horizon + 1, episode_length) @property def k(self): """ Returns: The current step in the running episode """ return self._k @property def limit_observer(self): return self._limit_observer @property def safety_margin(self): return self._safety_margin @property def prediction_horizon(self): return self._prediction_horizon @property def motor_parameter(self): """ Returns: motor parameter with calculated limits """ params = self.motor_model.motor_parameter params['safety_margin'] = self.safety_margin params['episode_length'] = self._episode_length params['prediction_horizon'] = self._prediction_horizon params['tau'] = self._tau params['limits'] = self._limits.tolist() return params @property def _reward(self): return self._reward_function # endregion def __init__(self, motor_type, state_vars, zero_refs, converter_type, tau, episode_length=10000, load_parameter=None, motor_parameter=None, reward_weight=(('omega', 1.0),), on_dashboard=('omega',), integrator='euler', nsteps=1, prediction_horizon=0, interlocking_time=0.0, noise_levels=0.0, reward_fct='swsae', limit_observer='off', safety_margin=1.3, gamma=0.9, dead_time=True): """ Basic setting of all the common motor parameters. Args: motor_type: Can be 'dc-series', 'dc-shunt', 'dc-extex' or 'dc-permex'. Set by the child classes. state_vars: State variables of the DC motor. Set by the child classes. zero_refs: State variables that get zero references. (E.g. to punish high control power) motor_parameter: A dict of motor parameters that differ from the default ones. \n For details look into the dc_motor model. load_parameter: A dict of load parameters that differ from the default ones. \n For details look into the load model. converter_type: The specific converter type.'{disc/cont}-{1Q/2Q/4Q}'. For details look into converter tau: The step size or sampling time of the environment. episode_length: The episode length of the environment reward_weight: Iterable of key/value pairs that specifies how the rewards in the environment are weighted. E.g. :: (('omega', 0.9),('u', 0.1)) on_dashboard: Iterable that specifies the variables on the dashboard. E.g.:: ['omega','u'] integrator: Select which integrator to choose from 'euler', 'dopri5' nsteps: Maximum allowed number of steps for the integrator. prediction_horizon: The length of future reference points that are shown to the agents interlocking_time: interlocking time of the converter noise_levels: Noise levels of the state variables in percentage of the signal power. reward_fct: Select the reward function between: (Each one normalised to [0,1] or [-1,0]) \n 'swae': Absolute Error between references and state variables [-1,0] \n 'swse': Squared Error between references and state variables [-1,0]\n 'swsae': Shifted absolute error / 1 + swae [0,1] \n 'swsse': Shifted squared error / 1 + swse [0,1] \n limit_observer: Select the limit observing function. \n 'off': No limits are observed. Episode goes on. \n 'no_punish': Limits are observed, no punishment term for violation. This function should be used with shifted reward functions. \n 'const_punish': Limits are observed. Punishment in the form of -1 / (1-gamma) to punish the agent with the maximum negative reward for the further steps. This function should be used with non shifted reward functions. safety_margin: Ratio between maximal and nominal power of the motor parameters. gamma: Parameter for the punishment of a limit violation. Should equal agents gamma parameter. """ self._gamma = gamma self._safety_margin = safety_margin self._reward_function, self.reward_range = self._reward_functions(reward_fct) self._limit_observer = self._limit_observers(limit_observer) self._tau = tau self._episode_length = episode_length self.state_vars = np.array(state_vars) #: dict(int): Inverse state vars. Dictionary to map state names to positions in the state arrays self._state_var_positions = {} for ind, val in enumerate(state_vars): self._state_var_positions[val] = ind self._prediction_horizon = max(0, prediction_horizon) self._zero_refs = zero_refs #: array(bool): True, if the state variable on the index is a zero_reference. For fast access self._zero_ref_flags = np.isin(self.state_vars, self._zero_refs) self.load_model = load_models.Load(load_parameter) self.motor_model = dcmotor_model.make(motor_type, self.load_model.load, motor_parameter) self.converter_model = converter_models.Converter.make(converter_type, self._tau, interlocking_time, dead_time) self._k = 0 self._dashboard = None self._state = np.zeros(len(state_vars)) self._reference = np.zeros((len(self.state_vars), episode_length + prediction_horizon)) self._reward_weights = np.zeros(len(self._state)) self.reference_vars = np.zeros_like(self.state_vars, dtype=bool) self._on_dashboard = np.ones_like(self.state_vars, dtype=bool) if on_dashboard[0] == 'True': self._on_dashboard *= True elif on_dashboard[0] == 'False': self._on_dashboard *= False else: self._on_dashboard *= False for key in on_dashboard: self._on_dashboard[self._state_var_positions[key]] = True for key, val in reward_weight: self._reward_weights[self._state_var_positions[key]] = val for i in range(len(state_vars)): if self._reward_weights[i] > 0 and self.state_vars[i] not in self._zero_refs: self.reference_vars[i] = True integrators = ['euler', 'dopri5'] assert integrator in integrators, f'Integrator was {integrator}, but has to be in {integrators}' if integrator == 'euler': self.system = EulerSolver(self._system_eq, nsteps) else: self.system = ode(self._system_eq, self._system_jac).set_integrator(integrator, nsteps=nsteps) self.integrate = self.system.integrate self.action_space = self.converter_model.action_space self._limits = np.zeros(len(self.state_vars)) self._set_limits() self._set_observation_space() self._noise_levels = np.zeros(len(state_vars)) if type(noise_levels) is tuple: for state_var, noise_level in noise_levels: self._noise_levels[self._state_var_positions[state_var]] = noise_level else: self._noise_levels = np.ones(len(self.state_vars)) * noise_levels self._noise = None self._resetDashboard = True def seed(self, seed=None): """ Seed the random generators in the environment Args: seed: The value to seed the random number generator with """ np.random.seed(seed) def _set_observation_space(self): """ Child classes need to write their concrete observation space into self.observation_space here """ raise NotImplementedError def _set_limits(self): """ Child classes need to write their concrete limits of the state variables into self._limits here """ raise NotImplementedError def _step_integrate(self, action): """ The integration is done for one time period. The converter considers the dead time and interlocking time. Args: action: switching state of the converter that should be applied """ raise NotImplementedError def step(self, action): """ Clips the action to its limits and performs one step of the environment. Args: action: The action from the action space that will be performed on the motor Returns: Tuple(array(float), float, bool, dict): **observation:** The observation from the environment \n **reward:** The reward for the taken action \n **bool:** Flag if the episode has ended \n **info:** An always empty dictionary \n """ last_state = np.array(self._state, copy=True) self._step_integrate(action) rew = self._reward(self._state/self._limits, self._reference[:, self._k].T) done, punish = self.limit_observer(self._state) observation_references = self._reference[self.reference_vars, self._k:self._k + self._prediction_horizon + 1] # normalize the observation observation = np.concatenate(( self._state/self._limits + self._noise[:, self._k], observation_references.flatten() )) self._k += 1 if done == 0: # Check if period is finished done = self._k == self._episode_length else: rew = punish return observation, rew, done, {} def _set_initial_value(self): """ call self.system.set_initial_value(initial_state, 0.0) to reset the state to initial. """ self.system.set_initial_value(self._state[self.MOTOR_IDX], 0.0) def reset(self): """ Resets the environment. All state variables will be set to a random value in [-nominal value, nominal value]. New references will be generated. Returns: The initial observation for the episode """ self._k = 0 # Set new state self._set_initial_state() # New References self._generate_references() # Reset Integrator self._set_initial_value() # Reset Dashboard Flag self._resetDashboard = True # Generate new gaussian noise for the state variables self._noise = ( np.sqrt(self._noise_levels/6) / self._safety_margin * np.random.randn(self._episode_length+1, len(self.state_vars)) ).T # Calculate initial observation observation_references = self._reference[self.reference_vars, self._k:self._k + self._prediction_horizon+1] observation = np.concatenate((self._state/self._limits, observation_references.flatten())) return observation def render(self, mode='human'): """ Call this function once a cycle to update the visualization with the current values. """ if not self._on_dashboard.any(): return if self._dashboard is None: # First Call: No dashboard was initialised before self._dashboard = MotorDashboard(self.state_vars[self._on_dashboard], self._tau, self.observation_space.low[:len(self.state_vars)][self._on_dashboard] * self._limits[self._on_dashboard], self.observation_space.high[:len(self.state_vars)][self._on_dashboard] * self._limits[self._on_dashboard], self._episode_length, self._safety_margin, self._reward_weights[self._on_dashboard] > 0) if self._resetDashboard: self._resetDashboard = False self._dashboard.reset((self._reference[self._on_dashboard].T * self._limits[self._on_dashboard]).T) self._dashboard.step(self._state[self._on_dashboard], self._k) # Update the plot in the dashboard def close(self): """ When the environment is closed the dashboard will also be closed. This function does not need to be called explicitly. """ if self._dashboard is not None: self._dashboard.close() def _system_eq(self, t, state, u_in, noise): """ The differential equation of the whole system consisting of the converter, load and motor. This function is called by the integrator. Args: t: Current time of the system state: The current state as a numpy array. u_in: Applied input voltage Returns: The solution of the system. The first derivatives of all the state variables of the system. """ t_load = self.load_model.load(state[self.OMEGA_IDX]) return self.motor_model.model(state, t_load, u_in + noise) def _system_jac(self, t, state): """ The Jacobian matrix of the systems equation. Args: t: Current time of the system. state: Current state Returns: The solution of the Jacobian matrix for the current state """ load_jac = self.load_model.jac(state) return self.motor_model.jac(state, load_jac) # region Reference Generation def _reference_sin(self, bandwidth=20): """ Set sinus references for the state variables with a random amplitude, offset and phase shift Args: bandwidth: bandwidth of the system """ x = np.arange(0, (self._episode_length + self._prediction_horizon)) if self.observation_space.low[0] == 0.0: amplitude = np.random.rand() / 2 offset = np.random.rand() * (1 - 2*amplitude) + amplitude else: amplitude = np.random.rand() offset = (2 * np.random.rand() - 1) * (1 - amplitude) t_min, t_max = self._set_time_interval_reference('sin', bandwidth) # specify range for period time t_s = np.random.rand() * (t_max - t_min) + t_min phase_shift = 2 * np.pi * np.random.rand() self._reference = amplitude *
np.sin(2 * np.pi / t_s * x * self.tau + phase_shift)
numpy.sin
import numpy as np from scipy import ndimage, optimize import pdb import matplotlib.pyplot as plt import cv2 import matplotlib.patches as patches import multiprocessing import datetime import json #################################################### def findMaxRect(data): '''http://stackoverflow.com/a/30418912/5008845''' nrows, ncols = data.shape w = np.zeros(dtype=int, shape=data.shape) h = np.zeros(dtype=int, shape=data.shape) skip = 1 area_max = (0, []) for r in range(nrows): for c in range(ncols): if data[r][c] == skip: continue if r == 0: h[r][c] = 1 else: h[r][c] = h[r - 1][c] + 1 if c == 0: w[r][c] = 1 else: w[r][c] = w[r][c - 1] + 1 minw = w[r][c] for dh in range(h[r][c]): minw = min(minw, w[r - dh][c]) area = (dh + 1) * minw if area > area_max[0]: area_max = (area, [(r - dh, c - minw + 1, r, c)]) return area_max ######################################################################## def residual(angle, data): nx, ny = data.shape M = cv2.getRotationMatrix2D(((nx - 1) / 2, (ny - 1) / 2), angle, 1) RotData = cv2.warpAffine(data, M, (nx, ny), flags=cv2.INTER_NEAREST, borderValue=1) rectangle = findMaxRect(RotData) return 1. / rectangle[0] ######################################################################## def residual_star(args): return residual(*args) ######################################################################## def get_rectangle_coord(angle, data, flag_out=None): nx, ny = data.shape M = cv2.getRotationMatrix2D(((nx - 1) / 2, (ny - 1) / 2), angle, 1) RotData = cv2.warpAffine(data, M, (nx, ny), flags=cv2.INTER_NEAREST, borderValue=1) rectangle = findMaxRect(RotData) if flag_out: return rectangle[1][0], M, RotData else: return rectangle[1][0], M ######################################################################## def findRotMaxRect(data_in, flag_opt=False, flag_parallel=False, nbre_angle=10, flag_out=None, flag_enlarge_img=False, limit_image_size=300): ''' flag_opt : True only nbre_angle are tested between 90 and 180 and a opt descent algo is run on the best fit False 100 angle are tested from 90 to 180. flag_parallel: only valid when flag_opt=False. the 100 angle are run on multithreading flag_out : angle and rectangle of the rotated image are output together with the rectangle of the original image flag_enlarge_img : the image used in the function is double of the size of the original to ensure all feature stay in when rotated limit_image_size : control the size numbre of pixel of the image use in the function. this speeds up the code but can give approximated results if the shape is not simple ''' # time_s = datetime.datetime.now() # make the image square # ---------------- nx_in, ny_in = data_in.shape if nx_in != ny_in: n = max([nx_in, ny_in]) data_square =
np.ones([n, n])
numpy.ones
import json import os import time from copy import deepcopy import TransportMaps.Distributions as dist import TransportMaps.Likelihoods as like from typing import List, Dict from matplotlib import pyplot as plt from factors.Factors import Factor, ExplicitPriorFactor, ImplicitPriorFactor, \ LikelihoodFactor, BinaryFactorMixture, KWayFactor from sampler.NestedSampling import GlobalNestedSampler from sampler.SimulationBasedSampler import SimulationBasedSampler from slam.Variables import Variable, VariableType from slam.FactorGraph import FactorGraph from slam.BayesTree import BayesTree, BayesTreeNode import numpy as np from sampler.sampler_utils import JointFactor from utils.Functions import sort_pair_lists from utils.Visualization import plot_2d_samples from utils.Functions import sample_dict_to_array, array_order_to_dict class SolverArgs: def __init__(self, elimination_method: str = "natural", posterior_sample_num: int = 500, local_sample_num: int = 500, store_clique_samples: bool = False, local_sampling_method="direct", adaptive_posterior_sampling=None, *args, **kwargs ): # graph-related and tree-related params self.elimination_method = elimination_method self.posterior_sample_num = posterior_sample_num self.store_clique_samples = store_clique_samples self.local_sampling_method = local_sampling_method self.local_sample_num = local_sample_num self.adaptive_posterior_sampling = adaptive_posterior_sampling def jsonStr(self): return json.dumps(self.__dict__) class CliqueSeparatorFactor(ImplicitPriorFactor): def sample(self, num_samples: int, **kwargs): return NotImplementedError("implementation depends on density models") class ConditionalSampler: def conditional_sample_given_observation(self, conditional_dim, obs_samples=None, sample_number=None): """ This method returns samples with the dimension of conditional_dim. If sample_number is given, samples of the first conditional_dim variables are return. If obs_samples is given, samples of the first conditional_dim variables after the dimension of obs_samples will be returned. obs_samples.shape = (sample num, dim) Note that the dims here are of the vectorized point on manifolds not the dim of manifold. """ raise NotImplementedError("Implementation depends on density estimation method.") class FactorGraphSolver: """ This is the abstract class of factor graph solvers. It mainly works as: 1. the interface for users to define and solve factor graphs. 2. the maintainer of factor graphs and Bayes tree for incremental inference 3. fitting probabilistic models to the working part of factor graph and Bayes tree 4. inference (sampling) on the entire Bayes tree The derived class may reply on different probabilistic modeling approaches. """ def __init__(self, args: SolverArgs): """ Parameters ---------- elimination_method : string option of heuristics for variable elimination ordering. TODO: this can be a dynamic parameter when updating Bayes tree """ self._args = args self._physical_graph = FactorGraph() self._working_graph = FactorGraph() self._physical_bayes_tree = None self._working_bayes_tree = None self._conditional_couplings = {} # map from Bayes tree clique to flows self._implicit_factors = {} # map from Bayes tree clique to factor self._samples = {} # map from variable to samples self._new_nodes = [] self._new_factors = [] self._clique_samples = {} # map from Bayes tree clique to samples self._clique_true_obs = {} # map from Bayes tree clique to observations which augments flow models self._clique_density_model = {} # map from Bayes tree clique to flow model # map from Bayes tree clique to variable pattern; (Separator,Frontal) in reverse elimination order self._clique_variable_pattern = {} self._elimination_ordering = [] self._reverse_ordering_map = {} self._temp_training_loss = {} def set_args(self, args: SolverArgs): raise NotImplementedError("Implementation depends on probabilistic modeling approaches.") @property def elimination_method(self) -> str: return self._args.elimination_method @property def elimination_ordering(self) -> List[Variable]: return self._elimination_ordering @property def physical_vars(self) -> List[Variable]: return self._physical_graph.vars @property def new_vars(self) -> List[Variable]: return self._new_nodes @property def working_vars(self) -> List[Variable]: return self._working_graph.vars @property def physical_factors(self) -> List[Factor]: return self._physical_graph.factors @property def new_factors(self) -> List[Factor]: return self._new_factors @property def working_factors(self) -> List[Factor]: return self._working_graph.factors @property def working_factor_graph(self) -> FactorGraph: return self._working_graph @property def physical_factor_graph(self) -> FactorGraph: return self._physical_graph @property def working_bayes_tree(self) -> BayesTree: return self._working_bayes_tree @property def physical_bayes_tree(self) -> BayesTree: return self._physical_bayes_tree def generate_natural_ordering(self) -> None: """ Generate the ordering by which nodes are added """ self._elimination_ordering = self._physical_graph.vars + self._new_nodes def generate_pose_first_ordering(self) -> None: """ Generate the ordering by which nodes are added and lmk eliminated later """ natural_order = self._physical_graph.vars + self._new_nodes pose_list = [] lmk_list = [] for node in natural_order: if node._type == VariableType.Landmark: lmk_list.append(node) else: pose_list.append(node) self._elimination_ordering = pose_list + lmk_list def generate_ccolamd_ordering(self) -> None: """ """ physical_graph_ordering = [var for var in self._elimination_ordering if var not in self._working_graph.vars] working_graph_ordering = self._working_graph.analyze_elimination_ordering( method="ccolamd", last_vars= [[var for var in self._working_graph.vars if var.type == VariableType.Pose][-1]]) self._elimination_ordering = physical_graph_ordering + working_graph_ordering def generate_ordering(self) -> None: """ Generate the ordering by which Bayes tree should be generated """ if self._args.elimination_method == "natural": self.generate_natural_ordering() elif self._args.elimination_method == "ccolamd": self.generate_ccolamd_ordering() elif self._args.elimination_method == "pose_first": self.generate_pose_first_ordering() self._reverse_ordering_map = { var: index for index, var in enumerate(self._elimination_ordering[::-1])} # TODO: Add other ordering methods def add_node(self, var: Variable = None, name: str = None, dim: int = None) -> "FactorGraphSolver": """ Add a new node The node has not been added to the physical or current factor graphs :param var: :param name: used only when variable is not specified :param dim: used only when variable is not specified :return: the current problem """ if var: self._new_nodes.append(var) else: self._new_nodes.append(Variable(name, dim)) return self def add_factor(self, factor: Factor) -> "FactorGraphSolver": """ Add a prior factor to specified nodes The factor has not been added to physical or current factor graphs :param factor :return: the current problem """ self._new_factors.append(factor) return self def add_prior_factor(self, vars: List[Variable], distribution: dist.Distribution) -> "FactorGraphSolver": """ Add a prior factor to specified nodes The factor has not been added to physical or current factor graphs :param vars :param distribution :return: the current problem """ self._new_factors.append(ExplicitPriorFactor( vars=vars, distribution=distribution)) return self def add_likelihood_factor(self, vars: List[Variable], likelihood: like.LikelihoodBase) -> "FactorGraphSolver": """ Add a likelihood factor to specified nodes The factor has not been added to physical or current factor graphs :param vars :param likelihood :return: the current problem """ self._new_factors.append(LikelihoodFactor( vars=vars, log_likelihood=likelihood)) return self def update_physical_and_working_graphs(self, timer: List[float] = None, device: str = "cpu" ) -> "FactorGraphSolver": """ Add all new nodes and factors into the physical factor graph, retrieve the working factor graph, update Bayes trees :return: the current problem """ start = time.time() # Determine the affected variables in the physical Bayes tree old_nodes = set(self.physical_vars) nodes_of_new_factors = set.union(*[set(factor.vars) for factor in self._new_factors]) old_nodes_of_new_factors = set.intersection(old_nodes, nodes_of_new_factors) # Get the working factor graph if self._physical_bayes_tree: # if not first step, get sub graph affected_nodes, sub_bayes_trees = \ self._physical_bayes_tree. \ get_affected_vars_and_partial_bayes_trees( vars=old_nodes_of_new_factors) self._working_graph = self._physical_graph.get_sub_factor_graph_with_prior( variables=affected_nodes, sub_trees=sub_bayes_trees, clique_prior_dict=self._implicit_factors) else: sub_bayes_trees = set() for node in self._new_nodes: self._working_graph.add_node(node) for factor in self._new_factors: self._working_graph.add_factor(factor) # Get the working Bayes treeget_sub_factor_graph old_ordering = self._elimination_ordering self.generate_ordering() self._working_bayes_tree = self._working_graph.get_bayes_tree( ordering=[var for var in self._elimination_ordering if var in set(self.working_vars)]) # Update the physical factor graph for node in self._new_nodes: self._physical_graph.add_node(node) for factor in self._new_factors: self._physical_graph.add_factor(factor) # Update the physical Bayesian tree self._physical_bayes_tree = self._working_bayes_tree.__copy__() self._physical_bayes_tree.append_child_bayes_trees(sub_bayes_trees) # Delete legacy conditional samplers in the old tree and # convert the density model w/o separator at leaves to density model w/ separator. cliques_to_delete = set() for old_clique in set(self._clique_density_model.keys()).difference(self._physical_bayes_tree.clique_nodes): for new_clique in self._working_bayes_tree.clique_nodes: if old_clique.vars == new_clique.vars and [var for var in old_ordering if var in old_clique.vars] == \ [var for var in self._elimination_ordering if var in new_clique.vars]: # This clique was the root in the old tree but is leaf in the new tree. # If the ordering of variables remains the same, its density model can be re-used. # Update the clique to density model dict self._clique_true_obs[new_clique] = self._clique_true_obs[old_clique] if old_clique in self._clique_variable_pattern: self._clique_variable_pattern[new_clique] = self._clique_variable_pattern[old_clique] if old_clique in self._clique_samples: self._clique_samples[new_clique] = self._clique_samples[old_clique] self._clique_density_model[new_clique] = \ self.root_clique_density_model_to_leaf(old_clique, new_clique, device) # since new clique will be skipped, related factors shall be eliminated beforehand. # TODO: update _clique_density_model.keys() in which some clique parents change # TODO: this currently has no impact on results # TODO: if we store all models or clique-depend values on cliques, this issue will disappear new_separator_factor = None if new_clique.separator: # extract new factor over separator separator_var_list = sorted(new_clique.separator, key=lambda x: self._reverse_ordering_map[x]) new_separator_factor = \ self.clique_density_to_separator_factor(separator_var_list, self._clique_density_model[new_clique], self._clique_true_obs[old_clique]) self._implicit_factors[new_clique] = new_separator_factor self._working_graph = self._working_graph.eliminate_clique_variables(clique=new_clique, new_factor=new_separator_factor) break cliques_to_delete.add(old_clique) for old_clique in cliques_to_delete: del self._clique_density_model[old_clique] del self._clique_true_obs[old_clique] if old_clique in self._clique_variable_pattern: del self._clique_variable_pattern[old_clique] if old_clique in self._clique_samples: del self._clique_samples[old_clique] # Clear all newly added variables and factors self._new_nodes = [] self._new_factors = [] end = time.time() if timer is not None: timer.append(end - start) return self def root_clique_density_model_to_leaf(self, old_clique: BayesTreeNode, new_clique: BayesTreeNode, device) -> "ConditionalSampler": """ when old clique and new clique have same variables but different division of frontal and separator vars, recycle the density model in the old clique and convert it to that in the new clique. """ raise NotImplementedError("Implementation depends on probabilistic modeling") def clique_density_to_separator_factor(self, separator_var_list: List[Variable], density_model, true_obs: np.ndarray) -> CliqueSeparatorFactor: """ extract marginal of separator variables from clique density as separator factor """ raise NotImplementedError("Implementation depends on probabilistic modeling") def incremental_inference(self, timer: List[float] = None, clique_dim_timer: List[List[float]] = None, *args, **kwargs ): self.fit_tree_density_models(timer=timer, clique_dim_timer=clique_dim_timer, *args, **kwargs) if self._args.adaptive_posterior_sampling is None: self._samples = self.sample_posterior(timer=timer, *args, **kwargs) else: self._samples = self.adaptive_posterior(timer=timer, *args, **kwargs) return self._samples def fit_clique_density_model(self, clique, samples, var_ordering, timer, *args, **kwargs) -> "ConditionalSampler": raise NotImplementedError("Implementation depends on probabilistic modeling.") def adaptive_posterior(self, timer: List[float] = None, *args, **kwargs ) -> Dict[Variable, np.ndarray]: """ Generate samples for all variables """ raise NotADirectoryError("implementation depends on density models.") def fit_tree_density_models(self, timer: List[float] = None, clique_dim_timer: List[List[float]] = None, *args, **kwargs): """ By the order of Bayes tree, perform local sampling and training on all cliques :return: """ self._temp_training_loss = {} clique_ordering = self._working_bayes_tree.clique_ordering() total_clique_num = len(clique_ordering) clique_cnt = 1 before_clique_time = time.time() while clique_ordering: start_clique_time = time.time() clique = clique_ordering.pop() if clique in self._clique_density_model: end_clique_time = time.time() print(f"\tTime for clique {clique_cnt}/{total_clique_num}: " + str( end_clique_time - start_clique_time) + " sec, " "total time elapsed: " + str( end_clique_time - before_clique_time) + " sec") clique_cnt += 1 if (clique_dim_timer is not None): clique_dim_timer.append([clique.dim, end_clique_time - before_clique_time]) continue # local sampling sampler_start = time.time() local_samples, sample_var_ordering, true_obs = \ self.clique_training_sampler(clique, num_samples=self._args.local_sample_num, method=self._args.local_sampling_method) sampler_end = time.time() if timer is not None: timer.append(sampler_end - sampler_start) self._clique_true_obs[clique] = true_obs if self._args.store_clique_samples: self._clique_samples[clique] = local_samples local_density_model = \ self.fit_clique_density_model(clique=clique, samples=local_samples, var_ordering=sample_var_ordering, timer=timer) self._clique_density_model[clique] = local_density_model new_separator_factor = None if clique.separator: # extract new factor over separator separator_list = sorted(clique.separator, key=lambda x: self._reverse_ordering_map[x]) new_separator_factor = self.clique_density_to_separator_factor(separator_list, local_density_model, true_obs) self._implicit_factors[clique] = new_separator_factor self._working_graph = self._working_graph.eliminate_clique_variables(clique=clique, new_factor=new_separator_factor) end_clique_time = time.time() print(f"\tTime for clique {clique_cnt}/{total_clique_num}: " + str( end_clique_time - start_clique_time) + " sec, " "total time elapsed: " + str( end_clique_time - before_clique_time) + " sec" + ", clique_dim is " + str(clique.dim)) if (clique_dim_timer is not None): clique_dim_timer.append([clique.dim, end_clique_time - before_clique_time]) clique_cnt += 1 def clique_training_sampler(self, clique: BayesTreeNode, num_samples: int, method: str): r""" This function returns training samples, simulated variables, and unused observations """ graph = self._working_graph.get_clique_factor_graph(clique) variable_pattern = \ self._working_bayes_tree.clique_variable_pattern(clique) if method == "direct": sampler = SimulationBasedSampler(factors=graph.factors, vars=variable_pattern) samples, var_list, unused_obs = sampler.sample(num_samples) elif method == "nested" or method == "dynamic nested": ns_sampler = GlobalNestedSampler(nodes=variable_pattern, factors=graph.factors) samples = ns_sampler.sample(live_points=num_samples, sampling_method=method) var_list = variable_pattern unused_obs = np.array([]) else: raise ValueError("Unknown sampling method.") return samples, var_list, unused_obs def sample_posterior(self, timer: List[float] = None, *args, **kwargs ) -> Dict[Variable, np.ndarray]: """ Generate samples for all variables """ num_samples = self._args.posterior_sample_num start = time.time() stack = [self._physical_bayes_tree.root] samples = {} while stack: # Retrieve the working clique clique = stack.pop() # Local sampling frontal_list = sorted(clique.frontal, key=lambda x: self._reverse_ordering_map[x]) separator_list = sorted(clique.separator, key=lambda x: self._reverse_ordering_map[x]) clique_density_model = self._clique_density_model[clique] obs = self._clique_true_obs[clique] aug_separator_samples = np.zeros(shape=(num_samples, 0)) if len(obs) != 0: aug_separator_samples = np.tile(obs, (num_samples, 1)) for var in separator_list: aug_separator_samples = np.hstack((aug_separator_samples, samples[var])) if aug_separator_samples.shape[1] != 0: frontal_samples = clique_density_model. \ conditional_sample_given_observation(conditional_dim=clique.frontal_dim, obs_samples=aug_separator_samples) else: # the root clique frontal_samples = clique_density_model. \ conditional_sample_given_observation(conditional_dim=clique.frontal_dim, sample_number=num_samples) # Dispatch samples cur_index = 0 for var in frontal_list: samples[var] = frontal_samples[:, cur_index: cur_index + var.dim] cur_index += var.dim if clique.children: for child in clique.children: stack.append(child) end = time.time() if timer is not None: timer.append(end - start) return samples def plot2d_posterior(self, title: str = None, xlim=None, ylim=None, marker_size: float = 1, if_legend: bool = False): # xlim and ylim are tuples vars = self._elimination_ordering # list(self._samples.keys()) len_var = len(vars) for i in range(len_var): cur_sample = self._samples[vars[i]] plt.scatter(cur_sample[:, 0], cur_sample[:, 1], marker=".", s=marker_size) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) if if_legend: plt.legend([var.name for var in vars]) plt.xlabel('x (m)') plt.ylabel('y (m)') if title is not None: plt.title(title) fig_handle = plt.gcf() plt.show() return fig_handle def results(self): return list(self._samples.values()), list(self._samples.keys()) def plot2d_mean_points(self, title: str = None, xlim=None, ylim=None, if_legend: bool = False): # xlim and ylim are tuples vars = self._elimination_ordering # list(self._samples.keys()) len_var = len(vars) x_list = [] y_list = [] for i in range(len_var): cur_sample = self._samples[vars[i]] x = np.mean(cur_sample[:, 0]) y = np.mean(cur_sample[:, 1]) x_list.append(x) y_list.append(y) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) plt.plot(x_list, y_list) if if_legend: plt.legend([var.name for var in vars]) plt.xlabel('x (m)') plt.ylabel('y (m)') if title is not None: plt.title(title) fig_handle = plt.gcf() plt.show() return fig_handle def plot2d_mean_rbt_only(self, title: str = None, xlim=None, ylim=None, if_legend: bool = False, fname=None, front_size=None, show_plot=False, **kwargs): # xlim and ylim are tuples vars = self._elimination_ordering # list(self._samples.keys()) len_var = len(vars) x_list = [] y_list = [] lmk_list = [] for i in range(len_var): if vars[i]._type == VariableType.Landmark: lmk_list.append(vars[i]) else: cur_sample = self._samples[vars[i]] x = np.mean(cur_sample[:, 0]) y = np.mean(cur_sample[:, 1]) x_list.append(x) y_list.append(y) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) plt.plot(x_list, y_list) for var in lmk_list: cur_sample = self._samples[var] plt.scatter(cur_sample[:, 0], cur_sample[:, 1], label=var.name) if if_legend: if front_size is not None: plt.legend() else: plt.legend(fontsize=front_size) if front_size is not None: plt.xlabel('x (m)', fontsize=front_size) plt.ylabel('y (m)', fontsize=front_size) else: plt.xlabel('x (m)') plt.ylabel('y (m)') if title is not None: if front_size is not None: plt.title(title, fontsize=front_size) else: plt.title(title) fig_handle = plt.gcf() if fname is not None: plt.savefig(fname) if show_plot: plt.show() return fig_handle def plot2d_MAP_rbt_only(self, title: str = None, xlim=None, ylim=None, if_legend: bool = False, fname=None, front_size=None): # xlim and ylim are tuples vars = self._elimination_ordering jf = JointFactor(self.physical_factors, vars) # list(self._samples.keys()) all_sample = sample_dict_to_array(self._samples, vars) log_pdf = jf.log_pdf(all_sample) max_idx = np.argmax(log_pdf) map_sample = all_sample[max_idx:max_idx+1] map_sample_dict = array_order_to_dict(map_sample, vars) len_var = len(vars) x_list = [] y_list = [] lmk_list = [] for i in range(len_var): if vars[i]._type == VariableType.Landmark: lmk_list.append(vars[i]) else: cur_sample = map_sample_dict[vars[i]] x = np.mean(cur_sample[:, 0]) y = np.mean(cur_sample[:, 1]) x_list.append(x) y_list.append(y) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) plt.plot(x_list, y_list) for var in lmk_list: cur_sample = map_sample_dict[var] plt.scatter(cur_sample[:, 0], cur_sample[:, 1], label=var.name) if if_legend: if front_size is not None: plt.legend() else: plt.legend(fontsize=front_size) if front_size is not None: plt.xlabel('x (m)', fontsize=front_size) plt.ylabel('y (m)', fontsize=front_size) else: plt.xlabel('x (m)') plt.ylabel('y (m)') if title is not None: if front_size is not None: plt.title(title, fontsize=front_size) else: plt.title(title) fig_handle = plt.gcf() if fname is not None: plt.savefig(fname) plt.show() return fig_handle def plot2d_mean_poses(self, title: str = None, xlim=None, ylim=None, width: float = 0.05, if_legend: bool = False): # xlim and ylim are tuples vars = self._elimination_ordering # list(self._samples.keys()) len_var = len(vars) x_list = [] y_list = [] for i in range(len_var): cur_sample = self._samples[vars[i]] x = np.mean(cur_sample[:, 0]) y = np.mean(cur_sample[:, 1]) x_list.append(x) y_list.append(y) # th_mean = circmean(cur_sample[:,2]) # dx, dy = np.cos(th_mean), np.sin(th_mean) # plt.arrow(x-dx/2, y-dy/2, dx, dy, # head_width=4*width, # width=0.05) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) plt.plot(x_list, y_list) if if_legend: plt.legend([var.name for var in vars]) plt.xlabel('x (m)') plt.ylabel('y (m)') if title is not None: plt.title(title) fig_handle = plt.gcf() plt.show() return fig_handle def plot_factor_graph(self): pass def plot_bayes_tree(self): pass def run_incrementally(case_dir: str, solver: FactorGraphSolver, nodes_factors_by_step, truth=None, traj_plot=False, plot_args=None, check_root_transform=False) -> None: run_count = 1 while os.path.exists(f"{case_dir}/run{run_count}"): run_count += 1 os.mkdir(f"{case_dir}/run{run_count}") run_dir = f"{case_dir}/run{run_count}" print("create run dir: " + run_dir) file = open(f"{run_dir}/parameters", "w+") params = solver._args.jsonStr() print(params) file.write(params) file.close() num_batches = len(nodes_factors_by_step) observed_nodes = [] step_timer = [] step_list = [] posterior_sampling_timer = [] fitting_timer = [] mixture_factor2weights = {} show_plot = True if "show_plot" in plot_args and not plot_args["show_plot"]: show_plot = False for i in range(num_batches): step_nodes, step_factors = nodes_factors_by_step[i] for node in step_nodes: solver.add_node(node) for factor in step_factors: solver.add_factor(factor) if isinstance(factor, BinaryFactorMixture): mixture_factor2weights[factor] = [] observed_nodes += step_nodes step_list.append(i) step_file_prefix = f"{run_dir}/step{i}" detailed_timer = [] clique_dim_timer = [] start = time.time() solver.update_physical_and_working_graphs(timer=detailed_timer) cur_sample = solver.incremental_inference(timer=detailed_timer, clique_dim_timer=clique_dim_timer) end = time.time() step_timer.append(end - start) print(f"step {i}/{num_batches} time: {step_timer[-1]} sec, " f"total time: {sum(step_timer)}") file = open(f"{step_file_prefix}_ordering", "w+") file.write(" ".join([var.name for var in solver.elimination_ordering])) file.close() file = open(f"{step_file_prefix}_split_timing", "w+") file.write(" ".join([str(t) for t in detailed_timer])) file.close() file = open(f"{step_file_prefix}_step_training_loss", "w+") last_training_loss = json.dumps(solver._temp_training_loss) file.write(last_training_loss) file.close() posterior_sampling_timer.append(detailed_timer[-1]) fitting_timer.append(sum(detailed_timer[1:-1])) X = np.hstack([cur_sample[var] for var in solver.elimination_ordering]) np.savetxt(fname=step_file_prefix, X=X) # check transformation if check_root_transform: root_clique = solver.physical_bayes_tree.root root_clique_model = solver._clique_density_model[root_clique] y = root_clique_model.prior.sample((3000,)) tx = deepcopy(y) if hasattr(root_clique_model, "flows"): for f in root_clique_model.flows[::-1]: tx = f.inverse_given_separator(tx, None) y = y.detach().numpy() tx = tx.detach().numpy() np.savetxt(fname=step_file_prefix + '_root_normal_data', X=y) np.savetxt(fname=step_file_prefix + '_root_transformed', X=tx) plt.figure() x_sort, tx_sort = sort_pair_lists(tx[:,0], y[:,0]) plt.plot(x_sort, tx_sort) plt.ylabel("T(x)") plt.xlabel("x") plt.savefig(f"{step_file_prefix}_transform.png", bbox_inches="tight") if show_plot: plt.show() plt.close() # clique dim and timing np.savetxt(fname=step_file_prefix + '_dim_time', X=np.array(clique_dim_timer)) if traj_plot: plot_2d_samples(samples_mapping=cur_sample, equal_axis=True, truth={variable: pose for variable, pose in truth.items() if variable in solver.physical_vars}, truth_factors={factor for factor in solver.physical_factors if set(factor.vars).issubset(solver.physical_vars)}, title=f'Step {i}', plot_all_meas=False, plot_meas_give_pose=[var for var in step_nodes if var.type == VariableType.Pose], rbt_traj_no_samples=True, truth_R2=True, truth_SE2=False, truth_odometry_color='k', truth_landmark_markersize=10, truth_landmark_marker='x', file_name=f"{step_file_prefix}.png", **plot_args) else: plot_2d_samples(samples_mapping=cur_sample, equal_axis=True, truth={variable: pose for variable, pose in truth.items() if variable in solver.physical_vars}, truth_factors={factor for factor in solver.physical_factors if set(factor.vars).issubset(solver.physical_vars)}, file_name=f"{step_file_prefix}.png", title=f'Step {i}', **plot_args) solver.plot2d_mean_rbt_only(title=f"step {i} posterior", if_legend=False, fname=f"{step_file_prefix}.png", **plot_args) # solver.plot2d_MAP_rbt_only(title=f"step {i} posterior", if_legend=False, fname=f"{step_file_prefix}.png") file = open(f"{run_dir}/step_timing", "w+") file.write(" ".join(str(t) for t in step_timer)) file.close() file = open(f"{run_dir}/step_list", "w+") file.write(" ".join(str(s) for s in step_list)) file.close() file = open(f"{run_dir}/posterior_sampling_timer", "w+") file.write(" ".join(str(t) for t in posterior_sampling_timer)) file.close() file = open(f"{run_dir}/fitting_timer", "w+") file.write(" ".join(str(t) for t in fitting_timer)) file.close() plt.figure() plt.plot(np.array(step_list)*5+5, step_timer, 'go-', label='Total') plt.plot(np.array(step_list)*5+5, posterior_sampling_timer, 'ro-', label='Posterior sampling') plt.plot(np.array(step_list)*5+5, fitting_timer, 'bd-', label='Learning NF') plt.ylabel(f"Time (sec)") plt.xlabel(f"Key poses") plt.legend() plt.savefig(f"{run_dir}/step_timing.png", bbox_inches="tight") if show_plot: plt.show() plt.close() if mixture_factor2weights: # write updated hypothesis weights hypo_file = open(run_dir + f'/step{i}.hypoweights', 'w+') plt.figure() for factor, weights in mixture_factor2weights.items(): hypo_weights = factor.posterior_weights(cur_sample) line = ' '.join([var.name for var in factor.vars]) + ' : ' + ','.join( [str(w) for w in hypo_weights]) hypo_file.writelines(line + '\n') weights.append(hypo_weights) for i_w in range(len(hypo_weights)): plt.plot(np.arange(i + 1 - len(weights), i + 1),
np.array(weights)
numpy.array
import holter_monitor_errors as hme import holter_monitor_constants as hmc import numpy as np import lvm_read as lr import os.path from biosppy.signals import ecg import matplotlib.pyplot as plt from input_reader import file_path import array import sys import filter_functions as ff def get_signal_data(fs, window, filename): """ reads ecg data from an LabView (.lvm) file and ensures proper window length :param fs: sampling frequency of data :param window: interval for average processing (seconds) :return: ecg data array """ extension = os.path.splitext(filename)[1] if extension == ".lvm": data = read_lvm(filename, "data_2/")['data'] print("Length:", len(data)) seconds = len(data) / fs if window > seconds: raise IndexError("Window longer than length of data") return data def get_distances(r_peaks, fs): """ calculates RR Intervals based on R-peak locations :param r_peaks: data point locations of R-peaks :param fs: sampling frequency of data :return: array of RR Interval lengths """ distances = [None] * (len(r_peaks) - 1) r_peak_times = [] for i in range(1, len(r_peaks)): distances[i - 1] = r_peaks[i] - r_peaks[i - 1] temp = r_peaks[i] / (fs) r_peak_times.append(temp) return distances, r_peak_times def get_indexes(r_peak_times, window): """ computes zero-based indexes of windows for RR-Interval averages :param r_peak_times: data point locations of R-peaks, in seconds :param window: desired window width, in seconds :return: array of indexes """ indexes = [] multiplier = 1 for i in range(0, len(r_peak_times)): if r_peak_times[i] >= multiplier*window: indexes.append(i) multiplier += 1 return indexes def get_averages(distances, indexes): """ calculates RR Interval averages for a specific window of time :param distances: array of RR-Interval widths :param indexes: zero-based indexes defining the windows of data :return: array of RR Interval averages """ averages = [] averages.append(np.mean(remove_outliers(distances[0:indexes[0]]))) for i in range(1, len(indexes)): removed_outliers = remove_outliers(distances[indexes[i - 1]:indexes[i]]) average = np.mean(removed_outliers) averages.append(average) averages.append(np.mean(distances[indexes[len(indexes) - 1]:])) return averages def get_mode(signal): """ calculates the mode of the amplitude of the original ECG signal :param signal: the original ECG signal :return: most-occuring y-value in the ECG signal """ signal = np.array(signal) hist =
np.histogram(signal)
numpy.histogram
from math import ceil import pytest import numpy as np from numpy.testing import assert_allclose from numpy.testing import assert_equal from numpy.testing import assert_raises import keras # TODO: remove the 3 lines below once the Keras release # is configured to use keras_preprocessing import keras_preprocessing keras_preprocessing.set_keras_submodules( backend=keras.backend, utils=keras.utils) from keras_preprocessing import sequence def test_pad_sequences(): a = [[1], [1, 2], [1, 2, 3]] # test padding b = sequence.pad_sequences(a, maxlen=3, padding='pre') assert_allclose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]]) b = sequence.pad_sequences(a, maxlen=3, padding='post') assert_allclose(b, [[1, 0, 0], [1, 2, 0], [1, 2, 3]]) # test truncating b = sequence.pad_sequences(a, maxlen=2, truncating='pre') assert_allclose(b, [[0, 1], [1, 2], [2, 3]]) b = sequence.pad_sequences(a, maxlen=2, truncating='post') assert_allclose(b, [[0, 1], [1, 2], [1, 2]]) # test value b = sequence.pad_sequences(a, maxlen=3, value=1) assert_allclose(b, [[1, 1, 1], [1, 1, 2], [1, 2, 3]]) def test_pad_sequences_str(): a = [['1'], ['1', '2'], ['1', '2', '3']] # test padding b = sequence.pad_sequences(a, maxlen=3, padding='pre', value='pad', dtype=object) assert_equal(b, [['pad', 'pad', '1'], ['pad', '1', '2'], ['1', '2', '3']]) b = sequence.pad_sequences(a, maxlen=3, padding='post', value='pad', dtype='<U3') assert_equal(b, [['1', 'pad', 'pad'], ['1', '2', 'pad'], ['1', '2', '3']]) # test truncating b = sequence.pad_sequences(a, maxlen=2, truncating='pre', value='pad', dtype=object) assert_equal(b, [['pad', '1'], ['1', '2'], ['2', '3']]) b = sequence.pad_sequences(a, maxlen=2, truncating='post', value='pad', dtype='<U3') assert_equal(b, [['pad', '1'], ['1', '2'], ['1', '2']]) with pytest.raises(ValueError, match="`dtype` int32 is not compatible with "): sequence.pad_sequences(a, maxlen=2, truncating='post', value='pad') def test_pad_sequences_vector(): a = [[[1, 1]], [[2, 1], [2, 2]], [[3, 1], [3, 2], [3, 3]]] # test padding b = sequence.pad_sequences(a, maxlen=3, padding='pre') assert_allclose(b, [[[0, 0], [0, 0], [1, 1]], [[0, 0], [2, 1], [2, 2]], [[3, 1], [3, 2], [3, 3]]]) b = sequence.pad_sequences(a, maxlen=3, padding='post') assert_allclose(b, [[[1, 1], [0, 0], [0, 0]], [[2, 1], [2, 2], [0, 0]], [[3, 1], [3, 2], [3, 3]]]) # test truncating b = sequence.pad_sequences(a, maxlen=2, truncating='pre') assert_allclose(b, [[[0, 0], [1, 1]], [[2, 1], [2, 2]], [[3, 2], [3, 3]]]) b = sequence.pad_sequences(a, maxlen=2, truncating='post') assert_allclose(b, [[[0, 0], [1, 1]], [[2, 1], [2, 2]], [[3, 1], [3, 2]]]) # test value b = sequence.pad_sequences(a, maxlen=3, value=1) assert_allclose(b, [[[1, 1], [1, 1], [1, 1]], [[1, 1], [2, 1], [2, 2]], [[3, 1], [3, 2], [3, 3]]]) def test_make_sampling_table(): a = sequence.make_sampling_table(3) assert_allclose(a, np.asarray([0.00315225, 0.00315225, 0.00547597]), rtol=.1) def test_skipgrams(): # test with no window size and binary labels couples, labels = sequence.skipgrams(np.arange(3), vocabulary_size=3) for couple in couples: assert couple[0] in [0, 1, 2] and couple[1] in [0, 1, 2] # test window size and categorical labels couples, labels = sequence.skipgrams(np.arange(5), vocabulary_size=5, window_size=1, categorical=True) for couple in couples: assert couple[0] - couple[1] <= 3 for l in labels: assert len(l) == 2 def test_remove_long_seq(): maxlen = 5 seq = [ [1, 2, 3], [1, 2, 3, 4, 5, 6], ] label = ['a', 'b'] new_seq, new_label = sequence._remove_long_seq(maxlen, seq, label) assert new_seq == [[1, 2, 3]] assert new_label == ['a'] def test_TimeseriesGenerator_serde(): data = np.array([[i] for i in range(50)]) targets = np.array([[i] for i in range(50)]) data_gen = sequence.TimeseriesGenerator(data, targets, length=10, sampling_rate=2, batch_size=2) json_gen = data_gen.to_json() recovered_gen = sequence.timeseries_generator_from_json(json_gen) assert data_gen.batch_size == recovered_gen.batch_size assert data_gen.end_index == recovered_gen.end_index assert data_gen.length == recovered_gen.length assert data_gen.reverse == recovered_gen.reverse assert data_gen.sampling_rate == recovered_gen.sampling_rate assert data_gen.shuffle == recovered_gen.shuffle assert data_gen.start_index == data_gen.start_index assert data_gen.stride == data_gen.stride assert (data_gen.data == recovered_gen.data).all() assert (data_gen.targets == recovered_gen.targets).all() def test_TimeseriesGenerator(): data = np.array([[i] for i in range(50)]) targets = np.array([[i] for i in range(50)]) data_gen = sequence.TimeseriesGenerator(data, targets, length=10, sampling_rate=2, batch_size=2) assert len(data_gen) == 20 assert (np.allclose(data_gen[0][0], np.array([[[0], [2], [4], [6], [8]], [[1], [3], [5], [7], [9]]]))) assert (np.allclose(data_gen[0][1], np.array([[10], [11]]))) assert (np.allclose(data_gen[1][0], np.array([[[2], [4], [6], [8], [10]], [[3], [5], [7], [9], [11]]]))) assert (np.allclose(data_gen[1][1], np.array([[12], [13]]))) data_gen = sequence.TimeseriesGenerator(data, targets, length=10, sampling_rate=2, reverse=True, batch_size=2) assert len(data_gen) == 20 assert (np.allclose(data_gen[0][0], np.array([[[8], [6], [4], [2], [0]], [[9], [7], [5], [3], [1]]]))) assert (np.allclose(data_gen[0][1], np.array([[10], [11]]))) data_gen = sequence.TimeseriesGenerator(data, targets, length=10, sampling_rate=2, shuffle=True, batch_size=1) batch = data_gen[0] r = batch[1][0][0] assert (np.allclose(batch[0], np.array([[[r - 10], [r - 8], [r - 6], [r - 4], [r - 2]]]))) assert (np.allclose(batch[1], np.array([[r], ]))) data_gen = sequence.TimeseriesGenerator(data, targets, length=10, sampling_rate=2, stride=2, batch_size=2) assert len(data_gen) == 10 assert (np.allclose(data_gen[1][0], np.array([[[4], [6], [8], [10], [12]], [[6], [8], [10], [12], [14]]]))) assert (np.allclose(data_gen[1][1], np.array([[14], [16]]))) data_gen = sequence.TimeseriesGenerator(data, targets, length=10, sampling_rate=2, start_index=10, end_index=30, batch_size=2) assert len(data_gen) == 6 assert (np.allclose(data_gen[0][0], np.array([[[10], [12], [14], [16], [18]], [[11], [13], [15], [17], [19]]]))) assert (np.allclose(data_gen[0][1], np.array([[20], [21]]))) data = np.array([np.random.random_sample((1, 2, 3, 4)) for i in range(50)]) targets = np.array([np.random.random_sample((3, 2, 1)) for i in range(50)]) data_gen = sequence.TimeseriesGenerator(data, targets, length=10, sampling_rate=2, start_index=10, end_index=30, batch_size=2) assert len(data_gen) == 6 assert np.allclose(data_gen[0][0], np.array( [
np.array(data[10:19:2])
numpy.array
# - <NAME> <<EMAIL>> """Miscellaneous Utility functions.""" from glob import glob import numpy as np from scipy.signal import correlate as corr from skimage.io import imread as skimread from skimage.transform import resize as imresize def imread(fname, factor=100): """Read possibly scaled version of image""" img = skimread(fname) if factor < 100: img = imresize(img, [int(img.shape[0]*factor/100), int(img.shape[1]*factor/100)], order=3) img = (img*255).astype(np.uint8) return img def getimglist(sdir): """Get list of images.""" jpgs = sorted(glob(sdir+'/*.jpg')) jpegs = sorted(glob(sdir+'/*.jpeg')) pngs = sorted(glob(sdir+'/*.png')) if len(jpgs) >= len(jpegs) and len(jpgs) >= len(pngs): return jpgs if len(jpegs) >= len(pngs): return jpegs return pngs def visualize(img, mask): """Produce a visualization of the segmentation.""" out = np.float32(img)/255 msk = CMAP[mask % CMAP.shape[0], :] msk[mask == 0, :] = 0. out = out*0.5 + msk*0.5 return (out*255).astype(np.uint8) def crop_align(img, imgc): """Find crop in img aligned to imgc.""" if np.amax(img) <
np.amax(imgc)
numpy.amax
import numpy as np import matplotlib.pyplot as plt import seaborn as sns from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import csv import string """Load Amazon review data, remove stopwords and punctuation, tokenize sentences and return text, title and stars of each review Arguments: file_path(string): path of the csv file to load title_index(int): index of column with titles review_index(int): index of columns with reviews star_index(int): index of column with number of stars limit_rows: maximum number of rows to load Return: titles: list of tokenize titles of Amazon reviews reviews: list of tokenize full text of Amazon reviews stars: list of number of stars of Amazon reviews""" def load_amazon_data(file_path, title_index, review_index, star_index, limit_rows=None): reviews = [] titles = [] stars = [] stopwords_list = stopwords.words('english') counter = 1 with open(file_path, 'r', encoding="utf8") as csvfile: datastore = csv.reader(csvfile, delimiter=',') next(datastore) # skip header for row in datastore: review_tokens = word_tokenize(row[review_index]) # tokenize sentence review_filtered = [w for w in review_tokens if w not in stopwords_list and w not in string.punctuation] reviews.append(review_filtered) title_tokens = word_tokenize(row[title_index]) # tokenize title title_filtered = [w for w in title_tokens if w not in stopwords_list and w not in string.punctuation] titles.append(title_filtered) stars.append(row[star_index]) if limit_rows is not None and counter >= limit_rows: # lazy evaluation break counter += 1 return titles, reviews, stars ''' @author DTrimarchi10 https://github.com/DTrimarchi10/confusion_matrix This function will make a pretty plot of an sklearn Confusion Matrix cm using a Seaborn heatmap visualization. Arguments --------- cf: confusion matrix to be passed in group_names: List of strings that represent the labels row by row to be shown in each square. categories: List of strings containing the categories to be displayed on the x,y axis. Default is 'auto' count: If True, show the raw number in the confusion matrix. Default is True. percent: If True, show the proportions for each category. Default is True. cbar: If True, show the color bar. The cbar values are based off the values in the confusion matrix. Default is True. xyticks: If True, show x and y ticks. Default is True. xyplotlabels: If True, show 'True Label' and 'Predicted Label' on the figure. Default is True. other_labels: String with other labels to add below the chart. Default is Empty string. sum_stats: If True, display summary statistics below the figure. Default is True. figsize: Tuple representing the figure size. Default will be the matplotlib rcParams value. cmap: Colormap of the values displayed from matplotlib.pyplot.cm. Default is 'Blues' See http://matplotlib.org/examples/color/colormaps_reference.html title: Title for the heatmap. Default is None. ''' def make_confusion_matrix(cf, group_names=None, categories='auto', count=True, percent=True, cbar=True, xyticks=True, xyplotlabels=True, other_labels="", sum_stats=True, figsize=None, cmap='Blues', title=None): # CODE TO GENERATE TEXT INSIDE EACH SQUARE blanks = ['' for _ in range(cf.size)] if group_names and len(group_names) == cf.size: group_labels = ["{}\n".format(value) for value in group_names] else: group_labels = blanks if count: group_counts = ["{0:0.0f}\n".format(value) for value in cf.flatten()] else: group_counts = blanks if percent: group_percentages = ["{0:.2%}".format(value) for value in cf.flatten() / np.sum(cf)] else: group_percentages = blanks box_labels = [f"{v1}{v2}{v3}".strip() for v1, v2, v3 in zip(group_labels, group_counts, group_percentages)] box_labels = np.asarray(box_labels).reshape(cf.shape[0], cf.shape[1]) # CODE TO GENERATE SUMMARY STATISTICS & TEXT FOR SUMMARY STATS if sum_stats: # Accuracy is sum of diagonal divided by total observations accuracy = np.trace(cf) / float(
np.sum(cf)
numpy.sum
"""Functions to calculate trajectory features from input trajectory data This module provides functions to calculate trajectory features based off the ImageJ plugin TrajClassifer by <NAME>. See details at https://imagej.net/TraJClassifier. """ import math import struct import pandas as pd import numpy as np import numpy.linalg as LA import numpy.ma as ma from scipy.optimize import curve_fit import matplotlib.pyplot as plt import diff_classifier.msd as msd def unmask_track(track): """Removes empty frames from inpute trajectory datset. Parameters ---------- track : pandas.core.frame.DataFrame At a minimum, must contain a Frame, Track_ID, X, Y, MSDs, and Gauss column. Returns ------- comp_track : pandas.core.frame.DataFrame Similar to track, but has all masked components removed. """ xpos = ma.masked_invalid(track['X']) msds = ma.masked_invalid(track['MSDs']) x_mask = ma.getmask(xpos) msd_mask = ma.getmask(msds) comp_frame = ma.compressed(ma.masked_where(msd_mask, track['Frame'])) compid = ma.compressed(ma.masked_where(msd_mask, track['Track_ID'])) comp_x = ma.compressed(ma.masked_where(x_mask, track['X'])) comp_y = ma.compressed(ma.masked_where(x_mask, track['Y'])) comp_msd = ma.compressed(ma.masked_where(msd_mask, track['MSDs'])) comp_gauss = ma.compressed(ma.masked_where(msd_mask, track['Gauss'])) comp_qual = ma.compressed(ma.masked_where(x_mask, track['Quality'])) comp_snr = ma.compressed(ma.masked_where(x_mask, track['SN_Ratio'])) comp_meani = ma.compressed(ma.masked_where(x_mask, track['Mean_Intensity'])) data1 = {'Frame': comp_frame, 'Track_ID': compid, 'X': comp_x, 'Y': comp_y, 'MSDs': comp_msd, 'Gauss': comp_gauss, 'Quality': comp_qual, 'SN_Ratio': comp_snr, 'Mean_Intensity': comp_meani } comp_track = pd.DataFrame(data=data1) return comp_track def alpha_calc(track): """Calculates alpha, the exponential fit parameter for MSD data Parameters ---------- track : pandas.core.frame.DataFrame At a minimum, must contain a Frames and a MSDs column. The function msd_calc can be used to generate the correctly formatted pd dataframe. Returns ------- alph : numpy.float64 The anomalous exponent derived by fitting MSD values to the function, <rad**2(n)> = 4*dcoef*(n*delt)**alph dcoef : numpy.float64 The fitted diffusion coefficient derived by fitting MSD values to the function above. Examples -------- >>> frames = 5 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> alpha_calc(dframe) (2.0000000000000004, 0.4999999999999999) >>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames)+3), ... 'Y': np.cos(np.linspace(1, frames, frames)+3)} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> alpha_calc(dframe) (0.023690002018364065, 0.5144436515510022) """ ypos = track['MSDs'] xpos = track['Frame'] def msd_alpha(xpos, alph, dcoef): return 4*dcoef*(xpos**alph) try: popt, pcov = curve_fit(msd_alpha, xpos, ypos) alph = popt[0] dcoef = popt[1] except RuntimeError: print('Optimal parameters not found. Print NaN instead.') alph = np.nan dcoef = np.nan return alph, dcoef def gyration_tensor(track): """Calculates the eigenvalues and eigenvectors of the gyration tensor of the input trajectory. Parameters ---------- track : pandas DataFrame At a minimum, must contain an X and Y column. The function msd_calc can be used to generate the correctly formatted pd dataframe. Returns ------- eig1 : numpy.float64 Dominant eigenvalue of the gyration tensor. eig2 : numpy.float64 Secondary eigenvalue of the gyration tensor. eigv1 : numpy.ndarray Dominant eigenvector of the gyration tensor. eigv2 : numpy.ndarray Secondary eigenvector of the gyration tensor. Examples -------- >>> frames = 5 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> gyration_tensor(dframe) (4.0, 4.4408920985006262e-16, array([ 0.70710678, -0.70710678]), array([ 0.70710678, 0.70710678])) >>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames)+3), ... 'Y': np.cos(np.linspace(1, frames, frames)+3)} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> gyration_tensor(dframe) (0.53232560128104522, 0.42766829138901619, array([ 0.6020119 , -0.79848711]), array([-0.79848711, -0.6020119 ])) """ dframe = track assert isinstance(dframe, pd.core.frame.DataFrame), "track must be a pandas\ dataframe." assert isinstance(dframe['X'], pd.core.series.Series), "track must contain\ X column." assert isinstance(dframe['Y'], pd.core.series.Series), "track must contain\ Y column." assert dframe.shape[0] > 0, "track must not be empty." matrixa = np.sum((dframe['X'] - np.mean( dframe['X']))**2)/dframe['X'].shape[0] matrixb = np.sum((dframe['Y'] - np.mean( dframe['Y']))**2)/dframe['Y'].shape[0] matrixab = np.sum((dframe['X'] - np.mean( dframe['X']))*(dframe['Y'] - np.mean( dframe['Y'])))/dframe['X'].shape[0] eigvals, eigvecs = LA.eig(np.array([[matrixa, matrixab], [matrixab, matrixb]])) dom = np.argmax(np.abs(eigvals)) rec = np.argmin(np.abs(eigvals)) eig1 = eigvals[dom] eig2 = eigvals[rec] eigv1 = eigvecs[dom] eigv2 = eigvecs[rec] return eig1, eig2, eigv1, eigv2 def kurtosis(track): """Calculates the kurtosis of input track. Parameters ---------- track : pandas.core.frame.DataFrame At a minimum, must contain an X and Y column. The function msd_calc can be used to generate the correctly formatted pd dataframe. Returns ------- kurt : numpy.float64 Kurtosis of the input track. Calculation based on projected 2D positions on the dominant eigenvector of the radius of gyration tensor. Examples -------- >>> frames = 5 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> kurtosis(dframe) 2.5147928994082829 >>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames)+3), ... 'Y': np.cos(np.linspace(1, frames, frames)+3)} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> kurtosis(dframe) 1.8515139698652476 """ dframe = track assert isinstance(dframe, pd.core.frame.DataFrame), "track must be a pandas\ dataframe." assert isinstance(dframe['X'], pd.core.series.Series), "track must contain\ X column." assert isinstance(dframe['Y'], pd.core.series.Series), "track must contain\ Y column." assert dframe.shape[0] > 0, "track must not be empty." eig1, eig2, eigv1, eigv2 = gyration_tensor(dframe) projection = dframe['X']*eigv1[0] + dframe['Y']*eigv1[1] kurt = np.mean((projection - np.mean( projection))**4/(np.std(projection)**4)) return kurt def asymmetry(track): """Calculates the asymmetry of the trajectory. Parameters ---------- track : pandas DataFrame At a minimum, must contain an X and Y column. The function msd_calc can be used to generate the correctly formatted pd dataframe. Returns ------- eig1 : numpy.float64 Dominant eigenvalue of the gyration tensor. eig2 : numpy.float64 Secondary eigenvalue of the gyration tensor. asym1 : numpy.float64 asymmetry of the input track. Equal to 0 for circularly symmetric tracks, and 1 for linear tracks. asym2 : numpy.float64 alternate definition of asymmetry. Equal to 1 for circularly symmetric tracks, and 0 for linear tracks. asym3 : numpy.float64 alternate definition of asymmetry. Examples -------- >>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> asymmetry(dframe) (16.5, 0.0, 1.0, 0.0, 0.69314718055994529) >>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames)+3), ... 'Y': np.cos(np.linspace(1, frames, frames)+3)} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> asymmetry(dframe) (0.53232560128104522, 0.42766829138901619, 0.046430119259539708, 0.80339606128247354, 0.0059602683290953052) """ dframe = track assert isinstance(dframe, pd.core.frame.DataFrame), "track must be a pandas\ dataframe." assert isinstance(dframe['X'], pd.core.series.Series), "track must contain\ X column." assert isinstance(dframe['Y'], pd.core.series.Series), "track must contain\ Y column." assert dframe.shape[0] > 0, "track must not be empty." eig1, eig2, eigv1, eigv2 = gyration_tensor(track) asym1 = (eig1**2 - eig2**2)**2/(eig1**2 + eig2**2)**2 asym2 = eig2/eig1 asym3 = -np.log(1-((eig1-eig2)**2)/(2*(eig1+eig2)**2)) return eig1, eig2, asym1, asym2, asym3 def minboundrect(track): """Calculates the minimum bounding rectangle of an input trajectory. Parameters ---------- dframe : pandas.core.frame.DataFrame At a minimum, must contain an X and Y column. The function msd_calc can be used to generate the correctly formatted pd dataframe. Returns ------- rot_angle : numpy.float64 Angle of rotation of the bounding box. area : numpy.float64 Area of the bounding box. width : numpy.float64 Width of the bounding box. height : numpy.float64 Height of the bounding box. center_point : numpy.ndarray Center point of the bounding box. corner_pts : numpy.ndarray Corner points of the bounding box. Examples -------- >>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> minboundrect(dframe) (-2.3561944901923448, 2.8261664256307952e-14, 12.727922061357855, 2.2204460492503131e-15, array([ 10.5, 8.5]), array([[ 6., 4.], [ 15., 13.], [ 15., 13.], [ 6., 4.]])) >>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames))+3, ... 'Y': np.cos(np.linspace(1, frames, frames))+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> minboundrect(dframe) (0.78318530717958657, 3.6189901131223992, 1.9949899732081091, 1.8140392491811692, array([ 3.02076903, 2.97913884]), array([[ 4.3676025 , 3.04013439], [ 2.95381341, 1.63258851], [ 1.67393557, 2.9181433 ], [ 3.08772466, 4.32568917]])) Notes ----- Based off of code from the following repo: https://github.com/dbworth/minimum-area-bounding-rectangle/blob/master/ python/min_bounding_rect.py """ dframe = track assert isinstance(dframe, pd.core.frame.DataFrame), "track must be a pandas\ dataframe." assert isinstance(dframe['X'], pd.core.series.Series), "track must contain\ X column." assert isinstance(dframe['Y'], pd.core.series.Series), "track must contain\ Y column." assert dframe.shape[0] > 0, "track must not be empty." df2 = np.zeros((dframe.shape[0]+1, 2)) df2[:-1, :] = dframe[['X', 'Y']].values df2[-1, :] = dframe[['X', 'Y']].values[0, :] hull_points_2d = df2 edges = np.zeros((len(hull_points_2d)-1, 2)) for i in range(len(edges)): edge_x = hull_points_2d[i+1, 0] - hull_points_2d[i, 0] edge_y = hull_points_2d[i+1, 1] - hull_points_2d[i, 1] edges[i] = [edge_x, edge_y] edge_angles = np.zeros((len(edges))) for i in range(len(edge_angles)): edge_angles[i] = math.atan2(edges[i, 1], edges[i, 0]) edge_angles = np.unique(edge_angles) start_area = 2 ** (struct.Struct('i').size * 8 - 1) - 1 min_bbox = (0, start_area, 0, 0, 0, 0, 0, 0) for i in range(len(edge_angles)): rads = np.array([[math.cos(edge_angles[i]), math.cos(edge_angles[i]-(math.pi/2))], [math.cos(edge_angles[i]+(math.pi/2)), math.cos(edge_angles[i])]]) rot_points = np.dot(rads, np.transpose(hull_points_2d)) min_x = np.nanmin(rot_points[0], axis=0) max_x = np.nanmax(rot_points[0], axis=0) min_y = np.nanmin(rot_points[1], axis=0) max_y = np.nanmax(rot_points[1], axis=0) width = max_x - min_x height = max_y - min_y area = width*height if area < min_bbox[1]: min_bbox = (edge_angles[i], area, width, height, min_x, max_x, min_y, max_y) angle = min_bbox[0] rads = np.array([[math.cos(angle), math.cos(angle-(math.pi/2))], [math.cos(angle+(math.pi/2)), math.cos(angle)]]) min_x = min_bbox[4] max_x = min_bbox[5] min_y = min_bbox[6] max_y = min_bbox[7] center_x = (min_x + max_x)/2 center_y = (min_y + max_y)/2 center_point = np.dot([center_x, center_y], rads) corner_pts =
np.zeros((4, 2))
numpy.zeros
import configparser import glob import os import subprocess import sys import netCDF4 as nc import numpy as np import matplotlib.path as mpath from scipy.interpolate import griddata from plotSurface import plot_surface from readMRIData import read_intra_op_points from readMRIData import read_tumor_point from readMRIData import rotate_points from readMRIData import move_points from readMRIData import interpolation from readMRIData import get_interpolated_path from readMRIData import get_path from readMRIVolume import switch_space from postProcessing import open_surface_temperatures from postProcessing import tumor_temperatures from postProcessing import tumor_near_surface_temperatures from postProcessing import brain_temperatures from postProcessing import domain_temperatures from postProcessing import csv_result_temperatures from postProcessing import vessels_temperatures from postProcessing import non_vessels_temperatures from postProcessing import calc_l2_norm def parse_config_file(params): print('Parsing {0}.'.format(params['NAME_CONFIGFILE'])) # Create configparser and open file. config = configparser.ConfigParser() config.optionxform = str config.read(params['NAME_CONFIGFILE']) # Get values from section 'Dimension'. try: params['SPACE_DIM'] = config['Dimension'].getint('SPACE_DIM', fallback=3) except KeyError: print('* ERROR:', params['NAME_CONFIGFILE'], 'does not contain section \'Dimension\'.') print(' ', params['NAME_CONFIGFILE'], 'may not be a config file.') print('Aborting.') exit() # Get values from section 'Geometry'. # Coordinates of first node. COORD_NODE_FIRST = config['Geometry'].get('COORD_NODE_FIRST') params['COORD_NODE_FIRST_ENV'] = COORD_NODE_FIRST COORD_NODE_FIRST = list(map(float, COORD_NODE_FIRST.split('x'))) params['COORD_NODE_FIRST'] = COORD_NODE_FIRST # Coordinates of last node. COORD_NODE_LAST = config['Geometry'].get('COORD_NODE_LAST') params['COORD_NODE_LAST_ENV'] = COORD_NODE_LAST COORD_NODE_LAST = list(map(float, COORD_NODE_LAST.split('x'))) params['COORD_NODE_LAST'] = COORD_NODE_LAST # Number of nodes. N_NODES = config['Geometry'].get('N_NODES') params['N_NODES_ENV'] = N_NODES N_NODES = list(map(int, N_NODES.split('x'))) params['N_NODES'] = N_NODES # Get values from section 'Time'. params['START_TIME'] = config['Time'].getint('START_TIME', fallback=0) params['END_TIME']= config['Time'].getint('END_TIME', fallback=1) params['N_TIMESTEPS'] = config['Time'].getint('N_TIMESTEPS', fallback=0) # Get values from section 'Output'. params['N_SNAPSHOTS'] = config['Output'].getint('N_SNAPSHOTS') # Get values from section 'Input'. params['USE_MRI_FILE'] = config['Input'].getboolean('USE_MRI_FILE', fallback=False) params['NAME_REGION_FILE'] = config['Input'].get('NAME_REGION_FILE', fallback='region') params['NAME_INITFILE'] = config['Input'].get('NAME_INITFILE', fallback='init') params['USE_INITFILE'] = config['Input'].getboolean('USE_INITFILE', fallback=False) params['CREATE_INITFILE'] = config['Input'].getboolean('CREATE_INITFILE', fallback=False) params['NAME_VESSELS_FILE'] = config['Input'].get('NAME_VESSELS_FILE', fallback='vessels') params['CREATE_VESSELS_FILE'] = config['Input'].getboolean('CREATE_VESSELS_FILE', fallback=True) params['THRESHOLD'] = config['Input'].getfloat('THRESHOLD', fallback=0.00001) params['CHECK_CONV_FIRST_AT_ITER'] = config['Input'].getfloat('CHECK_CONV_FIRST_AT_ITER', fallback=1) params['CHECK_CONV_AT_EVERY_N_ITER'] = config['Input'].getfloat('CHECK_CONV_AT_EVERY_N_ITER', fallback=1) # Get values from section 'MRI'. mri_case = config['MRI'].get('CASE', fallback='') params['MRI_DATA_CASE'] = mri_case.split('_')[0] if params['MRI_DATA_CASE'] != '': mri_folder = glob.glob(params['MRI_DATA_CASE'] + '*/') if len(mri_folder) == 0: print('* ERROR: Folder for case', params['MRI_DATA_CASE'], 'does not exist.') print('Aborting.') exit() params['MRI_DATA_FOLDER'] = mri_folder[0] else: params['MRI_DATA_FOLDER'] = '' params['USE_VESSELS_SEGMENTATION'] = config['MRI'].getboolean('USE_VESSELS_SEGMENTATION', fallback=False) VARIABLES_VESSELS = config['MRI'].get('VARIABLES_VESSELS', fallback=list()) if len(VARIABLES_VESSELS) > 0: params['VARIABLES_VESSELS'] = list(VARIABLES_VESSELS.split(' ')) else: params['VARIABLES_VESSELS'] = VARIABLES_VESSELS VALUES_VESSELS = config['MRI'].get('VALUES_VESSELS', fallback=list()) if len(VALUES_VESSELS) > 0: params['VALUES_VESSELS'] = list(map(float, VALUES_VESSELS.split(' '))) else: params['VALUES_VESSELS'] = VALUES_VESSELS VALUES_NON_VESSELS = config['MRI'].get('VALUES_NON_VESSELS', fallback=list()) if len(VALUES_VESSELS) > 0: params['VALUES_NON_VESSELS'] = list(map(float, VALUES_NON_VESSELS.split(' '))) else: params['VALUES_NON_VESSELS'] = VALUES_NON_VESSELS params['VESSELS_DEPTH'] = config['MRI'].getint('DEPTH', fallback=1) # Get values from section 'Brain'. brain = dict(config.items('Brain')) for key in brain: brain[key] = float(brain[key]) params['BRAIN'] = brain if params['USE_VESSELS_SEGMENTATION'] == True: vessels = dict(config.items('Brain')) for key in vessels: vessels[key] = float(vessels[key]) params['VESSELS'] = vessels non_vessels = dict(config.items('Brain')) for key in non_vessels: non_vessels[key] = float(non_vessels[key]) params['NON_VESSELS'] = non_vessels # Get values from section 'Tumor'. tumor = dict(config.items('Tumor')) for key in tumor: tumor[key] = float(tumor[key]) params['TUMOR'] = tumor # Get values from section 'Parameters'. parameters = dict(config.items('Parameters')) for key in parameters: parameters[key] = float(parameters[key]) try: parameters['DIAMETER'] = 2.0 * parameters['RADIUS'] except KeyError: pass params['PARAMETERS'] = parameters # PyMC section. try: params['ITERATIONS'] = config['PyMC'].getint('ITERATIONS', fallback=5) params['BURNS'] = config['PyMC'].getint('BURNS', fallback=1) params['T_NORMAL'] = config['PyMC'].getfloat('T_NORMAL', fallback=-1.0) params['T_TUMOR'] = config['PyMC'].getfloat('T_TUMOR', fallback=-1.0) params['T_VESSEL'] = config['PyMC'].getfloat('T_VESSEL', fallback=-1.0) except KeyError: params['T_NORMAL'] = -1.0 params['T_TUMOR'] = -1.0 params['T_VESSEL'] = -1.0 print('Done.') def check_variables(params): print('Checking variables.') # Check if dimension makes sense and # some functions and variables only work for dimension 1, 2 or 3. SPACE_DIM = params['SPACE_DIM'] if SPACE_DIM != 3: print('* ERROR: SPACE_DIM is {0}.'.format(SPACE_DIM)) print(' SPACE_DIM must be 3.') print('Aborting.') exit() # Check if there are enough coordinates for first node. DIM_COORD_NODE_FIRST = len(params['COORD_NODE_FIRST']) if DIM_COORD_NODE_FIRST != SPACE_DIM: print('* ERROR: Dimension of COORD_NODE_FIRST has to be {0}.'.format(SPACE_DIM)) print(' Dimension of COORD_NODE_FIRST is {0}.'.format(DIM_COORD_NODE_FIRST)) print('Aborting.') exit() # Check if there are enough coordinates for last node. DIM_COORD_NODE_LAST = len(params['COORD_NODE_LAST']) if DIM_COORD_NODE_LAST != SPACE_DIM: print('* ERROR: Dimension of COORD_NODE_LAST has to be {0}.'.format(SPACE_DIM)) print(' Dimension of COORD_NODE_LAST is {0}.'.format(DIM_COORD_NODE_LAST)) print('Aborting.') exit() # Check if there are enough number of nodes. DIM_N_NODES = len(params['N_NODES']) if DIM_N_NODES != SPACE_DIM: print('* ERROR: Dimension of N_NODES has to be {0}.'.format(SPACE_DIM)) print(' Dimension of N_NODES is {0}.'.format(DIM_N_NODES)) print('Aborting.') exit() # Check if END_TIME is after START_TIME. START_TIME = params['START_TIME'] END_TIME = params['END_TIME'] if END_TIME < START_TIME: print('* ERROR: END_TIME is smaller than START_TIME.') print(' END_TIME must be greater than START_TIME.') print('Aborting.') exit() # Check if threshold is positive. if params['THRESHOLD'] < 0.0: print('* WARNING: THRESHOLD < 0.0.') params['THRESHOLD'] = abs(params['THRESHOLD']) print(' THRESHOLD was set to abs(THRESHOLD).') # Check if combinations of USE_INITFILE and CREATE_INITFILE makes sense. if params['USE_INITFILE'] == True and params['CREATE_INITFILE'] == False: if os.path.isfile(params['NAME_INITFILE'] + '.nc') == False: print('* ERROR: USE_INITFILE = True and CREATE_INITFILE = False,', 'but', params['NAME_INITFILE'] + '.nc', 'does not exist.') print('Aborting.') exit() if params['USE_INITFILE'] == False and params['CREATE_INITFILE'] == True: print('* WARNING: CREATE_INITFILE = True, but USE_INITFILE = False.') # Check CHECK_CONV parameters. if params['CHECK_CONV_FIRST_AT_ITER'] < 0: print('* WARNING: CHECK_CONV_FIRST_AT_ITER < 0.') params['CHECK_CONV_FIRST_AT_ITER'] = abs(params['CHECK_CONV_FIRST_AT_ITER']) print(' CHECK_CONV_FIRST_AT_ITER set to', 'abs(CHECK_CONV_FIRST_AT_ITER).') if params['CHECK_CONV_AT_EVERY_N_ITER'] < 0: print('* WARNING: CHECK_CONV_AT_EVERY_N_ITER < 0.') params['CHECK_CONV_AT_EVERY_N_ITER'] = abs(params['CHECK_CONV_AT_EVERY_N_ITER']) print(' CHECK_CONV_AT_EVERY_N_ITER set to', 'abs(CHECK_CONV_AT_EVERY_N_ITER).') if params['CHECK_CONV_FIRST_AT_ITER'] < 1: print('* WARNING: CHECK_CONV_FIRST_AT_ITER < 1.') print(' CHECK_CONV_FIRST_AT_ITER is assumend to be a ratio.') if params['CHECK_CONV_AT_EVERY_N_ITER'] < 1: print('* WARNING: CHECK_CONV_AT_EVERY_N_ITER < 1.') print(' CHECK_CONV_AT_EVERY_N_ITER is assumend to be a ratio.') # Check if executable exists. NAME_EXECUTABLE = os.path.basename(os.getcwd()) \ + str(params['SPACE_DIM']) + 'D' if os.path.isfile(NAME_EXECUTABLE) == False: print(NAME_EXECUTABLE, 'does not exist.') print('Aborting.') exit() params['NAME_EXECUTABLE'] = NAME_EXECUTABLE # Check if MRI data exist. # Check if path to folder (i.e. results) is provided, # and if folder does contain fiducials.csv. folder = params['MRI_DATA_FOLDER'] if folder != '': if os.path.isdir(folder) == True: tmp1 = os.path.join(folder, 'fiducials.csv') tmp2 = os.path.join(folder, 'OpenIGTLink.fcsv') if os.path.isfile(tmp1) != True and os.path.isfile(tmp2) != True: print('* ERROR:', folder, 'does not contain fiducials.csv', 'or OpenIGTLink.fcsv.') print('Aborting.') exit() else: print('* ERROR:', folder, 'does not exist.') print('Aborting.') exit() if params['USE_VESSELS_SEGMENTATION'] == True: vessels_seg_path = os.path.join(folder, 'vessels_segmentation.csv') if os.path.isfile(vessels_seg_path) != True: print('* ERROR:', vessels_seg_path, 'does not exist.') print('Aborting.') exit() # Check if file for vessels exist if none shall be created. if params['USE_VESSELS_SEGMENTATION'] == True and params['CREATE_VESSELS_FILE'] == False: if os.path.isfile(params['NAME_VESSELS_FILE'] + '.nc') == False: print('* ERROR: File for vessels does not exist.') print('Aborting.') exit() # Check if names specified in VARIABLES for vessels are # variables known in ScaFES. names = ['rho', 'c', 'lambda', 'rho_blood', 'c_blood', 'omega', 'T_blood', \ 'q', 'T'] for var in params['VARIABLES_VESSELS']: if var not in names: print('* ERROR:', var, 'in VARIABLES_VESSELS not known.') print('Aborting.') exit() if params['VESSELS_DEPTH'] > params['N_NODES'][2]: print('* WARNING: Depth for vessel segmentation is bigger than nNodes_2.') print(' VESSELS_DEPTH was set to {0}.'.format(params['N_NODES'][2])) params['VESSELS_DEPTH'] = params['N_NODES'][2] if len(params['VARIABLES_VESSELS']) != len(params['VALUES_VESSELS']): print('* ERROR: length of VARIABLES_VESSELS does not match length of', 'VALUES_VESSELS.') print('Aborting.') exit() if len(params['VARIABLES_VESSELS']) != len(params['VALUES_NON_VESSELS']): print('* ERROR: length of VARIABLES_VESSELS does not match length of', 'VALUES_NON_VESSELS.') print('Aborting.') exit() print('Done.') def calc_delta_time_helper(params, material, parameters): RHO = material['RHO'] C = material['C'] LAMBDA = material['LAMBDA'] RHO_BLOOD = material['RHO_BLOOD'] C_BLOOD = material['C_BLOOD'] OMEGA = material['OMEGA'] T_I = material['T'] Q = material['Q'] H = parameters['H'] EPSILON = parameters['EPSILON'] GRIDSIZE = params['GRIDSIZE'] SPACE_DIM = params['SPACE_DIM'] SIGMA = 5.670367e-8 T_MAX = T_I + Q/(RHO_BLOOD*C_BLOOD*OMEGA) # Pennes Bioheat Equation. tmp = 0 for dim in range(0, SPACE_DIM): tmp += (2.0/(GRIDSIZE[dim]*GRIDSIZE[dim])) * (LAMBDA/(RHO*C)) # Inner nodes. tmp += ((RHO_BLOOD*C_BLOOD)/(RHO*C)) * OMEGA if tmp != 0: DELTA_TIME = 1.0/tmp else: # If time is infinity, # it will later not be considered for min(delta_time). DELTA_TIME = float('Inf') # Border with convection and thermal radiation: # Convection. tmp += 2.0*(1.0/GRIDSIZE[SPACE_DIM-1]) * (H/(RHO*C)) # Thermal radiation. tmp += 2.0 * (1.0/GRIDSIZE[SPACE_DIM-1]) \ * ((EPSILON*SIGMA)/(RHO*C)) \ * ((T_MAX + 273.15)**3) if tmp != 0: DELTA_TIME_BC = 1.0/tmp else: # If time is infinity, # it will later not be considered for min(delta_time). DELTA_TIME_BC = float('Inf') return DELTA_TIME, DELTA_TIME_BC def calc_delta_time_inner_nodes(params, material, parameters): tmp,_ = calc_delta_time_helper(params, material, parameters) return tmp def calc_delta_time_boundary_condition(params, material, parameters): _,tmp = calc_delta_time_helper(params, material, parameters) return tmp def calc_variables(params): print('Calculating variables.') # Calculate gridsize in each dimension. GRIDSIZE = [] for dim in range(0, params['SPACE_DIM']): GRIDSIZE.append((params['COORD_NODE_LAST'][dim] \ - params['COORD_NODE_FIRST'][dim]) / (params['N_NODES'][dim]-1)) params['GRIDSIZE'] = GRIDSIZE # Create parameter collection for vessels. if params['USE_VESSELS_SEGMENTATION'] == True: VARIABLES_VESSELS = params['VARIABLES_VESSELS'] for NAME_VARIABLE in params['VARIABLES_VESSELS']: if NAME_VARIABLE.upper() in params['VESSELS'].keys(): params['VESSELS'][NAME_VARIABLE.upper()] = params['VALUES_VESSELS'][VARIABLES_VESSELS.index(NAME_VARIABLE)] if NAME_VARIABLE.upper() in params['NON_VESSELS'].keys(): params['NON_VESSELS'][NAME_VARIABLE.upper()] = params['VALUES_NON_VESSELS'][VARIABLES_VESSELS.index(NAME_VARIABLE)] # Calculate delta time. if params['N_TIMESTEPS'] < 1: print('* WARNING: N_TIMESTEPS not specified.') print(' Calculate N_TIMESTEPS from stability criterion.') BRAIN = calc_delta_time_inner_nodes(params, params['BRAIN'], params['PARAMETERS']) BRAIN_BC = calc_delta_time_boundary_condition(params, params['BRAIN'], params['PARAMETERS']) TUMOR = calc_delta_time_inner_nodes(params, params['TUMOR'], params['PARAMETERS']) TUMOR_BC = calc_delta_time_boundary_condition(params, params['TUMOR'], params['PARAMETERS']) if params['USE_VESSELS_SEGMENTATION'] == True: VESSELS = calc_delta_time_inner_nodes(params, params['VESSELS'], params['PARAMETERS']) VESSELS_BC = calc_delta_time_boundary_condition(params, params['VESSELS'], params['PARAMETERS']) NON_VESSELS = calc_delta_time_inner_nodes(params, params['NON_VESSELS'], params['PARAMETERS']) NON_VESSELS_BC = calc_delta_time_boundary_condition(params, params['NON_VESSELS'], params['PARAMETERS']) else: VESSELS = float('Inf') VESSELS_BC = float('Inf') NON_VESSELS = float('Inf') NON_VESSELS_BC = float('Inf') # Get minimum for calculation of timesteps. DELTA_TIME_MIN = min((BRAIN, BRAIN_BC, TUMOR, TUMOR_BC, VESSELS, VESSELS_BC, NON_VESSELS, NON_VESSELS_BC)) # Add five percent for safety reasons. params['N_TIMESTEPS'] = int(((params['END_TIME'] \ - params['START_TIME']) \ / DELTA_TIME_MIN) * 1.05) + 1 # Final calculation for delta time. params['DELTA_TIME'] = (params['END_TIME'] - params['START_TIME']) \ / params['N_TIMESTEPS'] # Calculate location of tumor center. TUMOR_CENTER = [] TUMOR_CENTER.append((params['COORD_NODE_LAST'][0] \ + params['COORD_NODE_FIRST'][0]) / 2.0) TUMOR_CENTER.append((params['COORD_NODE_LAST'][1] \ + params['COORD_NODE_FIRST'][1]) / 2.0) TUMOR_CENTER.append(params['COORD_NODE_LAST'][2] - params['PARAMETERS']['DEPTH']) params['TUMOR_CENTER'] = TUMOR_CENTER # Calc CHECK_CONV parameters if they are a ratio. if params['CHECK_CONV_FIRST_AT_ITER'] < 1: params['CHECK_CONV_FIRST_AT_ITER'] = params['CHECK_CONV_FIRST_AT_ITER'] \ * params['N_TIMESTEPS'] params['CHECK_CONV_FIRST_AT_ITER'] = int(params['CHECK_CONV_FIRST_AT_ITER']) if params['CHECK_CONV_AT_EVERY_N_ITER'] < 1: params['CHECK_CONV_AT_EVERY_N_ITER'] = params['CHECK_CONV_AT_EVERY_N_ITER'] \ * params['N_TIMESTEPS'] params['CHECK_CONV_AT_EVERY_N_ITER'] = int(params['CHECK_CONV_AT_EVERY_N_ITER']) # Check if number of snapshots is possible. if params['N_SNAPSHOTS'] > params['N_TIMESTEPS']: print('* WARNING: N_SNAPSHOTS was bigger than N_TIMESTEPS.') params['N_SNAPSHOTS'] = params['N_TIMESTEPS'] print(' N_SNAPSHOTS was set to N_TIMESTEPS.') print('Done.') def check_stability(params): print('Checking stability.') BRAIN = calc_delta_time_inner_nodes(params, params['BRAIN'], params['PARAMETERS']) BRAIN_BC = calc_delta_time_boundary_condition(params, params['BRAIN'], params['PARAMETERS']) TUMOR = calc_delta_time_inner_nodes(params, params['TUMOR'], params['PARAMETERS']) TUMOR_BC = calc_delta_time_boundary_condition(params, params['TUMOR'], params['PARAMETERS']) if params['USE_VESSELS_SEGMENTATION'] == True: VESSELS = calc_delta_time_inner_nodes(params, params['VESSELS'], params['PARAMETERS']) VESSELS_BC = calc_delta_time_boundary_condition(params, params['VESSELS'], params['PARAMETERS']) NON_VESSELS = calc_delta_time_inner_nodes(params, params['NON_VESSELS'], params['PARAMETERS']) NON_VESSELS_BC = calc_delta_time_boundary_condition(params, params['NON_VESSELS'], params['PARAMETERS']) else: VESSELS = float('Inf') VESSELS_BC = float('Inf') NON_VESSELS = float('Inf') NON_VESSELS_BC = float('Inf') # Get minimum for calculation of timesteps. DELTA_TIME_MIN = min((BRAIN, BRAIN_BC, TUMOR, TUMOR_BC, VESSELS, VESSELS_BC, NON_VESSELS, NON_VESSELS_BC)) DELTA_TIME = params['DELTA_TIME'] # Abort simulation if stability is not fulfilled. if DELTA_TIME > BRAIN: print('* ERROR: Stability not fulfilled in healthy brain region.') print(' DELTA_TIME = {0}, but has to be DELTA_TIME < {1}.'.format(DELTA_TIME, BRAIN)) print('Aborting.') exit() if DELTA_TIME > TUMOR: print('* ERROR: Stability not fulfilled in tumor region.') print(' DELTA_TIME = {0}, but has to be DELTA_TIME < {1}.'.format(DELTA_TIME, TUMOR)) print('Aborting.') exit() if DELTA_TIME > BRAIN_BC: print('* ERROR: Stability not fulfilled in healty brain region at \ border with convection and thermal radiation.') print(' DELTA_TIME = {0}, but has to be DELTA_TIME < {1}.'.format(DELTA_TIME, BRAIN_BC)) print('Aborting.') exit() if DELTA_TIME > TUMOR_BC: print('* ERROR: Stability not fulfilled in tumor region at border \ with convection and thermal radiation.') print(' DELTA_TIME = {0}, but has to be DELTA_TIME < {1}.'.format(DELTA_TIME, TUMOR_BC)) print('Aborting.') exit() if params['USE_VESSELS_SEGMENTATION'] == True: if DELTA_TIME > VESSELS: print('* ERROR: Stability not fulfilled in vessels region.') print(' DELTA_TIME = {0}, but has to be DELTA_TIME < {1}.'.format(DELTA_TIME, VESSELS)) print('Aborting.') exit() if DELTA_TIME > NON_VESSELS: print('* ERROR: Stability not fulfilled in non-vessels region.') print(' DELTA_TIME = {0}, but has to be DELTA_TIME < {1}.'.format(DELTA_TIME, NON_VESSELS)) print('Aborting.') exit() if DELTA_TIME > VESSELS_BC: print('* ERROR: Stability not fulfilled in vessels region at \ border with convection and thermal radiation.') print(' DELTA_TIME = {0}, but has to be DELTA_TIME < {1}.'.format(DELTA_TIME, VESSELS_BC)) print('Aborting.') exit() if DELTA_TIME > NON_VESSELS_BC: print('* ERROR: Stability not fulfilled in non-vessels region at \ border with convection and thermal radiation.') print(' DELTA_TIME = {0}, but has to be DELTA_TIME < {1}.'.format(DELTA_TIME, NON_VESSELS_BC)) print('Aborting.') exit() print('Done.') def create_region_array(params, nc_file, BRAIN_VALUE, TUMOR_VALUE, NAME_VARIABLE): RADIUS = params['PARAMETERS']['DIAMETER']/2 # Get file/grid dimensions. dim0, dim1, dim2 = params['N_NODES'] COORD_NODE_FIRST = params['COORD_NODE_FIRST'] # Get tumor center location. TUMOR_CENTER = params['TUMOR_CENTER'] num_elem = dim0 * dim1 * dim2 values_array = BRAIN_VALUE \ * np.ones(num_elem, dtype=int).reshape(dim2, dim1, dim0) # Iterate through array. for elem_z in range(0, values_array.shape[0]): for elem_y in range(0, values_array.shape[1]): for elem_x in range(0, values_array.shape[2]): # Calculate location of current node. x = (elem_x * params['GRIDSIZE'][0]) + COORD_NODE_FIRST[0] y = (elem_y * params['GRIDSIZE'][1]) + COORD_NODE_FIRST[1] z = (elem_z * params['GRIDSIZE'][2]) + COORD_NODE_FIRST[2] # Calculate distance (squared) to tumor center. distance = (x - TUMOR_CENTER[0]) * (x - TUMOR_CENTER[0]) distance += (y - TUMOR_CENTER[1]) * (y - TUMOR_CENTER[1]) distance += (z - TUMOR_CENTER[2]) * (z - TUMOR_CENTER[2]) # Check if current point is inside tumor. # If yes, set value to tumor specific value if distance <= RADIUS*RADIUS: values_array[elem_z, elem_y, elem_x] = TUMOR_VALUE # Create netCDF variable. nNodes = [] nNodes.append('time') for dim in range(len(values_array.shape), 0, -1): nNodes.append('nNodes_' + str(dim-1)) init_values = nc_file.createVariable(NAME_VARIABLE, 'i', nNodes) # Write NumPy Array to file. init_values[0,] = values_array def create_region_file(params): filepath = params['NAME_REGION_FILE'] + '.nc' SPACE_DIM = params['SPACE_DIM'] print('Creating {0}.'.format(filepath)) # Delete old region file. if os.path.isfile(filepath) == True: os.remove(filepath) nc_file = nc.Dataset(filepath, 'w', format='NETCDF3_CLASSIC') time = nc_file.createDimension('time') for dim in range(0, SPACE_DIM): nNodes = nc_file.createDimension('nNodes_' + str(dim), params['N_NODES'][dim]) # 0 means brain, 1 means tumor. create_region_array(params, nc_file, 0, 1, 'region') nc_file.close() print('Done.') def write_values_to_file(nc_file, values_array, NAME_VARIABLE): # Create netCDF variable. nNodes = [] nNodes.append('time') for dim in range(len(values_array.shape), 0, -1): nNodes.append('nNodes_' + str(dim-1)) init_values = nc_file.createVariable(NAME_VARIABLE, 'f8', nNodes) # Write NumPy Array to file. init_values[0,] = values_array def create_vessels_array(params, surface): print('Creating {0}.nc.'.format(params['NAME_VESSELS_FILE'])) vessels_small = read_vessels_segmentation(params) dim0, dim1, dim2 = params['N_NODES'] num_elem = dim0 * dim1 * dim2 # Special Case: No trepanation domain is set, # but vessel segmentation is read. if np.count_nonzero(surface) == 0: print('* WARNING: No trepanation area is set, but vessel segmentation is read.') print(' Vessels can only be created in trepanation area.') print(' File will contain no vessels.') surface[-1,:,:] = 0 # Normal case: trepanation domain is set. # - 1 = grid node outside of trepanation domain # 0 = grid node inside trepanation domain, no vessel # 1 = grid node is vessel inside trepanation domain vessels_big = np.ones(dim1*dim0).reshape(dim1, dim0) vessels_big *= -1.0 x_min = params['surface_cmin'] x_max = params['surface_cmax'] y_min = params['surface_rmin'] y_max = params['surface_rmax'] depth = params['VESSELS_DEPTH'] surface = surface[-1,:,:] vessels_tmp = np.zeros(dim1*dim0).reshape(dim1, dim0) vessels_tmp[y_min:y_max+1,x_min:x_max+1] = vessels_small[:,:] vessels_big = np.where(surface == 1, vessels_tmp, vessels_big) vessels_big = np.repeat(vessels_big[np.newaxis,:,:], depth, axis=0) vessels = np.ones(dim2*dim1*dim0).reshape(dim2, dim1, dim0) vessels *= -1.0 vessels[-depth:,:,:] = vessels_big # Create vessels file. filepath = params['NAME_VESSELS_FILE'] + '.nc' nc_file = nc.Dataset(filepath, 'w', format='NETCDF3_CLASSIC') time = nc_file.createDimension('time') for dim in range(0, params['SPACE_DIM']): nNodes = nc_file.createDimension('nNodes_' + str(dim), params['N_NODES'][dim]) write_values_to_file(nc_file, vessels, 'vessels') nc_file.close() print('Done') return vessels def create_init_array(params, nc_file, region, BRAIN_VALUE, TUMOR_VALUE, NAME_VARIABLE, vessels, surface): dim0, dim1, dim2 = params['N_NODES'] num_elem = dim0 * dim1 * dim2 values_array = BRAIN_VALUE * np.ones(num_elem).reshape(dim2, dim1, dim0) if params['USE_VESSELS_SEGMENTATION'] == True: VARIABLES_VESSELS = params['VARIABLES_VESSELS'] if NAME_VARIABLE in VARIABLES_VESSELS: VALUE_VESSEL = params['VALUES_VESSELS'][VARIABLES_VESSELS.index(NAME_VARIABLE)] VALUE_NON_VESSEL = params['VALUES_NON_VESSELS'][VARIABLES_VESSELS.index(NAME_VARIABLE)] values_array = np.where(vessels == 1, VALUE_VESSEL, values_array) values_array = np.where(vessels == 0, VALUE_NON_VESSEL, values_array) values_array = np.where(region == 1, TUMOR_VALUE, values_array) write_values_to_file(nc_file, values_array, NAME_VARIABLE) def create_surface_array(params, nc_file, BRAIN_VALUE, TUMOR_VALUE, NAME_VARIABLE): RADIUS = (params['PARAMETERS']['DIAMETER'] \ * params['PARAMETERS']['HOLE_FACTOR'])/2 # Get file/grid dimensions. dim0, dim1, dim2 = params['N_NODES'] COORD_NODE_FIRST = params['COORD_NODE_FIRST'] # Get tumor center location. TUMOR_CENTER = params['TUMOR_CENTER'] # Resize array. num_elem = dim0 * dim1 * dim2 values_array = BRAIN_VALUE \ * np.ones(num_elem, dtype=int).reshape(dim2, dim1, dim0) # Iterate through array. for elem_y in range(0, values_array.shape[1]): for elem_x in range(0, values_array.shape[2]): # Calculate location of current node. x = (elem_x * params['GRIDSIZE'][0]) + COORD_NODE_FIRST[0] y = (elem_y * params['GRIDSIZE'][1]) + COORD_NODE_FIRST[1] # Calculate distance (squared) to tumor center. distance = (x - TUMOR_CENTER[0]) * (x - TUMOR_CENTER[0]) distance += (y - TUMOR_CENTER[1]) * (y - TUMOR_CENTER[1]) # Check if current point is inside tumor. # If yes, set value to tumor specific value if distance <= RADIUS*RADIUS: values_array[-1, elem_y, elem_x] = TUMOR_VALUE # Create netCDF variable. nNodes = [] nNodes.append('time') for dim in range(len(values_array.shape), 0, -1): nNodes.append('nNodes_' + str(dim-1)) init_values = nc_file.createVariable(NAME_VARIABLE, 'i', nNodes) # Write NumPy Array to file. init_values[0,] = values_array # Bounding box for trepanation domain. rows = np.any(values_array[-1,:,:], axis=1) cols =
np.any(values_array[-1,:,:], axis=0)
numpy.any
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np import proxmin from proxmin.utils import Traceback from functools import partial import logging logging.basicConfig() logger = logging.getLogger("proxmin") logger.setLevel(logging.INFO) def generateComponent(size, pos, dim): """Creates 2D Gaussian component""" x = np.arange(dim) c = np.exp( -((x - pos[0])[:, None] ** 2 + (x - pos[1])[None, :] ** 2) / (2 * size ** 2) ) return c.flatten() / c.sum() def generateAmplitude(flux, dim): """Creates normalized SED""" return flux * np.random.dirichlet(np.ones(dim)) def add_noise(Y, sky): """Adds Poisson noise to Y""" Y += sky[:, None] Y = np.random.poisson(Y).astype("float64") Y -= sky[:, None] return Y def plotLoss(trace, Y, W, ax=None, label=None, plot_max=None): # convergence plot from traceback loss = [] for At, St in traceback.trace: loss.append(proxmin.nmf.log_likelihood(At, St, Y=Y, W=W)) if ax is None: fig = plt.figure() ax = fig.add_subplot(111) ax.semilogy(loss, label=label) def plotData(Y, A, S): c, n = Y.shape nx = ny = np.int(np.sqrt(n)) # reasonable mapping from 5 observed bands to rgb channels filter_weights = np.zeros((3, c)) filter_weights[0, 4] = 1 filter_weights[0, 3] = 0.667 filter_weights[1, 3] = 0.333 filter_weights[1, 2] = 1 filter_weights[1, 1] = 0.333 filter_weights[2, 1] = 0.667 filter_weights[2, 0] = 1 filter_weights /= 1.667 rgb = np.dot(filter_weights, Y) try: from astropy.visualization import make_lupton_rgb Q = 1 stretch = Y.max() / 2 fig = plt.figure(figsize=(9, 3)) ax0 = fig.add_axes([0, 0, 0.33, 1], frameon=False) ax1 = fig.add_axes([0.333, 0, 0.33, 1], frameon=False) ax2 = fig.add_axes([0.666, 0, 0.33, 1], frameon=False) ax0.imshow( make_lupton_rgb( *np.split(rgb, 3, axis=0)[::-1], Q=Q, stretch=stretch ).reshape(ny, nx, 3) ) best_Y =
np.dot(A, S)
numpy.dot
##### For testing the original keras model, which is saved as .hdf5 format. import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "2" import numpy as np import h5py import scipy.io import pandas as pd import librosa import soundfile as sound import keras import tensorflow from sklearn.metrics import confusion_matrix from sklearn.metrics import log_loss import sys sys.path.append("..") from utils import * from funcs import * import tensorflow as tf # from tensorflow import ConfigProto # from tensorflow import InteractiveSession config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True session = tf.compat.v1.InteractiveSession(config=config) val_csv = 'data_2020/evaluation_setup/fold1_evaluate.csv' feat_path = 'features/logmel128_scaled_d_dd/' model_path = '../pretrained_models/smallfcnn-model-0.9618.hdf5' num_freq_bin = 128 num_classes = 3 data_val, y_val = load_data_2020(feat_path, val_csv, num_freq_bin, 'logmel') y_val_onehot = keras.utils.to_categorical(y_val, num_classes) print(data_val.shape) print(y_val.shape) best_model = keras.models.load_model(model_path) preds = best_model.predict(data_val) y_pred_val = np.argmax(preds,axis=1) over_loss = log_loss(y_val_onehot, preds) overall_acc = np.sum(y_pred_val==y_val) / data_val.shape[0] print(y_val_onehot.shape, preds.shape)
np.set_printoptions(precision=3)
numpy.set_printoptions
import numpy as np import cvxpy as cp import time def rho(x): return 1/(2*x) * (np.sqrt((x+1)**2 - 4 * np.exp(1/(2*x)-1/2)*x**(3/2)) + x - 1) def bisection_algorithm(f, a, b, y, margin=.00001,direction="right"): count = 0 while count <= 15: c = (a + b) / 2 y_c = f(c) if abs(y_c - y) < margin: return c if direction=="right": if y < y_c: b = c else: a = c else: if y < y_c: a = c else: b = c count+=1 p = float(direction=="right") return p * b + (1 - p) * a def linear_search_leftright(f, a, b, y, step=.01): s=a found=False while s<= b and f(s) > y: s+=step if f(min(s,b))<=y: found=True return min(s,b), found def linear_search_rightleft(f, a, b, y, step=.01): s=b found=False while s>= a and f(s) > y: s-=step if f(max(s,a))<=y: found=True return max(s,a), found def log_supermartingale_value_slow(v,wmax,b0,b1,A0,A1,A2): # the argument of the exponential mu = 1 alpha = 2 # also a free parameter that need be no less than 1 # Build the relevant matrices I = np.identity(2) J = np.array([1,1,1]) # TODO check if we need to use wmin below Cv = np.array([[-1,wmax-1,wmax-1],[-v,-v,wmax-v]]) S = b0 + b1 * v Q = A0 + A1 * v + A2 * v**2 gamma = cp.Variable(3) Stilde = S + Cv @ gamma Sigma = np.linalg.inv(pow(mu,-2) * alpha * I + alpha*Q) # TODO Make this more efficient via Sherman Morison cost = cp.quad_form(Stilde, Sigma)/2 + rho(alpha)*gamma.T @ J prob = cp.Problem(cp.Minimize(cost),[0<=gamma]) prob.solve() #print(f'gamma={gamma.value}') return prob.value - np.log(np.sqrt(np.linalg.det(I + pow(mu,2)*Q))) #TODO use the matrix determinant lemma for efficiency def log_supermartingale_value(v,wmax,b0,b1,A0,A1,A2): # This function is an efficient version of martingal_value. We avoid calling a solver, and consider cases instead. mu = 1 alpha = 2 # also a free parameter that need be no less than 1. TODO change the name # Build the relevant matrices I = np.identity(2) J = np.array([1,1]) gammasols = [np.zeros(3)] # Adding the all zeros feasable solution # Building S and Q matrices from the sufficient statistics S = b0 + b1 * v Q = A0 + A1 * v + A2*v**2 Sigmainv = pow(mu,-2) * alpha * I + alpha*Q Sigma = np.linalg.inv(Sigmainv) # TODO consider Sherman Morison Den = np.sqrt(np.linalg.det(I + pow(mu,2)*Q)) ## Considering cases # Case 1: gamma_1 = 0 gamma = np.zeros(3) Cv = np.array([[wmax-1,wmax-1], [-v,wmax-v]]) if np.linalg.det(Cv)!=0: tmp=np.linalg.inv(Cv) @ (-rho(alpha) * Sigmainv @ np.linalg.inv(Cv.T) @ J - S) gamma[1]=tmp[0] gamma[2]=tmp[1] # Check feasability if gamma[0]>=0 and gamma[1]>=0 and gamma[2]>=0: gammasols.append(gamma) # Case 2: gamma_2 = 0 gamma = np.zeros(3) Cv = np.array([[-1,wmax-1], [-v,wmax-v]]) if np.linalg.det(Cv)!=0: tmp=np.linalg.inv(Cv) @ (-rho(alpha) * Sigmainv @ np.linalg.inv(Cv.T) @ J - S) gamma[0]=tmp[0] gamma[2]=tmp[1] if gamma[0]>=0 and gamma[1]>=0 and gamma[2]>=0: gammasols.append(gamma) # Case 3: gamma_3 = 0 gamma = np.zeros(3) Cv = np.array([[-1,wmax-1], [-v,-v]]) if np.linalg.det(Cv)!=0: tmp=np.linalg.inv(Cv) @ (-rho(alpha) * Sigmainv @ np.linalg.inv(Cv.T) @ J - S) gamma[0]=tmp[0] gamma[1]=tmp[1] if gamma[0]>=0 and gamma[1]>=0 and gamma[2]>=0: gammasols.append(gamma) # Case 4: (gamma_1,gamma_2) = (0,0) gamma = np.zeros(3) Cv = np.array([[wmax-1], [wmax-v]]) adding=False den = Cv.T @ (Sigma @ Cv) if den != 0: adding=True gamma[2]=(-rho(alpha) - Cv.T @ (Sigma @ S))/den if adding and gamma[2]>=0: gammasols.append(gamma) # Case 5: (gamma_1,gamma_3) = (0,0) gamma = np.zeros(3) Cv = np.array([[wmax-1], [-v]]) adding=False den = Cv.T @ (Sigma @ Cv) if den != 0: adding=True gamma[1]=(-rho(alpha) - Cv.T @ (Sigma @ S))/den if adding and gamma[1]>=0: gammasols.append(gamma) # Case 6: (gamma_2,gamma_3) = (0,0) gamma = np.zeros(3) Cv = np.array([[-1], [-v]]) adding=False den = Cv.T @ (Sigma @ Cv) if den != 0: adding=True gamma[0]=(-rho(alpha) - Cv.T @ (Sigma @ S))/den if adding and gamma[0]>=0: gammasols.append(gamma) ## Checking the best solution J = np.array([1,1,1]) Cv = np.array([[-1,wmax-1,wmax-1], [-v,-v,wmax-v]]) optval = -1 #optgamma = [-1,-1,-1] for gamma in gammasols: Stilde = S + Cv @ gamma arg = Stilde.T @ (Sigma @ Stilde)/2 + rho(alpha)*gamma.T @ J val = arg - np.log(Den) if optval<0 or optval>val: optval=val #optgamma = gamma #print(f'gamma={optgamma}') return optval def log_supermartingale_value_1d(v,wmax,b0,b1,A0,A1,A2): # This function is an efficient version of martingal_value. We avoid calling a solver, and consider cases instead. mu = 1 alpha = 2 # also a free parameter that need be no less than 1. TODO change the name gammasols = [np.zeros(3)] # Adding the all zeros feasable solution # Building S and Q matrices from the sufficient statistics S = b0 + b1 * v Q = A0 + A1 * v + A2*v**2 Sigmainv = pow(mu,-2) * alpha + alpha*Q Sigma =1/Sigmainv Den = np.sqrt(1 + pow(mu,2)*Q) ## Considering cases # Case 1: (gamma_1,gamma_2) = (0,0) gamma = np.zeros(3) Cv = wmax-v adding=False den = Cv * Sigma * Cv if den != 0: adding=True gamma[2]=(-rho(alpha) - Cv * Sigma * S)/den if adding and gamma[2]>=0: gammasols.append(gamma) # Case 2: (gamma_1,gamma_3) = (0,0) gamma = np.zeros(3) Cv = -v adding=False den = Cv * Sigma * Cv if den != 0: adding=True gamma[1]=(-rho(alpha) - Cv * Sigma * S)/den if adding and gamma[1]>=0: gammasols.append(gamma) # Case 3: (gamma_2,gamma_3) = (0,0) gamma = np.zeros(3) Cv = -v adding=False den = Cv * Sigma * Cv if den != 0: adding=True gamma[0]=(-rho(alpha) - Cv * Sigma * S)/den if adding and gamma[0]>=0: gammasols.append(gamma) ## Checking the best solution J = np.array([1,1,1]) Cv = np.array([-v,-v,wmax-v]) optval = -1 for gamma in gammasols: Stilde = S + Cv @ gamma arg = Stilde * Sigma * Stilde/2 + rho(alpha)*gamma.T @ J val = arg - np.log(Den) if optval<0 or optval>val: optval=val return optval def martingale_value_lowerbound(v,wmax,b0,b1,A0,A1,A2,t): eps = 0.001 # Build the relevant matrices I = np.identity(2) J = np.array([1,1]) gammasols = [np.zeros(3)] # Adding the all zeros feasable solution # Building S and Q matrices from the sufficient statistics S = b0 + b1 * v Q = A0 + A1 * v + A2*v**2 Sigmainv = eps * I + Q Sigma = np.linalg.inv(Sigmainv) # TODO consider <NAME> Den = 1 #(np.exp(1)*t+np.exp(1)) ## Considering cases # Case 1: gamma_1 = 0 gamma = np.zeros(3) Cv = np.array([[wmax-1,wmax-1], [-v,wmax-v]]) if np.linalg.det(Cv)!=0: tmp=np.linalg.inv(Cv) @ (-Sigmainv @ np.linalg.inv(Cv.T) @ J - S) gamma[1]=tmp[0] gamma[2]=tmp[1] # Check feasability if gamma[0]>=0 and gamma[1]>=0 and gamma[2]>=0: gammasols.append(gamma) # Case 2: gamma_2 = 0 gamma = np.zeros(3) Cv = np.array([[-1,wmax-1], [-v,wmax-v]]) if np.linalg.det(Cv)!=0: tmp=np.linalg.inv(Cv) @ (- Sigmainv @ np.linalg.inv(Cv.T) @ J - S) gamma[0]=tmp[0] gamma[2]=tmp[1] if gamma[0]>=0 and gamma[1]>=0 and gamma[2]>=0: gammasols.append(gamma) # Case 3: gamma_3 = 0 gamma = np.zeros(3) Cv = np.array([[-1,wmax-1], [-v,-v]]) if np.linalg.det(Cv)!=0: tmp=np.linalg.inv(Cv) @ (-Sigmainv @ np.linalg.inv(Cv.T) @ J - S) gamma[0]=tmp[0] gamma[1]=tmp[1] if gamma[0]>=0 and gamma[1]>=0 and gamma[2]>=0: gammasols.append(gamma) # Case 4: (gamma_1,gamma_2) = (0,0) gamma = np.zeros(3) Cv = np.array([[wmax-1], [wmax-v]]) adding=False den = Cv.T @ (Sigma @ Cv) if den != 0: adding=True gamma[2]=(-1 - Cv.T @ (Sigma @ S))/den if adding and gamma[2]>=0: gammasols.append(gamma) # Case 5: (gamma_1,gamma_3) = (0,0) gamma = np.zeros(3) Cv = np.array([[wmax-1], [-v]]) den = Cv.T @ (Sigma @ Cv) if den != 0: adding=True gamma[1]=(-1 - Cv.T @ (Sigma @ S))/den if adding and gamma[1]>=0: gammasols.append(gamma) # Case 6: (gamma_2,gamma_3) = (0,0) gamma = np.zeros(3) Cv = np.array([[-1], [-v]]) adding=False den = Cv.T @ (Sigma @ Cv) if den != 0: adding=True gamma[0]=(-1 - Cv.T @ (Sigma @ S))/den if adding and gamma[0]>=0: gammasols.append(gamma) ## Checking the best solution J = np.array([1,1,1]) Cv = np.array([[-1,wmax-1,wmax-1], [-v,-v,wmax-v]]) optval = -1 for gamma in gammasols: Stilde = S + Cv @ gamma arg = min(20, Stilde.T @ (Sigma @ Stilde)/(4 * (4*np.log(2)-2)) + (1/2) * gamma.T @ J) val = np.exp(arg)/Den if optval<0 or optval>val: optval=val return optval # def martingale_value_lowerbound_slow(v,wmax,b0,b1,A0,A1,A2,t): # # the argument of the exponential # eps = 0.001 # #Build the relevant matrices # I = np.identity(2) # J = np.array([1,1,1]) # #TODO check if we need to use wmin below # Cv = np.array([[-1,wmax-1,wmax-1],[-v,-v,wmax-v]]) # S = b0 + b1 * v # Q = A0 + A1 * v + A2 * v**2 # gamma = cp.Variable(3) # Stilde = S + Cv @ gamma # Sigma = np.linalg.inv(eps * I + Q) #TODO Make this more efficient via <NAME> # cost = cp.quad_form(Stilde, Sigma)/(4*(4*np.log(2)-2)) + gamma.T @ J/2 # prob = cp.Problem(cp.Minimize(cost),[0<=gamma]) # prob.solve() # return np.exp(prob.value) #Denominator equal to 1 def cs_via_supermartingale(data, wmin, wmax, alpha): # Assume data is of type np.array((t,2)), where (w,r)=(wr[:,0],wr[:,1]). # TODO we want to allow for different policies eventually T = len(data) # Initialize b0 = np.zeros(2) b1 = np.zeros(2) A0 = np.zeros((2,2)) A1 = np.zeros((2,2)) A2 = np.zeros((2,2)) lb = np.zeros(T) ub = np.zeros(T) prev_lb = 0. prev_ub = 1. for t in range(T): wt = data[t,0] rt = data[t,1] b0 += [wt-1,wt*rt] b1 += [0,-1] A0 += [[(wt-1)**2, (wt-1)*wt*rt], [(wt-1) * wt * rt,(wt * rt)**2]] A1 += [[0, -(wt-1)], [-(wt-1),-2 * wt * rt]] A2 += [[0,0],[0,1]] logmartval = lambda v: log_supermartingale_value(v,wmax,b0,b1,A0,A1,A2) # Root finding stepsize = (prev_ub-prev_lb) * 0.01 tmpv_lb, found_lb = linear_search_leftright(logmartval,prev_lb,prev_ub,-np.log(alpha),step=stepsize) tmpv_ub, found_ub = linear_search_rightleft(logmartval,prev_lb,prev_ub,-np.log(alpha),step=stepsize) if not found_lb: lb[t]=prev_lb else: margin_lb = (tmpv_lb - prev_lb)*.01 lb[t] = bisection_algorithm(logmartval,prev_lb,tmpv_lb,-np.log(alpha),margin=margin_lb,direction="left") prev_lb = lb[t] if not found_ub: lb[t]=prev_ub else: margin_ub = (prev_ub - tmpv_ub)*.01 ub[t] = bisection_algorithm(logmartval,tmpv_ub,prev_ub,-np.log(alpha),margin=margin_ub) prev_ub = ub[t] return lb, ub def cs_via_supermartingale_1d(data, wmin, wmax, alpha): # Assume data is of type np.array((t,2)), where (w,r)=(wr[:,0],wr[:,1]). # TODO we want to allow for different policies eventually T = len(data) # Initialize b0 = 0 b1 = 0 A0 = 0 A1 = 0 A2 = 0 lb = np.zeros(T) ub = np.zeros(T) prev_lb = 0. prev_ub = 1. for t in range(T): wt = data[t,0] rt = data[t,1] b0 += wt*rt b1 += -1 A0 += (wt * rt)**2 A1 += -2 * wt * rt A2 += 1 logmartval = lambda v: log_supermartingale_value_1d(v,wmax,b0,b1,A0,A1,A2) # Root finding stepsize = (prev_ub-prev_lb) * 0.01 tmpv_lb, found_lb = linear_search_leftright(logmartval,prev_lb,prev_ub,-np.log(alpha),step=stepsize) tmpv_ub, found_ub = linear_search_rightleft(logmartval,prev_lb,prev_ub,-np.log(alpha),step=stepsize) if not found_lb: lb[t]=prev_lb else: margin_lb = (tmpv_lb - prev_lb)*.01 lb[t] = bisection_algorithm(logmartval,prev_lb,tmpv_lb,-np.log(alpha),margin=margin_lb,direction="left") prev_lb = lb[t] if not found_ub: lb[t]=prev_ub else: margin_ub = (prev_ub - tmpv_ub)*.01 ub[t] = bisection_algorithm(logmartval,tmpv_ub,prev_ub,-np.log(alpha),margin=margin_ub) prev_ub = ub[t] return lb, ub def cs_via_supermartingale_debug(data, wmin, wmax, alpha): # Assume data is of type np.array((t,2)), where (w,r)=(wr[:,0],wr[:,1]). # TODO we want to allow for different policies eventually T = len(data) # Initialize b0 = np.zeros(2) b1 = np.zeros(2) A0 = np.zeros((2,2)) A1 = np.zeros((2,2)) A2 = np.zeros((2,2)) w = data[:T,0] r = data[:T,1] b0 = np.array([np.sum(w)-T,np.dot(w,r)]) b1 = np.array([0,-T]) A0 = np.array([[np.dot(w-1, w-1), np.dot(w-1, w*r)], [np.dot(w-1, w*r), np.dot(w*r, w*r)]]) A1 = np.array([[0, -np.sum(w)+T], [-np.sum(w)+T,-2 * np.dot(w,r)]]) A2 = np.array([[0,0],[0,T]]) #print(f'b0={b0},\nb1={b1},\nA0={A0},\nA1={A1},\nA2={A2}\n\n') logmartval = lambda v: log_supermartingale_value(v,wmax,b0,b1,A0,A1,A2) # Root finding tmpv, found = linear_search_leftright(logmartval,0,1,-np.log(2 * alpha),step=0.001) #print(tmpv) #tmpv = bisection_algorithm(martval,0,1,1/(2 * alpha),margin=0.000001) if not found: #print(f'b0={b0},\nb1={b1},\nA0={A0},\nA1={A1},\nA2={A2}\n\n') #print('tmpv=0') return np.array([0.] * T), np.array([1.] * T) lb = bisection_algorithm(logmartval,0,tmpv,-np.log(alpha),margin=0.000001,direction="left") ub = bisection_algorithm(logmartval,tmpv,1,-np.log(alpha),margin=0.000001) #print(f'tmpv not eq 1: lb={lb}, up={ub}\n') return np.array([float(lb)] * T), np.array([float(ub)] * T) def cs_via_supermartingale_1d_debug(data, wmin, wmax, alpha): # Assume data is of type np.array((t,2)), where (w,r)=(wr[:,0],wr[:,1]). # TODO we want to allow for different policies eventually T = len(data) # Initialize b0 = np.zeros(2) b1 = np.zeros(2) A0 = np.zeros((2,2)) A1 = np.zeros((2,2)) A2 = np.zeros((2,2)) w = data[:,0] r = data[:,1] b0 = np.dot(w,r) b1 = -T A0 = np.dot(w*r, w*r) A1 = -2 * np.dot(w,r) A2 = T #print(f'b0={b0},\nb1={b1},\nA0={A0},\nA1={A1},\nA2={A2}\n\n') martval = lambda v: log_supermartingale_value_1d(v,wmax,b0,b1,A0,A1,A2) # Root finding tmpv, found = linear_search_leftright(martval,0,1,1/(2 * alpha),step=0.001) #print(tmpv) #tmpv = bisection_algorithm(martval,0,1,1/(2 * alpha),margin=0.000001) if not found: #print(f'b0={b0},\nb1={b1},\nA0={A0},\nA1={A1},\nA2={A2}\n\n') #print('tmpv=0') return np.array([0.] * T), np.array([1.] * T) lb = bisection_algorithm(martval,0,tmpv,1/alpha,margin=0.000001,direction="left") ub = bisection_algorithm(martval,tmpv,1,1/alpha,margin=0.000001) #print(f'tmpv not eq 1: lb={lb}, up={ub}\n') return np.array([float(lb)] * T), np.array([float(ub)] * T) def cs_via_EWA(data, wmin, wmax, alpha): # Assume data is of type np.array((t,2)), where (w,r)=(wr[:,0],wr[:,1]). # TODO we want to allow for different policies eventually T = len(data) # Initialize b0 = np.zeros(2) b1 = np.zeros(2) A0 = np.zeros((2,2)) A1 = np.zeros((2,2)) A2 = np.zeros((2,2)) lb = np.zeros(T) ub = np.zeros(T) for t in range(T): wt = data[t,0] rt = data[t,1] b0 += [wt-1,wt*rt] b1 += [0,-1] A0 += [[(wt-1)**2, (wt-1)*wt*rt], [(wt-1) * wt * rt,(wt * rt)**2]] A1 += [[0, -(wt-1)], [-(wt-1),-2 * wt * rt]] A2 += [[0,0],[0,1]] martval = lambda v: martingale_value_lowerbound(v,wmax,b0,b1,A0,A1,A2,t) # Root finding tmpv, found = linear_search_leftright(martval,0,1,1/(2 * alpha),step=0.001) #tmpv = bisection_algorithm(martval,0,1,1/(2 * alpha),margin=0.000001) if not found: #print(f'b0={b0},\nb1={b1},\nA0={A0},\nA1={A1},\nA2={A2}\n\n') #print(f'tmpv={tmpv}') lb[t]=0. ub[t]=1. continue lb[t] = bisection_algorithm(martval,0,tmpv,1/alpha,margin=0.000001,direction="left") ub[t] = bisection_algorithm(martval,tmpv,1,1/alpha,margin=0.000001) return lb, ub def cs_via_EWA_debug(data, wmin, wmax, alpha): # Assume data is of type np.array((t,2)), where (w,r)=(wr[:,0],wr[:,1]). # TODO we want to allow for different policies eventually T = len(data) # Initialize b0 = np.zeros(2) b1 = np.zeros(2) A0 = np.zeros((2,2)) A1 = np.zeros((2,2)) A2 = np.zeros((2,2)) #t0 = time.time() w = data[:,0] r = data[:,1] b0 = np.array([np.sum(w)-T,np.dot(w,r)]) b1 = np.array([0,-T]) A0 = np.array([[np.dot(w-1, w-1), np.dot(w-1, w*r)], [np.dot(w-1, w*r), np.dot(w*r, w*r)]]) A1 = np.array([[0, -np.sum(w)+T], [-np.sum(w)+T,-2 * np.dot(w,r)]]) A2 = np.array([[0,0],[0,T]]) #print(f'Time to construct matrices is {time.time()-t0} seconds') #print(f'b0={b0},\nb1={b1},\nA0={A0},\nA1={A1},\nA2={A2}\n\n') martval = lambda v: martingale_value_lowerbound(v,wmax,b0,b1,A0,A1,A2,T) # Root finding #t0 = time.time() tmpv, found = linear_search_leftright(martval,0,1,1/(2 * alpha),step=0.001) #tmpv = bisection_algorithm(martval,0,1,1/(2 * alpha),margin=0.000001) if not found: #print(f'b0={b0},\nb1={b1},\nA0={A0},\nA1={A1},\nA2={A2}\n\n') #print(f'tmpv={tmpv}') return
np.array([0.] * T)
numpy.array
import numpy as np from sklearn.model_selection import train_test_split from sklearn import svm, metrics from BELM.belm import BELM def plm_train(data, target, label, n, s1, s2, c, acc=None): """ Progressive learning implementation""" gamma = 0.01 + 1 * 0.005 nnet4 = [] var = s2 train_data = [] train_target = [] train_label = [] real_train_label = [] for n_c in range(0, c): # yxf num_node = [] error = [] nn_optimal = [] p_max = -1 s2 = var for nn in range(0, n): # wsn for n_s1 in range(0, s1): if nn == 0: index = np.random.permutation(data.shape[0]) X_test = data[index] Y_test = target[index] L_test = label[index] X_train = X_test[:5, :] Y_train = Y_test[:5, :] for n_s2 in range(0, s2): belm = BELM(X_train.shape[1], Y_train.shape[1], precision="single") belm.add_neurons(5, 'sigm') belm.train(X_train[:5, :], Y_train[:5, :]) yhat = belm.predict(X_test) v = np.abs(Y_test - yhat) v = np.where(v > gamma, 0, v) v = np.where(v > 0, 1, v) num_node.append(np.sum(v)) error.append(belm.error(Y_test, yhat)) # print(num_node) if max(num_node) > p_max: p_max = max(num_node) e1 = error[num_node.index(max(num_node))] nnet1 = belm v1 = v # yhat1 = yhat index1 = index # data1=[y phi] # data = [] nn_optimal.append((max(num_node), error[num_node.index(max(num_node))])) Y_test = target[index1] X_test = data[index1] L_test = label[index1] new_ind = np.where(v1 == 1)[0] Y_train = Y_test[new_ind] X_train = X_test[new_ind] L_train = L_test[new_ind] s2 = 1 nnet4.append(nnet1) if len(train_data) == 0: train_data = X_train train_target = Y_train real_train_label = L_train train_label = np.full_like(L_train, n_c + 1) else: train_data = np.vstack((train_data, X_train)) train_target = np.vstack((train_target, Y_train)) real_train_label = np.vstack((real_train_label, L_train)) train_label = np.vstack((train_label, np.full_like(L_train, n_c + 1))) # removing data points of the first cluster # only data points where the labels are wrongly identified are selected new_ind = np.where(v1 == 0)[0] data = data[new_ind] target = target[new_ind] label = label[new_ind] return train_data, train_target, train_label, real_train_label, nnet4 def plm_test(train_dat, train_lab, test_dat, test_tar, test_lab, nn, c): # SVM classifier clf = svm.SVC() clf.fit(train_dat, train_lab.ravel()) predicted = clf.predict(test_dat) svm_acc = metrics.accuracy_score(test_lab, predicted) # print("SVM Accuracy: ", metrics.accuracy_score(test_lab, predicted)) # error = [] final_tar = [] final_pred = [] for n_c in range(0, c): r_ind = np.where(test_lab == n_c + 1)[0] # p_ind = np.where(predicted == n_c + 1)[0] tmp_dat = test_dat[r_ind] tmp_tar = test_tar[r_ind] # tmp_lab = test_lab[ind] test_pred = nn[n_c].predict(tmp_dat) # error.append(nn[n_c].error(tmp_tar, test_pred)) if n_c == 0: final_tar = tmp_tar final_pred = test_pred else: final_tar = np.vstack((final_tar, tmp_tar)) final_pred = np.vstack((final_pred, test_pred)) return np.mean((final_pred - final_tar) ** 2), svm_acc def pelm(data, target, m, n=5, p=10, s=10, epochs=20): X_train, X_test, Y_train, Y_test = train_test_split(data, target, test_size=0.3) L_train = Y_train[:, -1].reshape(-1, 1) L_test = Y_test[:, -1].reshape(-1, 1) Y_test = Y_test[:, 0].reshape(-1, 1) Y_train = Y_train[:, 0].reshape(-1, 1) from time import time start_time = time() testing_error = [] for i in range(0, epochs): d, t, l, rl, net = plm_train(X_train, Y_train, L_train, n, p, s, m); e, svm_acc = plm_test(d, l, X_test, Y_test, L_test, net, m) testing_error.append(e) print("Execution time: ", time() - start_time, " secs") print("Min error: ", np.min(testing_error)) print("Mean error: ",
np.mean(testing_error)
numpy.mean
############################################################################### # Reader for CINE files produced by Vision Research Phantom Software # Author: <NAME> # <EMAIL> # Modified by <NAME> (<EMAIL>) # Added to PIMS by <NAME> (<EMAIL>) # Modified by <NAME> ############################################################################### from __future__ import (absolute_import, division, print_function, unicode_literals) import six from pims.frame import Frame from pims.base_frames import FramesSequence, index_attr from pims.utils.misc import FileLocker import time import struct import numpy as np from numpy import array, frombuffer, where from threading import Lock import datetime import hashlib import sys import warnings from collections.abc import Iterable __all__ = ('Cine', ) # '<' for little endian (cine documentation) def _build_struct(dtype): return struct.Struct(str("<" + dtype)) FRACTION_MASK = (2**32-1) MAX_INT = 2**32 # Harmonized/simplified cine file data types with Python struct doc UINT8 = 'B' CHAR = 'b' UINT16 = 'H' INT16 = 'h' BOOL = 'i' UINT32 = 'I' INT32 = 'i' INT64 = 'q' FLOAT = 'f' DOUBLE = 'd' TIME64 = 'Q' RECT = '4i' WBGAIN = '2f' IMFILTER = '28i' # TODO: get correct format for TrigTC TC = '8s' CFA_NONE = 0 # gray sensor CFA_VRI = 1 # gbrg/rggb sensor CFA_VRIV6 = 2 # bggr/grbg sensor CFA_BAYER = 3 # gb/rg sensor CFA_BAYERFLIP = 4 #rg/gb sensor TAGGED_FIELDS = { 1000: ('ang_dig_sigs', ''), 1001: ('image_time_total', TIME64), 1002: ('image_time_only', TIME64), 1003: ('exposure_only', UINT32), 1004: ('range_data', ''), 1005: ('binsig', ''), 1006: ('anasig', ''), 1007: ('time_code', '')} HEADER_FIELDS = [ ('type', '2s'), ('header_size', UINT16), ('compression', UINT16), ('version', UINT16), ('first_movie_image', INT32), ('total_image_count', UINT32), ('first_image_no', INT32), ('image_count', UINT32), # Offsets of following sections ('off_image_header', UINT32), ('off_setup', UINT32), ('off_image_offsets', UINT32), ('trigger_time', TIME64), ] BITMAP_INFO_FIELDS = [ ('bi_size', UINT32), ('bi_width', INT32), ('bi_height', INT32), ('bi_planes', UINT16), ('bi_bit_count', UINT16), ('bi_compression', UINT32), ('bi_image_size', UINT32), ('bi_x_pels_per_meter', INT32), ('bi_y_pels_per_meter', INT32), ('bi_clr_used', UINT32), ('bi_clr_important', UINT32), ] SETUP_FIELDS = [ ('frame_rate_16', UINT16), ('shutter_16', UINT16), ('post_trigger_16', UINT16), ('frame_delay_16', UINT16), ('aspect_ratio', UINT16), ('contrast_16', UINT16), ('bright_16', UINT16), ('rotate_16', UINT8), ('time_annotation', UINT8), ('trig_cine', UINT8), ('trig_frame', UINT8), ('shutter_on', UINT8), ('description_old', '121s'), ('mark', '2s'), ('length', UINT16), ('binning', UINT16), ('sig_option', UINT16), ('bin_channels', INT16), ('samples_per_image', UINT8), ] + [('bin_name{:d}'.format(i), '11s') for i in range(8)] + [ ('ana_option', UINT16), ('ana_channels', INT16), ('res_6', UINT8), ('ana_board', UINT8), ] + [('ch_option{:d}'.format(i), INT16) for i in range(8)] + [ ] + [('ana_gain{:d}'.format(i), FLOAT) for i in range(8)] + [ ] + [('ana_unit{:d}'.format(i), '6s') for i in range(8)] + [ ] + [('ana_name{:d}'.format(i), '11s') for i in range(8)] + [ ('i_first_image', INT32), ('dw_image_count', UINT32), ('n_q_factor', INT16), ('w_cine_file_type', UINT16), ] + [('sz_cine_path{:d}'.format(i), '65s') for i in range(4)] + [ ('b_mains_freq', UINT16), ('b_time_code', UINT8), ('b_priority', UINT8), ('w_leap_sec_dy', UINT16), ('d_delay_tc', DOUBLE), ('d_delay_pps', DOUBLE), ('gen_bits', UINT16), ('res_1', INT32), ('res_2', INT32), ('res_3', INT32), ('im_width', UINT16), ('im_height', UINT16), ('edr_shutter_16', UINT16), ('serial', UINT32), ('saturation', INT32), ('res_5', UINT8), ('auto_exposure', UINT32), ('b_flip_h', BOOL), ('b_flip_v', BOOL), ('grid', UINT32), ('frame_rate', UINT32), ('shutter', UINT32), ('edr_shutter', UINT32), ('post_trigger', UINT32), ('frame_delay', UINT32), ('b_enable_color', BOOL), ('camera_version', UINT32), ('firmware_version', UINT32), ('software_version', UINT32), ('recording_time_zone', INT32), ('cfa', UINT32), ('bright', INT32), ('contrast', INT32), ('gamma', INT32), ('res_21', UINT32), ('auto_exp_level', UINT32), ('auto_exp_speed', UINT32), ('auto_exp_rect', RECT), ('wb_gain', '8f'), ('rotate', INT32), ('wb_view', WBGAIN), ('real_bpp', UINT32), ('conv_8_min', UINT32), ('conv_8_max', UINT32), ('filter_code', INT32), ('filter_param', INT32), ('uf', IMFILTER), ('black_cal_sver', UINT32), ('white_cal_sver', UINT32), ('gray_cal_sver', UINT32), ('b_stamp_time', BOOL), ('sound_dest', UINT32), ('frp_steps', UINT32), ] + [('frp_img_nr{:d}'.format(i), INT32) for i in range(16)] + [ ] + [('frp_rate{:d}'.format(i), UINT32) for i in range(16)] + [ ] + [('frp_exp{:d}'.format(i), UINT32) for i in range(16)] + [ ('mc_cnt', INT32), ] + [('mc_percent{:d}'.format(i), FLOAT) for i in range(64)] + [ ('ci_calib', UINT32), ('calib_width', UINT32), ('calib_height', UINT32), ('calib_rate', UINT32), ('calib_exp', UINT32), ('calib_edr', UINT32), ('calib_temp', UINT32), ] + [('header_serial{:d}'.format(i), UINT32) for i in range(4)] + [ ('range_code', UINT32), ('range_size', UINT32), ('decimation', UINT32), ('master_serial', UINT32), ('sensor', UINT32), ('shutter_ns', UINT32), ('edr_shutter_ns', UINT32), ('frame_delay_ns', UINT32), ('im_pos_xacq', UINT32), ('im_pos_yacq', UINT32), ('im_width_acq', UINT32), ('im_height_acq', UINT32), ('description', '4096s'), ('rising_edge', BOOL), ('filter_time', UINT32), ('long_ready', BOOL), ('shutter_off', BOOL), ('res_4', '16s'), ('b_meta_WB', BOOL), ('hue', INT32), ('black_level', INT32), ('white_level', INT32), ('lens_description', '256s'), ('lens_aperture', FLOAT), ('lens_focus_distance', FLOAT), ('lens_focal_length', FLOAT), ('f_offset', FLOAT), ('f_gain', FLOAT), ('f_saturation', FLOAT), ('f_hue', FLOAT), ('f_gamma', FLOAT), ('f_gamma_R', FLOAT), ('f_gamma_B', FLOAT), ('f_flare', FLOAT), ('f_pedestal_R', FLOAT), ('f_pedestal_G', FLOAT), ('f_pedestal_B', FLOAT), ('f_chroma', FLOAT), ('tone_label', '256s'), ('tone_points', INT32), ('f_tone', ''.join(32*['2f'])), ('user_matrix_label', '256s'), ('enable_matrices', BOOL), ('f_user_matrix', '9'+FLOAT), ('enable_crop', BOOL), ('crop_left_top_right_bottom', '4i'), ('enable_resample', BOOL), ('resample_width', UINT32), ('resample_height', UINT32), ('f_gain16_8', FLOAT), ('frp_shape', '16'+UINT32), ('trig_TC', TC), ('f_pb_rate', FLOAT), ('f_tc_rate', FLOAT), ('cine_name', '256s') ] #from VR doc: This field is maintained for compatibility with old versions but #a new field was added for that information. The new field can be larger or may #have a different measurement unit. UPDATED_FIELDS = { 'frame_rate_16': 'frame_rate', 'shutter_16': 'shutter_ns', 'post_trigger_16': 'post_trigger', 'frame_delay_16': 'frame_delay_ns', 'edr_shutter_16': 'edr_shutter_ns', 'saturation': 'f_saturation', 'shutter': 'shutter_ns', 'edr_shutter': 'edr_shutter_ns', 'frame_delay': 'frame_delay_ns', 'bright': 'f_offset', 'contrast': 'f_gain', 'gamma': 'f_gamma', 'conv_8_max': 'f_gain16_8', 'hue': 'f_hue', } #from VR doc: to be ignored, not used anymore TO_BE_IGNORED_FIELDS = { 'contrast_16': 'res_7', 'bright_16': 'res_8', 'rotate_16': 'res_9', 'time_annotation': 'res_10', 'trig_cine': 'res_11', 'shutter_on': 'res_12', 'binning': 'res_13', 'b_mains_freq': 'res_14', 'b_time_code': 'res_15', 'b_priority': 'res_16', 'w_leap_sec_dy': 'res_17', 'd_delay_tc': 'res_18', 'd_delay_pps': 'res_19', 'gen_bits': 'res_20', 'conv_8_min': '', } # from VR doc: last setup field appearing in software version # TODO: keep up-to-date with newer and more precise doc, if available END_OF_SETUP = { 551: 'software_version', 552: 'recording_time_zone', 578: 'rotate', 605: 'b_stamp_time', 606: 'mc_percent63', 607: 'head_serial3', 614: 'decimation', 624: 'master_serial', 625: 'sensor', 631: 'frame_delay_ns', 637: 'description', 671: 'hue', 691: 'lens_focal_length', 693: 'f_gain16_8', 701: 'f_tc_rate', 702: 'cine_name', } class Cine(FramesSequence): """Read cine files Read cine files, the out put from Vision Research high-speed phantom cameras. Support uncompressed monochrome and color files. Nominally thread-safe, but this assertion is not tested. Parameters ---------- filename : string Path to cine (or chd) file. Notes ----- For a .chd file, this class only reads the header, not the images. """ # TODO: Unit tests using a small sample cine file. @classmethod def class_exts(cls): return {'cine'} | super(Cine, cls).class_exts() propagate_attrs = ['frame_shape', 'pixel_type', 'filename', 'frame_rate', 'get_fps', 'compression', 'cfa', 'off_set'] def __init__(self, filename): py_ver = sys.version_info super(Cine, self).__init__() self.f = open(filename, 'rb') self._filename = filename ### HEADER self.header_dict = self._read_header(HEADER_FIELDS) self.bitmapinfo_dict = self._read_header(BITMAP_INFO_FIELDS, self.off_image_header) self.setup_fields_dict = self._read_header(SETUP_FIELDS, self.off_setup) self.setup_fields_dict = self.clean_setup_dict() self._width = self.bitmapinfo_dict['bi_width'] self._height = self.bitmapinfo_dict['bi_height'] self._pixel_count = self._width * self._height # Allows Cine object to be accessed from multiple threads! self.file_lock = Lock() self._hash = None self._im_sz = (self._width, self._height) # sort out the data type by reading the meta-data if self.bitmapinfo_dict['bi_bit_count'] in (8, 24): self._data_type = 'u1' else: self._data_type = 'u2' self.tagged_blocks = self._read_tagged_blocks() self.frame_time_stamps = self.tagged_blocks['image_time_only'] self.all_exposures = self.tagged_blocks['exposure_only'] self.stack_meta_data = dict() self.stack_meta_data.update(self.bitmapinfo_dict) self.stack_meta_data.update({k: self.setup_fields_dict[k] for k in set(('trig_frame', 'gamma', 'frame_rate', 'shutter_ns' ) ) }) self.stack_meta_data.update({k: self.header_dict[k] for k in set(('first_image_no', 'image_count', 'total_image_count', 'first_movie_image' ) ) }) self.stack_meta_data['trigger_time'] = self.trigger_time ### IMAGES # Move to images offset to test EOF... self.f.seek(self.off_image_offsets) if self.f.read(1) != b'': # ... If no, read images self.image_locations = self._unpack('%dQ' % self.image_count, self.off_image_offsets) if type(self.image_locations) not in (list, tuple): self.image_locations = [self.image_locations] # TODO: add support for reading sequence within the same framework, when data # has been saved in another format (.tif, image sequence, etc) def clean_setup_dict(self): r"""Clean setup dictionary by removing newer fields, when compared to the software version, and trailing null character b'\x00' in entries. Notes ----- The method is called after building the setup from the raw cine header. It can be overridden to match more specific purposes (e.g. filtering out TO_BE_IGNORED_ and UPDATED_FIELDS). See also -------- `Vision Research Phantom documentation <http://phantomhighspeed-knowledge.force.com/servlet/fileField?id=0BE1N000000kD2i>`_ """ setup = self.setup_fields_dict.copy() # End setup at correct field (according to doc) versions = sorted(END_OF_SETUP.keys()) fields = [v[0] for v in SETUP_FIELDS] v = setup['software_version'] # Get next field where setup is known to have ended, according to VR try: v_up = versions[sorted(where(array(versions) >= v)[0])[0]] last_field = END_OF_SETUP[v_up] for k in fields[fields.index(last_field)+1:]: del setup[k] except IndexError: # Or go to the end (waiting for updated documentation) pass # Remove blank characters setup = _convert_null_byte(setup) # Filter out 'res_' (reserved/obsolete) fields #k_res = [k for k in setup.keys() if k.startswith('res_')] #for k in k_res: # del setup[k] # Format f_tone properly if 'f_tone' in setup.keys(): tone = setup['f_tone'] setup['f_tone'] = tuple((tone[2*k], tone[2*k+1])\ for k in range(setup['tone_points'])) return setup @property def filename(self): return self._filename @property def frame_rate(self): """Frame rate (setting in Phantom PCC software) (Hz). May differ from computed average one. """ return self.setup_fields_dict['frame_rate'] @property def frame_rate_avg(self): """Actual frame rate, averaged on frame timestamps (Hz).""" return self.get_frame_rate_avg() # use properties for things that should not be changeable @property def cfa(self): return self.setup_fields_dict['cfa'] @property def compression(self): return self.header_dict['compression'] @property def pixel_type(self): return np.dtype(self._data_type) # TODO: what is this field??? (baneel) @property def off_set(self): return self.header_dict['offset'] @property def setup_length(self): return self.setup_fields_dict['length'] @property def off_image_offsets(self): return self.header_dict['off_image_offsets'] @property def off_image_header(self): return self.header_dict['off_image_header'] @property def off_setup(self): return self.header_dict['off_setup'] @property def image_count(self): return self.header_dict['image_count'] @property def frame_shape(self): return self._im_sz @property def shape(self): """Shape of virtual np.array containing images.""" W, H = self.frame_shape return self.len(), H, W def get_frame(self, j): md = dict() md['exposure'] = self.all_exposures[j] ts, sec_frac = self.frame_time_stamps[j] md['frame_time'] = {'datetime': ts, 'second_fraction': sec_frac, 'time_to_trigger': self.get_time_to_trigger(j), } return Frame(self._get_frame(j), frame_no=j, metadata=md) def _unpack(self, fs, offset=None): if offset is not None: self.f.seek(offset) s = _build_struct(fs) vals = s.unpack(self.f.read(s.size)) if len(vals) == 1: return vals[0] else: return vals def _read_tagged_blocks(self): """Reads the tagged block meta-data from the header.""" tmp_dict = dict() if not self.off_setup + self.setup_length < self.off_image_offsets: return next_tag_exists = True next_tag_offset = 0 while next_tag_exists: block_size, next_tag_exists = self._read_tag_block(next_tag_offset, tmp_dict) next_tag_offset += block_size return tmp_dict def _read_tag_block(self, off_set, accum_dict): ''' Internal helper-function for reading the tagged blocks. ''' with FileLocker(self.file_lock): self.f.seek(self.off_setup + self.setup_length + off_set) block_size = self._unpack(UINT32) b_type = self._unpack(UINT16) more_tags = self._unpack(UINT16) if b_type == 1004: # docs say to ignore range data it seems to be a poison flag, # if see this, give up tag parsing return block_size, 0 try: d_name, d_type = TAGGED_FIELDS[b_type] except KeyError: return block_size, more_tags if d_type == '': # print "can't deal with <" + d_name + "> tagged data" return block_size, more_tags s_tmp = _build_struct(d_type) if (block_size-8) % s_tmp.size != 0: # print 'something is wrong with your data types' return block_size, more_tags d_count = (block_size-8)//(s_tmp.size) data = self._unpack('%d' % d_count + d_type) if not isinstance(data, tuple): # fix up data due to design choice in self.unpack data = (data, ) # parse time if b_type == 1002 or b_type == 1001: data = [(datetime.datetime.fromtimestamp(d >> 32), (FRACTION_MASK & d)/MAX_INT) for d in data] # convert exposure to seconds if b_type == 1003: data = [d/(MAX_INT) for d in data] accum_dict[d_name] = data return block_size, more_tags def _read_header(self, fields, offset=0): self.f.seek(offset) tmp = dict() for name, format in fields: val = self._unpack(format) tmp[name] = val return tmp def _get_frame(self, number): with FileLocker(self.file_lock): # get basic information about the frame we want image_start = self.image_locations[number] annotation_size = self._unpack(UINT32, image_start) # this is not used, but is needed to advance the point in the file annotation = self._unpack('%db' % (annotation_size - 8)) image_size = self._unpack(UINT32) cfa = self.cfa compression = self.compression # sort out data type looking at the cached version data_type = self._data_type # actual bit per pixel actual_bits = image_size * 8 // (self._pixel_count) # so this seem wrong as 10 or 12 bits won't fit in 'u1' # but I (TAC) may not understand and don't have a packed file # (which the docs seem to imply don't exist) to test on so # I am leaving it. good luck. if actual_bits in (10, 12): data_type = 'u1' # move the file to the right point in the file self.f.seek(image_start + annotation_size) # suck the data out of the file and shove into linear # numpy array frame = frombuffer(self.f.read(image_size), data_type) # if mono-camera if cfa == CFA_NONE: if compression != 0: raise ValueError("Can not deal with compressed files\n" + "compression level: " + "{}".format(compression)) # we are working with a monochrome camera # un-pack packed data if (actual_bits == 10): frame = _ten2sixteen(frame) elif (actual_bits == 12): frame = _twelve2sixteen(frame) elif (actual_bits % 8): raise ValueError('Data should be byte aligned, ' + 'or 10 or 12 bit packed (appears to be' + ' %dbits/pixel?!)' % actual_bits) # re-shape to an array # flip the rows frame = frame.reshape(self._height, self._width)[::-1] if actual_bits in (10, 12): frame = frame[::-1, :] # Don't know why it works this way, but it does... # else, some sort of color layout else: if compression == 0: # and re-order so color is RGB (naively saves as BGR) frame = frame.reshape(self._height, self._width, 3)[::-1, :, ::-1] elif compression == 2: raise ValueError("Can not process un-interpolated movies") else: raise ValueError("Should never hit this, " + "you have an un-documented file\n" + "compression level: " + "{}".format(compression)) return frame def __len__(self): return self.image_count len = __len__ @index_attr def get_time(self, i): """Return the time of frame i in seconds, relative to first frame.""" warnings.warn("This is not guaranteed to be the actual time. "\ +"See self.get_time_to_trigger(i) method.", category=PendingDeprecationWarning) return float(i) / self.frame_rate @index_attr def get_time_to_trigger(self, i): """Get actual time (s) of frame i, relative to trigger.""" ti = self.frame_time_stamps[i] ti = ti[0].timestamp() + ti[1] tt= self.trigger_time tt = tt['datetime'].timestamp() + tt['second_fraction'] return ti - tt def get_frame_rate_avg(self, error_tol=1e-3): """Compute mean frame rate (Hz), on the basis of frame time stamps. Parameters ---------- error_tol : float, optional. Tolerance on relative error (standard deviation/mean), above which a warning is raised. Returns ------- fps : float. Actual mean frame rate, based on the frames time stamps. """ times = np.r_[[self.get_time_to_trigger(i) for i in range(self.len())]] freqs = 1 / np.diff(times) fps, std = freqs.mean(), freqs.std() error = std / fps if error > error_tol: warnings.warn('Relative precision on the average frame rate is '\ +'{:.2f}%.'.format(1e2*error)) return fps def get_fps(self): """Get frame rate (setting in Phantom PCC software) (Hz). May differ from computed average one. See also -------- PCC setting (all fields refer to the same value) self.frame_rate self.setup_fields_dict['frame_rate'] Computed average self.frame_rate_avg self.get_frame_rate_avg() """ return self.frame_rate def close(self): self.f.close() def __unicode__(self): return self.filename def __str__(self): return unicode(self).encode('utf-8') def __repr__(self): # May be overwritten by subclasses return """<Frames> Source: {filename} Length: {count} frames Frame Shape: {frame_shape!r} Pixel Datatype: {dtype}""".format(frame_shape=self.frame_shape, count=len(self), filename=self.filename, dtype=self.pixel_type) @property def trigger_time(self): '''Returns the time of the trigger, tuple of (datatime_object, fraction_in_s)''' trigger_time = self.header_dict['trigger_time'] ts, sf = (datetime.datetime.fromtimestamp(trigger_time >> 32), float(FRACTION_MASK & trigger_time)/(MAX_INT)) return {'datetime': ts, 'second_fraction': sf} @property def hash(self): if self._hash is None: self._hash_fun() return self._hash def __hash__(self): return int(self.hash, base=16) def _hash_fun(self): """Generates the md5 hash of the header of the file. Here the header is defined as everything before the first image starts. This includes all of the meta-data (including the plethora of time stamps) so this will be unique. """ # get the file lock (so we don't screw up any other reads) with FileLocker(self.file_lock): self.f.seek(0) max_loc = self.image_locations[0] md5 = hashlib.md5() chunk_size = 128*md5.block_size chunk_count = (max_loc//chunk_size) + 1 for j in range(chunk_count): md5.update(self.f.read(128*md5.block_size)) self._hash = md5.hexdigest() def __eq__(self, other): return self.hash == other.hash def __ne__(self, other): return not self == other # Should be divisible by 3, 4 and 5! This seems to be near-optimal. CHUNK_SIZE = 6 * 10 ** 5 def _ten2sixteen(a): """Convert array of 10bit uints to array of 16bit uints.""" b = np.zeros(a.size//5*4, dtype='u2') for j in range(0, len(a), CHUNK_SIZE): (a0, a1, a2, a3, a4) = [a[j+i:j+CHUNK_SIZE:5].astype('u2') for i in range(5)] k = j//5 * 4 k2 = k + CHUNK_SIZE//5 * 4 b[k+0:k2:4] = ((a0 & 0b11111111) << 2) + ((a1 & 0b11000000) >> 6) b[k+1:k2:4] = ((a1 & 0b00111111) << 4) + ((a2 & 0b11110000) >> 4) b[k+2:k2:4] = ((a2 & 0b00001111) << 6) + ((a3 & 0b11111100) >> 2) b[k+3:k2:4] = ((a3 & 0b00000011) << 8) + ((a4 & 0b11111111) >> 0) return b def _sixteen2ten(b): """Convert array of 16bit uints to array of 10bit uints.""" a =
np.zeros(b.size//4*5, dtype='u1')
numpy.zeros
from __future__ import division, print_function import os, types import numpy as np import vtk from vtk.util.numpy_support import numpy_to_vtk from vtk.util.numpy_support import vtk_to_numpy import vtkplotter.colors as colors ############################################################################## vtkMV = vtk.vtkVersion().GetVTKMajorVersion() > 5 def add_actor(f): #decorator def wrapper(*args, **kwargs): actor = f(*args, **kwargs) args[0].actors.append(actor) return actor return wrapper def setInput(vtkobj, p, port=0): if isinstance(p, vtk.vtkAlgorithmOutput): vtkobj.SetInputConnection(port, p) # passing port return if vtkMV: vtkobj.SetInputData(p) else: vtkobj.SetInput(p) def isSequence(arg): if hasattr(arg, "strip"): return False if hasattr(arg, "__getslice__"): return True if hasattr(arg, "__iter__"): return True return False def arange(start,stop, step=1): return np.arange(start, stop, step) def vector(x, y=None, z=0.): if y is None: #assume x is already [x,y,z] return np.array(x, dtype=np.float64) return np.array([x,y,z], dtype=np.float64) def mag(z): if isinstance(z[0], np.ndarray): return np.array(list(map(np.linalg.norm, z))) else: return np.linalg.norm(z) def mag2(z): return np.dot(z,z) def norm(v): if isinstance(v[0], np.ndarray): return np.divide(v, mag(v)[:,None]) else: return v/mag(v) def to_precision(x, p): """ Returns a string representation of x formatted with a precision of p Based on the webkit javascript implementation taken from here: https://code.google.com/p/webkit-mirror/source/browse/JavaScriptCore/kjs/number_object.cpp Implemented in https://github.com/randlet/to-precision """ import math x = float(x) if x == 0.: return "0." + "0"*(p-1) out = [] if x < 0: out.append("-") x = -x e = int(math.log10(x)) tens = math.pow(10, e - p + 1) n = math.floor(x/tens) if n < math.pow(10, p - 1): e = e -1 tens = math.pow(10, e - p+1) n = math.floor(x / tens) if abs((n + 1.) * tens - x) <= abs(n * tens -x): n = n + 1 if n >= math.pow(10,p): n = n / 10. e = e + 1 m = "%.*g" % (p, n) if e < -2 or e >= p: out.append(m[0]) if p > 1: out.append(".") out.extend(m[1:p]) out.append('e') if e > 0: out.append("+") out.append(str(e)) elif e == (p -1): out.append(m) elif e >= 0: out.append(m[:e+1]) if e+1 < len(m): out.append(".") out.extend(m[e+1:]) else: out.append("0.") out.extend(["0"]*-(e+1)) out.append(m) return "".join(out) ######################################################################### def makeActor(poly, c='gold', alpha=0.5, wire=False, bc=None, edges=False, legend=None, texture=None): ''' Return a vtkActor from an input vtkPolyData, optional args: c, color in RGB format, hex, symbol or name alpha, transparency (0=invisible) wire, show surface as wireframe bc, backface color of internal surface edges, show edges as line on top of surface legend optional string texture jpg file name of surface texture, eg. 'metalfloor1' ''' clp = vtk.vtkCleanPolyData() setInput(clp, poly) clp.Update() pdnorm = vtk.vtkPolyDataNormals() setInput(pdnorm, clp.GetOutput()) pdnorm.ComputePointNormalsOn() pdnorm.ComputeCellNormalsOn() pdnorm.FlipNormalsOff() pdnorm.ConsistencyOn() pdnorm.Update() mapper = vtk.vtkPolyDataMapper() # check if color string contains a float, in this case ignore alpha if alpha is None: alpha=0.5 al = colors.getAlpha(c) if al: alpha = al setInput(mapper, pdnorm.GetOutput()) actor = vtk.vtkActor() actor.SetMapper(mapper) prp = actor.GetProperty() ######################################################################### ### On some vtk versions/platforms points are redered as ugly squares ### in such a case uncomment this line: if vtk.vtkVersion().GetVTKMajorVersion()>6: prp.RenderPointsAsSpheresOn() ######################################################################### if c is None: mapper.ScalarVisibilityOn() else: mapper.ScalarVisibilityOff() c = colors.getColor(c) prp.SetColor(c) prp.SetOpacity(alpha) prp.SetSpecular(0.1) prp.SetSpecularColor(c) prp.SetSpecularPower(1) prp.SetAmbient(0.1) prp.SetAmbientColor(c) prp.SetDiffuse(1) prp.SetDiffuseColor(c) if edges: prp.EdgeVisibilityOn() if wire: prp.SetRepresentationToWireframe() if texture: mapper.ScalarVisibilityOff() assignTexture(actor, texture) if bc: # defines a specific color for the backface backProp = vtk.vtkProperty() backProp.SetDiffuseColor(colors.getColor(bc)) backProp.SetOpacity(alpha) actor.SetBackfaceProperty(backProp) assignPhysicsMethods(actor) assignConvenienceMethods(actor, legend) return actor def makeAssembly(actors, legend=None): '''Group many actors as a single new actor''' assembly = vtk.vtkAssembly() for a in actors: assembly.AddPart(a) setattr(assembly, 'legend', legend) assignPhysicsMethods(assembly) assignConvenienceMethods(assembly, legend) if hasattr(actors[0], 'base'): setattr(assembly, 'base', actors[0].base) setattr(assembly, 'top', actors[0].top) return assembly def assignTexture(actor, name, scale=1, falsecolors=False, mapTo=1): '''Assign a texture to actor from file or name in /textures directory''' if mapTo == 1: tmapper = vtk.vtkTextureMapToCylinder() elif mapTo == 2: tmapper = vtk.vtkTextureMapToSphere() elif mapTo == 3: tmapper = vtk.vtkTextureMapToPlane() setInput(tmapper, polydata(actor)) if mapTo == 1: tmapper.PreventSeamOn() xform = vtk.vtkTransformTextureCoords() xform.SetInputConnection(tmapper.GetOutputPort()) xform.SetScale(scale,scale,scale) if mapTo == 1: xform.FlipSOn() xform.Update() mapper = vtk.vtkDataSetMapper() mapper.SetInputConnection(xform.GetOutputPort()) mapper.ScalarVisibilityOff() cdir = os.path.dirname(__file__) if cdir == '': cdir = '.' fn = cdir + '/textures/' + name + ".jpg" if os.path.exists(name): fn = name elif not os.path.exists(fn): colors.printc(('Texture', name, 'not found in', cdir+'/textures'), 'r') colors.printc('Available textures:', c='m', end=' ') for ff in os.listdir(cdir + '/textures'): colors.printc(ff.split('.')[0], end=' ', c='m') print() return jpgReader = vtk.vtkJPEGReader() jpgReader.SetFileName(fn) atext = vtk.vtkTexture() atext.RepeatOn() atext.EdgeClampOff() atext.InterpolateOn() if falsecolors: atext.MapColorScalarsThroughLookupTableOn() atext.SetInputConnection(jpgReader.GetOutputPort()) actor.GetProperty().SetColor(1,1,1) actor.SetMapper(mapper) actor.SetTexture(atext) # ########################################################################### def assignConvenienceMethods(actor, legend): if not hasattr(actor, 'legend'): setattr(actor, 'legend', legend) def _fclone(self, c=None, alpha=None, wire=False, bc=None, edges=False, legend=None, texture=None, rebuild=True): return clone(self, c, alpha, wire, bc, edges, legend, texture, rebuild) actor.clone = types.MethodType( _fclone, actor ) def _fpoint(self, i, p=None): if p is None : poly = polydata(self, True, 0) p = [0,0,0] poly.GetPoints().GetPoint(i, p) return np.array(p) else: poly = polydata(self, False, 0) poly.GetPoints().SetPoint(i, p) TI = vtk.vtkTransform() actor.SetUserMatrix(TI.GetMatrix()) # reset return self actor.point = types.MethodType( _fpoint, actor ) def _fN(self, index=0): return polydata(self, False, index).GetNumberOfPoints() actor.N = types.MethodType( _fN, actor ) def _fnormalize(self): return normalize(self) actor.normalize = types.MethodType( _fnormalize, actor ) def _fshrink(self, fraction=0.85): return shrink(self, fraction) actor.shrink = types.MethodType( _fshrink, actor ) def _fcutPlane(self, origin=(0,0,0), normal=(1,0,0), showcut=False): return cutPlane(self, origin, normal, showcut) actor.cutPlane = types.MethodType( _fcutPlane, actor ) def _fcutterw(self): return cutterWidget(self) actor.cutterWidget = types.MethodType( _fcutterw, actor ) def _fpolydata(self, rebuild=True, index=0): return polydata(self, rebuild, index) actor.polydata = types.MethodType( _fpolydata, actor ) def _fcoordinates(self, rebuild=True): return coordinates(self, rebuild) actor.coordinates = types.MethodType( _fcoordinates, actor ) def _fxbounds(self): b = polydata(actor, True).GetBounds() return (b[0],b[1]) actor.xbounds = types.MethodType( _fxbounds, actor ) def _fybounds(self): b = polydata(actor, True).GetBounds() return (b[2],b[3]) actor.ybounds = types.MethodType( _fybounds, actor ) def _fzbounds(self): b = polydata(actor, True).GetBounds() return (b[4],b[5]) actor.zbounds = types.MethodType( _fzbounds, actor ) def _fnormalAt(self, index): normals = polydata(self, True).GetPointData().GetNormals() return np.array(normals.GetTuple(index)) actor.normalAt = types.MethodType( _fnormalAt, actor ) def _fnormals(self): vtknormals = polydata(self, True).GetPointData().GetNormals() as_numpy = vtk_to_numpy(vtknormals) return as_numpy actor.normals = types.MethodType( _fnormals, actor ) def _fstretch(self, startpt, endpt): return stretch(self, startpt, endpt) actor.stretch = types.MethodType( _fstretch, actor) def _fsubdivide(self, N=1, method=0, legend=None): return subdivide(self, N, method, legend) actor.subdivide = types.MethodType( _fsubdivide, actor) def _fdecimate(self, fraction=0.5, N=None, verbose=True, boundaries=True): return decimate(self, fraction, N, verbose, boundaries) actor.decimate = types.MethodType( _fdecimate, actor) def _fcolor(self, c=None): if c is not None: self.GetProperty().SetColor(colors.getColor(c)) return self else: return np.array(self.GetProperty().GetColor()) actor.color = types.MethodType( _fcolor, actor) def _falpha(self, a=None): if a: self.GetProperty().SetOpacity(a) return self else: return self.GetProperty().GetOpacity() actor.alpha = types.MethodType( _falpha, actor) def _fwire(self, a=True): if a: self.GetProperty().SetRepresentationToWireframe() else: self.GetProperty().SetRepresentationToSurface() return self actor.wire = types.MethodType( _fwire, actor) def _fclosestPoint(self, pt, N=1, radius=None): return closestPoint(self, pt, N, radius) actor.closestPoint = types.MethodType( _fclosestPoint, actor) def _fintersectWithLine(self, p0, p1): return intersectWithLine(self, p0,p1) actor.intersectWithLine = types.MethodType(_fintersectWithLine , actor) def _fisInside(self, point, tol=0.0001): return isInside(self, point, tol) actor.isInside = types.MethodType(_fisInside , actor) def _finsidePoints(self, points, invert=False, tol=1e-05): return insidePoints(self, points, invert, tol) actor.insidePoints = types.MethodType(_finsidePoints , actor) def _fflipNormals(self): return flipNormals(self) actor.flipNormals = types.MethodType(_fflipNormals , actor) def _fcellCenters(self): return cellCenters(self) actor.cellCenters = types.MethodType(_fcellCenters, actor) def _fpointScalars(self, scalars, name): return pointScalars(self, scalars, name) actor.pointScalars = types.MethodType(_fpointScalars , actor) def _fpointColors(self, scalars, cmap='jet'): return pointColors(self, scalars, cmap) actor.pointColors = types.MethodType(_fpointColors , actor) def _fcellScalars(self, scalars, name): return cellScalars(self, scalars, name) actor.cellScalars = types.MethodType(_fcellScalars , actor) def _fcellColors(self, scalars, cmap='jet'): return cellColors(self, scalars, cmap) actor.cellColors = types.MethodType(_fcellColors , actor) def _fscalars(self, name): return scalars(self, name) actor.scalars = types.MethodType(_fscalars , actor) # ########################################################################### def assignPhysicsMethods(actor): def _fpos(self, p=None): if p is None: return np.array(self.GetPosition()) self.SetPosition(p) return self # return itself to concatenate methods actor.pos = types.MethodType( _fpos, actor ) def _faddpos(self, dp): self.SetPosition(np.array(self.GetPosition()) +dp ) return self actor.addpos = types.MethodType( _faddpos, actor ) def _fpx(self, px=None): # X _pos = self.GetPosition() if px is None: return _pos[0] newp = [px, _pos[1], _pos[2]] self.SetPosition(newp) return self actor.x = types.MethodType( _fpx, actor ) def _fpy(self, py=None): # Y _pos = self.GetPosition() if py is None: return _pos[1] newp = [_pos[0], py, _pos[2]] self.SetPosition(newp) return self actor.y = types.MethodType( _fpy, actor ) def _fpz(self, pz=None): # Z _pos = self.GetPosition() if pz is None: return _pos[2] newp = [_pos[0], _pos[1], pz] self.SetPosition(newp) return self actor.z = types.MethodType( _fpz, actor ) def _fscale(self, p=None): if p is None: return np.array(self.GetScale()) self.SetScale(p) return self # return itself to concatenate methods actor.scale = types.MethodType( _fscale, actor ) def _frotate(self, angle, axis, axis_point=[0,0,0], rad=False): if rad: angle *= 57.3 return rotate(self, angle, axis, axis_point, rad) actor.rotate = types.MethodType( _frotate, actor ) def _frotateX(self, angle, axis_point=[0,0,0], rad=False): if rad: angle *= 57.3 return rotate(self, angle, [1,0,0], axis_point, rad) actor.rotateX = types.MethodType( _frotateX, actor ) def _frotateY(self, angle, axis_point=[0,0,0], rad=False): if rad: angle *= 57.3 return rotate(self, angle, [0,1,0], axis_point, rad) actor.rotateY = types.MethodType( _frotateY, actor ) def _frotateZ(self, angle, axis_point=[0,0,0], rad=False): if rad: angle *= 57.3 return rotate(self, angle, [0,0,1], axis_point, rad) actor.rotateZ = types.MethodType( _frotateZ, actor ) def _forientation(self, newaxis=None, rotation=0): return orientation(self, newaxis, rotation) actor.orientation = types.MethodType( _forientation, actor ) def _fcenterOfMass(self): return centerOfMass(self) actor.centerOfMass = types.MethodType(_fcenterOfMass, actor) def _fvolume(self): return volume(self) actor.volume = types.MethodType(_fvolume, actor) def _farea(self): return area(self) actor.area = types.MethodType(_farea, actor) def _fdiagonalSize(self): return diagonalSize(self) actor.diagonalSize = types.MethodType(_fdiagonalSize, actor) ######################################################### def clone(actor, c=None, alpha=None, wire=False, bc=None, edges=False, legend=None, texture=None, rebuild=True): ''' Clone a vtkActor. If rebuild is True build its polydata in its current position in space ''' poly = polydata(actor, rebuild) if not poly.GetNumberOfPoints(): colors.printc('Limitation: cannot clone textured obj. Returning input.',1) return actor polyCopy = vtk.vtkPolyData() polyCopy.DeepCopy(poly) if legend is True and hasattr(actor, 'legend'): legend = actor.legend if alpha is None: alpha = actor.GetProperty().GetOpacity() if c is None: c = actor.GetProperty().GetColor() if texture is None and hasattr(actor, 'texture'): texture = actor.texture cact = makeActor(polyCopy, c, alpha, wire, bc, edges, legend, texture) cact.GetProperty().SetPointSize(actor.GetProperty().GetPointSize()) return cact def flipNormals(actor): # N.B. input argument gets modified rs = vtk.vtkReverseSense() setInput(rs, polydata(actor, True)) rs.ReverseNormalsOn() rs.Update() poly = rs.GetOutput() mapper = actor.GetMapper() setInput(mapper, poly) mapper.Update() actor.Modified() if hasattr(actor, 'poly'): actor.poly=poly return actor # return same obj for concatenation def normalize(actor): # N.B. input argument gets modified ''' Shift actor's center of mass at origin and scale its average size to unit. ''' cm = centerOfMass(actor) coords = coordinates(actor) if not len(coords) : return pts = coords - cm xyz2 = np.sum(pts * pts, axis=0) scale = 1/np.sqrt(np.sum(xyz2)/len(pts)) t = vtk.vtkTransform() t.Scale(scale, scale, scale) t.Translate(-cm) tf = vtk.vtkTransformPolyDataFilter() setInput(tf, actor.GetMapper().GetInput()) tf.SetTransform(t) tf.Update() mapper = actor.GetMapper() setInput(mapper, tf.GetOutput()) mapper.Update() actor.Modified() if hasattr(actor, 'poly'): actor.poly=tf.GetOutput() return actor # return same obj for concatenation def rotate(actor, angle, axis, axis_point=[0,0,0], rad=False): '''Rotate an actor around an arbitrary axis passing through axis_point''' anglerad = angle if not rad: anglerad = angle/57.3 axis = norm(axis) a = np.cos(anglerad / 2) b, c, d = -axis * np.sin(anglerad / 2) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d R = np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) rv = np.dot(R, actor.GetPosition()-np.array(axis_point)) + axis_point if rad: angle *= 57.3 # this vtk method only rotates in the origin of the actor: actor.RotateWXYZ(angle, axis[0], axis[1], axis[2] ) actor.SetPosition(rv) return actor def orientation(actor, newaxis=None, rotation=0): ''' Set/Get actor orientation. If rotation != 0 rotate actor around newaxis (in degree units) ''' initaxis = norm(actor.top - actor.base) if newaxis is None: return initaxis newaxis = norm(newaxis) TI = vtk.vtkTransform() actor.SetUserMatrix(TI.GetMatrix()) # reset pos = np.array(actor.GetPosition()) crossvec = np.cross(initaxis, newaxis) angle = np.arccos(np.dot(initaxis, newaxis)) T = vtk.vtkTransform() T.PostMultiply() T.Translate(-pos) if rotation: T.RotateWXYZ(rotation, initaxis) T.RotateWXYZ(angle*57.3, crossvec) T.Translate(pos) actor.SetUserMatrix(T.GetMatrix()) return actor ############################################################################ def shrink(actor, fraction=0.85): # N.B. input argument gets modified '''Shrink the triangle polydata in the representation of actor''' poly = polydata(actor, True) shrink = vtk.vtkShrinkPolyData() setInput(shrink, poly) shrink.SetShrinkFactor(fraction) shrink.Update() mapper = actor.GetMapper() setInput(mapper, shrink.GetOutput()) mapper.Update() actor.Modified() return actor # return same obj for concatenation def stretch(actor, q1, q2): '''Stretch actor between points q1 and q2''' if not hasattr(actor, 'base'): colors.printc('Please define vectors actor.base and actor.top at creation. Exit.','r') exit(0) TI = vtk.vtkTransform() actor.SetUserMatrix(TI.GetMatrix()) # reset p1, p2 = actor.base, actor.top q1,q2,z = np.array(q1), np.array(q2), np.array([0,0,1]) plength = np.linalg.norm(p2-p1) qlength = np.linalg.norm(q2-q1) T = vtk.vtkTransform() T.PostMultiply() T.Translate(-p1) cosa = np.dot(p2-p1, z)/plength n = np.cross(p2-p1, z) T.RotateWXYZ(np.arccos(cosa)*57.3, n) T.Scale(1,1, qlength/plength) cosa = np.dot(q2-q1, z)/qlength n = np.cross(q2-q1, z) T.RotateWXYZ(-np.arccos(cosa)*57.3, n) T.Translate(q1) actor.SetUserMatrix(T.GetMatrix()) return actor def cutPlane(actor, origin=(0,0,0), normal=(1,0,0), showcut=False): ''' Takes actor and cuts it with the plane defined by a point and a normal. showcut = shows the cut away part as thin wireframe ''' plane = vtk.vtkPlane() plane.SetOrigin(origin) plane.SetNormal(normal) poly = polydata(actor) clipper = vtk.vtkClipPolyData() setInput(clipper, poly) clipper.SetClipFunction(plane) clipper.GenerateClippedOutputOn() clipper.SetValue(0.) clipper.Update() if hasattr(actor, 'GetProperty'): alpha = actor.GetProperty().GetOpacity() c = actor.GetProperty().GetColor() bf = actor.GetBackfaceProperty() else: alpha=1 c='gold' bf=None leg = None if hasattr(actor, 'legend'): leg = actor.legend clipActor = makeActor(clipper.GetOutput(),c=c,alpha=alpha, legend=leg) clipActor.SetBackfaceProperty(bf) acts = [clipActor] if showcut: cpoly = clipper.GetClippedOutput() restActor = makeActor(cpoly, c=c, alpha=0.05, wire=1) acts.append(restActor) if len(acts)>1: asse = makeAssembly(acts) return asse else: return clipActor def mergeActors(actors, c=None, alpha=1, wire=False, bc=None, edges=False, legend=None, texture=None): ''' Build a new actor formed by the fusion of the polydata of the input objects. Similar to makeAssembly, but in this case the input objects become a single mesh. ''' polylns = vtk.vtkAppendPolyData() for a in actors: polylns.AddInputData(polydata(a, True)) polylns.Update() actor = makeActor(polylns.GetOutput(), c, alpha, wire, bc, edges, legend, texture) return actor ######################################################### # Useful Functions ######################################################### def isInside(actor, point, tol=0.0001): """Return True if point is inside a polydata closed surface""" poly = polydata(actor, True) points = vtk.vtkPoints() points.InsertNextPoint(point) pointsPolydata = vtk.vtkPolyData() pointsPolydata.SetPoints(points) sep = vtk.vtkSelectEnclosedPoints() sep.SetTolerance(tol) sep.CheckSurfaceOff() setInput(sep, pointsPolydata) if vtkMV: sep.SetSurfaceData(poly) else: sep.SetSurface(poly) sep.Update() return sep.IsInside(0) def insidePoints(actor, points, invert=False, tol=1e-05): """Return list of points that are inside a polydata closed surface""" poly = polydata(actor, True) # check if the stl file is closed featureEdge = vtk.vtkFeatureEdges() featureEdge.FeatureEdgesOff() featureEdge.BoundaryEdgesOn() featureEdge.NonManifoldEdgesOn() setInput(featureEdge, poly) featureEdge.Update() openEdges = featureEdge.GetOutput().GetNumberOfCells() if openEdges != 0: colors.printc("Warning: polydata is not a closed surface",5) vpoints = vtk.vtkPoints() for p in points: vpoints.InsertNextPoint(p) pointsPolydata = vtk.vtkPolyData() pointsPolydata.SetPoints(vpoints) sep = vtk.vtkSelectEnclosedPoints() sep.SetTolerance(tol) setInput(sep, pointsPolydata) if vtkMV: sep.SetSurfaceData(poly) else: sep.SetSurface(poly) sep.Update() mask1, mask2 = [], [] for i,p in enumerate(points): if sep.IsInside(i) : mask1.append(p) else: mask2.append(p) if invert: return mask2 else: return mask1 def pointIsInTriangle(p, p1,p2,p3): ''' Return True if a point is inside (or above/below) a triangle defined by 3 points in space. ''' p = np.array(p) u = np.array(p2) - p1 v = np.array(p3) - p1 n = np.cross(u,v) w = p - p1 ln= np.dot(n,n) if not ln: return True #degenerate triangle gamma = ( np.dot(np.cross(u,w), n) )/ ln beta = ( np.dot(np.cross(w,v), n) )/ ln alpha = 1-gamma-beta if 0<alpha<1 and 0<beta<1 and 0<gamma<1: return True return False def fillHoles(actor, size=None, legend=None): # not tested properly fh = vtk.vtkFillHolesFilter() if not size: mb = maxBoundSize(actor) size = mb/20 fh.SetHoleSize(size) poly = polydata(actor) setInput(fh, poly) fh.Update() fpoly = fh.GetOutput() factor = makeActor(fpoly, legend=legend) factor.SetProperty(actor.GetProperty()) return factor def cellCenters(actor): '''Get the list of cell centers of the mesh surface''' vcen = vtk.vtkCellCenters() setInput(vcen, polydata(actor, True)) vcen.Update() return coordinates(vcen.GetOutput()) def isIdentity(M, tol=1e-06): '''Check if vtkMatrix4x4 is Identity''' for i in [0,1,2,3]: for j in [0,1,2,3]: e = M.GetElement(i,j) if i==j: if np.abs(e-1) > tol: return False elif np.abs(e) > tol: return False return True def cleanPolydata(actor, tol=None): ''' Clean actor's polydata. tol paramenter defines how far should be the points from each other in terms of fraction of bounding box length. ''' poly = polydata(actor, False) cleanPolyData = vtk.vtkCleanPolyData() setInput(cleanPolyData, poly) if tol: cleanPolyData.SetTolerance(tol) cleanPolyData.PointMergingOn() cleanPolyData.Update() mapper = actor.GetMapper() setInput(mapper, cleanPolyData.GetOutput()) mapper.Update() actor.Modified() if hasattr(actor, 'poly'): actor.poly = cleanPolyData.GetOutput() return actor # NB: polydata is being changed #################################################################### get stuff def polydata(obj, rebuild=True, index=0): ''' Returns the vtkPolyData of a vtkActor or vtkAssembly. If rebuild=True returns a copy of polydata that corresponds to the current actor's position in space. If a vtkAssembly is passed, return the polydata of component index. ''' if isinstance(obj, vtk.vtkActor): if not rebuild: if hasattr(obj, 'poly') : if obj.poly: return obj.poly else: setattr(obj, 'poly', None) obj.poly = obj.GetMapper().GetInput() #cache it for speed return obj.poly M = obj.GetMatrix() if isIdentity(M): if hasattr(obj, 'poly') : if obj.poly: return obj.poly else: setattr(obj, 'poly', None) obj.poly = obj.GetMapper().GetInput() #cache it for speed return obj.poly # if identity return the original polydata # otherwise make a copy that corresponds to # the actual position in space of the actor transform = vtk.vtkTransform() transform.SetMatrix(M) tp = vtk.vtkTransformPolyDataFilter() tp.SetTransform(transform) if vtkMV: tp.SetInputData(obj.GetMapper().GetInput()) else: tp.SetInput(obj.GetMapper().GetInput()) tp.Update() return tp.GetOutput() elif isinstance(obj, vtk.vtkAssembly): cl = vtk.vtkPropCollection() obj.GetActors(cl) cl.InitTraversal() for i in range(index+1): act = vtk.vtkActor.SafeDownCast(cl.GetNextProp()) pd = act.GetMapper().GetInput() #not optimized if not rebuild: return pd M = act.GetMatrix() if isIdentity(M): return pd # if identity return the original polydata # otherwise make a copy that corresponds to # the actual position in space of the actor transform = vtk.vtkTransform() transform.SetMatrix(M) tp = vtk.vtkTransformPolyDataFilter() tp.SetTransform(transform) if vtkMV: tp.SetInputData(pd) else: tp.SetInput(pd) tp.Update() return tp.GetOutput() elif isinstance(obj, vtk.vtkPolyData): return obj elif isinstance(obj, vtk.vtkActor2D): return obj.GetMapper().GetInput() elif isinstance(obj, vtk.vtkImageActor): return obj.GetMapper().GetInput() elif obj is None: return None colors.printc("Fatal Error in polydata(): ", 'r', end='') colors.printc(("input is neither a vtkActor nor vtkAssembly.", [obj]), 'r') exit(1) def coordinates(actor, rebuild=True): """Return a merged list of coordinates of actors or polys""" pts = [] poly = polydata(actor, rebuild) for j in range(poly.GetNumberOfPoints()): p = [0, 0, 0] poly.GetPoint(j, p) pts.append(p) return np.array(pts) def xbounds(actor): '''Get the the actor bounding [xmin,xmax] ''' b = polydata(actor, True).GetBounds() return (b[0],b[1]) def ybounds(actor): '''Get the the actor bounding [ymin,ymax] ''' b = polydata(actor, True).GetBounds() return (b[2],b[3]) def zbounds(actor): '''Get the the actor bounding [zmin,zmax] ''' b = polydata(actor, True).GetBounds() return (b[4],b[5]) def centerOfMass(actor): '''Get the Center of Mass of the actor''' if vtkMV: #faster cmf = vtk.vtkCenterOfMass() setInput(cmf, polydata(actor, True)) cmf.Update() c = cmf.GetCenter() return np.array(c) else: pts = coordinates(actor, True) if not len(pts): return np.array([0,0,0]) return np.mean(pts, axis=0) def volume(actor): '''Get the volume occupied by actor''' mass = vtk.vtkMassProperties() setInput(mass, polydata(actor)) mass.Update() return mass.GetVolume() def area(actor): '''Get the surface area of actor''' mass = vtk.vtkMassProperties() setInput(mass, polydata(actor)) mass.Update() return mass.GetSurfaceArea() def averageSize(actor): cm = centerOfMass(actor) coords = coordinates(actor, True) if not len(coords) : return pts = coords - cm xyz2 = np.sum(pts * pts, axis=0) return np.sqrt(
np.sum(xyz2)
numpy.sum
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on Friday Feb 20 2020 This code was implemented by <NAME>, <NAME> and <NAME> """ import argparse import math import os from decimal import Decimal from monte_carlo import monte_carlo import matplotlib.pyplot as plt import matplotlib.lines as ls import colorsys import numpy as np import scipy.stats as stats import tqdm from collections import defaultdict import multiprocessing from Binomial_tree import BinTreeOption, BlackScholes import tqdm import pickle def plot_wiener_process(T,K, S0, r, sigma, steps,save_plot=False): """ :param T: Period :param S0: Stock price at spot time :param K: Strike price :param r: interest rate :param sigma: volatility :param steps: number of steps :param save_plot: to save the plot :return: returns a plot of a simulated stock movement """ mc=monte_carlo(steps, T, S0, sigma, r, K) mc.wiener_method() plt.figure(figsize=(10, 7)) np.linspace(1,mc.T*365,mc.steps)#to ensure the x-axis is in respective to the total time T plt.plot(np.linspace(1,mc.T*365,mc.steps),mc.wiener_price_path) plt.xlabel("Days",fontsize=18,fontweight='bold') plt.ylabel("Stock price",fontsize=18,fontweight='bold') plt.tick_params(labelsize='18') #plt.title("Stock price simulated based on the Wiener process",fontsize=17,fontweight='bold') if save_plot: plt.savefig("figures/"+"wiener_process",dpi=300) plt.show() plt.close() def worker_pay_off_euler_direct(object): np.random.seed() object.euler_integration_method() pay_off_array = np.max([(object.K - object.euler_integration), 0]) return pay_off_array def worker_pay_off_euler_sim(object): np.random.seed() object.euler_integration_method(generate_path=True) pay_off_array = np.max([(object.K - object.euler_price_path[-1]), 0]) return pay_off_array def diff_monte_carlo_process(T, S0, K, r, sigma, steps,samples,save_plot=False): """ :param T: Period :param S0: Stock price at spot time :param K: Strike price :param r: interest rate :param sigma: volatility :param steps: number of steps :param save_plot: to save the plot :return: returns a plot of a simulated stock movement """ different_mc_rep = samples increments = len(samples) # mc_pricing will be a dict a list containing tuples of (pricing and standard error) mc_pricing = defaultdict(list) for repetition in tqdm.tqdm(different_mc_rep): mc_list = [monte_carlo(steps, T, S0, sigma, r, K) for i in range(repetition)] num_core = 3 pool = multiprocessing.Pool(num_core) pay_off_list = pool.map(worker_pay_off_euler_direct, ((mc) for mc in mc_list)) pool.close() pool.join() mean_pay_off = np.mean([pay_off for pay_off in pay_off_list]) std_pay_off = np.std([pay_off for pay_off in pay_off_list])/np.sqrt(repetition) mc_pricing['euler_integration'].append((np.exp(-r*T)*mean_pay_off ,std_pay_off)) bs = BlackScholes(T, S0, K, r, sigma) bs_solution=np.ones(increments)*bs.put_price() print(bs.put_price()) for i in range(len(different_mc_rep)): print("Number of samples: ", different_mc_rep[i]," Mean :", mc_pricing['euler_integration'][i][0], " Variance :", mc_pricing['euler_integration'][i][1]) fig, axs = plt.subplots(2,figsize=(10, 7)) axs[0].plot(different_mc_rep, [i[0] for i in mc_pricing['euler_integration']], color='gray', label='Monte Carlo') axs[0].plot(different_mc_rep, bs_solution, 'r', label='Black Scholes') axs[0].legend() axs[0].set_ylabel("Option Price", fontsize=17) axs[0].tick_params(labelsize='18') axs[1].plot(different_mc_rep, [i[1] for i in mc_pricing['euler_integration']], label='Standard error') axs[1].set_xlabel("Monte Carlo repetition", fontsize=17) axs[1].legend() axs[1].set_ylabel("Standard error", fontsize=17) axs[1].tick_params(labelsize='18') axs[1].ticklabel_format(axis="y", style="sci", scilimits=(0, 0)) if save_plot: plt.savefig("figures/" + "mc_euler_integration_diff_MC", dpi=300) plt.show() plt.close() def diff_K_monte_carlo_process(T,different_k , S0, r, sigma, steps, repetition, save_plot=False): """ :param T: Period :param S0: Stock price at spot time :param K: Strike price :param r: interest rate :param sigma: volatility :param steps: number of steps :param save_plot: to save the plot :return: returns a plot of a simulated stock movement """ # mc_pricing will be a dict of a list containing tuples of (pricing and standard error) mc_pricing = defaultdict(list) for diff_strike_price in tqdm.tqdm(different_k): mc_list = [monte_carlo(steps, T, S0, sigma, r, diff_strike_price) for i in range(repetition)] num_core = 3 pool = multiprocessing.Pool(num_core) pay_off_list = pool.map(worker_pay_off_euler_direct, ((mc) for mc in mc_list)) pool.close() pool.join() mean_pay_off = np.mean([pay_off for pay_off in pay_off_list]) std_pay_off = np.std([pay_off for pay_off in pay_off_list])/np.sqrt(repetition) mc_pricing['euler_integration'].append((np.exp(-r*T)*mean_pay_off,std_pay_off)) bs_list= [] for k in different_k: bs = BlackScholes(T, S0, k, r, sigma) bs_list.append(bs.put_price()) fig, axs = plt.subplots(2,figsize=(10, 7)) axs[0].plot(different_k,[i[0] for i in mc_pricing['euler_integration']],linestyle='--',linewidth=3, color='gray', label='Monte Carlo') axs[0].plot(different_k, bs_list, 'r', label='Black Scholes') axs[0].legend() axs[0].set_ylabel("Option Price",fontsize=17) axs[0].tick_params(labelsize='18') axs[1].plot(different_k,[i[1] for i in mc_pricing['euler_integration']],label='Standard error') axs[1].set_xlabel("Strike price K", fontsize=17) axs[1].legend() axs[1].set_ylabel("Standard error", fontsize=17) axs[1].tick_params(labelsize='18') axs[1].ticklabel_format(axis="y", style="sci",scilimits=(0,0)) if save_plot: plt.savefig("figures/" + "mc_euler_integration_diff_K", dpi=300) plt.show() plt.close() def diff_sigma_monte_carlo_process(T,K , S0, r, different_sigma, steps, repetition, save_plot=False): """ :param T: Period :param S0: Stock price at spot time :param K: Strike price :param r: interest rate :param sigma: volatility :param steps: number of steps :param save_plot: to save the plot :return: returns a plot of a simulated stock movement """ # mc_pricing will be a dict of a list containing tuples of (pricing and standard error) mc_pricing = defaultdict(list) for sigma in tqdm.tqdm(different_sigma): mc_list = [monte_carlo(steps, T, S0, sigma, r, K) for i in range(repetition)] num_core = 3 pool = multiprocessing.Pool(num_core) pay_off_list = pool.map(worker_pay_off_euler_direct, ((mc) for mc in mc_list)) pool.close() pool.join() mean_pay_off = np.mean([pay_off for pay_off in pay_off_list]) std_pay_off = np.std([pay_off for pay_off in pay_off_list])/np.sqrt(repetition) mc_pricing['euler_integration'].append((np.exp(-r*T)*mean_pay_off,std_pay_off)) bs_list = [] for s in different_sigma: bs = BlackScholes(T, S0, K, r, s) bs_list.append(bs.put_price()) fig, axs = plt.subplots(2,figsize=(10, 7)) axs[0].plot(different_sigma,[i[0] for i in mc_pricing['euler_integration']],linestyle='--',linewidth=3, color='gray', label='Monte Carlo') axs[0].plot(different_sigma, bs_list, 'r', label='Black Scholes') axs[0].legend() axs[0].set_ylabel("Option Price",fontsize=18) axs[0].tick_params(labelsize='18') axs[1].plot(different_sigma,[i[1] for i in mc_pricing['euler_integration']],label='Standard error') axs[1].set_xlabel("Volatility", fontsize=18) axs[1].legend() axs[1].set_ylabel("Standard error", fontsize=18) axs[1].tick_params(labelsize='18') axs[1].ticklabel_format(axis="y", style="sci",scilimits=(0,0)) if save_plot: plt.savefig("figures/" + "mc_euler_integration_diff_sigma", dpi=300) plt.show() plt.close() def milstein_process(T, S0, K, r, sigma, steps,save_plot=False): """ :param T: Period :param S0: Stock price at spot time :param K: Strike price :param r: interest rate :param sigma: volatility :param steps: number of steps :param save_plot: to save the plot :return: returns a plot of a simulated stock movement """ mc = monte_carlo(steps, T, S0, sigma, r, K) price_path=mc.milstein_method() plt.figure()
np.linspace(1, mc.T * 365, mc.steps)
numpy.linspace
from __future__ import print_function import mxnet as mx import logging import os import time def _get_lr_scheduler(args, adv=False): lr = args.lr if adv: lr *= args.adv_lr_scale if 'lr_factor' not in args or args.lr_factor >= 1: return (lr, None) epoch_size = args.num_examples // args.batch_size # if 'dist' in args.kv_store: # epoch_size //= kv.num_workers begin_epoch = args.load_epoch if args.load_epoch else 0 step_epochs = [int(l) for l in args.lr_step_epochs.split(',')] for s in step_epochs: if begin_epoch >= s: lr *= args.lr_factor if lr != args.lr: logging.info('Adjust learning rate to %e for epoch %d' %(lr, begin_epoch)) steps = [epoch_size * (x-begin_epoch) for x in step_epochs if x-begin_epoch > 0] return (lr, mx.lr_scheduler.MultiFactorScheduler(step=steps, factor=args.lr_factor)) def _load_model(args): if 'load_epoch' not in args or args.load_epoch is None: return (None, None, None, None) assert args.model_prefix is not None model_prefix = args.model_prefix # symD = mx.sym.load('%s-symbol.json' % model_prefix) softmaxD = mx.sym.load('%s-symbol-softmax.json' % model_prefix) symAdv = None # symAdv = mx.sym.load('%s-adv-symbol.json' % model_prefix) param_file = '%s-%04d.params' % (model_prefix, args.load_epoch) adv_param_file = '%s-adv-%04d.params' % (model_prefix, args.load_epoch) logging.info('Load model from %s and %s', param_file, adv_param_file) return (softmaxD, symAdv, param_file, adv_param_file) def _save_model(args, epoch, netD, netAdv, symD, symAdv, softmax=None): if args.model_prefix is None: return None dst_dir = os.path.dirname(args.model_prefix) if not os.path.exists(dst_dir): os.makedirs(dst_dir) model_prefix = args.model_prefix symD.save('%s-symbol.json' % model_prefix) # symAdv.save('%s-adv-symbol.json' % model_prefix) if softmax: softmax.save('%s-symbol-softmax.json' % model_prefix) param_name = '%s-%04d.params' % (model_prefix, epoch) netD.save_params(param_name) logging.info('Saving model parameter to %s' % param_name) adv_param_name = '%s-adv-%04d.params' % (model_prefix, epoch) netAdv.save_params(adv_param_name) logging.info('Saving adversarial net parameter to %s' % adv_param_name) def _get_adversarial_weight(args, epoch=None, batch=None): if epoch is None or epoch >= args.adv_warmup_epochs: return float(args.adv_max_weight) else: wgt = float(args.adv_max_weight) / args.adv_warmup_epochs * (epoch + 1) if batch is None or batch >= args.adv_warmup_batches: return wgt else: return wgt / args.adv_warmup_batches * batch def add_fit_args(parser): """ parser : argparse.ArgumentParser return a parser added with args required by fit """ train = parser.add_argument_group('Training', 'model training') train.add_argument('--network', type=str, help='the neural network to use') train.add_argument('--num-layers', type=int, help='number of layers in the neural network, required by some networks such as resnet') train.add_argument('--gpus', type=str, default='0', help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu') train.add_argument('--gpus-work-load', type=str, default=None, help='list of gpus workload') train.add_argument('--kv-store', type=str, default='device', help='key-value store type') train.add_argument('--num-epochs', type=int, default=500, help='max num of epochs') train.add_argument('--lr', type=float, default=0.1, help='initial learning rate') train.add_argument('--lr-factor', type=float, default=0.1, help='the ratio to reduce lr on each step') train.add_argument('--lr-step-epochs', type=str, help='the epochs to reduce the lr, e.g. 30,60') train.add_argument('--optimizer', type=str, default='sgd', help='the optimizer type') train.add_argument('--mom', type=float, default=0.9, help='momentum for sgd') train.add_argument('--wd', type=float, default=0.0001, help='weight decay for sgd') train.add_argument('--batch-size', type=int, default=128, help='the batch size') train.add_argument('--disp-batches', type=int, default=20, help='show progress for every n batches') train.add_argument('--model-prefix', type=str, help='model prefix') parser.add_argument('--monitor', dest='monitor', type=int, default=0, help='log network parameters every N iters if larger than 0') train.add_argument('--load-epoch', type=int, help='load the model on an epoch using the model-load-prefix') train.add_argument('--top-k', type=int, default=0, help='report the top-k accuracy. 0 means no report.') train.add_argument('--test-io', action='store_true', default=False, help='test reading speed without training') train.add_argument('--make-plots', action='store_true', default=False, help='make control plots wihtout training') train.add_argument('--predict', action='store_true', default=False, help='run prediction instead of training') train.add_argument('--predict-output', type=str, help='predict output') train.add_argument('--adv-max-weight', type=float, default=50., help='max weight of adversarial loss') train.add_argument('--adv-warmup-epochs', type=int, default=1, help='num. epochs taken to reach max weight for the advesarial loss') train.add_argument('--adv-warmup-batches', type=int, default=100, help='num. batches taken to reach max weight for the advesarial loss') train.add_argument('--adv-qcd-start-label', type=int, default=11, help='qcd start label') train.add_argument('--adv-lr-scale', type=float, default=1., # lr=0.001 seems good help='ratio of adv. lr to classifier lr') train.add_argument('--adv-mass-max', type=float, default=250., help='max fatjet mass') train.add_argument('--adv-mass-nbins', type=int, default=50, help='nbins for fatjet mass') train.add_argument('--adv-train-interval', type=int, default=100, help='adv-to-classifier training times ratio') train.add_argument('--clip-gradient', type=float, default=None, help='grad clipping') return train class dummyKV: def __init__(self): self.rank = 0 def fit(args, symbol, data_loader, **kwargs): """ train a model args : argparse returns network : the symbol definition of the nerual network data_loader : function that returns the train and val data iterators """ # devices for training devs = mx.cpu() if args.gpus is None or args.gpus is '' else [ mx.gpu(int(i)) for i in args.gpus.split(',')] if len(devs) == 1: devs = devs[0] # logging head = '%(asctime)-15s Node[0] %(message)s' logging.basicConfig(level=logging.DEBUG, format=head) logging.info('start with arguments %s', args) # data iterators (train, val) = data_loader(args) if args.test_io: for i_epoch in range(args.num_epochs): train.reset() tic = time.time() for i, batch in enumerate(train): for j in batch.data: j.wait_to_read() if (i + 1) % args.disp_batches == 0: logging.info('Epoch [%d]/Batch [%d]\tSpeed: %.2f samples/sec' % ( i_epoch, i, args.disp_batches * args.batch_size / (time.time() - tic))) tic = time.time() return if args.make_plots: import numpy as np from common.util import to_categorical, plotHist X_pieces = [] y_pieces = [] tic = time.time() for i, batch in enumerate(train): for data, label in zip(batch.data, batch.label): X_pieces.append(data[0].asnumpy()) y_pieces.append(label[0].asnumpy()) if (i + 1) % args.disp_batches == 0: logging.info('Batch [%d]\tSpeed: %.2f samples/sec' % ( i, args.disp_batches * args.batch_size / (time.time() - tic))) tic = time.time() X = np.concatenate(X_pieces).reshape((-1, train.provide_data[0][1][1])) y_tmp = np.concatenate(y_pieces) y = np.zeros(len(y_tmp), dtype=np.int) y[y_tmp <= 3] = 1 y[np.logical_and(y_tmp >= 4, y_tmp <= 5)] = 2 y[np.logical_and(y_tmp >= 6, y_tmp <= 8)] = 3 y[
np.logical_and(y_tmp >= 9, y_tmp <= 10)
numpy.logical_and
import numpy as np import unittest from src.davil import nutil class TestNumpyUtils(unittest.TestCase): def test_copy_to_from_subarray_with_mask(self): sub = np.reshape(np.arange(1, 10), (3, 3)) mask = np.array([[1, 0, 1], [0, 1, 0], [0, 1, 1]]) ref = np.array([[1, 2, 3, 4, 5], [6, 1, 8, 3, 10], [11, 12, 5, 14, 15], [16, 17, 8, 9, 20], [21, 22, 23, 24, 25]]) arr = np.reshape(np.arange(1, 26), (5, 5)) nutil.copy_to_from_subarray(arr, sub, (1, 1), pivot='top_left', subarray_mask=mask) np.testing.assert_array_equal(arr, ref) arr = np.reshape(np.arange(1, 26), (5, 5)) nutil.copy_to_from_subarray(arr, sub, (2, 2), pivot='center', subarray_mask=mask) np.testing.assert_array_equal(arr, ref) def test_copy_to_from_subarray_2d(self): sub = np.reshape(np.arange(1, 10), (3, 3)) ref = np.array([[1, 2, 3, 4, 5], [6, 1, 2, 3, 10], [11, 4, 5, 6, 15], [16, 7, 8, 9, 20], [21, 22, 23, 24, 25]]) arr = np.reshape(np.arange(1, 26), (5, 5)) nutil.copy_to_from_subarray(arr, sub, (1, 1), pivot='top_left') np.testing.assert_array_equal(arr, ref) arr = np.reshape(np.arange(1, 26), (5, 5)) nutil.copy_to_from_subarray(arr, sub, (2, 2), pivot='center') np.testing.assert_array_equal(arr, ref) def test_copy_to_from_subarray_2d_out_of_bounds(self): sub = np.reshape(np.arange(1, 10), (3, 3)) ref1 = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 1, 2], [21, 22, 23, 4, 5]]) arr = np.reshape(np.arange(1, 26), (5, 5)) nutil.copy_to_from_subarray(arr, sub, (3, 3), pivot='top_left') np.testing.assert_array_equal(arr, ref1) ref2 = np.array([[5, 6, 3, 4, 5], [8, 9, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]) arr = np.reshape(np.arange(1, 26), (5, 5)) nutil.copy_to_from_subarray(arr, sub, (0, 0), pivot='center') np.testing.assert_array_equal(arr, ref2) def test_copy_to_from_subarray_3d(self): sub0 = np.reshape(np.arange(1, 10), (3, 3)) sub1 = np.reshape(np.arange(10, 19), (3, 3)) sub =
np.stack([sub0, sub1], axis=2)
numpy.stack
#!/usr/bin/env python # # -*- coding: utf-8 -*- # # This file is part of the Flask-Plots Project # https://github.com/juniors90/Flask-Plots/ # Copyright (c) 2021, <NAME> # License: # MIT # Full Text: # https://github.com/juniors90/Flask-Plots/blob/master/LICENSE # # ===================================================================== # TESTS # ===================================================================== from matplotlib.testing.decorators import check_figures_equal import numpy as np class TestPlots: x =
np.random.normal(size=100)
numpy.random.normal
from __future__ import print_function, division, absolute_import import itertools import sys # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import skimage import skimage.data import skimage.morphology import scipy import scipy.special import imgaug as ia import imgaug.random as iarandom from imgaug import parameters as iap from imgaug.testutils import reseed def _eps(arr): if ia.is_np_array(arr) and arr.dtype.kind == "f": return np.finfo(arr.dtype).eps return 1e-4 class Test_handle_continuous_param(unittest.TestCase): def test_value_range_is_none(self): result = iap.handle_continuous_param( 1, "[test1]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_range_is_tuple_of_nones(self): result = iap.handle_continuous_param( 1, "[test1b]", value_range=(None, None), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_stochastic_parameter(self): result = iap.handle_continuous_param( iap.Deterministic(1), "[test2]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_range_is_tuple_of_integers(self): result = iap.handle_continuous_param( 1, "[test3]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_outside_of_value_range(self): with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test4]", value_range=(2, 12), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test4]" in str(context.exception)) def test_param_is_inside_value_range_and_no_lower_bound(self): # value within value range (without lower bound) result = iap.handle_continuous_param( 1, "[test5]", value_range=(None, 12), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_outside_of_value_range_and_no_lower_bound(self): # value outside of value range (without lower bound) with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test6]", value_range=(None, 0), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test6]" in str(context.exception)) def test_param_is_inside_value_range_and_no_upper_bound(self): # value within value range (without upper bound) result = iap.handle_continuous_param( 1, "[test7]", value_range=(-1, None), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_param_is_outside_of_value_range_and_no_upper_bound(self): # value outside of value range (without upper bound) with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test8]", value_range=(2, None), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test8]" in str(context.exception)) def test_tuple_as_value_but_no_tuples_allowed(self): # tuple as value, but no tuples allowed with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( (1, 2), "[test9]", value_range=None, tuple_to_uniform=False, list_to_choice=True) self.assertTrue("[test9]" in str(context.exception)) def test_tuple_as_value_and_tuples_allowed(self): # tuple as value and tuple allowed result = iap.handle_continuous_param( (1, 2), "[test10]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Uniform)) def test_tuple_as_value_and_tuples_allowed_and_inside_value_range(self): # tuple as value and tuple allowed and tuple within value range result = iap.handle_continuous_param( (1, 2), "[test11]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Uniform)) def test_tuple_value_and_allowed_and_partially_outside_value_range(self): # tuple as value and tuple allowed and tuple partially outside of # value range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( (1, 2), "[test12]", value_range=(1.5, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test12]" in str(context.exception)) def test_tuple_value_and_allowed_and_fully_outside_value_range(self): # tuple as value and tuple allowed and tuple fully outside of value # range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( (1, 2), "[test13]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test13]" in str(context.exception)) def test_list_as_value_but_no_lists_allowed(self): # list as value, but no list allowed with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( [1, 2, 3], "[test14]", value_range=None, tuple_to_uniform=True, list_to_choice=False) self.assertTrue("[test14]" in str(context.exception)) def test_list_as_value_and_lists_allowed(self): # list as value and list allowed result = iap.handle_continuous_param( [1, 2, 3], "[test15]", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Choice)) def test_list_value_and_allowed_and_partially_outside_value_range(self): # list as value and list allowed and list partially outside of value # range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( [1, 2], "[test16]", value_range=(1.5, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test16]" in str(context.exception)) def test_list_value_and_allowed_and_fully_outside_of_value_range(self): # list as value and list allowed and list fully outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( [1, 2], "[test17]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True) self.assertTrue("[test17]" in str(context.exception)) def test_value_inside_value_range_and_value_range_given_as_callable(self): # single value within value range given as callable def _value_range(x): return -1 < x < 1 result = iap.handle_continuous_param( 1, "[test18]", value_range=_value_range, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_bad_datatype_as_value_range(self): # bad datatype for value range with self.assertRaises(Exception) as context: _ = iap.handle_continuous_param( 1, "[test19]", value_range=False, tuple_to_uniform=True, list_to_choice=True) self.assertTrue( "Unexpected input for value_range" in str(context.exception)) class Test_handle_discrete_param(unittest.TestCase): def test_float_value_inside_value_range_but_no_floats_allowed(self): # float value without value range when no float value is allowed with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1.5, "[test0]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.assertTrue("[test0]" in str(context.exception)) def test_value_range_is_none(self): # value without value range result = iap.handle_discrete_param( 1, "[test1]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_range_is_tuple_of_nones(self): # value without value range as (None, None) result = iap.handle_discrete_param( 1, "[test1b]", value_range=(None, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_is_stochastic_parameter(self): # stochastic parameter result = iap.handle_discrete_param( iap.Deterministic(1), "[test2]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_inside_value_range(self): # value within value range result = iap.handle_discrete_param( 1, "[test3]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_outside_value_range(self): # value outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test4]", value_range=(2, 12), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test4]" in str(context.exception)) def test_value_inside_value_range_no_lower_bound(self): # value within value range (without lower bound) result = iap.handle_discrete_param( 1, "[test5]", value_range=(None, 12), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_outside_value_range_no_lower_bound(self): # value outside of value range (without lower bound) with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test6]", value_range=(None, 0), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test6]" in str(context.exception)) def test_value_inside_value_range_no_upper_bound(self): # value within value range (without upper bound) result = iap.handle_discrete_param( 1, "[test7]", value_range=(-1, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_value_outside_value_range_no_upper_bound(self): # value outside of value range (without upper bound) with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test8]", value_range=(2, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test8]" in str(context.exception)) def test_value_is_tuple_but_no_tuples_allowed(self): # tuple as value, but no tuples allowed with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( (1, 2), "[test9]", value_range=None, tuple_to_uniform=False, list_to_choice=True, allow_floats=True) self.assertTrue("[test9]" in str(context.exception)) def test_value_is_tuple_and_tuples_allowed(self): # tuple as value and tuple allowed result = iap.handle_discrete_param( (1, 2), "[test10]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.DiscreteUniform)) def test_value_tuple_and_allowed_and_inside_value_range(self): # tuple as value and tuple allowed and tuple within value range result = iap.handle_discrete_param( (1, 2), "[test11]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.DiscreteUniform)) def test_value_tuple_and_allowed_and_inside_vr_allow_floats_false(self): # tuple as value and tuple allowed and tuple within value range with # allow_floats=False result = iap.handle_discrete_param( (1, 2), "[test11b]", value_range=(0, 10), tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.assertTrue(isinstance(result, iap.DiscreteUniform)) def test_value_tuple_and_allowed_and_partially_outside_value_range(self): # tuple as value and tuple allowed and tuple partially outside of # value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( (1, 3), "[test12]", value_range=(2, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test12]" in str(context.exception)) def test_value_tuple_and_allowed_and_fully_outside_value_range(self): # tuple as value and tuple allowed and tuple fully outside of value # range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( (1, 2), "[test13]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test13]" in str(context.exception)) def test_value_list_but_not_allowed(self): # list as value, but no list allowed with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( [1, 2, 3], "[test14]", value_range=None, tuple_to_uniform=True, list_to_choice=False, allow_floats=True) self.assertTrue("[test14]" in str(context.exception)) def test_value_list_and_allowed(self): # list as value and list allowed result = iap.handle_discrete_param( [1, 2, 3], "[test15]", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue(isinstance(result, iap.Choice)) def test_value_list_and_allowed_and_partially_outside_value_range(self): # list as value and list allowed and list partially outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( [1, 3], "[test16]", value_range=(2, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test16]" in str(context.exception)) def test_value_list_and_allowed_and_fully_outside_value_range(self): # list as value and list allowed and list fully outside of value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( [1, 2], "[test17]", value_range=(3, 13), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) self.assertTrue("[test17]" in str(context.exception)) def test_value_inside_value_range_given_as_callable(self): # single value within value range given as callable def _value_range(x): return -1 < x < 1 result = iap.handle_discrete_param( 1, "[test18]", value_range=_value_range, tuple_to_uniform=True, list_to_choice=True) self.assertTrue(isinstance(result, iap.Deterministic)) def test_bad_datatype_as_value_range(self): # bad datatype for value range with self.assertRaises(Exception) as context: _ = iap.handle_discrete_param( 1, "[test19]", value_range=False, tuple_to_uniform=True, list_to_choice=True) self.assertTrue( "Unexpected input for value_range" in str(context.exception)) class Test_handle_categorical_string_param(unittest.TestCase): def test_arg_is_all(self): valid_values = ["class1", "class2"] param = iap.handle_categorical_string_param( ia.ALL, "foo", valid_values) assert isinstance(param, iap.Choice) assert param.a == valid_values def test_arg_is_valid_str(self): valid_values = ["class1", "class2"] param = iap.handle_categorical_string_param( "class1", "foo", valid_values) assert isinstance(param, iap.Deterministic) assert param.value == "class1" def test_arg_is_invalid_str(self): valid_values = ["class1", "class2"] with self.assertRaises(AssertionError) as ctx: _param = iap.handle_categorical_string_param( "class3", "foo", valid_values) expected = ( "Expected parameter 'foo' to be one of: class1, class2. " "Got: class3.") assert expected == str(ctx.exception) def test_arg_is_valid_list(self): valid_values = ["class1", "class2", "class3"] param = iap.handle_categorical_string_param( ["class1", "class3"], "foo", valid_values) assert isinstance(param, iap.Choice) assert param.a == ["class1", "class3"] def test_arg_is_list_with_invalid_types(self): valid_values = ["class1", "class2", "class3"] with self.assertRaises(AssertionError) as ctx: _param = iap.handle_categorical_string_param( ["class1", False], "foo", valid_values) expected = ( "Expected list provided for parameter 'foo' to only contain " "strings, got types: str, bool." ) assert expected in str(ctx.exception) def test_arg_is_invalid_list(self): valid_values = ["class1", "class2", "class3"] with self.assertRaises(AssertionError) as ctx: _param = iap.handle_categorical_string_param( ["class1", "class4"], "foo", valid_values) expected = ( "Expected list provided for parameter 'foo' to only contain " "the following allowed strings: class1, class2, class3. " "Got strings: class1, class4." ) assert expected in str(ctx.exception) def test_arg_is_stochastic_param(self): param = iap.Deterministic("class1") param_out = iap.handle_categorical_string_param( param, "foo", ["class1"]) assert param_out is param def test_arg_is_invalid_datatype(self): with self.assertRaises(Exception) as ctx: _ = iap.handle_categorical_string_param( False, "foo", ["class1"]) expected = "Expected parameter 'foo' to be imgaug.ALL" assert expected in str(ctx.exception) class Test_handle_probability_param(unittest.TestCase): def test_bool_like_values(self): for val in [True, False, 0, 1, 0.0, 1.0]: with self.subTest(param=val): p = iap.handle_probability_param(val, "[test1]") assert isinstance(p, iap.Deterministic) assert p.value == int(val) def test_float_probabilities(self): for val in [0.0001, 0.001, 0.01, 0.1, 0.9, 0.99, 0.999, 0.9999]: with self.subTest(param=val): p = iap.handle_probability_param(val, "[test2]") assert isinstance(p, iap.Binomial) assert isinstance(p.p, iap.Deterministic) assert val-1e-8 < p.p.value < val+1e-8 def test_probability_is_stochastic_parameter(self): det = iap.Deterministic(1) p = iap.handle_probability_param(det, "[test3]") assert p == det def test_probability_has_bad_datatype(self): with self.assertRaises(Exception) as context: _p = iap.handle_probability_param("test", "[test4]") self.assertTrue("Expected " in str(context.exception)) def test_probability_is_negative(self): with self.assertRaises(AssertionError): _p = iap.handle_probability_param(-0.01, "[test5]") def test_probability_is_above_100_percent(self): with self.assertRaises(AssertionError): _p = iap.handle_probability_param(1.01, "[test6]") class Test_force_np_float_dtype(unittest.TestCase): def test_common_dtypes(self): dtypes = [ ("float16", "float16"), ("float32", "float32"), ("float64", "float64"), ("uint8", "float64"), ("int32", "float64") ] for dtype_in, expected in dtypes: with self.subTest(dtype_in=dtype_in): arr = np.zeros((1,), dtype=dtype_in) observed = iap.force_np_float_dtype(arr).dtype assert observed.name == expected class Test_both_np_float_if_one_is_float(unittest.TestCase): def test_float16_float32(self): a1 = np.zeros((1,), dtype=np.float16) b1 = np.zeros((1,), dtype=np.float32) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float16" assert b2.dtype.name == "float32" def test_float16_int32(self): a1 = np.zeros((1,), dtype=np.float16) b1 = np.zeros((1,), dtype=np.int32) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float16" assert b2.dtype.name == "float64" def test_int32_float16(self): a1 = np.zeros((1,), dtype=np.int32) b1 = np.zeros((1,), dtype=np.float16) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float64" assert b2.dtype.name == "float16" def test_int32_uint8(self): a1 = np.zeros((1,), dtype=np.int32) b1 = np.zeros((1,), dtype=np.uint8) a2, b2 = iap.both_np_float_if_one_is_float(a1, b1) assert a2.dtype.name == "float64" assert b2.dtype.name == "float64" class Test_draw_distributions_grid(unittest.TestCase): def setUp(self): reseed() def test_basic_functionality(self): params = [mock.Mock(), mock.Mock()] params[0].draw_distribution_graph.return_value = \ np.zeros((1, 1, 3), dtype=np.uint8) params[1].draw_distribution_graph.return_value = \ np.zeros((1, 1, 3), dtype=np.uint8) draw_grid_mock = mock.Mock() draw_grid_mock.return_value = np.zeros((4, 3, 2), dtype=np.uint8) with mock.patch('imgaug.imgaug.draw_grid', draw_grid_mock): grid_observed = iap.draw_distributions_grid( params, rows=2, cols=3, graph_sizes=(20, 21), sample_sizes=[(1, 2), (3, 4)], titles=["A", "B"]) assert grid_observed.shape == (4, 3, 2) assert params[0].draw_distribution_graph.call_count == 1 assert params[1].draw_distribution_graph.call_count == 1 assert params[0].draw_distribution_graph.call_args[1]["size"] == (1, 2) assert params[0].draw_distribution_graph.call_args[1]["title"] == "A" assert params[1].draw_distribution_graph.call_args[1]["size"] == (3, 4) assert params[1].draw_distribution_graph.call_args[1]["title"] == "B" assert draw_grid_mock.call_count == 1 assert draw_grid_mock.call_args[0][0][0].shape == (20, 21, 3) assert draw_grid_mock.call_args[0][0][1].shape == (20, 21, 3) assert draw_grid_mock.call_args[1]["rows"] == 2 assert draw_grid_mock.call_args[1]["cols"] == 3 class Test_draw_distributions_graph(unittest.TestCase): def test_basic_functionality(self): # this test is very rough as we get a not-very-well-defined image out # of the function param = iap.Uniform(0.0, 1.0) graph_img = param.draw_distribution_graph(title=None, size=(10000,), bins=100) # at least 10% of the image should be white-ish (background) nb_white = np.sum(graph_img[..., :] > [200, 200, 200]) nb_all = np.prod(graph_img.shape) graph_img_title = param.draw_distribution_graph(title="test", size=(10000,), bins=100) assert graph_img.ndim == 3 assert graph_img.shape[2] == 3 assert nb_white > 0.1 * nb_all assert graph_img_title.ndim == 3 assert graph_img_title.shape[2] == 3 assert not np.array_equal(graph_img_title, graph_img) class TestStochasticParameter(unittest.TestCase): def setUp(self): reseed() def test_copy(self): other_param = iap.Uniform(1.0, 10.0) param = iap.Discretize(other_param) other_param.a = [1.0] param_copy = param.copy() param.other_param.a[0] += 1 assert isinstance(param_copy, iap.Discretize) assert isinstance(param_copy.other_param, iap.Uniform) assert param_copy.other_param.a[0] == param.other_param.a[0] def test_deepcopy(self): other_param = iap.Uniform(1.0, 10.0) param = iap.Discretize(other_param) other_param.a = [1.0] param_copy = param.deepcopy() param.other_param.a[0] += 1 assert isinstance(param_copy, iap.Discretize) assert isinstance(param_copy.other_param, iap.Uniform) assert param_copy.other_param.a[0] != param.other_param.a[0] class TestStochasticParameterOperators(unittest.TestCase): def setUp(self): reseed() def test_multiply_stochasic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 * param2 assert isinstance(param3, iap.Multiply) assert param3.other_param == param1 assert param3.val == param2 def test_multiply_stochastic_param_with_integer(self): param1 = iap.Normal(0, 1) param3 = param1 * 2 assert isinstance(param3, iap.Multiply) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_multiply_integer_with_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = 2 * param1 assert isinstance(param3, iap.Multiply) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_multiply_string_with_stochastic_param_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" * param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_multiply_stochastic_param_with_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 * "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_divide_stochastic_params(self): # Divide (__truediv__) param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 / param2 assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert param3.val == param2 def test_divide_stochastic_param_by_integer(self): param1 = iap.Normal(0, 1) param3 = param1 / 2 assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_divide_integer_by_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = 2 / param1 assert isinstance(param3, iap.Divide) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_divide_string_by_stochastic_param_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" / param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_divide_stochastic_param_by_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 / "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_div_stochastic_params(self): # Divide (__div__) param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1.__div__(param2) assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert param3.val == param2 def test_div_stochastic_param_by_integer(self): param1 = iap.Normal(0, 1) param3 = param1.__div__(2) assert isinstance(param3, iap.Divide) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_div_stochastic_param_by_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1.__div__("test") self.assertTrue("Invalid datatypes" in str(context.exception)) def test_rdiv_stochastic_param_by_integer(self): # Divide (__rdiv__) param1 = iap.Normal(0, 1) param3 = param1.__rdiv__(2) assert isinstance(param3, iap.Divide) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_rdiv_stochastic_param_by_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1.__rdiv__("test") self.assertTrue("Invalid datatypes" in str(context.exception)) def test_floordiv_stochastic_params(self): # Divide (__floordiv__) param1_int = iap.DiscreteUniform(0, 10) param2_int = iap.Choice([1, 2]) param3 = param1_int // param2_int assert isinstance(param3, iap.Discretize) assert isinstance(param3.other_param, iap.Divide) assert param3.other_param.other_param == param1_int assert param3.other_param.val == param2_int def test_floordiv_symbol_stochastic_param_by_integer(self): param1_int = iap.DiscreteUniform(0, 10) param3 = param1_int // 2 assert isinstance(param3, iap.Discretize) assert isinstance(param3.other_param, iap.Divide) assert param3.other_param.other_param == param1_int assert isinstance(param3.other_param.val, iap.Deterministic) assert param3.other_param.val.value == 2 def test_floordiv_symbol_integer_by_stochastic_param(self): param1_int = iap.DiscreteUniform(0, 10) param3 = 2 // param1_int assert isinstance(param3, iap.Discretize) assert isinstance(param3.other_param, iap.Divide) assert isinstance(param3.other_param.other_param, iap.Deterministic) assert param3.other_param.other_param.value == 2 assert param3.other_param.val == param1_int def test_floordiv_symbol_string_by_stochastic_should_fail(self): param1_int = iap.DiscreteUniform(0, 10) with self.assertRaises(Exception) as context: _ = "test" // param1_int self.assertTrue("Invalid datatypes" in str(context.exception)) def test_floordiv_symbol_stochastic_param_by_string_should_fail(self): param1_int = iap.DiscreteUniform(0, 10) with self.assertRaises(Exception) as context: _ = param1_int // "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_add_stochastic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 + param2 assert isinstance(param3, iap.Add) assert param3.other_param == param1 assert param3.val == param2 def test_add_integer_to_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = param1 + 2 assert isinstance(param3, iap.Add) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_add_stochastic_param_to_integer(self): param1 = iap.Normal(0, 1) param3 = 2 + param1 assert isinstance(param3, iap.Add) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_add_stochastic_param_to_string(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" + param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_add_string_to_stochastic_param(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 + "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_subtract_stochastic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 - param2 assert isinstance(param3, iap.Subtract) assert param3.other_param == param1 assert param3.val == param2 def test_subtract_integer_from_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = param1 - 2 assert isinstance(param3, iap.Subtract) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_subtract_stochastic_param_from_integer(self): param1 = iap.Normal(0, 1) param3 = 2 - param1 assert isinstance(param3, iap.Subtract) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_subtract_stochastic_param_from_string_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" - param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_subtract_string_from_stochastic_param_should_fail(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 - "test" self.assertTrue("Invalid datatypes" in str(context.exception)) def test_exponentiate_stochastic_params(self): param1 = iap.Normal(0, 1) param2 = iap.Uniform(-1.0, 1.0) param3 = param1 ** param2 assert isinstance(param3, iap.Power) assert param3.other_param == param1 assert param3.val == param2 def test_exponentiate_stochastic_param_by_integer(self): param1 = iap.Normal(0, 1) param3 = param1 ** 2 assert isinstance(param3, iap.Power) assert param3.other_param == param1 assert isinstance(param3.val, iap.Deterministic) assert param3.val.value == 2 def test_exponentiate_integer_by_stochastic_param(self): param1 = iap.Normal(0, 1) param3 = 2 ** param1 assert isinstance(param3, iap.Power) assert isinstance(param3.other_param, iap.Deterministic) assert param3.other_param.value == 2 assert param3.val == param1 def test_exponentiate_string_by_stochastic_param(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = "test" ** param1 self.assertTrue("Invalid datatypes" in str(context.exception)) def test_exponentiate_stochastic_param_by_string(self): param1 = iap.Normal(0, 1) with self.assertRaises(Exception) as context: _ = param1 ** "test" self.assertTrue("Invalid datatypes" in str(context.exception)) class TestBinomial(unittest.TestCase): def setUp(self): reseed() def test___init___p_is_zero(self): param = iap.Binomial(0) assert ( param.__str__() == param.__repr__() == "Binomial(Deterministic(int 0))" ) def test___init___p_is_one(self): param = iap.Binomial(1.0) assert ( param.__str__() == param.__repr__() == "Binomial(Deterministic(float 1.00000000))" ) def test_p_is_zero(self): param = iap.Binomial(0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 0 assert np.all(samples == 0) def test_p_is_one(self): param = iap.Binomial(1.0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample == 1 assert np.all(samples == 1) def test_p_is_50_percent(self): param = iap.Binomial(0.5) sample = param.draw_sample() samples = param.draw_samples((10000,)) unique, counts = np.unique(samples, return_counts=True) assert sample.shape == tuple() assert samples.shape == (10000,) assert sample in [0, 1] assert len(unique) == 2 for val, count in zip(unique, counts): if val == 0: assert 5000 - 500 < count < 5000 + 500 elif val == 1: assert 5000 - 500 < count < 5000 + 500 else: assert False def test_p_is_list(self): param = iap.Binomial(iap.Choice([0.25, 0.75])) for _ in sm.xrange(10): samples = param.draw_samples((1000,)) p = np.sum(samples) / samples.size assert ( (0.25 - 0.05 < p < 0.25 + 0.05) or (0.75 - 0.05 < p < 0.75 + 0.05) ) def test_p_is_tuple(self): param = iap.Binomial((0.0, 1.0)) last_p = 0.5 diffs = [] for _ in sm.xrange(30): samples = param.draw_samples((1000,)) p = np.sum(samples).astype(np.float32) / samples.size diffs.append(abs(p - last_p)) last_p = p nb_p_changed = sum([diff > 0.05 for diff in diffs]) assert nb_p_changed > 15 def test_samples_same_values_for_same_seeds(self): param = iap.Binomial(0.5) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) class TestChoice(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Choice([0, 1, 2]) assert ( param.__str__() == param.__repr__() == "Choice(a=[0, 1, 2], replace=True, p=None)" ) def test_value_is_list(self): param = iap.Choice([0, 1, 2]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [0, 1, 2] assert np.all( np.logical_or( np.logical_or(samples == 0, samples == 1), samples == 2 ) ) def test_sampled_values_match_expected_counts(self): param = iap.Choice([0, 1, 2]) samples = param.draw_samples((10000,)) expected = 10000/3 expected_tolerance = expected * 0.05 for v in [0, 1, 2]: count = np.sum(samples == v) assert ( expected - expected_tolerance < count < expected + expected_tolerance ) def test_value_is_list_containing_negative_number(self): param = iap.Choice([-1, 1]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 1] assert np.all(np.logical_or(samples == -1, samples == 1)) def test_value_is_list_of_floats(self): param = iap.Choice([-1.2, 1.7]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert ( ( -1.2 - _eps(sample) < sample < -1.2 + _eps(sample) ) or ( 1.7 - _eps(sample) < sample < 1.7 + _eps(sample) ) ) assert np.all( np.logical_or( np.logical_and( -1.2 - _eps(sample) < samples, samples < -1.2 + _eps(sample) ), np.logical_and( 1.7 - _eps(sample) < samples, samples < 1.7 + _eps(sample) ) ) ) def test_value_is_list_of_strings(self): param = iap.Choice(["first", "second", "third"]) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in ["first", "second", "third"] assert np.all( np.logical_or( np.logical_or( samples == "first", samples == "second" ), samples == "third" ) ) def test_sample_without_replacing(self): param = iap.Choice([1+i for i in sm.xrange(100)], replace=False) samples = param.draw_samples((50,)) seen = [0 for _ in sm.xrange(100)] for sample in samples: seen[sample-1] += 1 assert all([count in [0, 1] for count in seen]) def test_non_uniform_probabilities_over_elements(self): param = iap.Choice([0, 1], p=[0.25, 0.75]) samples = param.draw_samples((10000,)) unique, counts = np.unique(samples, return_counts=True) assert len(unique) == 2 for val, count in zip(unique, counts): if val == 0: assert 2500 - 500 < count < 2500 + 500 elif val == 1: assert 7500 - 500 < count < 7500 + 500 else: assert False def test_list_contains_stochastic_parameter(self): param = iap.Choice([iap.Choice([0, 1]), 2]) samples = param.draw_samples((10000,)) unique, counts = np.unique(samples, return_counts=True) assert len(unique) == 3 for val, count in zip(unique, counts): if val in [0, 1]: assert 2500 - 500 < count < 2500 + 500 elif val == 2: assert 5000 - 500 < count < 5000 + 500 else: assert False def test_samples_same_values_for_same_seeds(self): param = iap.Choice([-1, 0, 1, 2, 3]) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) def test_value_is_bad_datatype(self): with self.assertRaises(Exception) as context: _ = iap.Choice(123) self.assertTrue( "Expected a to be an iterable" in str(context.exception)) def test_p_is_bad_datatype(self): with self.assertRaises(Exception) as context: _ = iap.Choice([1, 2], p=123) self.assertTrue("Expected p to be" in str(context.exception)) def test_value_and_p_have_unequal_lengths(self): with self.assertRaises(Exception) as context: _ = iap.Choice([1, 2], p=[1]) self.assertTrue("Expected lengths of" in str(context.exception)) class TestDiscreteUniform(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.DiscreteUniform(0, 2) assert ( param.__str__() == param.__repr__() == "DiscreteUniform(Deterministic(int 0), Deterministic(int 2))" ) def test_bounds_are_ints(self): param = iap.DiscreteUniform(0, 2) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [0, 1, 2] assert np.all( np.logical_or( np.logical_or(samples == 0, samples == 1), samples == 2 ) ) def test_samples_match_expected_counts(self): param = iap.DiscreteUniform(0, 2) samples = param.draw_samples((10000,)) expected = 10000/3 expected_tolerance = expected * 0.05 for v in [0, 1, 2]: count = np.sum(samples == v) assert ( expected - expected_tolerance < count < expected + expected_tolerance ) def test_lower_bound_is_negative(self): param = iap.DiscreteUniform(-1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 0, 1] assert np.all( np.logical_or( np.logical_or(samples == -1, samples == 0), samples == 1 ) ) def test_bounds_are_floats(self): param = iap.DiscreteUniform(-1.2, 1.2) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 0, 1] assert np.all( np.logical_or( np.logical_or( samples == -1, samples == 0 ), samples == 1 ) ) def test_lower_and_upper_bound_have_wrong_order(self): param = iap.DiscreteUniform(1, -1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert sample in [-1, 0, 1] assert np.all( np.logical_or( np.logical_or( samples == -1, samples == 0 ), samples == 1 ) ) def test_lower_and_upper_bound_are_the_same(self): param = iap.DiscreteUniform(1, 1) sample = param.draw_sample() samples = param.draw_samples((100,)) assert sample == 1 assert np.all(samples == 1) def test_samples_same_values_for_same_seeds(self): param = iap.Uniform(-1, 1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) class TestPoisson(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Poisson(1) assert ( param.__str__() == param.__repr__() == "Poisson(Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Poisson(1) sample = param.draw_sample() assert sample.shape == tuple() assert 0 <= sample def test_via_comparison_to_np_poisson(self): param = iap.Poisson(1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).poisson( lam=1, size=(100, 1000)) assert samples.shape == (100, 1000) for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: count_direct = int(np.sum(samples_direct == i)) count = np.sum(samples == i) tolerance = max(count_direct * 0.1, 250) assert count_direct - tolerance < count < count_direct + tolerance def test_samples_same_values_for_same_seeds(self): param = iap.Poisson(1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.array_equal(samples1, samples2) class TestNormal(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Normal(0, 1) assert ( param.__str__() == param.__repr__() == "Normal(loc=Deterministic(int 0), scale=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Normal(0, 1) sample = param.draw_sample() assert sample.shape == tuple() def test_via_comparison_to_np_normal(self): param = iap.Normal(0, 1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).normal(loc=0, scale=1, size=(100, 1000)) samples = np.clip(samples, -1, 1) samples_direct = np.clip(samples_direct, -1, 1) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(-1.0, 1.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(-1.0, 1.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_loc_is_stochastic_parameter(self): param = iap.Normal(iap.Choice([-100, 100]), 1) seen = [0, 0] for _ in sm.xrange(1000): samples = param.draw_samples((100,)) exp = np.mean(samples) if -100 - 10 < exp < -100 + 10: seen[0] += 1 elif 100 - 10 < exp < 100 + 10: seen[1] += 1 else: assert False assert 500 - 100 < seen[0] < 500 + 100 assert 500 - 100 < seen[1] < 500 + 100 def test_scale(self): param1 = iap.Normal(0, 1) param2 = iap.Normal(0, 100) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.std(samples1) < np.std(samples2) assert 100 - 10 < np.std(samples2) < 100 + 10 def test_samples_same_values_for_same_seeds(self): param = iap.Normal(0, 1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestTruncatedNormal(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.TruncatedNormal(0, 1) expected = ( "TruncatedNormal(" "loc=Deterministic(int 0), " "scale=Deterministic(int 1), " "low=Deterministic(float -inf), " "high=Deterministic(float inf)" ")" ) assert ( param.__str__() == param.__repr__() == expected ) def test___init___custom_range(self): param = iap.TruncatedNormal(0, 1, low=-100, high=50.0) expected = ( "TruncatedNormal(" "loc=Deterministic(int 0), " "scale=Deterministic(int 1), " "low=Deterministic(int -100), " "high=Deterministic(float 50.00000000)" ")" ) assert ( param.__str__() == param.__repr__() == expected ) def test_scale_is_zero(self): param = iap.TruncatedNormal(0.5, 0, low=-10, high=10) samples = param.draw_samples((100,)) assert np.allclose(samples, 0.5) def test_scale(self): param1 = iap.TruncatedNormal(0.0, 0.1, low=-100, high=100) param2 = iap.TruncatedNormal(0.0, 5.0, low=-100, high=100) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.std(samples1) < np.std(samples2) assert np.isclose(np.std(samples1), 0.1, rtol=0, atol=0.20) assert np.isclose(np.std(samples2), 5.0, rtol=0, atol=0.40) def test_loc_is_stochastic_parameter(self): param = iap.TruncatedNormal(iap.Choice([-100, 100]), 0.01, low=-1000, high=1000) seen = [0, 0] for _ in sm.xrange(200): samples = param.draw_samples((5,)) observed = np.mean(samples) dist1 = np.abs(-100 - observed) dist2 = np.abs(100 - observed) if dist1 < 1: seen[0] += 1 elif dist2 < 1: seen[1] += 1 else: assert False assert np.isclose(seen[0], 100, rtol=0, atol=20) assert np.isclose(seen[1], 100, rtol=0, atol=20) def test_samples_are_within_bounds(self): param = iap.TruncatedNormal(0, 10.0, low=-5, high=7.5) samples = param.draw_samples((1000,)) # are all within bounds assert np.all(samples >= -5.0 - 1e-4) assert np.all(samples <= 7.5 + 1e-4) # at least some samples close to bounds assert np.any(samples <= -4.5) assert np.any(samples >= 7.0) # at least some samples close to loc assert np.any(np.abs(samples) < 0.5) def test_samples_same_values_for_same_seeds(self): param = iap.TruncatedNormal(0, 1) samples1 = param.draw_samples((10, 5), random_state=1234) samples2 = param.draw_samples((10, 5), random_state=1234) assert np.allclose(samples1, samples2) def test_samples_different_values_for_different_seeds(self): param = iap.TruncatedNormal(0, 1) samples1 = param.draw_samples((10, 5), random_state=1234) samples2 = param.draw_samples((10, 5), random_state=2345) assert not np.allclose(samples1, samples2) class TestLaplace(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Laplace(0, 1) assert ( param.__str__() == param.__repr__() == "Laplace(loc=Deterministic(int 0), scale=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Laplace(0, 1) sample = param.draw_sample() assert sample.shape == tuple() def test_via_comparison_to_np_laplace(self): param = iap.Laplace(0, 1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).laplace(loc=0, scale=1, size=(100, 1000)) assert samples.shape == (100, 1000) samples = np.clip(samples, -1, 1) samples_direct = np.clip(samples_direct, -1, 1) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(-1.0, 1.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(-1.0, 1.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_loc_is_stochastic_parameter(self): param = iap.Laplace(iap.Choice([-100, 100]), 1) seen = [0, 0] for _ in sm.xrange(1000): samples = param.draw_samples((100,)) exp = np.mean(samples) if -100 - 10 < exp < -100 + 10: seen[0] += 1 elif 100 - 10 < exp < 100 + 10: seen[1] += 1 else: assert False assert 500 - 100 < seen[0] < 500 + 100 assert 500 - 100 < seen[1] < 500 + 100 def test_scale(self): param1 = iap.Laplace(0, 1) param2 = iap.Laplace(0, 100) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.var(samples1) < np.var(samples2) def test_scale_is_zero(self): param1 = iap.Laplace(1, 0) samples = param1.draw_samples((100,)) assert np.all(np.logical_and( samples > 1 - _eps(samples), samples < 1 + _eps(samples) )) def test_samples_same_values_for_same_seeds(self): param = iap.Laplace(0, 1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestChiSquare(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.ChiSquare(1) assert ( param.__str__() == param.__repr__() == "ChiSquare(df=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.ChiSquare(1) sample = param.draw_sample() assert sample.shape == tuple() assert 0 <= sample def test_via_comparison_to_np_chisquare(self): param = iap.ChiSquare(1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).chisquare(df=1, size=(100, 1000)) assert samples.shape == (100, 1000) assert np.all(0 <= samples) samples = np.clip(samples, 0, 3) samples_direct = np.clip(samples_direct, 0, 3) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0, 3.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(0, 3.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_df_is_stochastic_parameter(self): param = iap.ChiSquare(iap.Choice([1, 10])) seen = [0, 0] for _ in sm.xrange(1000): samples = param.draw_samples((100,)) exp = np.mean(samples) if 1 - 1.0 < exp < 1 + 1.0: seen[0] += 1 elif 10 - 4.0 < exp < 10 + 4.0: seen[1] += 1 else: assert False assert 500 - 100 < seen[0] < 500 + 100 assert 500 - 100 < seen[1] < 500 + 100 def test_larger_df_leads_to_more_variance(self): param1 = iap.ChiSquare(1) param2 = iap.ChiSquare(10) samples1 = param1.draw_samples((1000,)) samples2 = param2.draw_samples((1000,)) assert np.var(samples1) < np.var(samples2) assert 2*1 - 1.0 < np.var(samples1) < 2*1 + 1.0 assert 2*10 - 5.0 < np.var(samples2) < 2*10 + 5.0 def test_samples_same_values_for_same_seeds(self): param = iap.ChiSquare(1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestWeibull(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Weibull(1) assert ( param.__str__() == param.__repr__() == "Weibull(a=Deterministic(int 1))" ) def test_draw_sample(self): param = iap.Weibull(1) sample = param.draw_sample() assert sample.shape == tuple() assert 0 <= sample def test_via_comparison_to_np_weibull(self): param = iap.Weibull(1) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).weibull(a=1, size=(100, 1000)) assert samples.shape == (100, 1000) assert np.all(0 <= samples) samples = np.clip(samples, 0, 2) samples_direct = np.clip(samples_direct, 0, 2) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0, 2.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(0, 2.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_argument_is_stochastic_parameter(self): param = iap.Weibull(iap.Choice([1, 0.5])) expected_first = scipy.special.gamma(1 + 1/1) expected_second = scipy.special.gamma(1 + 1/0.5) seen = [0, 0] for _ in sm.xrange(100): samples = param.draw_samples((50000,)) observed = np.mean(samples) matches_first = ( expected_first - 0.2 * expected_first < observed < expected_first + 0.2 * expected_first ) matches_second = ( expected_second - 0.2 * expected_second < observed < expected_second + 0.2 * expected_second ) if matches_first: seen[0] += 1 elif matches_second: seen[1] += 1 else: assert False assert 50 - 25 < seen[0] < 50 + 25 assert 50 - 25 < seen[1] < 50 + 25 def test_different_strengths(self): param1 = iap.Weibull(1) param2 = iap.Weibull(0.5) samples1 = param1.draw_samples((10000,)) samples2 = param2.draw_samples((10000,)) expected_first = ( scipy.special.gamma(1 + 2/1) - (scipy.special.gamma(1 + 1/1))**2 ) expected_second = ( scipy.special.gamma(1 + 2/0.5) - (scipy.special.gamma(1 + 1/0.5))**2 ) assert np.var(samples1) < np.var(samples2) assert ( expected_first - 0.2 * expected_first < np.var(samples1) < expected_first + 0.2 * expected_first ) assert ( expected_second - 0.2 * expected_second < np.var(samples2) < expected_second + 0.2 * expected_second ) def test_samples_same_values_for_same_seeds(self): param = iap.Weibull(1) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestUniform(unittest.TestCase): def setUp(self): reseed() def test___init__(self): param = iap.Uniform(0, 1.0) assert ( param.__str__() == param.__repr__() == "Uniform(Deterministic(int 0), Deterministic(float 1.00000000))" ) def test_draw_sample(self): param = iap.Uniform(0, 1.0) sample = param.draw_sample() assert sample.shape == tuple() assert 0 - _eps(sample) < sample < 1.0 + _eps(sample) def test_draw_samples(self): param = iap.Uniform(0, 1.0) samples = param.draw_samples((10, 5)) assert samples.shape == (10, 5) assert np.all( np.logical_and( 0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_via_density_histogram(self): param = iap.Uniform(0, 1.0) samples = param.draw_samples((10000,)) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0.0, 1.0), density=False) density_expected = 1.0/nb_bins density_tolerance = 0.05 for nb_samples in hist: density = nb_samples / samples.size assert ( density_expected - density_tolerance < density < density_expected + density_tolerance ) def test_negative_value(self): param = iap.Uniform(-1.0, 1.0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert -1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( -1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_wrong_argument_order(self): param = iap.Uniform(1.0, -1.0) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert -1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( -1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_arguments_are_integers(self): param = iap.Uniform(-1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert -1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( -1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_arguments_are_identical(self): param = iap.Uniform(1, 1) sample = param.draw_sample() samples = param.draw_samples((10, 5)) assert sample.shape == tuple() assert samples.shape == (10, 5) assert 1.0 - _eps(sample) < sample < 1.0 + _eps(sample) assert np.all( np.logical_and( 1.0 - _eps(samples) < samples, samples < 1.0 + _eps(samples) ) ) def test_samples_same_values_for_same_seeds(self): param = iap.Uniform(-1.0, 1.0) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestBeta(unittest.TestCase): @classmethod def _mean(cls, alpha, beta): return alpha / (alpha + beta) @classmethod def _var(cls, alpha, beta): return (alpha * beta) / ((alpha + beta)**2 * (alpha + beta + 1)) def setUp(self): reseed() def test___init__(self): param = iap.Beta(0.5, 0.5) assert ( param.__str__() == param.__repr__() == "Beta(" "Deterministic(float 0.50000000), " "Deterministic(float 0.50000000)" ")" ) def test_draw_sample(self): param = iap.Beta(0.5, 0.5) sample = param.draw_sample() assert sample.shape == tuple() assert 0 - _eps(sample) < sample < 1.0 + _eps(sample) def test_draw_samples(self): param = iap.Beta(0.5, 0.5) samples = param.draw_samples((100, 1000)) assert samples.shape == (100, 1000) assert np.all( np.logical_and( 0 - _eps(samples) <= samples, samples <= 1.0 + _eps(samples) ) ) def test_via_comparison_to_np_beta(self): param = iap.Beta(0.5, 0.5) samples = param.draw_samples((100, 1000)) samples_direct = iarandom.RNG(1234).beta( a=0.5, b=0.5, size=(100, 1000)) nb_bins = 10 hist, _ = np.histogram(samples, bins=nb_bins, range=(0, 1.0), density=False) hist_direct, _ = np.histogram(samples_direct, bins=nb_bins, range=(0, 1.0), density=False) tolerance = 0.05 for nb_samples, nb_samples_direct in zip(hist, hist_direct): density = nb_samples / samples.size density_direct = nb_samples_direct / samples_direct.size assert ( density_direct - tolerance < density < density_direct + tolerance ) def test_argument_is_stochastic_parameter(self): param = iap.Beta(iap.Choice([0.5, 2]), 0.5) expected_first = self._mean(0.5, 0.5) expected_second = self._mean(2, 0.5) seen = [0, 0] for _ in sm.xrange(100): samples = param.draw_samples((10000,)) observed = np.mean(samples) if expected_first - 0.05 < observed < expected_first + 0.05: seen[0] += 1 elif expected_second - 0.05 < observed < expected_second + 0.05: seen[1] += 1 else: assert False assert 50 - 25 < seen[0] < 50 + 25 assert 50 - 25 < seen[1] < 50 + 25 def test_compare_curves_of_different_arguments(self): param1 = iap.Beta(2, 2) param2 = iap.Beta(0.5, 0.5) samples1 = param1.draw_samples((10000,)) samples2 = param2.draw_samples((10000,)) expected_first = self._var(2, 2) expected_second = self._var(0.5, 0.5) assert np.var(samples1) < np.var(samples2) assert ( expected_first - 0.1 * expected_first < np.var(samples1) < expected_first + 0.1 * expected_first ) assert ( expected_second - 0.1 * expected_second < np.var(samples2) < expected_second + 0.1 * expected_second ) def test_samples_same_values_for_same_seeds(self): param = iap.Beta(0.5, 0.5) samples1 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) samples2 = param.draw_samples((10, 5), random_state=iarandom.RNG(1234)) assert np.allclose(samples1, samples2) class TestDeterministic(unittest.TestCase): def setUp(self): reseed() def test___init__(self): pairs = [ (0, "Deterministic(int 0)"), (1.0, "Deterministic(float 1.00000000)"), ("test", "Deterministic(test)") ] for value, expected in pairs: with self.subTest(value=value): param = iap.Deterministic(value) assert ( param.__str__() == param.__repr__() == expected ) def test_samples_same_values_for_same_seeds(self): values = [ -100, -54, -1, 0, 1, 54, 100, -100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0 ] for value in values: with self.subTest(value=value): param = iap.Deterministic(value) rs1 = iarandom.RNG(123456) rs2 = iarandom.RNG(123456) samples1 = param.draw_samples(20, random_state=rs1) samples2 = param.draw_samples(20, random_state=rs2) assert np.array_equal(samples1, samples2) def test_draw_sample_int(self): values = [-100, -54, -1, 0, 1, 54, 100] for value in values: with self.subTest(value=value): param = iap.Deterministic(value) sample1 = param.draw_sample() sample2 = param.draw_sample() assert sample1.shape == tuple() assert sample1 == sample2 def test_draw_sample_float(self): values = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] for value in values: with self.subTest(value=value): param = iap.Deterministic(value) sample1 = param.draw_sample() sample2 = param.draw_sample() assert sample1.shape == tuple() assert np.isclose( sample1, sample2, rtol=0, atol=_eps(sample1)) def test_draw_samples_int(self): values = [-100, -54, -1, 0, 1, 54, 100] shapes = [10, 10, (5, 3), (5, 3), (4, 5, 3), (4, 5, 3)] for value, shape in itertools.product(values, shapes): with self.subTest(value=value, shape=shape): param = iap.Deterministic(value) samples = param.draw_samples(shape) shape_expected = ( shape if isinstance(shape, tuple) else tuple([shape])) assert samples.shape == shape_expected assert np.all(samples == value) def test_draw_samples_float(self): values = [-100.0, -54.3, -1.0, 0.1, 0.0, 0.1, 1.0, 54.4, 100.0] shapes = [10, 10, (5, 3), (5, 3), (4, 5, 3), (4, 5, 3)] for value, shape in itertools.product(values, shapes): with self.subTest(value=value, shape=shape): param = iap.Deterministic(value) samples = param.draw_samples(shape) shape_expected = ( shape if isinstance(shape, tuple) else tuple([shape])) assert samples.shape == shape_expected assert np.allclose(samples, value, rtol=0, atol=_eps(samples)) def test_argument_is_stochastic_parameter(self): seen = [0, 0] for _ in sm.xrange(200): param = iap.Deterministic(iap.Choice([0, 1])) seen[param.value] += 1 assert 100 - 50 < seen[0] < 100 + 50 assert 100 - 50 < seen[1] < 100 + 50 def test_argument_has_invalid_type(self): with self.assertRaises(Exception) as context: _ = iap.Deterministic([1, 2, 3]) self.assertTrue( "Expected StochasticParameter object or number or string" in str(context.exception)) class TestFromLowerResolution(unittest.TestCase): def setUp(self): reseed() def test___init___size_percent(self): param = iap.FromLowerResolution(other_param=iap.Deterministic(0), size_percent=1, method="nearest") assert ( param.__str__() == param.__repr__() == "FromLowerResolution(" "size_percent=Deterministic(int 1), " "method=Deterministic(nearest), " "other_param=Deterministic(int 0)" ")" ) def test___init___size_px(self): param = iap.FromLowerResolution(other_param=iap.Deterministic(0), size_px=1, method="nearest") assert ( param.__str__() == param.__repr__() == "FromLowerResolution(" "size_px=Deterministic(int 1), " "method=Deterministic(nearest), " "other_param=Deterministic(int 0)" ")" ) def test_binomial_hwc(self): param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) samples = param.draw_samples((8, 8, 1)) uq = np.unique(samples) assert samples.shape == (8, 8, 1) assert len(uq) == 2 assert 0 in uq assert 1 in uq def test_binomial_nhwc(self): param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) samples_nhwc = param.draw_samples((1, 8, 8, 1)) uq = np.unique(samples_nhwc) assert samples_nhwc.shape == (1, 8, 8, 1) assert len(uq) == 2 assert 0 in uq assert 1 in uq def test_draw_samples_with_too_many_dimensions(self): # (N, H, W, C, something) causing error param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) with self.assertRaises(Exception) as context: _ = param.draw_samples((1, 8, 8, 1, 1)) self.assertTrue( "FromLowerResolution can only generate samples of shape" in str(context.exception) ) def test_binomial_hw3(self): # C=3 param = iap.FromLowerResolution(iap.Binomial(0.5), size_px=8) samples = param.draw_samples((8, 8, 3)) uq = np.unique(samples) assert samples.shape == (8, 8, 3) assert len(uq) == 2 assert 0 in uq assert 1 in uq def test_different_size_px_arguments(self): # different sizes in px param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=2) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=16) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_different_size_px_arguments_with_tuple(self): # different sizes in px, one given as tuple (a, b) param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=2) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=(2, 16)) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(400): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_different_size_px_argument_with_stochastic_parameters(self): # different sizes in px, given as StochasticParameter param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=iap.Deterministic(1)) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=iap.Choice([8, 16])) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_size_px_has_invalid_datatype(self): # bad datatype for size_px with self.assertRaises(Exception) as context: _ = iap.FromLowerResolution(iap.Binomial(0.5), size_px=False) self.assertTrue("Expected " in str(context.exception)) def test_min_size(self): # min_size param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=2) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_px=1, min_size=16) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] += np.sum(samples2 == 1) assert seen_components[0] < seen_components[1] assert ( seen_pixels[0] / seen_components[0] > seen_pixels[1] / seen_components[1] ) def test_size_percent(self): # different sizes in percent param1 = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=0.01) param2 = iap.FromLowerResolution(iap.Binomial(0.5), size_percent=0.8) seen_components = [0, 0] seen_pixels = [0, 0] for _ in sm.xrange(100): samples1 = param1.draw_samples((16, 16, 1)) samples2 = param2.draw_samples((16, 16, 1)) _, num1 = skimage.morphology.label(samples1, connectivity=1, background=0, return_num=True) _, num2 = skimage.morphology.label(samples2, connectivity=1, background=0, return_num=True) seen_components[0] += num1 seen_components[1] += num2 seen_pixels[0] += np.sum(samples1 == 1) seen_pixels[1] +=
np.sum(samples2 == 1)
numpy.sum
#!/usr/bin/env python3 '''A reference implementation of Bloom filter-based Iris-Code indexing.''' __author__ = "<NAME>" __copyright__ = "Copyright (C) 2017 Hochschule Darmstadt" __license__ = "License Agreement provided by Hochschule Darmstadt(https://github.com/dasec/bloom-filter-iris-indexing/blob/master/hda-license.pdf)" __version__ = "1.0" import argparse import copy import math import operator import sys from pathlib import Path from timeit import default_timer as timer from typing import Tuple, List, Set import numpy as np parser = argparse.ArgumentParser(description='Bloom filter-based Iris-Code indexing.') parser.add_argument('-v', '--version', action='version', version='%(prog)s 1.0') required = parser.add_argument_group('required named arguments') required.add_argument('-d', '--directory', action='store', type=Path, required=True, help='directory where the binary templates are stored') required.add_argument('-n', '--enrolled', action='store', type=int, required=True, help='number of enrolled subjects') required.add_argument('-bh', '--height', action='store', type=int, required=True, help='filter block height') required.add_argument('-bw', '--width', action='store', type=int, required=True, help='fitler block width') required.add_argument('-T', '--constructed', action='store', type=int, required=True, help='number of trees constructed') required.add_argument('-t', '--traversed', action='store', type=int, required=True, help='number of trees traversed') args = parser.parse_args() required_python_version = (3, 5) if (sys.version_info.major, sys.version_info.minor) < required_python_version: sys.exit("Python {}.{} or newer is required to run this program".format(*required_python_version)) allowed_bf_heights = frozenset(range(8, 13)) allowed_bf_widths = frozenset({8, 16, 32, 64}) class BloomTemplate(object): '''Represents a Bloom Filter template or a Bloom Filter tree node''' def __init__(self, bloom_filter_sets: List[Set[int]], source: List[Tuple[str, str, str, str]]): self.bloom_filter_sets = bloom_filter_sets self.source = source def compare(self, other) -> float: '''Measures dissimilarity between two BloomTemplates''' return sum(len(s1 ^ s2) / (len(s1) + len(s2)) for s1, s2 in zip(self.bloom_filter_sets, other.bloom_filter_sets)) / len(self) def __add__(self, other): '''Merge two BloomTemplates by ORing their bloom filter sets''' return BloomTemplate([s1 | s2 for s1, s2 in zip(self.bloom_filter_sets, other.bloom_filter_sets)], self.source + [s for s in other.source if s not in self.source]) def __iadd__(self, other): '''Add (OR) another template to self in-place''' self.bloom_filter_sets = [s1 | s2 for s1, s2 in zip(self.bloom_filter_sets, other.bloom_filter_sets)] self.source += (s for s in other.source if s not in self.source) return self def __len__(self) -> int: '''Number of bloom filters in the template''' return len(self.bloom_filter_sets) def __getitem__(self, key: int) -> Set[int]: '''Convenience access for individual bloom filters in the template''' return self.bloom_filter_sets[key] def __repr__(self) -> str: return "Bloom filter template of {}".format(self.source) # Convenience functions for template source comparison def is_same_subject(self, other) -> bool: return len(self.source) == len(other.source) and all(s_item[0] == o_item[0] for s_item, o_item in zip(self.source, other.source)) def is_same_image(self, other) -> bool: return len(self.source) == len(other.source) and all(s_item[1] == o_item[1] for s_item, o_item in zip(self.source, other.source)) def is_same_side(self, other) -> bool: return len(self.source) == len(other.source) and all(s_item[2] == o_item[2] for s_item, o_item in zip(self.source, other.source)) def is_same_dataset(self, other) -> bool: return len(self.source) == len(other.source) and all(s_item[3] == o_item[3] for s_item, o_item in zip(self.source, other.source)) def is_same_genuine(self, other) -> bool: return len(self.source) == len(other.source) and self.is_same_subject(other) and self.is_same_side(other) and self.is_same_dataset(other) def is_same_source(self, other) -> bool: return len(self.source) == len(other.source) and all(s_item == o_item for s_item, o_item in zip(self.source, other.source)) def is_multi_source(self) -> bool: return len(self.source) > 1 @classmethod def from_binary_template(cls, binary_template: List[List[int]], height: int, width: int, source: List[Tuple[str, str, str, str]]): '''Creates a BloomTemplate with specified block size from an iris code represented as a 2-dimensional (row x column) array of 0's and 1's. The source is a list of tuples following format: [(subject, image_number, side, dataset), ...]''' if height not in allowed_bf_heights or width not in allowed_bf_widths: raise ValueError("Invalid block size: ({}, {})".format(height, width)) binary_template = np.array(binary_template) bf_sets = [] bf_real = set() bf_imaginary = set() for column_number, column in enumerate(binary_template.T): real_part = ''.join(map(str, column[:height])) im_part_start = 10 if height <= 10 else len(binary_template) - height im_part_end = im_part_start + height imaginary_part = ''.join(map(str, column[im_part_start:im_part_end])) bf_value_real = int(real_part, 2) bf_value_imaginary = int(imaginary_part, 2) bf_real.add(bf_value_real) bf_imaginary.add(bf_value_imaginary) if column_number != 0 and (column_number + 1) % width == 0: bf_sets.append(bf_real) bf_sets.append(bf_imaginary) bf_real = set() bf_imaginary = set() return BloomTemplate(bf_sets, source) BF_TREE = List[BloomTemplate] class BloomTreeDb(object): '''Represents a database of BloomTemplate trees''' def __init__(self, enrolled: List[BloomTemplate], trees_constructed: int): def is_power_of2(number: int) -> bool: '''Check if a number is a power of 2.''' return number > 0 and (number & (number - 1)) == 0 if not is_power_of2(len(enrolled)) or not is_power_of2(trees_constructed): raise ValueError("Number of subjects ({}) and trees ({}) must both be a power of 2".format(len(enrolled), trees_constructed)) self.enrolled = enrolled self.trees_constructed = trees_constructed self.trees = self._build() def search(self, probe: BloomTemplate, trees_traversed: int) -> Tuple[float, BloomTemplate]: '''Perform a search for a template matching the probe in the database.''' def find_promising_trees(probe: BloomTemplate, trees_traversed: int) -> List[BF_TREE]: '''Preselection step - most promising trees are found based on the scores between the tree roots and the probe''' if self.trees_constructed == trees_traversed: return self.trees else: root_scores = [(tree[0].compare(probe), index) for index, tree in enumerate(self.trees)] root_scores.sort(key=operator.itemgetter(0)) promising_tree_indexes = map(operator.itemgetter(1), root_scores[:trees_traversed]) return [self.trees[index] for index in promising_tree_indexes] def traverse(trees: List[BF_TREE], probe: BloomTemplate) -> Tuple[float, BloomTemplate]: '''Traverse the selected trees to find the node corresponding to a best score''' best_score, best_match_node = 1.0, None for _, tree in enumerate(trees): step = 0 score = 1.0 for _ in range(int(math.log(len(self.enrolled), 2)) - int(math.log(self.trees_constructed, 2))): left_child_index, right_child_index = BloomTreeDb.get_node_children_indices(step) ds_left = tree[left_child_index].compare(probe) ds_right = tree[right_child_index].compare(probe) step, score = (left_child_index, ds_left) if ds_left < ds_right else (right_child_index, ds_right) score, match_node = score, tree[step] if score <= best_score: best_score = score best_match_node = match_node return best_score, best_match_node if trees_traversed < 1 or trees_traversed > self.trees_constructed: raise ValueError("Invalid number of trees to traverse:", trees_traversed) promising_trees = find_promising_trees(probe, trees_traversed) return traverse(promising_trees, probe) def _build(self) -> List[BF_TREE]: '''Constructs the BloomTemplate trees using the parameters the db has been initiated with''' def construct_bf_tree(enrolled_part: List[BloomTemplate]) -> BF_TREE: '''Constructs a single BloomTemplate tree''' bf_tree = [] for index in range(len(enrolled_part)-1): node_level = BloomTreeDb.get_node_level(index) start_index = int(len(enrolled_part) / (1 << node_level) * ((index + 1) % (1 << node_level))) end_index = int(len(enrolled_part) / (1 << node_level) * ((index + 1) % (1 << node_level)) + len(enrolled_part) / (1 << node_level)) node = copy.deepcopy(enrolled_part[start_index]) for i in range(start_index, end_index): node += enrolled_part[i] bf_tree.append(node) bf_tree += enrolled_part return bf_tree trees = [] i = 0 while i != len(self.enrolled): i_old = i i += int(len(self.enrolled) / self.trees_constructed) bf_tree = construct_bf_tree(self.enrolled[i_old:i]) assert len(bf_tree) == int(len(self.enrolled) / self.trees_constructed) * 2 - 1 trees.append(bf_tree) assert len(trees) == self.trees_constructed return trees def __repr__(self) -> str: return "<BloomTreeDb object containing {} subjects in {} trees>".format(len(self.enrolled), self.trees_constructed) '''Convenience methods for tree indexing''' @staticmethod def get_node_children_indices(index: int) -> Tuple[int, int]: '''Compute indices of node children based on its index.''' return 2 * index + 1, 2 * (index + 1) @staticmethod def get_node_level(index: int) -> int: '''Compute the level of a node in a tree based on its index.''' return int(math.floor(math.log(index + 1, 2))) def load_binary_template(path: Path) -> List[List[int]]: '''Reads a text file into an iris code matrix''' with path.open("r") as f: return [list(map(int, list(line.rstrip()))) for line in f.readlines()] def extract_source_data(filename: str) -> List[Tuple[str, str, str, str]]: '''This function parses the template filename (path.stem) and extract the subject, image number, image side and dataset and return it as list (this is necessary later on) with one tuple element (Subject, Image, Side, Dataset). e.g. if the filename is "S1001L01.jpg" from Casia-Interval dataset, then the return value should be: [(1001, 01, L, Interval)] or similar, as long as the convention is consistent. ''' raise NotImplementedError("Implement me!") def split_dataset(templates: List[BloomTemplate], num_enrolled: int) -> Tuple[List[BloomTemplate], List[BloomTemplate], List[BloomTemplate]]: '''This function splits the full template list into disjoint lists of enrolled, genuine and impostor templates''' enrolled, genuine, impostor = [], [], [] raise NotImplementedError("Implement me!") return enrolled, genuine, impostor if __name__ == "__main__": # Data preparation start = timer() binary_templates = [(load_binary_template(f), extract_source_data(f.stem)) for f in args.directory.iterdir() if f.is_file() and f.match('*.txt')] # see file example_binary_template.txt for required format bloom_templates = [BloomTemplate.from_binary_template(template, args.height, args.width, source) for template, source in binary_templates] enrolled_templates, genuine_templates, impostor_templates = split_dataset(bloom_templates, args.enrolled) db = BloomTreeDb(enrolled_templates, args.constructed) end = timer() print("Total data preparation time: %02d:%02d" % divmod(end - start, 60)) # Lookup start = timer() results_genuine = [db.search(genuine_template, args.traversed) for genuine_template in genuine_templates] # List[Tuple[float, BloomTemplate]] results_impostor = [db.search(impostor_template, args.traversed) for impostor_template in impostor_templates] # List[Tuple[float, BloomTemplate]] genuine_scores = [result[0] for result in results_genuine] # List[float] impostor_scores = [result[0] for result in results_impostor] # List[float] genuine_matches = [result[1] for result in results_genuine] # List[BloomTemplate] end = timer() print("Total lookup time: %02d:%02d" % divmod(end - start, 60)) # Results print("Experiment configuration: {} enrolled, {} trees, {} traversed trees, {} block height, {} block width".format(len(enrolled_templates), args.constructed, args.traversed, args.height, args.width)) print("Genuine distribution: {} scores, min/max {:.4f}/{:.4f}, mean {:.4f} +/- {:.4f}".format(len(genuine_scores), min(genuine_scores), max(genuine_scores), np.mean(genuine_scores),
np.std(genuine_scores)
numpy.std
"""Tests with the ATTAS aircraft short-period mode estimation.""" import importlib import os import numpy as np import scipy.io import scipy.linalg import sympy import sym2num.model import fem import symfem # Reload modules for testing for m in (fem, symfem): importlib.reload(m) def load_data(): # Retrieve data # Load experiment data dirname = os.path.dirname(__file__) data = np.loadtxt(os.path.join(dirname, 'data', 'hfb320_1_10.asc')) Ts = 0.1 n = len(data) t = np.arange(n) * Ts y = data[:, 4:11] u = data[:, [1,3]] # Shift and rescale yscale = np.r_[0.15, 70, 15, 30, 10, 5, 0.8] y = (y - [106, 0.11, 0.1, 0, 0, 0.95, -9.5]) * yscale u = (u - [-0.007, 11600]) * [100, 0.01] return t, u, y[:, :] def save_generated_model(symmodel): clsname = type(symmodel).__name__ nx = symmodel.nx nu = symmodel.nu ny = symmodel.ny with open(f'{clsname}_nx{nx}_nu{nu}_ny{ny}.py', mode='w') as f: code = symmodel.print_code() print(code, file=f) def get_model(nx, nu, ny): clsname = 'NaturalSqrtZOHModel' modname = f'{clsname}_nx{nx}_nu{nu}_ny{ny}' mod = importlib.import_module(modname) genclsname = f'Generated{clsname}' cls = getattr(mod, genclsname) return cls() def dt_eem(x, u, y): N, nx = x.shape _, nu = u.shape _, ny = y.shape A = np.zeros((nx, nx)) B = np.zeros((nx, nu)) C = np.zeros((ny, nx)) D = np.zeros((ny, nu)) for i in range(nx): psi = np.zeros((N-1, nx+nu)) psi[:, :nx] = x[:-1] psi[:, nx:] = u[:-1] est = np.linalg.lstsq(psi, x[1:, i], rcond=None) A[i, :] = est[0][:nx] B[i, :] = est[0][nx:] for i in range(ny): psi = np.zeros((N, nx+nu)) psi[:, :nx] = x psi[:, nx:] = u est = np.linalg.lstsq(psi, y[:, i], rcond=None) C[i, :] = est[0][:nx] D[i, :] = est[0][nx:] return A, B, C, D if __name__ == '__main__': nx = 4 nu = 2 ny = 7 # Load experiment data t, u, y = load_data() #symmodel = symfem.NaturalSqrtZOHModel(nx=nx, nu=nu, ny=ny) #model = symmodel.compile_class()() model = get_model(nx, nu, ny) model.dt = t[1] - t[0] problem = fem.NaturalSqrtZOHProblem(model, y, u) # Equation error method initial guess A0, B0, C0, D0 = dt_eem(y[:, :nx], u, y) # Define initial guess for decision variables dec0 = np.zeros(problem.ndec) var0 = problem.variables(dec0) var0['A'][:] = A0 var0['B'][:] = B0 var0['C'][:] = C0 var0['D'][:] = D0 var0['L'][:] = np.eye(nx, ny) var0['Kn'][:] = np.eye(nx, ny) * 1e-2 var0['x'][:] = y[:, :nx] var0['isRp_tril'][symfem.tril_diag(ny)] = 1e2 var0['sRp_tril'][symfem.tril_diag(ny)] = 1e-2 var0['sQ_tril'][symfem.tril_diag(nx)] = 1e-2 var0['sR_tril'][symfem.tril_diag(ny)] = 1e-2 var0['sPp_tril'][symfem.tril_diag(nx)] = 1e-2 var0['sPc_tril'][symfem.tril_diag(nx)] = 1e-2 var0['pred_orth'][:] = np.eye(2*nx, nx) var0['corr_orth'][:] = np.eye(nx + ny, nx + ny) var0['Qc'][:] =
np.eye(nx)
numpy.eye
import numpy as np import scipy import dadapy.utils_.utils as ut # -------------------------------------------------------------------------------------- # bounds for numerical estimation, change if needed D_MAX = 50.0 D_MIN = np.finfo(np.float32).eps # TODO: find a proper way to load the data with a relative path # load, just once and for all, the coefficients for the polynomials in d at fixed L import os volumes_path = os.path.join(os.path.split(__file__)[0], "discrete_volumes") coeff = np.loadtxt(volumes_path + "/L_coefficients_float.dat", dtype=np.float64) # V_exact_int = np.loadtxt(volume_path + '/V_exact.dat',dtype=np.uint64) # -------------------------------------------------------------------------------------- def compute_discrete_volume(L, d, O1=False): """Enumerate the points contained in a region of radius L according to Manhattan metric Args: L (nd.array( integer or float )): radii of the volumes of which points will be enumerated d (float): dimension of the metric space O1 (bool, default=Flase): first order approximation in the large L limit. Set to False in order to have the o(1/L) approx Returns: V (nd.array( integer or float )): points within the given volumes """ # if L is one dimensional make it an array if isinstance(L, (int, np.integer, float, np.float)): L = [L] # explicit conversion to array of integers l = np.array(L, dtype=np.int) # exact formula for integer d, cannot be used for floating values if isinstance(d, (int, np.integer)): V = 0 for k in range(0, d + 1): V += scipy.special.binom(d, k) * scipy.special.binom(l - k + d, d) return V else: # exact enumerating formula for non integer d. Use the loaded coefficients to compute # the polynomials in d at fixed (small) L. # Exact within numerical precision, as far as the coefficients are available def V_polynomials(ll): D = d ** np.arange(coeff.shape[1], dtype=np.double) V_poly = np.dot(coeff, D) return V_poly[ll] # Large L approximation obtained using Stirling formula def V_Stirling(ll): if O1: correction = 2 ** d else: correction = ( np.exp(0.5 * (d + d ** 2) / ll) * (1 + np.exp(-d / ll)) ** d ) return ll ** d / scipy.special.factorial(d) * correction ind_small_l = l < coeff.shape[0] V = np.zeros(l.shape[0]) V[ind_small_l] = V_polynomials(l[ind_small_l]) V[~ind_small_l] = V_Stirling(l[~ind_small_l]) return V # -------------------------------------------------------------------------------------- def compute_derivative_discrete_vol(l, d): """compute derivative of discrete volumes with respect to dimension Args: L (int): radii at which the derivative is calculated d (float): embedding dimension Returns: dV_dd (ndarray(float) or float): derivative at different values of radius """ # exact formula with polynomials, for small L # assert isinstance(l, (int, np.int)) if l < coeff.shape[0]: l = int(l) D = d **
np.arange(-1, coeff.shape[1] - 1, dtype=np.double)
numpy.arange
import torch import numpy as np import torch.nn as nn from torch.autograd import Variable,Function import utils.frame_utils as frame_utils import datasets from datasets import StaticRandomCrop,StaticCenterCrop try: from networks.resample2d_package.resample2d import Resample2d from networks.channelnorm_package.channelnorm import ChannelNorm from networks.correlation_package.correlation import Correlation except: from .networks.resample2d_package.resample2d import Resample2d from .networks.channelnorm_package.channelnorm import ChannelNorm from networks.correlation_package.correlation import Correlation def run_test(rgb_max = 255): device = torch.device('cuda') input_re_1 = Variable(torch.from_numpy(np.array(np.arange(0,1*2*3*4),np.float32)).resize(1,2,3,4).cuda(),requires_grad=True) input_re_2 = Variable(torch.from_numpy(np.array(
np.arange(0,1*2*3*4)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Wed Oct 29 22:06:08 2014 @author: <NAME> """ import numpy as np class quaternion(): """A simple quaternion class in order to represent a rotation. To build a quaternion object, one needs to input either the angle and the unit vector about which the rotation happens or directly the scalar and vector parts of the quaternion. Examples -------- >>> import quaternion as quat >>> Q1 = quat.quaternion([1.,0.,0.], angl = 90.) >>> Q2 = quat.quaternion([(0.5)**0.5,0.,0.], W = (0.5)**0.5) Notes ----- See <NAME>: "Application of Quaternions to Computation with Rotations", Working Paper, Stanford AI Lab, 1979. """ def __init__(self, vect, **kwargs): """Initializes a quaternion object Parameters ---------- vect: list of float, depending on kwargs it is be either the coordonates of the unit vector about which the rotation happens or directly the vector part of the quaternion \**kwargs: * angl: float, the angle of rotation represented by the quaternion. * W: float,the scalar part of the quatenion object. """ for name, value in kwargs.items(): if name=='angl': self.w = np.cos(value/2.*np.pi/180.) self.x = vect[0]*np.sin(value/2.*np.pi/180.) self.y = vect[1]*np.sin(value/2.*np.pi/180.) self.z = vect[2]*
np.sin(value/2.*np.pi/180.)
numpy.sin
import os import json import shutil from concurrent import futures from functools import partial from glob import glob import imageio import h5py import numpy as np from PIL import Image, ImageDraw from skimage import draw as skimage_draw from skimage import morphology from tqdm import tqdm import torch_em from .util import download_source, unzip, update_kwargs URLS = { "segmentation": "https://zenodo.org/record/4665863/files/hpa_dataset_v2.zip" } CHECKSUMS = { "segmentation": "dcd6072293d88d49c71376d3d99f3f4f102e4ee83efb0187faa89c95ec49faa9" } def _download_hpa_data(path, name, download): os.makedirs(path, exist_ok=True) url = URLS[name] checksum = CHECKSUMS[name] zip_path = os.path.join(path, "data.zip") download_source(zip_path, url, download=download, checksum=checksum) unzip(zip_path, path, remove=True) def _load_features(features): # Loop over list and create simple dictionary & get size of annotations annot_dict = {} skipped = [] for feat_idx, feat in enumerate(features): if feat["geometry"]["type"] not in ["Polygon", "LineString"]: skipped.append(feat["geometry"]["type"]) continue # skip empty roi if len(feat["geometry"]["coordinates"][0]) <= 0: continue key_annot = "annot_" + str(feat_idx) annot_dict[key_annot] = {} annot_dict[key_annot]["type"] = feat["geometry"]["type"] annot_dict[key_annot]["pos"] = np.squeeze( np.asarray(feat["geometry"]["coordinates"]) ) annot_dict[key_annot]["properties"] = feat["properties"] # print("Skipped geometry type(s):", skipped) return annot_dict def _generate_binary_masks(annot_dict, shape, erose_size=5, obj_size_rem=500, save_indiv=False): # Get dimensions of image and created masks of same size # This we need to save somewhere (e.g. as part of the geojson file?) # Filled masks and edge mask for polygons mask_fill = np.zeros(shape, dtype=np.uint8) mask_edge = np.zeros(shape, dtype=np.uint8) mask_labels =
np.zeros(shape, dtype=np.uint16)
numpy.zeros
import librosa import numpy as np from utils import feature_extractor as utils class EMG: def __init__(self, audio, config): self.audio = audio self.dependencies = config["emg"]["dependencies"] self.frame_size = int(config["frame_size"]) self.sampling_rate = int(config["sampling_rate"]) self.number_of_bins = int(config["emg"]["number_of_bins"]) self.is_raw_data = config["is_raw_data"] self.time_lag = int(config["emg"]["time_lag"]) self.embedded_dimension = int(config["emg"]["embedded_dimension"]) self.boundary_frequencies = list(config["emg"]["boundary_frequencies"]) self.hfd_parameter = int(config["emg"]["hfd_parameter"]) self.r = int(config["emg"]["r"]) self.frames = int(np.ceil(len(self.audio.data) / self.frame_size)) def __enter__(self): print ("Initializing emg calculation...") def __exit__(self, exc_type, exc_val, exc_tb): print ("Done with calculations...") def get_current_frame(self, index): return utils._get_frame_array(self.audio, index, self.frame_size) def compute_hurst(self): self.hurst = [] for k in range(0, self.frames): current_frame = self.get_current_frame(k) N = current_frame.size T = np.arange(1, N + 1) Y = np.cumsum(current_frame) Ave_T = Y / T S_T = np.zeros(N) R_T = np.zeros(N) for i in range(N): S_T[i] = np.std(current_frame[:i + 1]) X_T = Y - T * Ave_T[i] R_T[i] = np.ptp(X_T[:i + 1]) R_S = R_T / S_T R_S = np.log(R_S)[1:] n = np.log(T)[1:] A = np.column_stack((n, np.ones(n.size))) [m, c] = np.linalg.lstsq(A, R_S)[0] self.hurst.append(m) self.hurst = np.asarray(self.hurst) def get_hurst(self): return self.hurst def compute_embed_seq(self): self.embed_seq = [] for k in range(0, self.frames): current_frame = self.get_current_frame(k) shape = (current_frame.size - self.time_lag * (self.embedded_dimension - 1), self.embedded_dimension) strides = (current_frame.itemsize, self.time_lag * current_frame.itemsize) m = np.lib.stride_tricks.as_strided(current_frame, shape=shape, strides=strides) self.embed_seq.append(m) self.embed_seq = np.asarray(self.embed_seq) def get_embed_seq(self): return self.embed_seq def compute_bin_power(self): self.Power_Ratio = [] self.Power = [] for k in range(0, self.frames): current_frame = self.get_current_frame(k) C = np.fft.fft(current_frame) C = abs(C) Power = np.zeros(len(self.boundary_frequencies) - 1) for Freq_Index in range(0, len(self.boundary_frequencies) - 1): Freq = float(self.boundary_frequencies[Freq_Index]) Next_Freq = float(self.boundary_frequencies[Freq_Index + 1]) Power[Freq_Index] = sum( C[int(np.floor(Freq / self.sampling_rate * len(current_frame))): int(np.floor(Next_Freq / self.sampling_rate * len(current_frame)))]) self.Power.append(Power) self.Power_Ratio.append(Power / sum(Power)) self.Power = np.asarray(self.Power) self.Power_Ratio =
np.asarray(self.Power_Ratio)
numpy.asarray
import numpy as np import numpy.ma as ma def rot_matrix(theta): r = np.array(( (np.cos(theta), -np.sin(theta)), (np.sin(theta),
np.cos(theta)
numpy.cos
import unittest import numpy as np from pandas import Index from pandas.util.testing import assert_almost_equal import pandas.util.testing as common import pandas._tseries as lib class TestTseriesUtil(unittest.TestCase): def test_combineFunc(self): pass def test_reindex(self): pass def test_isnull(self): pass def test_groupby(self): pass def test_groupby_withnull(self): pass def test_merge_indexer(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.merge_indexer_object(new, old.indexMap) expect_filler = [-1, 0, -1, -1, -1, 1, -1, -1, -1, -1, 2, -1] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([1, 4]) new = Index(range(5, 10)) filler = lib.merge_indexer_object(new, old.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_backfill(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.backfill_object(old, new, old.indexMap, new.indexMap) expect_filler = [0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, -1] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([1, 4]) new = Index(range(5, 10)) filler = lib.backfill_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_pad(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.pad_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([5, 10]) new = Index(range(5)) filler = lib.pad_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_left_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([2, 2, 3, 4, 4], dtype=np.int64) result = lib.left_join_indexer_int64(b, a) expected = np.array([1, 1, 2, 3, 3], dtype='i4') assert(np.array_equal(result, expected)) def test_inner_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = lib.inner_join_indexer_int64(a, b) index_exp = np.array([3, 5], dtype=np.int64) assert_almost_equal(index, index_exp) aexp = np.array([2, 4]) bexp = np.array([1, 2]) assert_almost_equal(ares, aexp) assert_almost_equal(bres, bexp) def test_outer_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = lib.outer_join_indexer_int64(a, b) index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64) assert_almost_equal(index, index_exp) aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int32) bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4]) assert_almost_equal(ares, aexp) assert_almost_equal(bres, bexp) def test_is_lexsorted(): failure = [ np.array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), np.array([30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0])] assert(not lib.is_lexsorted(failure)) # def test_get_group_index(): # a = np.array([0, 1, 2, 0, 2, 1, 0, 0], dtype='i4') # b = np.array([1, 0, 3, 2, 0, 2, 3, 0], dtype='i4') # expected = np.array([1, 4, 11, 2, 8, 6, 3, 0], dtype='i4') # result = lib.get_group_index([a, b], (3, 4)) # assert(np.array_equal(result, expected)) def test_groupsort_indexer(): a = np.random.randint(0, 1000, 100).astype('i4') b = np.random.randint(0, 1000, 100).astype('i4') result = lib.groupsort_indexer(a, 1000)[0] # need to use a stable sort expected = np.argsort(a, kind='mergesort') assert(np.array_equal(result, expected)) # compare with lexsort key = a * 1000 + b result = lib.groupsort_indexer(key, 1000000)[0] expected = np.lexsort((b, a)) assert(np.array_equal(result, expected)) def test_duplicated_with_nas(): keys = [0, 1, np.nan, 0, 2, np.nan] result = lib.duplicated(keys) expected = [False, False, False, True, False, True] assert(np.array_equal(result, expected)) result = lib.duplicated(keys, take_last=True) expected = [True, False, True, False, False, False] assert(np.array_equal(result, expected)) keys = [(0, 0), (0, np.nan), (np.nan, 0), (np.nan, np.nan)] * 2 result = lib.duplicated(keys) falses = [False] * 4 trues = [True] * 4 expected = falses + trues assert(np.array_equal(result, expected)) result = lib.duplicated(keys, take_last=True) expected = trues + falses assert(np.array_equal(result, expected)) def test_convert_objects(): arr = np.array(['a', 'b', np.nan, np.nan, 'd', 'e', 'f'], dtype='O') result = lib.maybe_convert_objects(arr) assert(result.dtype == np.object_) def test_convert_objects_ints(): # test that we can detect many kinds of integers dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] for dtype_str in dtypes: arr = np.array(list(np.arange(20, dtype=dtype_str)), dtype='O') assert(arr[0].dtype == np.dtype(dtype_str)) result = lib.maybe_convert_objects(arr) assert(issubclass(result.dtype.type, np.integer)) def test_rank(): from scipy.stats import rankdata from numpy import nan def _check(arr): mask = -np.isfinite(arr) arr = arr.copy() result = lib.rank_1d_float64(arr) arr[mask] = np.inf exp = rankdata(arr) exp[mask] = np.nan assert_almost_equal(result, exp) _check(np.array([nan, nan, 5., 5., 5., nan, 1, 2, 3, nan])) _check(np.array([4., nan, 5., 5., 5., nan, 1, 2, 4., nan])) def test_get_reverse_indexer(): indexer = np.array([-1, -1, 1, 2, 0, -1, 3, 4], dtype='i4') result = lib.get_reverse_indexer(indexer, 5) expected = np.array([4, 2, 3, 6, 7], dtype='i4') assert(
np.array_equal(result, expected)
numpy.array_equal
r""" srundplug: Undulator spectra calculations. An easy (or not too difficult) interface to make these calculations using Srw, Urgent, and Us. functions (summary): calc1d<code> returns (e,f) f=flux (phot/s/0.1%bw) versus e=photon energy in eV calc2d<code> returns (h,v,p) p=power density (W/mm^2) versus h and v slit directions in mm calc3d<code> returns (e,h,v,f) f = flux (phot/s/0.1%bw/mm^2) versus e=energy in eV, h and v slit directions in mm """ __author__ = "<NAME>" __contact__ = "<EMAIL>" __copyright__ = "ESRF, 2014-2019" # #---------------------------- IMPORT ------------------------------------------ # import os import sys import time import array import platform import numpy import shutil # to copy files #SRW USE_URGENT= True USE_US = True USE_SRWLIB = True USE_PYSRU = False if USE_SRWLIB: try: import oasys_srw.srwlib as srwlib except: USE_SRWLIB = False print("SRW is not available") #catch standard optput try: from io import StringIO # Python3 except ImportError: from StringIO import StringIO # Python2 try: import matplotlib.pylab as plt except ImportError: print("failed to import matplotlib. Do not try to do on-line plots.") from srxraylib.plot.gol import plot, plot_contour, plot_surface, plot_image, plot_show ######################################################################################################################## # # GLOBAL NAMES # ######################################################################################################################## # #Physical constants (global, by now) import scipy.constants as codata codata_mee = numpy.array(codata.physical_constants["electron mass energy equivalent in MeV"][0]) m2ev = codata.c * codata.h / codata.e # lambda(m) = m2eV / energy(eV) # counter for output files scanCounter = 0 # try: # from xoppylib.xoppy_util import locations # except: # raise Exception("IMPORT") # directory where to find urgent and us binaries try: from xoppylib.xoppy_util import locations home_bin = locations.home_bin() except: import platform if platform.system() == 'Linux': home_bin='/scisoft/xop2.4/bin.linux/' print("srundplug: undefined home_bin. It has been set to ", home_bin) elif platform.system() == 'Darwin': home_bin = "/scisoft/xop2.4/bin.darwin/" print("srundplug: undefined home_bin. It has been set to ", home_bin) elif platform.system() == 'Windows': home_bin = "" print("srundplug: undefined home_bin. It has been set to ", home_bin) else: raise FileNotFoundError("srundplug: undefined home_bin") #check #if os.path.isfile(home_bin + 'us') == False: # raise FileNotFoundError("srundplug: File not found: "+home_bin+'us') #if os.path.isfile(home_bin + 'urgent') == False: # raise FileNotFoundError("srundplug: File not found: " + home_bin + 'urgent') # directory where to find urgent and us binaries try: home_bin except NameError: #home_bin='/users/srio/Oasys/Orange-XOPPY/orangecontrib/xoppy/bin.linux/' home_bin='/scisoft/xop2.4/bin.linux/' print("srundplug: undefined home_bin. It has been set to ",home_bin) #check #if os.path.isfile(home_bin+'us') == False: # print("srundplug: File not found: "+home_bin+'us') #if os.path.isfile(home_bin+'urgent') == False: # sys.exit("srundplug: File not found: "+home_bin+'urgent') ######################################################################################################################## # # 1D: calc1d<code> Flux calculations # ######################################################################################################################## def calc1d_pysru(bl,photonEnergyMin=3000.0,photonEnergyMax=55000.0,photonEnergyPoints=5, npoints_grid=51,zero_emittance=False,fileName=None,fileAppend=False): r""" run pySRU for calculating flux input: a dictionary with beamline output: file name with results """ global scanCounter t0 = time.time() print("Inside calc1d_pysru") from pySRU.Simulation import create_simulation from pySRU.ElectronBeam import ElectronBeam from pySRU.MagneticStructureUndulatorPlane import MagneticStructureUndulatorPlane from pySRU.TrajectoryFactory import TrajectoryFactory, TRAJECTORY_METHOD_ANALYTIC,TRAJECTORY_METHOD_ODE from pySRU.RadiationFactory import RadiationFactory,RADIATION_METHOD_NEAR_FIELD, \ RADIATION_METHOD_APPROX_FARFIELD myBeam = ElectronBeam(Electron_energy=bl['ElectronEnergy'], I_current=bl['ElectronCurrent']) myUndulator = MagneticStructureUndulatorPlane(K=bl['Kv'], period_length=bl['PeriodID'], length=bl['PeriodID']*bl['NPeriods']) is_quadrant = 1 if is_quadrant: X = numpy.linspace(0,0.5*bl['gapH'],npoints_grid) Y = numpy.linspace(0,0.5*bl['gapV'],npoints_grid) else: X = numpy.linspace(-0.5*bl['gapH'],0.5*bl['gapH'],npoints_grid) Y = numpy.linspace(-0.5*bl['gapH'],0.5*bl['gapH'],npoints_grid) # # Warning: The automatic calculation of Nb_pts_trajectory dependens on the energy at this setup and it # will kept constant over the full spectrum. Therefore, the setup here is done for the most # "difficult" case, i.e., the highest energy. # Setting photon_energy=None will do it at the first harmonic, and it was found that the flux # diverges at high energies in some cases (energy_radiated_approximation_and_farfield) # simulation_test = create_simulation(magnetic_structure=myUndulator,electron_beam=myBeam, magnetic_field=None, photon_energy=photonEnergyMax, traj_method=TRAJECTORY_METHOD_ODE,Nb_pts_trajectory=None, rad_method=RADIATION_METHOD_NEAR_FIELD, Nb_pts_radiation=None, initial_condition=None, distance=bl['distance'],XY_are_list=False,X=X,Y=Y) # simulation_test.trajectory.plot() simulation_test.print_parameters() # simulation_test.radiation.plot(title=("radiation in a screen for first harmonic")) print("Integrated flux at resonance: %g photons/s/0.1bw"%(simulation_test.radiation.integration(is_quadrant=is_quadrant))) energies = numpy.linspace(photonEnergyMin,photonEnergyMax,photonEnergyPoints) eArray,intensArray = simulation_test.calculate_spectrum_on_slit(abscissas_array=energies,use_eV=1,is_quadrant=is_quadrant,do_plot=0) #**********************Saving results if fileName is not None: if fileAppend: f = open(fileName,"a") else: scanCounter = 0 f = open(fileName,"w") f.write("#F "+fileName+"\n") f.write("\n") scanCounter +=1 f.write("#S %d Undulator spectrum calculation using pySRU\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD photonEnergyMin = %f\n"%(photonEnergyMin)) f.write("#UD photonEnergyMax = %f\n"%(photonEnergyMax)) f.write("#UD photonEnergyPoints = %d\n"%(photonEnergyPoints)) # # write flux to file # header="#N 4 \n#L PhotonEnergy[eV] PhotonWavelength[A] Flux[phot/sec/0.1%bw] Spectral Power[W/eV]\n" f.write(header) for i in range(eArray.size): f.write(' ' + repr(eArray[i]) + ' ' + repr(m2ev/eArray[i]*1e10) + ' ' + repr(intensArray[i]) + ' ' + repr(intensArray[i]*codata.e*1e3) + '\n') f.close() if fileAppend: print("Data appended to file: %s"%(os.path.join(os.getcwd(),fileName))) else: print("File written to disk: %s"%(os.path.join(os.getcwd(),fileName))) return (eArray,intensArray) def calc1d_srw(bl,photonEnergyMin=3000.0,photonEnergyMax=55000.0,photonEnergyPoints=500,zero_emittance=False, srw_max_harmonic_number=None,fileName=None,fileAppend=False): r""" run SRW for calculating flux input: a dictionary with beamline output: file name with results """ global scanCounter t0 = time.time() print("Inside calc1d_srw") #derived #TODO calculate the numerical factor using codata #B0 = bl['Kv']/0.934/(bl['PeriodID']*1e2) cte = codata.e/(2*numpy.pi*codata.electron_mass*codata.c) B0 = bl['Kv']/bl['PeriodID']/cte try: B0x = bl['Kh']/bl['PeriodID']/cte except: B0x = 0.0 try: Kphase = bl['Kphase'] except: Kphase = 0.0 if srw_max_harmonic_number == None: gamma = bl['ElectronEnergy'] / (codata_mee * 1e-3) try: Kh = bl['Kh'] except: Kh = 0.0 resonance_wavelength = (1 + (bl['Kv']**2 + Kh**2) / 2.0) / 2 / gamma**2 * bl["PeriodID"] resonance_energy = m2ev / resonance_wavelength srw_max_harmonic_number = int(photonEnergyMax / resonance_energy * 2.5) print ("Max harmonic considered:%d ; Resonance energy: %g eV\n"%(srw_max_harmonic_number,resonance_energy)) Nmax = srw_max_harmonic_number # 21,61 print('Running SRW (SRWLIB Python)') if B0x == 0: #*********** Conventional Undulator harmB = srwlib.SRWLMagFldH() #magnetic field harmonic harmB.n = 1 #harmonic number ??? Mostly asymmetry harmB.h_or_v = 'v' #magnetic field plane: horzontal ('h') or vertical ('v') harmB.B = B0 #magnetic field amplitude [T] und = srwlib.SRWLMagFldU([harmB]) und.per = bl['PeriodID'] #period length [m] und.nPer = bl['NPeriods'] #number of periods (will be rounded to integer) #Container of all magnetic field elements magFldCnt = srwlib.SRWLMagFldC([und], srwlib.array('d', [0]), srwlib.array('d', [0]), srwlib.array('d', [0])) else: #***********Undulator (elliptical) magnetic_fields = [] magnetic_fields.append(srwlib.SRWLMagFldH(1, 'v', _B=B0, _ph=0.0, _s=1, # 1=symmetrical, -1=antisymmetrical _a=1.0)) magnetic_fields.append(srwlib.SRWLMagFldH(1, 'h', _B=B0x, _ph=Kphase, _s=1, _a=1.0)) und = srwlib.SRWLMagFldU(_arHarm=magnetic_fields, _per=bl['PeriodID'], _nPer=bl['NPeriods']) magFldCnt = srwlib.SRWLMagFldC(_arMagFld=[und], _arXc=srwlib.array('d', [0.0]), _arYc=srwlib.array('d', [0.0]), _arZc=srwlib.array('d', [0.0])) #***********Electron Beam eBeam = srwlib.SRWLPartBeam() eBeam.Iavg = bl['ElectronCurrent'] #average current [A] eBeam.partStatMom1.x = 0. #initial transverse positions [m] eBeam.partStatMom1.y = 0. # eBeam.partStatMom1.z = 0 #initial longitudinal positions (set in the middle of undulator) eBeam.partStatMom1.z = - bl['PeriodID']*(bl['NPeriods']+4)/2 # initial longitudinal positions eBeam.partStatMom1.xp = 0 #initial relative transverse velocities eBeam.partStatMom1.yp = 0 eBeam.partStatMom1.gamma = bl['ElectronEnergy']*1e3/codata_mee #relative energy if zero_emittance: sigX = 1e-25 sigXp = 1e-25 sigY = 1e-25 sigYp = 1e-25 sigEperE = 1e-25 else: sigX = bl['ElectronBeamSizeH'] #horizontal RMS size of e-beam [m] sigXp = bl['ElectronBeamDivergenceH'] #horizontal RMS angular divergence [rad] sigY = bl['ElectronBeamSizeV'] #vertical RMS size of e-beam [m] sigYp = bl['ElectronBeamDivergenceV'] #vertical RMS angular divergence [rad] sigEperE = bl['ElectronEnergySpread'] print("calc1dSrw: starting calculation using ElectronEnergySpead=%e \n"%((sigEperE))) #2nd order stat. moments: eBeam.arStatMom2[0] = sigX*sigX #<(x-<x>)^2> eBeam.arStatMom2[1] = 0 #<(x-<x>)(x'-<x'>)> eBeam.arStatMom2[2] = sigXp*sigXp #<(x'-<x'>)^2> eBeam.arStatMom2[3] = sigY*sigY #<(y-<y>)^2> eBeam.arStatMom2[4] = 0 #<(y-<y>)(y'-<y'>)> eBeam.arStatMom2[5] = sigYp*sigYp #<(y'-<y'>)^2> eBeam.arStatMom2[10] = sigEperE*sigEperE #<(E-<E>)^2>/<E>^2 #***********Precision Parameters arPrecF = [0]*5 #for spectral flux vs photon energy arPrecF[0] = 1 #initial UR harmonic to take into account arPrecF[1] = Nmax #final UR harmonic to take into account arPrecF[2] = 1.5 #longitudinal integration precision parameter arPrecF[3] = 1.5 #azimuthal integration precision parameter arPrecF[4] = 1 #calculate flux (1) or flux per unit surface (2) #***********UR Stokes Parameters (mesh) for Spectral Flux stkF = srwlib.SRWLStokes() #for spectral flux vs photon energy #srio stkF.allocate(10000, 1, 1) #numbers of points vs photon energy, horizontal and vertical positions stkF.allocate(photonEnergyPoints, 1, 1) #numbers of points vs photon energy, horizontal and vertical positions stkF.mesh.zStart = bl['distance'] #longitudinal position [m] at which UR has to be calculated stkF.mesh.eStart = photonEnergyMin #initial photon energy [eV] stkF.mesh.eFin = photonEnergyMax #final photon energy [eV] stkF.mesh.xStart = bl['gapHcenter'] - bl['gapH']/2 #initial horizontal position [m] stkF.mesh.xFin = bl['gapHcenter'] + bl['gapH']/2 #final horizontal position [m] stkF.mesh.yStart = bl['gapVcenter'] - bl['gapV']/2 #initial vertical position [m] stkF.mesh.yFin = bl['gapVcenter'] + bl['gapV']/2 #final vertical position [m] #**********************Calculation (SRWLIB function calls) print('Performing Spectral Flux (Stokes parameters) calculation ... ') # , end='') srwlib.srwl.CalcStokesUR(stkF, eBeam, und, arPrecF) print('Done calc1dSrw calculation in %10.3f s'%(time.time()-t0)) #**********************Saving results if fileName is not None: if fileAppend: f = open(fileName,"a") else: scanCounter = 0 f = open(fileName,"w") f.write("#F "+fileName+"\n") f.write("\n") scanCounter +=1 f.write("#S %d Undulator spectrum calculation using SRW\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD photonEnergyMin = %f\n"%(photonEnergyMin)) f.write("#UD photonEnergyMax = %f\n"%(photonEnergyMax)) f.write("#UD photonEnergyPoints = %d\n"%(photonEnergyPoints)) f.write("#UD B0 = %f\n"%(B0)) # # write flux to file # header="#N 4 \n#L PhotonEnergy[eV] PhotonWavelength[A] Flux[phot/sec/0.1%bw] Spectral Power[W/eV]\n" f.write(header) eArray = numpy.zeros(photonEnergyPoints) intensArray = numpy.zeros(photonEnergyPoints) for i in range(stkF.mesh.ne): ener = stkF.mesh.eStart+i*(stkF.mesh.eFin-stkF.mesh.eStart)/numpy.array((stkF.mesh.ne-1)).clip(min=1) if fileName is not None: f.write(' ' + repr(ener) + ' ' + repr(m2ev/ener*1e10) + ' ' + repr(stkF.arS[i]) + ' ' + repr(stkF.arS[i]*codata.e*1e3) + '\n') eArray[i] = ener intensArray[i] = stkF.arS[i] if fileName is not None: f.close() if fileAppend: print("Data appended to file: %s"%(os.path.join(os.getcwd(),fileName))) else: print("File written to disk: %s"%(os.path.join(os.getcwd(),fileName))) return (eArray,intensArray) def calc1d_urgent(bl,photonEnergyMin=1000.0,photonEnergyMax=100000.0,photonEnergyPoints=500,zero_emittance=False,fileName=None,fileAppend=False): r""" run Urgent for calculating flux input: a dictionary with beamline output: file name with results """ global scanCounter global home_bin print("Inside calc1d_urgent") t0 = time.time() for file in ["urgent.inp","urgent.out"]: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: pass try: Kh = bl['Kh'] except: Kh = 0.0 try: Kphase = bl['Kphase'] except: Kphase = 0.0 with open("urgent.inp","wt") as f: f.write("%d\n"%(1)) # ITYPE f.write("%f\n"%(bl['PeriodID'])) # PERIOD f.write("%f\n"%(Kh)) #KX f.write("%f\n"%(bl['Kv'])) #KY f.write("%f\n"%(Kphase*180.0/numpy.pi)) #PHASE f.write("%d\n"%(bl['NPeriods'])) #N f.write("%f\n"%(photonEnergyMin)) #EMIN f.write("%f\n"%(photonEnergyMax)) #EMAX f.write("%d\n"%(photonEnergyPoints)) #NENERGY f.write("%f\n"%(bl['ElectronEnergy'])) #ENERGY f.write("%f\n"%(bl['ElectronCurrent'])) #CUR f.write("%f\n"%(bl['ElectronBeamSizeH']*1e3)) #SIGX f.write("%f\n"%(bl['ElectronBeamSizeV']*1e3)) #SIGY f.write("%f\n"%(bl['ElectronBeamDivergenceH']*1e3)) #SIGX1 f.write("%f\n"%(bl['ElectronBeamDivergenceV']*1e3)) #SIGY1 f.write("%f\n"%(bl['distance'])) #D f.write("%f\n"%(bl['gapHcenter']*1e3)) #XPC f.write("%f\n"%(bl['gapVcenter']*1e3)) #YPC f.write("%f\n"%(bl['gapH']*1e3)) #XPS f.write("%f\n"%(bl['gapV']*1e3)) #YPS f.write("%d\n"%(50)) #NXP f.write("%d\n"%(50)) #NYP f.write("%d\n"%(4)) #MODE if zero_emittance: #ICALC f.write("%d\n"%(3)) else: f.write("%d\n"%(1)) f.write("%d\n"%(-1)) #IHARM f.write("%d\n"%(0)) #NPHI f.write("%d\n"%(0)) #NSIG f.write("%d\n"%(0)) #NALPHA f.write("%f\n"%(0.00000)) #DALPHA f.write("%d\n"%(0)) #NOMEGA f.write("%f\n"%(0.00000)) #DOMEGA if platform.system() == "Windows": command = os.path.join(home_bin,'urgent.exe < urgent.inp') else: command = "'" + os.path.join(home_bin,"urgent' < urgent.inp") print("Running command '%s' in directory: %s \n"%(command,os.getcwd())) os.system(command) print('Done calc1dUrgent calculation in %10.3f s'%(time.time()-t0)) # write spec file txt = open("urgent.out").readlines() if fileName is not None: if fileAppend: f = open(fileName,"a") else: scanCounter = 0 f = open(fileName,"w") f.write("#F "+fileName+"\n") f.write("\n") scanCounter +=1 f.write("#S %d Undulator spectrum calculation using Urgent\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD photonEnergyMin = %f\n"%(photonEnergyMin)) f.write("#UD photonEnergyMax = %f\n"%(photonEnergyMax)) f.write("#UD photonEnergyPoints = %d\n"%(photonEnergyPoints)) f.write("#N 10\n") f.write("#L Energy(eV) Wavelength(A) Flux(ph/s/0.1%bw) Spectral Power(W/eV) imin imax p1 p2 p3 p4\n") nArray = 0 for i in txt: tmp = i.strip(" ") if tmp[0].isdigit(): nArray += 1 tmp = tmp.replace('D','e') if fileName is not None: f.write(tmp) else: if fileName is not None: f.write("#UD "+tmp) if fileName is not None: f.close() if fileAppend: print("Data appended to file: %s"%(os.path.join(os.getcwd(),fileName))) else: print("File written to disk: %s"%(os.path.join(os.getcwd(),fileName))) # stores results in numpy arrays for return eArray = numpy.zeros(nArray) intensArray = numpy.zeros(nArray) iArray = -1 for i in txt: tmp = i.strip(" ") if tmp[0].isdigit(): iArray += 1 tmp = tmp.replace('D','e') tmpf = numpy.array( [float(j) for j in tmp.split()] ) eArray[iArray] = tmpf[0] intensArray[iArray] = tmpf[2] return (eArray,intensArray) def calc1d_us(bl,photonEnergyMin=1000.0,photonEnergyMax=100000.0,photonEnergyPoints=500,zero_emittance=False,fileName=None,fileAppend=False): r""" run US for calculating flux input: a dictionary with beamline output: file name with results """ global scanCounter global home_bin t0 = time.time() for file in ["us.inp","us.out"]: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: pass print("Inside calc1d_us") with open("us.inp","wt") as f: f.write("US run\n") f.write(" %f %f %f Ring-Energy Current\n"% (bl['ElectronEnergy'],bl['ElectronCurrent']*1e3,bl['ElectronEnergySpread'])) f.write(" %f %f %f %f Sx Sy Sxp Syp\n"% (bl['ElectronBeamSizeH']*1e3,bl['ElectronBeamSizeV']*1e3, bl['ElectronBeamDivergenceH']*1e3,bl['ElectronBeamDivergenceV']*1e3) ) f.write(" %f %d 0.000 %f Period N Kx Ky\n"% (bl['PeriodID']*1e2,bl['NPeriods'],bl['Kv']) ) f.write(" %f %f %d Emin Emax Ne\n"% (photonEnergyMin,photonEnergyMax,photonEnergyPoints) ) f.write(" %f %f %f %f %f 50 50 D Xpc Ypc Xps Yps Nxp Nyp\n"% (bl['distance'],bl['gapHcenter']*1e3,bl['gapVcenter']*1e3,bl['gapH']*1e3,bl['gapV']*1e3) ) # f.write(" 4 4 0 Mode Method Iharm\n") if zero_emittance: f.write(" 4 3 0 Mode Method Iharm\n") else: f.write(" 4 4 0 Mode Method Iharm\n") f.write(" 0 0 0.0 64 8.0 0 Nphi Nalpha Dalpha2 Nomega Domega Nsigma\n") f.write("foreground\n") if platform.system() == "Windows": command = os.path.join(home_bin,'us.exe < us.inp') else: command = "'" + os.path.join(home_bin,'us') + "'" print("Running command '%s' in directory: %s \n"%(command,os.getcwd())) os.system(command) print('Done calc1dUs calculation in %10.3f s'%(time.time()-t0)) txt = open("us.out").readlines() # write spec file if fileName is not None: if fileAppend: f = open(fileName,"a") else: scanCounter = 0 f = open(fileName,"w") f.write("#F "+fileName+"\n") f.write("\n") scanCounter +=1 f.write("#S %d Undulator spectrum calculation using US\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD photonEnergyMin = %f\n"%(photonEnergyMin)) f.write("#UD photonEnergyMax = %f\n"%(photonEnergyMax)) f.write("#UD photonEnergyPoints = %d\n"%(photonEnergyPoints)) f.write("#N 8\n") f.write("#L Energy(eV) Wavelength(A) Flux(ph/s/0.1%bw) SpectralPower(W/ev) p1 p2 p3 p4\n") nArray = 0 for i in txt: tmp = i.strip(" ") if tmp[0].isdigit(): tmp = tmp.replace('D','e') tmp = numpy.fromstring(tmp,dtype=float,sep=' ') if fileName is not None: f.write(("%g "*8+"\n")%(tmp[0],1e10*m2ev/tmp[0],tmp[1],tmp[1]*1e3*codata.e,tmp[2],tmp[3],tmp[4],tmp[5])) nArray += 1 else: if fileName is not None: f.write("#UD "+tmp) if fileName is not None: f.close() if fileAppend: print("Data appended to file: %s"%(os.path.join(os.getcwd(),fileName))) else: print("File written to disk: %s"%(os.path.join(os.getcwd(),fileName))) # stores results in numpy arrays for return eArray = numpy.zeros(nArray) intensArray = numpy.zeros(nArray) iArray = -1 for i in txt: tmp = i.strip(" ") if tmp[0].isdigit(): iArray += 1 tmp = tmp.replace('D','e') tmpf = numpy.array( [float(j) for j in tmp.split()] ) eArray[iArray] = tmpf[0] intensArray[iArray] = tmpf[1] return (eArray,intensArray) ######################################################################################################################## # # 2D: calc2d<code> Power density calculations # ######################################################################################################################## def calc2d_pysru(bl,zero_emittance=False,hSlitPoints=51,vSlitPoints=51, photonEnergyMin=50.0,photonEnergyMax=2500.0,photonEnergyPoints=2451, fileName=None,fileAppend=False): e,h,v,i = calc3d_pysru(bl,zero_emittance=zero_emittance, photonEnergyMin=photonEnergyMin,photonEnergyMax=photonEnergyMax,photonEnergyPoints=photonEnergyPoints, hSlitPoints=hSlitPoints,vSlitPoints=vSlitPoints, fileName=fileName,fileAppend=fileAppend) e_step = (photonEnergyMax - photonEnergyMin) / photonEnergyPoints plot(e,(i.sum(axis=2)).sum(axis=1)*(v[1]-v[0])*(h[1]-h[0]),show=0,title="Spectrum for %s"%bl) return (h,v,i.sum(axis=0)*e_step*codata.e*1e3) def calc2d_srw(bl,zero_emittance=False,hSlitPoints=101,vSlitPoints=51, srw_max_harmonic_number=51, # Not needed, kept for eventual compatibility fileName=None,fileAppend=False,): r""" run SRW for calculating power density input: a dictionary with beamline output: file name with results """ global scanCounter print("Inside calc2d_srw") #Maximum number of harmonics considered. This is critical for speed. cte = codata.e/(2*numpy.pi*codata.electron_mass*codata.c) B0 = bl['Kv']/bl['PeriodID']/cte try: B0x = bl['Kh'] / bl['PeriodID'] / cte except: B0x = 0.0 try: Kphase = bl['Kphase'] except: Kphase = 0.0 print('Running SRW (SRWLIB Python)') if B0x == 0: #*********** Conventional Undulator harmB = srwlib.SRWLMagFldH() #magnetic field harmonic harmB.n = 1 #harmonic number ??? Mostly asymmetry harmB.h_or_v = 'v' #magnetic field plane: horzontal ('h') or vertical ('v') harmB.B = B0 #magnetic field amplitude [T] und = srwlib.SRWLMagFldU([harmB]) und.per = bl['PeriodID'] # period length [m] und.nPer = bl['NPeriods'] # number of periods (will be rounded to integer) magFldCnt = None magFldCnt = srwlib.SRWLMagFldC([und], array.array('d', [0]), array.array('d', [0]), array.array('d', [0])) else: #***********Undulator (elliptical) magnetic_fields = [] magnetic_fields.append(srwlib.SRWLMagFldH(1, 'v', _B=B0, _ph=0.0, _s=1, # 1=symmetrical, -1=antisymmetrical _a=1.0)) magnetic_fields.append(srwlib.SRWLMagFldH(1, 'h', _B=B0x, _ph=Kphase, _s=1, _a=1.0)) und = srwlib.SRWLMagFldU(_arHarm=magnetic_fields, _per=bl['PeriodID'], _nPer=bl['NPeriods']) magFldCnt = srwlib.SRWLMagFldC(_arMagFld=[und], _arXc=srwlib.array('d', [0.0]), _arYc=srwlib.array('d', [0.0]), _arZc=srwlib.array('d', [0.0])) #***********Electron Beam eBeam = None eBeam = srwlib.SRWLPartBeam() eBeam.Iavg = bl['ElectronCurrent'] #average current [A] eBeam.partStatMom1.x = 0. #initial transverse positions [m] eBeam.partStatMom1.y = 0. # eBeam.partStatMom1.z = 0. #initial longitudinal positions (set in the middle of undulator) eBeam.partStatMom1.z = - bl['PeriodID']*(bl['NPeriods']+4)/2 # initial longitudinal positions eBeam.partStatMom1.xp = 0. #initial relative transverse velocities eBeam.partStatMom1.yp = 0. eBeam.partStatMom1.gamma = bl['ElectronEnergy']*1e3/codata_mee #relative energy if zero_emittance: sigEperE = 1e-25 sigX = 1e-25 sigXp = 1e-25 sigY = 1e-25 sigYp = 1e-25 else: sigEperE = bl['ElectronEnergySpread'] #relative RMS energy spread sigX = bl['ElectronBeamSizeH'] #horizontal RMS size of e-beam [m] sigXp = bl['ElectronBeamDivergenceH'] #horizontal RMS angular divergence [rad] sigY = bl['ElectronBeamSizeV'] #vertical RMS size of e-beam [m] sigYp = bl['ElectronBeamDivergenceV'] #vertical RMS angular divergence [rad] #2nd order stat. moments: eBeam.arStatMom2[0] = sigX*sigX #<(x-<x>)^2> eBeam.arStatMom2[1] = 0.0 #<(x-<x>)(x'-<x'>)> eBeam.arStatMom2[2] = sigXp*sigXp #<(x'-<x'>)^2> eBeam.arStatMom2[3] = sigY*sigY #<(y-<y>)^2> eBeam.arStatMom2[4] = 0.0 #<(y-<y>)(y'-<y'>)> eBeam.arStatMom2[5] = sigYp*sigYp #<(y'-<y'>)^2> eBeam.arStatMom2[10] = sigEperE*sigEperE #<(E-<E>)^2>/<E>^2 #***********Precision Parameters arPrecP = [0]*5 #for power density arPrecP[0] = 1.5 #precision factor arPrecP[1] = 1 #power density computation method (1- "near field", 2- "far field") arPrecP[2] = 0.0 #initial longitudinal position (effective if arPrecP[2] < arPrecP[3]) arPrecP[3] = 0.0 #final longitudinal position (effective if arPrecP[2] < arPrecP[3]) arPrecP[4] = 20000 #number of points for (intermediate) trajectory calculation #***********UR Stokes Parameters (mesh) for power densiyu stkP = None stkP = srwlib.SRWLStokes() #for power density stkP.allocate(1, hSlitPoints, vSlitPoints) #numbers of points vs horizontal and vertical positions (photon energy is not taken into account) stkP.mesh.zStart = bl['distance'] #longitudinal position [m] at which power density has to be calculated stkP.mesh.xStart = -bl['gapH']/2.0 #initial horizontal position [m] stkP.mesh.xFin = bl['gapH']/2.0 #final horizontal position [m] stkP.mesh.yStart = -bl['gapV']/2.0 #initial vertical position [m] stkP.mesh.yFin = bl['gapV']/2.0 #final vertical position [m] #**********************Calculation (SRWLIB function calls) print('Performing Power Density calculation (from field) ... ') t0 = time.time() try: srwlib.srwl.CalcPowDenSR(stkP, eBeam, 0, magFldCnt, arPrecP) print('Done Performing Power Density calculation (from field).') except: print("Error running SRW") raise ("Error running SRW") #**********************Saving results if fileName is not None: if fileAppend: f = open(fileName,"a") else: scanCounter = 0 f = open(fileName,"w") f.write("#F "+fileName+"\n") # # write power density to file as mesh scan # scanCounter +=1 f.write("\n#S %d Undulator power density calculation using SRW\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write('\n#U B0 = ' + repr(B0 ) + '\n' ) f.write('\n#U hSlitPoints = ' + repr(hSlitPoints) + '\n' ) f.write('\n#U vSlitPoints = ' + repr(vSlitPoints) + '\n' ) f.write("#N 3 \n#L H[mm] V[mm] PowerDensity[W/mm^2] \n" ) hArray = numpy.zeros(stkP.mesh.nx) vArray = numpy.zeros(stkP.mesh.ny) totPower = numpy.array(0.0) hProfile = numpy.zeros(stkP.mesh.nx) vProfile = numpy.zeros(stkP.mesh.ny) powerArray = numpy.zeros((stkP.mesh.nx,stkP.mesh.ny)) # fill arrays ij = -1 for j in range(stkP.mesh.ny): for i in range(stkP.mesh.nx): ij += 1 xx = stkP.mesh.xStart + i*(stkP.mesh.xFin-stkP.mesh.xStart)/(stkP.mesh.nx-1) yy = stkP.mesh.yStart + j*(stkP.mesh.yFin-stkP.mesh.yStart)/(stkP.mesh.ny-1) #ij = i*stkP.mesh.nx + j totPower += stkP.arS[ij] powerArray[i,j] = stkP.arS[ij] hArray[i] = xx*1e3 # mm vArray[j] = yy*1e3 # mm # dump if fileName is not None: for i in range(stkP.mesh.nx): for j in range(stkP.mesh.ny): f.write(repr(hArray[i]) + ' ' + repr(vArray[j]) + ' ' + repr(powerArray[i,j]) + '\n') totPower = totPower * \ (stkP.mesh.xFin-stkP.mesh.xStart)/(stkP.mesh.nx-1)*1e3 * \ (stkP.mesh.yFin-stkP.mesh.yStart)/(stkP.mesh.ny-1)*1e3 hStep = (stkP.mesh.xFin-stkP.mesh.xStart)/(stkP.mesh.nx-1) # dump profiles if fileName is not None: scanCounter +=1 f.write("\n#S %d Undulator power density calculation using SRW: H profile\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write( "#UD Total power [W]: "+repr(totPower)+"\n") f.write( "#UD FWHM [mm] : "+repr(calc_fwhm(hProfile,hStep)[0]*1e3)+"\n") f.write( "#N 2 \n") f.write( "#L H[mm] PowerDensityCentralProfile[W/mm2] \n" ) for i in range(stkP.mesh.nx): #xx = stkP.mesh.xStart + i*hStep #f.write(repr(xx*1e3) + ' ' + repr(hProfile[i]) + '\n') f.write(repr(hArray[i]) + ' ' + \ repr(powerArray[i,int(len(vArray)/2)]) + '\n') scanCounter +=1 vStep = (stkP.mesh.yFin-stkP.mesh.yStart)/(stkP.mesh.ny-1) f.write("\n#S %d Undulator power density calculation using SRW: V profile\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write( "#UD Total power [W]: "+repr(totPower)+"\n") f.write( "#UD FWHM [mm] : "+repr(calc_fwhm(vProfile,vStep)[0]*1e3)+"\n") f.write( "#N 2 \n") f.write( "#L V[mm] PowerDensityCentralProfile[W/mm2] \n" ) for j in range(stkP.mesh.ny): f.write(repr(vArray[j]) + ' ' + \ repr(powerArray[int(len(hArray)/2),j]) + '\n') f.close() if fileAppend: print("Data appended to file: %s"%(os.path.join(os.getcwd(),fileName))) else: print("File written to disk: %s"%(os.path.join(os.getcwd(),fileName))) print( "Power density peak SRW: [W/mm2]: "+repr(powerArray.max())) print( "Total power SRW [W]: "+repr(totPower)) return (hArray, vArray, powerArray) def calc2d_us(bl,zero_emittance=False,hSlitPoints=51,vSlitPoints=51,fileName=None,fileAppend=False): r""" run US for calculating power density input: a dictionary with beamline output: file name with results """ global scanCounter global home_bin print("Inside calc2d_us") for file in ["us.inp","us.out"]: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: pass with open("us.inp","wt") as f: #f.write("%d\n"%(1)) # ITYPE #f.write("%f\n"%(bl['PeriodID'])) # PERIOD f.write("US run\n") f.write(" %f %f %f Ring-Energy Current\n"% (bl['ElectronEnergy'],bl['ElectronCurrent']*1e3,bl['ElectronEnergySpread'])) f.write(" %f %f %f %f Sx Sy Sxp Syp\n"% (bl['ElectronBeamSizeH']*1e3,bl['ElectronBeamSizeV']*1e3, bl['ElectronBeamDivergenceH']*1e3,bl['ElectronBeamDivergenceV']*1e3) ) f.write(" %f %d 0.000 %f Period N Kx Ky\n"% (bl['PeriodID']*1e2,bl['NPeriods'],bl['Kv']) ) f.write(" 9972.1 55000.0 500 Emin Emax Ne\n") f.write(" %f 0.000 0.000 %f %f %d %d D Xpc Ypc Xps Yps Nxp Nyp\n"% (bl['distance'],bl['gapH']*1e3,bl['gapV']*1e3,hSlitPoints-1,vSlitPoints-1) ) if zero_emittance: f.write(" 6 3 0 Mode Method Iharm\n") else: f.write(" 6 1 0 Mode Method Iharm\n") f.write(" 0 0 0.0 64 8.0 0 Nphi Nalpha Dalpha2 Nomega Domega Nsigma\n") f.write("foreground\n") if platform.system() == "Windows": command = os.path.join(home_bin,'us.exe < us.inp') else: command = "'" + os.path.join(home_bin,'us') + "'" print("Running command '%s' in directory: %s \n"%(command,os.getcwd())) print("\n--------------------------------------------------------\n") os.system(command) print("Done.") print("\n--------------------------------------------------------\n") txt = open("us.out").readlines() # write spec file if fileName is not None: if fileAppend: f = open(fileName,"a") else: scanCounter = 0 f = open(fileName,"w") f.write("#F "+fileName+"\n") f.write("\n") scanCounter +=1 f.write("#S %d Undulator power density calculation using US\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) f.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) f.write("#N 7\n") f.write("#L H[mm] V[mm] PowerDensity[W/mm^2] p1 p2 p3 p4\n") mesh = numpy.zeros((7,(hSlitPoints)*(vSlitPoints))) hh = numpy.zeros((hSlitPoints)) vv = numpy.zeros((vSlitPoints)) int_mesh = numpy.zeros( ((hSlitPoints),(vSlitPoints)) ) imesh = -1 for i in txt: tmp = i.strip(" ") if tmp[0].isdigit(): if fileName is not None: f.write(tmp) tmpf = numpy.array( [float(j) for j in tmp.split()] ) imesh = imesh + 1 mesh[:,imesh] = tmpf else: if fileName is not None: f.write("#UD "+tmp) imesh = -1 for i in range(hSlitPoints): for j in range(vSlitPoints): imesh = imesh + 1 hh[i] = mesh[0,imesh] vv[j] = mesh[1,imesh] int_mesh[i,j] = mesh[2,imesh] hhh = numpy.concatenate((-hh[::-1],hh[1:])) vvv = numpy.concatenate((-vv[::-1],vv[1:])) tmp = numpy.concatenate( (int_mesh[::-1,:],int_mesh[1:,:]), axis=0) int_mesh2 = numpy.concatenate( (tmp[:,::-1],tmp[:,1:]),axis=1) if fileName is not None: scanCounter += 1 f.write("\n#S %d Undulator power density calculation using US (whole slit)\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) f.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) f.write("#N 3\n") f.write("#L H[mm] V[mm] PowerDensity[W/mm^2]\n") for i in range(len(hhh)): for j in range(len(vvv)): f.write("%f %f %f\n"%(hhh[i],vvv[j],int_mesh2[i,j]) ) totPower = int_mesh2.sum() * (hh[1]-hh[0]) * (vv[1]-vv[0]) if fileName is not None: scanCounter += 1 f.write("\n#S %d Undulator power density calculation using US: H profile\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) f.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) f.write("#UD Total power [W]: "+repr(totPower)+"\n") f.write("#N 2\n") f.write("#L H[mm] PowerDensity[W/mm2]\n") for i in range(len(hhh)): f.write("%f %f\n"%(hhh[i],int_mesh2[i,int(len(vvv)/2)]) ) scanCounter += 1 f.write("\n#S %d Undulator power density calculation using US: V profile\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) f.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) f.write("#UD Total power [W]: "+repr(totPower)+"\n") f.write("#N 2\n") f.write("#L V[mm] PowerDensity[W/mm2]\n") for i in range(len(vvv)): f.write("%f %f\n"%(vvv[i],int_mesh2[int(len(hhh)/2),i]) ) f.close() if fileAppend: print("Data appended to file: %s"%(os.path.join(os.getcwd(),fileName))) else: print("File written to disk: %s"%(os.path.join(os.getcwd(),fileName))) print( "Power density peak US: [W/mm2]: "+repr(int_mesh2.max())) print( "Total power US [W]: "+repr(totPower)) return (hhh, vvv, int_mesh2) def calc2d_urgent(bl,zero_emittance=False,fileName=None,fileAppend=False,hSlitPoints=21,vSlitPoints=51): r""" run Urgent for calculating power density input: a dictionary with beamline output: file name with results """ global scanCounter global home_bin print("Inside calc2d_urgent") for file in ["urgent.inp","urgent.out"]: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: pass try: Kh = bl['Kh'] except: Kh = 0.0 try: Kphase = bl['Kphase'] except: Kphase = 0.0 with open("urgent.inp","wt") as f: f.write("%d\n"%(1)) # ITYPE f.write("%f\n"%(bl['PeriodID'])) # PERIOD f.write("%f\n"%(Kh)) #KX f.write("%f\n"%(bl['Kv'])) #KY f.write("%f\n"%(Kphase*180.0/numpy.pi)) #PHASE f.write("%d\n"%(bl['NPeriods'])) #N f.write("1000.0\n") #EMIN f.write("100000.0\n") #EMAX f.write("1\n") #NENERGY f.write("%f\n"%(bl['ElectronEnergy'])) #ENERGY f.write("%f\n"%(bl['ElectronCurrent'])) #CUR f.write("%f\n"%(bl['ElectronBeamSizeH']*1e3)) #SIGX f.write("%f\n"%(bl['ElectronBeamSizeV']*1e3)) #SIGY f.write("%f\n"%(bl['ElectronBeamDivergenceH']*1e3)) #SIGX1 f.write("%f\n"%(bl['ElectronBeamDivergenceV']*1e3)) #SIGY1 f.write("%f\n"%(bl['distance'])) #D f.write("%f\n"%(0.00000)) #XPC f.write("%f\n"%(0.00000)) #YPC f.write("%f\n"%(bl['gapH']*1e3)) #XPS f.write("%f\n"%(bl['gapV']*1e3)) #YPS f.write("%d\n"%(hSlitPoints-1)) #NXP f.write("%d\n"%(vSlitPoints-1)) #NYP f.write("%d\n"%(6)) #MODE if zero_emittance: #ICALC f.write("%d\n"%(2)) else: f.write("%d\n"%(1)) f.write("%d\n"%(-200)) #IHARM TODO: check max harmonic number f.write("%d\n"%(0)) #NPHI f.write("%d\n"%(0)) #NSIG f.write("%d\n"%(0)) #NALPHA f.write("%f\n"%(0.00000)) #DALPHA f.write("%d\n"%(0)) #NOMEGA f.write("%f\n"%(0.00000)) #DOMEGA if platform.system() == "Windows": command = os.path.join(home_bin,'urgent.exe < urgent.inp') else: command = "'" + os.path.join(home_bin,"urgent' < urgent.inp") print("\n\n--------------------------------------------------------\n") print("Running command '%s' in directory: %s \n"%(command,os.getcwd())) os.system(command) print("Done.") # write spec file txt = open("urgent.out").readlines() if fileName is not None: if fileAppend: f = open(fileName,"a") else: scanCounter = 0 f = open(fileName,"w") f.write("#F "+fileName+"\n") scanCounter += 1 f.write("\n#S %d Undulator power density calculation using Urgent (a slit quadrant)\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) f.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) f.write("#N 4\n") f.write("#L H[mm] V[mm] PowerDensity[W/mm^2] Flux[Phot/s/0.1%bw]\n") mesh = numpy.zeros((4,(hSlitPoints)*(vSlitPoints))) hh = numpy.zeros((hSlitPoints)) vv = numpy.zeros((vSlitPoints)) int_mesh = numpy.zeros( ((hSlitPoints),(vSlitPoints)) ) imesh = -1 for i in txt: tmp = i.strip(" ") if tmp[0].isdigit(): if fileName is not None: f.write(tmp) tmp = tmp.replace('D','e') tmpf = numpy.array( [float(j) for j in tmp.split()] ) imesh = imesh + 1 mesh[:,imesh] = tmpf else: if len(tmp) > 0: # remove the last block if tmp.split(" ")[0] == 'HARMONIC': break if fileName is not None: f.write("#UD "+tmp) imesh = -1 for i in range(hSlitPoints): for j in range(vSlitPoints): imesh = imesh + 1 hh[i] = mesh[0,imesh] vv[j] = mesh[1,imesh] int_mesh[i,j] = mesh[2,imesh] hhh = numpy.concatenate((-hh[::-1],hh[1:])) vvv = numpy.concatenate((-vv[::-1],vv[1:])) tmp = numpy.concatenate( (int_mesh[::-1,:],int_mesh[1:,:]), axis=0) int_mesh2 = numpy.concatenate( (tmp[:,::-1],tmp[:,1:]),axis=1) totPower = int_mesh2.sum() * (hh[1]-hh[0]) * (vv[1]-vv[0]) if fileName is not None: scanCounter += 1 f.write("\n#S %d Undulator power density calculation using Urgent (whole slit)\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) f.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) f.write("#N 3\n") f.write("#L H[mm] V[mm] PowerDensity[W/mm^2]\n") for i in range(len(hhh)): for j in range(len(vvv)): f.write("%f %f %f\n"%(hhh[i],vvv[j],int_mesh2[i,j]) ) scanCounter += 1 f.write("\n#S %d Undulator power density calculation using Urgent: H profile\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) f.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) f.write("#UD Total power [W]: "+repr(totPower)+"\n") f.write("#N 2\n") f.write("#L H[mm] PowerDensity[W/mm2]\n") for i in range(len(hhh)): f.write("%f %f\n"%(hhh[i],int_mesh2[i,int(len(vvv)/2)]) ) scanCounter += 1 f.write("\n#S %d Undulator power density calculation using Urgent: V profile\n"%(scanCounter)) for i,j in bl.items(): # write bl values f.write ("#UD %s = %s\n" % (i,j) ) f.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) f.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) f.write("#UD Total power [W]: "+repr(totPower)+"\n") f.write("#N 2\n") f.write("#L V[mm] PowerDensity[W/mm2]\n") for i in range(len(vvv)): f.write("%f %f\n"%(vvv[i],int_mesh2[int(len(hhh)/2),i]) ) f.close() if fileAppend: print("Data appended to file: %s"%(os.path.join(os.getcwd(),fileName))) else: print("File written to disk: %s"%(os.path.join(os.getcwd(),fileName))) print( "Power density peak URGENT: [W/mm2]: "+repr(int_mesh2.max())) print( "Total power URGENT [W]: "+repr(totPower)) print("\n--------------------------------------------------------\n\n") return (hhh, vvv, int_mesh2) ######################################################################################################################## # # 3D: calc3d<code> Emission calculations # ######################################################################################################################## def calc3d_srw(bl,photonEnergyMin=3000.0,photonEnergyMax=55000.0,photonEnergyPoints=500, zero_emittance=False,hSlitPoints=51,vSlitPoints=51, fileName=None,fileAppend=False): r""" run SRW for calculating intensity vs H,V,energy input: a dictionary with beamline output: file name with results """ global scanCounter print("Inside calc3d_srw") if fileName is not None: if fileAppend: fout = open(fileName,"a") else: scanCounter = 0 fout = open(fileName,"w") fout.write("#F "+fileName+"\n") if zero_emittance: eBeam = _srw_electron_beam(E=bl['ElectronEnergy'],Iavg=bl['ElectronCurrent'],) # no emmitance now else: eBeam = _srw_electron_beam(E=bl['ElectronEnergy'], sigE = bl['ElectronEnergySpread'], Iavg=bl['ElectronCurrent'], sigX=bl['ElectronBeamSizeH'], sigY=bl['ElectronBeamSizeV'], sigXp=bl['ElectronBeamDivergenceH'], sigYp=bl['ElectronBeamDivergenceV']) eBeam.partStatMom1.z = - bl['PeriodID'] * (bl['NPeriods'] + 4) / 2 # initial longitudinal positions #***********Precision Parameters mesh = srwlib.SRWLRadMesh(photonEnergyMin,photonEnergyMax,photonEnergyPoints, -bl['gapH']/2,bl['gapH']/2,hSlitPoints, -bl['gapV']/2,bl['gapV']/2,vSlitPoints,bl['distance']) cte = codata.e/(2*numpy.pi*codata.electron_mass*codata.c) B0 = bl['Kv']/bl['PeriodID']/cte try: B0x = bl['Kh'] / bl['PeriodID'] / cte except: B0x = 0.0 try: Kphase = bl['Kphase'] except: Kphase = 0.0 print('Running SRW (SRWLIB Python)') if B0x == 0: #*********** Conventional Undulator # harmB = srwlib.SRWLMagFldH() #magnetic field harmonic # harmB.n = 1 #harmonic number ??? Mostly asymmetry # harmB.h_or_v = 'v' #magnetic field plane: horzontal ('h') or vertical ('v') # harmB.B = B0 #magnetic field amplitude [T] # und = srwlib.SRWLMagFldU([harmB]) # und.per = bl['PeriodID'] # period length [m] # und.nPer = bl['NPeriods'] # number of periods (will be rounded to integer) # # magFldCnt = None # magFldCnt = srwlib.SRWLMagFldC([und], array.array('d', [0]), array.array('d', [0]), array.array('d', [0])) und0 = srwlib.SRWLMagFldU([srwlib.SRWLMagFldH(1, 'v', B0)], bl['PeriodID'], bl['NPeriods']) und = srwlib.SRWLMagFldC([und0], array.array('d', [0]), array.array('d', [0]), array.array('d', [0])) else: #***********Undulator (elliptical) magnetic_fields = [] magnetic_fields.append(srwlib.SRWLMagFldH(1, 'v', _B=B0, _ph=0.0, _s=1, # 1=symmetrical, -1=antisymmetrical _a=1.0)) magnetic_fields.append(srwlib.SRWLMagFldH(1, 'h', _B=B0x, _ph=Kphase, _s=1, _a=1.0)) und0 = srwlib.SRWLMagFldU(_arHarm=magnetic_fields, _per=bl['PeriodID'], _nPer=bl['NPeriods']) und = srwlib.SRWLMagFldC([und0], array.array('d', [0]), array.array('d', [0]), array.array('d', [0])) print('Running SRW (SRWLIB Python)') # # #***********UR Stokes Parameters (mesh) for Spectral Flux # stkF = srwlib.SRWLStokes() #for spectral flux vs photon energy # stkF.allocate(photonEnergyPoints, hSlitPoints, vSlitPoints) #numbers of points vs photon energy, horizontal and vertical positions # stkF.mesh.zStart = bl['distance'] #longitudinal position [m] at which UR has to be calculated # stkF.mesh.eStart = photonEnergyMin #initial photon energy [eV] # stkF.mesh.eFin = photonEnergyMax #final photon energy [eV] # stkF.mesh.xStart = -bl['gapH']/2 #initial horizontal position [m] # stkF.mesh.xFin = bl['gapH']/2 #final horizontal position [m] # stkF.mesh.yStart = -bl['gapV']/2 #initial vertical position [m] # stkF.mesh.yFin = bl['gapV']/2 #final vertical position [m] #**********************Calculation (SRWLIB function calls) print('Performing Spectral Flux 3d calculation ... ') # , end='') t0 = time.time() if zero_emittance: # # single electron # # arPrecS = [0]*7 #for electric field and single-electron intensity # arPrecS[0] = 1 #SR calculation method: 0- "manual", 1- "auto-undulator", 2- "auto-wiggler" # arPrecS[1] = 0.01 #relative precision # arPrecS[2] = 0 #longitudinal position to start integration (effective if < zEndInteg) # arPrecS[3] = 0 #longitudinal position to finish integration (effective if > zStartInteg) # arPrecS[4] = 20000 #Number of points for intermediate trajectory calculation # arPrecS[5] = 1 #Use "terminating terms" (i.e. asymptotic expansions at zStartInteg and zEndInteg) or not (1 or 0 respectively) # arPrecS[6] = -1 #0.1 #sampling factor for adjusting nx, ny (effective if > 0) paramSE = [1, 0.01, 0, 0, 50000, 1, 0] wfr = srwlib.SRWLWfr() wfr.mesh = mesh wfr.partBeam = eBeam wfr.allocate(mesh.ne, mesh.nx, mesh.ny) # eBeam = SrwDriftElectronBeam(eBeam, und) srwlib.srwl.CalcElecFieldSR(wfr, 0, und, paramSE) print('Extracting stokes ... ') stk = srwlib.SRWLStokes() stk.mesh = mesh stk.allocate(mesh.ne, mesh.nx, mesh.ny) # eBeam = SrwDriftElectronBeam(eBeam, -eBeam.moved) wfr.calc_stokes(stk) # Stokes0ToSpec(stk,fname=fileName) # # intensArray,eArray,hArray,vArray = Stokes0ToArrays(stk) Shape = (4,stk.mesh.ny,stk.mesh.nx,stk.mesh.ne) data = numpy.ndarray(buffer=stk.arS, shape=Shape,dtype=stk.arS.typecode) data0 = data #[0] hArray = numpy.linspace(stk.mesh.xStart,stk.mesh.xFin,stk.mesh.nx) vArray = numpy.linspace(stk.mesh.yStart,stk.mesh.yFin,stk.mesh.ny) eArray = numpy.linspace(stk.mesh.eStart,stk.mesh.eFin,stk.mesh.ne) # intensArray = numpy.zeros((eArray.size,hArray.size,vArray.size)) print('Filling output array... ') intensArray = numpy.zeros((eArray.size,hArray.size,vArray.size)) for ie in range(eArray.size): for ix in range(hArray.size): for iy in range(vArray.size): # intensArray[ie,ix,iy] = data0[iy,ix,ie] intensArray[ie,ix,iy,] = data[0,iy,ix,ie] else: # # convolution # # arPrecS = [0]*7 #for electric field and single-electron intensity # arPrecS[0] = 1 #SR calculation method: 0- "manual", 1- "auto-undulator", 2- "auto-wiggler" # arPrecS[1] = 0.01 #relative precision # arPrecS[2] = 0 #longitudinal position to start integration (effective if < zEndInteg) # arPrecS[3] = 0 #longitudinal position to finish integration (effective if > zStartInteg) # arPrecS[4] = 20000 #Number of points for intermediate trajectory calculation # arPrecS[5] = 1 #Use "terminating terms" (i.e. asymptotic expansions at zStartInteg and zEndInteg) or not (1 or 0 respectively) # arPrecS[6] = -1 #0.1 #sampling factor for adjusting nx, ny (effective if > 0) paramME = [1, 0.01, 0, 0, 50000, 1, 0] wfr = srwlib.SRWLWfr() wfr.mesh = mesh wfr.partBeam = eBeam wfr.allocate(mesh.ne, mesh.nx, mesh.ny) # eBeam = _srw_drift_electron_beam(eBeam, und) srwlib.srwl.CalcElecFieldSR(wfr, 0, und, paramME) # # Extract intensity # print('Extracting stokes and filling output array... ') mesh0 = wfr.mesh # arI0 = array.array('f', [0]*mesh0.nx*mesh0.ny) #"flat" array to take 2D intensity data # arI0 = array.array('f', [0]*mesh0.nx*mesh0.ny*mesh.ne) #"flat" array to take 2D intensity data INTENSITY_TYPE_SINGLE_ELECTRON=0 INTENSITY_TYPE_MULTI_ELECTRON=1 hArray=numpy.linspace(wfr.mesh.xStart,wfr.mesh.xFin, wfr.mesh.nx) vArray=numpy.linspace(wfr.mesh.yStart,wfr.mesh.yFin, wfr.mesh.ny) eArray=numpy.linspace(wfr.mesh.eStart,wfr.mesh.eFin, wfr.mesh.ne) intensArray = numpy.zeros((eArray.size,hArray.size,vArray.size,)) for ie in range(eArray.size): arI0 = array.array('f', [0]*mesh0.nx*mesh0.ny) #"flat" array to take 2D intensity data # 6 is for total polarizarion; 0=H, 1=V srwlib.srwl.CalcIntFromElecField(arI0, wfr, 6, INTENSITY_TYPE_MULTI_ELECTRON, 3, eArray[ie], 0, 0) Shape = (mesh0.ny,mesh0.nx) data = numpy.ndarray(buffer=arI0, shape=Shape,dtype=arI0.typecode) for ix in range(hArray.size): for iy in range(vArray.size): intensArray[ie,ix,iy,] = data[iy,ix] print(' done\n') print('Done Performing Spectral Flux 3d calculation in sec '+str(time.time()-t0)) if fileName is not None: print(' saving SE Stokes to h5 file %s...'%fileName) for ie in range(eArray.size): scanCounter += 1 fout.write("\n#S %d Undulator 3d flux density (irradiance) calculation using SRW at E=%6.3f eV (whole slit )\n"%(scanCounter,eArray[ie])) for i,j in bl.items(): # write bl values fout.write ("#UD %s = %s\n" % (i,j) ) fout.write("#UD hSlitPoints = %f\n"%(hArray.size)) fout.write("#UD vSlitPoints = %f\n"%(vArray.size)) fout.write("#N 3\n") fout.write("#L H[mm] V[mm] Flux[phot/s/0.1%bw/mm^2]\n") for i in range(len(hArray)): for j in range(len(vArray)): fout.write("%f %f %f\n"%(hArray[i],vArray[j],intensArray[ie,i,j]) ) fout.close() if fileAppend: print("Data appended to file: %s"%(os.path.join(os.getcwd(),fileName))) else: print("File written to disk: %s"%(os.path.join(os.getcwd(),fileName))) # grid in mm return (eArray, 1e3*hArray, 1e3*vArray, intensArray) def calc3d_srw_step_by_step(bl,photonEnergyMin=3000.0,photonEnergyMax=55000.0,photonEnergyPoints=500, photonEnergyIntelligentGrid=False, zero_emittance=False,hSlitPoints=51,vSlitPoints=51, fileName=None,fileAppend=False,): r""" run SRW for calculating intensity vs H,V,energy input: a dictionary with beamline output: file name with results """ global scanCounter print("Inside calc3d_srw_step_by_step") if fileName is not None: if fileAppend: fout = open(fileName,"a") else: scanCounter = 0 fout = open(fileName,"w") fout.write("#F "+fileName+"\n") if photonEnergyIntelligentGrid and photonEnergyPoints > 1: e, f = calc1d_srw(bl,photonEnergyMin=photonEnergyMin,photonEnergyMax=photonEnergyMax,photonEnergyPoints=photonEnergyPoints, zero_emittance=zero_emittance,srw_max_harmonic_number=None,fileName=None,fileAppend=False) # cs = numpy.cumsum(f) from scipy.integrate import cumtrapz cs = cumtrapz(f,e,initial=0) cs /= cs[-1] # plot(cs,e) # plot(e, numpy.gradient(f,e)) abs = numpy.linspace(0,1.0,photonEnergyPoints) e1 = numpy.interp(abs,cs,e) e1[0] = photonEnergyMin e1[-1] = photonEnergyMax # print(">>>>>>>e ",e) # print(">>>>>>>e1: ",e1) eArray = e1 else: eArray = numpy.linspace(photonEnergyMin, photonEnergyMax, photonEnergyPoints, ) if zero_emittance: eBeam = _srw_electron_beam(E=bl['ElectronEnergy'],Iavg=bl['ElectronCurrent'],) # no emmitance now else: eBeam = _srw_electron_beam(E=bl['ElectronEnergy'], sigE = bl['ElectronEnergySpread'], Iavg=bl['ElectronCurrent'], sigX=bl['ElectronBeamSizeH'], sigY=bl['ElectronBeamSizeV'], sigXp=bl['ElectronBeamDivergenceH'], sigYp=bl['ElectronBeamDivergenceV']) eBeam.partStatMom1.z = - bl['PeriodID'] * (bl['NPeriods'] + 4) / 2 # initial longitudinal positions cte = codata.e/(2*numpy.pi*codata.electron_mass*codata.c) B0 = bl['Kv']/bl['PeriodID']/cte try: B0x = bl['Kh'] / bl['PeriodID'] / cte except: B0x = 0.0 try: Kphase = bl['Kphase'] except: Kphase = 0.0 print('Running SRW (SRWLIB Python)') if B0x == 0: #*********** Conventional Undulator und0 = srwlib.SRWLMagFldU([srwlib.SRWLMagFldH(1, 'v', B0)], bl['PeriodID'], bl['NPeriods']) und = srwlib.SRWLMagFldC([und0], array.array('d', [0]), array.array('d', [0]), array.array('d', [0])) else: #***********Undulator (elliptical) magnetic_fields = [] magnetic_fields.append(srwlib.SRWLMagFldH(1, 'v', _B=B0, _ph=0.0, _s=1, # 1=symmetrical, -1=antisymmetrical _a=1.0)) magnetic_fields.append(srwlib.SRWLMagFldH(1, 'h', _B=B0x, _ph=Kphase, _s=1, _a=1.0)) und0 = srwlib.SRWLMagFldU(_arHarm=magnetic_fields, _per=bl['PeriodID'], _nPer=bl['NPeriods']) und = srwlib.SRWLMagFldC([und0], array.array('d', [0]), array.array('d', [0]), array.array('d', [0])) print('Running SRW (SRWLIB Python)') # # #***********UR Stokes Parameters (mesh) for Spectral Flux # stkF = srwlib.SRWLStokes() #for spectral flux vs photon energy # stkF.allocate(photonEnergyPoints, hSlitPoints, vSlitPoints) #numbers of points vs photon energy, horizontal and vertical positions # stkF.mesh.zStart = bl['distance'] #longitudinal position [m] at which UR has to be calculated # stkF.mesh.eStart = photonEnergyMin #initial photon energy [eV] # stkF.mesh.eFin = photonEnergyMax #final photon energy [eV] # stkF.mesh.xStart = -bl['gapH']/2 #initial horizontal position [m] # stkF.mesh.xFin = bl['gapH']/2 #final horizontal position [m] # stkF.mesh.yStart = -bl['gapV']/2 #initial vertical position [m] # stkF.mesh.yFin = bl['gapV']/2 #final vertical position [m] #**********************Calculation (SRWLIB function calls) print('Performing Spectral Flux 3d calculation ... ') # , end='') t0 = time.time() hArray = numpy.linspace(-bl['gapH'] / 2, bl['gapH'] / 2, hSlitPoints, ) vArray = numpy.linspace(-bl['gapV'] / 2, bl['gapV'] / 2, vSlitPoints, ) intensArray = numpy.zeros((eArray.size, hArray.size, vArray.size,)) timeArray = numpy.zeros_like(eArray) # # convolution # # arPrecS = [0]*7 #for electric field and single-electron intensity # arPrecS[0] = 1 #SR calculation method: 0- "manual", 1- "auto-undulator", 2- "auto-wiggler" # arPrecS[1] = 0.01 #relative precision # arPrecS[2] = 0 #longitudinal position to start integration (effective if < zEndInteg) # arPrecS[3] = 0 #longitudinal position to finish integration (effective if > zStartInteg) # arPrecS[4] = 20000 #Number of points for intermediate trajectory calculation # arPrecS[5] = 1 #Use "terminating terms" (i.e. asymptotic expansions at zStartInteg and zEndInteg) or not (1 or 0 respectively) # arPrecS[6] = -1 #0.1 #sampling factor for adjusting nx, ny (effective if > 0) paramME = [1, 0.01, 0, 0, 50000, 1, 0] t00 = 0 for ie in range(eArray.size): print("Calculating photon energy: %f (point %d of %d) time:%g"%(eArray[ie],ie+1,eArray.size+1,time.time()-t00)) t00 = time.time() try: mesh = srwlib.SRWLRadMesh(eArray[ie], eArray[ie], 1, -bl['gapH'] / 2, bl['gapH'] / 2, hSlitPoints, -bl['gapV'] / 2, bl['gapV'] / 2, vSlitPoints, bl['distance']) wfr = srwlib.SRWLWfr() wfr.allocate(1, mesh.nx, mesh.ny) # eBeam = _srw_drift_electron_beam(eBeam, und) wfr.mesh = mesh wfr.partBeam = eBeam srwlib.srwl.CalcElecFieldSR(wfr, 0, und, paramME) # # Extract intensity # print('Extracting stokes and filling output array... ') mesh0 = wfr.mesh # arI0 = array.array('f', [0]*mesh0.nx*mesh0.ny) #"flat" array to take 2D intensity data # arI0 = array.array('f', [0]*mesh0.nx*mesh0.ny*mesh.ne) #"flat" array to take 2D intensity data INTENSITY_TYPE_SINGLE_ELECTRON=0 INTENSITY_TYPE_MULTI_ELECTRON=1 arI0 = array.array('f', [0]*mesh0.nx*mesh0.ny) #"flat" array to take 2D intensity data # 6 is for total polarizarion; 0=H, 1=V if zero_emittance: srwlib.srwl.CalcIntFromElecField(arI0, wfr, 6, INTENSITY_TYPE_SINGLE_ELECTRON, 3, eArray[ie], 0, 0) else: srwlib.srwl.CalcIntFromElecField(arI0, wfr, 6, INTENSITY_TYPE_MULTI_ELECTRON, 3, eArray[ie], 0, 0) Shape = (mesh0.ny,mesh0.nx) data = numpy.ndarray(buffer=arI0, shape=Shape,dtype=arI0.typecode) for ix in range(hArray.size): for iy in range(vArray.size): intensArray[ie,ix,iy,] = data[iy,ix] except: print("Error running SRW") timeArray[ie] = time.time() - t00 print(' done\n') print('Done Performing Spectral Flux 3d calculation in sec '+str(time.time()-t0)) if fileName is not None: print(' saving SE Stokes to h5 file %s...'%fileName) for ie in range(eArray.size): scanCounter += 1 fout.write("\n#S %d Undulator 3d flux density (irradiance) calculation using SRW at E=%6.3f eV (whole slit )\n"%(scanCounter,eArray[ie])) for i,j in bl.items(): # write bl values fout.write ("#UD %s = %s\n" % (i,j) ) fout.write("#UD hSlitPoints = %f\n"%(hArray.size)) fout.write("#UD vSlitPoints = %f\n"%(vArray.size)) fout.write("#N 3\n") fout.write("#L H[mm] V[mm] Flux[phot/s/0.1%bw/mm^2]\n") for i in range(len(hArray)): for j in range(len(vArray)): fout.write("%f %f %f\n"%(hArray[i],vArray[j],intensArray[ie,i,j]) ) fout.close() if fileAppend: print("Data appended to file: %s"%(os.path.join(os.getcwd(),fileName))) else: print("File written to disk: %s"%(os.path.join(os.getcwd(),fileName))) # grid in mm # tmp = intensArray.sum(axis=2).sum(axis=1) # f = open("tmp.dat",'w') # for i in range(eArray.size): # f.write("%f %f %f\n"%(eArray[i],timeArray[i],tmp[i])) # f.close() # print("File written to disk: tmp.dat") return (eArray, 1e3*hArray, 1e3*vArray, intensArray) def calc3d_urgent(bl,photonEnergyMin=3000.0,photonEnergyMax=55000.0,photonEnergyPoints=500, zero_emittance=False,hSlitPoints=50,vSlitPoints=50, fileName=None,fileAppend=False,copyUrgentFiles=False): r""" run Urgent for calculating intensity vs H,V,energy input: a dictionary with beamline output: file name with results """ global scanCounter global home_bin print("Inside calc3d_urgent") if fileName is not None: if fileAppend: fout = open(fileName,"a") else: scanCounter = 0 fout = open(fileName,"w") fout.write("#F "+fileName+"\n") if photonEnergyPoints == 1: eStep = 0.0 else: eStep = (photonEnergyMax-photonEnergyMin)/(photonEnergyPoints-1) eArray = numpy.zeros( photonEnergyPoints ) intensArray = numpy.zeros( photonEnergyPoints ) hArray = numpy.zeros( (hSlitPoints*2-1) ) vArray = numpy.zeros( (vSlitPoints*2-1) ) int_mesh2integrated = numpy.zeros( (hSlitPoints*2-1,vSlitPoints*2-1) ) int_mesh3 = numpy.zeros( (photonEnergyPoints,hSlitPoints*2-1,vSlitPoints*2-1) ) for iEner in range(photonEnergyPoints): ener = photonEnergyMin + iEner*eStep eArray[iEner] = ener for file in ["urgent.inp","urgent.out"]: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: pass try: Kh = bl['Kh'] except: Kh = 0.0 try: Kphase = bl['Kphase'] except: Kphase = 0.0 with open("urgent.inp","wt") as f: f.write("%d\n"%(1)) # ITYPE f.write("%f\n"%(bl['PeriodID'])) # PERIOD f.write("%f\n"%(Kh)) # KX f.write("%f\n"%(bl['Kv'])) # KY f.write("%f\n"%(Kphase)) # PHASE f.write("%d\n"%(bl['NPeriods'])) # N f.write("%f\n"%(ener)) #EMIN f.write("100000.0\n") #EMAX f.write("1\n") #NENERGY f.write("%f\n"%(bl['ElectronEnergy'])) #ENERGY f.write("%f\n"%(bl['ElectronCurrent'])) #CUR f.write("%f\n"%(bl['ElectronBeamSizeH']*1e3)) #SIGX f.write("%f\n"%(bl['ElectronBeamSizeV']*1e3)) #SIGY f.write("%f\n"%(bl['ElectronBeamDivergenceH']*1e3)) #SIGX1 f.write("%f\n"%(bl['ElectronBeamDivergenceV']*1e3)) #SIGY1 f.write("%f\n"%(bl['distance'])) #D f.write("%f\n"%(0.00000)) #XPC f.write("%f\n"%(0.00000)) #YPC f.write("%f\n"%(bl['gapH']*1e3)) #XPS f.write("%f\n"%(bl['gapV']*1e3)) #YPS f.write("%d\n"%(hSlitPoints-1)) #NXP f.write("%d\n"%(vSlitPoints-1)) #NYP f.write("%d\n"%(1)) #MODE if zero_emittance: #ICALC f.write("%d\n"%(3)) else: f.write("%d\n"%(1)) f.write("%d\n"%(-1)) #IHARM TODO: check max harmonic number f.write("%d\n"%(0)) #NPHI f.write("%d\n"%(0)) #NSIG f.write("%d\n"%(0)) #NALPHA f.write("%f\n"%(0.00000)) #DALPHA f.write("%d\n"%(0)) #NOMEGA f.write("%f\n"%(0.00000)) #DOMEGA if platform.system() == "Windows": command = os.path.join(home_bin, 'urgent.exe < urgent.inp') else: command = "'" + os.path.join(home_bin, "urgent' < urgent.inp") print("\n\n--------------------------------------------------------\n") print("Running command '%s' in directory: %s \n"%(command,os.getcwd())) os.system(command) print("Done.") if copyUrgentFiles: shutil.copy2("urgent.inp","urgent_energy_index%d.inp"%iEner) shutil.copy2("urgent.out","urgent_energy_index%d.out"%iEner) # write spec file txt = open("urgent.out").readlines() if fileName is not None: scanCounter += 1 fout.write("\n#S %d Undulator 3d flux density (irradiance) calculation using Urgent at E=%0.3f keV (a slit quadrant)\n"%(scanCounter,ener*1e-3)) for i,j in bl.items(): # write bl values fout.write ("#UD %s = %s\n" % (i,j) ) fout.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) fout.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) fout.write("#N 7\n") fout.write("#L H[mm] V[mm] Flux[Phot/s/mm^2/0.1%bw] l1 l2 l3 l4\n") if zero_emittance: mesh = numpy.zeros((8,(hSlitPoints)*(vSlitPoints))) else: mesh = numpy.zeros((7,(hSlitPoints)*(vSlitPoints))) hh = numpy.zeros((hSlitPoints)) vv = numpy.zeros((vSlitPoints)) int_mesh = numpy.zeros( ((hSlitPoints),(vSlitPoints)) ) imesh = -1 for i in txt: tmp = i.strip(" ") if tmp[0].isdigit(): if fileName is not None: fout.write(tmp) tmp = tmp.replace('D','e') tmpf = numpy.array( [float(j) for j in tmp.split()] ) imesh = imesh + 1 mesh[:,imesh] = tmpf else: if fileName is not None: fout.write("#UD "+tmp) imesh = -1 for i in range(hSlitPoints): for j in range(vSlitPoints): imesh = imesh + 1 hh[i] = mesh[0,imesh] vv[j] = mesh[1,imesh] int_mesh[i,j] = mesh[2,imesh] hArray = numpy.concatenate((-hh[::-1],hh[1:])) vArray = numpy.concatenate((-vv[::-1],vv[1:])) #hArray = hhh*0.0 #vArray = vvv*0.0 totIntens = 0.0 tmp = numpy.concatenate( (int_mesh[::-1,:],int_mesh[1:,:]), axis=0) int_mesh2 = numpy.concatenate( (tmp[:,::-1],tmp[:,1:]),axis=1) if fileName is not None: scanCounter += 1 fout.write("\n#S %d Undulator 3d flux density (irradiance) calculation using Urgent at E=%6.3f eV (whole slit )\n"%(scanCounter,ener)) for i,j in bl.items(): # write bl values fout.write ("#UD %s = %s\n" % (i,j) ) fout.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) fout.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) fout.write("#N 3\n") fout.write("#L H[mm] V[mm] Flux[phot/s/0.1%bw/mm^2]\n") for i in range(len(hArray)): for j in range(len(vArray)): if fileName is not None: fout.write("%f %f %f\n"%(hArray[i],vArray[j],int_mesh2[i,j]) ) int_mesh3[iEner,i,j] = int_mesh2[i,j] int_mesh2integrated[i,j] += int_mesh2[i,j] totIntens += int_mesh2[i,j] totIntens = totIntens * (hh[1]-hh[0]) * (vv[1]-vv[0]) intensArray[iEner] = totIntens # now dump the integrated power # convert from phot/s/0,1%bw/mm2 to W/mm^2 int_mesh2integrated = int_mesh2integrated *codata.e*1e3 * eStep if fileName is not None: scanCounter += 1 fout.write("\n#S %d Undulator 3d flux density vs H,E (integrated in energy) calculation using Urgent\n"%(scanCounter)) for i,j in bl.items(): # write bl values fout.write ("#UD %s = %s\n" % (i,j) ) fout.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) fout.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) fout.write("#UD IntegratedPower[W] = %f\n"%( int_mesh2integrated.sum()*(hArray[1]-hArray[0])*(vArray[1]-vArray[0]))) fout.write("#N 3\n") fout.write("#L H[mm] V[mm] PowerDensity[W/mm^2]\n") for i in range(len(hArray)): for j in range(len(vArray)): fout.write("%f %f %f\n"%(hArray[i],vArray[j],int_mesh2integrated[i,j]) ) #print(">>>>>>>>>>>>>>>power1",int_mesh2integrated.sum()*(hArray[1]-hArray[0])*(vArray[1]-vArray[0])) #print(">>>>>>>>>>>>>>>power2",intensArray.sum()*codata.e*1e3*(eArray[1]-eArray[0])) #print(">>>>>>>>>>>>>>>power3",int_mesh3.sum()*codata.e*1e3*(eArray[1]-eArray[0])*(hArray[1]-hArray[0])*(vArray[1]-vArray[0])) # now dump the spectrum as the sum scanCounter += 1 fout.write("\n#S %d Undulator 3d flux density vs energy (integrated in H,V) calculation using Urgent\n"%(scanCounter)) for i,j in bl.items(): # write bl values fout.write ("#UD %s = %s\n" % (i,j) ) fout.write("#UD hSlitPoints = %f\n"%(hSlitPoints)) fout.write("#UD vSlitPoints = %f\n"%(vSlitPoints)) if photonEnergyPoints > 1: fout.write("#UD IntegratedPower[W] = %f\n"%(intensArray.sum()*codata.e*1e3*(eArray[1]-eArray[0]))) fout.write("#N 3\n") fout.write("#L photonEnergy[eV] Flux[phot/s/0.1%bw] PowerDensity[W/eV]\n") for i in range(photonEnergyPoints): fout.write("%f %f %f\n"%(eArray[i],intensArray[i],intensArray[i]*codata.e*1e3) ) fout.close() if fileAppend: print("Data appended to file: %s"%(os.path.join(os.getcwd(),fileName))) else: print("File written to disk: %s"%(os.path.join(os.getcwd(),fileName))) print("\n--------------------------------------------------------\n\n") # append direct calculation for comparison # tmp = calc1d_urgent(bl,photonEnergyMin=photonEnergyMin, # photonEnergyMax=photonEnergyMax, # photonEnergyPoints=photonEnergyPoints, # fileName=fileName,fileAppend=True) # return abscissas in mm return (eArray, hArray, vArray, int_mesh3) def calc3d_us(bl,photonEnergyMin=3000.0,photonEnergyMax=55000.0,photonEnergyPoints=500, zero_emittance=False,hSlitPoints=50,vSlitPoints=50, fileName=None,fileAppend=True,copyUsFiles=False): r""" run Us for calculating intensity vs H,V,energy input: a dictionary with beamline output: file name with results """ global scanCounter global home_bin print("Inside calc3d_us") if fileName is not None: if fileAppend: fout = open(fileName,"a") else: scanCounter = 0 fout = open(fileName,"w") fout.write("#F "+fileName+"\n") if photonEnergyPoints == 1: eStep = 0.0 else: eStep = (photonEnergyMax-photonEnergyMin)/(photonEnergyPoints-1) eArray = numpy.zeros( photonEnergyPoints ) intensArray = numpy.zeros( photonEnergyPoints ) hArray = numpy.zeros( (hSlitPoints*2-1) ) vArray = numpy.zeros( (vSlitPoints*2-1) ) int_mesh2integrated = numpy.zeros( (hSlitPoints*2-1,vSlitPoints*2-1) ) int_mesh3 =
numpy.zeros( (photonEnergyPoints,hSlitPoints*2-1,vSlitPoints*2-1) )
numpy.zeros
# _*_ coding: utf-8 _*_ """ Manipulating functions for grid. References: * https://bitbucket.org/tmiyachi/pymet """ import numpy as np from numba import jit from scipy import interpolate, ndimage from pyproj import Geod from dk_met_base import constants, arr NA = np.newaxis a0 = constants.Re g = constants.g0 PI = constants.pi d2r = PI/180. def calc_dx_dy(lon, lat, shape='WGS84', radius=6370997.): """ This definition calculates the distance between grid points that are in a latitude/longitude format. Using pyproj GEOD; different Earth Shapes https://jswhit.github.io/pyproj/pyproj.Geod-class.html Common shapes: 'sphere', 'WGS84', 'GRS80' :param lon: 1D or 2D longitude array. :param lat: 1D or 2D latitude array. :param shape: earth shape. :param radius: earth radius. :return: dx, dy; 2D arrays of distances between grid points in the x and y direction in meters :Example: >>> lat = np.arange(90,-0.1,-0.5) >>> lon = np.arange(0,360.1,0.5) >>> dx, dy = calc_dx_dy(lon, lat) """ # check longitude and latitude if lon.ndim == 1: longitude, latitude = np.meshgrid(lon, lat) else: longitude = lon latitude = lat if radius != 6370997.: gg = Geod(a=radius, b=radius) else: gg = Geod(ellps=shape) dx = np.empty(latitude.shape) dy = np.zeros(longitude.shape) for i in range(latitude.shape[1]): for j in range(latitude.shape[0] - 1): _, _, dx[j, i] = gg.inv( longitude[j, i], latitude[j, i], longitude[j + 1, i], latitude[j + 1, i]) dx[j + 1, :] = dx[j, :] for i in range(latitude.shape[1] - 1): for j in range(latitude.shape[0]): _, _, dy[j, i] = gg.inv( longitude[j, i], latitude[j, i], longitude[j, i + 1], latitude[j, i + 1]) dy[:, i + 1] = dy[:, i] return dx, dy def dvardx(var, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ calculate center finite difference along x or longitude. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var: ndarray, grid values. :param lon: array_like, longitude :param lat: array_like, latitude :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray :Examples: >>> var.shape (24, 73, 72) >>> lon = np.arange(0, 180, 2.5) >>> lat = np.arange(-90, 90.1, 2.5) >>> result = dvardx(var, lon, lat, 2, 1, cyclic=False) >>> result.shape (24, 73, 72) """ var = np.array(var) ndim = var.ndim var = np.rollaxis(var, xdim, ndim) if cyclic and sphere: dvar = np.concatenate(((var[..., 1] - var[..., -1])[..., NA], (var[..., 2:] - var[..., :-2]), (var[..., 0] - var[..., -2])[..., NA]), axis=-1) dx = np.r_[(lon[1] + 360 - lon[-1]), (lon[2:] - lon[:-2]), (lon[0] + 360 - lon[-2])] else: dvar = np.concatenate(((var[..., 1] - var[..., 0])[..., NA], (var[..., 2:] - var[..., :-2]), (var[..., -1] - var[..., -2])[..., NA]), axis=-1) dx = np.r_[(lon[1] - lon[0]), (lon[2:] - lon[:-2]), (lon[-1] - lon[-2])] dvar = np.rollaxis(dvar, ndim - 1, xdim) if sphere: dx = a0 * PI / 180. * arr.expand(dx, ndim, xdim) * \ arr.expand(np.cos(lat * d2r), ndim, ydim) else: dx = arr.expand(dx, ndim, xdim) out = dvar / dx return out def dvardy(var, lat, ydim, sphere=True): """ calculate center finite difference along y or latitude. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var: ndarray, grid values. :param lat: array_like, latitude :param ydim: the latitude dimension index :param sphere: sphere coordinate :return: ndarray :Examples: >>> var.shape (24, 73, 144) >>> lat = np.arange(-90, 90.1, 2.5) >>> result = dvardy(var, lat, 1) >>> result.shape (24, 73, 144) """ var = np.array(var) ndim = var.ndim var = np.rollaxis(var, ydim, ndim) dvar = np.concatenate([(var[..., 1] - var[..., 0])[..., NA], (var[..., 2:]-var[..., :-2]), (var[..., -1] - var[..., -2])[..., NA]], axis=-1) dy = np.r_[(lat[1]-lat[0]), (lat[2:]-lat[:-2]), (lat[-1]-lat[-2])] if sphere: dy = a0*PI/180.*dy out = dvar/dy out = np.rollaxis(out, ndim-1, ydim) return out def dvardp(var, lev, zdim, punit=100.): """ calculate center finite difference along vertical coordinate. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var: ndarray, grid values. :param lev: 1d-array, isobaric levels. :param zdim: the vertical dimension index. :param punit: pressure level units. :return: ndarray. """ var = np.array(var) ndim = var.ndim lev = lev * punit # roll lat dim axis to last var = np.rollaxis(var, zdim, ndim) dvar = np.concatenate([(var[..., 1] - var[..., 0])[..., NA], (var[..., 2:] - var[..., :-2]), (var[..., -1] - var[..., -2])[..., NA]], axis=-1) dp = np.r_[np.log(lev[1] / lev[0]) * lev[0], np.log(lev[2:] / lev[:-2]) * lev[1:-1], np.log(lev[-1] / lev[-2]) * lev[-1]] out = dvar / dp # reroll lat dim axis to original dim out = np.rollaxis(out, ndim - 1, zdim) return out def d2vardx2(var, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ calculate second center finite difference along x or longitude. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var: ndarray, grid values. :param lon: array_like, longitude :param lat: array_like, latitude :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ var = np.array(var) ndim = var.ndim # roll lon dim axis to last var = np.rollaxis(var, xdim, ndim) if cyclic and sphere: dvar = np.concatenate(((var[..., 1]-2*var[..., 0] + var[..., -1])[..., NA], (var[..., 2:]-2*var[..., 1:-1] + var[..., :-2]), (var[..., 0]-2*var[..., -1] + var[..., -2])[..., NA]), axis=-1) dx = np.r_[(lon[1]+360-lon[-1]), (lon[2:]-lon[:-2]), (lon[0]+360-lon[-2])] else: # edge is zero dvar = np.concatenate(((var[..., 0]-var[..., 0])[..., NA], (var[..., 2:]-2*var[..., 1:-1]+var[..., :-2]), (var[..., 0]-var[..., 0])[..., NA]), axis=-1) dx = np.r_[(lon[1]-lon[0]), (lon[2:]-lon[:-2]), (lon[-1]-lon[-2])] dvar = np.rollaxis(dvar, ndim-1, xdim) if sphere: dx2 = a0 ** 2 * (PI/180.) ** 2 * arr.expand(dx ** 2, ndim, xdim) * \ arr.expand(np.cos(lat * d2r) ** 2, ndim, ydim) else: dx2 = arr.expand(dx ** 2, ndim, xdim) out = 4.*dvar/dx2 # reroll lon dim axis to original dim out = np.rollaxis(out, ndim-1, xdim) return out def d2vardy2(var, lat, ydim, sphere=True): """ calculate second center finite difference along y or latitude. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var: ndarray, grid values. :param lat: array_like, latitude :param ydim: the latitude dimension index :param sphere: sphere coordinate :return: ndarray """ var = np.array(var) ndim = var.ndim # roll lat dim axis to last var = np.rollaxis(var, ydim, ndim) # edge is zero dvar = np.concatenate([(var[..., 0] - var[..., 0])[..., NA], (var[..., 2:] - 2*var[..., 1:-1] + var[..., :-2]), (var[..., 0] - var[..., 0])[..., NA]], axis=-1) dy = np.r_[(lat[1]-lat[0]), (lat[2:]-lat[:-2]), (lat[-1]-lat[-2])] if sphere: dy2 = a0**2 * dy**2 else: dy2 = dy**2 out = 4.*dvar/dy2 # reroll lat dim axis to original dim out = np.rollaxis(out, ndim-1, ydim) return out def dvardvar(var1, var2, dim): """ Calculate d(var1)/d(var2) along axis=dim. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var1: numpy nd array, denominator of derivative :param var2: numpy nd array, numerator of derivative :param dim: along dimension. :return: """ var1, var2 = np.array(var1), np.array(var2) ndim = var1.ndim # roll dim axis to last var1 = np.rollaxis(var1, dim, ndim) var2 = np.rollaxis(var2, dim, ndim) dvar1 = np.concatenate([(var1[..., 1] - var1[..., 0])[..., NA], (var1[..., 2:] - var1[..., :-2]), (var1[..., -1] - var1[..., -2])[..., NA]], axis=-1) dvar2 = np.concatenate([(var2[..., 1] - var2[..., 0])[..., NA], (var2[..., 2:] - var2[..., :-2]), (var2[..., -1] - var2[..., -2])[..., NA]], axis=-1) out = dvar1 / dvar2 # reroll lat dim axis to original dim out = np.rollaxis(out, ndim - 1, dim) return out def div(u, v, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ Calculate horizontal divergence. :param u: ndarray, u-component wind. :param v: ndarray, v-component wind. :param lon: array_like, longitude. :param lat: array_like, latitude. :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ u, v = np.array(u), np.array(v) ndim = u.ndim out = dvardx(u, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) + dvardy(v, lat, ydim, sphere=sphere) if sphere: out = out - v * arr.expand(np.tan(lat * d2r), ndim, ydim) / a0 out = np.rollaxis(out, ydim, 0) out[0, ...] = 0. out[-1, ...] = 0. out = np.rollaxis(out, 0, ydim + 1) return out def rot(u, v, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ Calculate vertical vorticity. :param u: ndarray, u-component wind. :param v: ndarray, v-component wind. :param lon: array_like, longitude. :param lat: array_like, latitude. :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ u, v = np.array(u), np.array(v) ndim = u.ndim out = dvardx(v, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) - dvardy(u, lat, ydim, sphere=sphere) if sphere: out = out + u * arr.expand(np.tan(lat * d2r), ndim, ydim) / a0 out = np.rollaxis(out, ydim, 0) out[0, ...] = 0. out[-1, ...] = 0. out = np.rollaxis(out, 0, ydim + 1) return out def laplacian(var, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ Calculate laplacian operation on sphere. :param var: ndarray, grid values. :param lon: array_like, longitude :param lat: array_like, latitude :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ var = np.asarray(var) ndim = var.ndim if sphere: out = d2vardx2(var, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) + \ d2vardy2(var, lat, ydim, sphere=sphere) - \ arr.expand(np.tan(lat * d2r), ndim, ydim) * \ dvardy(var, lat, ydim)/a0 else: out = d2vardx2(var, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) + \ d2vardy2(var, lat, ydim, sphere=sphere) return out def grad(var, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ Calculate gradient operator. :param var: ndarray, grid values. :param lon: array_like, longitude :param lat: array_like, latitude :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ var = np.asarray(var) outu = dvardx(var, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) outv = dvardy(var, lat, ydim, sphere=sphere) return outu, outv def skgrad(var, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ Calculate skew gradient. :param var: ndarray, grid values. :param lon: array_like, longitude :param lat: array_like, latitude :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ var = np.asarray(var) outu = -dvardy(var, lat, ydim, sphere=sphere) outv = dvardx(var, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) return outu, outv def gradient_sphere(f, *varargs): """ Return the gradient of a 2-dimensional array on a sphere given a latitude and longitude vector. The gradient is computed using central differences in the interior and first differences at the boundaries. The returned gradient hence has the same shape as the input array. https://github.com/scavallo/python_scripts/blob/master/utils/weather_modules.py :param f: A 2-dimensional array containing samples of a scalar function. :param varargs: latitude, longitude and so on. :return: dfdx and dfdy arrays of the same shape as `f` giving the derivative of `f` with respect to each dimension. :Example: temperature = temperature(pressure,latitude,longitude) levs = pressure vector lats = latitude vector lons = longitude vector >>> tempin = temperature[5,:,:] >>> dfdlat, dfdlon = gradient_sphere(tempin, lats, lons) >>> dfdp, dfdlat, dfdlon = gradient_sphere(temperature, levs, lats, lons) """ r_earth = 6371200. N = f.ndim # number of dimensions n = len(varargs) # number of arguments argsin = list(varargs) if N != n: raise SyntaxError( "dimensions of input must match the remaining arguments") df = np.gradient(f) if n == 2: lats = argsin[0] lons = argsin[1] dfdy = df[0] dfdx = df[1] elif n == 3: levs = argsin[0] lats = argsin[1] lons = argsin[2] dfdz = df[0] dfdy = df[1] dfdx = df[2] else: raise SyntaxError("invalid number of arguments") otype = f.dtype.char if otype not in ['f', 'd', 'F', 'D']: otype = 'd' latarr = np.zeros_like(f).astype(otype) lonarr = np.zeros_like(f).astype(otype) if N == 2: nlat, nlon = np.shape(f) for jj in range(0, nlat): latarr[jj, :] = lats[jj] for ii in range(0, nlon): lonarr[:, ii] = lons[ii] else: nz, nlat, nlon = np.shape(f) for jj in range(0, nlat): latarr[:, jj, :] = lats[jj] for ii in range(0, nlon): lonarr[:, :, ii] = lons[ii] # use central differences on interior and first differences on endpoints dlats = np.zeros_like(lats).astype(otype) dlats[1:-1] = (lats[2:] - lats[:-2]) dlats[0] = (lats[1] - lats[0]) dlats[-1] = (dlats[-2] - dlats[-1]) dlons = np.zeros_like(lons).astype(otype) dlons[1:-1] = (lons[2:] - lons[:-2]) dlons[0] = (lons[1] - lons[0]) dlons[-1] = (dlons[-2] - dlons[-1]) dlatarr = np.zeros_like(f).astype(otype) dlonarr = np.zeros_like(f).astype(otype) if N == 2: for jj in range(0, nlat): dlatarr[jj, :] = dlats[jj] for ii in range(0, nlon): dlonarr[:, ii] = dlons[ii] elif N == 3: for jj in range(0, nlat): dlatarr[:, jj, :] = dlats[jj] for ii in range(0, nlon): dlonarr[:, :, ii] = dlons[ii] dlatsrad = dlatarr * (PI / 180.) dlonsrad = dlonarr * (PI / 180.) latrad = latarr * (PI / 180.) if n == 2: dx1 = r_earth * dlatsrad dx2 = r_earth * np.cos(latrad) * dlonsrad dfdy = dfdy / dx1 dfdx = dfdx / dx2 return dfdy, dfdx elif n == 3: dx1 = r_earth * dlatsrad dx2 = r_earth * np.cos(latrad) * dlonsrad dfdy = dfdy / dx1 dfdx = dfdx / dx2 zin = levs dz = np.zeros_like(zin).astype(otype) dz[1:-1] = (zin[2:] - zin[:-2]) / 2.0 dz[0] = (zin[1] - zin[0]) dz[-1] = (zin[-1] - zin[-2]) dx3 = np.ones_like(f).astype(otype) for kk in range(0, nz): dx3[kk, :, :] = dz[kk] dfdz = dfdz / dx3 return dfdz, dfdy, dfdx def vint(var, bottom, top, lev, zdim, punit=100.): """ Calculate vertical integration. :param var: array_like. :param bottom: bottom boundary of integration. :param top: top boundary of integration. :param lev: isobaric levels. :param zdim: vertical dimension. :param punit: levels units. :return: array_like. """ var = np.ma.asarray(var) lev = np.asarray(lev) ndim = var.ndim lev = lev[(lev <= bottom) & (lev >= top)] lev_m = np.r_[bottom, (lev[1:] + lev[:-1])/2., top] dp = lev_m[:-1] - lev_m[1:] # roll lat dim axis to last var = arr.mrollaxis(var, zdim, ndim) out = var[..., (lev <= bottom) & (lev >= top)] * dp / g * punit if bottom > top: out = out.sum(axis=-1) else: out = -out.sum(axis=-1) return out def total_col(infld, pres, temp, hght): """ Compute column integrated value of infld. https://github.com/scavallo/classcode/blob/master/utils/weather_modules.py :param infld: Input 3D field to column integrate :param pres: Input 3D air pressure (Pa) :param temp: Input 3D temperature field (K) :param hght: Input 3D geopotential height field (m :return: Output total column integrated value """ [iz, iy, ix] = np.shape(infld) density = pres / (287 * temp) tmp = pres[0, :, :].squeeze() coltot = np.zeros_like(tmp).astype('f') for jj in range(0, iy): for ii in range(0, ix): colnow = infld[:, jj, ii] * density[:, jj, ii] hghtnow = hght[:, jj, ii].squeeze() coltot[jj, ii] = np.trapz(colnow[::-1], hghtnow[::-1]) return coltot def vmean(var, bottom, top, lev, zdim): """ Calculate vertical mean. :param var: array_like. :param bottom: bottom boundary of integration. :param top: top boundary of integration. :param lev: isobaric levels. :param zdim: vertical dimension. :return: array_like. """ var = np.ma.asarray(var) lev = np.asarray(lev) ndim = var.ndim lev = lev[(lev <= bottom) & (lev >= top)] lev_m = np.r_[bottom, (lev[1:] + lev[:-1])/2., top] dp = lev_m[:-1] - lev_m[1:] # roll lat dim axis to last var = arr.mrollaxis(var, zdim, ndim) out = var[..., (lev <= bottom) & (lev >= top)] * dp out = out.sum(axis=-1)/(dp.sum()) return out def vinterp(var, oldz, newz, zdim, logintrp=True, bounds_error=True): """ perform vertical linear interpolation. :param var: array_like variable. :param oldz: original vertical level. :param newz: new vertical level. :param zdim: the dimension of vertical. :param logintrp: log linear interpolation. :param bounds_error: options for scipy.interpolate.interp1d. :return: """ var = np.array(var) ndim = var.ndim new_z = np.array(newz) old_z = np.array(oldz) if logintrp: old_z = np.log(old_z) new_z = np.log(new_z) old_zn = var.shape[zdim] new_zn = len(new_z) # roll z dim axis to last var = np.rollaxis(var, zdim, ndim) old_shape = var.shape new_shape = list(old_shape) new_shape[-1] = new_zn var = var.reshape(-1, old_zn) if old_z.ndim == ndim: old_z = np.rollaxis(old_z, zdim, ndim).reshape(-1, old_zn) f = interpolate.interp1d(old_z, var, axis=-1, kind='linear', bounds_error=bounds_error) out = f(new_z) elif old_z.ndim == 1: f = interpolate.interp1d(old_z, var, kind='linear', bounds_error=bounds_error) out = f(new_z) # reroll lon dim axis to original dim out = out.reshape(new_shape) out = np.rollaxis(out, ndim - 1, zdim) return out def _grid_smooth_bes(x): """ Bessel function. (copied from RIP) :param x: float number :return: bessel function value. """ rint = 0.0 for i in range(1000): u = i * 0.001 - 0.0005 rint = rint + np.sqrt(1 - u*u) * np.cos(x*u)*0.001 return 2.0 * x * rint / (4.0 * np.arctan(1.0)) def grid_smooth(field, radius=6, method='CRES', **kwargs): """ Perform grid field smooth filter. refer to https://github.com/Unidata/IDV/blob/master/src/ucar/unidata/data/grid/GridUtil.java * Apply a weigthed smoothing function to the grid. The smoothing types are: SMOOTH_CRESSMAN: the smoothed value is given by a weighted average of values at surrounding grid points. The weighting function is the Cressman weighting function: w = ( D**2 - d**2 ) / ( D**2 + d**2 ) In the above, d is the distance (in grid increments) of the neighboring point to the smoothing point, and D is the radius of influence [in grid increments] SMOOTH_CIRCULAR: the weighting function is the circular apperture diffraction function (following a suggestion of Barnes et al. 1996): w = bessel(3.8317*d/D)/(3.8317*d/D) SMOOTH_RECTANGULAR: the weighting function is the product of the rectangular aperture diffraction function in the x and y directions (the function used in Barnes et al. 1996): w = [sin(pi*x/D)/(pi*x/D)]*[sin(pi*y/D)/(pi*y/D)] Adapted from smooth.f written by <NAME> in his RIP package :param field: 2D array variable. :param radius: if type is CRES, CIRC or RECT, radius of window in grid units (in grid increments) if type is GWFS, radius is the standard deviation of gaussian function, larger for smoother :param method: string value, smooth type: SM9S, 9-point smoother GWFS, Gaussian smoother CRES, Cressman smoother, default CIRC, Barnes circular apperture diffraction function RECT, Barnes rectangular apperture diffraction function :param kwargs: parameters for scipy.ndimage.filters.convolve function. :return: 2D array like smoothed field. """ # construct kernel if method == 'SM9S': kernel = [[0.3, 0.5, 0.3], [0.5, 1, 0.5], [0.3, 0.5, 0.3]] elif method == 'GWFS': return ndimage.filters.gaussian_filter(field, radius, **kwargs) elif method == 'CRES': width = np.int(np.ceil(radius)*2+1) center = np.ceil(radius) kernel = np.zeros((width, width)) for jj in range(width): for ii in range(width): x = ii - center y = jj - center d = np.sqrt(x*x + y*y) if d > radius: continue kernel[jj, ii] = (radius*radius - d*d)/(radius*radius + d*d) elif method == 'CIRC': width = np.int(np.ceil(radius) * 2 + 1) center = np.ceil(radius) kernel = np.zeros((width, width)) for jj in range(width): for ii in range(width): x = ii - center y = jj - center d = np.sqrt(x * x + y * y) if d > radius: continue if d == 0.: kernel[jj, ii] = 0.5 else: kernel[jj, ii] = _grid_smooth_bes( 3.8317*d/radius)/(3.8317*d/radius) elif method == 'RECT': width = np.int(np.ceil(radius) * 2 + 1) center = np.ceil(radius) kernel = np.zeros((width, width)) for jj in range(width): for ii in range(width): x = ii - center y = jj - center d = np.sqrt(x * x + y * y) if d > radius: continue kernel[jj, ii] = (np.sin(PI*x/radius)/(PI*x/radius)) * \ (np.sin(PI*y/radius)/(PI*y/radius)) else: return field # return smoothed field return ndimage.filters.convolve(field, kernel, **kwargs) @jit def grid_smooth_area_average(in_field, lon, lat, radius=400.e3): """ Smoothing grid field with circle area average. :param in_field: 2D or multiple dimension array grid field, the rightest dimension [..., lat, lon]. :param lon: 1D array longitude. :param lat: 1D array latitude. :param radius: smooth radius, [m] :return: smoothed grid field. """ # set constants deg_to_rad = np.arctan(1.0)/45.0 earth_radius = 6371000.0 # reshape field to 3d array old_shape = in_field.shape if np.ndim(in_field) == 2: ndim = 1 else: ndim = np.product(old_shape[0:-2]) field = in_field.reshape(ndim, *old_shape[-2:]) # grid coordinates x, y = np.meshgrid(lon, lat) # define output field out_field = np.full_like(field, np.nan) # loop every grid point lat1 = np.cos(lat * deg_to_rad) lat2 = np.cos(y * deg_to_rad) for j in range(lat.size): dlat = (y - lat[j]) * deg_to_rad a1 = (np.sin(dlat/2.0))**2 b1 = lat1[j] * lat2 for i in range(lon.size): # great circle distance dlon = (x - lon[i]) * deg_to_rad a = np.sqrt(a1+b1*(np.sin(dlon/2.0))**2) dist = earth_radius * 2.0 * np.arcsin(a) dist = dist <= radius # compute average if np.any(dist): for k in range(ndim): temp = field[k, :, :] out_field[k, j, i] = np.mean(temp[dist]) # return smoothed field return out_field.reshape(old_shape) def grid_subset(lon, lat, bound): """ Get the upper and lower bound of a grid subset. :param lon: 1D array, longitude. :param lat: 1D array, latitude. :param bound: subset boundary, [lonmin, lonmax, latmin, latmax] :return: subset boundary index. """ # latitude lower and upper index latli = np.argmin(np.abs(lat - bound[2])) latui = np.argmin(np.abs(lat - bound[3])) # longitude lower and upper index lonli = np.argmin(np.abs(lon - bound[0])) lonui = np.argmin(np.abs(lon - bound[1])) # return subset boundary index return lonli, lonui+1, latli, latui+1 def vertical_cross(in_field, lon, lat, line_points, npts=100): """ Interpolate 2D or multiple dimensional grid data to vertical cross section. :param in_field: 2D or multiple dimensional grid data, the rightest dimension [..., lat, lon]. :param lon: grid data longitude. :param lat: grid data latitude. :param line_points: cross section line points, should be [n_points, 2] array. :param npts: the point number of great circle line. :return: cross section [..., n_points], points """ if np.ndim(in_field) < 2: raise ValueError("in_field must be at least 2 dimension") # reshape field to 3d array old_shape = in_field.shape if np.ndim(in_field) == 2: field = in_field.reshape(1, *old_shape) else: field = in_field.reshape(np.product(old_shape[0:-2]), *old_shape[-2:]) # get great circle points points = None n_line_points = line_points.shape[0] geod = Geod("+ellps=WGS84") for i in range(n_line_points-1): seg_points = geod.npts( lon1=line_points[i, 0], lat1=line_points[i, 1], lon2=line_points[i+1, 0], lat2=line_points[i+1, 1], npts=npts) if points is None: points = np.array(seg_points) else: points = np.vstack((points, np.array(seg_points))) # convert to pixel coordinates x = np.interp(points[:, 0], lon, np.arange(len(lon))) y = np.interp(points[:, 1], lat, np.arange(len(lat))) # loop every level zdata = [] for i in range(field.shape[0]): zdata.append( ndimage.map_coordinates(np.transpose(field[i, :, :]), np.vstack((x, y)))) # reshape zdata zdata = np.array(zdata) if np.ndim(in_field) > 2: zdata = zdata.reshape(np.append(old_shape[0:-2], points.shape[0])) # return vertical cross section return zdata, points def interpolate1d(x, z, points, mode='linear', bounds_error=False): """ 1D interpolation routine. :param x: 1D array of x-coordinates on which to interpolate :param z: 1D array of values for each x :param points: 1D array of coordinates where interpolated values are sought :param mode: Determines the interpolation order. Options are 'constant' - piecewise constant nearest neighbour interpolation 'linear' - bilinear interpolation using the two nearest neighbours (default) :param bounds_error: Boolean flag. If True (default) an exception will be raised when interpolated values are requested outside the domain of the input data. If False, nan is returned for those values :return: 1D array with same length as points with interpolated values :Notes: Input coordinates x are assumed to be monotonically increasing, but need not be equidistantly spaced. z is assumed to have dimension M where M = len(x). """ # Check inputs # # make sure input vectors are numpy array x = np.array(x) # Input vectors should be monotoneously increasing. if (not np.min(x) == x[0]) and (not max(x) == x[-1]): raise Exception('Input vector x must be monotoneously increasing.') # Input array Z's dimensions z = np.array(z) if not len(x) == len(z): raise Exception('Input array z must have same length as x') # Get interpolation points in_points = np.array(points) xi = in_points[:] # Check boundary if bounds_error: if np.min(xi) < x[0] or np.max(xi) > x[-1]: raise Exception('Interpolation points was out of the domain.') # Identify elements that are outside interpolation domain or NaN outside = (xi < x[0]) + (xi > x[-1]) outside += np.isnan(xi) inside = -outside xi = xi[inside] # Find upper neighbours for each interpolation point idx = np.searchsorted(x, xi, side='left') # Internal check (index == 0 is OK) msg = 'Interpolation point outside domain. This should never happen.' if len(idx) > 0: if not max(idx) < len(x): raise RuntimeError(msg) # Get the two neighbours for each interpolation point x0 = x[idx - 1] x1 = x[idx] z0 = z[idx - 1] z1 = z[idx] # Coefficient for weighting between lower and upper bounds alpha = (xi - x0) / (x1 - x0) if mode == 'linear': # Bilinear interpolation formula dx = z1 - z0 zeta = z0 + alpha * dx else: # Piecewise constant (as verified in input_check) # Set up masks for the quadrants left = alpha < 0.5 # Initialise result array with all elements set to right neighbour zeta = z1 # Then set the left neighbours zeta[left] = z0[left] # Self test if len(zeta) > 0: mzeta = np.nanmax(zeta) mz = np.nanmax(z) msg = ('Internal check failed. Max interpolated value %.15f ' 'exceeds max grid value %.15f ' % (mzeta, mz)) if not (np.isnan(mzeta) or np.isnan(mz)): if not mzeta <= mz: raise RuntimeError(msg) # Populate result with interpolated values for points inside domain # and NaN for values outside r = np.zeros(len(points)) r[inside] = zeta r[outside] = np.nan return r def interpolate2d(x, y, Z, points, mode='linear', bounds_error=False): """ Interpolating from 2D field to points. Refer to https://github.com/inasafe/python-safe/blob/master/safe/engine/interpolation2d.py. * provides piecewise constant (nearest neighbour) and * bilinear interpolation is fast (based on numpy vector operations) * depends only on numpy * guarantees that interpolated values never exceed the four nearest * neighbours handles missing values in domain sensibly using NaN * is unit tested with a range of common and corner cases :param x: 1D array of x-coordinates of the mesh on which to interpolate :param y: 1D array of y-coordinates of the mesh on which to interpolate :param Z: 2D array of values for each x, y pair :param points: Nx2 array of coordinates where interpolated values are sought :param mode: Determines the interpolation order. Options are 'constant' - piecewise constant nearest neighbour interpolation 'linear' - bilinear interpolation using the four nearest neighbours (default) :param bounds_error: Boolean flag. If True (default) an exception will be raised when interpolated values are requested outside the domain of the input data. If False, nan is returned for those values. :return: 1D array with same length as points with interpolated values :Notes: Input coordinates x and y are assumed to be monotonically increasing, but need not be equidistantly spaced. Z is assumed to have dimension M x N, where M = len(x) and N = len(y). In other words it is assumed that the x values follow the first (vertical) axis downwards and y values the second (horizontal) axis from left to right. 2D bilinear interpolation aims at obtaining an interpolated value z at a point (x,y) which lies inside a square formed by points (x0, y0), (x1, y0), (x0, y1) and (x1, y1) for which values z00, z10, z01 and z11 are known. This obtained be first applying equation (1) twice in in the x-direction to obtain interpolated points q0 and q1 for (x, y0) and (x, y1), respectively. q0 = alpha*z10 + (1-alpha)*z00 (2) and q1 = alpha*z11 + (1-alpha)*z01 (3) Then using equation (1) in the y-direction on the results from (2) and (3) z = beta*q1 + (1-beta)*q0 (4) where beta = (y-y0)/(y1-y0) (4a) Substituting (2) and (3) into (4) yields z = alpha*beta*z11 + beta*z01 - alpha*beta*z01 + alpha*z10 + z00 - alpha*z00 - alpha*beta*z10 - beta*z00 + alpha*beta*z00 = alpha*beta*(z11 - z01 - z10 + z00) + alpha*(z10 - z00) + beta*(z01 - z00) + z00 which can be further simplified to z = alpha*beta*(z11 - dx - dy - z00) + alpha*dx + beta*dy + z00 (5) where dx = z10 - z00 dy = z01 - z00 Equation (5) is what is implemented in the function interpolate2d above. """ # Check inputs # # make sure input vectors are numpy array x = np.array(x) y = np.array(y) # Input vectors should be monotoneously increasing. if (not np.min(x) == x[0]) and (not max(x) == x[-1]): raise Exception('Input vector x must be monotoneously increasing.') if (not np.min(y) == y[0]) and (not max(y) == y[-1]): raise Exception('Input vector y must be monotoneously increasing.') # Input array Z's dimensions Z = np.array(Z) m, n = Z.shape if not(len(x) == m and len(y) == n): raise Exception( 'Input array Z must have dimensions corresponding to the ' 'lengths of the input coordinates x and y') # Get interpolation points in_points = np.array(points) xi = in_points[:, 0] eta = in_points[:, 1] # Check boundary if bounds_error: if np.min(xi) < x[0] or np.max(xi) > x[-1] or \ np.min(eta) < y[0] or np.max(eta) > y[-1]: raise RuntimeError('Interpolation points was out of the domain.') # Identify elements that are outside interpolation domain or NaN outside = (xi < x[0]) + (eta < y[0]) + (xi > x[-1]) + (eta > y[-1]) outside += np.isnan(xi) + np.isnan(eta) inside = -outside xi = xi[inside] eta = eta[inside] # Find upper neighbours for each interpolation point idx = np.searchsorted(x, xi, side='left') idy = np.searchsorted(y, eta, side='left') # Internal check (index == 0 is OK) msg = 'Interpolation point outside domain. This should never happen.' if len(idx) > 0: if not max(idx) < len(x): raise RuntimeError(msg) if len(idy) > 0: if not max(idy) < len(y): raise RuntimeError(msg) # Get the four neighbours for each interpolation point x0 = x[idx - 1] x1 = x[idx] y0 = y[idy - 1] y1 = y[idy] z00 = Z[idx - 1, idy - 1] z01 = Z[idx - 1, idy] z10 = Z[idx, idy - 1] z11 = Z[idx, idy] # Coefficients for weighting between lower and upper bounds oldset = np.seterr(invalid='ignore') # Suppress warnings alpha = (xi - x0) / (x1 - x0) beta = (eta - y0) / (y1 - y0) np.seterr(**oldset) # Restore if mode == 'linear': # Bilinear interpolation formula dx = z10 - z00 dy = z01 - z00 z = z00 + alpha * dx + beta * dy + alpha * beta * (z11 - dx - dy - z00) else: # Piecewise constant (as verified in input_check) # Set up masks for the quadrants left = alpha < 0.5 right = -left lower = beta < 0.5 upper = -lower lower_left = lower * left lower_right = lower * right upper_left = upper * left # Initialise result array with all elements set to upper right z = z11 # Then set the other quadrants z[lower_left] = z00[lower_left] z[lower_right] = z10[lower_right] z[upper_left] = z01[upper_left] # Self test if len(z) > 0: mz =
np.nanmax(z)
numpy.nanmax
# -*- coding: utf-8 -*- from ungol.index import index as uii from ungol.similarity import stats from ungol.similarity import rhwmd as _rhwmd import numpy as np Strategy = _rhwmd.Strategy def _get_docs(db: uii.Index, s_doc1: str, s_doc2: str): assert s_doc1 in db.mapping, f'"{s_doc1}" not in database' assert s_doc2 in db.mapping, f'"{s_doc2}" not in database' return db.mapping[s_doc1], db.mapping[s_doc2] # --- DISTANCE SCHEMES # # # HR-WMD |---------------------------------------- # # # # TODO: speech about what I learned about ripping apart the calculation. # Notes: # - prefixes: s_* for str, a_* for np.array, n_ for scalars # def _rhwmd_similarity( index: uii.Index, doc1: uii.Doc, doc2: uii.Doc, verbose: bool) -> float: # ---------------------------------------- # this is the important part # a_sims, a_idxs = _rhwmd.retrieve_nn(doc1, doc2) # phony # a_sims1 = np.ones(doc1_idxs.shape[0]) # a_sims2 = np.ones(doc2_idxs.shape[0]) # --- COMMON OOV common_unknown = doc1.unknown.keys() & doc2.unknown.keys() # U = len(common_unknown) U = 0 a_unknown = np.ones(U) # --- IDF def idf(doc) -> np.array: a_df = np.hstack((a_unknown, np.array(doc.docfreqs))) N = len(index.mapping) # FIXME add unknown tokens a_idf = np.log(N / a_df) return a_idf # --- idf combinations a_idf_doc1 = idf(doc1) a_idf_doc2 = idf(doc2) a_idf_nn1 = a_idf_doc2[a_idxs[0]] a_idf_nn2 = a_idf_doc1[a_idxs[1]] # a_idf1 = a_idf_doc1 + a_idf_nn1 # a_idf2 = a_idf_doc2 + a_idf_nn2 # --- query idf a_idf1 = a_idf_doc1 a_idf2 = a_idf_doc2 # --- phony # a_idf1 = np.ones(len(doc1)) / len(doc1) # a_idf2 = np.ones(len(doc2)) / len(doc2) # --- WEIGHTING boost = 1 def weighted(a_sims, a_idf): a = np.hstack((np.ones(U), a_sims)) * a_idf s1, s2 = a[:U].sum(), a[U:].sum() return a, boost * s1 + s2 a_idf1_norm = a_idf1 / a_idf1.sum() a_idf2_norm = a_idf2 / a_idf2.sum() a_weighted_doc1, n_score1 = weighted(a_sims[0], a_idf1_norm) a_weighted_doc2, n_score2 = weighted(a_sims[1], a_idf2_norm) # assert 0 <= n_sim_weighted_doc1 and n_sim_weighted_doc1 <= 1 # assert 0 <= n_sim_weighted_doc2 and n_sim_weighted_doc2 <= 1 # # the important part ends here # ---------------------------------------- if not verbose: return n_score1, n_score2, None # --- # create data object for the scorer to explain itself. # the final score is set by the caller. scoredata = stats.ScoreData( name='rhwmd', score=None, docs=(doc1, doc2), common_unknown=common_unknown) # --- scoredata.add_local_row('score', n_score1, n_score2) # --- scoredata.add_local_column( 'token', np.array(doc1.tokens), np.array(doc2.tokens), ) scoredata.add_local_column( 'nn', np.array(doc2.tokens)[a_idxs[0]], np.array(doc1.tokens)[a_idxs[1]], ) scoredata.add_local_column('sim', *a_sims) scoredata.add_local_column('tf(token)', doc1.freq, doc2.freq) scoredata.add_local_column('idf(token)', a_idf_doc1, a_idf_doc2) scoredata.add_local_column('idf(nn)', a_idf_nn1, a_idf_nn2) scoredata.add_local_column('idf', a_idf1, a_idf2) scoredata.add_local_column('weight', a_weighted_doc1, a_weighted_doc2) return n_score1, n_score2, scoredata def rhwmd(index: uii.Index, s_doc1: str, s_doc2: str, strategy: Strategy = Strategy.ADAPTIVE_SMALL, verbose: bool = False): doc1, doc2 = _get_docs(index, s_doc1, s_doc2) score1, score2, scoredata = _rhwmd_similarity(index, doc1, doc2, verbose) # select score based on a strategy if strategy is Strategy.MIN: score = min(score1, score2) elif strategy is Strategy.MAX: score = max(score1, score2) elif strategy is Strategy.ADAPTIVE_SMALL: score = score1 if len(doc1) < len(doc2) else score2 elif strategy is Strategy.ADAPTIVE_BIG: score = score2 if len(doc1) < len(doc2) else score1 elif strategy is Strategy.SUM: score = score1 + score2 else: assert False, f'unknown strategy: "{strategy}"' if scoredata is not None: scoredata.score = score scoredata.add_global_row('strategy', strategy.name) return scoredata if verbose else score # # # OKAPI BM25 |---------------------------------------- # # def _bm25_normalization(a_tf, n_len: int, k1: float, b: float): # calculate numerator a_num = (k1 + 1) * a_tf # calculate denominator a_den = k1 * ((1-b) + b * n_len) + a_tf return a_num / a_den def bm25(index: uii.Index, s_doc1: str, s_doc2: str, k1=1.56, b=0.45, verbose: bool = False): doc1, doc2 = _get_docs(index, s_doc1, s_doc2) ref = index.ref # gather common tokens common = set(doc1.tokens) & set(doc2.tokens) if not len(common): return 0 if not verbose else stats.ScoreData( name='bm25', score=0, docs=(doc1, doc2)) # get code indexes a_common_idx = np.array([ref.vocabulary[t] for t in common]) # find corresponding document frequencies a_df = np.array([ref.docfreqs[idx] for idx in a_common_idx]) # calculate idf value a_idf = np.log(len(index.mapping) / a_df) # find corresponding token counts # note: a[:, None] == np.array([a]).T a_tf = doc2.cnt[np.nonzero(a_common_idx[:, None] == doc2.idx)[1]] assert len(a_tf) == len(common) n_len = len(doc2) / index.avg_doclen a_norm = _bm25_normalization(a_tf, n_len, k1, b) # weight each idf value a_res = a_idf * a_norm score = a_res.sum() if not verbose: return score # --- scoredata = stats.ScoreData(name='bm25', score=score, docs=(doc1, doc2), ) # to preserve order a_common_words =
np.array([ref.lookup[idx] for idx in a_common_idx])
numpy.array
""" Kernel topic model with Gibbs Sampler ===================================== Reference: Hennig et al., 2012 & Murphy's MLPP book Ch. 27 """ import numpy as np from sklearn.gaussian_process import GaussianProcessRegressor as GPR from sklearn.gaussian_process.kernels import RBF from tqdm import tqdm, trange np.random.seed(1) # Words W = np.array([0, 1, 2, 3, 4]) # D := document words X = np.array([ [0, 0, 1, 2, 2], [0, 0, 1, 1, 1], [0, 1, 2, 2, 2], [4, 4, 4, 4, 4], [3, 3, 4, 4, 4], [3, 4, 4, 4, 4] ]) N_D = X.shape[0] # num of docs N_W = W.shape[0] # num of words N_K = 2 # num of topics N_F = 3 # num of features # Document features Phi = np.random.randn(N_D, N_F) # Dirichlet priors alpha = 1 beta = 1 # k independent GP priors ls = 1 # length-scale for RBF kernel tau = 1 # Observation noise variance kernel = RBF([ls]*N_F) GPRs = [] for k in range(N_K): GPR_k = GPR(kernel=kernel, alpha=tau) GPR_k = GPR_k.fit(Phi, np.zeros(N_D)) GPRs.append(GPR_k) # ------------------------------------------------------------------------------------- # Laplace bridge # ------------------------------------------------------------------------------------- def gauss2dir(mu, Sigma): K = len(mu) Sigma_diag = np.diag(Sigma) alpha = 1/Sigma_diag * (1 - 2/K + np.exp(mu)/K**2 * np.sum(np.exp(-mu))) return alpha def dir2gauss(alpha): K = len(alpha) mu = np.log(alpha) - 1/K*np.sum(
np.log(alpha)
numpy.log
import torch import torch.utils.data as data from PIL import Image from spatial_transforms import * from temporal_transforms import * import os import math import functools import json import copy from numpy.random import randint import numpy as np import random from utils import load_value_file import pdb def pil_loader(path, modality): # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: #print(path) with Image.open(f) as img: if modality == 'RGB': return img.convert('RGB') elif modality == 'Depth': return img.convert('L') # 8-bit pixels, black and white check from https://pillow.readthedocs.io/en/3.0.x/handbook/concepts.html def accimage_loader(path, modality): try: import accimage return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def get_default_image_loader(): from torchvision import get_image_backend if get_image_backend() == 'accimage': return accimage_loader else: return pil_loader def video_loader(video_dir_path, frame_indices, modality, sample_duration, image_loader): video = [] if modality == 'RGB': for i in frame_indices: image_path = os.path.join(video_dir_path, '{:05d}.jpg'.format(i)) if os.path.exists(image_path): video.append(image_loader(image_path, modality)) else: print(image_path, "------- Does not exist") return video elif modality == 'Depth': for i in frame_indices: image_path = os.path.join(video_dir_path.replace('color','depth'), '{:05d}.jpg'.format(i) ) if os.path.exists(image_path): video.append(image_loader(image_path, modality)) else: print(image_path, "------- Does not exist") return video elif modality == 'RGB-D': for i in frame_indices: image_path = os.path.join(video_dir_path, '{:05d}.jpg'.format(i)) image_path_depth = os.path.join(video_dir_path.replace('color','depth'), '{:05d}.jpg'.format(i) ) image = image_loader(image_path, 'RGB') image_depth = image_loader(image_path_depth, 'Depth') if os.path.exists(image_path): video.append(image) video.append(image_depth) else: print(image_path, "------- Does not exist") return video return video def get_default_video_loader(): image_loader = get_default_image_loader() return functools.partial(video_loader, image_loader=image_loader) def load_annotation_data(data_file_path): with open(data_file_path, 'r') as data_file: return json.load(data_file) def get_class_labels(data): class_labels_map = {} index = 0 for class_label in data['labels']: class_labels_map[class_label] = index index += 1 return class_labels_map def get_annotation(data, whole_path): annotation = [] for key, value in data['database'].items(): if key.split('^')[0] == whole_path: annotation.append(value['annotations']) return annotation def make_dataset( annotation_path, video_path , whole_path,sample_duration, n_samples_for_each_video, stride_len): data = load_annotation_data(annotation_path) whole_video_path = os.path.join(video_path,whole_path) annotation = get_annotation(data, whole_path) class_to_idx = get_class_labels(data) idx_to_class = {} for name, label in class_to_idx.items(): idx_to_class[label] = name dataset = [] print("[INFO]: Videot is loading...") import glob n_frames = len(glob.glob(whole_video_path + '/*.jpg')) if not os.path.exists(whole_video_path): print(whole_video_path , " does not exist") label_list = [] for i in range(len(annotation)): begin_t = int(annotation[i]['start_frame']) end_t = int(annotation[i]['end_frame']) for j in range(begin_t,end_t+1): label_list.append(class_to_idx[annotation[i]['label']]) label_list =
np.array(label_list)
numpy.array
# -*- coding: utf-8 -*- """ TODO: Please check readme.txt file first! -- This Python2.7 program is to reproduce Table 2, 3, 4, and 5. """ import os import sys import pickle import numpy as np import multiprocessing from itertools import product from numpy.random import randint try: import sparse_module try: from sparse_module import wrap_head_tail_bisearch except ImportError: print('cannot find wrap_head_tail_bisearch method in sparse_module') sparse_module = None exit(0) except ImportError: print('\n'.join([ 'cannot find the module: sparse_module', 'try run: \'python setup.py build_ext --inplace\' first! '])) def expit(x): """ expit function. 1 /(1+exp(-x)). quote from Scipy: The expit function, also known as the logistic function, is defined as expit(x) = 1/(1+exp(-x)). It is the inverse of the logit function. expit is also known as logistic. Please see logistic :param x: np.ndarray :return: 1/(1+exp(-x)). """ out = np.zeros_like(x) posi = np.where(x > 0.0) nega = np.where(x <= 0.0) out[posi] = 1. / (1. + np.exp(-x[posi])) exp_x = np.exp(x[nega]) out[nega] = exp_x / (1. + exp_x) return out def logistic_predict(x, wt): """ To predict the probability for sample xi. {+1,-1} :param x: (n,p) dimension, where p is the number of features. :param wt: (p+1,) dimension, where wt[p] is the intercept. :return: (n,1) dimension of predict probability of positive class and labels. """ n, p = x.shape pred_prob = expit(np.dot(x, wt[:p]) + wt[p]) pred_y = np.ones(n) pred_y[pred_prob < 0.5] = -1. return pred_prob, pred_y def log_logistic(x): """ return log( 1/(1+exp(-x)) )""" out = np.zeros_like(x) posi = np.where(x > 0.0) nega = np.where(x <= 0.0) out[posi] = -np.log(1. + np.exp(-x[posi])) out[nega] = x[nega] - np.log(1. + np.exp(x[nega])) return out def logit_loss_grad_bl(x_tr, y_tr, wt, l2_reg, cp, cn): """ Calculate the balanced loss and gradient of the logistic function. :param x_tr: (n,p), where p is the number of features. :param y_tr: (n,), where n is the number of labels. :param wt: current model. wt[-1] is the intercept. :param l2_reg: regularization to avoid overfitting. :param cp: :param cn: :return: {+1,-1} Logistic (val,grad) on training samples. """ assert len(wt) == (x_tr.shape[1] + 1) c, n, p = wt[-1], x_tr.shape[0], x_tr.shape[1] posi_idx = np.where(y_tr > 0) # corresponding to positive labels. nega_idx = np.where(y_tr < 0) # corresponding to negative labels. grad = np.zeros_like(wt) wt = wt[:p] yz = y_tr * (np.dot(x_tr, wt) + c) z = expit(yz) loss = -cp * np.sum(log_logistic(yz[posi_idx])) loss += -cn * np.sum(log_logistic(yz[nega_idx])) loss = loss / n + .5 * l2_reg * np.dot(wt, wt) bl_y_tr = np.zeros_like(y_tr) bl_y_tr[posi_idx] = cp * np.asarray(y_tr[posi_idx], dtype=float) bl_y_tr[nega_idx] = cn * np.asarray(y_tr[nega_idx], dtype=float) z0 = (z - 1) * bl_y_tr # z0 = (z - 1) * y_tr grad[:p] = np.dot(x_tr.T, z0) / n + l2_reg * wt grad[-1] = z0.sum() # do not need to regularize the intercept. return loss, grad def logit_loss_bl(x_tr, y_tr, wt, l2_reg, cp, cn): """ Calculate the balanced loss and gradient of the logistic function. :param x_tr: (n,p), where p is the number of features. :param y_tr: (n,), where n is the number of labels. :param wt: current model. wt[-1] is the intercept. :param l2_reg: regularization to avoid overfitting. :param cp: :param cn: :return: return {+1,-1} Logistic (val,grad) on training samples. """ assert len(wt) == (x_tr.shape[1] + 1) c, n, p = wt[-1], x_tr.shape[0], x_tr.shape[1] posi_idx = np.where(y_tr > 0) # corresponding to positive labels. nega_idx = np.where(y_tr < 0) # corresponding to negative labels. wt = wt[:p] yz = y_tr * (np.dot(x_tr, wt) + c) loss = -cp * np.sum(log_logistic(yz[posi_idx])) loss += -cn * np.sum(log_logistic(yz[nega_idx])) loss = loss / n + .5 * l2_reg * np.dot(wt, wt) return loss def algo_head_tail_bisearch( edges, x, costs, g, root, s_low, s_high, max_num_iter, verbose): """ This is the wrapper of head/tail-projection proposed in [2]. :param edges: edges in the graph. :param x: projection vector x. :param costs: edge costs in the graph. :param g: the number of connected components. :param root: root of subgraph. Usually, set to -1: no root. :param s_low: the lower bound of the sparsity. :param s_high: the upper bound of the sparsity. :param max_num_iter: the maximum number of iterations used in binary search procedure. :param verbose: print out some information. :return: 1. the support of the projected vector 2. the projected vector """ prizes = x * x # to avoid too large upper bound problem. if s_high >= len(prizes) - 1: s_high = len(prizes) - 1 re_nodes = wrap_head_tail_bisearch( edges, prizes, costs, g, root, s_low, s_high, max_num_iter, verbose) proj_w = np.zeros_like(x) proj_w[re_nodes[0]] = x[re_nodes[0]] return re_nodes[0], proj_w def algo_graph_sto_iht_backtracking( x_tr, y_tr, w0, max_epochs, s, edges, costs, num_blocks, lambda_, g=1, root=-1, gamma=0.1, proj_max_num_iter=50, verbose=0): np.random.seed() # do not forget it. w_hat = np.copy(w0) (m, p) = x_tr.shape # if the block size is too large. just use single block b = int(m) / int(num_blocks) np_ = np.sum(y_tr == 1) nn_ = np.sum(y_tr == -1) cp = float(nn_) / float(len(y_tr)) cn = float(np_) / float(len(y_tr)) # graph projection para h_low = int((len(w_hat) - 1) / 2) h_high = int(h_low * (1. + gamma)) t_low = int(s) t_high = int(s * (1. + gamma)) for epoch_i in range(max_epochs): for ind, _ in enumerate(range(num_blocks)): ii = randint(0, num_blocks) block = range(b * ii, b * (ii + 1)) x_tr_b, y_tr_b = x_tr[block, :], y_tr[block] loss_sto, grad_sto = logit_loss_grad_bl( x_tr=x_tr_b, y_tr=y_tr_b, wt=w_hat, l2_reg=lambda_, cp=cp, cn=cn) # edges, x, costs, g, root, s_low, s_high, max_num_iter, verbose h_nodes, p_grad = algo_head_tail_bisearch( edges, grad_sto[:p], costs, g, root, h_low, h_high, proj_max_num_iter, verbose) p_grad = np.append(p_grad, grad_sto[-1]) fun_val_right = loss_sto tmp_num_iter, ad_step, beta = 0, 1.0, 0.8 reg_term = np.linalg.norm(p_grad) ** 2. while tmp_num_iter < 20: x_tmp = w_hat - ad_step * p_grad fun_val_left = logit_loss_bl( x_tr=x_tr_b, y_tr=y_tr_b, wt=x_tmp, l2_reg=lambda_, cp=cp, cn=cn) if fun_val_left > fun_val_right - ad_step / 2. * reg_term: ad_step *= beta else: break tmp_num_iter += 1 bt_sto = np.zeros_like(w_hat) bt_sto[:p] = w_hat[:p] - ad_step * p_grad[:p] t_nodes, proj_bt = algo_head_tail_bisearch( edges, bt_sto[:p], costs, g, root, t_low, t_high, proj_max_num_iter, verbose) w_hat[:p] = proj_bt[:p] w_hat[p] = w_hat[p] - ad_step * grad_sto[p] # intercept. return w_hat def algo_sto_iht_backtracking( x_tr, y_tr, w0, max_epochs, s, num_blocks, lambda_): np.random.seed() # do not forget it. w_hat = w0 (m, p) = x_tr.shape b = int(m) / int(num_blocks) np_ = np.sum(y_tr == 1) nn_ = np.sum(y_tr == -1) cp = float(nn_) / float(len(y_tr)) cn = float(np_) / float(len(y_tr)) for epoch_i in range(max_epochs): for ind, _ in enumerate(range(num_blocks)): ii = randint(0, num_blocks) block = range(b * ii, b * (ii + 1)) x_tr_b, y_tr_b = x_tr[block, :], y_tr[block] loss_sto, grad_sto = logit_loss_grad_bl( x_tr=x_tr_b, y_tr=y_tr_b, wt=w_hat, l2_reg=lambda_, cp=cp, cn=cn) fun_val_right = loss_sto tmp_num_iter, ad_step, beta = 0, 1.0, 0.8 reg_term = np.linalg.norm(grad_sto) ** 2. while tmp_num_iter < 20: x_tmp = w_hat - ad_step * grad_sto fun_val_left = logit_loss_bl( x_tr=x_tr_b, y_tr=y_tr_b, wt=x_tmp, l2_reg=lambda_, cp=cp, cn=cn) if fun_val_left > fun_val_right - ad_step / 2. * reg_term: ad_step *= beta else: break tmp_num_iter += 1 bt_sto = w_hat - ad_step * grad_sto bt_sto[np.argsort(np.abs(bt_sto))[:p - s]] = 0. w_hat = bt_sto return w_hat def run_single_test(para): data, method_list, tr_idx, te_idx, s, num_blocks, lambda_, \ max_epochs, fold_i, subfold_i = para from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score res = {_: dict() for _ in method_list} tr_data = dict() tr_data['x'] = data['x'][tr_idx, :] tr_data['y'] = data['y'][tr_idx] te_data = dict() te_data['x'] = data['x'][te_idx, :] te_data['y'] = data['y'][te_idx] x_tr, y_tr = tr_data['x'], tr_data['y'] w0 = np.zeros(np.shape(x_tr)[1] + 1) # -------------------------------- # this corresponding (b=1) to IHT w_hat = algo_sto_iht_backtracking( x_tr, y_tr, w0, max_epochs, s, 1, lambda_) x_te, y_te = te_data['x'], te_data['y'] pred_prob, pred_y = logistic_predict(x_te, w_hat) posi_idx = np.nonzero(y_te == 1)[0] nega_idx = np.nonzero(y_te == -1)[0] print('-' * 80) print('number of positive: %02d, missed: %02d ' 'number of negative: %02d, missed: %02d ' % (len(posi_idx), float(np.sum(pred_y[posi_idx] != 1)), len(nega_idx), float(np.sum(pred_y[nega_idx] != -1)))) v1 = np.sum(pred_y[posi_idx] != 1) / float(len(posi_idx)) v2 = np.sum(pred_y[nega_idx] != -1) / float(len(nega_idx)) res['iht']['bacc'] = (v1 + v2) / 2. res['iht']['acc'] = accuracy_score(y_true=y_te, y_pred=pred_y) res['iht']['auc'] = roc_auc_score(y_true=y_te, y_score=pred_prob) res['iht']['perf'] = res['iht']['bacc'] res['iht']['w_hat'] = w_hat print('iht -- sparsity: %02d intercept: %.4f bacc: %.4f ' 'non-zero: %.2f' % (s, w_hat[-1], res['iht']['bacc'], len(np.nonzero(w_hat)[0]) - 1)) # -------------------------------- w_hat = algo_sto_iht_backtracking( x_tr, y_tr, w0, max_epochs, s, num_blocks, lambda_) x_te, y_te = te_data['x'], te_data['y'] pred_prob, pred_y = logistic_predict(x_te, w_hat) posi_idx = np.nonzero(y_te == 1)[0] nega_idx = np.nonzero(y_te == -1)[0] v1 = np.sum(pred_y[posi_idx] != 1) / float(len(posi_idx)) v2 = np.sum(pred_y[nega_idx] != -1) / float(len(nega_idx)) res['sto-iht']['bacc'] = (v1 + v2) / 2. res['sto-iht']['acc'] = accuracy_score(y_true=y_te, y_pred=pred_y) res['sto-iht']['auc'] = roc_auc_score(y_true=y_te, y_score=pred_prob) res['sto-iht']['perf'] = res['sto-iht']['bacc'] res['sto-iht']['w_hat'] = w_hat print('sto-iht -- sparsity: %02d intercept: %.4f bacc: %.4f ' 'non-zero: %.2f' % (s, w_hat[-1], res['sto-iht']['bacc'], len(np.nonzero(w_hat)[0]) - 1)) tr_data = dict() tr_data['x'] = data['x'][tr_idx, :] tr_data['y'] = data['y'][tr_idx] te_data = dict() te_data['x'] = data['x'][te_idx, :] te_data['y'] = data['y'][te_idx] x_tr, y_tr = tr_data['x'], tr_data['y'] w0 = np.zeros(np.shape(x_tr)[1] + 1) # -------------------------------- # this corresponding (b=1) to GraphIHT w_hat = algo_graph_sto_iht_backtracking( x_tr, y_tr, w0, max_epochs, s, data['edges'], data['costs'], 1, lambda_) x_te, y_te = te_data['x'], te_data['y'] pred_prob, pred_y = logistic_predict(x_te, w_hat) posi_idx = np.nonzero(y_te == 1)[0] nega_idx = np.nonzero(y_te == -1)[0] v1 = np.sum(pred_y[posi_idx] != 1) / float(len(posi_idx)) v2 = np.sum(pred_y[nega_idx] != -1) / float(len(nega_idx)) res['graph-iht']['bacc'] = (v1 + v2) / 2. res['graph-iht']['acc'] = accuracy_score(y_true=y_te, y_pred=pred_y) res['graph-iht']['auc'] = roc_auc_score(y_true=y_te, y_score=pred_prob) res['graph-iht']['perf'] = res['graph-iht']['bacc'] res['graph-iht']['w_hat'] = w_hat print('graph-iht -- sparsity: %02d intercept: %.4f bacc: %.4f ' 'non-zero: %.2f' % (s, w_hat[-1], res['graph-iht']['bacc'], len(np.nonzero(w_hat)[0]) - 1)) # -------------------------------- w_hat = algo_graph_sto_iht_backtracking( x_tr, y_tr, w0, max_epochs, s, data['edges'], data['costs'], num_blocks, lambda_) x_te, y_te = te_data['x'], te_data['y'] pred_prob, pred_y = logistic_predict(x_te, w_hat) posi_idx = np.nonzero(y_te == 1)[0] nega_idx = np.nonzero(y_te == -1)[0] v1 = np.sum(pred_y[posi_idx] != 1) / float(len(posi_idx)) v2 = np.sum(pred_y[nega_idx] != -1) / float(len(nega_idx)) res['graph-sto-iht']['bacc'] = (v1 + v2) / 2. res['graph-sto-iht']['acc'] = accuracy_score(y_true=y_te, y_pred=pred_y) res['graph-sto-iht']['auc'] = roc_auc_score(y_true=y_te, y_score=pred_prob) res['graph-sto-iht']['perf'] = res['graph-sto-iht']['bacc'] res['graph-sto-iht']['w_hat'] = w_hat print('graph-sto-iht -- sparsity: %02d intercept: %.4f bacc: %.4f ' 'non-zero: %.2f' % (s, w_hat[-1], res['graph-sto-iht']['bacc'], len(np.nonzero(w_hat)[0]) - 1)) return s, num_blocks, lambda_, res, fold_i, subfold_i def run_parallel_tr( data, method_list, s_list, b_list, lambda_list, max_epochs, num_cpus, fold_i): # 5-fold cross validation s_auc = {_: {(s, num_blocks, lambda_): 0.0 for (s, num_blocks, lambda_) in product(s_list, b_list, lambda_list)} for _ in method_list} s_acc = {_: {(s, num_blocks, lambda_): 0.0 for (s, num_blocks, lambda_) in product(s_list, b_list, lambda_list)} for _ in method_list} s_bacc = {_: {(s, num_blocks, lambda_): 0.0 for (s, num_blocks, lambda_) in product(s_list, b_list, lambda_list)} for _ in method_list} input_paras = [] for sf_ii in range(len(data['data_subsplits'][fold_i])): s_tr = data['data_subsplits'][fold_i][sf_ii]['train'] s_te = data['data_subsplits'][fold_i][sf_ii]['test'] for s, num_block, lambda_ in product(s_list, b_list, lambda_list): input_paras.append( (data, method_list, s_tr, s_te, s, num_block, lambda_, max_epochs, fold_i, sf_ii)) pool = multiprocessing.Pool(processes=num_cpus) results_pool = pool.map(run_single_test, input_paras) pool.close() pool.join() sub_res = dict() for item in results_pool: s, num_blocks, lambda_, re, fold_i, subfold_i = item if subfold_i not in sub_res: sub_res[subfold_i] = [] sub_res[subfold_i].append((s, num_blocks, lambda_, re)) for sf_ii in sub_res: res = {_: dict() for _ in method_list} for _ in method_list: res[_]['s_list'] = s_list res[_]['b_list'] = b_list res[_]['lambda_list'] = lambda_list res[_]['auc'] = dict() res[_]['acc'] = dict() res[_]['bacc'] = dict() res[_]['perf'] = dict() res[_]['w_hat'] = {(s, num_blocks, lambda_): None for (s, num_blocks, lambda_) in product(s_list, b_list, lambda_list)} for s, num_blocks, lambda_, re in sub_res[sf_ii]: for _ in method_list: res[_]['auc'][(s, num_blocks, lambda_)] = re[_]['auc'] res[_]['acc'][(s, num_blocks, lambda_)] = re[_]['acc'] res[_]['bacc'][(s, num_blocks, lambda_)] = re[_]['bacc'] res[_]['perf'][(s, num_blocks, lambda_)] = re[_]['perf'] res[_]['w_hat'][(s, num_blocks, lambda_)] = re[_]['w_hat'] for _ in method_list: for (s, num_blocks, lambda_) in \ product(s_list, b_list, lambda_list): key_para = (s, num_blocks, lambda_) s_auc[_][key_para] += res[_]['auc'][key_para] s_acc[_][key_para] += res[_]['acc'][key_para] s_bacc[_][key_para] += res[_]['bacc'][key_para] # tune by balanced accuracy s_star = dict() for _ in method_list: s_star[_] = min(s_bacc[_], key=s_bacc[_].get) best_para = s_star[_] print('tr %15s fold_%2d s: %02d b: %03d lambda: %.4f bacc: %.4f' % (_, fold_i, best_para[0], best_para[1], best_para[2], s_bacc[_][best_para] / 5.0)) return s_star, s_bacc def run_parallel_te( data, method_list, tr_idx, te_idx, s_list, b_list, lambda_list, max_epochs, num_cpus): res = {_: dict() for _ in method_list} for _ in method_list: res[_]['s_list'] = s_list res[_]['b_list'] = b_list res[_]['lambda_list'] = lambda_list res[_]['auc'] = dict() res[_]['acc'] = dict() res[_]['bacc'] = dict() res[_]['perf'] = dict() res[_]['w_hat'] = {(s, num_blocks, lambda_): None for (s, num_blocks, lambda_) in product(s_list, b_list, lambda_list)} input_paras = [(data, method_list, tr_idx, te_idx, s, num_block, lambda_, max_epochs, '', '') for s, num_block, lambda_ in product(s_list, b_list, lambda_list)] pool = multiprocessing.Pool(processes=num_cpus) results_pool = pool.map(run_single_test, input_paras) pool.close() pool.join() for s, num_blocks, lambda_, re, fold_i, subfold_i in results_pool: for _ in method_list: res[_]['auc'][(s, num_blocks, lambda_)] = re[_]['auc'] res[_]['acc'][(s, num_blocks, lambda_)] = re[_]['acc'] res[_]['bacc'][(s, num_blocks, lambda_)] = re[_]['bacc'] res[_]['perf'][(s, num_blocks, lambda_)] = re[_]['perf'] res[_]['w_hat'][(s, num_blocks, lambda_)] = re[_]['w_hat'] return res def get_single_data(trial_i, root_input): import scipy.io as sio cancer_related_genes = { 4288: 'MKI67', 1026: 'CDKN1A', 472: 'ATM', 7033: 'TFF3', 2203: 'FBP1', 7494: 'XBP1', 1824: 'DSC2', 1001: 'CDH3', 11200: 'CHEK2', 7153: 'TOP2A', 672: 'BRCA1', 675: 'BRCA2', 580: 'BARD1', 9: 'NAT1', 771: 'CA12', 367: 'AR', 7084: 'TK2', 5892: 'RAD51D', 2625: 'GATA3', 7155: 'TOP2B', 896: 'CCND3', 894: 'CCND2', 10551: 'AGR2', 3169: 'FOXA1', 2296: 'FOXC1'} data = dict() f_name = 'overlap_data_%02d.mat' % trial_i re = sio.loadmat(root_input + f_name)['save_data'][0][0] data['data_X'] = np.asarray(re['data_X'], dtype=np.float64) data_y = [_[0] for _ in re['data_Y']] data['data_Y'] = np.asarray(data_y, dtype=np.float64) data_edges = [[_[0] - 1, _[1] - 1] for _ in re['data_edges']] data['data_edges'] = np.asarray(data_edges, dtype=int) data_pathways = [[_[0], _[1]] for _ in re['data_pathways']] data['data_pathways'] = np.asarray(data_pathways, dtype=int) data_entrez = [_[0] for _ in re['data_entrez']] data['data_entrez'] = np.asarray(data_entrez, dtype=int) data['data_splits'] = {i: dict() for i in range(5)} data['data_subsplits'] = {i: {j: dict() for j in range(5)} for i in range(5)} for i in range(5): xx = re['data_splits'][0][i][0][0]['train'] data['data_splits'][i]['train'] = [_ - 1 for _ in xx[0]] xx = re['data_splits'][0][i][0][0]['test'] data['data_splits'][i]['test'] = [_ - 1 for _ in xx[0]] for j in range(5): xx = re['data_subsplits'][0][i][0][j]['train'][0][0] data['data_subsplits'][i][j]['train'] = [_ - 1 for _ in xx[0]] xx = re['data_subsplits'][0][i][0][j]['test'][0][0] data['data_subsplits'][i][j]['test'] = [_ - 1 for _ in xx[0]] re_path = [_[0] for _ in re['re_path_varInPath']] data['re_path_varInPath'] = np.asarray(re_path) re_path_entrez = [_[0] for _ in re['re_path_entrez']] data['re_path_entrez'] = np.asarray(re_path_entrez) re_path_ids = [_[0] for _ in re['re_path_ids']] data['re_path_ids'] = np.asarray(re_path_ids) re_path_lambdas = [_ for _ in re['re_path_lambdas'][0]] data['re_path_lambdas'] = np.asarray(re_path_lambdas) re_path_groups = [_[0][0] for _ in re['re_path_groups_lasso'][0]] data['re_path_groups_lasso'] = np.asarray(re_path_groups) re_path_groups_overlap = [_[0][0] for _ in re['re_path_groups_overlap'][0]] data['re_path_groups_overlap'] = np.asarray(re_path_groups_overlap) re_edge = [_[0] for _ in re['re_edge_varInGraph']] data['re_edge_varInGraph'] = np.asarray(re_edge) re_edge_entrez = [_[0] for _ in re['re_edge_entrez']] data['re_edge_entrez'] = np.asarray(re_edge_entrez) data['re_edge_groups_lasso'] = np.asarray(re['re_edge_groups_lasso']) data['re_edge_groups_overlap'] = np.asarray(re['re_edge_groups_overlap']) for method in ['re_path_re_lasso', 're_path_re_overlap', 're_edge_re_lasso', 're_edge_re_overlap']: res = {fold_i: dict() for fold_i in range(5)} for fold_ind, fold_i in enumerate(range(5)): res[fold_i]['lambdas'] = re[method][0][fold_i]['lambdas'][0][0][0] res[fold_i]['kidx'] = re[method][0][fold_i]['kidx'][0][0][0] res[fold_i]['kgroups'] = re[method][0][fold_i]['kgroups'][0][0][0] res[fold_i]['kgroupidx'] = re[method][0][fold_i]['kgroupidx'][0][0] res[fold_i]['groups'] = re[method][0][fold_i]['groups'][0] res[fold_i]['sbacc'] = re[method][0][fold_i]['sbacc'][0] res[fold_i]['AS'] = re[method][0][fold_i]['AS'][0] res[fold_i]['completeAS'] = re[method][0][fold_i]['completeAS'][0] res[fold_i]['lstar'] = re[method][0][fold_i]['lstar'][0][0][0][0] res[fold_i]['auc'] = re[method][0][fold_i]['auc'][0] res[fold_i]['acc'] = re[method][0][fold_i]['acc'][0] res[fold_i]['bacc'] = re[method][0][fold_i]['bacc'][0] res[fold_i]['perf'] = re[method][0][fold_i]['perf'][0][0] res[fold_i]['pred'] = re[method][0][fold_i]['pred'] res[fold_i]['Ws'] = re[method][0][fold_i]['Ws'][0][0] res[fold_i]['oWs'] = re[method][0][fold_i]['oWs'][0][0] res[fold_i]['nextGrad'] = re[method][0][fold_i]['nextGrad'][0] data[method] = res import networkx as nx g = nx.Graph() ind_pathways = {_: i for i, _ in enumerate(data['data_entrez'])} all_nodes = {ind_pathways[_]: '' for _ in data['re_path_entrez']} maximum_nodes, maximum_list_edges = set(), [] for edge in data['data_edges']: if edge[0] in all_nodes and edge[1] in all_nodes: g.add_edge(edge[0], edge[1]) isolated_genes = set() maximum_genes = set() for cc in nx.connected_component_subgraphs(g): if len(cc) <= 5: for item in list(cc): isolated_genes.add(data['data_entrez'][item]) else: for item in list(cc): maximum_nodes = set(list(cc)) maximum_genes.add(data['data_entrez'][item]) maximum_nodes = np.asarray(list(maximum_nodes)) subgraph = nx.Graph() for edge in data['data_edges']: if edge[0] in maximum_nodes and edge[1] in maximum_nodes: if edge[0] != edge[1]: # remove some self-loops maximum_list_edges.append(edge) subgraph.add_edge(edge[0], edge[1]) data['map_entrez'] = np.asarray([data['data_entrez'][_] for _ in maximum_nodes]) data['edges'] = np.asarray(maximum_list_edges, dtype=int) data['costs'] = np.asarray([1.] * len(maximum_list_edges), dtype=np.float64) data['x'] = data['data_X'][:, maximum_nodes] data['y'] = data['data_Y'] data['nodes'] = np.asarray(range(len(maximum_nodes)), dtype=int) data['cancer_related_genes'] = cancer_related_genes for edge_ind, edge in enumerate(data['edges']): uu = list(maximum_nodes).index(edge[0]) vv = list(maximum_nodes).index(edge[1]) data['edges'][edge_ind][0] = uu data['edges'][edge_ind][1] = vv method_list = ['re_path_re_lasso', 're_path_re_overlap', 're_edge_re_lasso', 're_edge_re_overlap'] found_set = {method: set() for method in method_list} for method in method_list: for fold_i in range(5): best_lambda = data[method][fold_i]['lstar'] kidx = data[method][fold_i]['kidx'] re = list(data[method][fold_i]['lambdas']).index(best_lambda) ws = data[method][fold_i]['oWs'][:, re] for item in [kidx[_] for _ in np.nonzero(ws[1:])[0]]: if item in cancer_related_genes: found_set[method].add(cancer_related_genes[item]) data['found_related_genes'] = found_set return data def run_test(method_list, n_folds, max_epochs, s_list, b_list, lambda_list, folding_i, num_cpus, root_input, root_output): cv_res = {_: dict() for _ in range(n_folds)} for fold_i in range(n_folds): data = get_single_data(folding_i, root_input) tr_idx = data['data_splits'][fold_i]['train'] te_idx = data['data_splits'][fold_i]['test'] f_data = data.copy() tr_data = dict() tr_data['x'] = f_data['x'][tr_idx, :] tr_data['y'] = f_data['y'][tr_idx] tr_data['data_entrez'] = f_data['data_entrez'] f_data['x'] = data['x'] # data normalization x_mean = np.tile(np.mean(f_data['x'], axis=0), (len(f_data['x']), 1)) x_std = np.tile(np.std(f_data['x'], axis=0), (len(f_data['x']), 1)) f_data['x'] = np.nan_to_num(
np.divide(f_data['x'] - x_mean, x_std)
numpy.divide
from coffea import hist, processor from copy import deepcopy from concurrent.futures import ThreadPoolExecutor from tqdm import tqdm import pickle import lz4.frame import numpy import pandas import awkward from functools import partial from coffea.processor.executor import _futures_handler, _decompress, _reduce from coffea.processor.accumulator import accumulate from coffea.nanoevents import NanoEventsFactory, schemas from coffea.nanoevents.mapping import SimplePreloadedColumnSource import pyspark import pyspark.sql.functions as fn from pyspark.sql.types import BinaryType, StringType, StructType, StructField from jinja2 import Environment, PackageLoader, select_autoescape from coffea.util import awkward lz4_clevel = 1 # this is a UDF that takes care of summing histograms across # various spark results where the outputs are histogram blobs def agg_histos_raw(series, lz4_clevel): goodlines = series[series.str.len() > 0] if goodlines.size == 1: # short-circuit trivial aggregations return goodlines[0] return _reduce(lz4_clevel)(goodlines) @fn.pandas_udf(BinaryType(), fn.PandasUDFType.GROUPED_AGG) def agg_histos(series): global lz4_clevel return agg_histos_raw(series, lz4_clevel) def reduce_histos_raw(df, lz4_clevel): histos = df['histos'] outhist = _reduce(lz4_clevel)(histos[histos.str.len() > 0]) return pandas.DataFrame(data={'histos':
numpy.array([outhist], dtype='O')
numpy.array
''' Modified from https://github.com/wengong-jin/nips17-rexgen/blob/master/USPTO/core-wln-global/mol_graph.py ''' import chainer import numpy as np from rdkit import Chem from rdkit import RDLogger from tqdm import tqdm from chainer_chemistry.dataset.preprocessors.gwm_preprocessor import GGNNGWMPreprocessor rdl = RDLogger.logger() rdl.setLevel(RDLogger.CRITICAL) elem_list = ['C', 'N', 'O', 'S', 'F', 'Si', 'P', 'Cl', 'Br', 'Mg', 'Na', 'Ca', 'Fe', 'As', 'Al', 'I', 'B', 'V', 'K', 'Tl', 'Yb', 'Sb', 'Sn', 'Ag', 'Pd', 'Co', 'Se', 'Ti', 'Zn', 'H', 'Li', 'Ge', 'Cu', 'Au', 'Ni', 'Cd', 'In', 'Mn', 'Zr', 'Cr', 'Pt', 'Hg', 'Pb', 'W', 'Ru', 'Nb', 'Re', 'Te', 'Rh', 'Tc', 'Ba', 'Bi', 'Hf', 'Mo', 'U', 'Sm', 'Os', 'Ir', 'Ce', 'Gd', 'Ga', 'Cs', 'unknown'] def read_data(path): data = [] with open(path, 'r') as f: for line in f: r, action = line.strip('\r\n ').split() if len(r.split('>')) != 3 or r.split('>')[1] != '': raise ValueError('invalid line:', r) react = r.split('>')[0] product = r.split('>')[-1] data.append([react, product, action]) return data def onek_encoding_unk(x, allowable_set): if x not in allowable_set: x = allowable_set[-1] return list(map(lambda s: x == s, allowable_set)) def atom_features(atom): return np.array(onek_encoding_unk(atom.GetSymbol(), elem_list) + onek_encoding_unk(atom.GetDegree(), [0, 1, 2, 3, 4, 5]) + onek_encoding_unk(atom.GetExplicitValence(), [1, 2, 3, 4, 5, 6]) + onek_encoding_unk(atom.GetImplicitValence(), [0, 1, 2, 3, 4, 5]) + [atom.GetIsAromatic()], dtype=np.float32) def bond_features(bond): bt = bond.GetBondType() return np.array([bt == Chem.rdchem.BondType.SINGLE, bt == Chem.rdchem.BondType.DOUBLE, bt == Chem.rdchem.BondType.TRIPLE, bt == Chem.rdchem.BondType.AROMATIC, 0 # add the check changed dimension. ], dtype=np.float32) def T0_data(reaction, sample_index, idxfunc=lambda x: x.GetIntProp('molAtomMapNumber') - 1): ''' data preprocessing :param reaction: [0]: reactants and reagents; [1]: products; [2]: actions(pair with two reacted atom number and changed bond type) :param sample_index: the index of the reaction in raw txt :param idxfunc: get the real index in matrix :return: f_atoms: atom feature matrix with stop node f_bonds: atom adj feature matrix with stop node super_node_x: gwm create a super node to share updated feature between several molecules label: one-hot vector of atoms participated in reaction mask_reagents: mask -1 in the position of reagents mask_reactants_reagents: mask -1 in the position of reagents and give high values of reacted atoms pair_label: sort the reacted atoms' indies, then create pair matrix label. size=|steps|*|reacted atoms|*|reacted atoms| mask_pair_select: for |atoms|-|reagents| < 10, give 0 mask for pair matrics action_final: size=(|steps|+1)*4; for each step: [idx1, idx2, (bond type), (pair index in pair matrix)]; the added one step if for stop signal step_num: |action_final| - 1 stop_idx: index of stop node sample_index: the index of the reaction in raw txt ''' mol = Chem.MolFromSmiles(reaction[0]) n_atoms = mol.GetNumAtoms() atom_fdim = len(elem_list) + 6 + 6 + 6 + 1 f_atoms = np.zeros((n_atoms + 1, atom_fdim)) for atom in mol.GetAtoms(): f_atoms[idxfunc(atom)] = atom_features(atom) f_bonds = np.zeros( (4 + 1, n_atoms + 1, n_atoms + 1)) for bond in mol.GetBonds(): a1 = idxfunc(bond.GetBeginAtom()) a2 = idxfunc(bond.GetEndAtom()) bond_f = bond_features(bond) f_bonds[:, a1, a2] = bond_f f_bonds[:, a2, a1] = bond_f super_node_x = GGNNGWMPreprocessor().get_input_features(mol)[2] # 13-19-1.0;13-7-0.0 --> b=[12,18,6] ---> b=[6,12,18] b = [] for a in reaction[2].split(';'): b.append(int(a.split('-')[0]) - 1) b.append(int(a.split('-')[1]) - 1) b = list(set(b)) b.sort() # one-hot vector of reacted atoms, add stop node; will -=1 after padding label = np.ones(n_atoms + 1).astype(np.int32) label[b] = 2 # action array: note that it stacked [-1, -1, -1] for stop step; will -=1 after padding action = np.array(reaction[2].replace(';', '-').split('-')).astype('float32').astype('int32').reshape(-1, 3) step_num = np.array(action.shape[0]) assert step_num == len(reaction[2].split(';')) # actions should be shuffled np.random.shuffle(action) action = np.vstack([action, np.zeros(3).astype('int32') - 1]) # stop node idx stop_idx = np.array([n_atoms]) ''' 9.19 discussion: reagents should not be masked ''' # reagents mask when select atoms; note that this mask will not used when calculating loss; will -=2 after padding mask_reagents = np.ones(n_atoms + 1).astype('int32') mask_reagents += 1 mask_reagents[-1] = 0 c = [] for molecular in reaction[0].split('.'): reactant_bool = False for atomIdx in b: if ':' + str(atomIdx + 1) + ']' in molecular: reactant_bool = True break if reactant_bool is False: m_tmp = Chem.MolFromSmiles(molecular) for atom_tmp in m_tmp.GetAtoms(): c.append(idxfunc(atom_tmp)) mask_reagents[c] = 1 # reagents mask is same as mask_reagents, reactants mask give large values according to sorted b list; will -=2 after padding mask_reactants_reagents =
np.ones(n_atoms + 1)
numpy.ones
import numpy as np import os def get_Wqb_value(file_duck_dat): f = open(file_duck_dat,'r') data = [] for line in f: a = line.split() data.append([float(a[1]), float(a[3]), float(a[5]), float(a[8])]) f.close() data = np.array(data[1:]) Work = data[:,3] #split it into segments of 200 points num_segments = int(len(data)/200) num_segments = int(len(data)/200) #alayze each segment to see if minimum in the segment is the local minimum #local minimum is the point with the lowest value of 200 neighbouring points #first local minumum is miminum used later to duck analysis for segment in range(num_segments): #detecting minium inthe segment sub_data = data[segment * 200 : (segment + 1) * 200] sub_Work = sub_data[:,3] index_local = np.argmin(sub_Work) #segment of 200 points arround detected minimum index_global = index_local + segment * 200 if index_global > 100: sub2_data = data[index_global - 100 : index_global + 101] else: sub2_data = data[0 : index_global + 101] sub2_Work = sub2_data[:,3] index_local2 =
np.argmin(sub2_Work)
numpy.argmin
#!/usr/bin/env python # <NAME> # Last Change : 2007-08-24 10:19 from __future__ import absolute_import import unittest import numpy import numpy.random import os.path from numpy.testing import assert_almost_equal from PyDSTool.Toolbox.optimizers.criterion import * from PyDSTool.Toolbox.optimizers.helpers import ForwardFiniteDifferences, CenteredFiniteDifferences from PyDSTool.Toolbox.optimizers.line_search import * from PyDSTool.Toolbox.optimizers.optimizer import * from PyDSTool.Toolbox.optimizers.step import * class Function(ForwardFiniteDifferences): def __call__(self, x): return (x[0] - 2) ** 2 + (2 * x[1] + 4) ** 2 class test_ForwardFiniteDifferences(unittest.TestCase): def test_gradient_optimization(self): startPoint = numpy.zeros(2, numpy.float) optimi = StandardOptimizer(function = Function(), step = FRConjugateGradientStep(), criterion = criterion(iterations_max = 100, ftol = 0.0000001, gtol=0.0001), x0 = startPoint, line_search = StrongWolfePowellRule()) assert_almost_equal(optimi.optimize(), numpy.array((2., -2))) def test_hessian_optimization(self): startPoint =
numpy.zeros(2, numpy.float)
numpy.zeros
from pathlib import Path import argparse import functools import os import numpy as np from tqdm import tqdm from glob import glob import random import json import multiprocessing from osgeo import gdal import cv2 from misc_utils import load_image, save_image, load_vflow def rect_flow(rgb, mag, angle, agl): # filter magnitude of input flow vectors mag = cv2.medianBlur(mag, 5) # initialize output images with zeros output_rgb = np.zeros(rgb.shape, dtype=np.uint8) output_mag = np.zeros(mag.shape, dtype=np.float32) output_agl = np.zeros(agl.shape, dtype=np.float32) output_mask = np.ones(mag.shape, dtype=np.uint8) # get the flow vectors to map original features to new images y2 = mag * np.sin(angle) x2 = mag * np.cos(angle) x2 = (x2 + 0.5).astype(np.int32) y2 = (y2 + 0.5).astype(np.int32) rows, cols = np.mgrid[0 : mag.shape[0], 0 : mag.shape[1]] rows2 = np.clip(rows + x2, 0, mag.shape[0] - 1) cols2 = np.clip(cols + y2, 0, mag.shape[1] - 1) # map input pixel values to output images for i in range(0, mag.shape[0]): for j in range(0, mag.shape[0]): # favor taller things in output; this is a hard requirement if mag[rows[i, j], cols[i, j]] < output_mag[rows2[i, j], cols2[i, j]]: continue output_rgb[rows2[i, j], cols2[i, j], :] = rgb[rows[i, j], cols[i, j], :] output_agl[rows2[i, j], cols2[i, j]] = agl[rows[i, j], cols[i, j]] output_mag[rows2[i, j], cols2[i, j]] = mag[rows[i, j], cols[i, j]] output_mask[rows2[i, j], cols2[i, j]] = 0 # filter AGL filtered_agl = cv2.medianBlur(output_agl, 5) filtered_agl = cv2.medianBlur(filtered_agl, 5) filtered_agl = cv2.medianBlur(filtered_agl, 5) filtered_agl = cv2.medianBlur(filtered_agl, 5) # filter occlusion mask to fill in pixels missed due to sampling error filtered_mask = cv2.medianBlur(output_mask, 5) filtered_mask = cv2.medianBlur(filtered_mask, 5) filtered_mask = cv2.medianBlur(filtered_mask, 5) filtered_mask = cv2.medianBlur(filtered_mask, 5) # replace non-occluded but also non-mapped RGB pixels with median of neighbors interp_mask = output_mask > filtered_mask filtered_rgb = cv2.medianBlur(output_rgb, 5) output_rgb[interp_mask, 0] = filtered_rgb[interp_mask, 0] output_rgb[interp_mask, 1] = filtered_rgb[interp_mask, 1] output_rgb[interp_mask, 2] = filtered_rgb[interp_mask, 2] return output_rgb, filtered_agl, filtered_mask def write_rectified_images(rgb, mag, angle_rads, agl, output_rgb_path): # rectify all images rgb_rct, agl_rct, mask_rct = rect_flow(rgb, mag, angle_rads, agl) # format AGL image max_agl = np.nanpercentile(agl, 99) agl_rct[mask_rct > 0] = 0.0 agl_rct[agl_rct > max_agl] = max_agl agl_rct *= 255.0 / max_agl agl_rct = 255.0 - agl_rct agl_rct = agl_rct.astype(np.uint8) # format RGB image rgb_rct[mask_rct > 0, 0] = 135 rgb_rct[mask_rct > 0, 1] = 206 rgb_rct[mask_rct > 0, 2] = 250 save_image(output_rgb_path, rgb) save_image(output_rgb_path.replace(".tif", "_RECT.tif"), rgb_rct) # AGL with rectification rgb_rct[:, :, 0] = agl_rct rgb_rct[:, :, 1] = agl_rct rgb_rct[:, :, 2] = agl_rct rgb_rct[mask_rct > 0, 0] = 135 rgb_rct[mask_rct > 0, 1] = 206 rgb_rct[mask_rct > 0, 2] = 250 save_image( output_rgb_path.replace("RGB", "AGL").replace(".tif", "_RECT.tif"), rgb_rct ) # AGL without rectification agl_norect = np.copy(agl) agl_norect[agl_norect > max_agl] = max_agl agl_norect *= 255.0 / max_agl agl_norect = 255.0 - agl_norect agl_norect = agl_norect.astype(np.uint8) save_image(output_rgb_path.replace("RGB", "AGL"), agl_norect) def get_current_metrics(item, args): # get arguments vflow_gt_path, agl_gt_path, vflow_pred_path, aglpred_path, rgb_path, args = item # load AGL, SCALE, and ANGLE predicted values agl_pred = load_image(aglpred_path, args) if agl_pred is None: return None vflow_items = load_vflow( vflow_pred_path, agl=agl_pred, args=args, return_vflow_pred_mat=True ) if vflow_items is None: return None vflow_pred, mag_pred, xdir_pred, ydir_pred, vflow_data = vflow_items scale_pred, angle_pred = vflow_data["scale"], vflow_data["angle"] # load AGL, SCALE, and ANGLE ground truth values agl_gt = load_image(agl_gt_path, args) if agl_gt is None: return None vflow_gt_items = load_vflow(vflow_gt_path, agl_gt, args, return_vflow_pred_mat=True) if vflow_gt_items is None: return None vflow_gt, mag_gt, xdir_gt, ydir_gt, vflow_gt_data = vflow_gt_items scale_gt, angle_gt = vflow_gt_data["scale"], vflow_gt_data["angle"] # produce rectified images if args.rectify and args.output_dir is not None: rgb = load_image(rgb_path, args) output_rgb_path = os.path.join(args.output_dir, os.path.basename(rgb_path)) write_rectified_images(rgb, mag_pred, angle_pred, agl_pred, output_rgb_path) # compute differences dir_pred = np.array([xdir_pred, ydir_pred]) dir_pred /= np.linalg.norm(dir_pred) dir_gt = np.array([xdir_gt, ydir_gt]) dir_gt /= np.linalg.norm(dir_gt) cos_ang = np.dot(dir_pred, dir_gt) sin_ang = np.linalg.norm(np.cross(dir_pred, dir_gt)) rad_diff = np.arctan2(sin_ang, cos_ang) # get mean error values angle_error = np.degrees(rad_diff) scale_error = np.abs(scale_pred - scale_gt) mag_error = np.nanmean(np.abs(mag_pred - mag_gt)) epe = np.nanmean(np.sqrt(np.sum(np.square(vflow_gt - vflow_pred), axis=2))) agl_error = np.nanmean(np.abs(agl_pred - agl_gt)) # get RMS error values mag_rms = np.sqrt(np.nanmean(np.square(mag_pred - mag_gt))) epe_rms = np.sqrt(np.nanmean(np.sum(np.square(vflow_gt - vflow_pred), axis=2))) agl_rms = np.sqrt(np.nanmean(np.square(agl_pred - agl_gt))) # gather data for computing R-square for AGL agl_count = np.sum(np.isfinite(agl_gt)) agl_sse = np.nansum(np.square(agl_pred - agl_gt)) agl_gt_sum = np.nansum(agl_gt) # gather data for computing R-square for VFLOW vflow_count = np.sum(np.isfinite(vflow_gt)) vflow_gt_sum = np.nansum(vflow_gt) vflow_sse = np.nansum(np.square(vflow_pred - vflow_gt)) items = ( angle_error, scale_error, mag_error, epe, agl_error, mag_rms, epe_rms, agl_rms, agl_count, agl_sse, agl_gt_sum, vflow_count, vflow_sse, vflow_gt_sum, ) return items def get_r2_denoms(item, agl_gt_mean, vflow_gt_mean): ( vflow_gt_path, agl_gt_path, vflow_pred_path, aglpred_path, rgb_path, args, ) = item agl_gt = load_image(agl_gt_path, args) vflow_gt_items = load_vflow(vflow_gt_path, agl_gt, args, return_vflow_pred_mat=True) vflow_gt, mag_gt, xdir_gt, ydir_gt, vflow_gt_data = vflow_gt_items scale_gt, angle_gt = vflow_gt_data["scale"], vflow_gt_data["angle"] agl_denom = np.nansum(np.square(agl_gt - agl_gt_mean)) vflow_denom = np.nansum(np.square(vflow_gt - vflow_gt_mean)) items = (agl_denom, vflow_denom) return items def get_city_scores(args, site): # build lists of images to process vflow_gt_paths = glob(os.path.join(args.truth_dir, site + "*_VFLOW*.json")) if vflow_gt_paths == []: return np.nan angle_error, scale_error, mag_error, epe, agl_error, mag_rms, epe_rms, agl_rms = ( [], [], [], [], [], [], [], [], ) items = [] for vflow_gt_path in vflow_gt_paths: vflow_name = os.path.basename(vflow_gt_path) agl_name = vflow_name.replace("_VFLOW", "_AGL").replace(".json", ".tif") agl_gt_path = os.path.join(args.truth_dir, agl_name) rgb_path = agl_gt_path.replace("AGL", "RGB").replace( ".tif", f".{args.rgb_suffix}" ) vflow_pred_path = os.path.join(args.predictions_dir, vflow_name) agl_pred_path = os.path.join(args.predictions_dir, agl_name) items.append( (vflow_gt_path, agl_gt_path, vflow_pred_path, agl_pred_path, rgb_path, args) ) # compute metrics for each image pool = multiprocessing.Pool(args.num_processes) results = [] for result in tqdm( pool.imap_unordered(functools.partial(get_current_metrics, args=args), items), total=len(items), ): results.append(result) pool.close() pool.join() # initialize AGL and VFLOW R-square data agl_count, agl_sse, agl_gt_sum, vflow_count, vflow_sse, vflow_gt_sum = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ) # gather results from list angle_error, scale_error, mag_error, epe, agl_error, mag_rms, epe_rms, agl_rms = ( [], [], [], [], [], [], [], [], ) for result in results: # get metrics for next image if result is None: return 0.0 ( curr_angle_error, curr_scale_error, curr_mag_error, curr_epe, curr_agl_error, curr_mag_rms, curr_epe_rms, curr_agl_rms, curr_agl_count, curr_agl_sse, curr_agl_gt_sum, curr_vflow_count, curr_vflow_sse, curr_vflow_gt_sum, ) = result # add metrics to lists angle_error.append(curr_angle_error) scale_error.append(curr_scale_error) mag_error.append(curr_mag_error) epe.append(curr_epe) mag_rms.append(curr_mag_rms) epe_rms.append(curr_epe_rms) agl_error.append(curr_agl_error) agl_rms.append(curr_agl_rms) # update data for AGL R-square agl_count = agl_count + curr_agl_count agl_sse = agl_sse + curr_agl_sse agl_gt_sum = agl_gt_sum + curr_agl_gt_sum # update data for VFLOW R-square vflow_count = vflow_count + curr_vflow_count vflow_sse = vflow_sse + curr_vflow_sse vflow_gt_sum = vflow_gt_sum + curr_vflow_gt_sum # compute statistics over all images mean_angle_error = np.nanmean(angle_error) rms_angle_error = np.sqrt(np.nanmean(
np.square(angle_error)
numpy.square
""" Tests for ConvMolFeaturizer. """ import unittest import numpy as np from deepchem.feat.graph_features import ConvMolFeaturizer class TestConvMolFeaturizer(unittest.TestCase): """ Test ConvMolFeaturizer featurizes properly. """ def test_carbon_nitrogen(self): """Test on carbon nitrogen molecule""" # Note there is a central nitrogen of degree 4, with 4 carbons # of degree 1 (connected only to central nitrogen). raw_smiles = ['C[N+](C)(C)C'] import rdkit.Chem mols = [rdkit.Chem.MolFromSmiles(s) for s in raw_smiles] featurizer = ConvMolFeaturizer() mols = featurizer.featurize(mols) mol = mols[0] # 5 atoms in compound assert mol.get_num_atoms() == 5 # Get the adjacency lists grouped by degree deg_adj_lists = mol.get_deg_adjacency_lists() assert np.array_equal(deg_adj_lists[0], np.zeros([0, 0], dtype=np.int32)) # The 4 outer atoms connected to central nitrogen assert np.array_equal(deg_adj_lists[1],
np.array([[4], [4], [4], [4]], dtype=np.int32)
numpy.array
import math import pickle import numpy as np from skimage import morphology, measure def yes_or_no(question: str)->bool: reply = str(input(question+' (y/n): ')).lower().strip() if reply == '': return True if reply[0] == 'y': return True if reply[0] == 'n': return False else: return yes_or_no("Uhhhh... please enter ") # obj0, obj1, obj2 are created here... def save(filename, objects): file = filename # Saving the objects: with open(file, 'wb') as f: # Python 3: open(..., 'wb') pickle.dump(objects, f) def load(filename): file = filename # Getting back the objects: with open(file, 'rb') as f: # Python 3: open(..., 'rb') object = pickle.load(f) return object def convert_rectangle(bbox: tuple)->dict: rect = {'y': bbox[0], 'x': bbox[1], 'width': bbox[3] - bbox[1], 'height': bbox[2] - bbox[0]} return rect def crop_image(image: np.array, bbox: tuple)->np.array: yi = bbox[0] xi = bbox[1] yf = bbox[2] xf = bbox[3] crop = image[yi:yf, xi:xf] return crop def mean2(x): y =
np.sum(x)
numpy.sum
import unittest from ancb import NumpyCircularBuffer from ancb import ( # type: ignore star_can_broadcast, can_broadcast ) from numpy import array_equal, allclose, shares_memory from numpy import array, zeros, arange, ndarray, ones, empty from numpy.random import rand, randint from numpy import fill_diagonal, roll from itertools import zip_longest from operator import ( matmul, add, sub, mul, truediv, mod, floordiv, pow, rshift, lshift, and_, or_, xor, neg, pos, abs, inv, invert, iadd, iand, ifloordiv, ilshift, imod, imul, ior, ipow, irshift, isub, itruediv, ixor ) class TestBroadcastability(unittest.TestCase): def test_broadcastablity(self): x = zeros((1, 2, 3, 4, 5)) y = zeros((1, 1, 1, 4, 5)) z = zeros((1, 1, 1, 3, 5)) w = zeros(1) self.assertTrue(can_broadcast(x.shape, y.shape)) self.assertFalse(can_broadcast(x.shape, z.shape)) self.assertFalse(can_broadcast(y.shape, z.shape)) self.assertTrue(can_broadcast(x.shape, x.shape)) self.assertTrue(can_broadcast(y.shape, y.shape)) self.assertTrue(can_broadcast(z.shape, z.shape)) self.assertTrue(can_broadcast(w.shape, w.shape)) self.assertTrue(can_broadcast(x.shape, w.shape)) self.assertTrue(can_broadcast(y.shape, w.shape)) self.assertTrue(can_broadcast(z.shape, w.shape)) def test_star_broadcastablity(self): x = zeros((1, 2, 3, 4, 5)) y = zeros((1, 1, 1, 4, 5)) z = zeros((1, 1, 1, 3, 5)) w = zeros(1) starexpr = zip_longest(x.shape, y.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(x.shape, z.shape, fillvalue=1) self.assertFalse(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, z.shape, fillvalue=1) self.assertFalse(star_can_broadcast(starexpr)) starexpr = zip_longest(x.shape, x.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, y.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(z.shape, z.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(w.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(x.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(z.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) class OperatorTestFactory(type): def __new__(cls, name, bases, dct): obj = super().__new__(cls, name, bases, dct) bin_operators = [ matmul, add, sub, mul, truediv, mod, floordiv, pow ] un_operators = [neg, pos, abs, invert, inv] bitbin_operators = [rshift, lshift, and_, or_, xor] i_operators = [ iadd, ifloordiv, imul, ipow, isub, itruediv ] bit_ioperators = [ ilshift, irshift, ior, iand, ixor, imod ] def unop_testcase(op): def f(self): data = zeros(3, dtype=int) test = -arange(3, dtype=int) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(-1) buffer.append(-2) res = op(buffer) self.assertIsInstance(res, ndarray) self.assertTrue(array_equal(res, op(test))) # unfrag buffer.append(-3) test -= 1 res = op(buffer) self.assertIsInstance(res, ndarray) self.assertTrue(array_equal(res, op(test))) # frag return f def bitbinop_testcase(op): def f(self): data = zeros(3, dtype=int) test = arange(1, 4, dtype=int) x = randint(3) buffer = NumpyCircularBuffer(data) buffer.append(1) buffer.append(2) buffer.append(3) res1 = op(buffer, x) res2 = op(x, buffer) self.assertIsInstance(res1, ndarray) self.assertIsInstance(res2, ndarray) self.assertTrue(array_equal(res1, op(test, x))) self.assertTrue(array_equal(res2, op(x, test))) buffer.append(4) test += 1 res1 = op(buffer, x) res2 = op(x, buffer) self.assertIsInstance(res1, ndarray) self.assertIsInstance(res2, ndarray) self.assertTrue(array_equal(res1, op(test, x))) self.assertTrue(array_equal(res2, op(x, test))) return f def binop_testcase(op): def f(self): data = zeros(3, dtype=float) test = arange(1, 4, dtype=float) x = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(1) buffer.append(2) buffer.append(3) res1 = op(buffer, x) self.assertIsInstance(res1, ndarray) self.assertTrue(allclose(res1, op(test, x))) res2 = op(x, buffer) self.assertIsInstance(res2, ndarray) self.assertTrue(allclose(res2, op(x, test))) buffer.append(4) test += 1 res1 = op(buffer, x) self.assertIsInstance(res1, ndarray) self.assertTrue(allclose(res1, op(test, x))) res2 = op(x, buffer) self.assertIsInstance(res2, ndarray) self.assertTrue(allclose(res2, op(x, test))) return f def iop_testcase(op): def f(self): data = zeros(3, dtype=float) data2 = zeros(3, dtype=float) test1 = arange(1, 4, dtype=float) test2 = arange(2, 5, dtype=float) x = rand(3) buffer1 = NumpyCircularBuffer(data) buffer2 = NumpyCircularBuffer(data2) buffer1.append(1) buffer1.append(2) buffer1.append(3) buffer2.append(1) buffer2.append(2) buffer2.append(3) op(buffer1, x) op(test1, x) self.assertIsInstance(buffer1, NumpyCircularBuffer) self.assertTrue(array_equal(buffer1 + 0, test1)) buffer2.append(4) op(buffer2, x) op(test2, x) self.assertIsInstance(buffer2, NumpyCircularBuffer) self.assertTrue(array_equal(buffer2 + 0, test2)) return f def bitiop_testcase(op): def f(self): data = zeros(3, dtype=int) data2 = zeros(3, dtype=int) test1 = arange(1, 4, dtype=int) test2 = arange(2, 5, dtype=int) x = randint(low=1, high=100, size=3) buffer1 = NumpyCircularBuffer(data) buffer2 = NumpyCircularBuffer(data2) buffer1.append(1) buffer1.append(2) buffer1.append(3) buffer2.append(1) buffer2.append(2) buffer2.append(3) op(buffer1, x) op(test1, x) self.assertIsInstance(buffer1, NumpyCircularBuffer) self.assertTrue(allclose(buffer1 + 0, test1)) buffer2.append(4) op(buffer2, x) op(test2, x) self.assertIsInstance(buffer2, NumpyCircularBuffer) self.assertTrue(allclose(buffer2 + 0, test2)) return f for op in bin_operators: setattr(obj, 'test_{}'.format(op.__name__), binop_testcase(op)) for op in bitbin_operators: setattr(obj, 'test_{}'.format(op.__name__), bitbinop_testcase(op)) for op in un_operators: setattr(obj, 'test_{}'.format(op.__name__), unop_testcase(op)) for op in i_operators: setattr(obj, 'test_{}'.format(op.__name__), iop_testcase(op)) for op in bit_ioperators: setattr(obj, 'test_{}'.format(op.__name__), bitiop_testcase(op)) return(obj) class TestNumpyCircularBuffer( unittest.TestCase, metaclass=OperatorTestFactory ): """ NumpyCircularBuffer tests """ def test_init(self): data = zeros(3) buffer = NumpyCircularBuffer(data) self.assertTrue(array_equal(data, buffer)) def test_fragmentation(self): data = zeros(3) buffer = NumpyCircularBuffer(data) self.assertFalse(buffer.fragmented) buffer.append(0) self.assertFalse(buffer.fragmented) buffer.append(1) self.assertFalse(buffer.fragmented) buffer.append(2) self.assertFalse(buffer.fragmented) buffer.append(3) self.assertTrue(buffer.fragmented) buffer.append(4) self.assertTrue(buffer.fragmented) buffer.append(5) self.assertFalse(buffer.fragmented) buffer.pop() self.assertFalse(buffer.fragmented) buffer.pop() self.assertFalse(buffer.fragmented) buffer.pop() self.assertFalse(buffer.fragmented) def test_matmul_1d1d(self): """Tests buffer @ X where buffer.ndim == 1 and X.ndim == 1""" data = zeros(3) C = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(0) self.assertTrue(allclose(buffer @ C[:1], arange(1) @ C[:1])) buffer.append(1) self.assertTrue(allclose(buffer @ C[:2], arange(2) @ C[:2])) buffer.append(2) self.assertTrue(allclose(buffer @ C, arange(3) @ C)) buffer.append(3) self.assertTrue(allclose(buffer @ C, (arange(1, 4)) @ C)) buffer.append(4) self.assertTrue(allclose(buffer @ C, (arange(2, 5)) @ C)) buffer.append(5) self.assertTrue(allclose(buffer @ C, (arange(3, 6)) @ C)) buffer.append(6) self.assertTrue(allclose(buffer @ C, (arange(4, 7)) @ C)) buffer.pop() self.assertTrue(allclose(buffer @ C[1:], (arange(5, 7)) @ C[1:])) buffer.pop() self.assertTrue(allclose(buffer @ C[2:], (arange(6, 7)) @ C[2:])) def test_matmul_1d2d(self): """Tests buffer @ X where buffer.ndim == 1 and X.ndim == 2""" data = zeros(3) A = zeros((3, 3)) B = rand(9).reshape(3, 3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(1) buffer.append(2) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, arange(3) @ A)) self.assertTrue(allclose(res_b, arange(3) @ B)) buffer.append(3) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(allclose(res_a, arange(1, 4) @ A)) self.assertTrue(allclose(res_b, arange(1, 4) @ B)) def test_matmul_2d2d(self): """Tests buffer @ X where buffer.ndim == 2""" data = zeros((3, 3)) A = zeros(9).reshape(3, 3) B = rand(9).reshape(3, 3) fill_diagonal(A, arange(1, 4)) buffer = NumpyCircularBuffer(data) buffer.append(arange(3)) buffer.append(arange(3, 6)) buffer.append(arange(6, 9)) test = arange(9).reshape(3, 3) self.assertTrue(array_equal(buffer, test)) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) buffer.append(arange(9, 12)) test += 3 res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) def test_matmul_ndnd(self): """Tests buffer @ X where X.ndim > 2 and buffer.ndim > 2""" data = zeros((3, 3, 3)) A = zeros((3, 3, 3)) B = rand(27).reshape(3, 3, 3) C = rand(12).reshape(3, 4) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) filler = arange(9).reshape(3, 3) buffer.append(filler) buffer.append(filler + 9) buffer.append(filler + 18) test = arange(27).reshape(3, 3, 3) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) buffer.append(filler + 27) test += 9 res_a = buffer @ A res_b = buffer @ B res_c = buffer @ C self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) self.assertTrue(allclose(res_c, test @ C)) def test_rmatmul_1d1d(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim == 1""" data = zeros(3) C = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(0) res_c = C[:1] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[:1] @ arange(1))) buffer.append(1) res_c = C[:2] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[:2] @ arange(2))) buffer.append(2) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(3))) buffer.append(3) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(1, 4))) buffer.append(4) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(2, 5))) buffer.append(5) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(3, 6))) buffer.append(6) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(4, 7))) buffer.pop() res_c = C[1:] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[1:] @ arange(5, 7))) buffer.pop() res_c = C[2:] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[2:] @ arange(6, 7))) def test_rmatmul_nd1d(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim > 1""" data = zeros(3) A = zeros(9).reshape(3, 3) B = arange(9).reshape(3, 3) C = arange(3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(1) buffer.append(2) res_a = A @ buffer self.assertIsInstance(res_a, ndarray) self.assertTrue(array_equal(A @ buffer, A @ array([0, 1, 2]))) buffer.append(3) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ array([1, 2, 3]))) self.assertTrue(allclose(res_b, B @ array([1, 2, 3]))) self.assertTrue(allclose(res_c, C @ array([1, 2, 3]))) buffer.append(4) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ arange(2, 5))) self.assertTrue(allclose(res_b, B @ arange(2, 5))) self.assertTrue(allclose(res_c, C @ arange(2, 5))) buffer.append(5) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ arange(3, 6))) self.assertTrue(allclose(res_b, B @ arange(3, 6))) self.assertTrue(allclose(res_c, C @ arange(3, 6))) def test_rmatmul_1dnd(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim > 1""" data1 = zeros((3, 3)) data2 = zeros((3, 3, 3)) A = rand(3) test1 = arange(9).reshape(3, 3) test2 = arange(27).reshape(3, 3, 3) buffer1 = NumpyCircularBuffer(data1) buffer2 = NumpyCircularBuffer(data2) buffer1.append(arange(3)) buffer1.append(arange(3, 6)) buffer1.append(arange(6, 9)) buffer2.append(arange(9).reshape(3, 3)) buffer2.append(arange(9, 18).reshape(3, 3)) buffer2.append(arange(18, 27).reshape(3, 3)) res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(9, 12)) buffer2.append(arange(27, 36).reshape(3, 3)) test1 += 3 test2 += 9 res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(12, 15)) buffer2.append(arange(36, 45).reshape(3, 3)) test1 += 3 test2 += 9 res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(15, 18)) buffer2.append(arange(45, 54).reshape(3, 3)) test1 += 3 test2 += 9 res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) def test_rmatmul_2d2d(self): data = zeros((3, 3)) A = zeros(9).reshape(3, 3) B = rand(9).reshape(3, 3) C =
rand(12)
numpy.random.rand
# ### Stochlite Pybullet Environment # Last Update by <NAME> (May, 2021) import numpy as np import gym from gym import spaces import envs.environments.stoch_env.trajectory_generator as trajectory_generator import math import random from collections import deque import pybullet import envs.environments.stoch_env.bullet_client as bullet_client import pybullet_data import envs.environments.stoch_env.planeEstimation.get_terrain_normal as normal_estimator import matplotlib.pyplot as plt from envs.environments.stoch_env.utils.logger import DataLog import os # LEG_POSITION = ["fl_", "bl_", "fr_", "br_"] # KNEE_CONSTRAINT_POINT_RIGHT = [0.014, 0, 0.076] #hip # KNEE_CONSTRAINT_POINT_LEFT = [0.0,0.0,-0.077] #knee RENDER_HEIGHT = 720 RENDER_WIDTH = 960 PI = np.pi class StochliteEnv(gym.Env): def __init__(self, render = False, on_rack = False, gait = 'trot', phase = [0, PI, PI,0],#[FR, FL, BR, BL] action_dim = 20, end_steps = 1000, stairs = False, downhill =False, seed_value = 100, wedge = False, IMU_Noise = False, deg = 11): # deg = 5 self._is_stairs = stairs self._is_wedge = wedge self._is_render = render self._on_rack = on_rack self.rh_along_normal = 0.24 self.seed_value = seed_value random.seed(self.seed_value) if self._is_render: self._pybullet_client = bullet_client.BulletClient(connection_mode=pybullet.GUI) else: self._pybullet_client = bullet_client.BulletClient() # self._theta = 0 self._frequency = 2.5 # originally 2.5, changing for stability self.termination_steps = end_steps self.downhill = downhill #PD gains self._kp = 400 self._kd = 10 self.dt = 0.01 self._frame_skip = 50 self._n_steps = 0 self._action_dim = action_dim self._obs_dim = 8 self.action = np.zeros(self._action_dim) self._last_base_position = [0, 0, 0] self.last_rpy = [0, 0, 0] self._distance_limit = float("inf") self.current_com_height = 0.25 # 0.243 #wedge_parameters self.wedge_start = 0.5 self.wedge_halflength = 2 if gait is 'trot': phase = [0, PI, PI, 0] elif gait is 'walk': phase = [0, PI, 3*PI/2 ,PI/2] self._trajgen = trajectory_generator.TrajectoryGenerator(gait_type=gait, phase=phase) self.inverse = False self._cam_dist = 1.0 self._cam_yaw = 0.0 self._cam_pitch = 0.0 self.avg_vel_per_step = 0 self.avg_omega_per_step = 0 self.linearV = 0 self.angV = 0 self.prev_vel=[0,0,0] self.prev_ang_vels = [0, 0, 0] # roll_vel, pitch_vel, yaw_vel of prev step self.total_power = 0 self.x_f = 0 self.y_f = 0 self.clips=7 self.friction = 0.6 # self.ori_history_length = 3 # self.ori_history_queue = deque([0]*3*self.ori_history_length, # maxlen=3*self.ori_history_length)#observation queue self.step_disp = deque([0]*100, maxlen=100) self.stride = 5 self.incline_deg = deg self.incline_ori = 0 self.prev_incline_vec = (0,0,1) self.terrain_pitch = [] self.add_IMU_noise = IMU_Noise self.INIT_POSITION =[0,0,0.3] # [0,0,0.3], Spawning stochlite higher to remove initial drift self.INIT_ORIENTATION = [0, 0, 0, 1] self.support_plane_estimated_pitch = 0 self.support_plane_estimated_roll = 0 self.pertub_steps = 0 self.x_f = 0 self.y_f = 0 ## Gym env related mandatory variables self._obs_dim = 8 #[roll, pitch, roll_vel, pitch_vel, yaw_vel, SP roll, SP pitch, cmd_xvel, cmd_yvel, cmd_avel] observation_high = np.array([np.pi/2] * self._obs_dim) observation_low = -observation_high self.observation_space = spaces.Box(observation_low, observation_high) action_high = np.array([1] * self._action_dim) self.action_space = spaces.Box(-action_high, action_high) self.commands = np.array([0, 0, 0]) #Joystick commands consisting of cmd_x_velocity, cmd_y_velocity, cmd_ang_velocity self.max_linear_xvel = 0.5 #0.4, made zero for only ang vel # calculation is < 0.2 m steplength times the frequency 2.5 Hz self.max_linear_yvel = 0.25 #0.25, made zero for only ang vel # calculation is < 0.14 m times the frequency 2.5 Hz self.max_ang_vel = 2 #considering less than pi/2 steer angle # less than one complete rotation in one second self.max_steplength = 0.2 # by the kinematic limits of the robot self.max_steer_angle = PI/2 #plus minus PI/2 rads self.max_x_shift = 0.1 #plus minus 0.1 m self.max_y_shift = 0.14 # max 30 degree abduction self.max_z_shift = 0.1 # plus minus 0.1 m self.max_incline = 15 # in deg self.robot_length = 0.334 # measured from stochlite self.robot_width = 0.192 # measured from stochlite self.hard_reset() self.Set_Randomization(default=True, idx1=2, idx2=2) self.logger = DataLog() if(self._is_stairs): boxHalfLength = 0.1 boxHalfWidth = 1 boxHalfHeight = 0.015 sh_colBox = self._pybullet_client.createCollisionShape(self._pybullet_client.GEOM_BOX,halfExtents=[boxHalfLength,boxHalfWidth,boxHalfHeight]) boxOrigin = 0.3 n_steps = 15 self.stairs = [] for i in range(n_steps): step =self._pybullet_client.createMultiBody(baseMass=0,baseCollisionShapeIndex = sh_colBox,basePosition = [boxOrigin + i*2*boxHalfLength,0,boxHalfHeight + i*2*boxHalfHeight],baseOrientation=[0.0,0.0,0.0,1]) self.stairs.append(step) self._pybullet_client.changeDynamics(step, -1, lateralFriction=0.8) def hard_reset(self): ''' Function to 1) Set simulation parameters which remains constant throughout the experiments 2) load urdf of plane, wedge and robot in initial conditions ''' self._pybullet_client.resetSimulation() self._pybullet_client.setPhysicsEngineParameter(numSolverIterations=int(300)) self._pybullet_client.setTimeStep(self.dt/self._frame_skip) self.plane = self._pybullet_client.loadURDF("%s/plane.urdf" % pybullet_data.getDataPath()) self._pybullet_client.changeVisualShape(self.plane,-1,rgbaColor=[1,1,1,0.9]) self._pybullet_client.setGravity(0, 0, -9.8) if self._is_wedge: wedge_halfheight_offset = 0.01 self.wedge_halfheight = wedge_halfheight_offset + 1.5 * math.tan(math.radians(self.incline_deg)) / 2.0 self.wedgePos = [0, 0, self.wedge_halfheight] self.wedgeOrientation = self._pybullet_client.getQuaternionFromEuler([0, 0, self.incline_ori]) if not (self.downhill): wedge_model_path = "envs/environments/stoch_env/Wedges/uphill/urdf/wedge_" + str( self.incline_deg) + ".urdf" self.INIT_ORIENTATION = self._pybullet_client.getQuaternionFromEuler( [math.radians(self.incline_deg) * math.sin(self.incline_ori), -math.radians(self.incline_deg) * math.cos(self.incline_ori), 0]) self.robot_landing_height = wedge_halfheight_offset + 0.28 + math.tan( math.radians(self.incline_deg)) * abs(self.wedge_start) # self.INIT_POSITION = [self.INIT_POSITION[0], self.INIT_POSITION[1], self.robot_landing_height] self.INIT_POSITION = [-0.8, 0.0, 0.38] #[-0.8, 0, self.robot_landing_height] else: wedge_model_path = "envs/environments/stoch_env/Wedges/downhill/urdf/wedge_" + str( self.incline_deg) + ".urdf" self.robot_landing_height = wedge_halfheight_offset + 0.28 + math.tan( math.radians(self.incline_deg)) * 1.5 self.INIT_POSITION = [0, 0, self.robot_landing_height] # [0.5, 0.7, 0.3] #[-0.5,-0.5,0.3] self.INIT_ORIENTATION = [0, 0, 0, 1] #[ 0, -0.0998334, 0, 0.9950042 ] self.wedge = self._pybullet_client.loadURDF(wedge_model_path, self.wedgePos, self.wedgeOrientation) self.SetWedgeFriction(0.7) model_path = os.path.join(os.getcwd(), 'envs/environments/stoch_env/robots/stochlite/stochlite_description/urdf/stochlite_urdf.urdf') self.stochlite = self._pybullet_client.loadURDF(model_path, self.INIT_POSITION,self.INIT_ORIENTATION) self._joint_name_to_id, self._motor_id_list = self.BuildMotorIdList() num_legs = 4 for i in range(num_legs): self.ResetLeg(i, add_constraint=True) self.ResetPoseForAbd() if self._on_rack: self._pybullet_client.createConstraint( self.stochlite, -1, -1, -1, self._pybullet_client.JOINT_FIXED, [0, 0, 0], [0, 0, 0], [0, 0, 0.4]) self._pybullet_client.resetBasePositionAndOrientation(self.stochlite, self.INIT_POSITION, self.INIT_ORIENTATION) self._pybullet_client.resetBaseVelocity(self.stochlite, [0, 0, 0], [0, 0, 0]) self._pybullet_client.resetDebugVisualizerCamera(self._cam_dist, self._cam_yaw, self._cam_pitch, [0, 0, 0]) self.SetFootFriction(self.friction) # self.SetLinkMass(0,0) # self.SetLinkMass(11,0) def reset_standing_position(self): num_legs = 4 for i in range(num_legs): self.ResetLeg(i, add_constraint=False, standstilltorque=10) self.ResetPoseForAbd() # Conditions for standstill for i in range(300): self._pybullet_client.stepSimulation() for i in range(num_legs): self.ResetLeg(i, add_constraint=False, standstilltorque=0) def reset(self): ''' This function resets the environment Note : Set_Randomization() is called before reset() to either randomize or set environment in default conditions. ''' # self._theta = 0 self._last_base_position = [0, 0, 0] self.commands = [0, 0, 0] self.last_rpy = [0, 0, 0] self.inverse = False if self._is_wedge: self._pybullet_client.removeBody(self.wedge) wedge_halfheight_offset = 0.01 self.wedge_halfheight = wedge_halfheight_offset + 1.5 * math.tan(math.radians(self.incline_deg)) / 2.0 self.wedgePos = [0, 0, self.wedge_halfheight] self.wedgeOrientation = self._pybullet_client.getQuaternionFromEuler([0, 0, self.incline_ori]) if not (self.downhill): wedge_model_path = "envs/environments/stoch_env/Wedges/uphill/urdf/wedge_" + str(self.incline_deg) + ".urdf" self.INIT_ORIENTATION = self._pybullet_client.getQuaternionFromEuler( [math.radians(self.incline_deg) * math.sin(self.incline_ori), -math.radians(self.incline_deg) * math.cos(self.incline_ori), 0]) self.robot_landing_height = wedge_halfheight_offset + 0.28 + math.tan(math.radians(self.incline_deg)) * abs(self.wedge_start) # self.INIT_POSITION = [self.INIT_POSITION[0], self.INIT_POSITION[1], self.robot_landing_height] self.INIT_POSITION = [-0.8, 0.0, 0.38] #[-0.8, 0, self.robot_landing_height] else: wedge_model_path = "envs/environments/stoch_env/Wedges/downhill/urdf/wedge_" + str(self.incline_deg) + ".urdf" self.robot_landing_height = wedge_halfheight_offset + 0.28 + math.tan(math.radians(self.incline_deg)) * 1.5 self.INIT_POSITION = [0, 0, self.robot_landing_height] # [0.5, 0.7, 0.3] #[-0.5,-0.5,0.3] self.INIT_ORIENTATION = [0, 0, 0, 1] self.wedge = self._pybullet_client.loadURDF(wedge_model_path, self.wedgePos, self.wedgeOrientation) self.SetWedgeFriction(0.7) self._pybullet_client.resetBasePositionAndOrientation(self.stochlite, self.INIT_POSITION, self.INIT_ORIENTATION) self._pybullet_client.resetBaseVelocity(self.stochlite, [0, 0, 0], [0, 0, 0]) self.reset_standing_position() self._pybullet_client.resetDebugVisualizerCamera(self._cam_dist, self._cam_yaw, self._cam_pitch, [0, 0, 0]) self._n_steps = 0 return self.GetObservation() ''' Old Joy-stick Emulation Function def updateCommands(self, num_plays, episode_length): ratio = num_plays/episode_length if num_plays < 0.2 * episode_length: self.commands = [0, 0, 0] elif num_plays < 0.8 * episode_length: self.commands = np.array([self.max_linear_xvel, self.max_linear_yvel, self.max_ang_vel])*ratio else: self.commands = [self.max_linear_xvel, self.max_linear_yvel, self.max_ang_vel] # self.commands = np.array([self.max_linear_xvel, self.max_linear_yvel, self.max_ang_vel])*ratio ''' def apply_Ext_Force(self, x_f, y_f,link_index= 1,visulaize = False,life_time=0.01): ''' function to apply external force on the robot Args: x_f : external force in x direction y_f : external force in y direction link_index : link index of the robot where the force need to be applied visulaize : bool, whether to visulaize external force by arrow symbols life_time : life time of the visualization ''' force_applied = [x_f,y_f,0] self._pybullet_client.applyExternalForce(self.stochlite, link_index, forceObj=[x_f,y_f,0],posObj=[0,0,0],flags=self._pybullet_client.LINK_FRAME) f_mag = np.linalg.norm(np.array(force_applied)) if(visulaize and f_mag != 0.0): point_of_force = self._pybullet_client.getLinkState(self.stochlite, link_index)[0] lam = 1/(2*f_mag) dummy_pt = [point_of_force[0]-lam*force_applied[0], point_of_force[1]-lam*force_applied[1], point_of_force[2]-lam*force_applied[2]] self._pybullet_client.addUserDebugText(str(round(f_mag,2))+" N",dummy_pt,[0.13,0.54,0.13],textSize=2,lifeTime=life_time) self._pybullet_client.addUserDebugLine(point_of_force,dummy_pt,[0,0,1],3,lifeTime=life_time) def SetLinkMass(self,link_idx,mass=0): ''' Function to add extra mass to front and back link of the robot Args: link_idx : link index of the robot whose weight to need be modified mass : value of extra mass to be added Ret: new_mass : mass of the link after addition Note : Presently, this function supports addition of masses in the front and back link only (0, 11) ''' link_mass = self._pybullet_client.getDynamicsInfo(self.stochlite,link_idx)[0] if(link_idx==0): link_mass = mass # mass + 1.1 self._pybullet_client.changeDynamics(self.stochlite, 0, mass=link_mass) elif(link_idx==11): link_mass = mass # mass + 1.1 self._pybullet_client.changeDynamics(self.stochlite, 11, mass=link_mass) return link_mass def getlinkmass(self,link_idx): ''' function to retrieve mass of any link Args: link_idx : link index of the robot Ret: m[0] : mass of the link ''' m = self._pybullet_client.getDynamicsInfo(self.stochlite,link_idx) return m[0] def Set_Randomization(self, default = True, idx1 = 0, idx2=0, idx3=2, idx0=0, idx11=0, idxc=2, idxp=0, deg = 5, ori = 0): # deg = 5, changed for stochlite ''' This function helps in randomizing the physical and dynamics parameters of the environment to robustify the policy. These parameters include wedge incline, wedge orientation, friction, mass of links, motor strength and external perturbation force. Note : If default argument is True, this function set above mentioned parameters in user defined manner ''' if default: frc=[0.5,0.6,0.8] # extra_link_mass=[0,0.05,0.1,0.15] cli=[5.2,6,7,8] # pertub_range = [0, -30, 30, -60, 60] self.pertub_steps = 150 self.x_f = 0 # self.y_f = pertub_range[idxp] self.incline_deg = deg + 2*idx1 # self.incline_ori = ori + PI/12*idx2 self.new_fric_val =frc[idx3] self.friction = self.SetFootFriction(self.new_fric_val) # self.FrontMass = self.SetLinkMass(0,extra_link_mass[idx0]) # self.BackMass = self.SetLinkMass(11,extra_link_mass[idx11]) self.clips = cli[idxc] else: avail_deg = [5, 7, 9, 11, 13] # avail_ori = [-PI/2, PI/2] # extra_link_mass=[0,.05,0.1,0.15] # pertub_range = [0, -30, 30, -60, 60] cli=[5,6,7,8] self.pertub_steps = 150 #random.randint(90,200) #Keeping fixed for now self.x_f = 0 # self.y_f = pertub_range[random.randint(0,2)] self.incline_deg = avail_deg[random.randint(0, 4)] # self.incline_ori = avail_ori[random.randint(0, 1)] #(PI/12)*random.randint(0, 4) #resolution of 15 degree, changed for stochlite self.new_fric_val = np.round(np.clip(np.random.normal(0.6,0.08),0.55,0.8),2) self.friction = self.SetFootFriction(self.new_fric_val) # i=random.randint(0,3) # self.FrontMass = self.SetLinkMass(0,extra_link_mass[i]) # i=random.randint(0,3) # self.BackMass = self.SetLinkMass(11,extra_link_mass[i]) self.clips = np.round(np.clip(np.random.normal(6.5,0.4),5,8),2) def randomize_only_inclines(self, default=True, idx1=0, idx2=0, deg = 5, ori = 0): # deg = 5, changed for stochlite ''' This function only randomizes the wedge incline and orientation and is called during training without Domain Randomization ''' if default: self.incline_deg = deg + 2 * idx1 # self.incline_ori = ori + PI / 12 * idx2 else: avail_deg = [5, 7, 9, 11, 13] # avail_ori = [-PI/2, PI/2] self.incline_deg = avail_deg[random.randint(0, 4)] # self.incline_ori = avail_ori[random.randint(0, 1)] #(PI / 12) * random.randint(0, 4) # resolution of 15 degree def boundYshift(self, x, y): ''' This function bounds Y shift with respect to current X shift Args: x : absolute X-shift y : Y-Shift Ret : y : bounded Y-shift ''' if x > 0.5619: if y > 1/(0.5619-1)*(x-1): y = 1/(0.5619-1)*(x-1) return y def getYXshift(self, yx): ''' This function bounds X and Y shifts in a trapezoidal workspace ''' y = yx[:4] x = yx[4:] for i in range(0,4): y[i] = self.boundYshift(abs(x[i]), y[i]) y[i] = y[i] * 0.038 x[i] = x[i] * 0.0418 yx = np.concatenate([y,x]) return yx def transform_action(self, action): ''' Transform normalized actions to scaled offsets Args: action : 15 dimensional 1D array of predicted action values from policy in following order : [(X-shifts of FL, FR, BL, BR), (Y-shifts of FL, FR, BL, BR), (Z-shifts of FL, FR, BL, BR), (Augmented cmd_vel Vx, Vx, Wz)] Ret : action : scaled action parameters Note : The convention of Cartesian axes for leg frame in the codebase follows this order, Z points up, X forward and Y right. ''' action = np.clip(action,-1,1) # X-Shifts scaled down by 0.1 action[:4] = action[:4] * 0.1 # Y-Shifts scaled down by 0.1 and offset of 0.05m abd outside added to the respective leg, in case of 0 state or 0 policy. action[4] = action[4] * 0.1 + 0.05 action[5] = action[5] * 0.1 - 0.05 action[6] = action[6] * 0.1 + 0.05 action[7] = action[7] * 0.1 - 0.05 # X-Shifts scaled down by 0.1 action[8:12] = action[8:12] * 0.1 action[12:] = action[12:] # print('Scaled Action in env', action) return action def get_foot_contacts(self): ''' Retrieve foot contact information with the supporting ground and any special structure (wedge/stairs). Ret: foot_contact_info : 8 dimensional binary array, first four values denote contact information of feet [FR, FL, BR, BL] with the ground while next four with the special structure. ''' foot_ids = [5,2,11,8] foot_contact_info = np.zeros(8) for leg in range(4): contact_points_with_ground = self._pybullet_client.getContactPoints(self.plane, self.stochlite, -1, foot_ids[leg]) if len(contact_points_with_ground) > 0: foot_contact_info[leg] = 1 if self._is_wedge: contact_points_with_wedge = self._pybullet_client.getContactPoints(self.wedge, self.stochlite, -1, foot_ids[leg]) if len(contact_points_with_wedge) > 0: foot_contact_info[leg+4] = 1 if self._is_stairs: for steps in self.stairs: contact_points_with_stairs = self._pybullet_client.getContactPoints(steps, self.stochlite, -1, foot_ids[leg]) if len(contact_points_with_stairs) > 0: foot_contact_info[leg + 4] = 1 return foot_contact_info def step(self, action): ''' function to perform one step in the environment Args: action : array of action values Ret: ob : observation after taking step reward : reward received after taking step done : whether the step terminates the env {} : any information of the env (will be added later) ''' action = self.transform_action(action) self.do_simulation(action, n_frames = self._frame_skip) ob = self.GetObservation() reward, done = self._get_reward() return ob, reward[12], done,{'rewards': reward} def CurrentVelocities(self): ''' Returns robot's linear and angular velocities Ret: radial_v : linear velocity current_w : angular velocity ''' current_w = self.GetBaseAngularVelocity()[2] current_v = self.GetBaseLinearVelocity() radial_v = math.sqrt(current_v[0]**2 + current_v[1]**2) return radial_v, current_w def do_simulation(self, action, n_frames): ''' Converts action parameters to corresponding motor commands with the help of a elliptical trajectory controller ''' self.action = action prev_motor_angles = self.GetMotorAngles() ii = 0 leg_m_angle_cmd = self._trajgen.generate_trajectory(action, prev_motor_angles, self.dt) m_angle_cmd_ext = np.array(leg_m_angle_cmd) m_vel_cmd_ext = np.zeros(12) force_visualizing_counter = 0 for _ in range(n_frames): ii = ii + 1 applied_motor_torque = self._apply_pd_control(m_angle_cmd_ext, m_vel_cmd_ext) self._pybullet_client.stepSimulation() if self._n_steps >=self.pertub_steps and self._n_steps <= self.pertub_steps + self.stride: force_visualizing_counter += 1 if(force_visualizing_counter%7==0): self.apply_Ext_Force(self.x_f,self.y_f,visulaize=True,life_time=0.1) else: self.apply_Ext_Force(self.x_f,self.y_f,visulaize=False) contact_info = self.get_foot_contacts() pos, ori = self.GetBasePosAndOrientation() # Camera follows robot in the debug visualizer self._pybullet_client.resetDebugVisualizerCamera(self._cam_dist, 10, -10, pos) Rot_Mat = self._pybullet_client.getMatrixFromQuaternion(ori) Rot_Mat = np.array(Rot_Mat) Rot_Mat = np.reshape(Rot_Mat,(3,3)) plane_normal, self.support_plane_estimated_roll, self.support_plane_estimated_pitch = normal_estimator.vector_method_Stochlite(self.prev_incline_vec, contact_info, self.GetMotorAngles(), Rot_Mat) self.prev_incline_vec = plane_normal motor_torque = self._apply_pd_control(m_angle_cmd_ext, m_vel_cmd_ext) motor_vel = self.GetMotorVelocities() self.total_power = self.power_consumed(motor_torque, motor_vel) # print('power per step', self.total_power) # Data Logging # log_dir = os.getcwd() # self.logger.log_kv("Robot_roll", pos[0]) # self.logger.log_kv("Robot_pitch", pos[1]) # self.logger.log_kv("SP_roll", self.support_plane_estimated_roll) # self.logger.log_kv("SP_pitch", self.support_plane_estimated_pitch) # self.logger.save_log(log_dir + '/experiments/logs_sensors') # print("estimate", self.support_plane_estimated_roll, self.support_plane_estimated_pitch) # print("incline", self.incline_deg) self._n_steps += 1 def render(self, mode="rgb_array", close=False): if mode != "rgb_array": return np.array([]) base_pos, _ = self.GetBasePosAndOrientation() view_matrix = self._pybullet_client.computeViewMatrixFromYawPitchRoll( cameraTargetPosition=base_pos, distance=self._cam_dist, yaw=self._cam_yaw, pitch=self._cam_pitch, roll=0, upAxisIndex=2) proj_matrix = self._pybullet_client.computeProjectionMatrixFOV( fov=60, aspect=float(RENDER_WIDTH)/RENDER_HEIGHT, nearVal=0.1, farVal=100.0) (_, _, px, _, _) = self._pybullet_client.getCameraImage( width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix, projectionMatrix=proj_matrix, renderer=pybullet.ER_BULLET_HARDWARE_OPENGL) rgb_array =
np.array(px)
numpy.array
from _pyquat import * import math import numpy as np from scipy import linalg import warnings QUAT_SMALL = 1e-8 def fromstring(*args, **kwargs): """ Shortcut for pyquat.Quat.from_vector(numpy.fromstring()). If you don't provide a 'sep' argument, this method will supply the argument count=4 to numpy.fromstring() regardless of what you provided for it. """ if 'sep' in kwargs and kwargs['sep'] == '': kwargs['count'] = 4 return Quat(*(np.fromstring(*args, **kwargs))) def qdot(q, w, big_w = None): """ Compute dq/dt given some angular velocity w and initial quaternion q. """ if big_w is None: big_w = big_omega(w) if isinstance(q, Quat): return np.dot(big_w * 0.5, q.to_vector()) else: return np.dot(big_w * 0.5, q) def wdot(w, J, J_inv = None): """ Compute dw/dt given some angular velocity w and moment of inertia J. """ if J_inv is None: J_inv = linalg.inv(J) return np.dot(J_inv, np.dot(skew(np.dot(J, w)), w)) def state_transition_matrix(w, big_w = None): """ Generate a state transition matrix for a quaternion based on some angular velocity w. """ if big_w is None: big_w = big_omega(w) return big_w * 0.5 def change(*args, **kwargs): warnings.warn("deprecated", DeprecationWarning) return propagate(*args, **kwargs) def propagate(q, w, dt): """ Change a quaternion q by some angular velocity w over some small timestep dt. """ # Find magnitude of angular velocity (in r/s) w_norm = linalg.norm(w) if w_norm < QUAT_SMALL: return q.copy() return Quat(*(np.dot(expm(w, dt), q.to_vector()))) def matrix_propagate(T, w, dt, r = 1): """Propagate an attitude matrix T forward by some angular velocity w over time step dt. This method uses a Taylor expansion of degree r where r is between 1 and 4 inclusive. Note that there's minimal computational difference between orders 2 and 3, as each involves a second 3x3 matrix multiplication. The step to 4th order is also quite small, involving only an additional vector dot product. In most cases, you will probably want to use r = 1 or r = 4. Args: T: transformation matrix (3x3) w: angular velocity vector (length 3) dt: time step size r: Taylor expansion degree (between 1 and 4 inclusive) Returns: A 3x3 matrix giving the updated transformation. """ wt = w*dt wtx = skew(wt) exp = np.identity(3) + wtx if r >= 2: wtx2 = wtx.dot(wtx) if r == 2: exp += wtx2 * 0.5 elif r >= 3: if r == 3: exp += wtx2 * (0.5 - wt / 6.0) elif r == 4: wt2 = wt.T.dot(wt) exp += wtx2 * (0.5 - wt / 6.0 - wt2 / 24.0) else: raise(NotImplemented, "degree must be between 1 and 4 inclusive") else: raise(NotImplemented, "degree must be between 1 and 4 inclusive") return exp.T.dot(T) def propagate_additively(q, w, dt): """Change a quaternion q by some angular velocity w over some small timestep dt, using additive propagation (q1 = q0 + dq/dt * dt)""" q_vector = q.to_vector() q_vector += qdot(q_vector, w) * dt return Quat(*q_vector) def cov(ary): """Compute the covariance of an array of quaternions, where each column represents a quaternion. """ # If the user supplies an array of N quaternions, convert it to a 4xN array, # since we need it in this form to get its covariance. if ary.dtype == np.dtype(Quat): a = np.empty((4, max(ary.shape)), dtype=np.double) q_ary = ary.T for i, q in enumerate(q_ary.flatten()): a[:,i] = q.to_vector()[:,0] ary = a # Compute the covariance of the supplied quaternions. return np.cov(ary) def mean(ary, covariance = None): """ Compute the average quaternion using Markey, Cheng, Craissidis, and Oshman (2007) This method takes a 4xN array and computes the average using eigenvalue decomposition. """ if covariance == None: covariance = cov(ary) # Compute their eigenvalues and eigenvectors eigenvalues, eigenvectors = linalg.eig(covariance) max_index = np.argmax(eigenvalues) q = eigenvectors[max_index] mean = Quat(q[0], q[1], q[2], q[3]) mean.normalize() return mean def mean_and_cov(ary): c = cov(ary) m = mean(ary, covariance=c) return (m,c) def angle_vector_cov(ary): """ Compute the covariance of an array of quaternions, like cov(), except use the attitude vector representation of each. """ if ary.dtype ==
np.dtype(Quat)
numpy.dtype
# !/usr/bin/python # -*- coding: latin-1 -*- # WAVELET Torrence and Combo translate from Matlab to Python # author: <NAME> # INPE # 23/01/2013 # https://github.com/mabelcalim/waipy/blob/master/Waipy%20Examples%20/waipy_pr%C3%AAt-%C3%A0-porter.ipynb "Baseado : Torrence e Combo" # data from http://paos.colorado.edu/research/wavelets/software.html import numpy as np import pylab from pylab import * import matplotlib.pyplot as plt from pylab import detrend_mean import math """ Translating mfiles of the Torrence and Combo to python functions 1 - wavetest.m 2 - wave_bases.m 3 - wave_signif.m 4 - chisquare_inv.m 5 - chisquare_solve.m """ def nextpow2(i): n = 2 while n < i: n = n * 2 return n def wave_bases(mother, k, scale, param): """Computes the wavelet function as a function of Fourier frequency used for the CWT in Fourier space (Torrence and Compo, 1998) -- This def is called automatically by def wavelet -- _____________________________________________________________________ Inputs: mother - a string equal to 'Morlet' k - a vectorm the Fourier frequecies scale - a number, the wavelet scale param - the nondimensional parameter for the wavelet function Outputs: daughter - a vector, the wavelet function fourier_factor - the ratio os Fourier period to scale coi - a number, the cone-of-influence size at the scale dofmin - a number, degrees of freedom for each point in the wavelet power (Morlet = 2) Call function: daughter,fourier_factor,coi,dofmin = wave_bases(mother,k,scale,param) _____________________________________________________________________ """ n = len(k) # length of Fourier frequencies (came from wavelet.py) """CAUTION : default values""" if (mother == 'Morlet'): # choose the wavelet function param = 6 # For Morlet this is k0 (wavenumber) default is 6 k0 = param # table 1 Torrence and Compo (1998) expnt = -pow(scale * k - k0, 2) / 2 * (k > 0) norm = math.sqrt(scale * k[1]) * \ (pow(math.pi, -0.25)) * math.sqrt(len(k)) daughter = [] # define daughter as a list for ex in expnt: # for each value scale (equal to next pow of 2) daughter.append(norm * math.exp(ex)) k = np.array(k) # turn k to array daughter = np.array(daughter) # transform in array daughter = daughter * (k > 0) # Heaviside step function # scale --> Fourier fourier_factor = (4 * math.pi) / (k0 + math.sqrt(2 + k0 * k0)) # cone-of- influence coi = fourier_factor / math.sqrt(2) dofmin = 2 # degrees of freedom # ---------------------------------------------------------# elif (mother == 'DOG'): param = 2 m = param expnt = -pow(scale * k, 2) / 2.0 pws = (pow(scale * k, m)) pws = np.array(pws) """CAUTION gamma(m+0.5) = 1.3293""" norm = math.sqrt(scale * k[1] / 1.3293) * math.sqrt(n) daughter = [] for ex in expnt: daughter.append(-norm * pow(1j, m) * math.exp(ex)) daughter = np.array(daughter) daughter = daughter[:] * pws fourier_factor = (2 * math.pi) / math.sqrt(m + 0.5) coi = fourier_factor / math.sqrt(2) dofmin = 1 # ---------------------------------------------------------# elif (mother == 'PAUL'): # Paul Wavelet param = 4 m = param k = np.array(k) expnt = -(scale * k) * (k > 0) norm = math.sqrt(scale * k[1]) * \ (2 ** m / math.sqrt(m * \ (math.factorial(2 * m - 1)))) * math.sqrt(n) pws = (pow(scale * k, m)) pws = np.array(pws) daughter = [] for ex in expnt: daughter.append(norm * math.exp(ex)) daughter = np.array(daughter) daughter = daughter[:] * pws daughter = daughter * (k > 0) # Heaviside step function fourier_factor = 4 * math.pi / (2 * m + 1) coi = fourier_factor * math.sqrt(2) dofmin = 2 else: print ('Mother must be one of MORLET,PAUL,DOG') return daughter, fourier_factor, coi, dofmin def wavelet(Y, dt, param, dj, s0, j1, mother): """Computes the wavelet continuous transform of the vector Y, by definition: W(a,b) = sum(f(t)*psi[a,b](t) dt) a dilate/contract psi[a,b](t) = 1/sqrt(a) psi(t-b/a) b displace Only Morlet wavelet (k0=6) is used The wavelet basis is normalized to have total energy = 1 at all scales _____________________________________________________________________ Input: Y - time series dt - sampling rate mother - the mother wavelet function param - the mother wavelet parameter Output: ondaleta - wavelet bases at scale 10 dt wave - wavelet transform of Y period - the vector of "Fourier"periods ( in time units) that correspond to the scales scale - the vector of scale indices, given by S0*2(j*DJ), j =0 ...J1 coi - cone of influence Call function: ondaleta, wave, period, scale, coi = wavelet(Y,dt,mother,param) _____________________________________________________________________ """ n1 = len(Y) # time series length #s0 = 2 * dt # smallest scale of the wavelet # dj = 0.25 # spacing between discrete scales # J1 = int(np.floor((np.log10(n1*dt/s0))/np.log10(2)/dj)) J1 = int(np.floor(np.log2(n1 * dt / s0) / dj)) # J1+1 total os scales # print 'Nr of Scales:', J1 # J1= 60 # pad if necessary x = detrend_mean(Y) # extract the mean of time series pad = 1 if (pad == 1): base2 = nextpow2(n1) # call det nextpow2 n = base2 """CAUTION""" # construct wavenumber array used in transform # simetric eqn 5 #k = np.arange(n / 2) import math k_pos, k_neg = [], [] for i in arange(0, int(n / 2) ): k_pos.append(i * ((2 * math.pi) / (n * dt))) # frequencies as in eqn5 k_neg = k_pos[::-1] # inversion vector k_neg = [e * (-1) for e in k_neg] # negative part # delete the first value of k_neg = last value of k_pos #k_neg = k_neg[1:-1] print(len(k_neg),len(k_pos)) k = np.concatenate((k_pos, k_neg), axis=0) # vector of symmetric # compute fft of the padded time series f = np.fft.fft(x, n) scale = [] for i in range(J1 + 1): scale.append(s0 * pow(2, (i) * dj)) period = scale # print period wave = np.zeros((J1 + 1, n)) # define wavelet array wave = wave + 1j * wave # make it complex # loop through scales and compute transform for a1 in range(J1 + 1): daughter, fourier_factor, coi, dofmin = wave_bases( mother, k, scale[a1], param) # call wave_bases wave[a1, :] = np.fft.ifft(f * daughter) # wavelet transform if a1 == 11: ondaleta = daughter # ondaleta = daughter period = np.array(period) period = period[:] * fourier_factor # cone-of-influence, differ for uneven len of timeseries: if (((n1) / 2.0).is_integer()) is True: # create mirrored array) mat = np.concatenate( (arange(1, int(n1 / 2)), arange(1, int(n1 / 2))[::-1]), axis=0) # insert zero at the begining of the array mat = np.insert(mat, 0, 0) mat = np.append(mat, 0) # insert zero at the end of the array elif (((n1) / 2.0).is_integer()) is False: # create mirrored array mat = np.concatenate( (arange(1, int(n1 / 2) + 1), arange(1, int(n1 / 2))[::-1]), axis=0) # insert zero at the begining of the array mat =
np.insert(mat, 0, 0)
numpy.insert
from __future__ import print_function, division, absolute_import import warnings import sys import itertools # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import cv2 import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug import random as iarandom from imgaug.testutils import keypoints_equal, reseed class Test_blur_gaussian_(unittest.TestCase): def setUp(self): reseed() def test_integration(self): backends = ["auto", "scipy", "cv2"] nb_channels_lst = [None, 1, 3, 4, 5, 10] gen = itertools.product(backends, nb_channels_lst) for backend, nb_channels in gen: with self.subTest(backend=backend, nb_channels=nb_channels): image = np.zeros((5, 5), dtype=np.uint8) if nb_channels is not None: image = np.tile(image[..., np.newaxis], (1, 1, nb_channels)) image[2, 2] = 255 mask = image < 255 observed = iaa.blur_gaussian_( np.copy(image), sigma=5.0, backend=backend) assert observed.shape == image.shape assert observed.dtype.name == "uint8" assert np.all(observed[2, 2] < 255) assert np.sum(observed[mask]) > (5*5-1) if nb_channels is not None and nb_channels > 1: for c in sm.xrange(1, observed.shape[2]): assert np.array_equal(observed[..., c], observed[..., 0]) def test_sigma_zero(self): image = np.arange(4*4).astype(np.uint8).reshape((4, 4)) observed = iaa.blur_gaussian_(np.copy(image), 0) assert np.array_equal(observed, image) image = np.arange(4*4).astype(np.uint8).reshape((4, 4, 1)) observed = iaa.blur_gaussian_(np.copy(image), 0) assert np.array_equal(observed, image) image = np.arange(4*4*3).astype(np.uint8).reshape((4, 4, 3)) observed = iaa.blur_gaussian_(np.copy(image), 0) assert np.array_equal(observed, image) def test_eps(self): image = np.arange(4*4).astype(np.uint8).reshape((4, 4)) observed_no_eps = iaa.blur_gaussian_(np.copy(image), 1.0, eps=0) observed_with_eps = iaa.blur_gaussian_(np.copy(image), 1.0, eps=1e10) assert not np.array_equal(observed_no_eps, observed_with_eps) assert np.array_equal(observed_with_eps, image) def test_ksize(self): def side_effect(image, ksize, sigmaX, sigmaY, borderType): return image + 1 sigmas = [5.0, 5.0] ksizes = [None, 3] ksizes_expected = [2.6*5.0, 3] gen = zip(sigmas, ksizes, ksizes_expected) for (sigma, ksize, ksize_expected) in gen: with self.subTest(sigma=sigma, ksize=ksize): mock_GaussianBlur = mock.Mock(side_effect=side_effect) image = np.arange(4*4).astype(np.uint8).reshape((4, 4)) with mock.patch('cv2.GaussianBlur', mock_GaussianBlur): observed = iaa.blur_gaussian_( np.copy(image), sigma=sigma, ksize=ksize, backend="cv2") assert np.array_equal(observed, image+1) cargs = mock_GaussianBlur.call_args assert mock_GaussianBlur.call_count == 1 assert np.array_equal(cargs[0][0], image) assert isinstance(cargs[0][1], tuple) assert np.allclose( np.float32(cargs[0][1]), np.float32([ksize_expected, ksize_expected])) assert np.isclose(cargs[1]["sigmaX"], sigma) assert np.isclose(cargs[1]["sigmaY"], sigma) assert cargs[1]["borderType"] == cv2.BORDER_REFLECT_101 def test_more_than_four_channels(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_aug = iaa.blur_gaussian_(np.copy(image), 1.0) assert image_aug.shape == image.shape def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_aug = iaa.blur_gaussian_(np.copy(image), 1.0) assert image_aug.shape == image.shape def test_backends_called(self): def side_effect_cv2(image, ksize, sigmaX, sigmaY, borderType): return image + 1 def side_effect_scipy(image, sigma, mode): return image + 1 mock_GaussianBlur = mock.Mock(side_effect=side_effect_cv2) mock_gaussian_filter = mock.Mock(side_effect=side_effect_scipy) image = np.arange(4*4).astype(np.uint8).reshape((4, 4)) with mock.patch('cv2.GaussianBlur', mock_GaussianBlur): _observed = iaa.blur_gaussian_( np.copy(image), sigma=1.0, eps=0, backend="cv2") assert mock_GaussianBlur.call_count == 1 with mock.patch('scipy.ndimage.gaussian_filter', mock_gaussian_filter): _observed = iaa.blur_gaussian_( np.copy(image), sigma=1.0, eps=0, backend="scipy") assert mock_gaussian_filter.call_count == 1 def test_backends_similar(self): with self.subTest(nb_channels=None): size = 10 image = np.arange( 0, size*size).astype(np.uint8).reshape((size, size)) image_cv2 = iaa.blur_gaussian_( np.copy(image), sigma=3.0, ksize=20, backend="cv2") image_scipy = iaa.blur_gaussian_( np.copy(image), sigma=3.0, backend="scipy") diff = np.abs(image_cv2.astype(np.int32) - image_scipy.astype(np.int32)) assert np.average(diff) < 0.05 * (size * size) with self.subTest(nb_channels=3): size = 10 image = np.arange( 0, size*size).astype(np.uint8).reshape((size, size)) image = np.tile(image[..., np.newaxis], (1, 1, 3)) image[1] += 1 image[2] += 2 image_cv2 = iaa.blur_gaussian_( np.copy(image), sigma=3.0, ksize=20, backend="cv2") image_scipy = iaa.blur_gaussian_( np.copy(image), sigma=3.0, backend="scipy") diff = np.abs(image_cv2.astype(np.int32) - image_scipy.astype(np.int32)) assert np.average(diff) < 0.05 * (size * size) for c in sm.xrange(3): diff = np.abs(image_cv2[..., c].astype(np.int32) - image_scipy[..., c].astype(np.int32)) assert np.average(diff) < 0.05 * (size * size) def test_warnings(self): # note that self.assertWarningRegex does not exist in python 2.7 with warnings.catch_warnings(record=True) as caught_warnings: warnings.simplefilter("always") _ = iaa.blur_gaussian_( np.zeros((1, 1), dtype=np.uint32), sigma=3.0, ksize=11, backend="scipy") assert len(caught_warnings) == 1 assert ( "but also provided 'ksize' argument" in str(caught_warnings[-1].message)) def test_other_dtypes_sigma_0(self): dtypes_to_test_list = [ ["bool", "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", "float16", "float32", "float64", "float128"], ["bool", "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", "float16", "float32", "float64", "float128"] ] gen = zip(["scipy", "cv2"], dtypes_to_test_list) for backend, dtypes_to_test in gen: # bool if "bool" in dtypes_to_test: with self.subTest(backend=backend, dtype="bool"): image = np.zeros((3, 3), dtype=bool) image[1, 1] = True image_aug = iaa.blur_gaussian_( np.copy(image), sigma=0, backend=backend) assert image_aug.dtype.name == "bool" assert np.all(image_aug == image) # uint, int uint_dts = [np.uint8, np.uint16, np.uint32, np.uint64] int_dts = [np.int8, np.int16, np.int32, np.int64] for dtype in uint_dts + int_dts: dtype = np.dtype(dtype) if dtype.name in dtypes_to_test: with self.subTest(backend=backend, dtype=dtype.name): _min_value, center_value, _max_value = \ iadt.get_value_range_of_dtype(dtype) image = np.zeros((3, 3), dtype=dtype) image[1, 1] = int(center_value) image_aug = iaa.blur_gaussian_( np.copy(image), sigma=0, backend=backend) assert image_aug.dtype.name == dtype.name assert np.all(image_aug == image) # float float_dts = [np.float16, np.float32, np.float64, np.float128] for dtype in float_dts: dtype = np.dtype(dtype) if dtype.name in dtypes_to_test: with self.subTest(backend=backend, dtype=dtype.name): _min_value, center_value, _max_value = \ iadt.get_value_range_of_dtype(dtype) image = np.zeros((3, 3), dtype=dtype) image[1, 1] = center_value image_aug = iaa.blur_gaussian_( np.copy(image), sigma=0, backend=backend) assert image_aug.dtype.name == dtype.name assert np.allclose(image_aug, image) def test_other_dtypes_sigma_075(self): # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.int32) # mask[2, 2] = 1000 * 1000 # kernel = ndimage.gaussian_filter(mask, 0.75) mask = np.float64([ [ 923, 6650, 16163, 6650, 923], [ 6650, 47896, 116408, 47896, 6650], [ 16163, 116408, 282925, 116408, 16163], [ 6650, 47896, 116408, 47896, 6650], [ 923, 6650, 16163, 6650, 923] ]) / (1000.0 * 1000.0) dtypes_to_test_list = [ # scipy ["bool", "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", "float16", "float32", "float64"], # cv2 ["bool", "uint8", "uint16", "int8", "int16", "int32", "float16", "float32", "float64"] ] gen = zip(["scipy", "cv2"], dtypes_to_test_list) for backend, dtypes_to_test in gen: # bool if "bool" in dtypes_to_test: with self.subTest(backend=backend, dtype="bool"): image = np.zeros((5, 5), dtype=bool) image[2, 2] = True image_aug = iaa.blur_gaussian_( np.copy(image), sigma=0.75, backend=backend) assert image_aug.dtype.name == "bool" assert np.all(image_aug == (mask > 0.5)) # uint, int uint_dts = [np.uint8, np.uint16, np.uint32, np.uint64] int_dts = [np.int8, np.int16, np.int32, np.int64] for dtype in uint_dts + int_dts: dtype = np.dtype(dtype) if dtype.name in dtypes_to_test: with self.subTest(backend=backend, dtype=dtype.name): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) dynamic_range = max_value - min_value value = int(center_value + 0.4 * max_value) image = np.zeros((5, 5), dtype=dtype) image[2, 2] = value image_aug = iaa.blur_gaussian_( image, sigma=0.75, backend=backend) expected = (mask * value).astype(dtype) diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype if dtype.itemsize <= 1: assert np.max(diff) <= 4 else: assert np.max(diff) <= 0.01 * dynamic_range # float float_dts = [np.float16, np.float32, np.float64, np.float128] values = [5000, 1000**1, 1000**2, 1000**3] for dtype, value in zip(float_dts, values): dtype = np.dtype(dtype) if dtype.name in dtypes_to_test: with self.subTest(backend=backend, dtype=dtype.name): image = np.zeros((5, 5), dtype=dtype) image[2, 2] = value image_aug = iaa.blur_gaussian_( image, sigma=0.75, backend=backend) expected = (mask * value).astype(dtype) diff = np.abs(image_aug.astype(np.float128) - expected.astype(np.float128)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype # accepts difference of 2.0, 4.0, 8.0, 16.0 (at 1, # 2, 4, 8 bytes, i.e. 8, 16, 32, 64 bit) max_diff = ( np.dtype(dtype).itemsize * 0.01 * np.float128(value)) assert np.max(diff) < max_diff def test_other_dtypes_bool_at_sigma_06(self): # -- # blur of bool input at sigma=0.6 # -- # here we use a special mask and sigma as otherwise the only values # ending up with >0.5 would be the ones that # were before the blur already at >0.5 # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.float64) # mask[1, 0] = 255 # mask[2, 0] = 255 # mask[2, 2] = 255 # mask[2, 4] = 255 # mask[3, 0] = 255 # mask = ndimage.gaussian_filter(mask, 1.0, mode="mirror") mask_bool = np.float64([ [ 57, 14, 2, 1, 1], [142, 42, 29, 14, 28], [169, 69, 114, 56, 114], [142, 42, 29, 14, 28], [ 57, 14, 2, 1, 1] ]) / 255.0 image = np.zeros((5, 5), dtype=bool) image[1, 0] = True image[2, 0] = True image[2, 2] = True image[2, 4] = True image[3, 0] = True for backend in ["scipy", "cv2"]: image_aug = iaa.blur_gaussian_( np.copy(image), sigma=0.6, backend=backend) expected = mask_bool > 0.5 assert image_aug.shape == mask_bool.shape assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == expected) class Test_blur_mean_shift_(unittest.TestCase): @property def image(self): image = [ [1, 2, 3, 4, 200, 201, 202, 203], [1, 2, 3, 4, 200, 201, 202, 203], [1, 2, 3, 4, 200, 201, 202, 203], [1, 2, 3, 4, 200, 201, 202, 203] ] image = np.array(image, dtype=np.uint8).reshape((4, 2*4, 1)) image = np.tile(image, (1, 1, 3)) return image def test_simple_image(self): image = self.image image_blurred = iaa.blur_mean_shift_(np.copy(image), 0.5, 0.5) assert image_blurred.shape == image.shape assert image_blurred.dtype.name == "uint8" assert not np.array_equal(image_blurred, image) assert 0 <= np.average(image[:, 0:4, :]) <= 5 assert 199 <= np.average(image[:, 4:, :]) <= 203 def test_hw_image(self): image = self.image[:, :, 0] image_blurred = iaa.blur_mean_shift_(np.copy(image), 0.5, 0.5) assert image_blurred.shape == image.shape assert image_blurred.dtype.name == "uint8" assert not np.array_equal(image_blurred, image) def test_hw1_image(self): image = self.image[:, :, 0:1] image_blurred = iaa.blur_mean_shift_(np.copy(image), 0.5, 0.5) assert image_blurred.ndim == 3 assert image_blurred.shape == image.shape assert image_blurred.dtype.name == "uint8" assert not np.array_equal(image_blurred, image) def test_non_contiguous_image(self): image = self.image image_cp = np.copy(np.fliplr(image)) image = np.fliplr(image) assert image.flags["C_CONTIGUOUS"] is False image_blurred = iaa.blur_mean_shift_(image, 0.5, 0.5) assert image_blurred.shape == image_cp.shape assert image_blurred.dtype.name == "uint8" assert not np.array_equal(image_blurred, image_cp) def test_both_parameters_are_zero(self): image = self.image[:, :, 0] image_blurred = iaa.blur_mean_shift_(np.copy(image), 0, 0) assert image_blurred.shape == image.shape assert image_blurred.dtype.name == "uint8" assert not np.array_equal(image_blurred, image) def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_aug = iaa.blur_mean_shift_(np.copy(image), 1.0, 1.0) assert image_aug.shape == image.shape class TestGaussianBlur(unittest.TestCase): def setUp(self): reseed() def test_sigma_is_zero(self): # no blur, shouldnt change anything base_img = np.array([[0, 0, 0], [0, 255, 0], [0, 0, 0]], dtype=np.uint8) base_img = base_img[:, :, np.newaxis] images = np.array([base_img]) aug = iaa.GaussianBlur(sigma=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) def test_low_sigma(self): base_img = np.array([[0, 0, 0], [0, 255, 0], [0, 0, 0]], dtype=np.uint8) base_img = base_img[:, :, np.newaxis] images = np.array([base_img]) images_list = [base_img] outer_pixels = ([], []) for i in sm.xrange(base_img.shape[0]): for j in sm.xrange(base_img.shape[1]): if i != j: outer_pixels[0].append(i) outer_pixels[1].append(j) # weak blur of center pixel aug = iaa.GaussianBlur(sigma=0.5) aug_det = aug.to_deterministic() # images as numpy array observed = aug.augment_images(images) assert 100 < observed[0][1, 1] < 255 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all() observed = aug_det.augment_images(images) assert 100 < observed[0][1, 1] < 255 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all() # images as list observed = aug.augment_images(images_list) assert 100 < observed[0][1, 1] < 255 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all() observed = aug_det.augment_images(images_list) assert 100 < observed[0][1, 1] < 255 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all() def test_keypoints_dont_change(self): kps = [ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)] kpsoi = [ia.KeypointsOnImage(kps, shape=(3, 3, 1))] aug = iaa.GaussianBlur(sigma=0.5) aug_det = aug.to_deterministic() observed = aug.augment_keypoints(kpsoi) expected = kpsoi assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(kpsoi) expected = kpsoi assert keypoints_equal(observed, expected) def test_sigma_is_tuple(self): # varying blur sigmas base_img = np.array([[0, 0, 0], [0, 255, 0], [0, 0, 0]], dtype=np.uint8) base_img = base_img[:, :, np.newaxis] images = np.array([base_img]) aug = iaa.GaussianBlur(sigma=(0, 1)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.8) assert nb_changed_aug_det == 0 def test_other_dtypes_bool_at_sigma_0(self): # bool aug = iaa.GaussianBlur(sigma=0) image = np.zeros((3, 3), dtype=bool) image[1, 1] = True image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == image) def test_other_dtypes_uint_int_at_sigma_0(self): aug = iaa.GaussianBlur(sigma=0) dts = [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32] for dtype in dts: _min_value, center_value, _max_value = \ iadt.get_value_range_of_dtype(dtype) image = np.zeros((3, 3), dtype=dtype) image[1, 1] = int(center_value) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == image) def test_other_dtypes_float_at_sigma_0(self): aug = iaa.GaussianBlur(sigma=0) dts = [np.float16, np.float32, np.float64] for dtype in dts: _min_value, center_value, _max_value = \ iadt.get_value_range_of_dtype(dtype) image = np.zeros((3, 3), dtype=dtype) image[1, 1] = center_value image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.allclose(image_aug, image) def test_other_dtypes_bool_at_sigma_060(self): # -- # blur of bool input at sigma=0.6 # -- # here we use a special mask and sigma as otherwise the only values # ending up with >0.5 would be the ones that # were before the blur already at >0.5 # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.float64) # mask[1, 0] = 255 # mask[2, 0] = 255 # mask[2, 2] = 255 # mask[2, 4] = 255 # mask[3, 0] = 255 # mask = ndimage.gaussian_filter(mask, 1.0, mode="mirror") aug = iaa.GaussianBlur(sigma=0.6) mask_bool = np.float64([ [ 57, 14, 2, 1, 1], [142, 42, 29, 14, 28], [169, 69, 114, 56, 114], [142, 42, 29, 14, 28], [ 57, 14, 2, 1, 1] ]) / 255.0 image = np.zeros((5, 5), dtype=bool) image[1, 0] = True image[2, 0] = True image[2, 2] = True image[2, 4] = True image[3, 0] = True image_aug = aug.augment_image(image) expected = mask_bool > 0.5 assert image_aug.shape == mask_bool.shape assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == expected) def test_other_dtypes_at_sigma_1(self): # -- # blur of various dtypes at sigma=1.0 # and using an example value of 100 for int/uint/float and True for # bool # -- # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.float64) # mask[2, 2] = 100 # mask = ndimage.gaussian_filter(mask, 1.0, mode="mirror") aug = iaa.GaussianBlur(sigma=1.0) mask = np.float64([ [1, 2, 3, 2, 1], [2, 5, 9, 5, 2], [4, 9, 15, 9, 4], [2, 5, 9, 5, 2], [1, 2, 3, 2, 1] ]) # uint, int uint_dts = [np.uint8, np.uint16, np.uint32] int_dts = [np.int8, np.int16, np.int32] for dtype in uint_dts + int_dts: image = np.zeros((5, 5), dtype=dtype) image[2, 2] = 100 image_aug = aug.augment_image(image) expected = mask.astype(dtype) diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype assert np.max(diff) <= 4 assert np.average(diff) <= 2 # float float_dts = [np.float16, np.float32, np.float64] for dtype in float_dts: image = np.zeros((5, 5), dtype=dtype) image[2, 2] = 100.0 image_aug = aug.augment_image(image) expected = mask.astype(dtype) diff = np.abs(image_aug.astype(np.float128) - expected.astype(np.float128)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype assert np.max(diff) < 4 assert np.average(diff) < 2.0 def test_other_dtypes_at_sigma_040(self): # -- # blur of various dtypes at sigma=0.4 # and using an example value of 100 for int/uint/float and True for # bool # -- aug = iaa.GaussianBlur(sigma=0.4) # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.uint8) # mask[2, 2] = 100 # kernel = ndimage.gaussian_filter(mask, 0.4, mode="mirror") mask = np.float64([ [0, 0, 0, 0, 0], [0, 0, 3, 0, 0], [0, 3, 83, 3, 0], [0, 0, 3, 0, 0], [0, 0, 0, 0, 0] ]) # uint, int uint_dts = [np.uint8, np.uint16, np.uint32] int_dts = [np.int8, np.int16, np.int32] for dtype in uint_dts + int_dts: image = np.zeros((5, 5), dtype=dtype) image[2, 2] = 100 image_aug = aug.augment_image(image) expected = mask.astype(dtype) diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype assert np.max(diff) <= 4 # float float_dts = [np.float16, np.float32, np.float64] for dtype in float_dts: image = np.zeros((5, 5), dtype=dtype) image[2, 2] = 100.0 image_aug = aug.augment_image(image) expected = mask.astype(dtype) diff = np.abs(image_aug.astype(np.float128) - expected.astype(np.float128)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype assert np.max(diff) < 4.0 def test_other_dtypes_at_sigma_075(self): # -- # blur of various dtypes at sigma=0.75 # and values being half-way between center and maximum for each dtype # The goal of this test is to verify that no major loss of resolution # happens for large dtypes. # Such inaccuracies appear for float64 if used. # -- aug = iaa.GaussianBlur(sigma=0.75) # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.int32) # mask[2, 2] = 1000 * 1000 # kernel = ndimage.gaussian_filter(mask, 0.75) mask = np.float64([ [ 923, 6650, 16163, 6650, 923], [ 6650, 47896, 116408, 47896, 6650], [ 16163, 116408, 282925, 116408, 16163], [ 6650, 47896, 116408, 47896, 6650], [ 923, 6650, 16163, 6650, 923] ]) / (1000.0 * 1000.0) # uint, int uint_dts = [np.uint8, np.uint16, np.uint32] int_dts = [np.int8, np.int16, np.int32] for dtype in uint_dts + int_dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) dynamic_range = max_value - min_value value = int(center_value + 0.4 * max_value) image = np.zeros((5, 5), dtype=dtype) image[2, 2] = value image_aug = aug.augment_image(image) expected = (mask * value).astype(dtype) diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype if np.dtype(dtype).itemsize <= 1: assert np.max(diff) <= 4 else: assert np.max(diff) <= 0.01 * dynamic_range # float float_dts = [np.float16, np.float32, np.float64] values = [5000, 1000*1000, 1000*1000*1000] for dtype, value in zip(float_dts, values): image = np.zeros((5, 5), dtype=dtype) image[2, 2] = value image_aug = aug.augment_image(image) expected = (mask * value).astype(dtype) diff = np.abs(image_aug.astype(np.float128) - expected.astype(np.float128)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype # accepts difference of 2.0, 4.0, 8.0, 16.0 (at 1, 2, 4, 8 bytes, # i.e. 8, 16, 32, 64 bit) max_diff = np.dtype(dtype).itemsize * 0.01 * np.float128(value) assert np.max(diff) < max_diff def test_failure_on_invalid_dtypes(self): # assert failure on invalid dtypes aug = iaa.GaussianBlur(sigma=1.0) for dt in [np.float128]: got_exception = False try: _ = aug.augment_image(np.zeros((1, 1), dtype=dt)) except Exception as exc: assert "forbidden dtype" in str(exc) got_exception = True assert got_exception class TestAverageBlur(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestAverageBlur, self).__init__(*args, **kwargs) base_img = np.zeros((11, 11, 1), dtype=np.uint8) base_img[5, 5, 0] = 200 base_img[4, 5, 0] = 100 base_img[6, 5, 0] = 100 base_img[5, 4, 0] = 100 base_img[5, 6, 0] = 100 blur3x3 = [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 11, 11, 11, 0, 0, 0, 0], [0, 0, 0, 11, 44, 56, 44, 11, 0, 0, 0], [0, 0, 0, 11, 56, 67, 56, 11, 0, 0, 0], [0, 0, 0, 11, 44, 56, 44, 11, 0, 0, 0], [0, 0, 0, 0, 11, 11, 11, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] blur3x3 = np.array(blur3x3, dtype=np.uint8)[..., np.newaxis] blur4x4 = [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0], [0, 0, 0, 6, 25, 31, 31, 25, 6, 0, 0], [0, 0, 0, 6, 31, 38, 38, 31, 6, 0, 0], [0, 0, 0, 6, 31, 38, 38, 31, 6, 0, 0], [0, 0, 0, 6, 25, 31, 31, 25, 6, 0, 0], [0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] blur4x4 = np.array(blur4x4, dtype=np.uint8)[..., np.newaxis] blur5x5 = [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0], [0, 0, 4, 16, 20, 20, 20, 16, 4, 0, 0], [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0], [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0], [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0], [0, 0, 4, 16, 20, 20, 20, 16, 4, 0, 0], [0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] blur5x5 = np.array(blur5x5, dtype=np.uint8)[..., np.newaxis] self.base_img = base_img self.blur3x3 = blur3x3 self.blur4x4 = blur4x4 self.blur5x5 = blur5x5 def setUp(self): reseed() def test_kernel_size_0(self): # no blur, shouldnt change anything aug = iaa.AverageBlur(k=0) observed = aug.augment_image(self.base_img) assert np.array_equal(observed, self.base_img) def test_kernel_size_3(self): # k=3 aug = iaa.AverageBlur(k=3) observed = aug.augment_image(self.base_img) assert np.array_equal(observed, self.blur3x3) def test_kernel_size_5(self): # k=5 aug = iaa.AverageBlur(k=5) observed = aug.augment_image(self.base_img) assert np.array_equal(observed, self.blur5x5) def test_kernel_size_is_tuple(self): # k as (3, 4) aug = iaa.AverageBlur(k=(3, 4)) nb_iterations = 100 nb_seen = [0, 0] for i in sm.xrange(nb_iterations): observed = aug.augment_image(self.base_img) if np.array_equal(observed, self.blur3x3): nb_seen[0] += 1 elif np.array_equal(observed, self.blur4x4): nb_seen[1] += 1 else: raise Exception("Unexpected result in AverageBlur@1") p_seen = [v/nb_iterations for v in nb_seen] assert 0.4 <= p_seen[0] <= 0.6 assert 0.4 <= p_seen[1] <= 0.6 def test_kernel_size_is_tuple_with_wider_range(self): # k as (3, 5) aug = iaa.AverageBlur(k=(3, 5)) nb_iterations = 200 nb_seen = [0, 0, 0] for i in sm.xrange(nb_iterations): observed = aug.augment_image(self.base_img) if np.array_equal(observed, self.blur3x3): nb_seen[0] += 1 elif np.array_equal(observed, self.blur4x4): nb_seen[1] += 1 elif np.array_equal(observed, self.blur5x5): nb_seen[2] += 1 else: raise Exception("Unexpected result in AverageBlur@2") p_seen = [v/nb_iterations for v in nb_seen] assert 0.23 <= p_seen[0] <= 0.43 assert 0.23 <= p_seen[1] <= 0.43 assert 0.23 <= p_seen[2] <= 0.43 def test_kernel_size_is_stochastic_parameter(self): # k as stochastic parameter aug = iaa.AverageBlur(k=iap.Choice([3, 5])) nb_iterations = 100 nb_seen = [0, 0] for i in sm.xrange(nb_iterations): observed = aug.augment_image(self.base_img) if np.array_equal(observed, self.blur3x3): nb_seen[0] += 1 elif np.array_equal(observed, self.blur5x5): nb_seen[1] += 1 else: raise Exception("Unexpected result in AverageBlur@3") p_seen = [v/nb_iterations for v in nb_seen] assert 0.4 <= p_seen[0] <= 0.6 assert 0.4 <= p_seen[1] <= 0.6 def test_kernel_size_is_tuple_of_tuples(self): # k as ((3, 5), (3, 5)) aug = iaa.AverageBlur(k=((3, 5), (3, 5))) possible = dict() for kh in [3, 4, 5]: for kw in [3, 4, 5]: key = (kh, kw) if kh == 0 or kw == 0: possible[key] =
np.copy(self.base_img)
numpy.copy
import numpy as np import pyLDAvis #from biterm.cbtm import oBTM from biterm.btm import oBTM from sklearn.feature_extraction.text import CountVectorizer from biterm.utility import vec_to_biterms, topic_summuary if __name__ == "__main__": texts = open('./data/reuters.titles').read().splitlines() # vectorize texts vec = CountVectorizer(stop_words='english') X = vec.fit_transform(texts).toarray() # get vocabulary vocab = np.array(vec.get_feature_names()) # get biterms biterms = vec_to_biterms(X) # create btm btm = oBTM(num_topics=20, V=vocab) print("\n\n Train Online BTM ..") for i in range(0, len(biterms), 100): # prozess chunk of 200 texts biterms_chunk = biterms[i:i + 100] btm.fit(biterms_chunk, iterations=50) topics = btm.transform(biterms) print("\n\n Visualize Topics ..") vis = pyLDAvis.prepare(btm.phi_wz.T, topics,
np.count_nonzero(X, axis=1)
numpy.count_nonzero
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import numpy as np from functools import partial from tqdm import tqdm from utils import build_knns, knns2ordered_nbrs, Timer """ paper: https://arxiv.org/pdf/1604.00989.pdf original code https://github.com/varun-suresh/Clustering To run `aro`: 1. pip install pyflann 2. 2to3 -w path/site-packages/pyflann/ Refer [No module named 'index'](https://github.com/primetang/pyflann/issues/1) for more details. For `knn_aro`, we replace the pyflann with more advanced knn searching methods. """ __all__ = ['aro', 'knn_aro'] def build_index(dataset, n_neighbors): """ Takes a dataset, returns the "n" nearest neighbors """ # Initialize FLANN import pyflann pyflann.set_distance_type(distance_type='euclidean') flann = pyflann.FLANN() params = flann.build_index(dataset, algorithm='kdtree', trees=4) #print params nbrs, dists = flann.nn_index(dataset, n_neighbors, checks=params['checks']) return nbrs, dists def create_neighbor_lookup(nbrs): """ Key is the reference face, values are the neighbors. """ nn_lookup = {} for i in range(nbrs.shape[0]): nn_lookup[i] = nbrs[i, :] return nn_lookup def calculate_symmetric_dist_row(nbrs, nn_lookup, row_no): """ This function calculates the symmetric distances for one row in the matrix. """ dist_row = np.zeros([1, nbrs.shape[1]]) f1 = nn_lookup[row_no] for idx, neighbor in enumerate(f1[1:]): Oi = idx + 1 co_neighbor = True try: row = nn_lookup[neighbor] Oj =
np.where(row == row_no)
numpy.where
import os import json import numpy as np import matplotlib.pyplot as plt import sys import h5py vibe_dir = sys.argv[1] # folder containing the json files. reqd_joints = [38, 43, 44, 45, 46, 47, 48, 40, 37, 33,32,31, 34,35,36, 41, 39, 27,26,25, 28,29,30, 22, 19] idx = 0 files_order = [] joint_data_final = [] labels_final = [] for num, class_name in sorted(enumerate(os.listdir(vibe_dir))): for file_name in os.listdir(os.path.join(vibe_dir, class_name)): print(file_name) with open (file_name, 'r') as f: data = json.load(f) # files_order.append(file_name) f.close() person_list = list(data.keys()) if (person_list == []): print(file_name) continue frame_vids = [] for k in (person_list): frame_vids.append(np.array(data[k]['joints3d']).shape[0]) if (len(person_list) == 1): frames = np.array(data[person_list[0]]['frame_ids']) joint_data_1 = np.array(data[person_list[0]]['joints3d'])[:,reqd_joints,:] joint_data_1 = np.reshape(joint_data_1, (joint_data_1.shape[0],75)) final_data =
np.zeros((300,150))
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Mon Nov 13 11:07:35 2017 @author: gianni """ from pythonradex import atomic_transition from scipy import constants import pytest import numpy as np class TestLevel(): g = 2 E = 3 level = atomic_transition.Level(g=g,E=E,number=1) def test_LTE_level_pop(self): T = 50 Z = 3 lte_level_pop = self.level.LTE_level_pop(Z=Z,T=T) assert lte_level_pop == self.g*np.exp(-self.E/(constants.k*T))/Z shape = (5,5) T_array = np.ones(shape)*T Z_array = np.ones(shape)*Z lte_level_pop_array = self.level.LTE_level_pop(Z=Z_array,T=T_array) assert lte_level_pop_array.shape == shape assert np.all(lte_level_pop==lte_level_pop_array) class TestLineProfile(): nu0 = 400*constants.giga width_v = 10*constants.kilo gauss_line_profile = atomic_transition.GaussianLineProfile(nu0=nu0,width_v=width_v) square_line_profile = atomic_transition.SquareLineProfile(nu0=nu0,width_v=width_v) profiles = (gauss_line_profile,square_line_profile) test_v = np.linspace(-3*width_v,3*width_v,600) def test_abstract_line_profile(self): with pytest.raises(NotImplementedError): atomic_transition.LineProfile(nu0=self.nu0,width_v=self.width_v) def test_constant_average_over_nu(self): for profile in self.profiles: const_array = np.ones_like(profile.nu_array) const_average = profile.average_over_nu_array(const_array) assert np.isclose(const_average,1,rtol=1e-2,atol=0) def test_asymmetric_average_over_nu(self): for profile in self.profiles: left_value,right_value = 0,1 asymmetric_array = np.ones_like(profile.nu_array)*left_value asymmetric_array[:asymmetric_array.size//2] = right_value asymmetric_average = profile.average_over_nu_array(asymmetric_array) assert np.isclose(asymmetric_average,np.mean((left_value,right_value)), rtol=1e-2,atol=0) def test_square_profile_average_over_nu(self): np.random.seed(0) nu_array = self.square_line_profile.nu_array random_values = np.random.rand(nu_array.size) profile_window = np.where(self.square_line_profile.phi_nu(nu_array)==0,0,1) expected_average = np.sum(profile_window*random_values)/np.count_nonzero(profile_window) average = self.square_line_profile.average_over_nu_array(random_values) assert np.isclose(expected_average,average,rtol=5e-2,atol=0) def test_normalisation(self): for profile in self.profiles: integrated_line_profile = np.trapz(profile.phi_nu_array,profile.nu_array) integrated_line_profile_v = np.trapz(profile.phi_v(self.test_v),self.test_v) for intg_prof in (integrated_line_profile,integrated_line_profile_v): assert np.isclose(intg_prof,1,rtol=1e-2,atol=0) def test_profile_shape(self): square_phi_nu = self.square_line_profile.phi_nu_array square_phi_v = self.square_line_profile.phi_v(self.test_v) for square_phi,x_axis,width in zip((square_phi_nu,square_phi_v), (self.square_line_profile.nu_array,self.test_v), (self.square_line_profile.width_nu,self.width_v)): assert square_phi[0] == square_phi[-1] == 0 assert square_phi[square_phi.size//2] > 0 square_indices = np.where(square_phi>0)[0] square_window_size = x_axis[square_indices[-1]] - x_axis[square_indices[0]] assert np.isclose(square_window_size,width,rtol=5e-2,atol=0) gauss_phi_nu = self.gauss_line_profile.phi_nu_array gauss_phi_v = self.gauss_line_profile.phi_v(self.test_v) for gauss_phi,x_axis,width in zip((gauss_phi_nu,gauss_phi_v), (self.square_line_profile.nu_array,self.test_v), (self.square_line_profile.width_nu,self.width_v)): assert np.all(np.array((gauss_phi[0],gauss_phi[-1])) <gauss_phi[gauss_phi.size//2]) max_index = np.argmax(gauss_phi) half_max_index = np.argmin(np.abs(gauss_phi-np.max(gauss_phi)/2)) assert np.isclose(2*np.abs(x_axis[max_index]-x_axis[half_max_index]), width,rtol=3e-2,atol=0) class TestTransition(): up = atomic_transition.Level(g=1,E=1,number=1) low = atomic_transition.Level(g=1,E=0,number=0) line_profile_cls = atomic_transition.SquareLineProfile A21 = 1 radiative_transition = atomic_transition.RadiativeTransition( up=up,low=low,A21=A21) width_v = 1*constants.kilo Tkin_data=np.array((1,2,3,4,5)) test_emission_line = atomic_transition.EmissionLine( up=up,low=low,A21=A21, line_profile_cls=line_profile_cls, width_v=width_v) def test_radiative_transition_negative_DeltaE(self): with pytest.raises(AssertionError): atomic_transition.RadiativeTransition(up=self.low,low=self.up,A21=self.A21) def test_radiative_transition_wrong_nu0(self): wrong_nu0 = (self.up.E-self.low.E)/constants.h*1.01 with pytest.raises(AssertionError): atomic_transition.RadiativeTransition(up=self.up,low=self.low,A21=self.A21, nu0=wrong_nu0) atomic_transition.EmissionLine( up=self.up,low=self.low,A21=1, line_profile_cls=self.line_profile_cls, width_v=self.width_v,nu0=wrong_nu0) def test_emission_line_constructor(self): assert self.test_emission_line.nu0 == self.test_emission_line.line_profile.nu0 def test_constructor_from_radiative_transition(self): emission_line = atomic_transition.EmissionLine.from_radiative_transition( radiative_transition=self.radiative_transition, line_profile_cls=self.line_profile_cls, width_v=self.width_v) assert emission_line.nu0 == self.radiative_transition.nu0 assert emission_line.B12 == self.radiative_transition.B12 with pytest.raises(AssertionError): wrong_nu0_rad_trans = atomic_transition.RadiativeTransition( up=self.up,low=self.low, A21=self.A21) wrong_nu0_rad_trans.nu0 = wrong_nu0_rad_trans.nu0*1.01 atomic_transition.EmissionLine.from_radiative_transition( radiative_transition=wrong_nu0_rad_trans, line_profile_cls=self.line_profile_cls, width_v=self.width_v) def test_coll_coeffs(self): K21_data_sets = [np.array((2,1,4,6,3)),np.array((1,0,0,6,3))] for K21_data in K21_data_sets: coll_transition = atomic_transition.CollisionalTransition( up=self.up,low=self.low,K21_data=K21_data, Tkin_data=self.Tkin_data) Tkin_interp = np.array((self.Tkin_data[0],self.Tkin_data[-1])) coeff = coll_transition.coeffs(Tkin_interp)['K21'] expected_coeff =
np.array((K21_data[0],K21_data[-1]))
numpy.array
""" Base NN implementation evaluating train and test performance on a homogeneous dataset created on May 17, 2019 by <NAME> """ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from low_dim.generate_environment import create_simple_classification_dataset from low_dim.utils.accuracy_measures import compute_specificity, compute_sensitivity from low_dim.utils.helper_utils import save_performance_results torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.manual_seed(50) # ensures repeatability np.random.seed(50) num_schedules = 50 it_1 = [True,False, False] it_2 = [False, True, False] it_3 = [False,False,True] it = [it_3,it_1,it_2] x_data, y = create_simple_classification_dataset(num_schedules, train=it[0][0], cv=it[0][1]) x = [] for each_ele in x_data: x.append(each_ele[2:]) x = torch.Tensor(x).reshape(-1, 2) y = torch.Tensor(y).reshape((-1, 1)) print('Toy problem generated, and data cleaned') x_data_test, y_test = create_simple_classification_dataset(10, train=it[1][0], cv=it[1][1]) x_test = [] for each_ele in x_data_test: x_test.append(each_ele[2:]) x_test = torch.Tensor(x_test).reshape(-1, 2) y_test = torch.Tensor(y_test).reshape((-1, 1)) print('test set generated') class Classifier_MLP(nn.Module): def __init__(self, in_dim, hidden_dim, out_dim): super(Classifier_MLP, self).__init__() self.h1 = nn.Linear(in_dim, hidden_dim) self.h2 = nn.Linear(hidden_dim, hidden_dim) self.out = nn.Linear(hidden_dim, out_dim) self.out_dim = out_dim def forward(self, x): x = F.relu(self.h1(x)) x = F.relu(self.h2(x)) x = F.log_softmax(self.out(x)) return x input_size = 2 # Just the x dimension hidden_size = 10 # The number of nodes at the hidden layer num_classes = 2 # The number of output classes. In this case, from 0 to 1 learning_rate = 1e-3 # The speed of convergence MLP = Classifier_MLP(in_dim=input_size, hidden_dim=hidden_size, out_dim=num_classes) optimizer = torch.optim.Adam(MLP.parameters(), lr=learning_rate) epochs = 100 schedule_starts = np.linspace(0, 20 * (num_schedules - 1), num=num_schedules) for epoch in range(epochs): # loop over the dataset multiple times # for batch, (x_train, y_train) in enumerate(train_loader): for i in range(num_schedules): chosen_schedule_start = int(np.random.choice(schedule_starts)) for each_t in range(chosen_schedule_start, chosen_schedule_start + 20): optimizer.zero_grad() pred = MLP(x[each_t]) loss = F.cross_entropy(pred.reshape(1, 2), y[each_t].long()) loss.backward() optimizer.step() learning_rate /= 1.1 test_losses, test_accs = [], [] # for i, (x_test, y_test) in enumerate(test_loader): for i in range(10): chosen_schedule_start = int(schedule_starts[i]) for each_t in range(chosen_schedule_start, chosen_schedule_start + 20): optimizer.zero_grad() pred = MLP(x_test[each_t]) loss = F.cross_entropy(pred.reshape(1, 2), y_test[each_t].long()) acc = (pred.argmax(dim=-1) == y_test[each_t].item()).to(torch.float32).mean() test_losses.append(loss.item()) test_accs.append(acc.mean().item()) print('Loss: {}, Accuracy: {}'.format(np.mean(test_losses),
np.mean(test_accs)
numpy.mean
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: mnist.py # Author: <NAME> <<EMAIL>> import os import gzip import struct from datetime import datetime import numpy as np # from tensorcv.dataflow.base import RNGDataFlow _RNG_SEED = None def get_rng(obj=None): """ This function is copied from `tensorpack <https://github.com/ppwwyyxx/tensorpack/blob/master/tensorpack/utils/utils.py>`__. Get a good RNG seeded with time, pid and the object. Args: obj: some object to use to generate random seed. Returns: np.random.RandomState: the RNG. """ seed = (id(obj) + os.getpid() + int(datetime.now().strftime("%Y%m%d%H%M%S%f"))) % 4294967295 if _RNG_SEED is not None: seed = _RNG_SEED return
np.random.RandomState(seed)
numpy.random.RandomState
""" vector functions """ import numbers import numpy import transformations as tf def unit_norm(xyz): """ vector normalized to 1 """ norm = numpy.linalg.norm(xyz) uxyz = numpy.divide(xyz, norm) assert numpy.allclose(numpy.linalg.norm(uxyz), 1.) return uxyz def unit_direction(xyz1, xyz2): """ calculate a unit direction vector from `xyz1` to `xyz2` """ dxyz12 = numpy.subtract(xyz2, xyz1) uxyz12 = unit_norm(dxyz12) return uxyz12 def unit_perpendicular(xyz1, xyz2, orig_xyz=(0., 0., 0.), allow_parallel=True): """ calculate a unit perpendicular on `xyz1` and `xyz2` """ xyz1 = numpy.subtract(xyz1, orig_xyz) xyz2 = numpy.subtract(xyz2, orig_xyz) xyz3 =
numpy.cross(xyz1, xyz2)
numpy.cross
# -*- coding: utf-8 -*- """ The :mod:`parsimony.functions.losses` module contains the loss functions used throughout the package. These represent mathematical functions and should thus have properties used by the corresponding algorithms. These properties are defined in :mod:`parsimony.functions.properties`. Loss functions should be stateless. Loss functions may be shared and copied and should therefore not hold anything that cannot be recomputed the next time it is called. Created on Mon Apr 22 10:54:29 2013 Copyright (c) 2013-2014, CEA/DSV/I2BM/Neurospin. All rights reserved. @author: <NAME>, <NAME>, <NAME> and <NAME> @email: <EMAIL>, <EMAIL> @license: BSD 3-clause. """ import numpy as np try: from . import properties # Only works when imported as a package. except (ValueError, SystemError): import parsimony.functions.properties as properties # Run as a script. import parsimony.utils as utils import parsimony.utils.consts as consts __all__ = ["LinearRegression", "RidgeRegression", "LogisticRegression", "RidgeLogisticRegression", "LatentVariableVariance", "LinearFunction", "LinearSVM", "NonlinearSVM"] class LinearRegression(properties.CompositeFunction, properties.Gradient, properties.LipschitzContinuousGradient, properties.StepSize): """The Linear regression loss function. Corresponds to the function f(beta) = (1 / 2n) * ||y - X.beta||²_2. """ def __init__(self, X, y, mean=True): """ Parameters ---------- X : numpy array (n-by-p) The regressor matrix. y : numpy array (n-by-1) The regressand vector. k : float Non-negative float. The ridge parameter. mean : bool Whether to compute the squared loss or the mean squared loss. Default is True, the mean squared loss. """ self.X = X self.y = y self.mean = bool(mean) self.reset() def reset(self): """Free any cached computations from previous use of this Function. From the interface "Function". """ self._L = None def f(self, beta): """Function value. From the interface "Function". Parameters ---------- beta : numpy array Regression coefficient vector. The point at which to evaluate the function. """ if self.mean: d = 2.0 * float(self.X.shape[0]) else: d = 2.0 f = (1.0 / d) * np.sum((np.dot(self.X, beta) - self.y) ** 2) return f def grad(self, beta): """Gradient of the function at beta. From the interface "Gradient". Parameters ---------- beta : numpy array The point at which to evaluate the gradient. Examples -------- >>> import numpy as np >>> from parsimony.functions.losses import LinearRegression >>> >>> np.random.seed(42) >>> X = np.random.rand(100, 150) >>> y = np.random.rand(100, 1) >>> lr = LinearRegression(X=X, y=y) >>> beta = np.random.rand(150, 1) >>> np.linalg.norm(lr.grad(beta) ... - lr.approx_grad(beta, eps=1e-4)) < 5e-8 True """ grad = np.dot(self.X.T, np.dot(self.X, beta) - self.y) if self.mean: grad *= 1.0 / float(self.X.shape[0]) return grad def L(self, beta=None): """Lipschitz constant of the gradient. From the interface "LipschitzContinuousGradient". Examples -------- >>> import numpy as np >>> from parsimony.functions.losses import LinearRegression >>> >>> np.random.seed(42) >>> X = np.random.rand(10, 15) >>> y = np.random.rand(10, 1) >>> lr = LinearRegression(X=X, y=y) >>> L = lr.L() >>> L_ = lr.approx_L((15, 1), 10000) >>> L >= L_ True >>> (L - L_) / L # doctest: +ELLIPSIS 0.14039091... """ if self._L is None: from parsimony.algorithms.nipals import RankOneSVD # Rough limits for when RankOneSVD is faster than np.linalg.svd. n, p = self.X.shape if (max(n, p) > 500 and max(n, p) <= 1000 and float(max(n, p)) / min(n, p) <= 1.3) \ or (max(n, p) > 1000 and max(n, p) <= 5000 and float(max(n, p)) / min(n, p) <= 5.0) \ or (max(n, p) > 5000 and max(n, p) <= 10000 and float(max(n, p)) / min(n, p) <= 15.0) \ or (max(n, p) > 10000 and max(n, p) <= 20000 and float(max(n, p)) / min(n, p) <= 200.0) \ or max(n, p) > 10000: v = RankOneSVD(max_iter=1000).run(self.X) us = np.dot(self.X, v) self._L = np.sum(us ** 2) else: s = np.linalg.svd(self.X, full_matrices=False, compute_uv=False) self._L = np.max(s) ** 2 if self.mean: self._L /= float(n) return self._L def step(self, beta, index=0, **kwargs): """The step size to use in descent methods. Parameters ---------- beta : numpy array The point at which to determine the step size. """ return 1.0 / self.L(beta) class RidgeRegression(properties.CompositeFunction, properties.Gradient, properties.LipschitzContinuousGradient, properties.StronglyConvex, properties.StepSize): """The Ridge Regression function, i.e. a representation of f(x) = (0.5 / n) * ||Xb - y||²_2 + lambda * 0.5 * ||b||²_2, where ||.||²_2 is the L2 norm. """ # TODO: Inherit from LinearRegression and add an L2 constraint instead! def __init__(self, X, y, k, penalty_start=0, mean=True): """ Parameters ---------- X : Numpy array (n-by-p). The regressor matrix. y : Numpy array (n-by-1). The regressand vector. k : Non-negative float. The ridge parameter. penalty_start : Non-negative integer. The number of columns, variables etc., to except from penalisation. Equivalently, the first index to be penalised. Default is 0, all columns are included. mean : Boolean. Whether to compute the squared loss or the mean squared loss. Default is True, the mean squared loss. """ self.X = X self.y = y self.k = max(0.0, float(k)) self.penalty_start = max(0, int(penalty_start)) self.mean = bool(mean) self.reset() def reset(self): """Free any cached computations from previous use of this Function. From the interface "Function". """ self._lambda_max = None self._lambda_min = None def f(self, beta): """Function value. From the interface "Function". Parameters ---------- beta : Numpy array. Regression coefficient vector. The point at which to evaluate the function. """ if self.penalty_start > 0: beta_ = beta[self.penalty_start:, :] else: beta_ = beta if self.mean: d = 2.0 * float(self.X.shape[0]) else: d = 2.0 f = (1.0 / d) * np.sum((np.dot(self.X, beta) - self.y) ** 2) \ + (self.k / 2.0) * np.sum(beta_ ** 2) return f def grad(self, beta): """Gradient of the function at beta. From the interface "Gradient". Parameters ---------- beta : Numpy array. The point at which to evaluate the gradient. Examples -------- >>> import numpy as np >>> from parsimony.functions.losses import RidgeRegression >>> >>> np.random.seed(42) >>> X = np.random.rand(100, 150) >>> y = np.random.rand(100, 1) >>> rr = RidgeRegression(X=X, y=y, k=3.14159265) >>> beta = np.random.rand(150, 1) >>> np.linalg.norm(rr.grad(beta) ... - rr.approx_grad(beta, eps=1e-4)) < 5e-8 True """ gradOLS = np.dot((np.dot(self.X, beta) - self.y).T, self.X).T if self.mean: gradOLS *= 1.0 / float(self.X.shape[0]) if self.penalty_start > 0: gradL2 = np.vstack((np.zeros((self.penalty_start, 1)), self.k * beta[self.penalty_start:, :])) else: gradL2 = self.k * beta grad = gradOLS + gradL2 return grad def L(self, beta=None): """Lipschitz constant of the gradient. From the interface "LipschitzContinuousGradient". """ if self._lambda_max is None: s = np.linalg.svd(self.X, full_matrices=False, compute_uv=False) self._lambda_max = np.max(s) ** 2 if len(s) < self.X.shape[1]: self._lambda_min = 0.0 else: self._lambda_min = np.min(s) ** 2 if self.mean: self._lambda_max /= float(self.X.shape[0]) self._lambda_min /= float(self.X.shape[0]) return self._lambda_max + self.k @utils.deprecated("StronglyConvex.parameter") def lambda_min(self): """Smallest eigenvalue of the corresponding covariance matrix. From the interface "Eigenvalues". """ return self.parameter() def parameter(self): """Returns the strongly convex parameter for the function. From the interface "StronglyConvex". """ if self._lambda_min is None: self._lambda_max = None self.L() # Precompute return self._lambda_min + self.k def step(self, beta, index=0, **kwargs): """The step size to use in descent methods. Parameters ---------- beta : Numpy array. The point at which to determine the step size. """ return 1.0 / self.L() class LogisticRegression(properties.AtomicFunction, properties.Gradient, properties.LipschitzContinuousGradient, properties.StepSize): """The Logistic Regression loss function. (Re-weighted) Log-likelihood (cross-entropy): * f(beta) = -Sum wi (yi log(pi) + (1 − yi) log(1 − pi)) = -Sum wi (yi xi' beta − log(1 + e(x_i'beta))), * grad f(beta) = -Sum wi[ xi (yi - pi)] + k beta, where pi = p(y=1 | xi, beta) = 1 / (1 + exp(-x_i'beta)) and wi is the weight for sample i. See [Hastie 2009, p.: 102, 119 and 161, Bishop 2006 p.: 206] for details. Parameters ---------- X : Numpy array (n-by-p). The regressor matrix. y : Numpy array (n-by-1). The regressand vector. weights: Numpy array (n-by-1). The sample's weights. mean : Boolean. Whether to compute the squared loss or the mean squared loss. Default is True, the mean squared loss. """ def __init__(self, X, y, weights=None, mean=True): self.X = X self.y = y if weights is None: # TODO: Make the weights sparse. # weights = np.eye(self.X.shape[0]) weights = np.ones(y.shape).reshape(y.shape) # TODO: Allow the weight vector to be a list. self.weights = weights self.mean = bool(mean) self.reset() def reset(self): """Free any cached computations from previous use of this Function. From the interface "Function". """ self._L = None def f(self, beta): """Function value at the point beta. From the interface "Function". Parameters ---------- beta : Numpy array. Regression coefficient vector. The point at which to evaluate the function. """ Xbeta = np.dot(self.X, beta) negloglike = -np.sum(self.weights * ((self.y * Xbeta) - np.log(1 + np.exp(Xbeta)))) if self.mean: negloglike /= float(self.X.shape[0]) return negloglike def grad(self, beta): """Gradient of the function at beta. From the interface "Gradient". Parameters ---------- beta : Numpy array. The point at which to evaluate the gradient. Examples -------- >>> import numpy as np >>> from parsimony.functions.losses import LogisticRegression >>> >>> np.random.seed(42) >>> X = np.random.rand(100, 150) >>> y = np.random.randint(0, 2, (100, 1)) >>> lr = LogisticRegression(X=X, y=y, mean=True) >>> beta = np.random.rand(150, 1) >>> np.linalg.norm(lr.grad(beta) ... - lr.approx_grad(beta, eps=1e-4)) < 5e-10 True >>> >>> np.random.seed(42) >>> X = np.random.rand(100, 150) >>> y = np.random.randint(0, 2, (100, 1)) >>> lr = LogisticRegression(X=X, y=y, mean=False) >>> beta = np.random.rand(150, 1) >>> np.linalg.norm(lr.grad(beta) ... - lr.approx_grad(beta, eps=1e-4)) < 5e-8 True """ Xbeta = np.dot(self.X, beta) # pi = 1.0 / (1.0 + np.exp(-Xbeta)) pi = np.reciprocal(1.0 + np.exp(-Xbeta)) grad = -np.dot(self.X.T, self.weights * (self.y - pi)) if self.mean: grad *= 1.0 / float(self.X.shape[0]) return grad def L(self, beta=None): """Lipschitz constant of the gradient. Returns the maximum eigenvalue of (1 / 4) * X'WX. From the interface "LipschitzContinuousGradient". Examples -------- >>> import numpy as np >>> from parsimony.functions.losses import LogisticRegression >>> >>> np.random.seed(42) >>> X = np.random.rand(10, 15) >>> y = np.random.randint(0, 2, (10, 1)) >>> lr = LogisticRegression(X=X, y=y, mean=True) >>> L = lr.L() >>> L_ = lr.approx_L((15, 1), 10000) >>> L >= L_ True >>> (L - L_) / L # doctest: +ELLIPSIS 0.45110910... >>> lr = LogisticRegression(X=X, y=y, mean=False) >>> L = lr.L() >>> L_ = lr.approx_L((15, 1), 10000) >>> L >= L_ True >>> (L - L_) / L # doctest: +ELLIPSIS 0.43030668... """ if self._L is None: # pi(x) * (1 - pi(x)) <= 0.25 = 0.5 * 0.5 PWX = 0.5 * np.sqrt(self.weights) * self.X # TODO: Use RankOneSVD for speedup! s = np.linalg.svd(PWX, full_matrices=False, compute_uv=False) self._L = np.max(s) ** 2 # TODO: CHECK if self.mean: self._L /= float(self.X.shape[0]) return self._L def step(self, beta, index=0, **kwargs): """The step size to use in descent methods. Parameters ---------- beta : Numpy array. The point at which to determine the step size. """ return 1.0 / self.L() class RidgeLogisticRegression(properties.CompositeFunction, properties.Gradient, properties.LipschitzContinuousGradient, properties.StepSize): """The Logistic Regression loss function with a squared L2 penalty. Ridge (re-weighted) log-likelihood (cross-entropy): * f(beta) = -loglik + k/2 * ||beta||^2_2 = -Sum wi (yi log(pi) + (1 − yi) log(1 − pi)) + k/2*||beta||^2_2 = -Sum wi (yi xi' beta − log(1 + e(xi' beta))) + k/2*||beta||^2_2 * grad f(beta) = -Sum wi[ xi (yi - pi)] + k beta pi = p(y=1|xi, beta) = 1 / (1 + exp(-xi' beta)) wi: sample i weight [Hastie 2009, p.: 102, 119 and 161, Bishop 2006 p.: 206] """ def __init__(self, X, y, k=0.0, weights=None, penalty_start=0, mean=True): """ Parameters ---------- X : Numpy array (n-by-p). The regressor matrix. Training vectors, where n is the number of samples and p is the number of features. y : Numpy array (n-by-1). The regressand vector. Target values (class labels in classification). k : Non-negative float. The ridge parameter. weights: Numpy array (n-by-1). The sample's weights. penalty_start : Non-negative integer. The number of columns, variables etc., to except from penalisation. Equivalently, the first index to be penalised. Default is 0, all columns are included. mean : Boolean. Whether to compute the mean loss or not. Default is True, the mean loss is computed. """ self.X = X self.y = y self.k = max(0.0, float(k)) if weights is None: weights = np.ones(y.shape) # .reshape(y.shape) self.weights = weights self.penalty_start = max(0, int(penalty_start)) self.mean = bool(mean) self.reset() def reset(self): """Free any cached computations from previous use of this Function. From the interface "Function". """ self._L = None def f(self, beta): """Function value of Logistic regression at beta. Parameters ---------- beta : Numpy array. Regression coefficient vector. The point at which to evaluate the function. """ # TODO check the correctness of the re-weighted loglike Xbeta = np.dot(self.X, beta) negloglike = -np.sum(self.weights * ((self.y * Xbeta) - np.log(1 + np.exp(Xbeta)))) if self.mean: negloglike *= 1.0 / float(self.X.shape[0]) if self.penalty_start > 0: beta_ = beta[self.penalty_start:, :] else: beta_ = beta return negloglike + (self.k / 2.0) * np.sum(beta_ ** 2) def grad(self, beta): """Gradient of the function at beta. From the interface "Gradient". Parameters ---------- beta : Numpy array. The point at which to evaluate the gradient. Examples -------- >>> import numpy as np >>> from parsimony.functions.losses import RidgeLogisticRegression >>> >>> np.random.seed(42) >>> X = np.random.rand(100, 150) >>> y = np.random.rand(100, 1) >>> y[y < 0.5] = 0.0 >>> y[y >= 0.5] = 1.0 >>> rr = RidgeLogisticRegression(X=X, y=y, k=2.71828182, mean=True) >>> beta = np.random.rand(150, 1) >>> round(np.linalg.norm(rr.grad(beta) ... - rr.approx_grad(beta, eps=1e-4)), 11) < 1e-9 True >>> >>> np.random.seed(42) >>> X = np.random.rand(100, 150) >>> y = np.random.rand(100, 1) >>> y[y < 0.5] = 0.0 >>> y[y >= 0.5] = 1.0 >>> rr = RidgeLogisticRegression(X=X, y=y, k=2.71828182, mean=False) >>> beta = np.random.rand(150, 1) >>> np.linalg.norm(rr.grad(beta) ... - rr.approx_grad(beta, eps=1e-4)) < 5e-8 True """ Xbeta = np.dot(self.X, beta) # pi = 1.0 / (1.0 + np.exp(-Xbeta)) pi = np.reciprocal(1.0 + np.exp(-Xbeta)) grad = -np.dot(self.X.T, self.weights * (self.y - pi)) if self.mean: grad *= 1.0 / float(self.X.shape[0]) if self.penalty_start > 0: gradL2 = np.vstack((np.zeros((self.penalty_start, 1)), self.k * beta[self.penalty_start:, :])) else: gradL2 = self.k * beta grad = grad + gradL2 return grad # return -np.dot(self.X.T, # np.dot(self.W, (self.y - pi))) \ # + self.k * beta def L(self, beta=None): """Lipschitz constant of the gradient. Returns the maximum eigenvalue of (1 / 4) * X'WX. From the interface "LipschitzContinuousGradient". """ if self._L is None: # pi(x) * (1 - pi(x)) <= 0.25 = 0.5 * 0.5 PWX = 0.5 * np.sqrt(self.weights) * self.X # TODO: CHECK WITH FOUAD # PW = 0.5 * np.eye(self.X.shape[0]) ## miss np.sqrt(self.W) # PW = 0.5 * np.sqrt(self.W) # PWX = np.dot(PW, self.X) # TODO: Use RankOneSVD for speedup! s = np.linalg.svd(PWX, full_matrices=False, compute_uv=False) self._L = np.max(s) ** 2 # TODO: CHECK if self.mean: self._L /= float(self.X.shape[0]) self._L += self.k # TODO: CHECK return self._L def step(self, beta, index=0, **kwargs): """The step size to use in descent methods. Parameters ---------- beta : Numpy array. The point at which to determine the step size. """ return 1.0 / self.L() class LatentVariableVariance(properties.Function, properties.Gradient, properties.StepSize, properties.LipschitzContinuousGradient): # TODO: Handle mean here? def __init__(self, X, unbiased=True): self.X = X if unbiased: self._n = float(X.shape[0] - 1.0) else: self._n = float(X.shape[0]) self.reset() def reset(self): self._lambda_max = None def f(self, w): """Function value. From the interface "Function". Examples -------- >>> import numpy as np >>> from parsimony.algorithms.nipals import RankOneSVD >>> from parsimony.functions.losses import LatentVariableVariance >>> >>> np.random.seed(1337) >>> X = np.random.rand(50, 150) >>> w = np.random.rand(150, 1) >>> var = LatentVariableVariance(X) >>> round(var.f(w), 12) -1295.854475188615 >>> round(-np.dot(w.T, np.dot(X.T, np.dot(X, w)))[0, 0] / 49.0, 12) -1295.854475188615 """ Xw = np.dot(self.X, w) wXXw =
np.dot(Xw.T, Xw)
numpy.dot
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import numpy as np from urllib.parse import urlencode from io import BytesIO from astropy.utils.data import download_file from astropy import units as u from astropy.io import fits from astropy.coordinates import ICRS, Galactic, BaseCoordinateFrame from astropy.coordinates import SkyCoord, Angle, Longitude, Latitude from astropy import wcs import cdshealpix try: from astropy_healpix import HEALPix except ImportError: pass from ..abstract_moc import AbstractMOC from ..interval_set import IntervalSet from .. import mocpy from .boundaries import Boundaries from .plot import fill, border __author__ = "<NAME>, <NAME>, <NAME>" __copyright__ = "CDS, Centre de Données astronomiques de Strasbourg" __license__ = "BSD 3-Clause License" __email__ = "<EMAIL>, <EMAIL>, <EMAIL>" class MOC(AbstractMOC): """ Multi-order spatial coverage class. A MOC describes the coverage of an arbitrary region on the unit sphere. MOCs are usually used for describing the global coverage of catalog/image surveys such as GALEX or SDSS. A MOC corresponds to a list of `HEALPix <https://healpix.sourceforge.io/>`__ cells at different depths. This class gives you the possibility to: 1. Define `~mocpy.moc.MOC` objects: - From a FITS file that stores HEALPix cells (see `load(path, 'fits')`). - Directly from a list of HEALPix cells expressed either as a numpy structural array (see `from_healpix_cells`) or a simple python dictionnary (see `from_json`). - From a list of sky coordinates (see `from_skycoords`, `from_lonlat`). - From a convex/concave polygon (see `from_polygon`). - From a cone (will be implemented in a next version). 2. Perform fast logical operations between `~mocpy.moc.MOC` objects: - The `intersection` - The `union` - The `difference` - The `complement` 3. Plot the `~mocpy.moc.MOC` objects: - Draw the MOC with its HEALPix cells (see `fill`) - Draw the perimeter of a MOC (see `border`) 4. Get the sky coordinates defining the border(s) of `~mocpy.moc.MOC` objects (see `get_boundaries`). 5. Serialize `~mocpy.moc.MOC` objects to `astropy.io.fits.HDUList` or JSON dictionary and save it to a file. """ # I introduced, but do not like, the double `make_consistent` (MOC + IntervalSet) # but `coverage_merge_time_intervals` is no more genric # and I can't remove `make_consistent` from `IntervalSet` without changing tests def __init__(self, interval_set=None, make_consistent=True, min_depth=None): """ Moc constructor. The merging step of the overlapping intervals is done here. Parameters ---------- intervals : `~numpy.ndarray` a N x 2 numpy array representing the set of intervals. make_consistent : bool, optional True by default. Remove the overlapping intervals that makes a valid MOC (i.e. can be plot, serialized, manipulated). """ super(MOC, self).__init__(interval_set) if make_consistent: if min_depth is None: min_depth = -1 min_depth = np.int8(min_depth) self._merge_intervals(min_depth) def _merge_intervals(self, min_depth): if not self.empty(): self._interval_set._intervals = mocpy.coverage_merge_hpx_intervals(self._interval_set._intervals, min_depth) @property def max_order(self): """ Depth of the smallest HEALPix cells found in the MOC instance. """ depth = mocpy.hpx_coverage_depth(self._interval_set._intervals) depth = np.uint8(depth) return depth def refine_to_order(self, min_depth): intervals = mocpy.coverage_merge_hpx_intervals(self._interval_set._intervals, min_depth) interval_set = IntervalSet(intervals, make_consistent=False) return MOC(interval_set, make_consistent=False) def complement(self): """ Returns the complement of the MOC instance. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC. """ intervals = mocpy.hpx_coverage_complement(self._interval_set._intervals) interval_set = IntervalSet(intervals, make_consistent=False) return MOC(interval_set, make_consistent=False) def extended(self): """ Returns the MOC extended by the external border made of cells at the MOC maximum depth. The only difference with respect to `add_neighbours` is that `extended` returns a new MOC instead of modifying the existing one. Returns ------- moc : `~mocpy.moc.MOC` The extended MOC """ intervals = mocpy.hpx_coverage_expand(self.max_order, self._interval_set._intervals) interval_set = IntervalSet(intervals, make_consistent=False) return MOC(interval_set, make_consistent=False) def contracted(self): """ Returns the MOC contracted by removing the internal border made of cells at the MOC maximum depth. The only difference with respect to `remove_neighbours` is that `contracted` returns a new MOC instead of modifying the existing one. Returns ------- moc : `~mocpy.moc.MOC` The extended MOC """ intervals = mocpy.hpx_coverage_contract(self.max_order, self._interval_set._intervals) interval_set = IntervalSet(intervals, make_consistent=False) return MOC(interval_set, make_consistent=False) def split_count(self): """ Returns the number of disjoint MOCs the given MOC contains. """ return mocpy.hpx_coverage_split_count(self.max_order, self._interval_set._intervals) def split(self): """ Returns the disjoint MOCs this MOC contains.format WARNING ------- Please use `~mocpy.moc.MOC.split_count` first to ensure the number is not too high """ list_of_intervals = mocpy.hpx_coverage_split(self.max_order, self._interval_set._intervals) mocs = map(lambda intervals: MOC(IntervalSet(intervals, make_consistent=False), make_consistent=False), list_of_intervals) return mocs def degrade_to_order(self, new_order): """ Degrades the MOC instance to a new, less precise, MOC. The maximum depth (i.e. the depth of the smallest HEALPix cells that can be found in the MOC) of the degraded MOC is set to ``new_order``. Parameters ---------- new_order : int Maximum depth of the output degraded MOC. Returns ------- moc : `~mocpy.moc.MOC` The degraded MOC. """ intervals = mocpy.hpx_coverage_degrade(self._interval_set._intervals, new_order) return MOC(IntervalSet(intervals, make_consistent=False), make_consistent=False) def contains(self, ra, dec, keep_inside=True): """ Returns a boolean mask array of the positions lying inside (or outside) the MOC instance. Parameters ---------- ra : `astropy.coordinates.Longitude` or its supertype `astropy.units.Quantity` Right ascension array dec : `astropy.coordinates.Latitude` or its supertype `astropy.units.Quantity` Declination array keep_inside : bool, optional True by default. If so the mask describes coordinates lying inside the MOC. If ``keep_inside`` is false, contains will return the mask of the coordinates lying outside the MOC. Returns ------- array : `~np.ndarray` A mask boolean array """ max_depth = self.max_order m = np.zeros(3 << (2*(max_depth + 1)), dtype=bool) pix_id = mocpy.flatten_pixels(self._interval_set._intervals, max_depth) m[pix_id] = True if not keep_inside: m = np.logical_not(m) ra = ra if isinstance(ra, Longitude) else Longitude(ra) dec = dec if isinstance(dec, Latitude) else Latitude(dec) pix = cdshealpix.lonlat_to_healpix(ra, dec, max_depth) return m[pix] ## TODO: implement: def contains_including_surrounding(self, ra, dec, distance) def add_neighbours(self): """ Extends the MOC instance so that it includes the HEALPix cells touching its border. The depth of the HEALPix cells added at the border is equal to the maximum depth of the MOC instance. Returns ------- moc : `~mocpy.moc.MOC` self extended by one degree of neighbours. """ intervals = mocpy.hpx_coverage_expand(self.max_order, self._interval_set._intervals) self._interval_set = IntervalSet(intervals, make_consistent=False) return self def remove_neighbours(self): """ Removes from the MOC instance the HEALPix cells located at its border. The depth of the HEALPix cells removed is equal to the maximum depth of the MOC instance. Returns ------- moc : `~mocpy.moc.MOC` self minus its HEALPix cells located at its border. """ intervals = mocpy.hpx_coverage_contract(self.max_order, self._interval_set._intervals); self._interval_set = IntervalSet(intervals, make_consistent=False) return self def fill(self, ax, wcs, **kw_mpl_pathpatch): """ Draws the MOC on a matplotlib axis. This performs the projection of the cells from the world coordinate system to the pixel image coordinate system. You are able to specify various styling kwargs for `matplotlib.patches.PathPatch` (see the `list of valid keywords <https://matplotlib.org/api/_as_gen/matplotlib.patches.PathPatch.html#matplotlib.patches.PathPatch>`__). Parameters ---------- ax : `matplotlib.axes.Axes` Matplotlib axis. wcs : `astropy.wcs.WCS` WCS defining the World system <-> Image system projection. kw_mpl_pathpatch Plotting arguments for `matplotlib.patches.PathPatch`. Examples -------- >>> from mocpy import MOC, World2ScreenMPL >>> from astropy.coordinates import Angle, SkyCoord >>> import astropy.units as u >>> # Load a MOC, e.g. the MOC of GALEXGR6-AIS-FUV >>> filename = './../resources/P-GALEXGR6-AIS-FUV.fits' >>> moc = MOC.load(filename, 'fits') >>> # Plot the MOC using matplotlib >>> import matplotlib.pyplot as plt >>> fig = plt.figure(111, figsize=(15, 15)) >>> # Define a WCS as a context >>> with World2ScreenMPL(fig, ... fov=50 * u.deg, ... center=SkyCoord(0, 20, unit='deg', frame='icrs'), ... coordsys="icrs", ... rotation=Angle(0, u.degree), ... projection="AIT") as wcs: ... ax = fig.add_subplot(1, 1, 1, projection=wcs) ... # Call fill giving the matplotlib axe and the `~astropy.wcs.WCS` object. ... # We will set the matplotlib keyword linewidth to 0 so that it does not plot ... # the border of each HEALPix cell. ... # The color can also be specified along with an alpha value. ... moc.fill(ax=ax, wcs=wcs, linewidth=0, alpha=0.5, fill=True, color="green") >>> plt.xlabel('ra') >>> plt.ylabel('dec') >>> plt.grid(color="black", linestyle="dotted") """ fill.fill(self, ax, wcs, **kw_mpl_pathpatch) def border(self, ax, wcs, **kw_mpl_pathpatch): """ Draws the MOC border(s) on a matplotlib axis. This performs the projection of the sky coordinates defining the perimeter of the MOC to the pixel image coordinate system. You are able to specify various styling kwargs for `matplotlib.patches.PathPatch` (see the `list of valid keywords <https://matplotlib.org/api/_as_gen/matplotlib.patches.PathPatch.html#matplotlib.patches.PathPatch>`__). Parameters ---------- ax : `matplotlib.axes.Axes` Matplotlib axis. wcs : `astropy.wcs.WCS` WCS defining the World system <-> Image system projection. kw_mpl_pathpatch Plotting arguments for `matplotlib.patches.PathPatch` Examples -------- >>> from mocpy import MOC, World2ScreenMPL >>> from astropy.coordinates import Angle, SkyCoord >>> import astropy.units as u >>> # Load a MOC, e.g. the MOC of GALEXGR6-AIS-FUV >>> filename = './../resources/P-GALEXGR6-AIS-FUV.fits' >>> moc = MOC.load(filename, 'fits') >>> # Plot the MOC using matplotlib >>> import matplotlib.pyplot as plt >>> fig = plt.figure(111, figsize=(15, 15)) >>> # Define a WCS as a context >>> with World2ScreenMPL(fig, ... fov=50 * u.deg, ... center=SkyCoord(0, 20, unit='deg', frame='icrs'), ... coordsys="icrs", ... rotation=Angle(0, u.degree), ... projection="AIT") as wcs: ... ax = fig.add_subplot(1, 1, 1, projection=wcs) ... # Call border giving the matplotlib axe and the `~astropy.wcs.WCS` object. ... moc.border(ax=ax, wcs=wcs, alpha=0.5, color="red") >>> plt.xlabel('ra') >>> plt.ylabel('dec') >>> plt.grid(color="black", linestyle="dotted") """ border.border(self, ax, wcs, **kw_mpl_pathpatch) def get_boundaries(self, order=None): """ Returns the sky coordinates defining the border(s) of the MOC. The border(s) are expressed as a list of SkyCoord. Each SkyCoord refers to the coordinates of one border of the MOC (i.e. either a border of a connexe MOC part or a border of a hole located in a connexe MOC part). This function is currently not stable: encoding a vertice of a HEALPix cell (N, E, S, W) should not depend on the position of the vertice but rather on the uniq value (+ 2 bits to encode the direction of the vertice). Parameters ---------- order : int The depth of the MOC before computing its boundaries. A shallow depth leads to a faster computation. By default the maximum depth of the MOC is taken. Raises ------ DeprecationWarning This method is not stable and not tested! A future more stable algorithm will be implemented! Returns ------- coords: [`~astropy.coordinates.SkyCoord`] A list of `~astropy.coordinates.SkyCoord` each describing one border. """ import warnings warnings.warn('This method is not stable. A future more stable algorithm will be implemented!', DeprecationWarning) return Boundaries.get(self, order) @classmethod def from_fits_image(cls, hdu, max_norder, mask=None): """ Creates a `~mocpy.moc.MOC` from an image stored as a FITS file. Parameters ---------- hdu : HDU object HDU containing the data of the image max_norder : int The moc resolution. mask : `numpy.ndarray`, optional A boolean array of the same size of the image where pixels having the value 1 are part of the final MOC and pixels having the value 0 are not. Returns ------- moc : `~mocpy.moc.MOC` The resulting MOC. """ # Only take the first HDU header = hdu.header height = header['NAXIS2'] width = header['NAXIS1'] # Compute a WCS from the header of the image w = wcs.WCS(header) if mask is None: data = hdu.data # A mask is computed discarding nan floating values mask = np.isfinite(data) # If the BLANK keyword is set to a value then we mask those # pixels too if header.get('BLANK') is not None: discard_val = header['BLANK'] # We keep the finite values and those who are not equal to the BLANK field mask = mask & (data != discard_val) y, x = np.where(mask) pix = np.dstack((x, y))[0] world = w.wcs_pix2world(pix, 0) # Remove coord containing inf/nan values good = np.isfinite(world) # It is a good coordinates whether both its coordinate are good good = good[:, 0] & good[:, 1] world = world[good] # Get the frame from the wcs frame = wcs.utils.wcs_to_celestial_frame(w) skycrd = SkyCoord( world, unit="deg", frame=frame ) # Compute the order based on the CDELT c1 = header['CDELT1'] c2 = header['CDELT2'] max_res_px = np.sqrt(c1*c1 + c2*c2) * np.pi / 180.0 max_depth_px = int(np.floor(np.log2(np.pi / (3 * max_res_px * max_res_px)) / 2)) max_norder = min(max_norder, max_depth_px) moc = MOC.from_lonlat( lon=skycrd.icrs.ra, lat=skycrd.icrs.dec, max_norder=max_norder ) return moc @classmethod def from_fits_images(cls, path_l, max_norder): """ Loads a MOC from a set of FITS file images. Assumes the data of the image is stored in the first HDU of the FITS file. Please call `~mocpy.moc.MOC.from_fits_image` for passing another hdu than the first one. Parameters ---------- path_l : [str] A list of path where the fits image are located. max_norder : int The MOC resolution. Returns ------- moc : `~mocpy.moc.MOC` The union of all the MOCs created from the paths found in ``path_l``. """ moc = MOC() for filename in path_l: with fits.open(filename) as hdul: current_moc = MOC.from_fits_image(hdu=hdul[0], max_norder=max_norder) moc = moc.union(current_moc) return moc @classmethod def from_vizier_table(cls, table_id, nside=256): """ Creates a `~mocpy.moc.MOC` object from a VizieR table. **Info**: This method is already implemented in `astroquery.cds <https://astroquery.readthedocs.io/en/latest/cds/cds.html>`__. You can ask to get a `mocpy.moc.MOC` object from a vizier catalog ID. Parameters ---------- table_id : str table index nside : int, optional 256 by default Returns ------- result : `~mocpy.moc.MOC` The resulting MOC. """ nside_possible_values = (8, 16, 32, 64, 128, 256, 512) if nside not in nside_possible_values: raise ValueError('Bad value for nside. Must be in {0}'.format(nside_possible_values)) result = cls.from_ivorn('ivo://CDS/' + table_id, nside) return result MOC_SERVER_ROOT_URL = 'http://alasky.unistra.fr/MocServer/query' @classmethod def from_ivorn(cls, ivorn, nside=256): """ Creates a `~mocpy.moc.MOC` object from a given ivorn. Parameters ---------- ivorn : str nside : int, optional 256 by default Returns ------- result : `~mocpy.moc.MOC` The resulting MOC. """ return cls.from_url('%s?%s' % (MOC.MOC_SERVER_ROOT_URL, urlencode({ 'ivorn': ivorn, 'get': 'moc', 'order': int(np.log2(nside)) }))) @classmethod def from_url(cls, url): """ Creates a `~mocpy.moc.MOC` object from a given url. Parameters ---------- url : str The url of a FITS file storing a MOC. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC. """ path = download_file(url, show_progress=False, timeout=60) return cls.load(path, 'fits') @classmethod def from_skycoords(cls, skycoords, max_norder): """ Creates a MOC from an `astropy.coordinates.SkyCoord`. Parameters ---------- skycoords : `astropy.coordinates.SkyCoord` The sky coordinates that will belong to the MOC. max_norder : int The depth of the smallest HEALPix cells contained in the MOC. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """ return cls.from_lonlat(lon=skycoords.icrs.ra, lat=skycoords.icrs.dec, max_norder=max_norder) @classmethod def from_lonlat(cls, lon, lat, max_norder): """ Creates a MOC from astropy lon, lat `astropy.units.Quantity`. Parameters ---------- lon : `astropy.coordinates.Longitude` or its supertype `astropy.units.Quantity` The longitudes of the sky coordinates belonging to the MOC. lat : `astropy.coordinates.Latitude` or its supertype `astropy.units.Quantity` The latitudes of the sky coordinates belonging to the MOC. max_norder : int The depth of the smallest HEALPix cells contained in the MOC. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """ intervals = mocpy.from_lonlat(max_norder, lon.to_value(u.rad).astype(np.float64), lat.to_value(u.rad).astype(np.float64)) return cls(IntervalSet(intervals, make_consistent=False), make_consistent=False) @classmethod def from_multiordermap_fits_file(cls, path, cumul_from=0.0, cumul_to=1.0, asc=False, strict=True, no_split=True, reverse_decent=False): """ Creates a MOC from a mutli-order map FITS file. HEALPix cells are first sorted by their values. The MOC contains the cells from which the cumulative value is between ``cumul_from`` and ``cumul_to``. Cells being on the fence are recursively splitted and added until the depth of the cells is equal to ``max_norder``. For compatibility with Aladin, use ``no_split=False`` and ``reverse_decent=True`` Remark: using ``no_split=False``, the way the cells overlapping with the low and high thresholds are split is somewhat arbitrary. Parameters ---------- path : str The path to the file to save the MOC in. cumul_from : float Cumulative value from which cells will be added to the MOC cumul_to : float Cumulative value to which cells will be added to the MOC asc: boolean the cumulative value is computed from lower to highest densities instead of from highest to lowest strict: boolean (sub-)cells overlapping the `cumul_from` or `cumul_to` values are not added no_split: boolean cells overlapping the `cumul_from` or `cumul_to` values are not recursively split reverse_decent: boolean perform the recursive decent from the highest cell number to the lowest (to be compatible with Aladin) Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """ intervals = mocpy.spatial_moc_from_multiordermap_fits_file( path, np.float64(cumul_from), np.float64(cumul_to), asc, strict, no_split, reverse_decent ) return cls(IntervalSet(intervals, make_consistent=False), make_consistent=False) @classmethod def from_valued_healpix_cells(cls, uniq, values, max_depth=None, cumul_from=0.0, cumul_to=1.0, asc=False, strict=True, no_split=True, reverse_decent=False): """ Creates a MOC from a list of uniq associated with values. HEALPix cells are first sorted by their values. The MOC contains the cells from which the cumulative value is between ``cumul_from`` and ``cumul_to``. Cells being on the fence are recursively splitted and added until the depth of the cells is equal to ``max_norder``. For compatibility with Aladin, use ``no_split=False`` and ``reverse_decent=True`` Remark: using ``no_split=False``, the way the cells overlapping with the low and high thresholds are split is somewhat arbitrary. Parameters ---------- uniq : `numpy.ndarray` HEALPix cell indices written in uniq. dtype must be np.uint64 values : `numpy.ndarray` Probabilities associated with each ``uniq`` cells. dtype must be np.float64 max_depth : int, optional The max depth of the MOC. If a depth is given, degrade the MOC to this depth before returning it to the user. Otherwise choose as ``max_depth`` the depth corresponding to the smallest HEALPix cell found in ``uniq``. cumul_from : float Cumulative value from which cells will be added to the MOC cumul_to : float Cumulative value to which cells will be added to the MOC asc: boolean the cumulative value is computed from lower to highest densities instead of from highest to lowest strict: boolean (sub-)cells overlapping the `cumul_from` or `cumul_to` values are not added no_split: boolean cells overlapping the `cumul_from` or `cumul_to` values are not recursively split reverse_decent: boolean perform the recursive decent from the highest cell number to the lowest (to be compatible with Aladin) Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """ max_depth_tile = 0 if uniq.size > 0: # Get the depth of the smallest uniq # Bigger uniq corresponds to big depth HEALPix cells. max_depth_tile = int(np.log2(uniq.max() >> 2)) >> 1 assert max_depth_tile >= 0 and max_depth_tile <= 29, "Invalid uniq numbers. Too big uniq or negative uniq numbers might the cause." # Create the MOC at the max_depth equals to the smallest cell # found in the uniq array intervals = mocpy.from_valued_hpx_cells( np.uint8(max_depth_tile), uniq.astype(np.uint64), values.astype(np.float64), np.float64(cumul_from), np.float64(cumul_to), asc, strict, no_split, reverse_decent ) moc = cls(IntervalSet(intervals, make_consistent=False), make_consistent=False) # Degrade the MOC to the depth requested by the user if max_depth is not None: assert max_depth >= 0 and max_depth <= 29, "Max depth must be in [0, 29]" moc = moc.degrade_to_order(max_depth) return moc @classmethod def from_elliptical_cone(cls, lon, lat, a, b, pa, max_depth, delta_depth=2): """ Creates a MOC from an elliptical cone The ellipse is centered around the (`lon`, `lat`) position. `a` (resp. `b`) corresponds to the semi-major axis magnitude (resp. semi-minor axis magnitude). `pa` is expressed as a `~astropy.coordinates.Angle` and defines the position angle of the elliptical cone. Parameters ---------- lon : `astropy.coordinates.Longitude` or its supertype `astropy.units.Quantity` The longitude of the center of the elliptical cone. lat : `astropy.coordinates.Latitude` or its supertype `astropy.units.Quantity` The latitude of the center of the elliptical cone. a : `astropy.coordinates.Angle` The semi-major axis angle of the elliptical cone. b : `astropy.coordinates.Angle` The semi-minor axis angle of the elliptical cone. pa : `astropy.coordinates.Angle` The position angle (i.e. the angle between the north and the semi-major axis, east-of-north). max_depth : int Maximum HEALPix cell resolution. delta_depth : int, optional To control the approximation, you can choose to perform the computations at a deeper depth using the `depth_delta` parameter. The depth at which the computations will be made will therefore be equal to `depth` + `depth_delta`. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC Examples -------- >>> from mocpy import MOC >>> import astropy.units as u >>> from astropy.coordinates import Angle, Longitude, Latitude >>> moc = MOC.from_elliptical_cone( ... lon=Longitude(0 * u.deg), ... lat=Latitude(0 * u.deg), ... a=Angle(10, u.deg), ... b=Angle(5, u.deg), ... pa=Angle(0, u.deg), ... max_depth=10 ... ) """ lon = lon if isinstance(lon, Longitude) else Longitude(lon) lat = lat if isinstance(lat, Latitude) else Latitude(lat) pix, depth, fully_covered_flags = cdshealpix.elliptical_cone_search(lon, lat, a, b, pa, max_depth, delta_depth, flat=False) return MOC.from_healpix_cells(pix, depth, fully_covered_flags) @classmethod def from_cone(cls, lon, lat, radius, max_depth, delta_depth=2): """ Creates a MOC from a cone. The cone is centered around the (`lon`, `lat`) position with a radius expressed by `radius`. Parameters ---------- lon : `astropy.coordinates.Longitude` or its supertype `astropy.units.Quantity` The longitude of the center of the cone. lat : `astropy.coordinates.Latitude` or its supertype `astropy.units.Quantity` The latitude of the center of the cone. radius : `astropy.coordinates.Angle` The radius angle of the cone. max_depth : int Maximum HEALPix cell resolution. delta_depth : int, optional To control the approximation, you can choose to perform the computations at a deeper depth using the `depth_delta` parameter. The depth at which the computations will be made will therefore be equal to `max_depth` + `depth_delta`. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC Examples -------- >>> from mocpy import MOC >>> import astropy.units as u >>> from astropy.coordinates import Angle, Longitude, Latitude >>> moc = MOC.from_cone( ... lon=Longitude(0 * u.deg), ... lat=Latitude(0 * u.deg), ... radius=Angle(10, u.deg), ... max_depth=10 ... ) """ lon = lon if isinstance(lon, Longitude) else Longitude(lon) lat = lat if isinstance(lat, Latitude) else Latitude(lat) pix, depth, fully_covered_flags = cdshealpix.cone_search(lon, lat, radius, max_depth, delta_depth, flat=False) return MOC.from_healpix_cells(pix, depth, fully_covered_flags) @classmethod def from_polygon_skycoord(cls, skycoord, max_depth=10): """ Creates a MOC from a polygon. The polygon is given as an `astropy.coordinates.SkyCoord` that contains the vertices of the polygon. Concave, convex and self-intersecting polygons are accepted. Parameters ---------- skycoord : `astropy.coordinates.SkyCoord` The sky coordinates defining the vertices of a polygon. It can describe a convex or concave polygon but not a self-intersecting one. max_depth : int, optional The resolution of the MOC. Set to 10 by default. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """ return MOC.from_polygon(lon=skycoord.icrs.ra, lat=skycoord.icrs.dec, max_depth=max_depth) @classmethod def from_polygon(cls, lon, lat, max_depth=10): """ Creates a MOC from a polygon The polygon is given as lon and lat `astropy.units.Quantity` that define the vertices of the polygon. Concave, convex and self-intersecting polygons are accepted. Parameters ---------- lon : `astropy.coordinates.Longitude` or its supertype `astropy.units.Quantity` The longitudes defining the polygon. Can describe convex and concave polygons but not self-intersecting ones. lat : `astropy.coordinates.Latitude` or its supertype `astropy.units.Quantity` The latitudes defining the polygon. Can describe convex and concave polygons but not self-intersecting ones. max_depth : int, optional The resolution of the MOC. Set to 10 by default. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """ lon = lon if isinstance(lon, Longitude) else Longitude(lon) lat = lat if isinstance(lat, Latitude) else Latitude(lat) pix, depth, fully_covered_flags = cdshealpix.polygon_search(lon, lat, max_depth) return MOC.from_healpix_cells(pix, depth, fully_covered_flags) @classmethod def from_healpix_cells(cls, ipix, depth, fully_covered=None): """ Creates a MOC from a set of HEALPix cells at a given depth. Parameters ---------- ipix : `numpy.ndarray` HEALPix cell indices in the NESTED notation. dtype must be np.uint64 depth : `numpy.ndarray` Depth of the HEALPix cells. Must be of the same size of `ipix`. dtype must be np.uint8. Corresponds to the `level` of an HEALPix cell in astropy.healpix. fully_covered : `numpy.ndarray`, optional HEALPix cells coverage flags. This flag informs whether a cell is fully covered by a cone (resp. polygon, elliptical cone) or not. Must be of the same size of `ipix`. Raises ------ IndexError When `ipix`, `depth` and `fully_covered` do not have the same shape Returns ------- moc : `~mocpy.moc.MOC` The MOC """ if ipix.shape != depth.shape: raise IndexError("pixels and depth arrays must have the same shape") if fully_covered is not None and fully_covered.shape != ipix.shape: raise IndexError("fully covered and depth arrays must have the same shape") intervals = mocpy.from_healpix_cells(ipix.astype(np.uint64), depth.astype(np.uint8)) return cls(IntervalSet(intervals, make_consistent=False), make_consistent=False) @staticmethod def order_to_spatial_resolution(order): """ Convert a depth to its equivalent spatial resolution. Parameters ---------- order : int Spatial depth. Returns ------- spatial_resolution : `~astropy.coordinates.Angle` Spatial resolution. """ spatial_resolution = Angle(
np.sqrt(np.pi/(3 * 4**(order)))
numpy.sqrt
import numpy as np import math import matplotlib.pyplot as plt from kernel_generalization.utils import gegenbauer import scipy as sp import scipy.special import scipy.optimize from kernel_generalization.utils import neural_tangent_kernel as ntk ############################################################### ################# Use Only These Functions #################### ############################################################### def f(phi, L): if L == 1: return np.arccos(1 / np.pi * np.sin(phi) + (1 - 1 / np.pi * np.arccos(np.cos(phi))) * np.cos(phi)) elif L == 0: return np.arccos(np.cos(phi)) else: return f(phi, L - 1) def NTK(phi, L): if L == 1: ntk = np.cos(f(phi, 1)) + (1 - phi / np.pi) * np.cos(phi) return ntk else: a = phi for i in range(L - 1): a = f(a, 1) ntk = np.cos(f(a, 1)) + NTK(phi, L - 1) * (1 - a / np.pi) return ntk def get_gaussian_spectrum(ker_var, dist_var, kmax, dim): ## Sigma is sample variance ## Gamma is kernel variance sigma = dist_var gamma = ker_var a = 1/(4*sigma) b = 1/(2*gamma) c = np.sqrt(a**2 + 2*a*b) A = a+b+c B = b/A spectrum = np.array([np.sqrt(2*a/A)**(dim) * B**(k) for k in range(kmax)]) lambda_bar = np.array([B**(k) for k in range(kmax)]) degens = np.array([scipy.special.comb(k+dim-1,dim-1) for k in range(kmax)]) return spectrum, degens, lambda_bar def get_kernel_spectrum(layers, sig_w, sig_b, kmax, dim, num_pts=10000, IfNTK = True): alpha = dim / 2.0 - 1 z, w = sp.special.roots_gegenbauer(num_pts, alpha) Q = gegenbauer.gegenbauer(z, kmax, dim) degens = np.array([gegenbauer.degeneracy_kernel(dim, k) for k in range(kmax)]) kernel = np.zeros((len(layers), num_pts)) L = max(layers)+1 theta = np.arccos(z) KernelNTK, KernelNormalizedNTK, ThetaNTK = ntk.NTK(theta, sig_w, sig_b, L, IfNTK); for i, layer in enumerate(layers): kernel[i] = KernelNTK[layer] scaled_kernel = kernel * np.outer(np.ones(len(layers)), w) normalization = gegenbauer.eigenvalue_normalization(kmax, alpha, degens) spectrum_scaled = scaled_kernel @ Q.T / normalization spectrum_scaled = spectrum_scaled * np.heaviside(spectrum_scaled - 1e-20, 0) spectrum_true = spectrum_scaled / np.outer(len(layers), degens) for i in range(len(layers)): for j in range(kmax - 1): if spectrum_true[i, j + 1] < spectrum_true[i, j] * 1e-5: spectrum_true[i, j + 1] = 0 return z, spectrum_true, spectrum_scaled, degens, kernel def exp_spectrum(s, kmax, degens): ## Here s denotes the s^(-l) spectrum_scaled = np.array([s**(-l) for l in range(1,kmax)]) spectrum_scaled = np.append([1],spectrum_scaled) ## We add the zero-mode spectrum_true = spectrum_scaled / degens return spectrum_true, spectrum_scaled def power_spectrum(s, kmax, degens): ## Here s denotes the l^(-s) spectrum_scaled = np.array([l**(-s) for l in range(1,kmax)]) spectrum_scaled = np.append([1],spectrum_scaled) ## We add the zero-mode spectrum_true = spectrum_scaled / degens return spectrum_true, spectrum_scaled def white_spectrum(N): return np.ones(N)/N ############################################################### ################# For Kernel Spectrum From Mathematica #################### ############################################################### def ntk_spectrum(file, kmax = -1, layer = None, dim = None, return_NTK = False): ## Obtain the spectrum data = np.load(file, allow_pickle=True) eig, eig_real, eig_raw = [data['arr_'+str(i)] for i in range(len(data.files))] if(kmax != -1): eig = eig[:,:kmax,:] eig_real = eig_real[:,:kmax,:] eig_raw = eig_raw[:,:kmax,:] ## Reconstruct the NTK num_pts = 10000 Dim = np.array([5*(i+1) for i in range(40)]) alpha = Dim[dim] / 2.0 - 1 z, w = sp.special.roots_gegenbauer(num_pts, alpha) Q = gegenbauer.gegenbauer(z, kmax, Dim[dim]) k = np.array([i for i in range(kmax)]); norm = (alpha+k)/alpha NTK = eig_real[dim,:,layer]*norm @ Q if(layer != None and dim != None): if return_NTK: return eig[dim,:,layer], eig_real[dim,:,layer], NTK return eig[dim,:,layer], eig_real[dim,:,layer] if(layer != None and dim == None): return eig[:,:,layer], eig_real[:,:,layer] if(layer == None and dim != None): return eig[dim,:,:], eig_real[dim,:,:] if(layer == None and dim == None): return eig[:,:,:], eig_real[:,:,:] def degeneracy(d,l): alpha = (d-2)/2 degens = np.zeros((len(l),1)) degens[0] = 1 for i in range(len(l)-1): k = l[i+1,0] degens[i+1,:] = comb(k+d-3,k)*((alpha+k)/(alpha)) return degens def norm(dim,l): alpha = (dim-2)/2; area = np.sqrt(np.pi)*gamma((dim-1)/2)/gamma(dim/2); degen = degeneracy(dim,l) Norm = area*degen*((alpha)/(alpha+l))**2 ## Also another factor of lambda/(n+lambda) comes from spherical harmoincs -> gegenbauer Norm1 = area*((alpha)/(alpha+l))*degen #Norm2 = area*((alpha)/(alpha+l)) return [Norm1, degen] def save_spectrum(directory, dim, deg, layer): # dim = np.array([5*(i+1) for i in range(20)]) # deg = np.array([i+1 for i in range(100)]) # layer = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) layer_str = [str(num) for num in layer] data =
np.zeros((dim.size,deg.size,layer.size))
numpy.zeros
import numpy as np from numba import vectorize # Size 为列表,为神经网络结构,比如[3,5,5,4,2],3是输入层神经元个数,中间为隐藏层每层神经元个数,2为输出层个数 class nn_Creat(): def __init__(self,Size,active_fun='sigmoid',learning_rate=1.5,batch_normalization=1,objective_fun='MSE', output_function='sigmoid',optimization_method='normal',weight_decay=0): self.Size=Size # 初始化网络参数,并进行打印 print('the structure of the NN is \n', self.Size) self.active_fun=active_fun print('active function is %s '% active_fun) self.learning_rate=learning_rate print('learning_rate is %s '% learning_rate) self.batch_normalization=batch_normalization print('batch_normalization is %d '% batch_normalization) self.objective_fun=objective_fun print('objective_function is %s '% objective_fun) self.optimization_method=optimization_method print('optimization_method is %s '% optimization_method) self.weight_decay = weight_decay print('weight_decay is %f '% weight_decay) # 初始化网络权值和梯度 self.vecNum=0 self.depth=len(Size) self.W=[] self.b=[] self.W_grad=[] self.b_grad=[] self.cost=[] if self.batch_normalization: # 是否运用批量归一化,如果用,则引入期望E和方差S,以及缩放因子Gamma、Beta self.E = [] self.S = [] self.Gamma = [] self.Beta = [] if objective_fun=='Cross Entropy': # 目标函数是否为交叉墒函数 self.output_function='softmax' else: self.output_function='sigmoid' print('output_function is %s \n'% self.output_function) print('Start training NN \n') for item in range(self.depth-1): width=self.Size[item] height=self.Size[item+1] q=2*np.random.rand(height,width)/np.sqrt(width)-1/np.sqrt(width) #初始化权系数W self.W.append(q) if self.active_fun=='relu': # 判断激活函数是否为relu函数,以决定b的初始化形式 self.b.append(np.random.rand(height,1)+0.01) else: self.b.append(2*np.random.rand(height,1)/np.sqrt(width)-1/np.sqrt(width)) if self.optimization_method=='Momentum': #优化方向是否使用矩形式,即为之前梯度的叠加 if item!=0: self.vW.append(np.zeros([height,width])) self.vb.append(np.zeros([height, 1])) else: self.vW=[] self.vb=[] self.vW.append(np.zeros([height, width])) self.vb.append(np.zeros([height, 1])) if self.optimization_method=='AdaGrad'or optimization_method=='RMSProp' or optimization_method=='Adam': #优化方法是否使用上述方法 if item!=0: self.rW.append(np.zeros([height,width])) self.rb.append(np.zeros([height, 1])) else: self.rW=[] self.rb=[] self.rW.append(np.zeros([height, width])) self.rb.append(np.zeros([height, 1])) if self.optimization_method == 'Adam': #优化方法是否为Adam方法 if item!=0: self.sW.append(np.zeros([height, width])) self.sb.append(np.zeros([height, 1])) else: self.sW = [] self.sb = [] self.sW.append(np.zeros([height, width])) self.sb.append(np.zeros([height, 1])) if self.batch_normalization: #是否对每层进行归一化 self.Gamma.append(np.array([1])) self.Beta.append(np.array([0])) self.E.append(np.zeros([height,1])) self.S.append(np.zeros([height,1])) if self.optimization_method=='Momentum': #在归一化基础上是否使用Momentun方法 if item!=0: self.vGamma.append(np.array([1])) self.vBeta.append(np.array([0])) else: self.vGamma = [] self.vBeta = [] self.vGamma.append(np.array([1])) self.vBeta.append(np.array([0])) if self.optimization_method == 'AdaGrad' or optimization_method == 'RMSProp' or optimization_method == 'Adam': # 在归一化基础上优化方法是否使用上述方法 if item!=0: self.rGamma.append(np.array([0])) self.rBeta.append(np.array([0])) else: self.rGamma = [] self.rBeta = [] self.rGamma.append(np.array([0])) self.rBeta.append(np.array([0])) if self.optimization_method == 'Adam': #在归一化基础上是否使用Adam方法 if item!=0: self.sGamma.append(np.array([1])) self.sBeta.append(np.array([0])) else: self.sGamma = [] self.sBeta = [] self.sGamma.append(np.array([1])) self.sBeta.append(np.array([0])) self.W_grad.append(np.array([])) self.b_grad.append(np.array([])) def nn_train(self,train_x,train_y,iterations=10,batch_size=100): #神经网络训练流程化 # 随机将数据分为num_batches堆,每堆Batch_Size个 Batch_Size=batch_size m=np.size(train_x,0) num_batches=np.round(m/Batch_Size) num_batches=np.int(num_batches) for k in range(iterations): kk=np.random.randint(0,m,m) for l in range(num_batches): batch_x=train_x[kk[l*batch_size:(l+1)*batch_size ],:] batch_y=train_y[kk[l*batch_size:(l+1)*batch_size ],:] self.nn_forward(batch_x,batch_y) # 执行神经网络向前传播 self.nn_backward(batch_y) # 执行神经网络向后传播 self.gradient_obtain() # 执行得到所以参数的梯度 return None def Sigmoid(self,z): # 定义sigmoid函数 yyy=1/(1+np.exp(-z)) return yyy def SoftMax(self,x): # 定义Softmax函数 e_x = np.exp(x - np.max(x,0)) return e_x / np.sum(e_x,0) def Relu(self,xxx): # 定义Relu函数 # xxx[xxx<0]=0 s=np.maximum(xxx, 0) return s def nn_forward(self,batch_x,batch_y): # 神经网络向前传播,得到对z偏导theta,每层输出a和cost batch_x=batch_x.T batch_y=batch_y.T m=np.size(batch_x,1) self.a=[] #定义每层激活函数输出 self.a.append(batch_x) # 接受第一层输入 cost2=0 #初始化正则函数 self.yy=[] for k in range(1,self.depth): # 从第一层开始,循环求每层输出 y=(self.W[k-1].dot(self.a[k-1]))+(np.repeat(self.b[k-1],m,1)) if self.batch_normalization: self.E[k-1]=self.E[k-1]*self.vecNum+np.sum(y,1)[:,None] self.S[k-1]=self.S[k-1]**2*(self.vecNum-1)+((m-1)*np.std(y,1)**2)[:,None] self.vecNum=self.vecNum+m self.E[k-1]=self.E[k-1]/self.vecNum #求期望 self.S[k-1]=np.sqrt(self.S[k-1]/(self.vecNum-1)) #求方差 y = (y - self.E[k-1]) / (self.S[k-1] + 0.0001) self.yy.append(y) #存储缩放之前输入,以便反向传播使用 y=self.Gamma[k-1]*y+self.Beta[k-1] #缩放 # 定义输出和激活函数字典,分别对应输出层和隐藏层 if k==self.depth-1: #将每层输出函数值矩阵添加到相应数据列表 target_output_function = {'sigmoid': self.Sigmoid, 'tanh': np.tanh, 'relu': self.Relu, 'softmax': self.SoftMax} self.a.append(target_output_function[self.output_function](y)) else: target_active_function = {'sigmoid': self.Sigmoid, 'tanh': np.tanh, 'relu': self.Relu} self.a.append(target_active_function[self.active_fun](y)) cost2=cost2+np.sum(self.W[k-1]**2) #得到正则化损失函数 # 得到总损失函数 if self.objective_fun == 'MSE': self.cost.append(0.5 / m * np.sum((self.a[-1] - batch_y) ** 2) / m + 0.5 * self.weight_decay * cost2) elif self.objective_fun == 'Cross Entropy': self.cost.append(-0.5 * np.sum(batch_y * np.log(self.a[-1])) / m + 0.5 * self.weight_decay * cost2) return None # 神经网络反响传播得到参数梯度 def nn_backward(self,batch_y): batch_y=batch_y.T m=np.size(self.a[0],1) # 不同输出函数损失函数梯度字典 self.theta=[np.array([]) for i in range(self.depth)] # 初始化theta if self.output_function=='sigmoid': self.theta[-1]=-(batch_y-self.a[-1] )*self.a[-1]*(1-self.a[-1]) elif self.output_function=='tanh': self.theta[-1] = -(batch_y-self.a[-1] )*(1-self.a[-1]**2) elif self.output_function=='softmax': self.theta[-1] =self.a[-1]-batch_y if self.batch_normalization: self.gamma_grad = [np.array([]) for ii in range(self.depth - 1)] # 若使用归一化,则初始化gamma和beta的梯度 self.beta_grad = [np.array([]) for iii in range(self.depth - 1)] temp=self.theta[-1]*self.yy[-1] self.gamma_grad[-1]=np.sum(np.mean(temp,1)) self.beta_grad[-1]=np.sum(np.mean(self.theta[-1],1)) self.theta[-1]=self.Gamma[-1]*(self.theta[-1])/(self.S[-1]+0.0001) #得到最后一个theta self.W_grad[-1]=self.theta[-1].dot(self.a[-2].T)/m+self.weight_decay*self.W[-1] #得到参数W和b的最后一个梯度向量 self.b_grad[-1]=(np.sum(self.theta[-1],1)/m)[:,None] # 由最后一层参数,反向逐层求参数梯度 for k in range(2,self.depth): if self.active_fun=='sigmoid': self.theta[-k] = (self.W[-k + 1].T.dot(self.theta[-k + 1])) * (self.a[-k] * (1 - self.a[-k])) elif self.active_fun=='tanh': self.theta[-k] = (self.W[-k + 1].T.dot(self.theta[-k + 1])) * (1 - self.a[-k] ** 2) elif self.active_fun=='relu': self.theta[-k] = (self.W[-k + 1].T.dot(self.theta[-k + 1])) * (self.a[-k]>=0) if self.batch_normalization: temp=self.theta[-k]*self.yy[-k] self.gamma_grad[-k]=np.sum(np.mean(temp,1)) self.beta_grad[-k]=np.sum(np.mean(self.theta[-k],1)) self.theta[-k]=self.Gamma[-k]*(self.theta[-k])/((self.S[-k]+0.0001).reshape(np.size(self.S[-k]),1)) self.W_grad[-k]=self.theta[-k].dot(self.a[-k-1].T)/m+self.weight_decay*self.W[-k] self.b_grad[-k]=(np.sum(self.theta[-k],1)/m)[:,None] def gradient_obtain(self): # 获取参数梯度信息 for k in range(self.depth-1): if self.batch_normalization==0: if self.optimization_method=='normal': self.W[k]= self.W[k]-self.learning_rate*self.W_grad[k] self.b[k]=self.b[k]-self.learning_rate*self.b_grad[k] elif self.optimization_method=='AdaGrad': self.rW[k]=self.rW[k]+self.W_grad[k]**2 self.rb[k]=self.rb[k]+self.b_grad[k]**2 self.W[k]=self.W[k]-self.learning_rate*self.W_grad[k]/(np.sqrt(self.rW[k])+0.001) self.b[k]=self.b[k]-self.learning_rate*self.b_grad[k]/(np.sqrt(self.rb[k])+0.001) elif self.optimization_method=='Momentum': rho=0.1 self.vW[k]=rho*self.vW[k]-self.learning_rate*self.W_grad[k] self.vb[k] = rho * self.vb[k] - self.learning_rate * self.b_grad[k] self.W[k]=self.W[k]+self.vW[k] self.b[k]=self.b[k]+self.vb[k] elif self.optimization_method=='RMSProp': rho=0.9 self.rW[k] = rho * self.rW[k] + 0.1* self.W_grad[k]**2 self.rb[k] = rho * self.rb[k] +0.1 * self.b_grad[k]**2 self.W[k] = self.W[k] - self.learning_rate*self.W_grad[k]/(np.sqrt(self.rW[k])+0.001) self.b[k] = self.b[k] - self.learning_rate*self.b_grad[k]/(np.sqrt(self.rb[k])+0.001) elif self.optimization_method=='Adam': rho1=0.9 rho2=0.999 self.sW[k]=0.9*self.sW[k]+0.1*self.W_grad[k] self.sb[k]=0.9*self.sb[k]+0.1*self.b_grad[k] self.rW[k]=0.999*self.rW[k]+0.001*self.W_grad[k]**2 self.rb[k]=0.999*self.rb[k]+0.001*self.b_grad[k]**2 newS=self.sW[k]/(1-rho1) newR=self.rW[k]/(1-rho2) self.W[k]=self.W[k]-self.learning_rate*newS/np.sqrt(newR+0.00001) newS = self.sb[k] / (1 - rho1) newR = self.rb[k] / (1 - rho2) self.b[k]=self.b[k]-self.learning_rate*newS/np.sqrt(newR+0.00001) else: if self.optimization_method=='normal': self.W[k]=self.W[k]-self.learning_rate*self.W_grad[k] self.b[k]=self.b[k]-self.learning_rate*self.b_grad[k] self.Gamma[k]=self.Gamma[k]-self.learning_rate*self.gamma_grad[k] self.Beta[k]=self.Beta[k]-self.learning_rate*self.beta_grad[k] elif self.optimization_method=='AdaGrad': self.rW[k]=self.rW[k]+self.W_grad[k]**2 self.rb[k]=self.rb[k]+self.b_grad[k]**2 self.rGamma[k]=self.rGamma[k]+self.gamma_grad[k]**2 self.rBeta[k]=self.rBeta[k]+self.beta_grad[k]**2 self.W[k]=self.W[k]-self.learning_rate*self.W_grad[k]/(np.sqrt(self.rW[k])+0.001) self.b[k]=self.b[k]-self.learning_rate*self.b_grad[k]/(np.sqrt(self.rb[k])+0.001) self.Gamma[k]=self.Gamma[k] - self.learning_rate * self.gamma_grad[k]/( np.sqrt(self.rGamma[k])+0.001) self.Beta[k] = self.Beta[k] - self.learning_rate * self.beta_grad[k] /( np.sqrt(self.rBeta[k]) + 0.001) elif self.optimization_method=='Momentum': rho=0.1 self.vW[k]=rho*self.vW[k]-self.learning_rate*self.W_grad[k] self.vb[k] = rho * self.vb[k] - self.learning_rate * self.b_grad[k] self.vGamma[k]=rho*self.vGamma[k]-self.learning_rate*self.gamma_grad[k] self.vBeta[k]=rho*self.vBeta[k]-self.learning_rate*self.beta_grad[k] self.W[k]=self.W[k]+self.vW[k] self.b[k]=self.b[k]+self.vb[k] self.Gamma[k]=self.Gamma[k]+self.vGamma[k] self.Beta[k]-self.Beta[k]+self.vBeta[k] elif self.optimization_method=='RMSProp': self.rW[k] = 0.9 * self.rW[k] + 0.1* self.W_grad[k]**2 self.rb[k] = 0.9 * self.rb[k] + 0.1 * self.b_grad[k]**2 self.rGamma[k]=0.9*self.rGamma[k]+0.1*self.gamma_grad[k]**2 self.rBeta[k]=0.9*self.rBeta[k]+0.1*self.beta_grad[k]**2 self.W[k] = self.W[k] - self.learning_rate*self.W_grad[k]/(np.sqrt(self.rW[k])+0.001) self.b[k] = self.b[k] - self.learning_rate*self.b_grad[k]/(
np.sqrt(self.rb[k])
numpy.sqrt
# -*- coding: utf-8 -*- """ This module is a work in progress, as such concepts are subject to change. MAIN IDEA: `MultiTaskSamples` serves as a structure to contain and manipulate a set of samples with potentially many different types of labels and features. """ import logging import utool as ut import ubelt as ub import numpy as np from wbia import dtool as dt import pandas as pd import sklearn import sklearn.metrics import sklearn.ensemble import sklearn.impute import sklearn.pipeline import sklearn.neural_network from wbia.algo.verif import sklearn_utils print, rrr, profile = ut.inject2(__name__) logger = logging.getLogger('wbia') class XValConfig(dt.Config): _param_info_list = [ # ut.ParamInfo('type', 'StratifiedKFold'), ut.ParamInfo('type', 'StratifiedGroupKFold'), ut.ParamInfo('n_splits', 3), ut.ParamInfo( 'shuffle', True, hideif=lambda cfg: cfg['type'] == 'StratifiedGroupKFold' ), ut.ParamInfo( 'random_state', 3953056901, hideif=lambda cfg: cfg['type'] == 'StratifiedGroupKFold', ), ] @ut.reloadable_class class ClfProblem(ut.NiceRepr): def __init__(pblm): pblm.deploy_task_clfs = None pblm.eval_task_clfs = None pblm.xval_kw = XValConfig() pblm.eval_task_clfs = None pblm.task_combo_res = None pblm.verbose = True def set_pandas_options(pblm): # pd.options.display.max_rows = 10 pd.options.display.max_rows = 20 pd.options.display.max_columns = 40 pd.options.display.width = 160 pd.options.display.float_format = lambda x: '%.4f' % (x,) def set_pandas_options_low(pblm): # pd.options.display.max_rows = 10 pd.options.display.max_rows = 5 pd.options.display.max_columns = 40 pd.options.display.width = 160 pd.options.display.float_format = lambda x: '%.4f' % (x,) def set_pandas_options_normal(pblm): # pd.options.display.max_rows = 10 pd.options.display.max_rows = 20 pd.options.display.max_columns = 40 pd.options.display.width = 160 pd.options.display.float_format = lambda x: '%.4f' % (x,) def learn_evaluation_classifiers(pblm, task_keys=None, clf_keys=None, data_keys=None): """ Evaluates by learning classifiers using cross validation. Do not use this to learn production classifiers. python -m wbia.algo.verif.vsone evaluate_classifiers --db PZ_PB_RF_TRAIN --show Example: CommandLine: python -m clf_helpers learn_evaluation_classifiers Example: >>> # ENABLE_DOCTEST >>> from wbia.algo.verif.clf_helpers import * # NOQA >>> pblm = IrisProblem() >>> pblm.setup() >>> pblm.verbose = True >>> pblm.eval_clf_keys = ['Logit', 'RF'] >>> pblm.eval_task_keys = ['iris'] >>> pblm.eval_data_keys = ['learn(all)'] >>> result = pblm.learn_evaluation_classifiers() >>> res = pblm.task_combo_res['iris']['Logit']['learn(all)'] >>> res.print_report() >>> res = pblm.task_combo_res['iris']['RF']['learn(all)'] >>> res.print_report() >>> print(result) """ pblm.eval_task_clfs = ut.AutoVivification() pblm.task_combo_res = ut.AutoVivification() if task_keys is None: task_keys = pblm.eval_task_keys if data_keys is None: data_keys = pblm.eval_data_keys if clf_keys is None: clf_keys = pblm.eval_clf_keys if task_keys is None: task_keys = [pblm.primary_task_key] if data_keys is None: data_keys = [pblm.default_data_key] if clf_keys is None: clf_keys = [pblm.default_clf_key] if pblm.verbose: ut.cprint('[pblm] learn_evaluation_classifiers', color='blue') ut.cprint('[pblm] task_keys = {}'.format(task_keys)) ut.cprint('[pblm] data_keys = {}'.format(data_keys)) ut.cprint('[pblm] clf_keys = {}'.format(clf_keys)) Prog = ut.ProgPartial(freq=1, adjust=False, prehack='%s') task_prog = Prog(task_keys, label='Task') for task_key in task_prog: dataset_prog = Prog(data_keys, label='Data') for data_key in dataset_prog: clf_prog = Prog(clf_keys, label='CLF') for clf_key in clf_prog: pblm._ensure_evaluation_clf(task_key, data_key, clf_key) def _ensure_evaluation_clf(pblm, task_key, data_key, clf_key, use_cache=True): """ Learns and caches an evaluation (cross-validated) classifier and tests and caches the results. data_key = 'learn(sum,glob)' clf_key = 'RF' """ # TODO: add in params used to construct features into the cfgstr if hasattr(pblm.samples, 'sample_hashid'): ibs = pblm.infr.ibs sample_hashid = pblm.samples.sample_hashid() feat_dims = pblm.samples.X_dict[data_key].columns.values.tolist() # cfg_prefix = sample_hashid + pblm.qreq_.get_cfgstr() + feat_cfgstr est_kw1, est_kw2 = pblm._estimator_params(clf_key) param_id = ut.get_dict_hashid(est_kw1) xval_id = pblm.xval_kw.get_cfgstr() cfgstr = '_'.join( [ sample_hashid, param_id, xval_id, task_key, data_key, clf_key, ut.hashid_arr(feat_dims, 'feats'), ] ) fname = 'eval_clfres_' + ibs.dbname else: fname = 'foo' feat_dims = None cfgstr = 'bar' use_cache = False # TODO: ABI class should not be caching cacher_kw = dict(appname='vsone_rf_train', enabled=use_cache, verbose=1) cacher_clf = ub.Cacher(fname, cfgstr=cfgstr, meta=[feat_dims], **cacher_kw) data = cacher_clf.tryload() if not data: data = pblm._train_evaluation_clf(task_key, data_key, clf_key) cacher_clf.save(data) clf_list, res_list = data labels = pblm.samples.subtasks[task_key] combo_res = ClfResult.combine_results(res_list, labels) pblm.eval_task_clfs[task_key][clf_key][data_key] = clf_list pblm.task_combo_res[task_key][clf_key][data_key] = combo_res def _train_evaluation_clf(pblm, task_key, data_key, clf_key, feat_dims=None): """ Learns a cross-validated classifier on the dataset Ignore: >>> from wbia.algo.verif.vsone import * # NOQA >>> pblm = OneVsOneProblem() >>> pblm.load_features() >>> pblm.load_samples() >>> data_key = 'learn(all)' >>> task_key = 'photobomb_state' >>> clf_key = 'RF-OVR' >>> task_key = 'match_state' >>> data_key = pblm.default_data_key >>> clf_key = pblm.default_clf_key """ X_df = pblm.samples.X_dict[data_key] labels = pblm.samples.subtasks[task_key] assert np.all(labels.encoded_df.index == X_df.index) clf_partial = pblm._get_estimator(clf_key) xval_kw = pblm.xval_kw.asdict() clf_list = [] res_list = [] skf_list = pblm.samples.stratified_kfold_indices(**xval_kw) skf_prog = ut.ProgIter(skf_list, label='skf-train-eval') for train_idx, test_idx in skf_prog: X_df_train = X_df.iloc[train_idx] assert X_df_train.index.tolist() == ut.take(pblm.samples.index, train_idx) # train_uv = X_df.iloc[train_idx].index # X_train = X_df.loc[train_uv] # y_train = labels.encoded_df.loc[train_uv] if feat_dims is not None: X_df_train = X_df_train[feat_dims] X_train = X_df_train.values y_train = labels.encoded_df.iloc[train_idx].values.ravel() clf = clf_partial() clf.fit(X_train, y_train) # Note: There is a corner case where one fold doesn't get any # labels of a certain class. Because y_train is an encoded integer, # the clf.classes_ attribute will cause predictions to agree with # other classifiers trained on the same labels. # Evaluate results res = ClfResult.make_single( clf, X_df, test_idx, labels, data_key, feat_dims=feat_dims ) clf_list.append(clf) res_list.append(res) return clf_list, res_list def _external_classifier_result( pblm, clf, task_key, data_key, feat_dims=None, test_idx=None ): """ Given an external classifier (ensure its trained on disjoint data) evaluate all data on it. Args: test_idx (list): subset of this classifier to test on (defaults to all if None) """ X_df = pblm.samples.X_dict[data_key] if test_idx is None: test_idx = np.arange(len(X_df)) labels = pblm.samples.subtasks[task_key] res = ClfResult.make_single( clf, X_df, test_idx, labels, data_key, feat_dims=feat_dims ) return res def learn_deploy_classifiers(pblm, task_keys=None, clf_key=None, data_key=None): """ Learns on data without any train/validation split """ if pblm.verbose > 0: ut.cprint('[pblm] learn_deploy_classifiers', color='blue') if clf_key is None: clf_key = pblm.default_clf_key if data_key is None: data_key = pblm.default_data_key if task_keys is None: task_keys = list(pblm.samples.supported_tasks()) if pblm.deploy_task_clfs is None: pblm.deploy_task_clfs = ut.AutoVivification() Prog = ut.ProgPartial(freq=1, adjust=False, prehack='%s') task_prog = Prog(task_keys, label='Task') task_clfs = {} for task_key in task_prog: clf = pblm._train_deploy_clf(task_key, data_key, clf_key) task_clfs[task_key] = clf pblm.deploy_task_clfs[task_key][clf_key][data_key] = clf return task_clfs def _estimator_params(pblm, clf_key): est_type = clf_key.split('-')[0] if est_type in {'RF', 'RandomForest'}: est_kw1 = { # 'max_depth': 4, 'bootstrap': True, 'class_weight': None, 'criterion': 'entropy', 'max_features': 'sqrt', # 'max_features': None, 'min_samples_leaf': 5, 'min_samples_split': 2, # 'n_estimators': 64, 'n_estimators': 256, } # Hack to only use missing values if we have the right sklearn if 'missing_values' in ut.get_func_kwargs( sklearn.ensemble.RandomForestClassifier.__init__ ): est_kw1['missing_values'] = np.nan est_kw2 = { 'random_state': 3915904814, 'verbose': 0, 'n_jobs': -1, } elif est_type in {'SVC', 'SVM'}: est_kw1 = dict(kernel='linear') est_kw2 = {} elif est_type in {'Logit', 'LogisticRegression'}: est_kw1 = {} est_kw2 = {} elif est_type in {'MLP'}: est_kw1 = dict( activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(10, 10), learning_rate='constant', learning_rate_init=0.001, max_iter=200, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=3915904814, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.1, warm_start=False, ) est_kw2 = dict(verbose=False) else: raise KeyError('Unknown Estimator') return est_kw1, est_kw2 def _get_estimator(pblm, clf_key): """ Returns sklearn classifier """ tup = clf_key.split('-') wrap_type = None if len(tup) == 1 else tup[1] est_type = tup[0] multiclass_wrapper = { None: ut.identity, 'OVR': sklearn.multiclass.OneVsRestClassifier, 'OVO': sklearn.multiclass.OneVsOneClassifier, }[wrap_type] est_class = { 'RF': sklearn.ensemble.RandomForestClassifier, 'SVC': sklearn.svm.SVC, 'Logit': sklearn.linear_model.LogisticRegression, 'MLP': sklearn.neural_network.MLPClassifier, }[est_type] est_kw1, est_kw2 = pblm._estimator_params(est_type) est_params = ut.merge_dicts(est_kw1, est_kw2) # steps = [] # steps.append((est_type, est_class(**est_params))) # if wrap_type is not None: # steps.append((wrap_type, multiclass_wrapper)) if est_type == 'MLP': def clf_partial(): pipe = sklearn.pipeline.Pipeline( [ ('inputer', sklearn.impute.SimpleImputer(strategy='mean')), # ('scale', sklearn.preprocessing.StandardScaler), ('est', est_class(**est_params)), ] ) return multiclass_wrapper(pipe) elif est_type == 'Logit': def clf_partial(): pipe = sklearn.pipeline.Pipeline( [ ('inputer', sklearn.impute.SimpleImputer(strategy='mean')), ('est', est_class(**est_params)), ] ) return multiclass_wrapper(pipe) else: def clf_partial(): return multiclass_wrapper(est_class(**est_params)) return clf_partial def _train_deploy_clf(pblm, task_key, data_key, clf_key): X_df = pblm.samples.X_dict[data_key] labels = pblm.samples.subtasks[task_key] assert np.all(labels.encoded_df.index == X_df.index) clf_partial = pblm._get_estimator(clf_key) logger.info( 'Training deployment {} classifier on {} for {}'.format( clf_key, data_key, task_key ) ) clf = clf_partial() index = X_df.index X = X_df.loc[index].values y = labels.encoded_df.loc[index].values.ravel() clf.fit(X, y) return clf def _optimize_rf_hyperparams(pblm, data_key=None, task_key=None): """ helper script I've only run interactively Example: >>> # DISABLE_DOCTEST >>> from wbia.algo.verif.vsone import * # NOQA >>> pblm = OneVsOneProblem.from_empty('PZ_PB_RF_TRAIN') #>>> pblm = OneVsOneProblem.from_empty('GZ_Master1') >>> pblm.load_samples() >>> pblm.load_features() >>> pblm.build_feature_subsets() >>> data_key=None >>> task_key=None """ from sklearn.model_selection import RandomizedSearchCV # NOQA from sklearn.model_selection import GridSearchCV # NOQA from sklearn.ensemble import RandomForestClassifier from wbia.algo.verif import sklearn_utils if data_key is None: data_key = pblm.default_data_key if task_key is None: task_key = pblm.primary_task_key # Load data X = pblm.samples.X_dict[data_key].values y = pblm.samples.subtasks[task_key].y_enc groups = pblm.samples.group_ids # Define estimator and parameter search space grid = { 'bootstrap': [True, False], 'class_weight': [None, 'balanced'], 'criterion': ['entropy', 'gini'], # 'max_features': ['sqrt', 'log2'], 'max_features': ['sqrt'], 'min_samples_leaf': list(range(2, 11)), 'min_samples_split': list(range(2, 11)), 'n_estimators': [8, 64, 128, 256, 512, 1024], } est = RandomForestClassifier(missing_values=np.nan) if False: # debug params = ut.util_dict.all_dict_combinations(grid)[0] est.set_params(verbose=10, n_jobs=1, **params) est.fit(X=X, y=y) cv = sklearn_utils.StratifiedGroupKFold(n_splits=3) if True: n_iter = 25 SearchCV = ut.partial(RandomizedSearchCV, n_iter=n_iter) else: n_iter = ut.prod(map(len, grid.values())) SearchCV = GridSearchCV search = SearchCV(est, grid, cv=cv, verbose=10) n_cpus = ut.num_cpus() thresh = n_cpus * 1.5 n_jobs_est = 1 n_jobs_ser = min(n_cpus, n_iter) if n_iter < thresh: n_jobs_est = int(max(1, thresh / n_iter)) est.set_params(n_jobs=n_jobs_est) search.set_params(n_jobs=n_jobs_ser) search.fit(X=X, y=y, groups=groups) res = search.cv_results_.copy() alias = ut.odict( [ ('rank_test_score', 'rank'), ('mean_test_score', 'μ-test'), ('std_test_score', 'σ-test'), ('mean_train_score', 'μ-train'), ('std_train_score', 'σ-train'), ('mean_fit_time', 'fit_time'), ('params', 'params'), ] ) res = ut.dict_subset(res, alias.keys()) cvresult_df = pd.DataFrame(res).rename(columns=alias) cvresult_df = cvresult_df.sort_values('rank').reset_index(drop=True) params = pd.DataFrame.from_dict(cvresult_df['params'].values.tolist()) logger.info('Varied params:') logger.info(ut.repr4(ut.map_vals(set, params.to_dict('list')))) logger.info('Ranked Params') logger.info(params) logger.info('Ranked scores on development set:') logger.info(cvresult_df) logger.info('Best parameters set found on hyperparam set:') logger.info('best_params_ = %s' % (ut.repr4(search.best_params_),)) logger.info('Fastest params') cvresult_df.loc[cvresult_df['fit_time'].idxmin()]['params'] def _dev_calib(pblm): """ interactive script only """ from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.calibration import calibration_curve from sklearn.metrics import log_loss, brier_score_loss # Load data data_key = pblm.default_data_key task_key = pblm.primary_task_key X = pblm.samples.X_dict[data_key].values y = pblm.samples.subtasks[task_key].y_enc groups = pblm.samples.group_ids # Split into test/train/valid cv = sklearn_utils.StratifiedGroupKFold(n_splits=2) test_idx, train_idx = next(cv.split(X, y, groups)) # valid_idx = train_idx[0::2] # train_idx = train_idx[1::2] # train_valid_idx = np.hstack([train_idx, valid_idx]) # Train Uncalibrated RF est_kw = pblm._estimator_params('RF')[0] uncal_clf = RandomForestClassifier(**est_kw) uncal_clf.fit(X[train_idx], y[train_idx]) uncal_probs = uncal_clf.predict_proba(X[test_idx]).T[1] uncal_score = log_loss(y[test_idx] == 1, uncal_probs) uncal_brier = brier_score_loss(y[test_idx] == 1, uncal_probs) # Train Calibrated RF method = 'isotonic' if len(test_idx) > 2000 else 'sigmoid' precal_clf = RandomForestClassifier(**est_kw) # cv = sklearn_utils.StratifiedGroupKFold(n_splits=3) cal_clf = CalibratedClassifierCV(precal_clf, cv=2, method=method) cal_clf.fit(X[train_idx], y[train_idx]) cal_probs = cal_clf.predict_proba(X[test_idx]).T[1] cal_score = log_loss(y[test_idx] == 1, cal_probs) cal_brier = brier_score_loss(y[test_idx] == 1, cal_probs) logger.info('cal_brier = %r' % (cal_brier,)) logger.info('uncal_brier = %r' % (uncal_brier,)) logger.info('uncal_score = %r' % (uncal_score,)) logger.info('cal_score = %r' % (cal_score,)) import wbia.plottool as pt ut.qtensure() pt.figure() ax = pt.gca() y_test = y[test_idx] == 1 fraction_of_positives, mean_predicted_value = calibration_curve( y_test, uncal_probs, n_bins=10 ) ax.plot([0, 1], [0, 1], 'k:', label='Perfectly calibrated') ax.plot( mean_predicted_value, fraction_of_positives, 's-', label='%s (%1.3f)' % ('uncal-RF', uncal_brier), ) fraction_of_positives, mean_predicted_value = calibration_curve( y_test, cal_probs, n_bins=10 ) ax.plot( mean_predicted_value, fraction_of_positives, 's-', label='%s (%1.3f)' % ('cal-RF', cal_brier), ) pt.legend() @ut.reloadable_class class ClfResult(ut.NiceRepr): r""" Handles evaluation statistics for a multiclass classifier trained on a specific dataset with specific labels. """ # Attributes that identify the task and data the classifier is evaluated on _key_attrs = ['task_key', 'data_key', 'class_names'] # Attributes about results and labels of individual samples _datafame_attrs = ['probs_df', 'probhats_df', 'target_bin_df', 'target_enc_df'] def __init__(res): pass def __nice__(res): return '{}, {}, {}'.format(res.task_key, res.data_key, len(res.index)) @property def index(res): return res.probs_df.index @classmethod def make_single(ClfResult, clf, X_df, test_idx, labels, data_key, feat_dims=None): """ Make a result for a single cross validiation subset """ X_df_test = X_df.iloc[test_idx] if feat_dims is not None: X_df_test = X_df_test[feat_dims] index = X_df_test.index # clf_probs = clf.predict_proba(X_df_test) # index = pd.Series(test_idx, name='test_idx') # Ensure shape corresponds with all classes def align_cols(arr, arr_cols, target_cols): import utool as ut alignx = ut.list_alignment(arr_cols, target_cols, missing=True) aligned_arrT = ut.none_take(arr.T, alignx) aligned_arrT = ut.replace_nones(aligned_arrT, np.zeros(len(arr))) aligned_arr = np.vstack(aligned_arrT).T return aligned_arr res = ClfResult() res.task_key = labels.task_name res.data_key = data_key res.class_names = ut.lmap(str, labels.class_names) res.feat_dims = feat_dims res.probs_df = sklearn_utils.predict_proba_df(clf, X_df_test, res.class_names) res.target_bin_df = labels.indicator_df.iloc[test_idx] res.target_enc_df = labels.encoded_df.iloc[test_idx] if hasattr(clf, 'estimators_') and labels.n_classes > 2: # The n-th estimator in the OVR classifier predicts the prob of the # n-th class (as label 1). probs_hat = np.hstack( [est.predict_proba(X_df_test)[:, 1:2] for est in clf.estimators_] ) res.probhats_df = pd.DataFrame( align_cols(probs_hat, clf.classes_, labels.classes_), index=index, columns=res.class_names, ) # In the OVR-case, ideally things will sum to 1, but when they # don't normalization happens. An Z-value of more than 1 means # overconfidence, and under 0 means underconfidence. res.confidence_ratio = res.probhats_df.sum(axis=1) else: res.probhats_df = None return res def compress(res, flags): res2 = ClfResult() res2.task_key = res.task_key res2.data_key = res.data_key res2.class_names = res.class_names res2.probs_df = res.probs_df[flags] res2.target_bin_df = res.target_bin_df[flags] res2.target_enc_df = res.target_enc_df[flags] if res.probhats_df is None: res2.probhats_df = None else: res2.probhats_df = res.probhats_df[flags] # res2.confidence_ratio = res.confidence_ratio[flags] return res2 @classmethod def combine_results(ClfResult, res_list, labels=None): """ Combine results from cross validation runs into a single result representing the performance of the entire dataset """ # Ensure that res_lists are not overlapping for r1, r2 in ut.combinations(res_list, 2): assert ( len(r1.index.intersection(r2.index)) == 0 ), 'ClfResult dataframes must be disjoint' # sanity check for r in res_list: assert
np.all(r.index == r.probs_df.index)
numpy.all
"""Module to provide functionality to import structures.""" import os import tempfile import datetime from collections import OrderedDict from traitlets import Bool import ipywidgets as ipw from aiida.orm import CalcFunctionNode, CalcJobNode, Node, QueryBuilder, WorkChainNode, StructureData from .utils import get_ase_from_file class StructureManagerWidget(ipw.VBox): # pylint: disable=too-many-instance-attributes '''Upload a structure and store it in AiiDA database. Useful class members: :ivar has_structure: whether the widget contains a structure :vartype has_structure: bool :ivar frozen: whenter the widget is frozen (can't be modified) or not :vartype frozen: bool :ivar structure_node: link to AiiDA structure object :vartype structure_node: StructureData or CifData''' has_structure = Bool(False) frozen = Bool(False) DATA_FORMATS = ('StructureData', 'CifData') def __init__(self, importers, storable=True, node_class=None, **kwargs): """ :param storable: Whether to provide Store button (together with Store format) :type storable: bool :param node_class: AiiDA node class for storing the structure. Possible values: 'StructureData', 'CifData' or None (let the user decide). Note: If your workflows require a specific node class, better fix it here. :param examples: list of tuples each containing a name and a path to an example structure :type examples: list :param importers: list of tuples each containing a name and an object for data importing. Each object should containt an empty `on_structure_selection()` method that has two parameters: structure_ase, name :type examples: list""" from .viewers import StructureDataViewer if not importers: # we make sure the list is not empty raise ValueError("The parameter importers should contain a list (or tuple) of tuples " "(\"importer name\", importer), got a falsy object.") self.structure_ase = None self._structure_node = None self.viewer = StructureDataViewer(downloadable=False) self.btn_store = ipw.Button(description='Store in AiiDA', disabled=True) self.btn_store.on_click(self._on_click_store) # Description that will is stored along with the new structure. self.structure_description = ipw.Text(placeholder="Description (optional)") # Select format to store in the AiiDA database. self.data_format = ipw.RadioButtons(options=self.DATA_FORMATS, description='Data type:') self.data_format.observe(self.reset_structure, names=['value']) if len(importers) == 1: # If there is only one importer - no need to make tabs. self._structure_sources_tab = importers[0][1] # Assigning a function which will be called when importer provides a structure. importers[0][1].on_structure_selection = self.select_structure else: self._structure_sources_tab = ipw.Tab() # Tabs. self._structure_sources_tab.children = [i[1] for i in importers] # One importer per tab. for i, (label, importer) in enumerate(importers): # Labeling tabs. self._structure_sources_tab.set_title(i, label) # Assigning a function which will be called when importer provides a structure. importer.on_structure_selection = self.select_structure if storable: if node_class is None: store = [self.btn_store, self.data_format, self.structure_description] elif node_class not in self.DATA_FORMATS: raise ValueError("Unknown data format '{}'. Options: {}".format(node_class, self.DATA_FORMATS)) else: self.data_format.value = node_class store = [self.btn_store, self.structure_description] else: store = [self.structure_description] store = ipw.HBox(store) super().__init__(children=[self._structure_sources_tab, self.viewer, store], **kwargs) def reset_structure(self, change=None): # pylint: disable=unused-argument if self.frozen: return self._structure_node = None self.viewer.structure = None def select_structure(self, structure_ase, name): """Select structure :param structure_ase: ASE object containing structure :type structure_ase: ASE Atoms :param name: File name with extension but without path :type name: str""" if self.frozen: return self._structure_node = None if not structure_ase: self.btn_store.disabled = True self.has_structure = False self.structure_ase = None self.structure_description.value = '' self.reset_structure() return self.btn_store.disabled = False self.has_structure = True self.structure_description.value = "{} ({})".format(structure_ase.get_chemical_formula(), name) self.structure_ase = structure_ase self.viewer.structure = structure_ase def _on_click_store(self, change): # pylint: disable=unused-argument self.store_structure() def store_structure(self, label=None, description=None): """Stores the structure in AiiDA database.""" if self.frozen: return if self.structure_node is None: return if self.structure_node.is_stored: print("Already stored in AiiDA: " + repr(self.structure_node) + " skipping..") return if label: self.structure_node.label = label if description: self.structure_node.description = description self.structure_node.store() print("Stored in AiiDA: " + repr(self.structure_node)) def freeze(self): """Do not allow any further modifications""" self._structure_sources_tab.layout.visibility = 'hidden' self.frozen = True self.btn_store.disabled = True self.structure_description.disabled = True self.data_format.disabled = True @property def node_class(self): return self.data_format.value @node_class.setter def node_class(self, value): if self.frozen: return self.data_format.value = value @property def structure_node(self): """Returns AiiDA StructureData node.""" if self._structure_node is None: if self.structure_ase is None: return None # perform conversion if self.data_format.value == 'CifData': from aiida.orm.nodes.data.cif import CifData self._structure_node = CifData() self._structure_node.set_ase(self.structure_ase) else: # Target format is StructureData self._structure_node = StructureData(ase=self.structure_ase) self._structure_node.description = self.structure_description.value self._structure_node.label = self.structure_ase.get_chemical_formula() return self._structure_node class StructureUploadWidget(ipw.VBox): """Class that allows to upload structures from user's computer.""" def __init__(self, text="Upload Structure"): from fileupload import FileUploadWidget self.on_structure_selection = lambda structure_ase, name: None self.file_path = None self.file_upload = FileUploadWidget(text) supported_formats = ipw.HTML( """<a href="https://wiki.fysik.dtu.dk/ase/_modules/ase/io/formats.html" target="_blank"> Supported structure formats </a>""") self.file_upload.observe(self._on_file_upload, names='data') super().__init__(children=[self.file_upload, supported_formats]) def _on_file_upload(self, change): # pylint: disable=unused-argument """When file upload button is pressed.""" self.file_path = os.path.join(tempfile.mkdtemp(), self.file_upload.filename) with open(self.file_path, 'w') as fobj: fobj.write(self.file_upload.data.decode("utf-8")) structure_ase = get_ase_from_file(self.file_path) self.on_structure_selection(structure_ase=structure_ase, name=self.file_upload.filename) class StructureExamplesWidget(ipw.VBox): """Class to provide example structures for selection.""" def __init__(self, examples, **kwargs): self.on_structure_selection = lambda structure_ase, name: None self._select_structure = ipw.Dropdown(options=self.get_example_structures(examples)) self._select_structure.observe(self._on_select_structure, names=['value']) super().__init__(children=[self._select_structure], **kwargs) @staticmethod def get_example_structures(examples): """Get the list of example structures.""" if not isinstance(examples, list): raise ValueError("parameter examples should be of type list, {} given".format(type(examples))) return [("Select structure", False)] + examples def _on_select_structure(self, change): # pylint: disable=unused-argument """When structure is selected.""" if not self._select_structure.value: return structure_ase = get_ase_from_file(self._select_structure.value) self.on_structure_selection(structure_ase=structure_ase, name=self._select_structure.label) class StructureBrowserWidget(ipw.VBox): """Class to query for structures stored in the AiiDA database.""" def __init__(self): # Find all process labels qbuilder = QueryBuilder() qbuilder.append(WorkChainNode, project="label") qbuilder.order_by({WorkChainNode: {'ctime': 'desc'}}) process_labels = {i[0] for i in qbuilder.all() if i[0]} layout = ipw.Layout(width="900px") self.mode = ipw.RadioButtons(options=['all', 'uploaded', 'edited', 'calculated'], layout=ipw.Layout(width="25%")) # Date range self.dt_now = datetime.datetime.now() self.dt_end = self.dt_now - datetime.timedelta(days=10) self.date_start = ipw.Text(value='', description='From: ', style={'description_width': '120px'}) self.date_end = ipw.Text(value='', description='To: ') self.date_text = ipw.HTML(value='<p>Select the date range:</p>') self.btn_date = ipw.Button(description='Search', layout={'margin': '1em 0 0 0'}) self.age_selection = ipw.VBox( [self.date_text, ipw.HBox([self.date_start, self.date_end]), self.btn_date], layout={ 'border': '1px solid #fafafa', 'padding': '1em' }) # Labels self.drop_label = ipw.Dropdown(options=({'All'}.union(process_labels)), value='All', description='Process Label', style={'description_width': '120px'}, layout={'width': '50%'}) self.btn_date.on_click(self.search) self.mode.observe(self.search, names='value') self.drop_label.observe(self.search, names='value') h_line = ipw.HTML('<hr>') box = ipw.VBox([self.age_selection, h_line, ipw.HBox([self.mode, self.drop_label])]) self.results = ipw.Dropdown(layout=layout) self.results.observe(self._on_select_structure) self.search() super(StructureBrowserWidget, self).__init__([box, h_line, self.results]) @staticmethod def preprocess(): """Search structures in AiiDA database.""" queryb = QueryBuilder() queryb.append(StructureData, filters={'extras': {'!has_key': 'formula'}}) for itm in queryb.all(): # iterall() would interfere with set_extra() formula = itm[0].get_formula() itm[0].set_extra("formula", formula) def search(self, change=None): # pylint: disable=unused-argument """Launch the search of structures in AiiDA database.""" self.preprocess() qbuild = QueryBuilder() try: # If the date range is valid, use it for the search self.start_date = datetime.datetime.strptime(self.date_start.value, '%Y-%m-%d') self.end_date = datetime.datetime.strptime(self.date_end.value, '%Y-%m-%d') + datetime.timedelta(hours=24) except ValueError: # Otherwise revert to the standard (i.e. last 7 days) self.start_date = self.dt_end self.end_date = self.dt_now + datetime.timedelta(hours=24) self.date_start.value = self.start_date.strftime('%Y-%m-%d') self.date_end.value = self.end_date.strftime('%Y-%m-%d') filters = {} filters['ctime'] = {'and': [{'<=': self.end_date}, {'>': self.start_date}]} if self.drop_label.value != 'All': qbuild.append(WorkChainNode, filters={'label': self.drop_label.value}) # print(qbuild.all()) # qbuild.append(CalcJobNode, with_incoming=WorkChainNode) qbuild.append(StructureData, with_incoming=WorkChainNode, filters=filters) else: if self.mode.value == "uploaded": qbuild2 = QueryBuilder() qbuild2.append(StructureData, project=["id"]) qbuild2.append(Node, with_outgoing=StructureData) processed_nodes = [n[0] for n in qbuild2.all()] if processed_nodes: filters['id'] = {"!in": processed_nodes} qbuild.append(StructureData, filters=filters) elif self.mode.value == "calculated": qbuild.append(CalcJobNode) qbuild.append(StructureData, with_incoming=CalcJobNode, filters=filters) elif self.mode.value == "edited": qbuild.append(CalcFunctionNode) qbuild.append(StructureData, with_incoming=CalcFunctionNode, filters=filters) elif self.mode.value == "all": qbuild.append(StructureData, filters=filters) qbuild.order_by({StructureData: {'ctime': 'desc'}}) matches = {n[0] for n in qbuild.iterall()} matches = sorted(matches, reverse=True, key=lambda n: n.ctime) options = OrderedDict() options["Select a Structure ({} found)".format(len(matches))] = False for mch in matches: label = "PK: %d" % mch.pk label += " | " + mch.ctime.strftime("%Y-%m-%d %H:%M") label += " | " + mch.get_extra("formula") label += " | " + mch.description options[label] = mch self.results.options = options def _on_select_structure(self, change): # pylint: disable=unused-argument """When a structure was selected.""" if not self.results.value: return structure_ase = self.results.value.get_ase() formula = structure_ase.get_chemical_formula() if self.on_structure_selection is not None: self.on_structure_selection(structure_ase=structure_ase, name=formula) def on_structure_selection(self, structure_ase, name): pass class SmilesWidget(ipw.VBox): """Conver SMILES into 3D structure.""" SPINNER = """<i class="fa fa-spinner fa-pulse" style="color:red;" ></i>""" def __init__(self): try: import openbabel # pylint: disable=unused-import except ImportError: super().__init__( [ipw.HTML("The SmilesWidget requires the OpenBabel library, " "but the library was not found.")]) return self.smiles = ipw.Text() self.create_structure_btn = ipw.Button(description="Generate molecule", button_style='info') self.create_structure_btn.on_click(self._on_button_pressed) self.output = ipw.HTML("") super().__init__([self.smiles, self.create_structure_btn, self.output]) @staticmethod def pymol_2_ase(pymol): """Convert pymol object into ASE Atoms.""" import numpy as np from ase import Atoms, Atom from ase.data import chemical_symbols asemol = Atoms() for atm in pymol.atoms: asemol.append(Atom(chemical_symbols[atm.atomicnum], atm.coords)) asemol.cell = np.amax(asemol.positions, axis=0) - np.amin(asemol.positions, axis=0) + [10] * 3 asemol.pbc = True asemol.center() return asemol def _optimize_mol(self, mol): """Optimize a molecule using force field (needed for complex SMILES).""" # Note, the pybel module imported below comes together with openbabel package. Do not confuse it with # pybel package available on PyPi: https://pypi.org/project/pybel/ import pybel # pylint:disable=import-error self.output.value = "Screening possible conformers {}".format(self.SPINNER) #font-size:20em; f_f = pybel._forcefields["mmff94"] # pylint: disable=protected-access if not f_f.Setup(mol.OBMol): f_f = pybel._forcefields["uff"] # pylint: disable=protected-access if not f_f.Setup(mol.OBMol): self.output.value = "Cannot set up forcefield" return # initial cleanup before the weighted search f_f.SteepestDescent(5500, 1.0e-9) f_f.WeightedRotorSearch(15000, 500) f_f.ConjugateGradients(6500, 1.0e-10) f_f.GetCoordinates(mol.OBMol) self.output.value = "" def _on_button_pressed(self, change): # pylint: disable=unused-argument """Convert SMILES to ase structure when button is pressed.""" self.output.value = "" # Note, the pybel module imported below comes together with openbabel package. Do not confuse it with # pybel package available on PyPi: https://pypi.org/project/pybel/ import pybel # pylint:disable=import-error if not self.smiles.value: return mol = pybel.readstring("smi", self.smiles.value) self.output.value = """SMILES to 3D conversion {}""".format(self.SPINNER) mol.make3D() pybel._builder.Build(mol.OBMol) # pylint: disable=protected-access mol.addh() self._optimize_mol(mol) structure_ase = self.pymol_2_ase(mol) formula = structure_ase.get_chemical_formula() if self.on_structure_selection is not None: self.on_structure_selection(structure_ase=structure_ase, name=formula) def on_structure_selection(self, structure_ase, name): pass import numpy as np from scipy.stats import mode from numpy.linalg import norm from pysmiles import read_smiles,write_smiles from rdkit.Chem.rdmolfiles import MolFromSmiles,MolToMolFile import networkx as nx import math from ase import Atoms from ase.visualize import view from IPython.display import display, clear_output import ipywidgets as ipw import nglview from ase.data import covalent_radii from ase.neighborlist import NeighborList import ase.neighborlist class SmilesWidget(ipw.VBox): """Conver SMILES into 3D structure.""" SPINNER = """<i class="fa fa-spinner fa-pulse" style="color:red;" ></i>""" def __init__(self): try: import openbabel # pylint: disable=unused-import except ImportError: super().__init__( [ipw.HTML("The SmilesWidget requires the OpenBabel library, " "but the library was not found.")]) return self.selection = set() self.cell_ready = False self.smiles = ipw.Text() self.create_structure_btn = ipw.Button(description="Convert SMILES", button_style='info') self.create_structure_btn.on_click(self._on_button_pressed) self.create_cell_btn = ipw.Button(description="create GNR", button_style='info') self.create_cell_btn.on_click(self._on_button2_pressed) self.viewer = nglview.NGLWidget() self.viewer.observe(self._on_picked, names='picked') self.output = ipw.HTML("") self.picked_out = ipw.Output() self.button2_out = ipw.Output() super().__init__([self.smiles, self.create_structure_btn,self.viewer,self_picked_out, self.output,self.button2_out]) ######## @staticmethod def guess_scaling_factor(atoms): import numpy as np # set bounding box as cell cx = 1.5 * (np.amax(atoms.positions[:,0]) - np.amin(atoms.positions[:,0])) cy = 1.5 * (np.amax(atoms.positions[:,1]) - np.amin(atoms.positions[:,1])) cz = 15.0 atoms.cell = (cx, cy, cz) atoms.pbc = (True,True,True) # calculate all atom-atom distances c_atoms = [a for a in atoms if a.symbol[0]=="C"] n = len(c_atoms) dists = np.zeros([n,n]) for i, a in enumerate(c_atoms): for j, b in enumerate(c_atoms): dists[i,j] = norm(a.position - b.position) # find bond distances to closest neighbor dists += np.diag([np.inf]*n) # don't consider diagonal bonds = np.amin(dists, axis=1) # average bond distance avg_bond = float(mode(bonds)[0]) # scale box to match equilibrium carbon-carbon bond distance cc_eq = 1.4313333333 s = cc_eq / avg_bond return s @staticmethod def scale(atoms, s): cx, cy, cz = atoms.cell atoms.set_cell((s*cx, s*cy, cz), scale_atoms=True) atoms.center() return atoms @staticmethod def smiles2D(smiles): mol = MolFromSmiles(smiles) from rdkit.Chem import AllChem # generate the 2D coordinates AllChem.Compute2DCoords(mol) # get the 2D coordinates for c in mol.GetConformers(): coords=c.GetPositions() # get the atom labels ll=[] for i in mol.GetAtoms(): #ll.append(i.GetSymbol()) ll.append(i.GetAtomicNum()) ll=
np.asarray(ll)
numpy.asarray
# -*- coding: utf-8 -*- ''' Implementation of Dynamical Motor Primitives (DMPs) for multi-dimensional trajectories. ''' import numpy as np from dmp_1 import DMP class mDMP(object): ''' Implementation of a Multi DMP (mDMP) as composition of several Single DMPs (sDMP). This type of DMP is used with multi-dimensional trajectories. ''' def __init__(self, dim=1, nbfs=100): ''' dim int: number of coordinates of the trajectory >= 1. nbfs int: number of basis functions per sDMP >= 0. ''' self.dmps = [DMP(nbfs) for _ in xrange(dim)] self.dim = dim self.nbfs = nbfs self.ns = 0 def _weights(self): W = np.zeros((self.dim, self.nbfs)) for sdx in xrange(self.dim): sdmp = self.dmps[sdx] W[sdx,:] = np.array(np.squeeze(sdmp.ff.weights)) return W.T def _fs(self): Fd = np.zeros((self.dim, self.ns)) Fp = np.zeros((self.dim, self.ns)) for sdx in xrange(self.dim): sdmp = self.dmps[sdx] Fd[sdx,:] = np.array(np.squeeze(sdmp.ff.Fd)) # TODO: Next line is patch as response time has 1 extra sample. time = sdmp.responseTime Fp[sdx,:] = np.array(np.squeeze(sdmp.ff.responseToTimeArray(time))) return Fd.T, Fp.T def learnFromDemo(self, trajectory, time): ''' trajectory np.array([]): trajectory example (NxM). time np.array([]): time of the trajectory (NxM). ''' for sdx in xrange(self.dim): sdmp = self.dmps[sdx] sdmp.learn(trajectory[sdx,:], time) self.ns = self.dmps[0].ff.ns self.W = self._weights() def planNewTrajectory(self, start, goal, time): ''' start float: start positio of the new trajectory. goal float: end positio of the new trajectory. time float: time to execute the new trajectory. ''' ns = int(time/self.dmps[0].stepTime) pos = np.zeros((self.dim, ns)) vel = np.zeros((self.dim, ns)) acc = np.zeros((self.dim, ns)) for sdx in xrange(self.dim): sdmp = self.dmps[sdx] sdmp.setup(start[sdx], goal[sdx]) sdmp.plan(time) # TODO: Next line is patch as response time has 1 extra sample. pos[sdx,:] = np.array(
np.squeeze(sdmp.responsePos[1:])
numpy.squeeze
# <NAME> 2017 # GMM implementation I made for a computer vision course during my honours degree at Wits import numpy as np from sklearn.mixture import GaussianMixture from scipy.stats import multivariate_normal # These are functions which can be run on GMMs class fn(): def zero_init(data, K): lambda_vect = np.full((K), 1.0/K) # init randomly between (0,1] # positive semi-def but already is # sigma_vect = np.full((K), np.var(data)) # diagonal sigma_list = [] mean_list = [] for k in range(K): mean = (1.-0.)*np.random.random_sample((data.shape[1])) + 0. mean_list.append(mean) sig = (1.0-0.001)*np.random.random_sample((data.shape[1],data.shape[1])) + 0.001 sig = np.dot(sig, sig.T) sig = np.diag(np.diag(sig)) sigma_list.append(sig) sigma = np.array(sigma_list) mean_vect =
np.array(mean_list)
numpy.array
# -*- coding: utf-8 -*- from PIL import Image import matplotlib.pyplot as plt import numpy as np import torch import torch.optim as optim from torchvision import transforms, models def model(): # get the "features" portion of VGG19 (we will not need the "classifier" portion) vgg = models.vgg19(pretrained=True).features # freeze all VGG parameters since we're only optimizing the target image for param in vgg.parameters(): param.requires_grad_(False) return vgg def load_image(img_path, max_size=400, shape=None): ''' Load in and transform an image, making sure the image is <= 400 pixels in the x-y dims.''' image = Image.open(img_path).convert('RGB') # large images will slow down processing if max(image.size) > max_size: size = max_size else: size = max(image.size) if shape is not None: size = shape in_transform = transforms.Compose([ transforms.Resize(size), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # discard the transparent, alpha channel (that's the :3) and add the batch dimension image = in_transform(image)[:3,:,:].unsqueeze(0) return image # helper function for un-normalizing an image # and converting it from a Tensor image to a NumPy image for display def im_convert(tensor): """ Display a tensor as an image. """ image = tensor.to("cpu").clone().detach() image = image.numpy().squeeze() image = image.transpose(1,2,0) image = image * np.array((0.229, 0.224, 0.225)) +
np.array((0.485, 0.456, 0.406))
numpy.array
from __future__ import division, print_function, absolute_import import numpy as np from scipy.sparse import csr_matrix from scipy.sparse.linalg import eigsh, inv from numpy.linalg import norm, eig from scipy.linalg import eigh from itertools import product from typing import Union class framework(object): """Base class for a framework A framework at a minimum needs an array of coordinates for vertices/sites and a list of edges/bonds where each element represents an bond. Additional information such as boundary conditions, additional constriants such pinning specific vertices, spring constants, etc. are optional. For the complete list of the variables, see the following. Args: coordinates (Union[np.array, list]): Vertex/site coordinates. For ``N`` sites in ``d`` dimensions, the shape is ``(N,d)``. bonds (Union[np.array, list]): Edge list. For ``M`` bonds, its shape is ``(M,2)``. basis (Union[np.array, list], optional): List of basis/repeat/lattice vectors, Default: ``None``.If ``None`` or array of zero vectors, the system is assumed to be finite. Defaults to None. pins (Union[np.array, list], optional): array/list of int, List of sites to be immobilized. Defaults to None. k (Union[np.array, float], optional): Spring constant/stiffness. If an array is supplied, the shape should be ``(M,2)``. Defaults to 1.0. restLengths (Union[np.array, list, float], optional): Equilibrium or rest length of bonds, used for systems with pre-stress. Defaults to None. varcell (Union[np.array, list], optional): (d*d,) array of booleans/int A list of basis vector components allowed to change (1/True) or fixed (0/False). Example: ``[0,1,0,0]`` or ``[False, True, False, False]`` both mean that in two dimensions, only second element of first basis vector is allowed to change.. Defaults to None. power (int, optional): Power of potential energy. power=2 is Hookean, power=5/2 is Hertzian. For non-Hookean potentials, make sure to supply restLengths non-equal to the current length of the bonds, otherwise the calculations will be wrong. Defaults to 2. Raises: ValueError: The bond list should have two columns corresponding to two ends of bonds. Examples: ```python >>> import numpy as np >>> import rigidpy as rp >>> coordinates = np.array([[-1,0], [1,0], [0,1]]) >>> bonds = np.array([[0,1],[1,2],[0,2]]) >>> basis = [[0,0],[0,0]] >>> pins = [0] >>> F = rp.Framework(coordinates, bonds, basis=basis, pins=pins) >>> print ("rigidity matrix:\n",F.RigidityMatrix()) >>> eigvals, eigvecs = F.eigenspace(eigvals=(0,3)) >>> print("vibrational eigenvalues:\n",eigvals) """ def __init__( self, coordinates: Union[np.array, list], bonds: Union[np.array, list], basis: Union[np.array, list] = None, pins: Union[np.array, list] = None, k: Union[np.array, float] = 1.0, restLengths: Union[np.array, list, float] = None, # mass=1, varcell: Union[np.array, list] = None, power: int = 2, ): # Number of sites and spatial dimensions self.coordinates = np.array(coordinates) self.N, self.dim = self.coordinates.shape # Number of bonds and bond list self.bonds = np.array(bonds) self.NB, self.C = self.bonds.shape # Basis vectors and their norms if basis is None: basis = np.zeros(shape=(self.dim, self.dim)) self.boundary = "free" else: self.basis = basis self.boundary = "periodic" self.nbasis = nbasis = len(basis) # number of basis vectors self.basisNorm = np.array([norm(base) for base in basis]) self.cutoff = 0.5 * np.amin(self.basisNorm) if pins is None: self.pins = [] else: self.pins = pins # update the boundary conditions if self.boundary == "periodic": self.boundary = "periodic+pinned" else: self.boundary = "anchored" # index of pinned and non-pinned sites in rigidity matrix dim_idx = np.arange(0, self.dim) if len(self.pins) != 0: self.pins_idx = [pin * self.dim + dim_idx for pin in self.pins] self.keepIdx = np.setdiff1d(np.arange(0, self.dim * self.N), self.pins_idx) # whether cell can deform self.varcell = varcell # volume of the box/cell if nbasis == 1: # in case system is 1D self.volume = self.basisNorm else: volume = np.abs(np.product(eig(basis)[0])) if volume: self.volume = volume else: self.volume = 1 # froce constant matrix if isinstance(k, (int, float)): self.K = np.diagflat(k * np.ones(self.NB)) else: self.K = np.diagflat(k) self.KS = csr_matrix(self.K) # sparse spring constants # Cartesian product for periodic box regionIndex = np.array(list(product([-1, 0, 1], repeat=nbasis))) transVectors = np.einsum("ij,jk->ik", regionIndex, basis) # Identify long bonds if self.C not in [2, 3]: raise ValueError("Second dimension should be 2 or 3.") elif self.C == 2: # vector from node i to node j if bond is (i,j) dr = -np.diff(coordinates[bonds[:, 0:2]], axis=1).reshape(-1, self.dim) # length of dr lengths = norm(dr, axis=1) # which bonds are long == cross the boundary self.indexLong = indexLong = np.nonzero(lengths > self.cutoff)[0] # two ends of long bonds longBonds = bonds[indexLong] # index of neiboring boxes for long bonds only index = [ np.argmin(norm(item[0] - item[1] - transVectors, axis=1)) for item in coordinates[longBonds] ] dr[indexLong] -= transVectors[index] # negihbor is in which neighboring box self.mn = regionIndex[index] # correct vector from particle 1 to particle 2 self.dr = dr else: pass # which bonds are long == cross the boundary # indexLong = np.nonzero(lengths > self.cutoff) # feature for future release # Equilibrium or rest length of springs if restLengths is None: self.L0 = norm(self.dr, axis=1) else: self.L0 = restLengths # Tension spring stiffness # by convention: compression has postive tension seperation_norm = self.L0 - norm(self.dr, axis=1) self.tension = np.dot(self.K, seperation_norm ** (power - 1)) self.KP = np.diag(self.tension / norm(self.dr, axis=1)) ### effective stiffness to use in non-Hookean cases if power == 2: self.Ke = self.K else: self.Ke = np.diag(np.dot(self.K, seperation_norm ** (power - 2))) def edgeLengths(self) -> np.ndarray: """Compute the length of all bonds. Returns: np.array: bond lengths] """ return norm(self.dr, axis=1) def rigidityMatrixGeometric(self) -> np.ndarray: """Calculate rigidity matrix of the graph. Elements are normalized position difference of connected coordinates. Returns: np.ndarray: rigidity matrix. """ N, M = self.N, self.NB L = norm(self.dr, axis=1) drNorm = L[:, np.newaxis] dr = self.dr / drNorm # normalized dr # find row and col for non zero values row = np.repeat(np.arange(M), 2) col = self.bonds.reshape(-1) val = np.column_stack((dr, -dr)).reshape(-1, self.dim) R = np.zeros([M, N, self.dim]) R[row, col] = val R = R.reshape(M, -1) if self.varcell is not None: conditions = np.array(self.varcell, dtype=bool) # cellDim = np.sum(conditions!=0) # RCell = np.zeros([M,cellDim]) # print(RCell) rCell = np.zeros([M, self.nbasis, self.dim]) valsCell = np.einsum("ij,ik->ijk", self.mn, dr[self.indexLong]) rCell[self.indexLong] = valsCell rCell = rCell.reshape(M, -1) # select only specified components rCell = rCell[:, conditions] R = np.append(R, rCell, axis=1) if len(self.pins) != 0: return R[:, self.keepIdx] return R def rigidityMatrixAxis(self, i: int) -> np.ndarray: """Calculate rigidity matrix of the graph along an axis in d dimensions. Elements are unit vectors. Args: i (int): index of dimensions Returns: np.ndarray: rigidity matrix """ N, M = self.N, self.NB row = np.repeat(np.arange(M), 2) col = self.bonds.reshape(-1) dr = np.repeat([np.eye(self.dim)[i]], M, axis=0) val = np.column_stack((dr, -dr)).reshape(-1, self.dim) R = np.zeros([M, N, self.dim]) R[row, col] = val R = R.reshape(M, -1) if self.varcell is not None: conditions = np.array(self.varcell, dtype=bool) rCell = np.zeros([M, self.nbasis, self.dim]) valsCell = np.einsum("ij,ik->ijk", self.mn, dr[self.indexLong]) rCell[self.indexLong] = valsCell rCell = rCell.reshape(M, -1) # select only specified components rCell = rCell[:, conditions] R = np.append(R, rCell, axis=1) if len(self.pins) != 0: return R[:, self.keepIdx] return R def rigidityMatrix(self) -> np.ndarray: """Calculate rigidity matrix of the graph. For now, it simply returns geometric rigidity matrix. Returns: np.ndarray: rigidity matrix Todo: Update the function to include the second-order term, if required. """ R = self.rigidityMatrixGeometric() return R def hessianMatrixGeometric(self) -> np.ndarray: """calculate geometric Hessian.""" R = self.rigidityMatrixGeometric() H = np.dot(R.T,
np.dot(self.Ke, R)
numpy.dot
import astropy.units as u import numpy as np class Cartesian: """ Class for Cartesian Coordinates and related transformations. """ @u.quantity_input(x=u.km, y=u.km, z=u.km) def __init__(self, x, y, z): """ Constructor. Parameters ---------- x : ~astropy.units.quantity.Quantity y : ~astropy.units.quantity.Quantity z : ~astropy.units.quantity.Qauntity """ self.x = x self.y = y self.z = z self.system = "Cartesian" def __repr__(self): return "Cartesian x: {}, y: {}, z: {}".format(self.x, self.y, self.z) def __str__(self): return self.__repr__() def si_values(self): """ Function for returning values in SI units. Returns ------- ~numpy.ndarray Array containing values in SI units (m, m, m) """ element_list = [self.x.to(u.m), self.y.to(u.m), self.z.to(u.m)] return np.array([e.value for e in element_list], dtype=float) def norm(self): """ Function for finding euclidean norm of a vector. Returns ------- ~astropy.units.quantity.Quantity Euclidean norm with units. """ return np.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2) def dot(self, target): """ Dot product of two vectors. Parameters ---------- target: ~einsteipy.coordinates.core.Cartesian Returns ------- ~astropy.units.quantity.Quantity Dot product with units """ x = self.x * target.x y = self.y * target.y z = self.z * target.z return x + y + z def to_spherical(self): """ Method for conversion to spherical coordinates. Returns ------- ~einsteinpy.coordinates.core.Spherical Spherical representation of the Cartesian Coordinates. """ r = self.norm() theta = np.arccos(self.z / r) phi = np.arctan2(self.y, self.x) return Spherical(r, theta, phi) @u.quantity_input(a=u.km) def to_bl(self, a): """ Method for conversion to boyer-lindquist coordinates. Parameters ---------- a : ~astropy.units.quantity.Quantity a = J/Mc , the angular momentum per unit mass of the black hole per speed of light. Returns ------- ~einsteinpy.coordinates.core.BoyerLindquist BL representation of the Cartesian Coordinates. """ w = self.norm() ** 2 - a ** 2 r = np.sqrt(0.5 * (w + np.sqrt((w ** 2) + (4 * (a ** 2) * (self.z ** 2))))) theta = np.arccos(self.z / r) phi = np.arctan2(self.y, self.x) return BoyerLindquist(r, theta, phi, a) class Spherical: """ Class for Spherical Coordinates and related transformations. """ @u.quantity_input(r=u.km, theta=u.rad, phi=u.rad) def __init__(self, r, theta, phi): """ Constructor. Parameters ---------- r : ~astropy.units.quantity.Quantity theta : ~astropy.units.quantity.Quantity phi : ~astropy.units.quantity.Quantity """ self.r = r self.theta = theta self.phi = phi self.system = "Spherical" def __repr__(self): return "Spherical r: {}, theta: {}, phi: {}".format( self.r, self.theta, self.phi ) def __str__(self): return self.__repr__() def si_values(self): """ Function for returning values in SI units. Returns ------- ~numpy.ndarray Array containing values in SI units (m, rad, rad) """ element_list = [self.r.to(u.m), self.theta.to(u.rad), self.phi.to(u.rad)] return np.array([e.value for e in element_list], dtype=float) def to_cartesian(self): """ Method for conversion to cartesian coordinates. Returns ------- ~einsteinpy.coordinates.core.Cartesian Cartesian representation of the Spherical Coordinates. """ x = self.r * np.cos(self.phi) * np.sin(self.theta) y = self.r * np.sin(self.phi) * np.sin(self.theta) z = self.r * np.cos(self.theta) return Cartesian(x, y, z) @u.quantity_input(a=u.km) def to_bl(self, a): """ Method for conversion to boyer-lindquist coordinates. Parameters ---------- a : ~astropy.units.quantity.Quantity a = J/Mc , the angular momentum per unit mass of the black hole per speed of light. Returns ------- ~einsteinpy.coordinates.core.BoyerLindquist BL representation of the Spherical Coordinates. """ cart = self.to_cartesian() return cart.to_bl(a) class BoyerLindquist: """ Class for Spherical Coordinates and related transformations. """ @u.quantity_input(r=u.km, theta=u.rad, phi=u.rad, a=u.km) def __init__(self, r, theta, phi, a): """ Constructor. Parameters ---------- r : ~astropy.units.quantity.Quantity theta : ~astropy.units.quantity.Quantity phi : ~astropy.units.quantity.Quantity a : ~astropy.units.quantity.Quantity """ self.r = r self.theta = theta self.phi = phi self.a = a self.system = "BoyerLindquist" def __repr__(self): return "Boyer-Lindquist r: {}, theta: {}, phi: {} | a: {}".format( self.r, self.theta, self.phi, self.a ) def __str__(self): return self.__repr__() def si_values(self): """ Function for returning values in SI units. Returns ------- ~numpy.ndarray Array containing values in SI units (m, rad, rad) """ element_list = [self.r.to(u.m), self.theta.to(u.rad), self.phi.to(u.rad)] return np.array([e.value for e in element_list], dtype=float) def to_cartesian(self): """ Method for conversion to cartesian coordinates. Returns ------- ~einsteinpy.coordinates.core.Cartesian Cartesian representation of the BL Coordinates. """ sin_norm = np.sqrt(self.r ** 2 + self.a ** 2) * np.sin(self.theta) x = sin_norm * np.cos(self.phi) y = sin_norm * np.sin(self.phi) z = self.r *
np.cos(self.theta)
numpy.cos