prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
import rasterio as rio
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import matplotlib.pyplot as plt
def min_max_scale(input_array):
scaler = MinMaxScaler(feature_range=(0,1))
ascolumns = input_array.reshape(-1, 1)
t = scaler.fit_transform(ascolumns)
result = t.reshape(input_array.shape)
return result
def standardization(input_array):
return (input_array - np.mean(input_array)) / | np.std(input_array) | numpy.std |
import numpy as np
import openmdao.api as om
from ...grid_data import GridData
class GaussLobattoInterleaveComp(om.ExplicitComponent):
r""" Provides a contiguous output at all nodes for inputs which are only known at
state discretiation or collocation nodes.
"""
def initialize(self):
self.vars = {}
self.options.declare('grid_data', types=GridData, desc='Container object for grid info')
def add_var(self, name, shape, units):
"""
Add a variable to be interleaved. In general these need to be variables whose values are
stored separately for state discretization or collocation nodes (such as states
or ODE outputs).
Parameters
----------
name : str
The name of variable as it should appear in the outputs of the
component ('interleave_comp.all_values:{name}').
shape : tuple
The shape of the variable at each instance in time.
units : str
The units of the variable.
"""
self.vars[name] = {'shape': shape, 'units': units}
def setup(self):
num_disc_nodes = self.options['grid_data'].subset_num_nodes['state_disc']
num_col_nodes = self.options['grid_data'].subset_num_nodes['col']
num_nodes = self.options['grid_data'].subset_num_nodes['all']
self._varnames = {}
for name, options in self.vars.items():
shape = options['shape']
units = options['units']
size = | np.prod(shape) | numpy.prod |
import sys
import numpy as np
from typing import Tuple
import IMLearn.metrics
from IMLearn.metalearners.adaboost import AdaBoost
from IMLearn.learners.classifiers import DecisionStump
from utils import *
import plotly.graph_objects as go
from plotly.subplots import make_subplots
def decision_surface(predict, t, xrange, yrange, density=120, dotted=False,
colorscale=custom, showscale=True):
xrange, yrange = np.linspace(*xrange, density), np.linspace(*yrange,
density)
xx, yy = np.meshgrid(xrange, yrange)
pred = predict(np.c_[xx.ravel(), yy.ravel()], t)
if dotted:
return go.Scatter(x=xx.ravel(), y=yy.ravel(), opacity=1,
mode="markers", marker=dict(color=pred, size=1,
colorscale=colorscale,
reversescale=False),
hoverinfo="skip", showlegend=False)
return go.Contour(x=xrange, y=yrange, z=pred.reshape(xx.shape),
colorscale=colorscale, reversescale=False, opacity=.7,
connectgaps=True, hoverinfo="skip", showlegend=False,
showscale=showscale)
def generate_data(n: int, noise_ratio: float) -> Tuple[np.ndarray, np.ndarray]:
"""
Generate a dataset in R^2 of specified size
Parameters
----------
n: int
Number of samples to generate
noise_ratio: float
Ratio of labels to invert
Returns
-------
X: np.ndarray of shape (n_samples,2)
Design matrix of samples
y: np.ndarray of shape (n_samples,)
Labels of samples
"""
'''
generate samples X with shape: (num_samples, 2) and labels y with shape (num_samples).
num_samples: the number of samples to generate
noise_ratio: invert the label for this ratio of the samples
'''
X, y = np.random.rand(n, 2) * 2 - 1, np.ones(n)
y[np.sum(X ** 2, axis=1) < 0.5 ** 2] = -1
y[np.random.choice(n, int(noise_ratio * n))] *= -1
return X, y
def fit_and_evaluate_adaboost(noise, n_learners=250, train_size=5000,
test_size=500):
(train_X, train_y), (test_X, test_y) = generate_data(train_size,
noise), generate_data(
test_size, noise)
# Question 1: Train- and test errors of AdaBoost in noiseless case
ada = AdaBoost(DecisionStump, n_learners)
ada._fit(train_X, train_y)
train_error = np.zeros(n_learners)
test_error = | np.zeros(n_learners) | numpy.zeros |
import numpy as np
from scipy import optimize
from matplotlib import pyplot as plt, cm, colors
def distance_from_center(c, x, y):
'''
Distance of each 2D points from the center (xc, yc)
Parameters
----------
c : array_like
Coordinates of the center
x,y : array_like
Arrays with the x,y coordinates
'''
xc = c[0]
yc = c[1]
Ri = np.sqrt((x-xc)**2 + (y-yc)**2)
return Ri - Ri.mean()
def least_square_circle(x, y):
'''
Least-square determination of the center of a circle
Parameters
----------
x,y : array_like
Arrays with the x,y coordinates of the points on/inside the circle
'''
# coordinates of the barycenter
x_m = np.mean(x)
y_m = np.mean(y)
center_estimate = x_m, y_m
center, ier = optimize.leastsq(distance_from_center, center_estimate, args=(x, y))
# results
xc, yc = center
Ri = np.sqrt((x-xc)**2 + (y-yc)**2)
R = Ri.mean()
residu = np.sum((Ri - R)**2)
return xc, yc, R, residu
def plot_data_circle(x, y, xc, yc, R):
f = plt.figure(0)
plt.axis('equal')
theta_fit = np.linspace(-np.pi, np.pi, 180)
x_fit = xc + R* | np.cos(theta_fit) | numpy.cos |
import numpy as np
from functools import reduce
class Kinematics:
def __init__(self):
return
@classmethod
def TCPFrame(cls,a,alfa,d,angles):
z1 = zip(a,alfa,d,angles)
matrices = map(lambda tup: cls.DHmatrix(tup[0], tup[1], tup[2], tup[3]), z1)
finalPos = reduce(lambda m1,m2: m1 * m2, matrices)
return finalPos
@staticmethod
def DHmatrix(a,alfa,d,theta):
lam = np.cos(np.array(alfa))
mu = np.sin(np.array(alfa))
DH = np.matrix([
[np.cos(theta), -lam*np.sin(theta), mu*np.sin(theta), a*np.cos(theta)],
[np.sin(theta), lam*np.cos(theta), -mu*np.cos(theta), a* | np.sin(theta) | numpy.sin |
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Collection of simple 2d functions defined on [-1, 1]^2 domain."""
import functools
import numpy as np
import sklearn.datasets as skdatasets
def xor(bs):
x = np.random.random(size=(bs, 2)) *2 - 1
return x, | np.sign(x[:, 0] * x[:, 1]) | numpy.sign |
import numpy as np
import scipy
from scipy.stats import qmc
from scipy.stats import special_ortho_group
import matplotlib.pyplot as plt
from scipy.optimize import minimize
import warnings
from .ssp import SSP
class SSPSpace:
def __init__(self, domain_dim: int, ssp_dim: int, axis_matrix=None, phase_matrix=None,
domain_bounds=None, length_scale=1):
self.sample_points = None
self.sample_ssps = None
self.domain_dim = domain_dim
self.ssp_dim = ssp_dim
if not isinstance(length_scale, np.ndarray) or length_scale.size == 1:
self.length_scale = length_scale * np.ones((self.domain_dim,))
if domain_bounds is not None:
assert domain_bounds.shape[0] == domain_dim
self.domain_bounds = domain_bounds
if (axis_matrix is None) & (phase_matrix is None):
raise RuntimeError("SSP spaces must be defined by either a axis matrix or phase matrix. Use subclasses to construct spaces with predefined axes.")
elif (phase_matrix is None):
assert axis_matrix.shape[0] == ssp_dim, f'Expected ssp_dim {axis_matrix.shape[0]}, got {ssp_dim}.'
assert axis_matrix.shape[1] == domain_dim
self.axis_matrix = axis_matrix
self.phase_matrix = (-1.j*np.log(np.fft.fft(axis_matrix,axis=0))).real
elif (axis_matrix is None):
assert phase_matrix.shape[0] == ssp_dim
assert phase_matrix.shape[1] == domain_dim
self.phase_matrix = phase_matrix
self.axis_matrix = np.fft.ifft(np.exp(1.j*phase_matrix), axis=0).real
def update_lengthscale(self, scale):
if not isinstance(scale, np.ndarray) or scale.size == 1:
self.length_scale = scale * np.ones((self.domain_dim,))
else:
assert scale.size == self.domain_dim
self.length_scale = scale
assert self.length_scale.size == self.domain_dim
def encode(self,x):
assert x.shape[0] == self.domain_dim
ls_mat = np.atleast_2d(np.diag(1/self.length_scale.flatten()))
scaled_x = ls_mat @ x
data = np.fft.ifft( np.exp( 1.j * self.phase_matrix @ scaled_x ), axis=0 ).real
return data
def encode_and_deriv(self,x):
ls_mat = np.atleast_2d(np.diag(1 / self.length_scale))
scaled_x = x @ ls_mat
fdata = np.exp( 1.j * self.phase_matrix @ scaled_x.T )
data = np.fft.ifft( fdata, axis=0 ).real
ddata = np.fft.ifft( 1.j * np.stack([np.diag(fdata[:,j]) for j in range(x.shape[0])]) @ self.phase_matrix @ ls_mat, axis=0 ).real
return data.T, ddata.T
def encode_fourier(self,x):
assert x.shape[0] == self.domain_dim
ls_mat = np.atleast_2d(np.diag(1/self.length_scale.flatten()))
scaled_x = ls_mat @ x
data = np.exp( 1.j * self.phase_matrix @ scaled_x )
return data
def encode_as_SSP(self,x):
assert x.shape[0] == self.domain_dim
return SSP(self.encode(x),self)
def decode(self,ssp,method='from-set', num_sample_pts=10000,from_set_method='grid',num_init_pts =10):
if method=='least-squares':
# problems duw to complex log
x = np.linalg.lstsq(self.phase_matrix, (1.j*np.log(np.fft.fft(ssp,axis=0))).real)[0]
#raise NotImplementedError()
#fssp = np.fft.fft(ssp,axis=0)
#x = np.linalg.lstsq(np.tile(self.phase_matrix,(2,1)), np.hstack([np.arccos(fssp.real), np.arcsin(fssp.imag)]))
return x
elif method=='from-set':
sample_ssps, sample_points = self.get_sample_ssps(num_sample_pts,method=from_set_method)
sims = sample_ssps.T @ ssp
return sample_points[:,np.argmax(sims)]
elif method=='direct-optim':
x0 = self.decode(ssp, method='from-set',num_sample_pts=num_init_pts)
def min_func(x,target=ssp):
x_ssp = self.encode(np.atleast_2d(x))
return -np.inner(x_ssp, target).flatten()
soln = minimize(min_func, x0, method='L-BFGS-B')
return soln.x
elif method=='grad_descent':
x = self.decode(ssp, method='from-set',num_sample_pts=num_init_pts)
fssp = np.fft.fft(ssp,axis=0)
ls_mat = np.diag(1/self.length_scale.flatten())
for j in range(10):
scaled_x = ls_mat @ x
x_enc = np.exp(1.j * self.phase_matrix @ scaled_x)
grad_mat = (1.j * (self.phase_matrix @ ls_mat).T * x_enc)
grad = (grad_mat @ fssp.T).flatten()
x = x - 0.1*grad.real
return x
elif method=='nonlin-reg':
x = self.decode(ssp, method='from-set',num_sample_pts=num_init_pts)
fssp = np.fft.fft(ssp,axis=0)
dy = np.hstack([fssp.real, fssp.imag])
ls_mat = np.diag(1/self.length_scale.flatten())
for j in range(10):
J = np.vstack([self.phase_matrix * np.sin(self.phase_matrix @ x @ ls_mat).reshape(1,-1),
-self.phase_matrix * np.cos(self.phase_matrix @ x @ ls_mat).reshape(1,-1)])
soln = np.linalg.pinv(J.T @ J) @ J.T @ dy
x = x + soln
return x
else:
raise NotImplementedError()
def clean_up(self,ssp,**kwargs):
x = self.decode(ssp,**kwargs)
return self.encode(x)
def get_sample_points(self,num_points,method='grid'):
if self.domain_bounds is None:
bounds = np.vstack([-10*np.ones(self.domain_dim), 10*np.ones(self.domain_dim)]).T
else:
bounds = self.domain_bounds
if method=='grid':
n_per_dim = int(num_points**(1/self.domain_dim))
if n_per_dim**self.domain_dim != num_points:
warnings.warn((f'Evenly distributing points over a '
f'{self.domain_dim} grid requires numbers '
f'of samples to be powers of {self.domain_dim}.'
f'Requested {num_points} samples, returning '
f'{n_per_dim**self.domain_dim}'), RuntimeWarning)
### end if
xs = np.linspace(bounds[:,0],bounds[:,1],n_per_dim)
xxs = np.meshgrid(*[xs[:,i] for i in range(self.domain_dim)])
sample_points = np.array([x.reshape(-1) for x in xxs])
return sample_points
elif method=='sobol':
sampler = qmc.Sobol(d=self.domain_dim)
lbounds = bounds[:,0]
ubounds = bounds[:,1]
u_sample_points = sampler.random(num_points)
sample_points = qmc.scale(u_sample_points, lbounds, ubounds)
return sample_points.T
else:
raise NotImplementedError()
def get_sample_ssps(self,num_points,**kwargs): # make new if num_pts different than whats stored?
sample_points = self.get_sample_points(num_points,**kwargs)
sample_ssps = self.encode(sample_points)
return sample_ssps, sample_points
def identity(self):
s = np.zeros(self.ssp_dim)
s[0] = 1
return s
def bind(self,a,b):
return np.fft.ifft(np.fft.fft(a) * np.fft.fft(b)).real
def invert(self,a):
return a[-np.arange(len(a))]
def normalize(self,ssp):
return ssp/np.max([1e-6,np.sqrt(np.sum(ssp**2))])
def unitary(self,ssp):
fssp = np.fft.fft(ssp)
fssp = fssp/np.sqrt(fssp.real**2 + fssp.imag**2)
return np.fft.ifft(fssp).real
def unitary_fourier(self,fssp):
fssp = fssp/np.sqrt(fssp.real**2 + fssp.imag**2)
return fssp
def decode_path(self, ssp_path, N_ma=None, n_samples = 10000):
sample_ssps, sample_points = self.get_sample_ssps(n_samples)
path = np.zeros((ssp_path.shape[0], self.domain_dim))
max_sims = np.zeros(ssp_path.shape[0])
for i in range(ssp_path.shape[0]):
sims = sample_ssps.T @ ssp_path[i,:]
max_sims[i] = np.max(sims)
path[i,:] = sample_points[:,np.argmax(sims)]
return path, max_sims
def similarity_plot(self,ssp,n_grid=100,plot_type='heatmap',cmap="YlGnBu",ax=None,**kwargs):
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111)
if self.domain_dim == 1:
xs = np.linspace(self.domain_bounds[0,0],self.domain_bounds[0,1], n_grid)
im=ax.plot(xs, self.encode(xs.reshape(1,-1)).T @ self.data)
ax.set_xlim(self.domain_bounds[0,0],self.domain_bounds[0,1])
elif self.domain_dim == 2:
xs = np.linspace(self.domain_bounds[0,0],self.domain_bounds[0,1], n_grid)
ys = np.linspace(self.domain_bounds[1,0],self.domain_bounds[1,1], n_grid)
X,Y = np.meshgrid(xs,ys)
sims = self.encode(np.vstack([X.reshape(-1),Y.reshape(-1)])).T @ ssp
if plot_type=='heatmap':
im=ax.pcolormesh(X,Y,sims.reshape(X.shape),cmap=cmap,**kwargs)
elif plot_type=='contour':
im=ax.contour(X,Y,sims.reshape(X.shape),cmap=cmap,**kwargs)
elif plot_type=='contourf':
im=ax.contourf(X,Y,sims.reshape(X.shape),cmap=cmap,**kwargs)
ax.set_xlim(self.domain_bounds[0,0],self.domain_bounds[0,1])
ax.set_ylim(self.domain_bounds[1,0],self.domain_bounds[1,1])
else:
raise NotImplementedError()
return im
class RandomSSPSpace(SSPSpace):
def __init__(self, domain_dim: int, ssp_dim: int, domain_bounds=None, length_scale=1, rng=np.random.default_rng()):
partial_phases = rng.random.rand(ssp_dim//2,domain_dim)*2*np.pi - np.pi
axis_matrix = _constructaxisfromphases(partial_phases)
super().__init__(domain_dim,ssp_dim,axis_matrix=axis_matrix,
domain_bounds=domain_bounds,length_scale=length_scale)
class HexagonalSSPSpace(SSPSpace):
def __init__(self, domain_dim:int,ssp_dim: int=151, n_rotates:int=5, n_scales:int=5,
scale_min=2*np.pi/np.sqrt(6) - 0.5, scale_max=2*np.pi/np.sqrt(6) + 0.5,
domain_bounds=None, length_scale=1):
if (n_rotates==5) & (n_scales==5) & (ssp_dim != 151):
n_rotates = int(np.max([1,np.sqrt((ssp_dim-1)/(2*(domain_dim+1)))]))
n_scales = n_rotates
phases_hex = np.hstack([np.sqrt(1+ 1/domain_dim)*np.identity(domain_dim) - (domain_dim**(-3/2))*(np.sqrt(domain_dim+1) + 1),
(domain_dim**(-1/2))*np.ones((domain_dim,1))]).T
self.grid_basis_dim = domain_dim + 1
self.num_grids = n_rotates*n_scales
scales = np.linspace(scale_min,scale_max,n_scales)
phases_scaled = np.vstack([phases_hex*i for i in scales])
if (n_rotates==1):
phases_scaled_rotated = phases_scaled
elif (domain_dim==1):
scales = np.linspace(scale_min,scale_max,n_scales+n_rotates)
phases_scaled_rotated = np.vstack([phases_hex*i for i in scales])
elif (domain_dim == 2):
angles = np.linspace(0,2*np.pi/3,n_rotates)
R_mats = np.stack([np.stack([np.cos(angles), -np.sin(angles)],axis=1),
np.stack([np.sin(angles), np.cos(angles)], axis=1)], axis=1)
phases_scaled_rotated = (R_mats @ phases_scaled.T).transpose(0,2,1).reshape(-1,domain_dim)
else:
R_mats = special_ortho_group.rvs(domain_dim, size=n_rotates)
phases_scaled_rotated = (R_mats @ phases_scaled.T).transpose(0,2,1).reshape(-1,domain_dim)
axis_matrix = _constructaxisfromphases(phases_scaled_rotated)
ssp_dim = axis_matrix.shape[0]
super().__init__(domain_dim,ssp_dim,axis_matrix=axis_matrix,
domain_bounds=domain_bounds,length_scale=length_scale)
def sample_grid_encoders(self, n):
sample_pts = self.get_sample_points(n,method='sobol')
N = self.num_grids
if N < n:
sorts = np.hstack([np.arange(N), np.random.randint(0, N - 1, size = n - N)])
else:
sorts = np.arange(n)
encoders = np.zeros((self.ssp_dim,n))
for i in range(n):
sub_mat = _get_sub_SSP(sorts[i],N,sublen=self.grid_basis_dim)
proj_mat = _proj_sub_SSP(sorts[i],N,sublen=self.grid_basis_dim)
sub_space = SSPSpace(self.domain_dim,2*self.grid_basis_dim + 1, axis_matrix= sub_mat @ self.axis_matrix)
encoders[:,i] = N * proj_mat @ sub_space.encode(sample_pts[:,i])
return encoders
def _constructaxisfromphases(K):
d = K.shape[0]
n = K.shape[1]
axes = np.ones((d*2 + 1,n))
for i in range(n):
F = np.ones((d*2 + 1,), dtype="complex")
F[0:d] = np.exp(1.j*K[:,i])
F[-d:] = np.flip(np.conj(F[0:d]))
F = np.fft.ifftshift(F)
axes[:,i] = np.fft.ifft(F).real
return axes
def _get_sub_FourierSSP(n, N, sublen=3):
# Return a matrix, \bar{A}_n
# Consider the multi scale representation (S_{total}) and sub vectors (S_n) described in the paper
# Then
# \bar{A}_n F{S_{total}} = F{S_n}
# i.e. pick out the sub vector in the Fourier domain
tot_len = 2*sublen*N + 1
FA = np.zeros((2*sublen + 1, tot_len))
FA[0:sublen, sublen*n:sublen*(n+1)] = np.eye(sublen)
FA[sublen, sublen*N] = 1
FA[sublen+1:, tot_len - np.arange(sublen*(n+1),sublen*n,-1)] = np.eye(sublen)
return FA
def _get_sub_SSP(n,N,sublen=3):
# Return a matrix, A_n
# Consider the multi scale representation (S_{total}) and sub vectors (S_n) described in the paper
# Then
# A_n S_{total} = S_n
# i.e. pick out the sub vector in the time domain
tot_len = 2*sublen*N + 1
FA = _get_sub_FourierSSP(n,N,sublen=sublen)
W = np.fft.fft(np.eye(tot_len))
invW = np.fft.ifft(np.eye(2*sublen + 1))
A = invW @ np.fft.ifftshift(FA) @ W
return A.real
def _proj_sub_FourierSSP(n,N,sublen=3):
# Return a matrix, \bar{B}_n
# Consider the multi scale representation (S_{total}) and sub vectors (S_n) described in the paper
# Then
# \sum_n \bar{B}_n F{S_{n}} = F{S_{total}}
# i.e. project the sub vector in the Fourier domain such that summing all such projections gives the full vector in Fourier domain
tot_len = 2*sublen*N + 1
FB = np.zeros((2*sublen + 1, tot_len))
FB[0:sublen, sublen*n:sublen*(n+1)] = | np.eye(sublen) | numpy.eye |
import numpy as np
from .Templates import Estimator_mimo, Descriptor
from SCM3GPP.scm_helper_MIMO import scm_channel
from SCM3GPP.toeplitz_helpers import best_circulant_approximation, vec2mat, mat2vec, best_block_circulant_approximation
from training_CNN_mimo import pilot_matrix
from scipy.linalg import toeplitz, circulant
class FastMMSE(Estimator_mimo, Descriptor):
_object_counter = 1
def __init__(self, channel, snr, n_antennas_BS, n_antennas_MS, n_pilots, name=None):
self.snr = snr
self.n_pilots = n_pilots
self.n_antennas_BS = n_antennas_BS
self.n_antennas_MS = n_antennas_MS
self.channel_config = channel.get_config()
self.rho = []
F_BS = np.fft.fft(np.eye(n_antennas_BS))
F_MS = np.fft.fft(np.eye(n_antennas_MS))
self.F = 1 / np.sqrt(n_antennas_BS * n_antennas_MS) * np.kron(F_MS,F_BS)
_, t_BS, t_MS = scm_channel(np.array([0.0]), np.array([0.0]), np.array([1.0]), 1, n_antennas_BS,
n_antennas_MS,sigma_BS=channel.path_sigma_BS,sigma_MS=channel.path_sigma_MS)
C_BS = toeplitz(t_BS)
C_MS = toeplitz(t_MS)
C = | np.kron(C_MS,C_BS) | numpy.kron |
import numpy as np
import scipy
import cv2
from numpy.fft import fft, ifft
from scipy import signal
from lib.eco.fourier_tools import resize_dft
from .feature import extract_hog_feature
from lib.utils import cos_window
from lib.fft_tools import ifft2,fft2
class DSSTScaleEstimator:
def __init__(self,target_sz,config):
init_target_sz = np.array([target_sz[0],target_sz[1]])
self.config=config
num_scales = self.config.number_of_scales_filter
scale_step = self.config.scale_step_filter
scale_sigma = self.config.number_of_interp_scales * self.config.scale_sigma_factor
scale_exp = np.arange(-np.floor(num_scales - 1)/2,
np.ceil(num_scales-1)/2+1,
dtype=np.float32) * self.config.number_of_interp_scales / num_scales
scale_exp_shift = np.roll(scale_exp, (0, -int(np.floor((num_scales-1)/2))))
interp_scale_exp = np.arange(-np.floor((self.config.number_of_interp_scales - 1) / 2),
np.ceil((self.config.number_of_interp_scales - 1) / 2) + 1,
dtype=np.float32)
interp_scale_exp_shift = np.roll(interp_scale_exp, [0, -int(np.floor(self.config.number_of_interp_scales - 1) / 2)])
self.scale_size_factors = scale_step ** scale_exp
self.interp_scale_factors = scale_step ** interp_scale_exp_shift
ys = np.exp(-0.5 * (scale_exp_shift ** 2) / (scale_sigma ** 2))
self.yf = np.real(fft(ys))
self.window = np.hanning(ys.shape[0]).T.astype(np.float32)
# make sure the scale model is not to large, to save computation time
self.num_scales = num_scales
self.scale_step = scale_step
if self.config.scale_model_factor ** 2 * np.prod(init_target_sz) > self.config.scale_model_max_area:
scale_model_factor = np.sqrt(self.config.scale_model_max_area / np.prod(init_target_sz))
else:
scale_model_factor = self.config.scale_model_factor
# set the scale model size
self.scale_model_sz = np.maximum(np.floor(init_target_sz * scale_model_factor), np.array([8, 8]))
self.max_scale_dim = self.config.s_num_compressed_dim == 'MAX'
if self.max_scale_dim:
self.s_num_compressed_dim = len(self.scale_size_factors)
else:
self.s_num_compressed_dim = self.config.s_num_compressed_dim
def init(self,im,pos,base_target_sz,current_scale_factor):
# self.scale_factors = np.array([1])
scales = current_scale_factor * self.scale_size_factors
xs = self._extract_scale_sample(im, pos, base_target_sz, scales, self.scale_model_sz)
self.s_num = xs
# compute projection basis
if self.max_scale_dim:
self.basis, _ = scipy.linalg.qr(self.s_num, mode='economic')
scale_basis_den, _ = scipy.linalg.qr(xs, mode='economic')
else:
U, _, _ = np.linalg.svd(self.s_num)
self.basis = U[:, :self.s_num_compressed_dim]
V, _, _ = np.linalg.svd(xs)
scale_basis_den = V[:, :self.s_num_compressed_dim]
self.basis = self.basis.T
# compute numerator
feat_proj = self.basis.dot(self.s_num) * self.window
sf_proj = np.fft.fft(feat_proj, axis=1)
self.sf_num = self.yf * np.conj(sf_proj)
# update denominator
xs = scale_basis_den.T.dot(xs)*self.window
xsf = fft(xs, axis=1)
new_sf_den = np.sum((xsf * np.conj(xsf)), 0)
self.sf_den = new_sf_den
def update(self, im, pos, base_target_sz, current_scale_factor):
base_target_sz= | np.array([base_target_sz[0],base_target_sz[1]]) | numpy.array |
import tensorflow as tf
import numpy as np
from tensorflow.python.client import timeline
from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file
from input_pipelines.input_pipeline_cityscapes import inference_input
from model import PanopticSegmentationModel
from config import Params
from PIL import Image, ImageDraw
from utils import draw_utils, mask_utils_np
from utils.load_json_to_params import load_json_to_params
import time
import argparse
import skimage
import os
from scipy.misc import imresize
import matplotlib.pyplot as plt
import cv2
OFFSET = 1000
THICK_BORDERS = False
def get_arguments():
parser = argparse.ArgumentParser(description="Panoptic-Slim Network")
parser.add_argument("--json_path", type=str, default='',
help="The path to the json file containing the parameters")
return parser.parse_args()
def predict(params):
dataset = inference_input(params)
iterator = dataset.make_one_shot_iterator()
image, im_name, im_raw = iterator.get_next()
model = PanopticSegmentationModel(image, None, params)
prediction_dict = model.predict()
prediction_dict = model.postprocess(prediction_dict)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
global_init = tf.global_variables_initializer()
local_init = tf.local_variables_initializer()
sess.run(global_init)
sess.run(local_init)
restore_var = tf.global_variables()
ckpt = tf.train.get_checkpoint_state(params.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
loader = tf.train.Saver(var_list=restore_var)
model.load(loader, sess, ckpt.model_checkpoint_path)
else:
print('No checkpoint file found.')
# Plotting settings
fig = plt.figure(0, [16, 8], dpi=80)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE,
output_partition_graphs=True)
run_metadata = tf.RunMetadata()
for i in range(params.num_steps_predict):
start_time = time.time()
print(i)
if i == 1:
prediction_dict_out, image_out, im_name_out, im_raw_out = sess.run([prediction_dict, image, im_name, im_raw],
options=options,
run_metadata=run_metadata)
fetched_timeline = timeline.Timeline(run_metadata.step_stats)
chrome_trace = fetched_timeline.generate_chrome_trace_format()
new_path = os.path.join(params.log_dir, 'timeline_predict.json')
print(new_path)
with open(new_path, 'w') as f:
f.write(chrome_trace)
else:
prediction_dict_out, image_out, im_name_out, im_raw_out = sess.run([prediction_dict, image, im_name, im_raw])
duration = time.time() - start_time
print('({:.3f} sec/step)'.format(duration))
if params.apply_semantic_branch and params.apply_instance_branch:
panoptic_out = prediction_dict_out['panoptic'][0]
class_ids = panoptic_out[..., 0]
max = len(params.cids2colors) - 1
class_ids[class_ids == 255] = max
# class_ids[class_ids > max] = max
colorpalettes = np.array(params.cids2colors, dtype=np.uint8)
class_colors = colorpalettes[class_ids]
panoptic_for_edges = np.stack([class_ids, panoptic_out[..., 1], np.zeros_like(class_ids)], axis=2).astype(np.uint8)
# print(panoptic_for_edges.shape)
edges = cv2.Canny(panoptic_for_edges, 1, 2)
if THICK_BORDERS:
edges_2 = cv2.Canny(edges, 100, 200)
edges_total = np.minimum(edges + edges_2, 255)
else:
edges_total = edges
edges_bool = (edges_total / 255).astype(np.bool)
edges_invert = np.invert(edges_bool)
edges_invert = edges_invert.astype(np.uint8)
class_colors = class_colors.astype(np.uint8) * | np.expand_dims(edges_invert, axis=2) | numpy.expand_dims |
import roslib
import sys
import rospy
import cv2
import math
import imutils
import statistics
import numpy as np
from std_msgs.msg import String
from sensor_msgs.msg import Image
from std_msgs.msg import Float64MultiArray, Float64
from cv_bridge import CvBridge, CvBridgeError
from scipy.spatial import distance as dist
class image_converter:
# Defines publisher and subscriber
def __init__(self):
# initialize the node named image_processing
rospy.init_node('image_processing', anonymous=True)
# initialize a publisher to send images from camera1 to a topic named image_topic1
self.image_pub1 = rospy.Publisher("image_topic1", Image, queue_size=1)
self.image_pub2 = rospy.Publisher("image_topic2", Image, queue_size=1)
#Initialize a publisher to send joints angular posiion toa topic called joints_pos
self.joints_pub=rospy.Publisher("joints_pos",Float64MultiArray,queue_size=10)
#initialize a publisher for the robot end effector
self.vision_end_effector_pub=rospy.Publisher("vision_end_effector",Float64MultiArray,queue_size=10)
self.fk_end_effector_pub = rospy.Publisher("fk_end_effector", Float64MultiArray, queue_size=10)
self.actual_target_trajectory_pub = rospy.Publisher("actual_target_trajectory", Float64MultiArray,queue_size=10)
self.vision_target_trajectory_pub = rospy.Publisher("vision_target_trajectory", Float64MultiArray,queue_size=10)
#initialize a publisher for the four angles
self.robot_joint1_pub = rospy.Publisher("/robot/joint1_position_controller/command", Float64, queue_size=10)
self.robot_joint2_pub = rospy.Publisher("/robot/joint2_position_controller/command", Float64, queue_size=10)
self.robot_joint3_pub = rospy.Publisher("/robot/joint3_position_controller/command", Float64, queue_size=10)
self.robot_joint4_pub = rospy.Publisher("/robot/joint4_position_controller/command", Float64, queue_size=10)
#Initialize the publisher for t target
self.target_x_pub = rospy.Publisher("/target/x_position_controller/command", Float64, queue_size=10)
self.target_y_pub = rospy.Publisher("/target/y_position_controller/command", Float64, queue_size=10)
self.target_z_pub = rospy.Publisher("/target/z_position_controller/command", Float64, queue_size=10)
# initialize a subscriber to recieve messages rom a topic named /robot/camera1/image_raw and use callback function to recieve data
self.image_sub1 = rospy.Subscriber("/camera1/robot/image_raw", Image, self.callback1)
self.image_sub2 = rospy.Subscriber("/camera2/robot/image_raw", Image, self.callback2)
#initialize a publisher to send desired trajectory
self.time_trajectory = rospy.get_time()
#initialize variables
self.red = np.array([0.0, 0.0, 0.0, 0.0], dtype='float64')
self.green = np.array([0.0, 0.0, 0.0, 0.0], dtype='float64')
self.p2m = np.array([0.0], dtype='float64')
self.joint1 = np.array([0.0], dtype='float64')
self.joint2 = np.array([0.0], dtype='float64')
self.joint3 = np.array([0.0], dtype='float64')
self.joint4 = np.array([0.0], dtype='float64')
# initialize errors
self.time_previous_step = np.array([rospy.get_time()], dtype='float64')
self.time_previous_step2 = np.array([rospy.get_time()], dtype='float64')
# initialize error and derivative of error for trajectory tracking
self.error = np.array([0.0, 0.0,0.0], dtype='float64')
self.error_d = np.array([0.0, 0.0,0.0], dtype='float64')
# initialize the bridge between openCV and ROS
self.bridge = CvBridge()
# Recieve data from camera 1, process it, and publish
def callback1(self, data):
# Recieve the image
try:
self.image1 = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
def callback2(self, data):
# Recieve the image
try:
self.image2 = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
#Blob detection starts here-------------------------------------------------------
#Same to 2_1_joint_estimation.py
def detect_red(self,image1, image2):
image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
lower_red1 = np.array([0, 200, 0])
higher_red1 = np.array([0, 255, 255])
red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1)
red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
(x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
cy, cz1 = (int(x1), int(y1))
radius1 = int(radius1)
image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
lower_red2 = np.array([0, 200, 0])
higher_red2 = np.array([0, 255, 255])
red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2)
red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
(x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
cx, cz2 = (int(x2), int(y2))
radius2 = int(radius2)
return np.array([cx, cy, cz1, cz2])
def detect_blue(self,image1, image2):
image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
lower_red1 = np.array([70, 0, 0])
higher_red1 = np.array([255, 255, 255])
red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1)
red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
(x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
cy, cz1 = (int(x1), int(y1))
radius1 = int(radius1)
image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
lower_red2 = np.array([70, 0, 0])
higher_red2 = np.array([255, 255, 255])
red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2)
red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
(x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
cx, cz2 = (int(x2), int(y2))
radius2 = int(radius2)
return np.array([cx, cy, cz1, cz2])
def detect_green(self,image1, image2):
image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
lower_red1 = np.array([55, 0, 0])
higher_red1 = np.array([100, 255, 255])
red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1)
red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
(x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
cy, cz1 = (int(x1), int(y1))
radius1 = int(radius1)
image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
lower_red2 = np.array([55, 0, 0])
higher_red2 = np.array([100, 255, 255])
red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2)
red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
(x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
cx, cz2 = (int(x2), int(y2))
radius2 = int(radius2)
return np.array([cx, cy, cz1, cz2])
def detect_yellow(self,image1, image2):
image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
lower_red1 = np.array([16, 244, 0])
higher_red1 = np.array([51, 255, 255])
red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1)
red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
(x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
cy, cz1 = (int(x1), int(y1))
radius1 = int(radius1)
image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
lower_red2 = np.array([16, 244, 0])
higher_red2 = np.array([51, 255, 255])
red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2)
red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
(x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
cx, cz2 = (int(x2), int(y2))
radius2 = int(radius2)
return np.array([cx, cy, cz1, cz2])
def detect_blue_contours(image1):
image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
lower_red1 = np.array([70, 0, 0])
higher_red1 = np.array([255, 255, 255])
red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1)
red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
contours1, hierarchy1 = cv2.findContours(canny_edge1,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
return np.array([contours1])
def detect_yellow_contours(image1):
image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
lower_red1 = np.array([16, 244, 0])
higher_red1 = np.array([51, 255, 255])
red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1)
red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
contours1, hierarchy1 = cv2.findContours(canny_edge1,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
(x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
cy,cz1 = (int(x1), int(y1))
return np.array([contours1])
def get_y1_y2(yellow_contours, blue_contours):
y1 = np.min(yellow_contours, axis = 0)
y1 = y1[0][1]
y1 = y1[:,1]
y2 = np.max(blue_contours, axis = 0)
y2 = y2[0][1]
y2 = y2[:,1]
return y1, y2
def pixelTometer(self, image1,image2):
yellow_contours = detect_yellow_contours(image2)
blue_contours = detect_blue_contours(image2)
y2 = detect_blue(self, image1, image2)
y2 = y2[3]
y1, y2 = get_y1_y2(yellow_contours, blue_contours)
p2m = 2.5/(y1 - y2)
#65 is the best number
return p2m
#----------------------------------------------------------------------------------------------
#Angle Detection starts here
#This part is same as 2_1_joint_estimation.py
def detect_angles_blob(self,image1,image2):
try:
p=pixelTometer(self,image1,image2)
self.p2m = p
except Exception as e:
p = self.p2m
try:
green = detect_green(self, image1, image2)
self.green = green
except Exception as e:
green = self.green
try:
red = detect_red(self, image1, image2)
self.red = red
except Exception as e:
red = self.red
p=pixelTometer(self,image1,image2)
yellow=p*detect_yellow(self,image1,image2)
blue=p*detect_blue(self,image1,image2)
ja1=0.0
ja2=np.pi/2-np.arctan2((blue[2] - green[2]), (blue[1] - green[1]))
ja3 = np.arctan2((blue[3] - green[3]), (blue[0] - green[0]))-np.pi/2
ja4 = np.arctan2((green[2] - red[2]), -(green[1] - red[1]))-np.pi/2-ja2
return np.array([ja1,ja2,ja3,ja4])
def angle_trajectory(self):
curr_time = np.array([rospy.get_time() - self.time_trajectory])
ja1 = 0.1
ja2 = float((np.pi / 2) * np.sin((np.pi / 15) * curr_time))
ja3 = float((np.pi / 2) * np.sin((np.pi / 18) * curr_time))
ja4 = float((np.pi / 2) * np.sin((np.pi / 20) * curr_time))
return np.array([ja1, ja2, ja3, ja4])
def actual_target_position(self):
curr_time = np.array([rospy.get_time() - self.time_trajectory])
x_d = float((2.5 * np.cos(curr_time * np.pi / 15))+0.5)
y_d = float(2.5 * np.sin(curr_time * np.pi / 15))
z_d = float((1 * np.sin(curr_time * np.pi / 15))+7.0)
return np.array([x_d,y_d,z_d])
#FK starts here--------------------------------------------------------------------------------
#This part is same as 3_1_FK.py
def end_effector_position(self, image1, image2):
try:
p=pixelTometer(self,image1,image2)
self.p2m = p
except Exception as e:
p = self.p2m
yellow_posn = detect_yellow(self,image1, image2)
red_posn = detect_red(self, image1, image2)
yellow_posn[3] = 800 - yellow_posn[3]
red_posn[3] = 800 - red_posn[3]
cx, cy, cz1, cz2 = p * (red_posn - yellow_posn)
ee_posn = np.array([cx, cy, cz2])
ee_posn = np.round(ee_posn,1)
return ee_posn
#Calculate the jacobian
def calculate_jacobian(self,image1,image2):
ja1,ja2,ja3,ja4=detect_angles_blob(self,image1,image2)
jacobian=np.array([[3*np.cos(ja1)*np.sin(ja2)*np.cos(ja3)*np.cos(ja4)
+3.5*np.cos(ja1)*np.sin(ja2)*np.cos(ja3)
-3*np.sin(ja1)*np.cos(ja4)*np.sin(ja3)
-3.5*np.sin(ja1)*np.sin(ja3)
+3*np.cos(ja1)*np.cos(ja2)*np.sin(ja4),
3* | np.sin(ja1) | numpy.sin |
# -*- coding: utf-8 -*-
import numpy as np
import cv2
# landmarks line mask
def generate_mask(image, landmarks):
'''
generate face mask according to landmarks
Args:
image: numpy.ndarray
landmarks: 68x2 numpy.ndarray
Return:
a mask map with
'''
# layer1: line
# layer2: region without expansion
# layer3: wider mask
linemask = generate_line_mask(image, landmarks)
regionmask = generate_region_mask(image, landmarks)
widermask = generate_wider_mask(image, landmarks)
mask = np.stack([linemask, regionmask, widermask]).transpose(1, 2, 0)
# return channel: BGR(linemask, regionmask, widermask)channel0:
return mask
def generate_line_mask(image, landmarks):
linemask = image.copy() # np.zeros_like(image).astype(np.uint8)
# face
linemask = connect_line(linemask, landmarks[0:17])
# eyebow
linemask = connect_line(linemask, landmarks[17:22])
linemask = connect_line(linemask, landmarks[22:27])
# nose
linemask = connect_line(linemask, np.vstack([landmarks[27:31], landmarks[33]]))
linemask = connect_line(linemask, landmarks[31:36])
# eyes
linemask = connect_line(linemask, np.vstack([landmarks[36:42], landmarks[36]]))
linemask = connect_line(linemask, np.vstack([landmarks[42:48], landmarks[42]]))
# mouth
linemask = connect_line(linemask, np.vstack([landmarks[48:60], landmarks[48]]))
linemask = connect_line(linemask, np.vstack([landmarks[60:68], landmarks[60]]))
return linemask
def connect_line(input, landmarks):
img = input.copy()
size= len(landmarks)
for i in range(0, size-1):
img = cv2.line(img,
(landmarks[i, 0], landmarks[i, 1]),
(landmarks[i+1, 0], landmarks[i+1, 1]),
(255, 255, 255),
1,
cv2.LINE_AA)
return img
# face landmarks origin
def generate_region_mask(image, landmarks):
regionmask = np.zeros_like(image[:, :, 0])
'''
Use five landmarks
w = (five_landmarks[0, 1] - five_landmarks[1, 1]) / (five_landmarks[0, 0] - five_landmarks[1, 0])
b = five_landmarks[0, 1] - five_landmarks[0, 0] * w
'''
# ----- layer2: eye-1
eyepoints = np.vstack([landmarks[17:22], landmarks[36:42]])
hull = cv2.convexHull(eyepoints.astype(np.int32)).astype(np.int32)
regionmask = cv2.drawContours(regionmask, [hull], 0, (255), -1)
# ----- layer2: eye-2
eyepoints = np.vstack([landmarks[22:27], landmarks[42:48]])
hull = cv2.convexHull(eyepoints.astype(np.int32)).astype(np.int32)
regionmask = cv2.drawContours(regionmask, [hull], 0, (255), -1)
# ----- layer3: mouth
mouthpoints = landmarks[48:68]
hull = cv2.convexHull(mouthpoints.astype(np.int32)).astype(np.int32)
regionmask = cv2.drawContours(regionmask, [hull], 0, (255), -1)
return regionmask
#fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device='cuda:0', flip_input=False)
def generate_wider_mask(image, landmarks):
'''
generate weight mask according to landmarks
:param image: np.ndarray
:param landmarks: 68x2
:return: a weight mask with weight of 0, 64, 128, 192
'''
#----- get five landmarks
#five_landmarks = convert_to_five_landmarks(landmarks)
facemask = generate_facial_mask(image, landmarks)
eyemask = generate_eye_mask(image, landmarks)
mouthmask = generate_mouth_mask(image, landmarks)
weightmask = np.zeros_like(image[:, :, 0]).astype(np.uint8)
weightmask[facemask > 0] = 64
weightmask[eyemask > 0] = 128
weightmask[mouthmask > 0] = 192
return weightmask
def generate_facial_mask(image, landmarks):
'''
generate weight mask according to landmarks
:param image: np.ndarray
:param landmarks: 68x2
:return: a mask map
'''
facemask = np.zeros_like(image[:, :, 0])
# ----- layer1: face region
hull = cv2.convexHull(np.int32(landmarks)).astype(np.int32)
facemask = cv2.drawContours(facemask, [hull], 0, (255), -1)
return facemask
def generate_eye_mask(image, landmarks):
'''
generate weight mask according to landmarks
:param image: np.ndarray
:param landmarks: 68x2
:return: a mask map
'''
eyemask = | np.zeros_like(image[:, :, 0]) | numpy.zeros_like |
from __future__ import division
import glob
import numpy as NP
from functools import reduce
import numpy.ma as MA
import progressbar as PGB
import h5py
import healpy as HP
import warnings
import copy
import astropy.cosmology as CP
from astropy.time import Time, TimeDelta
from astropy.io import fits
from astropy import units as U
from astropy import constants as FCNST
from scipy import interpolate
from astroutils import DSP_modules as DSP
from astroutils import constants as CNST
from astroutils import nonmathops as NMO
from astroutils import mathops as OPS
from astroutils import lookup_operations as LKP
import prisim
from prisim import interferometry as RI
from prisim import primary_beams as PB
from prisim import delay_spectrum as DS
try:
from pyuvdata import UVBeam
except ImportError:
uvbeam_module_found = False
else:
uvbeam_module_found = True
prisim_path = prisim.__path__[0]+'/'
cosmoPlanck15 = CP.Planck15 # Planck 2015 cosmology
cosmo100 = cosmoPlanck15.clone(name='Modified Planck 2015 cosmology with h=1.0', H0=100.0) # Modified Planck 2015 cosmology with h=1.0, H= 100 km/s/Mpc
################################################################################
def write_PRISim_bispectrum_phase_to_npz(infile_prefix, outfile_prefix,
triads=None, bltriplet=None,
hdf5file_prefix=None, infmt='npz',
datakey='noisy', blltol=0.1):
"""
----------------------------------------------------------------------------
Write closure phases computed in a PRISim simulation to a NPZ file with
appropriate format for further analysis.
Inputs:
infile_prefix
[string] HDF5 file or NPZ file created by a PRISim simulation or
its replication respectively. If infmt is specified as 'hdf5',
then hdf5file_prefix will be ignored and all the observing
info will be read from here. If infmt is specified as 'npz',
then hdf5file_prefix needs to be specified in order to read the
observing parameters.
triads [list or numpy array or None] Antenna triads given as a list of
3-element lists or a ntriads x 3 array. Each element in the
inner list is an antenna label. They will be converted to
strings internally. If set to None, then all triads determined
by bltriplet will be used. If specified, then inputs in blltol
and bltriplet will be ignored.
bltriplet [numpy array or None] 3x3 numpy array containing the 3 baseline
vectors. The first axis denotes the three baselines, the second
axis denotes the East, North, Up coordinates of the baseline
vector. Units are in m. Will be used only if triads is set to
None.
outfile_prefix
[string] Prefix of the NPZ file. It will be appended by
'_noiseless', '_noisy', and '_noise' and further by extension
'.npz'
infmt [string] Format of the input file containing visibilities.
Accepted values are 'npz' (default), and 'hdf5'. If infmt is
specified as 'npz', then hdf5file_prefix also needs to be
specified for reading the observing parameters
datakey [string] Specifies which -- 'noiseless', 'noisy' (default), or
'noise' -- visibilities are to be written to the output. If set
to None, and infmt is 'hdf5', then all three sets of
visibilities are written. The datakey string will also be added
as a suffix in the output file.
blltol [scalar] Baseline length tolerance (in m) for matching baseline
vectors in triads. It must be a scalar. Default = 0.1 m. Will
be used only if triads is set to None and bltriplet is to be
used.
----------------------------------------------------------------------------
"""
if not isinstance(infile_prefix, str):
raise TypeError('Input infile_prefix must be a string')
if not isinstance(outfile_prefix, str):
raise TypeError('Input outfile_prefix must be a string')
if (triads is None) and (bltriplet is None):
raise ValueError('One of triads or bltriplet must be set')
if triads is None:
if not isinstance(bltriplet, NP.ndarray):
raise TypeError('Input bltriplet must be a numpy array')
if not isinstance(blltol, (int,float)):
raise TypeError('Input blltol must be a scalar')
if bltriplet.ndim != 2:
raise ValueError('Input bltriplet must be a 2D numpy array')
if bltriplet.shape[0] != 3:
raise ValueError('Input bltriplet must contain three baseline vectors')
if bltriplet.shape[1] != 3:
raise ValueError('Input bltriplet must contain baseline vectors along three corrdinates in the ENU frame')
else:
if not isinstance(triads, (list, NP.ndarray)):
raise TypeError('Input triads must be a list or numpy array')
triads = NP.asarray(triads).astype(str)
if not isinstance(infmt, str):
raise TypeError('Input infmt must be a string')
if infmt.lower() not in ['npz', 'hdf5']:
raise ValueError('Input file format must be npz or hdf5')
if infmt.lower() == 'npz':
if not isinstance(hdf5file_prefix, str):
raise TypeError('If infmt is npz, then hdf5file_prefix needs to be specified for observing parameters information')
if datakey is None:
datakey = ['noisy']
if isinstance(datakey, str):
datakey = [datakey]
elif not isinstance(datakey, list):
raise TypeError('Input datakey must be a list')
for dkey in datakey:
if dkey.lower() not in ['noiseless', 'noisy', 'noise']:
raise ValueError('Invalid input found in datakey')
if infmt.lower() == 'hdf5':
fullfnames_with_extension = glob.glob(infile_prefix + '*' + infmt.lower())
fullfnames_without_extension = [fname.split('.hdf5')[0] for fname in fullfnames_with_extension]
else:
fullfnames_without_extension = [infile_prefix]
if len(fullfnames_without_extension) == 0:
raise IOError('No input files found with pattern {0}'.format(infile_prefix))
try:
if infmt.lower() == 'hdf5':
simvis = RI.InterferometerArray(None, None, None, init_file=fullfnames_without_extension[0])
else:
simvis = RI.InterferometerArray(None, None, None, init_file=hdf5file_prefix)
except:
raise IOError('Input PRISim file does not contain a valid PRISim output')
latitude = simvis.latitude
longitude = simvis.longitude
location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude))
last = simvis.lst / 15.0 / 24.0 # from degrees to fraction of day
last = last.reshape(-1,1)
daydata = NP.asarray(simvis.timestamp[0]).ravel()
if infmt.lower() == 'npz':
simvisinfo = NP.load(fullfnames_without_extension[0]+'.'+infmt.lower())
skyvis = simvisinfo['noiseless'][0,...]
vis = simvisinfo['noisy']
noise = simvisinfo['noise']
n_realize = vis.shape[0]
else:
n_realize = len(fullfnames_without_extension)
cpdata = {}
outfile = {}
for fileind in range(n_realize):
if infmt.lower() == 'npz':
simvis.vis_freq = vis[fileind,...]
simvis.vis_noise_freq = noise[fileind,...]
else:
simvis = RI.InterferometerArray(None, None, None, init_file=fullfnames_without_extension[fileind])
if fileind == 0:
if triads is None:
triads, bltriplets = simvis.getThreePointCombinations(unique=False)
# triads = NP.asarray(prisim_BSP_info['antenna_triplets']).reshape(-1,3)
# bltriplets = NP.asarray(prisim_BSP_info['baseline_triplets'])
triads = NP.asarray(triads).reshape(-1,3)
bltriplets = NP.asarray(bltriplets)
blinds = []
matchinfo = LKP.find_NN(bltriplet, bltriplets.reshape(-1,3), distance_ULIM=blltol)
revind = []
for blnum in NP.arange(bltriplet.shape[0]):
if len(matchinfo[0][blnum]) == 0:
revind += [blnum]
if len(revind) > 0:
flip_factor = NP.ones(3, dtype=NP.float)
flip_factor[NP.array(revind)] = -1
rev_bltriplet = bltriplet * flip_factor.reshape(-1,1)
matchinfo = LKP.find_NN(rev_bltriplet, bltriplets.reshape(-1,3), distance_ULIM=blltol)
for blnum in NP.arange(bltriplet.shape[0]):
if len(matchinfo[0][blnum]) == 0:
raise ValueError('Some baselines in the triplet are not found in the model triads')
triadinds = []
for blnum in NP.arange(bltriplet.shape[0]):
triadind, blind = NP.unravel_index(NP.asarray(matchinfo[0][blnum]), (bltriplets.shape[0], bltriplets.shape[1]))
triadinds += [triadind]
triadind_intersection = NP.intersect1d(triadinds[0], NP.intersect1d(triadinds[1], triadinds[2]))
if triadind_intersection.size == 0:
raise ValueError('Specified triad not found in the PRISim model. Try other permutations of the baseline vectors and/or reverse individual baseline vectors in the triad before giving up.')
triads = triads[triadind_intersection,:]
selected_bltriplets = bltriplets[triadind_intersection,:,:].reshape(-1,3,3)
prisim_BSP_info = simvis.getClosurePhase(antenna_triplets=triads.tolist(),
delay_filter_info=None,
specsmooth_info=None,
spectral_window_info=None,
unique=False)
if fileind == 0:
triads = NP.asarray(prisim_BSP_info['antenna_triplets']).reshape(-1,3) # Re-establish the triads returned after the first iteration (to accunt for any order flips)
for outkey in datakey:
if fileind == 0:
outfile[outkey] = outfile_prefix + '_{0}.npz'.format(outkey)
if outkey == 'noiseless':
if fileind == 0:
# cpdata = prisim_BSP_info['closure_phase_skyvis'][triadind_intersection,:,:][NP.newaxis,...]
cpdata[outkey] = prisim_BSP_info['closure_phase_skyvis'][NP.newaxis,...]
else:
# cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_skyvis'][triadind_intersection,:,:][NP.newaxis,...]), axis=0)
cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_skyvis'][NP.newaxis,...]), axis=0)
if outkey == 'noisy':
if fileind == 0:
# cpdata = prisim_BSP_info['closure_phase_vis'][triadind_intersection,:,:][NP.newaxis,...]
cpdata[outkey] = prisim_BSP_info['closure_phase_vis'][NP.newaxis,...]
else:
# cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_vis'][triadind_intersection,:,:][NP.newaxis,...]), axis=0)
cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_vis'][NP.newaxis,...]), axis=0)
if outkey == 'noise':
if fileind == 0:
# cpdata = prisim_BSP_info['closure_phase_noise'][triadind_intersection,:,:]
cpdata[outkey] = prisim_BSP_info['closure_phase_noise'][NP.newaxis,:,:]
else:
# cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_noise'][triadind_intersection,:,:][NP.newaxis,...]), axis=0)
cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_noise'][NP.newaxis,...]), axis=0)
for outkey in datakey:
cpdata[outkey] = NP.rollaxis(cpdata[outkey], 3, start=0)
flagsdata = NP.zeros(cpdata[outkey].shape, dtype=NP.bool)
NP.savez_compressed(outfile[outkey], closures=cpdata[outkey],
flags=flagsdata, triads=triads,
last=last+NP.zeros((1,n_realize)),
days=daydata+NP.arange(n_realize))
################################################################################
def loadnpz(npzfile, longitude=0.0, latitude=0.0, lst_format='fracday'):
"""
----------------------------------------------------------------------------
Read an input NPZ file containing closure phase data output from CASA and
return a dictionary
Inputs:
npzfile [string] Input NPZ file including full path containing closure
phase data. It must have the following files/keys inside:
'closures' [numpy array] Closure phase (radians). It is of
shape (nlst,ndays,ntriads,nchan)
'triads' [numpy array] Array of triad tuples, of shape
(ntriads,3)
'flags' [numpy array] Array of flags (boolean), of shape
(nlst,ndays,ntriads,nchan)
'last' [numpy array] Array of LST for each day (CASA units
which is MJD+6713). Shape is (nlst,ndays)
'days' [numpy array] Array of days, shape is (ndays,)
'averaged_closures'
[numpy array] optional array of closure phases
averaged across days. Shape is (nlst,ntriads,nchan)
'std_dev_lst'
[numpy array] optional array of standard deviation
of closure phases across days. Shape is
(nlst,ntriads,nchan)
'std_dev_triads'
[numpy array] optional array of standard deviation
of closure phases across triads. Shape is
(nlst,ndays,nchan)
latitude [scalar int or float] Latitude of site (in degrees).
Default=0.0 deg.
longitude [scalar int or float] Longitude of site (in degrees).
Default=0.0 deg.
lst_format [string] Specifies the format/units in which the 'last' key
is to be interpreted. If set to 'hourangle', the LST is in
units of hour angle. If set to 'fracday', the fractional
portion of the 'last' value is the LST in units of days.
Output:
cpinfo [dictionary] Contains one top level keys, namely, 'raw'
Under key 'raw' which holds a dictionary, the subkeys
include 'cphase' (nlst,ndays,ntriads,nchan),
'triads' (ntriads,3), 'lst' (nlst,ndays), and 'flags'
(nlst,ndays,ntriads,nchan), and some other optional keys
----------------------------------------------------------------------------
"""
npzdata = NP.load(npzfile)
cpdata = npzdata['closures']
triadsdata = npzdata['triads']
flagsdata = npzdata['flags']
location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude))
daydata = Time(npzdata['days'].astype(NP.float64), scale='utc', format='jd', location=location)
# lstdata = Time(npzdata['last'].astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=('+21.4278d', '-30.7224d')).sidereal_time('apparent') # Subtract 6713 based on CASA convention to obtain MJD
if lst_format.lower() == 'hourangle':
lstHA = npzdata['last']
lstday = daydata.reshape(1,-1) + TimeDelta(NP.zeros(lstHA.shape[0]).reshape(-1,1)*U.s)
elif lst_format.lower() == 'fracday':
lstfrac, lstint = NP.modf(npzdata['last'])
lstday = Time(lstint.astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=location) # Subtract 6713 based on CASA convention to obtain MJD
lstHA = lstfrac * 24.0 # in hours
else:
raise ValueError('Input lst_format invalid')
cp = cpdata.astype(NP.float64)
flags = flagsdata.astype(NP.bool)
cpinfo = {}
datapool = ['raw']
for dpool in datapool:
cpinfo[dpool] = {}
if dpool == 'raw':
qtys = ['cphase', 'triads', 'flags', 'lst', 'lst-day', 'days', 'dayavg', 'std_triads', 'std_lst']
for qty in qtys:
if qty == 'cphase':
cpinfo[dpool][qty] = NP.copy(cp)
elif qty == 'triads':
cpinfo[dpool][qty] = NP.copy(triadsdata)
elif qty == 'flags':
cpinfo[dpool][qty] = NP.copy(flags)
elif qty == 'lst':
cpinfo[dpool][qty] = NP.copy(lstHA)
elif qty == 'lst-day':
cpinfo[dpool][qty] = NP.copy(lstday.jd)
elif qty == 'days':
cpinfo[dpool][qty] = NP.copy(daydata.jd)
elif qty == 'dayavg':
if 'averaged_closures' in npzdata:
cpinfo[dpool][qty] = NP.copy(cp_dayavg)
elif qty == 'std_triads':
if 'std_dev_triad' in npzdata:
cpinfo[dpool][qty] = NP.copy(cp_std_triads)
elif qty == 'std_lst':
if 'std_dev_lst' in npzdata:
cpinfo[dpool][qty] = NP.copy(cp_std_lst)
return cpinfo
################################################################################
def npz2hdf5(npzfile, hdf5file, longitude=0.0, latitude=0.0,
lst_format='fracday'):
"""
----------------------------------------------------------------------------
Read an input NPZ file containing closure phase data output from CASA and
save it to HDF5 format
Inputs:
npzfile [string] Input NPZ file including full path containing closure
phase data. It must have the following files/keys inside:
'closures' [numpy array] Closure phase (radians). It is of
shape (nlst,ndays,ntriads,nchan)
'triads' [numpy array] Array of triad tuples, of shape
(ntriads,3)
'flags' [numpy array] Array of flags (boolean), of shape
(nlst,ndays,ntriads,nchan)
'last' [numpy array] Array of LST for each day (CASA units
ehich is MJD+6713). Shape is (nlst,ndays)
'days' [numpy array] Array of days, shape is (ndays,)
'averaged_closures'
[numpy array] optional array of closure phases
averaged across days. Shape is (nlst,ntriads,nchan)
'std_dev_lst'
[numpy array] optional array of standard deviation
of closure phases across days. Shape is
(nlst,ntriads,nchan)
'std_dev_triads'
[numpy array] optional array of standard deviation
of closure phases across triads. Shape is
(nlst,ndays,nchan)
hdf5file [string] Output HDF5 file including full path.
latitude [scalar int or float] Latitude of site (in degrees).
Default=0.0 deg.
longitude [scalar int or float] Longitude of site (in degrees).
Default=0.0 deg.
lst_format [string] Specifies the format/units in which the 'last' key
is to be interpreted. If set to 'hourangle', the LST is in
units of hour angle. If set to 'fracday', the fractional
portion of the 'last' value is the LST in units of days.
----------------------------------------------------------------------------
"""
npzdata = NP.load(npzfile)
cpdata = npzdata['closures']
triadsdata = npzdata['triads']
flagsdata = npzdata['flags']
location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude))
daydata = Time(npzdata['days'].astype(NP.float64), scale='utc', format='jd', location=location)
# lstdata = Time(npzdata['last'].astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=('+21.4278d', '-30.7224d')).sidereal_time('apparent') # Subtract 6713 based on CASA convention to obtain MJD
if lst_format.lower() == 'hourangle':
lstHA = npzdata['last']
lstday = daydata.reshape(1,-1) + TimeDelta(NP.zeros(lstHA.shape[0]).reshape(-1,1)*U.s)
elif lst_format.lower() == 'fracday':
lstfrac, lstint = NP.modf(npzdata['last'])
lstday = Time(lstint.astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=location) # Subtract 6713 based on CASA convention to obtain MJD
lstHA = lstfrac * 24.0 # in hours
else:
raise ValueError('Input lst_format invalid')
cp = cpdata.astype(NP.float64)
flags = flagsdata.astype(NP.bool)
if 'averaged_closures' in npzdata:
day_avg_cpdata = npzdata['averaged_closures']
cp_dayavg = day_avg_cpdata.astype(NP.float64)
if 'std_dev_triad' in npzdata:
std_triads_cpdata = npzdata['std_dev_triad']
cp_std_triads = std_triads_cpdata.astype(NP.float64)
if 'std_dev_lst' in npzdata:
std_lst_cpdata = npzdata['std_dev_lst']
cp_std_lst = std_lst_cpdata.astype(NP.float64)
with h5py.File(hdf5file, 'w') as fobj:
datapool = ['raw']
for dpool in datapool:
if dpool == 'raw':
qtys = ['cphase', 'triads', 'flags', 'lst', 'lst-day', 'days', 'dayavg', 'std_triads', 'std_lst']
for qty in qtys:
data = None
if qty == 'cphase':
data = NP.copy(cp)
elif qty == 'triads':
data = NP.copy(triadsdata)
elif qty == 'flags':
data = NP.copy(flags)
elif qty == 'lst':
data = NP.copy(lstHA)
elif qty == 'lst-day':
data = NP.copy(lstday.jd)
elif qty == 'days':
data = NP.copy(daydata.jd)
elif qty == 'dayavg':
if 'averaged_closures' in npzdata:
data = NP.copy(cp_dayavg)
elif qty == 'std_triads':
if 'std_dev_triad' in npzdata:
data = NP.copy(cp_std_triads)
elif qty == 'std_lst':
if 'std_dev_lst' in npzdata:
data = NP.copy(cp_std_lst)
if data is not None:
dset = fobj.create_dataset('{0}/{1}'.format(dpool, qty), data=data, compression='gzip', compression_opts=9)
################################################################################
def save_CPhase_cross_power_spectrum(xcpdps, outfile):
"""
----------------------------------------------------------------------------
Save cross-power spectrum information in a dictionary to a HDF5 file
Inputs:
xcpdps [dictionary] This dictionary is essentially an output of the
member function compute_power_spectrum() of class
ClosurePhaseDelaySpectrum. It has the following key-value
structure:
'triads' ((ntriads,3) array), 'triads_ind',
((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst'
((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,)
array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array),
'dday' ((ndays,) array), 'oversampled' and 'resampled'
corresponding to whether resample was set to False or True in
call to member function FT(). Values under keys 'triads_ind'
and 'lst_ind' are numpy array corresponding to triad and time
indices used in selecting the data. Values under keys
'oversampled' and 'resampled' each contain a dictionary with
the following keys and values:
'z' [numpy array] Redshifts corresponding to the band
centers in 'freq_center'. It has shape=(nspw,)
'lags' [numpy array] Delays (in seconds). It has shape=(nlags,)
'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding
to 'lags'. It has shape=(nspw,nlags)
'freq_center'
[numpy array] contains the center frequencies (in Hz)
of the frequency subbands of the subband delay spectra.
It is of size n_win. It is roughly equivalent to
redshift(s)
'freq_wts'
[numpy array] Contains frequency weights applied on
each frequency sub-band during the subband delay
transform. It is of size n_win x nchan.
'bw_eff'
[numpy array] contains the effective bandwidths (in Hz)
of the subbands being delay transformed. It is of size
n_win. It is roughly equivalent to width in redshift or
along line-of-sight
'shape' [string] shape of the frequency window function applied.
Usual values are 'rect' (rectangular), 'bhw'
(Blackman-Harris), 'bnw' (Blackman-Nuttall).
'fftpow'
[scalar] the power to which the FFT of the window was
raised. The value is be a positive scalar with
default = 1.0
'lag_corr_length'
[numpy array] It is the correlation timescale (in
pixels) of the subband delay spectra. It is proportional
to inverse of effective bandwidth. It is of size n_win.
The unit size of a pixel is determined by the difference
between adjacent pixels in lags under key 'lags' which
in turn is effectively inverse of the effective
bandwidth of the subband specified in bw_eff
It further contains one or more of the following keys named
'whole', 'submodel', 'residual', and 'errinfo' each of which is
a dictionary. 'whole' contains power spectrum info about the
input closure phases. 'submodel' contains power spectrum info
about the model that will have been subtracted (as closure
phase) from the 'whole' model. 'residual' contains power
spectrum info about the closure phases obtained as a difference
between 'whole' and 'submodel'. It contains the following keys
and values:
'mean' [numpy array] Delay power spectrum incoherently
estimated over the axes specified in xinfo['axes']
using the 'mean' key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are
not set, those axes will be replaced with square
covariance matrices. If collapse_axes is provided but
avgcov is False, those axes will be of shape 2*Naxis-1.
'median'
[numpy array] Delay power spectrum incoherently averaged
over the axes specified in incohax using the 'median'
key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are not
set, those axes will be replaced with square covariance
matrices. If collapse_axes is provided bu avgcov is
False, those axes will be of shape 2*Naxis-1.
'diagoffsets'
[dictionary] Same keys corresponding to keys under
'collapse_axes' in input containing the diagonal
offsets for those axes. If 'avgcov' was set, those
entries will be removed from 'diagoffsets' since all the
leading diagonal elements have been collapsed (averaged)
further. Value under each key is a numpy array where
each element in the array corresponds to the index of
that leading diagonal. This should match the size of the
output along that axis in 'mean' or 'median' above.
'diagweights'
[dictionary] Each key is an axis specified in
collapse_axes and the value is a numpy array of weights
corresponding to the diagonal offsets in that axis.
'axesmap'
[dictionary] If covariance in cross-power is calculated
but is not collapsed, the number of dimensions in the
output will have changed. This parameter tracks where
the original axis is now placed. The keys are the
original axes that are involved in incoherent
cross-power, and the values are the new locations of
those original axes in the output.
'nsamples_incoh'
[integer] Number of incoherent samples in producing the
power spectrum
'nsamples_coh'
[integer] Number of coherent samples in producing the
power spectrum
outfile [string] Full path to the external HDF5 file where the cross-
power spectrum information provided in xcpdps will be saved
----------------------------------------------------------------------------
"""
if not isinstance(xcpdps, dict):
raise TypeError('Input xcpdps must be a dictionary')
with h5py.File(outfile, 'w') as fileobj:
hdrgrp = fileobj.create_group('header')
hdrkeys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday']
for key in hdrkeys:
dset = hdrgrp.create_dataset(key, data=xcpdps[key])
sampling = ['oversampled', 'resampled']
sampling_keys = ['z', 'kprll', 'lags', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length']
dpool_keys = ['whole', 'submodel', 'residual', 'errinfo']
for smplng in sampling:
if smplng in xcpdps:
smplgrp = fileobj.create_group(smplng)
for key in sampling_keys:
dset = smplgrp.create_dataset(key, data=xcpdps[smplng][key])
for dpool in dpool_keys:
if dpool in xcpdps[smplng]:
dpoolgrp = smplgrp.create_group(dpool)
keys = ['diagoffsets', 'diagweights', 'axesmap', 'nsamples_incoh', 'nsamples_coh']
for key in keys:
if key in xcpdps[smplng][dpool]:
if isinstance(xcpdps[smplng][dpool][key], dict):
subgrp = dpoolgrp.create_group(key)
for subkey in xcpdps[smplng][dpool][key]:
dset = subgrp.create_dataset(str(subkey), data=xcpdps[smplng][dpool][key][subkey])
else:
dset = dpoolgrp.create_dataset(key, data=xcpdps[smplng][dpool][key])
for stat in ['mean', 'median']:
if stat in xcpdps[smplng][dpool]:
if isinstance(xcpdps[smplng][dpool][stat], list):
for ii in range(len(xcpdps[smplng][dpool][stat])):
dset = dpoolgrp.create_dataset(stat+'/diagcomb_{0}'.format(ii), data=xcpdps[smplng][dpool][stat][ii].si.value)
dset.attrs['units'] = str(xcpdps[smplng][dpool][stat][ii].si.unit)
else:
dset = dpoolgrp.create_dataset(stat, data=xcpdps[smplng][dpool][stat].si.value)
dset.attrs['units'] = str(xcpdps[smplng][dpool][stat].si.unit)
################################################################################
def read_CPhase_cross_power_spectrum(infile):
"""
----------------------------------------------------------------------------
Read information about cross power spectrum from an external HDF5 file into
a dictionary. This is the counterpart to save_CPhase_corss_power_spectrum()
Input:
infile [string] Full path to the external HDF5 file that contains info
about cross-power spectrum.
Output:
xcpdps [dictionary] This dictionary has structure the same as output
of the member function compute_power_spectrum() of class
ClosurePhaseDelaySpectrum. It has the following key-value
structure:
'triads' ((ntriads,3) array), 'triads_ind',
((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst'
((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,)
array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array),
'dday' ((ndays,) array), 'oversampled' and 'resampled'
corresponding to whether resample was set to False or True in
call to member function FT(). Values under keys 'triads_ind'
and 'lst_ind' are numpy array corresponding to triad and time
indices used in selecting the data. Values under keys
'oversampled' and 'resampled' each contain a dictionary with
the following keys and values:
'z' [numpy array] Redshifts corresponding to the band
centers in 'freq_center'. It has shape=(nspw,)
'lags' [numpy array] Delays (in seconds). It has shape=(nlags,)
'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding
to 'lags'. It has shape=(nspw,nlags)
'freq_center'
[numpy array] contains the center frequencies (in Hz)
of the frequency subbands of the subband delay spectra.
It is of size n_win. It is roughly equivalent to
redshift(s)
'freq_wts'
[numpy array] Contains frequency weights applied on
each frequency sub-band during the subband delay
transform. It is of size n_win x nchan.
'bw_eff'
[numpy array] contains the effective bandwidths (in Hz)
of the subbands being delay transformed. It is of size
n_win. It is roughly equivalent to width in redshift or
along line-of-sight
'shape' [string] shape of the frequency window function applied.
Usual values are 'rect' (rectangular), 'bhw'
(Blackman-Harris), 'bnw' (Blackman-Nuttall).
'fftpow'
[scalar] the power to which the FFT of the window was
raised. The value is be a positive scalar with
default = 1.0
'lag_corr_length'
[numpy array] It is the correlation timescale (in
pixels) of the subband delay spectra. It is proportional
to inverse of effective bandwidth. It is of size n_win.
The unit size of a pixel is determined by the difference
between adjacent pixels in lags under key 'lags' which
in turn is effectively inverse of the effective
bandwidth of the subband specified in bw_eff
It further contains one or more of the following keys named
'whole', 'submodel', 'residual', and 'errinfo' each of which is
a dictionary. 'whole' contains power spectrum info about the
input closure phases. 'submodel' contains power spectrum info
about the model that will have been subtracted (as closure
phase) from the 'whole' model. 'residual' contains power
spectrum info about the closure phases obtained as a difference
between 'whole' and 'submodel'. It contains the following keys
and values:
'mean' [numpy array] Delay power spectrum incoherently
estimated over the axes specified in xinfo['axes']
using the 'mean' key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are
not set, those axes will be replaced with square
covariance matrices. If collapse_axes is provided but
avgcov is False, those axes will be of shape 2*Naxis-1.
'median'
[numpy array] Delay power spectrum incoherently averaged
over the axes specified in incohax using the 'median'
key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are not
set, those axes will be replaced with square covariance
matrices. If collapse_axes is provided bu avgcov is
False, those axes will be of shape 2*Naxis-1.
'diagoffsets'
[dictionary] Same keys corresponding to keys under
'collapse_axes' in input containing the diagonal
offsets for those axes. If 'avgcov' was set, those
entries will be removed from 'diagoffsets' since all the
leading diagonal elements have been collapsed (averaged)
further. Value under each key is a numpy array where
each element in the array corresponds to the index of
that leading diagonal. This should match the size of the
output along that axis in 'mean' or 'median' above.
'diagweights'
[dictionary] Each key is an axis specified in
collapse_axes and the value is a numpy array of weights
corresponding to the diagonal offsets in that axis.
'axesmap'
[dictionary] If covariance in cross-power is calculated
but is not collapsed, the number of dimensions in the
output will have changed. This parameter tracks where
the original axis is now placed. The keys are the
original axes that are involved in incoherent
cross-power, and the values are the new locations of
those original axes in the output.
'nsamples_incoh'
[integer] Number of incoherent samples in producing the
power spectrum
'nsamples_coh'
[integer] Number of coherent samples in producing the
power spectrum
outfile [string] Full path to the external HDF5 file where the cross-
power spectrum information provided in xcpdps will be saved
----------------------------------------------------------------------------
"""
if not isinstance(infile, str):
raise TypeError('Input infile must be a string')
xcpdps = {}
with h5py.File(infile, 'r') as fileobj:
hdrgrp = fileobj['header']
hdrkeys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday']
for key in hdrkeys:
xcpdps[key] = hdrgrp[key].value
sampling = ['oversampled', 'resampled']
sampling_keys = ['z', 'kprll', 'lags', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length']
dpool_keys = ['whole', 'submodel', 'residual', 'errinfo']
for smplng in sampling:
if smplng in fileobj:
smplgrp = fileobj[smplng]
xcpdps[smplng] = {}
for key in sampling_keys:
xcpdps[smplng][key] = smplgrp[key].value
for dpool in dpool_keys:
if dpool in smplgrp:
xcpdps[smplng][dpool] = {}
dpoolgrp = smplgrp[dpool]
keys = ['diagoffsets', 'diagweights', 'axesmap', 'nsamples_incoh', 'nsamples_coh']
for key in keys:
if key in dpoolgrp:
if isinstance(dpoolgrp[key], h5py.Group):
xcpdps[smplng][dpool][key] = {}
for subkey in dpoolgrp[key]:
xcpdps[smplng][dpool][key][int(subkey)] = dpoolgrp[key][subkey].value
elif isinstance(dpoolgrp[key], h5py.Dataset):
xcpdps[smplng][dpool][key] = dpoolgrp[key].value
else:
raise TypeError('Invalid h5py data type encountered')
for stat in ['mean', 'median']:
if stat in dpoolgrp:
if isinstance(dpoolgrp[stat], h5py.Dataset):
valunits = dpoolgrp[stat].attrs['units']
xcpdps[smplng][dpool][stat] = dpoolgrp[stat].value * U.Unit(valunits)
elif isinstance(dpoolgrp[stat], h5py.Group):
xcpdps[smplng][dpool][stat] = []
for diagcomb_ind in range(len(dpoolgrp[stat].keys())):
if 'diagcomb_{0}'.format(diagcomb_ind) in dpoolgrp[stat]:
valunits = dpoolgrp[stat]['diagcomb_{0}'.format(diagcomb_ind)].attrs['units']
xcpdps[smplng][dpool][stat] += [dpoolgrp[stat]['diagcomb_{0}'.format(diagcomb_ind)].value * U.Unit(valunits)]
return xcpdps
################################################################################
def incoherent_cross_power_spectrum_average(xcpdps, excpdps=None, diagoffsets=None):
"""
----------------------------------------------------------------------------
Perform incoherent averaging of cross power spectrum along specified axes
Inputs:
xcpdps [dictionary or list of dictionaries] If provided as a list of
dictionaries, each dictionary consists of cross power spectral
information coming possible from different sources, and they
will be averaged be averaged incoherently. If a single
dictionary is provided instead of a list of dictionaries, the
said averaging does not take place. Each dictionary is
essentially an output of the member function
compute_power_spectrum() of class ClosurePhaseDelaySpectrum. It
has the following key-value structure:
'triads' ((ntriads,3) array), 'triads_ind',
((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst'
((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,)
array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array),
'dday' ((ndays,) array), 'oversampled' and 'resampled'
corresponding to whether resample was set to False or True in
call to member function FT(). Values under keys 'triads_ind'
and 'lst_ind' are numpy array corresponding to triad and time
indices used in selecting the data. Values under keys
'oversampled' and 'resampled' each contain a dictionary with
the following keys and values:
'z' [numpy array] Redshifts corresponding to the band
centers in 'freq_center'. It has shape=(nspw,)
'lags' [numpy array] Delays (in seconds). It has shape=(nlags,)
'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding
to 'lags'. It has shape=(nspw,nlags)
'freq_center'
[numpy array] contains the center frequencies (in Hz)
of the frequency subbands of the subband delay spectra.
It is of size n_win. It is roughly equivalent to
redshift(s)
'freq_wts'
[numpy array] Contains frequency weights applied on
each frequency sub-band during the subband delay
transform. It is of size n_win x nchan.
'bw_eff'
[numpy array] contains the effective bandwidths (in Hz)
of the subbands being delay transformed. It is of size
n_win. It is roughly equivalent to width in redshift or
along line-of-sight
'shape' [string] shape of the frequency window function applied.
Usual values are 'rect' (rectangular), 'bhw'
(Blackman-Harris), 'bnw' (Blackman-Nuttall).
'fftpow'
[scalar] the power to which the FFT of the window was
raised. The value is be a positive scalar with
default = 1.0
'lag_corr_length'
[numpy array] It is the correlation timescale (in
pixels) of the subband delay spectra. It is proportional
to inverse of effective bandwidth. It is of size n_win.
The unit size of a pixel is determined by the difference
between adjacent pixels in lags under key 'lags' which
in turn is effectively inverse of the effective
bandwidth of the subband specified in bw_eff
It further contains 3 keys named 'whole', 'submodel', and
'residual' each of which is a dictionary. 'whole' contains power
spectrum info about the input closure phases. 'submodel'
contains power spectrum info about the model that will have been
subtracted (as closure phase) from the 'whole' model. 'residual'
contains power spectrum info about the closure phases obtained
as a difference between 'whole' and 'submodel'. It contains the
following keys and values:
'mean' [numpy array] Delay power spectrum incoherently
estimated over the axes specified in xinfo['axes']
using the 'mean' key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are
not set, those axes will be replaced with square
covariance matrices. If collapse_axes is provided but
avgcov is False, those axes will be of shape 2*Naxis-1.
'median'
[numpy array] Delay power spectrum incoherently averaged
over the axes specified in incohax using the 'median'
key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are not
set, those axes will be replaced with square covariance
matrices. If collapse_axes is provided bu avgcov is
False, those axes will be of shape 2*Naxis-1.
'diagoffsets'
[dictionary] Same keys corresponding to keys under
'collapse_axes' in input containing the diagonal
offsets for those axes. If 'avgcov' was set, those
entries will be removed from 'diagoffsets' since all the
leading diagonal elements have been collapsed (averaged)
further. Value under each key is a numpy array where
each element in the array corresponds to the index of
that leading diagonal. This should match the size of the
output along that axis in 'mean' or 'median' above.
'diagweights'
[dictionary] Each key is an axis specified in
collapse_axes and the value is a numpy array of weights
corresponding to the diagonal offsets in that axis.
'axesmap'
[dictionary] If covariance in cross-power is calculated
but is not collapsed, the number of dimensions in the
output will have changed. This parameter tracks where
the original axis is now placed. The keys are the
original axes that are involved in incoherent
cross-power, and the values are the new locations of
those original axes in the output.
'nsamples_incoh'
[integer] Number of incoherent samples in producing the
power spectrum
'nsamples_coh'
[integer] Number of coherent samples in producing the
power spectrum
excpdps [dictionary or list of dictionaries] If provided as a list of
dictionaries, each dictionary consists of cross power spectral
information of subsample differences coming possible from
different sources, and they will be averaged be averaged
incoherently. This is optional. If not set (default=None), no
incoherent averaging happens. If a single dictionary is provided
instead of a list of dictionaries, the said averaging does not
take place. Each dictionary is essentially an output of the
member function compute_power_spectrum_uncertainty() of class
ClosurePhaseDelaySpectrum. It has the following key-value
structure:
'triads' ((ntriads,3) array), 'triads_ind',
((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst'
((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,)
array), 'days' ((ndaycomb,) array), 'day_ind' ((ndaycomb,)
array), 'dday' ((ndaycomb,) array), 'oversampled' and
'resampled' corresponding to whether resample was set to False
or True in call to member function FT(). Values under keys
'triads_ind' and 'lst_ind' are numpy array corresponding to
triad and time indices used in selecting the data. Values under
keys 'oversampled' and 'resampled' each contain a dictionary
with the following keys and values:
'z' [numpy array] Redshifts corresponding to the band
centers in 'freq_center'. It has shape=(nspw,)
'lags' [numpy array] Delays (in seconds). It has shape=(nlags,)
'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding
to 'lags'. It has shape=(nspw,nlags)
'freq_center'
[numpy array] contains the center frequencies (in Hz) of
the frequency subbands of the subband delay spectra. It
is of size n_win. It is roughly equivalent to
redshift(s)
'freq_wts'
[numpy array] Contains frequency weights applied on each
frequency sub-band during the subband delay transform.
It is of size n_win x nchan.
'bw_eff'
[numpy array] contains the effective bandwidths (in Hz)
of the subbands being delay transformed. It is of size
n_win. It is roughly equivalent to width in redshift or
along line-of-sight
'shape' [string] shape of the frequency window function applied.
Usual values are 'rect' (rectangular), 'bhw'
(Blackman-Harris), 'bnw' (Blackman-Nuttall).
'fftpow'
[scalar] the power to which the FFT of the window was
raised. The value is be a positive scalar with
default = 1.0
'lag_corr_length'
[numpy array] It is the correlation timescale (in
pixels) of the subband delay spectra. It is proportional
to inverse of effective bandwidth. It is of size n_win.
The unit size of a pixel is determined by the difference
between adjacent pixels in lags under key 'lags' which
in turn is effectively inverse of the effective
bandwidth of the subband specified in bw_eff
It further contains a key named 'errinfo' which is a dictionary.
It contains information about power spectrum uncertainties
obtained from subsample differences. It contains the following
keys and values:
'mean' [numpy array] Delay power spectrum uncertainties
incoherently estimated over the axes specified in
xinfo['axes'] using the 'mean' key in input cpds or
attribute cPhaseDS['errinfo']['dspec']. It has shape
that depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are not
set, those axes will be replaced with square covariance
matrices. If collapse_axes is provided but avgcov is
False, those axes will be of shape 2*Naxis-1.
'median'
[numpy array] Delay power spectrum uncertainties
incoherently averaged over the axes specified in incohax
using the 'median' key in input cpds or attribute
cPhaseDS['errinfo']['dspec']. It has shape that depends
on the combination of input parameters. See examples
below. If both collapse_axes and avgcov are not set,
those axes will be replaced with square covariance
matrices. If collapse_axes is provided but avgcov is
False, those axes will be of shape 2*Naxis-1.
'diagoffsets'
[dictionary] Same keys corresponding to keys under
'collapse_axes' in input containing the diagonal offsets
for those axes. If 'avgcov' was set, those entries will
be removed from 'diagoffsets' since all the leading
diagonal elements have been collapsed (averaged) further.
Value under each key is a numpy array where each element
in the array corresponds to the index of that leading
diagonal. This should match the size of the output along
that axis in 'mean' or 'median' above.
'diagweights'
[dictionary] Each key is an axis specified in
collapse_axes and the value is a numpy array of weights
corresponding to the diagonal offsets in that axis.
'axesmap'
[dictionary] If covariance in cross-power is calculated
but is not collapsed, the number of dimensions in the
output will have changed. This parameter tracks where
the original axis is now placed. The keys are the
original axes that are involved in incoherent
cross-power, and the values are the new locations of
those original axes in the output.
'nsamples_incoh'
[integer] Number of incoherent samples in producing the
power spectrum
'nsamples_coh'
[integer] Number of coherent samples in producing the
power spectrum
diagoffsets [NoneType or dictionary or list of dictionaries] This info is
used for incoherent averaging along specified diagonals along
specified axes. This incoherent averaging is performed after
incoherently averaging multiple cross-power spectra (if any).
If set to None, this incoherent averaging is not performed.
Many combinations of axes and diagonals can be specified as
individual dictionaries in a list. If only one dictionary is
specified, then it assumed that only one combination of axes
and diagonals is requested. If a list of dictionaries is given,
each dictionary in the list specifies a different combination
for incoherent averaging. Each dictionary should have the
following key-value pairs. The key is the axis number (allowed
values are 1, 2, 3) that denote the axis type (1=LST, 2=Days,
3=Triads to be averaged), and the value under they keys is a
list or numpy array of diagonals to be averaged incoherently.
These axes-diagonal combinations apply to both the inputs
xcpdps and excpdps, except axis=2 does not apply to excpdps
(since it is made of subsample differences already) and will be
skipped.
Outputs:
A tuple consisting of two dictionaries. The first dictionary contains the
incoherent averaging of xcpdps as specified by the inputs, while the second
consists of incoherent of excpdps as specified by the inputs. The structure
of these dictionaries are practically the same as the dictionary inputs
xcpdps and excpdps respectively. The only differences in dictionary
structure are:
* Under key ['oversampled'/'resampled']['whole'/'submodel'/'residual'
/'effinfo']['mean'/'median'] is a list of numpy arrays, where each
array in the list corresponds to the dictionary in the list in input
diagoffsets that defines the axes-diagonal combination.
----------------------------------------------------------------------------
"""
if isinstance(xcpdps, dict):
xcpdps = [xcpdps]
if not isinstance(xcpdps, list):
raise TypeError('Invalid data type provided for input xcpdps')
if excpdps is not None:
if isinstance(excpdps, dict):
excpdps = [excpdps]
if not isinstance(excpdps, list):
raise TypeError('Invalid data type provided for input excpdps')
if len(xcpdps) != len(excpdps):
raise ValueError('Inputs xcpdps and excpdps found to have unequal number of values')
out_xcpdps = {'triads': xcpdps[0]['triads'], 'triads_ind': xcpdps[0]['triads_ind'], 'lst': xcpdps[0]['lst'], 'lst_ind': xcpdps[0]['lst_ind'], 'dlst': xcpdps[0]['dlst'], 'days': xcpdps[0]['days'], 'day_ind': xcpdps[0]['day_ind'], 'dday': xcpdps[0]['dday']}
out_excpdps = None
if excpdps is not None:
out_excpdps = {'triads': excpdps[0]['triads'], 'triads_ind': excpdps[0]['triads_ind'], 'lst': excpdps[0]['lst'], 'lst_ind': excpdps[0]['lst_ind'], 'dlst': excpdps[0]['dlst'], 'days': excpdps[0]['days'], 'day_ind': excpdps[0]['day_ind'], 'dday': excpdps[0]['dday']}
for smplng in ['oversampled', 'resampled']:
if smplng in xcpdps[0]:
out_xcpdps[smplng] = {'z': xcpdps[0][smplng]['z'], 'kprll': xcpdps[0][smplng]['kprll'], 'lags': xcpdps[0][smplng]['lags'], 'freq_center': xcpdps[0][smplng]['freq_center'], 'bw_eff': xcpdps[0][smplng]['bw_eff'], 'shape': xcpdps[0][smplng]['shape'], 'freq_wts': xcpdps[0][smplng]['freq_wts'], 'lag_corr_length': xcpdps[0][smplng]['lag_corr_length']}
if excpdps is not None:
out_excpdps[smplng] = {'z': excpdps[0][smplng]['z'], 'kprll': excpdps[0][smplng]['kprll'], 'lags': excpdps[0][smplng]['lags'], 'freq_center': excpdps[0][smplng]['freq_center'], 'bw_eff': excpdps[0][smplng]['bw_eff'], 'shape': excpdps[0][smplng]['shape'], 'freq_wts': excpdps[0][smplng]['freq_wts'], 'lag_corr_length': excpdps[0][smplng]['lag_corr_length']}
for dpool in ['whole', 'submodel', 'residual']:
if dpool in xcpdps[0][smplng]:
out_xcpdps[smplng][dpool] = {'diagoffsets': xcpdps[0][smplng][dpool]['diagoffsets'], 'axesmap': xcpdps[0][smplng][dpool]['axesmap']}
for stat in ['mean', 'median']:
if stat in xcpdps[0][smplng][dpool]:
out_xcpdps[smplng][dpool][stat] = {}
arr = []
diagweights = []
for i in range(len(xcpdps)):
arr += [xcpdps[i][smplng][dpool][stat].si.value]
arr_units = xcpdps[i][smplng][dpool][stat].si.unit
if isinstance(xcpdps[i][smplng][dpool]['diagweights'], dict):
diagwts = 1.0
diagwts_shape = NP.ones(xcpdps[i][smplng][dpool][stat].ndim, dtype=NP.int)
for ax in xcpdps[i][smplng][dpool]['diagweights']:
tmp_shape = NP.copy(diagwts_shape)
tmp_shape[xcpdps[i][smplng][dpool]['axesmap'][ax]] = xcpdps[i][smplng][dpool]['diagweights'][ax].size
diagwts = diagwts * xcpdps[i][smplng][dpool]['diagweights'][ax].reshape(tuple(tmp_shape))
elif isinstance(xcpdps[i][smplng][dpool]['diagweights'], NP.ndarray):
diagwts = NP.copy(xcpdps[i][smplng][dpool]['diagweights'])
else:
raise TypeError('Diagonal weights in input must be a dictionary or a numpy array')
diagweights += [diagwts]
diagweights = NP.asarray(diagweights)
arr = NP.asarray(arr)
arr = NP.nansum(arr * diagweights, axis=0) / NP.nansum(diagweights, axis=0) * arr_units
diagweights = NP.nansum(diagweights, axis=0)
out_xcpdps[smplng][dpool][stat] = arr
out_xcpdps[smplng][dpool]['diagweights'] = diagweights
for dpool in ['errinfo']:
if dpool in excpdps[0][smplng]:
out_excpdps[smplng][dpool] = {'diagoffsets': excpdps[0][smplng][dpool]['diagoffsets'], 'axesmap': excpdps[0][smplng][dpool]['axesmap']}
for stat in ['mean', 'median']:
if stat in excpdps[0][smplng][dpool]:
out_excpdps[smplng][dpool][stat] = {}
arr = []
diagweights = []
for i in range(len(excpdps)):
arr += [excpdps[i][smplng][dpool][stat].si.value]
arr_units = excpdps[i][smplng][dpool][stat].si.unit
if isinstance(excpdps[i][smplng][dpool]['diagweights'], dict):
diagwts = 1.0
diagwts_shape = NP.ones(excpdps[i][smplng][dpool][stat].ndim, dtype=NP.int)
for ax in excpdps[i][smplng][dpool]['diagweights']:
tmp_shape = NP.copy(diagwts_shape)
tmp_shape[excpdps[i][smplng][dpool]['axesmap'][ax]] = excpdps[i][smplng][dpool]['diagweights'][ax].size
diagwts = diagwts * excpdps[i][smplng][dpool]['diagweights'][ax].reshape(tuple(tmp_shape))
elif isinstance(excpdps[i][smplng][dpool]['diagweights'], NP.ndarray):
diagwts = NP.copy(excpdps[i][smplng][dpool]['diagweights'])
else:
raise TypeError('Diagonal weights in input must be a dictionary or a numpy array')
diagweights += [diagwts]
diagweights = NP.asarray(diagweights)
arr = NP.asarray(arr)
arr = NP.nansum(arr * diagweights, axis=0) / NP.nansum(diagweights, axis=0) * arr_units
diagweights = NP.nansum(diagweights, axis=0)
out_excpdps[smplng][dpool][stat] = arr
out_excpdps[smplng][dpool]['diagweights'] = diagweights
if diagoffsets is not None:
if isinstance(diagoffsets, dict):
diagoffsets = [diagoffsets]
if not isinstance(diagoffsets, list):
raise TypeError('Input diagoffsets must be a list of dictionaries')
for ind in range(len(diagoffsets)):
for ax in diagoffsets[ind]:
if not isinstance(diagoffsets[ind][ax], (list, NP.ndarray)):
raise TypeError('Values in input dictionary diagoffsets must be a list or numpy array')
diagoffsets[ind][ax] = NP.asarray(diagoffsets[ind][ax])
for smplng in ['oversampled', 'resampled']:
if smplng in out_xcpdps:
for dpool in ['whole', 'submodel', 'residual']:
if dpool in out_xcpdps[smplng]:
masks = []
for ind in range(len(diagoffsets)):
mask_ones = NP.ones(out_xcpdps[smplng][dpool]['diagweights'].shape, dtype=NP.bool)
mask_agg = None
for ax in diagoffsets[ind]:
mltdim_slice = [slice(None)] * mask_ones.ndim
mltdim_slice[out_xcpdps[smplng][dpool]['axesmap'][ax].squeeze()] = NP.where(NP.isin(out_xcpdps[smplng][dpool]['diagoffsets'][ax], diagoffsets[ind][ax]))[0]
mask_tmp = NP.copy(mask_ones)
mask_tmp[tuple(mltdim_slice)] = False
if mask_agg is None:
mask_agg = NP.copy(mask_tmp)
else:
mask_agg = NP.logical_or(mask_agg, mask_tmp)
masks += [NP.copy(mask_agg)]
diagwts = NP.copy(out_xcpdps[smplng][dpool]['diagweights'])
out_xcpdps[smplng][dpool]['diagweights'] = []
for stat in ['mean', 'median']:
if stat in out_xcpdps[smplng][dpool]:
arr = NP.copy(out_xcpdps[smplng][dpool][stat].si.value)
arr_units = out_xcpdps[smplng][dpool][stat].si.unit
out_xcpdps[smplng][dpool][stat] = []
for ind in range(len(diagoffsets)):
masked_diagwts = MA.array(diagwts, mask=masks[ind])
axes_to_avg = tuple([out_xcpdps[smplng][dpool]['axesmap'][ax][0] for ax in diagoffsets[ind]])
out_xcpdps[smplng][dpool][stat] += [MA.sum(arr * masked_diagwts, axis=axes_to_avg, keepdims=True) / MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True) * arr_units]
if len(out_xcpdps[smplng][dpool]['diagweights']) < len(diagoffsets):
out_xcpdps[smplng][dpool]['diagweights'] += [MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True)]
if excpdps is not None:
for smplng in ['oversampled', 'resampled']:
if smplng in out_excpdps:
for dpool in ['errinfo']:
if dpool in out_excpdps[smplng]:
masks = []
for ind in range(len(diagoffsets)):
mask_ones = NP.ones(out_excpdps[smplng][dpool]['diagweights'].shape, dtype=NP.bool)
mask_agg = None
for ax in diagoffsets[ind]:
if ax != 2:
mltdim_slice = [slice(None)] * mask_ones.ndim
mltdim_slice[out_excpdps[smplng][dpool]['axesmap'][ax].squeeze()] = NP.where(NP.isin(out_excpdps[smplng][dpool]['diagoffsets'][ax], diagoffsets[ind][ax]))[0]
mask_tmp = NP.copy(mask_ones)
mask_tmp[tuple(mltdim_slice)] = False
if mask_agg is None:
mask_agg = NP.copy(mask_tmp)
else:
mask_agg = NP.logical_or(mask_agg, mask_tmp)
masks += [NP.copy(mask_agg)]
diagwts = NP.copy(out_excpdps[smplng][dpool]['diagweights'])
out_excpdps[smplng][dpool]['diagweights'] = []
for stat in ['mean', 'median']:
if stat in out_excpdps[smplng][dpool]:
arr = NP.copy(out_excpdps[smplng][dpool][stat].si.value)
arr_units = out_excpdps[smplng][dpool][stat].si.unit
out_excpdps[smplng][dpool][stat] = []
for ind in range(len(diagoffsets)):
masked_diagwts = MA.array(diagwts, mask=masks[ind])
axes_to_avg = tuple([out_excpdps[smplng][dpool]['axesmap'][ax][0] for ax in diagoffsets[ind] if ax!=2])
out_excpdps[smplng][dpool][stat] += [MA.sum(arr * masked_diagwts, axis=axes_to_avg, keepdims=True) / MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True) * arr_units]
if len(out_excpdps[smplng][dpool]['diagweights']) < len(diagoffsets):
out_excpdps[smplng][dpool]['diagweights'] += [MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True)]
return (out_xcpdps, out_excpdps)
################################################################################
def incoherent_kbin_averaging(xcpdps, kbins=None, num_kbins=None, kbintype='log'):
"""
----------------------------------------------------------------------------
Averages the power spectrum incoherently by binning in bins of k. Returns
the power spectrum in units of both standard power spectrum and \Delta^2
Inputs:
xcpdps [dictionary] A dictionary that contains the incoherent averaged
power spectrum along LST and/or triads axes. This dictionary is
essentially the one(s) returned as the output of the function
incoherent_cross_power_spectrum_average()
kbins [NoneType, list or numpy array] Bins in k. If set to None
(default), it will be determined automatically based on the
inputs in num_kbins, and kbintype. If num_kbins is None and
kbintype='linear', the negative and positive values of k are
folded into a one-sided power spectrum. In this case, the
bins will approximately have the same resolution as the k-values
in the input power spectrum for all the spectral windows.
num_kbins [NoneType or integer] Number of k-bins. Used only if kbins is
set to None. If kbintype is set to 'linear', the negative and
positive values of k are folded into a one-sided power spectrum.
In this case, the bins will approximately have the same
resolution as the k-values in the input power spectrum for all
the spectral windows.
kbintype [string] Specifies the type of binning, used only if kbins is
set to None. Accepted values are 'linear' and 'log' for linear
and logarithmic bins respectively.
Outputs:
Dictionary containing the power spectrum information. At the top level, it
contains keys specifying the sampling to be 'oversampled' or 'resampled'.
Under each of these keys is another dictionary containing the following
keys:
'z' [numpy array] Redshifts corresponding to the band centers in
'freq_center'. It has shape=(nspw,)
'lags' [numpy array] Delays (in seconds). It has shape=(nlags,).
'freq_center'
[numpy array] contains the center frequencies (in Hz) of the
frequency subbands of the subband delay spectra. It is of size
n_win. It is roughly equivalent to redshift(s)
'freq_wts'
[numpy array] Contains frequency weights applied on each
frequency sub-band during the subband delay transform. It is
of size n_win x nchan.
'bw_eff'
[numpy array] contains the effective bandwidths (in Hz) of the
subbands being delay transformed. It is of size n_win. It is
roughly equivalent to width in redshift or along line-of-sight
'shape' [string] shape of the frequency window function applied. Usual
values are 'rect' (rectangular), 'bhw' (Blackman-Harris),
'bnw' (Blackman-Nuttall).
'fftpow'
[scalar] the power to which the FFT of the window was raised.
The value is be a positive scalar with default = 1.0
'lag_corr_length'
[numpy array] It is the correlation timescale (in pixels) of
the subband delay spectra. It is proportional to inverse of
effective bandwidth. It is of size n_win. The unit size of a
pixel is determined by the difference between adjacent pixels
in lags under key 'lags' which in turn is effectively inverse
of the effective bandwidth of the subband specified in bw_eff
It further contains 3 keys named 'whole', 'submodel', and 'residual'
or one key named 'errinfo' each of which is a dictionary. 'whole'
contains power spectrum info about the input closure phases. 'submodel'
contains power spectrum info about the model that will have been
subtracted (as closure phase) from the 'whole' model. 'residual'
contains power spectrum info about the closure phases obtained as a
difference between 'whole' and 'submodel'. 'errinfo' contains power
spectrum information about the subsample differences. There is also
another dictionary under key 'kbininfo' that contains information about
k-bins. These dictionaries contain the following keys and values:
'whole'/'submodel'/'residual'/'errinfo'
[dictionary] It contains the following keys and values:
'mean' [dictionary] Delay power spectrum information under the
'mean' statistic incoherently obtained by averaging the
input power spectrum in bins of k. It contains output power
spectrum expressed as two quantities each of which is a
dictionary with the following key-value pairs:
'PS' [list of numpy arrays] Standard power spectrum in
units of 'K2 Mpc3'. Each numpy array in the list
maps to a specific combination of axes and axis
diagonals chosen for incoherent averaging in
earlier processing such as in the function
incoherent_cross_power_spectrum_average(). The
numpy array has a shape similar to the input power
spectrum, but that last axis (k-axis) will have a
different size that depends on the k-bins that
were used in the incoherent averaging along that
axis.
'Del2' [list of numpy arrays] power spectrum in Delta^2
units of 'K2'. Each numpy array in the list
maps to a specific combination of axes and axis
diagonals chosen for incoherent averaging in
earlier processing such as in the function
incoherent_cross_power_spectrum_average(). The
numpy array has a shape similar to the input power
spectrum, but that last axis (k-axis) will have a
different size that depends on the k-bins that
were used in the incoherent averaging along that
axis.
'median'
[dictionary] Delay power spectrum information under the
'median' statistic incoherently obtained by averaging the
input power spectrum in bins of k. It contains output power
spectrum expressed as two quantities each of which is a
dictionary with the following key-value pairs:
'PS' [list of numpy arrays] Standard power spectrum in
units of 'K2 Mpc3'. Each numpy array in the list
maps to a specific combination of axes and axis
diagonals chosen for incoherent averaging in
earlier processing such as in the function
incoherent_cross_power_spectrum_average(). The
numpy array has a shape similar to the input power
spectrum, but that last axis (k-axis) will have a
different size that depends on the k-bins that
were used in the incoherent averaging along that
axis.
'Del2' [list of numpy arrays] power spectrum in Delta^2
units of 'K2'. Each numpy array in the list
maps to a specific combination of axes and axis
diagonals chosen for incoherent averaging in
earlier processing such as in the function
incoherent_cross_power_spectrum_average(). The
numpy array has a shape similar to the input power
spectrum, but that last axis (k-axis) will have a
different size that depends on the k-bins that
were used in the incoherent averaging along that
axis.
'kbininfo'
[dictionary] Contains the k-bin information. It contains the
following key-value pairs:
'counts'
[list] List of numpy arrays where each numpy array in the stores
the counts in the determined k-bins. Each numpy array in the
list corresponds to a spectral window (redshift subband). The
shape of each numpy array is (nkbins,)
'kbin_edges'
[list] List of numpy arrays where each numpy array contains the
k-bin edges. Each array in the list corresponds to a spectral
window (redshift subband). The shape of each array is
(nkbins+1,).
'kbinnum'
[list] List of numpy arrays containing the bin number under
which the k value falls. Each array in the list corresponds to
a spectral window (redshift subband). The shape of each array
is (nlags,).
'ri'
[list] List of numpy arrays containing the reverse indices for
each k-bin. Each array in the list corresponds to a spectral
window (redshift subband). The shape of each array is
(nlags+nkbins+1,).
'whole'/'submodel'/'residual' or 'errinfo' [dictionary] k-bin info
estimated for the different datapools under different stats
and PS definitions. It has the keys 'mean' and 'median' for the
mean and median statistic respectively. Each of them contain a
dictionary with the following key-value pairs:
'PS' [list] List of numpy arrays where each numpy array
contains a standard power spectrum typically in units of
'K2 Mpc3'. Its shape is the same as input power spectrum
except the k-axis which now has nkbins number of
elements.
'Del2' [list] List of numpy arrays where each numpy array
contains a Delta^2 power spectrum typically in units of
'K2'. Its shape is the same as input power spectrum
except the k-axis which now has nkbins number of
elements.
----------------------------------------------------------------------------
"""
if not isinstance(xcpdps, dict):
raise TypeError('Input xcpdps must be a dictionary')
if kbins is not None:
if not isinstance(kbins, (list,NP.ndarray)):
raise TypeError('Input kbins must be a list or numpy array')
else:
if not isinstance(kbintype, str):
raise TypeError('Input kbintype must be a string')
if kbintype.lower() not in ['linear', 'log']:
raise ValueError('Input kbintype must be set to "linear" or "log"')
if kbintype.lower() == 'log':
if num_kbins is None:
num_kbins = 10
psinfo = {}
keys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday']
for key in keys:
psinfo[key] = xcpdps[key]
sampling = ['oversampled', 'resampled']
sampling_keys = ['z', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length']
dpool_keys = ['whole', 'submodel', 'residual', 'errinfo']
for smplng in sampling:
if smplng in xcpdps:
psinfo[smplng] = {}
for key in sampling_keys:
psinfo[smplng][key] = xcpdps[smplng][key]
kprll = xcpdps[smplng]['kprll']
lags = xcpdps[smplng]['lags']
eps = 1e-10
if kbins is None:
dkprll = NP.max(NP.mean(NP.diff(kprll, axis=-1), axis=-1))
if kbintype.lower() == 'linear':
bins_kprll = NP.linspace(eps, NP.abs(kprll).max()+eps, num=kprll.shape[1]/2+1, endpoint=True)
else:
bins_kprll = NP.geomspace(eps, NP.abs(kprll).max()+eps, num=num_kbins+1, endpoint=True)
bins_kprll = NP.insert(bins_kprll, 0, -eps)
else:
bins_kprll = NP.asarray(kbins)
num_kbins = bins_kprll.size - 1
psinfo[smplng]['kbininfo'] = {'counts': [], 'kbin_edges': [], 'kbinnum': [], 'ri': []}
for spw in range(kprll.shape[0]):
counts, kbin_edges, kbinnum, ri = OPS.binned_statistic(NP.abs(kprll[spw,:]), statistic='count', bins=bins_kprll)
counts = counts.astype(NP.int)
psinfo[smplng]['kbininfo']['counts'] += [NP.copy(counts)]
psinfo[smplng]['kbininfo']['kbin_edges'] += [kbin_edges / U.Mpc]
psinfo[smplng]['kbininfo']['kbinnum'] += [NP.copy(kbinnum)]
psinfo[smplng]['kbininfo']['ri'] += [NP.copy(ri)]
for dpool in dpool_keys:
if dpool in xcpdps[smplng]:
psinfo[smplng][dpool] = {}
psinfo[smplng]['kbininfo'][dpool] = {}
keys = ['diagoffsets', 'diagweights', 'axesmap']
for key in keys:
psinfo[smplng][dpool][key] = xcpdps[smplng][dpool][key]
for stat in ['mean', 'median']:
if stat in xcpdps[smplng][dpool]:
psinfo[smplng][dpool][stat] = {'PS': [], 'Del2': []}
psinfo[smplng]['kbininfo'][dpool][stat] = []
for combi in range(len(xcpdps[smplng][dpool][stat])):
outshape = NP.asarray(xcpdps[smplng][dpool][stat][combi].shape)
outshape[-1] = num_kbins
tmp_dps = NP.full(tuple(outshape), NP.nan, dtype=NP.complex) * U.Unit(xcpdps[smplng][dpool][stat][combi].unit)
tmp_Del2 = NP.full(tuple(outshape), NP.nan, dtype=NP.complex) * U.Unit(xcpdps[smplng][dpool][stat][combi].unit / U.Mpc**3)
tmp_kprll = NP.full(tuple(outshape), NP.nan, dtype=NP.float) / U.Mpc
for spw in range(kprll.shape[0]):
counts = NP.copy(psinfo[smplng]['kbininfo']['counts'][spw])
ri = NP.copy(psinfo[smplng]['kbininfo']['ri'][spw])
print('Processing datapool={0}, stat={1}, LST-Day-Triad combination={2:0d}, spw={3:0d}...'.format(dpool, stat, combi, spw))
progress = PGB.ProgressBar(widgets=[PGB.Percentage(), PGB.Bar(marker='-', left=' |', right='| '), PGB.Counter(), '/{0:0d} k-bins '.format(num_kbins), PGB.ETA()], maxval=num_kbins).start()
for binnum in range(num_kbins):
if counts[binnum] > 0:
ind_kbin = ri[ri[binnum]:ri[binnum+1]]
tmp_dps[spw,...,binnum] = NP.nanmean(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1), axis=-1)
k_shape = NP.ones(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1).ndim, dtype=NP.int)
k_shape[-1] = -1
tmp_Del2[spw,...,binnum] = NP.nanmean(NP.abs(kprll[spw,ind_kbin].reshape(tuple(k_shape))/U.Mpc)**3 * NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1), axis=-1) / (2*NP.pi**2)
tmp_kprll[spw,...,binnum] = NP.nansum(NP.abs(kprll[spw,ind_kbin].reshape(tuple(k_shape))/U.Mpc) * NP.abs(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1)), axis=-1) / NP.nansum(NP.abs(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1)), axis=-1)
progress.update(binnum+1)
progress.finish()
psinfo[smplng][dpool][stat]['PS'] += [copy.deepcopy(tmp_dps)]
psinfo[smplng][dpool][stat]['Del2'] += [copy.deepcopy(tmp_Del2)]
psinfo[smplng]['kbininfo'][dpool][stat] += [copy.deepcopy(tmp_kprll)]
return psinfo
################################################################################
class ClosurePhase(object):
"""
----------------------------------------------------------------------------
Class to hold and operate on Closure Phase information.
It has the following attributes and member functions.
Attributes:
extfile [string] Full path to external file containing information
of ClosurePhase instance. The file is in HDF5 format
cpinfo [dictionary] Contains the following top level keys,
namely, 'raw', 'processed', and 'errinfo'
Under key 'raw' which holds a dictionary, the subkeys
include 'cphase' (nlst,ndays,ntriads,nchan),
'triads' (ntriads,3), 'lst' (nlst,ndays), and 'flags'
(nlst,ndays,ntriads,nchan).
Under the 'processed' key are more subkeys, namely,
'native', 'prelim', and optionally 'submodel' and 'residual'
each holding a dictionary.
Under 'native' dictionary, the subsubkeys for further
dictionaries are 'cphase' (masked array:
(nlst,ndays,ntriads,nchan)), 'eicp' (complex masked
array: (nlst,ndays,ntriads,nchan)), and 'wts' (masked
array: (nlst,ndays,ntriads,nchan)).
Under 'prelim' dictionary, the subsubkeys for further
dictionaries are 'tbins' (numpy array of tbin centers
after smoothing), 'dtbins' (numpy array of tbin
intervals), 'wts' (masked array:
(ntbins,ndays,ntriads,nchan)), 'eicp' and 'cphase'.
The dictionaries under 'eicp' are indexed by keys
'mean' (complex masked array:
(ntbins,ndays,ntriads,nchan)), and 'median' (complex
masked array: (ntbins,ndays,ntriads,nchan)).
The dictionaries under 'cphase' are indexed by keys
'mean' (masked array: (ntbins,ndays,ntriads,nchan)),
'median' (masked array: (ntbins,ndays,ntriads,nchan)),
'rms' (masked array: (ntbins,ndays,ntriads,nchan)), and
'mad' (masked array: (ntbins,ndays,ntriads,nchan)). The
last one denotes Median Absolute Deviation.
Under 'submodel' dictionary, the subsubkeys for further
dictionaries are 'cphase' (masked array:
(nlst,ndays,ntriads,nchan)), and 'eicp' (complex masked
array: (nlst,ndays,ntriads,nchan)).
Under 'residual' dictionary, the subsubkeys for further
dictionaries are 'cphase' and 'eicp'. These are
dictionaries too. The dictionaries under 'eicp' are
indexed by keys 'mean' (complex masked array:
(ntbins,ndays,ntriads,nchan)), and 'median' (complex
masked array: (ntbins,ndays,ntriads,nchan)).
The dictionaries under 'cphase' are indexed by keys
'mean' (masked array: (ntbins,ndays,ntriads,nchan)),
and 'median' (masked array:
(ntbins,ndays,ntriads,nchan)).
Under key 'errinfo', it contains the following keys and
values:
'list_of_pair_of_pairs'
List of pair of pairs for which differences of
complex exponentials have been computed, where the
elements are bins of days. The number of elements
in the list is ncomb. And each element is a smaller
(4-element) list of pair of pairs
'eicp_diff'
Difference of complex exponentials between pairs
of day bins. This will be used in evaluating noise
properties in power spectrum. It is a dictionary
with two keys '0' and '1' where each contains the
difference from a pair of subsamples. Each of these
keys contains a numpy array of shape
(nlstbins,ncomb,2,ntriads,nchan)
'wts' Weights in difference of complex exponentials
obtained by sum of squares of weights that are
associated with the pair that was used in the
differencing. It is a dictionary with two keys '0'
and '1' where each contains the weights associated
It is of shape (nlstbins,ncomb,2,ntriads,nchan)
Member functions:
__init__() Initialize an instance of class ClosurePhase
expicp() Compute and return complex exponential of the closure phase
as a masked array
smooth_in_tbins()
Smooth the complex exponentials of closure phases in LST
bins. Both mean and median smoothing is produced.
subtract() Subtract complex exponential of the bispectrum phase
from the current instance and updates the cpinfo attribute
subsample_differencing()
Create subsamples and differences between subsamples to
evaluate noise properties from the data set.
save() Save contents of attribute cpinfo in external HDF5 file
----------------------------------------------------------------------------
"""
def __init__(self, infile, freqs, infmt='npz'):
"""
------------------------------------------------------------------------
Initialize an instance of class ClosurePhase
Inputs:
infile [string] Input file including full path. It could be a NPZ
with raw data, or a HDF5 file that could contain raw or
processed data. The input file format is specified in the
input infmt. If it is a NPZ file, it must contain the
following keys/files:
'closures' [numpy array] Closure phase (radians). It is of
shape (nlst,ndays,ntriads,nchan)
'triads' [numpy array] Array of triad tuples, of shape
(ntriads,3)
'flags' [numpy array] Array of flags (boolean), of shape
(nlst,ndays,ntriads,nchan)
'last' [numpy array] Array of LST for each day (CASA
units which is MJD+6713). Shape is (nlst,ndays)
'days' [numpy array] Array of days, shape is (ndays,)
'averaged_closures'
[numpy array] optional array of closure phases
averaged across days. Shape is
(nlst,ntriads,nchan)
'std_dev_lst'
[numpy array] optional array of standard
deviation of closure phases across days. Shape
is (nlst,ntriads,nchan)
'std_dev_triads'
[numpy array] optional array of standard
deviation of closure phases across triads.
Shape is (nlst,ndays,nchan)
freqs [numpy array] Frequencies (in Hz) in the input. Size is
nchan.
infmt [string] Input file format. Accepted values are 'npz'
(default) and 'hdf5'.
------------------------------------------------------------------------
"""
if not isinstance(infile, str):
raise TypeError('Input infile must be a string')
if not isinstance(freqs, NP.ndarray):
raise TypeError('Input freqs must be a numpy array')
freqs = freqs.ravel()
if not isinstance(infmt, str):
raise TypeError('Input infmt must be a string')
if infmt.lower() not in ['npz', 'hdf5']:
raise ValueError('Input infmt must be "npz" or "hdf5"')
if infmt.lower() == 'npz':
infilesplit = infile.split('.npz')
infile_noext = infilesplit[0]
self.cpinfo = loadnpz(infile)
# npz2hdf5(infile, infile_noext+'.hdf5')
self.extfile = infile_noext + '.hdf5'
else:
# if not isinstance(infile, h5py.File):
# raise TypeError('Input infile is not a valid HDF5 file')
self.extfile = infile
self.cpinfo = NMO.load_dict_from_hdf5(self.extfile)
if freqs.size != self.cpinfo['raw']['cphase'].shape[-1]:
raise ValueError('Input frequencies do not match with dimensions of the closure phase data')
self.f = freqs
self.df = freqs[1] - freqs[0]
force_expicp = False
if 'processed' not in self.cpinfo:
force_expicp = True
else:
if 'native' not in self.cpinfo['processed']:
force_expicp = True
self.expicp(force_action=force_expicp)
if 'prelim' not in self.cpinfo['processed']:
self.cpinfo['processed']['prelim'] = {}
self.cpinfo['errinfo'] = {}
############################################################################
def expicp(self, force_action=False):
"""
------------------------------------------------------------------------
Compute the complex exponential of the closure phase as a masked array
Inputs:
force_action [boolean] If set to False (default), the complex
exponential is computed only if it has not been done so
already. Otherwise the computation is forced.
------------------------------------------------------------------------
"""
if 'processed' not in self.cpinfo:
self.cpinfo['processed'] = {}
force_action = True
if 'native' not in self.cpinfo['processed']:
self.cpinfo['processed']['native'] = {}
force_action = True
if 'cphase' not in self.cpinfo['processed']['native']:
self.cpinfo['processed']['native']['cphase'] = MA.array(self.cpinfo['raw']['cphase'].astype(NP.float64), mask=self.cpinfo['raw']['flags'])
force_action = True
if not force_action:
if 'eicp' not in self.cpinfo['processed']['native']:
self.cpinfo['processed']['native']['eicp'] = NP.exp(1j * self.cpinfo['processed']['native']['cphase'])
self.cpinfo['processed']['native']['wts'] = MA.array(NP.logical_not(self.cpinfo['raw']['flags']).astype(NP.float), mask=self.cpinfo['raw']['flags'])
else:
self.cpinfo['processed']['native']['eicp'] = NP.exp(1j * self.cpinfo['processed']['native']['cphase'])
self.cpinfo['processed']['native']['wts'] = MA.array(NP.logical_not(self.cpinfo['raw']['flags']).astype(NP.float), mask=self.cpinfo['raw']['flags'])
############################################################################
def smooth_in_tbins(self, daybinsize=None, ndaybins=None, lstbinsize=None):
"""
------------------------------------------------------------------------
Smooth the complex exponentials of closure phases in time bins. Both
mean and median smoothing is produced.
Inputs:
daybinsize [Nonetype or scalar] Day bin size (in days) over which mean
and median are estimated across different days for a fixed
LST bin. If set to None, it will look for value in input
ndaybins. If both are None, no smoothing is performed. Only
one of daybinsize or ndaybins must be set to non-None value.
ndaybins [NoneType or integer] Number of bins along day axis. Only
if daybinsize is set to None. It produces bins that roughly
consist of equal number of days in each bin regardless of
how much the days in each bin are separated from each other.
If both are None, no smoothing is performed. Only one of
daybinsize or ndaybins must be set to non-None value.
lstbinsize [NoneType or scalar] LST bin size (in seconds) over which
mean and median are estimated across the LST. If set to
None, no smoothing is performed
------------------------------------------------------------------------
"""
if (ndaybins is not None) and (daybinsize is not None):
raise ValueError('Only one of daybinsize or ndaybins should be set')
if (daybinsize is not None) or (ndaybins is not None):
if daybinsize is not None:
if not isinstance(daybinsize, (int,float)):
raise TypeError('Input daybinsize must be a scalar')
dres = NP.diff(self.cpinfo['raw']['days']).min() # in days
dextent = self.cpinfo['raw']['days'].max() - self.cpinfo['raw']['days'].min() + dres # in days
if daybinsize > dres:
daybinsize = NP.clip(daybinsize, dres, dextent)
eps = 1e-10
daybins = NP.arange(self.cpinfo['raw']['days'].min(), self.cpinfo['raw']['days'].max() + dres + eps, daybinsize)
ndaybins = daybins.size
daybins = NP.concatenate((daybins, [daybins[-1]+daybinsize+eps]))
if ndaybins > 1:
daybinintervals = daybins[1:] - daybins[:-1]
daybincenters = daybins[:-1] + 0.5 * daybinintervals
else:
daybinintervals = NP.asarray(daybinsize).reshape(-1)
daybincenters = daybins[0] + 0.5 * daybinintervals
counts, daybin_edges, daybinnum, ri = OPS.binned_statistic(self.cpinfo['raw']['days'], statistic='count', bins=daybins)
counts = counts.astype(NP.int)
# if 'prelim' not in self.cpinfo['processed']:
# self.cpinfo['processed']['prelim'] = {}
# self.cpinfo['processed']['prelim']['eicp'] = {}
# self.cpinfo['processed']['prelim']['cphase'] = {}
# self.cpinfo['processed']['prelim']['daybins'] = daybincenters
# self.cpinfo['processed']['prelim']['diff_dbins'] = daybinintervals
wts_daybins = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]))
eicp_dmean = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128)
eicp_dmedian = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128)
cp_drms = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]))
cp_dmad = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]))
for binnum in xrange(counts.size):
ind_daybin = ri[ri[binnum]:ri[binnum+1]]
wts_daybins[:,binnum,:,:] = NP.sum(self.cpinfo['processed']['native']['wts'][:,ind_daybin,:,:].data, axis=1)
eicp_dmean[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.mean(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:], axis=1)))
eicp_dmedian[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].real, axis=1) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].imag, axis=1)))
cp_drms[:,binnum,:,:] = MA.std(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:], axis=1).data
cp_dmad[:,binnum,:,:] = MA.median(NP.abs(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:] - NP.angle(eicp_dmedian[:,binnum,:,:][:,NP.newaxis,:,:])), axis=1).data
# mask = wts_daybins <= 0.0
# self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_daybins, mask=mask)
# self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_dmean, mask=mask)
# self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_dmedian, mask=mask)
# self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_dmean), mask=mask)
# self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_dmedian), mask=mask)
# self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_drms, mask=mask)
# self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_dmad, mask=mask)
else:
if not isinstance(ndaybins, int):
raise TypeError('Input ndaybins must be an integer')
if ndaybins <= 0:
raise ValueError('Input ndaybins must be positive')
days_split = NP.array_split(self.cpinfo['raw']['days'], ndaybins)
daybincenters = NP.asarray([NP.mean(days) for days in days_split])
daybinintervals = NP.asarray([days.max()-days.min() for days in days_split])
counts = NP.asarray([days.size for days in days_split])
wts_split = NP.array_split(self.cpinfo['processed']['native']['wts'].data, ndaybins, axis=1)
# mask_split = NP.array_split(self.cpinfo['processed']['native']['wts'].mask, ndaybins, axis=1)
wts_daybins = NP.asarray([NP.sum(wtsitem, axis=1) for wtsitem in wts_split]) # ndaybins x nlst x ntriads x nchan
wts_daybins = NP.moveaxis(wts_daybins, 0, 1) # nlst x ndaybins x ntriads x nchan
mask_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].mask, ndaybins, axis=1)
eicp_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].data, ndaybins, axis=1)
eicp_dmean = MA.array([MA.mean(MA.array(eicp_split[i], mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan
eicp_dmean = NP.exp(1j * NP.angle(eicp_dmean))
eicp_dmean = NP.moveaxis(eicp_dmean, 0, 1) # nlst x ndaybins x ntriads x nchan
eicp_dmedian = MA.array([MA.median(MA.array(eicp_split[i].real, mask=mask_split[i]), axis=1) + 1j * MA.median(MA.array(eicp_split[i].imag, mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan
eicp_dmedian = NP.exp(1j * NP.angle(eicp_dmedian))
eicp_dmedian = NP.moveaxis(eicp_dmedian, 0, 1) # nlst x ndaybins x ntriads x nchan
cp_split = NP.array_split(self.cpinfo['processed']['native']['cphase'].data, ndaybins, axis=1)
cp_drms = NP.array([MA.std(MA.array(cp_split[i], mask=mask_split[i]), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan
cp_drms = NP.moveaxis(cp_drms, 0, 1) # nlst x ndaybins x ntriads x nchan
cp_dmad = NP.array([MA.median(NP.abs(cp_split[i] - NP.angle(eicp_dmedian[:,[i],:,:])), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan
cp_dmad = NP.moveaxis(cp_dmad, 0, 1) # nlst x ndaybins x ntriads x nchan
if 'prelim' not in self.cpinfo['processed']:
self.cpinfo['processed']['prelim'] = {}
self.cpinfo['processed']['prelim']['eicp'] = {}
self.cpinfo['processed']['prelim']['cphase'] = {}
self.cpinfo['processed']['prelim']['daybins'] = daybincenters
self.cpinfo['processed']['prelim']['diff_dbins'] = daybinintervals
mask = wts_daybins <= 0.0
self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_daybins, mask=mask)
self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_dmean, mask=mask)
self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_dmedian, mask=mask)
self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_dmean), mask=mask)
self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_dmedian), mask=mask)
self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_drms, mask=mask)
self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_dmad, mask=mask)
rawlst = NP.degrees(NP.unwrap(NP.radians(self.cpinfo['raw']['lst'] * 15.0), discont=NP.pi, axis=0)) / 15.0 # in hours but unwrapped to have no discontinuities
if NP.any(rawlst > 24.0):
rawlst -= 24.0
if rawlst.shape[0] > 1: # LST bin only if there are multiple LST
if lstbinsize is not None:
if not isinstance(lstbinsize, (int,float)):
raise TypeError('Input lstbinsize must be a scalar')
lstbinsize = lstbinsize / 3.6e3 # in hours
tres = NP.diff(rawlst[:,0]).min() # in hours
textent = rawlst[:,0].max() - rawlst[:,0].min() + tres # in hours
eps = 1e-10
if 'prelim' not in self.cpinfo['processed']:
self.cpinfo['processed']['prelim'] = {}
no_change_in_lstbins = False
if lstbinsize > tres:
lstbinsize = NP.clip(lstbinsize, tres, textent)
lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + tres + eps, lstbinsize)
nlstbins = lstbins.size
lstbins = NP.concatenate((lstbins, [lstbins[-1]+lstbinsize+eps]))
if nlstbins > 1:
lstbinintervals = lstbins[1:] - lstbins[:-1]
lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals
else:
lstbinintervals = NP.asarray(lstbinsize).reshape(-1)
lstbincenters = lstbins[0] + 0.5 * lstbinintervals
self.cpinfo['processed']['prelim']['lstbins'] = lstbincenters
self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals
no_change_in_lstbins = False
else:
# Perform no binning and keep the current LST resolution, data and weights
warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.')
lstbinsize = tres
lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize)
nlstbins = lstbins.size - 1
if nlstbins > 1:
lstbinintervals = lstbins[1:] - lstbins[:-1]
else:
lstbinintervals = NP.asarray(lstbinsize).reshape(-1)
self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals
self.cpinfo['processed']['prelim']['lstbins'] = lstbins[:-1]
# Ensure that the LST bins are inside the min/max envelope to
# error-free interpolation later
self.cpinfo['processed']['prelim']['lstbins'][0] += eps
self.cpinfo['processed']['prelim']['lstbins'][-1] -= eps
no_change_in_lstbins = True
counts, lstbin_edges, lstbinnum, ri = OPS.binned_statistic(rawlst[:,0], statistic='count', bins=lstbins)
counts = counts.astype(NP.int)
if 'wts' not in self.cpinfo['processed']['prelim']:
outshape = (counts.size, self.cpinfo['processed']['native']['eicp'].shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])
else:
outshape = (counts.size, self.cpinfo['processed']['prelim']['wts'].shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])
wts_lstbins = NP.zeros(outshape)
eicp_tmean = NP.zeros(outshape, dtype=NP.complex128)
eicp_tmedian = NP.zeros(outshape, dtype=NP.complex128)
cp_trms = NP.zeros(outshape)
cp_tmad = NP.zeros(outshape)
for binnum in xrange(counts.size):
if no_change_in_lstbins:
ind_lstbin = [binnum]
else:
ind_lstbin = ri[ri[binnum]:ri[binnum+1]]
if 'wts' not in self.cpinfo['processed']['prelim']:
indict = self.cpinfo['processed']['native']
else:
indict = self.cpinfo['processed']['prelim']
wts_lstbins[binnum,:,:,:] = NP.sum(indict['wts'][ind_lstbin,:,:,:].data, axis=0)
if 'wts' not in self.cpinfo['processed']['prelim']:
eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(indict['eicp'][ind_lstbin,:,:,:], axis=0)))
eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(indict['eicp'][ind_lstbin,:,:,:].real, axis=0) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][ind_lstbin,:,:,:].imag, axis=0)))
cp_trms[binnum,:,:,:] = MA.std(indict['cphase'][ind_lstbin,:,:,:], axis=0).data
cp_tmad[binnum,:,:,:] = MA.median(NP.abs(indict['cphase'][ind_lstbin,:,:,:] - NP.angle(eicp_tmedian[binnum,:,:,:][NP.newaxis,:,:,:])), axis=0).data
else:
eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(NP.exp(1j*indict['cphase']['mean'][ind_lstbin,:,:,:]), axis=0)))
eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(NP.cos(indict['cphase']['median'][ind_lstbin,:,:,:]), axis=0) + 1j * MA.median(NP.sin(indict['cphase']['median'][ind_lstbin,:,:,:]), axis=0)))
cp_trms[binnum,:,:,:] = MA.std(indict['cphase']['mean'][ind_lstbin,:,:,:], axis=0).data
cp_tmad[binnum,:,:,:] = MA.median(NP.abs(indict['cphase']['median'][ind_lstbin,:,:,:] - NP.angle(eicp_tmedian[binnum,:,:,:][NP.newaxis,:,:,:])), axis=0).data
mask = wts_lstbins <= 0.0
self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_lstbins, mask=mask)
if 'eicp' not in self.cpinfo['processed']['prelim']:
self.cpinfo['processed']['prelim']['eicp'] = {}
if 'cphase' not in self.cpinfo['processed']['prelim']:
self.cpinfo['processed']['prelim']['cphase'] = {}
self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_tmean, mask=mask)
self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_tmedian, mask=mask)
self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_tmean), mask=mask)
self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_tmedian), mask=mask)
self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_trms, mask=mask)
self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_tmad, mask=mask)
# else:
# # Perform no binning and keep the current LST resolution, data and weights
# warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.')
# lstbinsize = tres
# lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize)
# nlstbins = lstbins.size - 1
# if nlstbins > 1:
# lstbinintervals = lstbins[1:] - lstbins[:-1]
# lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals
# else:
# lstbinintervals = NP.asarray(lstbinsize).reshape(-1)
# lstbincenters = lstbins[0] + 0.5 * lstbinintervals
# if 'prelim' not in self.cpinfo['processed']:
# self.cpinfo['processed']['prelim'] = {}
# self.cpinfo['processed']['prelim']['lstbins'] = lstbincenters
# self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals
if (rawlst.shape[0] <= 1) or (lstbinsize is None):
nlstbins = rawlst.shape[0]
lstbins = NP.mean(rawlst, axis=1)
if 'prelim' not in self.cpinfo['processed']:
self.cpinfo['processed']['prelim'] = {}
self.cpinfo['processed']['prelim']['lstbins'] = lstbins
if lstbinsize is not None:
self.cpinfo['processed']['prelim']['dlstbins'] = NP.asarray(lstbinsize).reshape(-1)
else:
self.cpinfo['processed']['prelim']['dlstbins'] = NP.zeros(1)
############################################################################
def subtract(self, cphase):
"""
------------------------------------------------------------------------
Subtract complex exponential of the bispectrum phase from the current
instance and updates the cpinfo attribute
Inputs:
cphase [masked array] Bispectrum phase array as a maked array. It
must be of same size as freqs along the axis specified in
input axis.
Action: Updates 'submodel' and 'residual' keys under attribute
cpinfo under key 'processed'
------------------------------------------------------------------------
"""
if not isinstance(cphase, NP.ndarray):
raise TypeError('Input cphase must be a numpy array')
if not isinstance(cphase, MA.MaskedArray):
cphase = MA.array(cphase, mask=NP.isnan(cphase))
if not OPS.is_broadcastable(cphase.shape, self.cpinfo['processed']['prelim']['cphase']['median'].shape):
raise ValueError('Input cphase has shape incompatible with that in instance attribute')
else:
minshape = tuple(NP.ones(self.cpinfo['processed']['prelim']['cphase']['median'].ndim - cphase.ndim, dtype=NP.int)) + cphase.shape
cphase = cphase.reshape(minshape)
# cphase = NP.broadcast_to(cphase, minshape)
eicp = NP.exp(1j*cphase)
self.cpinfo['processed']['submodel'] = {}
self.cpinfo['processed']['submodel']['cphase'] = cphase
self.cpinfo['processed']['submodel']['eicp'] = eicp
self.cpinfo['processed']['residual'] = {'eicp': {}, 'cphase': {}}
for key in ['mean', 'median']:
eicpdiff = self.cpinfo['processed']['prelim']['eicp'][key] - eicp
eicpratio = self.cpinfo['processed']['prelim']['eicp'][key] / eicp
self.cpinfo['processed']['residual']['eicp'][key] = eicpdiff
self.cpinfo['processed']['residual']['cphase'][key] = MA.array(NP.angle(eicpratio.data), mask=self.cpinfo['processed']['residual']['eicp'][key].mask)
############################################################################
def subsample_differencing(self, daybinsize=None, ndaybins=4, lstbinsize=None):
"""
------------------------------------------------------------------------
Create subsamples and differences between subsamples to evaluate noise
properties from the data set.
Inputs:
daybinsize [Nonetype or scalar] Day bin size (in days) over which mean
and median are estimated across different days for a fixed
LST bin. If set to None, it will look for value in input
ndaybins. If both are None, no smoothing is performed. Only
one of daybinsize or ndaybins must be set to non-None value.
Must yield greater than or equal to 4 bins
ndaybins [NoneType or integer] Number of bins along day axis. Only
if daybinsize is set to None. It produces bins that roughly
consist of equal number of days in each bin regardless of
how much the days in each bin are separated from each other.
If both are None, no smoothing is performed. Only one of
daybinsize or ndaybins must be set to non-None value. If set,
it must be set to greater than or equal to 4
lstbinsize [NoneType or scalar] LST bin size (in seconds) over which
mean and median are estimated across the LST. If set to
None, no smoothing is performed
------------------------------------------------------------------------
"""
if (ndaybins is not None) and (daybinsize is not None):
raise ValueError('Only one of daybinsize or ndaybins should be set')
if (daybinsize is not None) or (ndaybins is not None):
if daybinsize is not None:
if not isinstance(daybinsize, (int,float)):
raise TypeError('Input daybinsize must be a scalar')
dres = NP.diff(self.cpinfo['raw']['days']).min() # in days
dextent = self.cpinfo['raw']['days'].max() - self.cpinfo['raw']['days'].min() + dres # in days
if daybinsize > dres:
daybinsize = NP.clip(daybinsize, dres, dextent)
eps = 1e-10
daybins = NP.arange(self.cpinfo['raw']['days'].min(), self.cpinfo['raw']['days'].max() + dres + eps, daybinsize)
ndaybins = daybins.size
daybins = NP.concatenate((daybins, [daybins[-1]+daybinsize+eps]))
if ndaybins >= 4:
daybinintervals = daybins[1:] - daybins[:-1]
daybincenters = daybins[:-1] + 0.5 * daybinintervals
else:
raise ValueError('Could not find at least 4 bins along repeating days. Adjust binning interval.')
counts, daybin_edges, daybinnum, ri = OPS.binned_statistic(self.cpinfo['raw']['days'], statistic='count', bins=daybins)
counts = counts.astype(NP.int)
wts_daybins = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]))
eicp_dmean = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128)
eicp_dmedian = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128)
cp_drms = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]))
cp_dmad = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]))
for binnum in xrange(counts.size):
ind_daybin = ri[ri[binnum]:ri[binnum+1]]
wts_daybins[:,binnum,:,:] = NP.sum(self.cpinfo['processed']['native']['wts'][:,ind_daybin,:,:].data, axis=1)
eicp_dmean[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.mean(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:], axis=1)))
eicp_dmedian[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].real, axis=1) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].imag, axis=1)))
cp_drms[:,binnum,:,:] = MA.std(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:], axis=1).data
cp_dmad[:,binnum,:,:] = MA.median(NP.abs(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:] - NP.angle(eicp_dmedian[:,binnum,:,:][:,NP.newaxis,:,:])), axis=1).data
else:
if not isinstance(ndaybins, int):
raise TypeError('Input ndaybins must be an integer')
if ndaybins < 4:
raise ValueError('Input ndaybins must be greater than or equal to 4')
days_split = NP.array_split(self.cpinfo['raw']['days'], ndaybins)
daybincenters = NP.asarray([NP.mean(days) for days in days_split])
daybinintervals = NP.asarray([days.max()-days.min() for days in days_split])
counts = NP.asarray([days.size for days in days_split])
wts_split = NP.array_split(self.cpinfo['processed']['native']['wts'].data, ndaybins, axis=1)
# mask_split = NP.array_split(self.cpinfo['processed']['native']['wts'].mask, ndaybins, axis=1)
wts_daybins = NP.asarray([NP.sum(wtsitem, axis=1) for wtsitem in wts_split]) # ndaybins x nlst x ntriads x nchan
wts_daybins = NP.moveaxis(wts_daybins, 0, 1) # nlst x ndaybins x ntriads x nchan
mask_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].mask, ndaybins, axis=1)
eicp_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].data, ndaybins, axis=1)
eicp_dmean = MA.array([MA.mean(MA.array(eicp_split[i], mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan
eicp_dmean = NP.exp(1j * NP.angle(eicp_dmean))
eicp_dmean = NP.moveaxis(eicp_dmean, 0, 1) # nlst x ndaybins x ntriads x nchan
eicp_dmedian = MA.array([MA.median(MA.array(eicp_split[i].real, mask=mask_split[i]), axis=1) + 1j * MA.median(MA.array(eicp_split[i].imag, mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan
eicp_dmedian = NP.exp(1j * NP.angle(eicp_dmedian))
eicp_dmedian = NP.moveaxis(eicp_dmedian, 0, 1) # nlst x ndaybins x ntriads x nchan
cp_split = NP.array_split(self.cpinfo['processed']['native']['cphase'].data, ndaybins, axis=1)
cp_drms = NP.array([MA.std(MA.array(cp_split[i], mask=mask_split[i]), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan
cp_drms = NP.moveaxis(cp_drms, 0, 1) # nlst x ndaybins x ntriads x nchan
cp_dmad = NP.array([MA.median(NP.abs(cp_split[i] - NP.angle(eicp_dmedian[:,[i],:,:])), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan
cp_dmad = NP.moveaxis(cp_dmad, 0, 1) # nlst x ndaybins x ntriads x nchan
mask = wts_daybins <= 0.0
wts_daybins = MA.array(wts_daybins, mask=mask)
cp_dmean = MA.array(NP.angle(eicp_dmean), mask=mask)
cp_dmedian = MA.array(NP.angle(eicp_dmedian), mask=mask)
self.cpinfo['errinfo']['daybins'] = daybincenters
self.cpinfo['errinfo']['diff_dbins'] = daybinintervals
self.cpinfo['errinfo']['wts'] = {'{0}'.format(ind): None for ind in range(2)}
self.cpinfo['errinfo']['eicp_diff'] = {'{0}'.format(ind): {} for ind in range(2)}
rawlst = NP.degrees(NP.unwrap(NP.radians(self.cpinfo['raw']['lst'] * 15.0), discont=NP.pi, axis=0)) / 15.0 # in hours but unwrapped to have no discontinuities
if NP.any(rawlst > 24.0):
rawlst -= 24.0
if rawlst.shape[0] > 1: # LST bin only if there are multiple LST
if lstbinsize is not None:
if not isinstance(lstbinsize, (int,float)):
raise TypeError('Input lstbinsize must be a scalar')
lstbinsize = lstbinsize / 3.6e3 # in hours
tres = NP.diff(rawlst[:,0]).min() # in hours
textent = rawlst[:,0].max() - rawlst[:,0].min() + tres # in hours
eps = 1e-10
no_change_in_lstbins = False
if lstbinsize > tres:
lstbinsize = NP.clip(lstbinsize, tres, textent)
lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + tres + eps, lstbinsize)
nlstbins = lstbins.size
lstbins = NP.concatenate((lstbins, [lstbins[-1]+lstbinsize+eps]))
if nlstbins > 1:
lstbinintervals = lstbins[1:] - lstbins[:-1]
lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals
else:
lstbinintervals = NP.asarray(lstbinsize).reshape(-1)
lstbincenters = lstbins[0] + 0.5 * lstbinintervals
self.cpinfo['errinfo']['lstbins'] = lstbincenters
self.cpinfo['errinfo']['dlstbins'] = lstbinintervals
no_change_in_lstbins = False
else:
# Perform no binning and keep the current LST resolution
warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.')
lstbinsize = tres
lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize)
nlstbins = lstbins.size - 1
if nlstbins > 1:
lstbinintervals = lstbins[1:] - lstbins[:-1]
else:
lstbinintervals = NP.asarray(lstbinsize).reshape(-1)
self.cpinfo['errinfo']['dlstbins'] = lstbinintervals
self.cpinfo['errinfo']['lstbins'] = lstbins[:-1]
# Ensure that the LST bins are inside the min/max envelope to
# error-free interpolation later
self.cpinfo['errinfo']['lstbins'][0] += eps
self.cpinfo['errinfo']['lstbins'][-1] -= eps
no_change_in_lstbins = True
counts, lstbin_edges, lstbinnum, ri = OPS.binned_statistic(rawlst[:,0], statistic='count', bins=lstbins)
counts = counts.astype(NP.int)
outshape = (counts.size, wts_daybins.shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])
wts_lstbins = NP.zeros(outshape)
eicp_tmean = NP.zeros(outshape, dtype=NP.complex128)
eicp_tmedian = NP.zeros(outshape, dtype=NP.complex128)
cp_trms = NP.zeros(outshape)
cp_tmad = NP.zeros(outshape)
for binnum in xrange(counts.size):
if no_change_in_lstbins:
ind_lstbin = [binnum]
else:
ind_lstbin = ri[ri[binnum]:ri[binnum+1]]
wts_lstbins[binnum,:,:,:] = NP.sum(wts_daybins[ind_lstbin,:,:,:].data, axis=0)
eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(NP.exp(1j*cp_dmean[ind_lstbin,:,:,:]), axis=0)))
eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(NP.cos(cp_dmedian[ind_lstbin,:,:,:]), axis=0) + 1j * MA.median(NP.sin(cp_dmedian[ind_lstbin,:,:,:]), axis=0)))
mask = wts_lstbins <= 0.0
wts_lstbins = MA.array(wts_lstbins, mask=mask)
eicp_tmean = MA.array(eicp_tmean, mask=mask)
eicp_tmedian = MA.array(eicp_tmedian, mask=mask)
else:
wts_lstbins = MA.copy(wts_daybins)
mask = wts_lstbins.mask
eicp_tmean = MA.array(NP.exp(1j*NP.angle(NP.exp(1j*cp_dmean))), mask=mask)
eicp_tmedian = MA.array(NP.exp(1j*NP.angle(NP.cos(cp_dmedian) + 1j * NP.sin(cp_dmedian))), mask=mask)
if (rawlst.shape[0] <= 1) or (lstbinsize is None):
nlstbins = rawlst.shape[0]
lstbins = NP.mean(rawlst, axis=1)
self.cpinfo['errinfo']['lstbins'] = lstbins
if lstbinsize is not None:
self.cpinfo['errinfo']['dlstbins'] = NP.asarray(lstbinsize).reshape(-1)
else:
self.cpinfo['errinfo']['dlstbins'] = NP.zeros(1)
ncomb = NP.sum(NP.asarray([(ndaybins-i-1)*(ndaybins-i-2)*(ndaybins-i-3)/2 for i in range(ndaybins-3)])).astype(int)
diff_outshape = (nlstbins, ncomb, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])
for diffind in range(2):
self.cpinfo['errinfo']['eicp_diff']['{0}'.format(diffind)]['mean'] = MA.empty(diff_outshape, dtype=NP.complex)
self.cpinfo['errinfo']['eicp_diff']['{0}'.format(diffind)]['median'] = MA.empty(diff_outshape, dtype=NP.complex)
self.cpinfo['errinfo']['wts']['{0}'.format(diffind)] = MA.empty(diff_outshape, dtype=NP.float)
ind = -1
self.cpinfo['errinfo']['list_of_pair_of_pairs'] = []
list_of_pair_of_pairs = []
for i in range(ndaybins-1):
for j in range(i+1,ndaybins):
for k in range(ndaybins-1):
if (k != i) and (k != j):
for m in range(k+1,ndaybins):
if (m != i) and (m != j):
pair_of_pairs = [set([i,j]), set([k,m])]
if (pair_of_pairs not in list_of_pair_of_pairs) and (pair_of_pairs[::-1] not in list_of_pair_of_pairs):
ind += 1
list_of_pair_of_pairs += [copy.deepcopy(pair_of_pairs)]
self.cpinfo['errinfo']['list_of_pair_of_pairs'] += [[i,j,k,m]]
for stat in ['mean', 'median']:
if stat == 'mean':
self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmean[:,j,:,:].data - eicp_tmean[:,i,:,:].data), mask=NP.logical_or(eicp_tmean[:,j,:,:].mask, eicp_tmean[:,i,:,:].mask))
self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmean[:,m,:,:].data - eicp_tmean[:,k,:,:].data), mask=NP.logical_or(eicp_tmean[:,m,:,:].mask, eicp_tmean[:,k,:,:].mask))
self.cpinfo['errinfo']['wts']['0'][:,ind,:,:] = MA.array(NP.sqrt(wts_lstbins[:,j,:,:].data**2 + wts_lstbins[:,i,:,:].data**2), mask=NP.logical_or(wts_lstbins[:,j,:,:].mask, wts_lstbins[:,i,:,:].mask))
self.cpinfo['errinfo']['wts']['1'][:,ind,:,:] = MA.array(NP.sqrt(wts_lstbins[:,m,:,:].data**2 + wts_lstbins[:,k,:,:].data**2), mask=NP.logical_or(wts_lstbins[:,m,:,:].mask, wts_lstbins[:,k,:,:].mask))
# self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = 0.5 * (eicp_tmean[:,j,:,:] - eicp_tmean[:,i,:,:])
# self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = 0.5 * (eicp_tmean[:,m,:,:] - eicp_tmean[:,k,:,:])
# self.cpinfo['errinfo']['wts']['0'][:,ind,:,:] = NP.sqrt(wts_lstbins[:,j,:,:]**2 + wts_lstbins[:,i,:,:]**2)
# self.cpinfo['errinfo']['wts']['1'][:,ind,:,:] = NP.sqrt(wts_lstbins[:,m,:,:]**2 + wts_lstbins[:,k,:,:]**2)
else:
self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmedian[:,j,:,:].data - eicp_tmedian[:,i,:,:].data), mask=NP.logical_or(eicp_tmedian[:,j,:,:].mask, eicp_tmedian[:,i,:,:].mask))
self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmedian[:,m,:,:].data - eicp_tmedian[:,k,:,:].data), mask=NP.logical_or(eicp_tmedian[:,m,:,:].mask, eicp_tmedian[:,k,:,:].mask))
# self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = 0.5 * (eicp_tmedian[:,j,:,:] - eicp_tmedian[:,i,:,:])
# self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = 0.5 * (eicp_tmedian[:,m,:,:] - eicp_tmedian[:,k,:,:])
mask0 = self.cpinfo['errinfo']['wts']['0'] <= 0.0
mask1 = self.cpinfo['errinfo']['wts']['1'] <= 0.0
self.cpinfo['errinfo']['eicp_diff']['0'][stat] = MA.array(self.cpinfo['errinfo']['eicp_diff']['0'][stat], mask=mask0)
self.cpinfo['errinfo']['eicp_diff']['1'][stat] = MA.array(self.cpinfo['errinfo']['eicp_diff']['1'][stat], mask=mask1)
self.cpinfo['errinfo']['wts']['0'] = MA.array(self.cpinfo['errinfo']['wts']['0'], mask=mask0)
self.cpinfo['errinfo']['wts']['1'] = MA.array(self.cpinfo['errinfo']['wts']['1'], mask=mask1)
############################################################################
def save(self, outfile=None):
"""
------------------------------------------------------------------------
Save contents of attribute cpinfo in external HDF5 file
Inputs:
outfile [NoneType or string] Output file (HDF5) to save contents to.
If set to None (default), it will be saved in the file
pointed to by the extfile attribute of class ClosurePhase
------------------------------------------------------------------------
"""
if outfile is None:
outfile = self.extfile
NMO.save_dict_to_hdf5(self.cpinfo, outfile, compressinfo={'compress_fmt': 'gzip', 'compress_opts': 9})
################################################################################
class ClosurePhaseDelaySpectrum(object):
"""
----------------------------------------------------------------------------
Class to hold and operate on Closure Phase information.
It has the following attributes and member functions.
Attributes:
cPhase [instance of class ClosurePhase] Instance of class
ClosurePhase
f [numpy array] Frequencies (in Hz) in closure phase spectra
df [float] Frequency resolution (in Hz) in closure phase
spectra
cPhaseDS [dictionary] Possibly oversampled Closure Phase Delay
Spectrum information.
cPhaseDS_resampled
[dictionary] Resampled Closure Phase Delay Spectrum
information.
Member functions:
__init__() Initialize instance of class ClosurePhaseDelaySpectrum
FT() Fourier transform of complex closure phase spectra mapping
from frequency axis to delay axis.
subset() Return triad and time indices to select a subset of
processed data
compute_power_spectrum()
Compute power spectrum of closure phase data. It is in units
of Mpc/h.
rescale_power_spectrum()
Rescale power spectrum to dimensional quantity by converting
the ratio given visibility amplitude information
average_rescaled_power_spectrum()
Average the rescaled power spectrum with physical units
along certain axes with inverse variance or regular
averaging
beam3Dvol() Compute three-dimensional volume of the antenna power
pattern along two transverse axes and one LOS axis.
----------------------------------------------------------------------------
"""
def __init__(self, cPhase):
"""
------------------------------------------------------------------------
Initialize instance of class ClosurePhaseDelaySpectrum
Inputs:
cPhase [class ClosurePhase] Instance of class ClosurePhase
------------------------------------------------------------------------
"""
if not isinstance(cPhase, ClosurePhase):
raise TypeError('Input cPhase must be an instance of class ClosurePhase')
self.cPhase = cPhase
self.f = self.cPhase.f
self.df = self.cPhase.df
self.cPhaseDS = None
self.cPhaseDS_resampled = None
############################################################################
def FT(self, bw_eff, freq_center=None, shape=None, fftpow=None, pad=None,
datapool='prelim', visscaleinfo=None, method='fft', resample=True,
apply_flags=True):
"""
------------------------------------------------------------------------
Fourier transform of complex closure phase spectra mapping from
frequency axis to delay axis.
Inputs:
bw_eff [scalar or numpy array] effective bandwidths (in Hz) on the
selected frequency windows for subband delay transform of
closure phases. If a scalar value is provided, the same
will be applied to all frequency windows
freq_center [scalar, list or numpy array] frequency centers (in Hz) of
the selected frequency windows for subband delay transform
of closure phases. The value can be a scalar, list or numpy
array. If a scalar is provided, the same will be applied to
all frequency windows. Default=None uses the center
frequency from the class attribute named channels
shape [string] frequency window shape for subband delay transform
of closure phases. Accepted values for the string are
'rect' or 'RECT' (for rectangular), 'bnw' and 'BNW' (for
Blackman-Nuttall), and 'bhw' or 'BHW' (for
Blackman-Harris). Default=None sets it to 'rect'
(rectangular window)
fftpow [scalar] the power to which the FFT of the window will be
raised. The value must be a positive scalar. Default = 1.0
pad [scalar] padding fraction relative to the number of
frequency channels for closure phases. Value must be a
non-negative scalar. For e.g., a pad of 1.0 pads the
frequency axis with zeros of the same width as the number
of channels. After the delay transform, the transformed
closure phases are downsampled by a factor of 1+pad. If a
negative value is specified, delay transform will be
performed with no padding. Default=None sets to padding
factor to 1.0
datapool [string] Specifies which data set is to be Fourier
transformed
visscaleinfo
[dictionary] Dictionary containing reference visibilities
based on which the closure phases will be scaled to units
of visibilities. It contains the following keys and values:
'vis' [numpy array or instance of class
InterferometerArray] Reference visibilities from the
baselines that form the triad. It can be an instance
of class RI.InterferometerArray or a numpy array.
If an instance of class InterferometerArray, the
baseline triplet must be set in key 'bltriplet'
and value in key 'lst' will be ignored. If the
value under this key 'vis' is set to a numpy array,
it must be of shape (nbl=3, nlst_vis, nchan). In
this case the value under key 'bltriplet' will be
ignored. The nearest LST will be looked up and
applied after smoothing along LST based on the
smoothing parameter 'smooth'
'bltriplet'
[Numpy array] Will be used in searching for matches
to these three baseline vectors if the value under
key 'vis' is set to an instance of class
InterferometerArray. However, if value under key
'vis' is a numpy array, this key 'bltriplet' will
be ignored.
'lst' [numpy array] Reference LST (in hours). It is of
shape (nlst_vis,). It will be used only if value
under key 'vis' is a numpy array, otherwise it will
be ignored and read from the instance of class
InterferometerArray passed under key 'vis'. If the
specified LST range does not cover the data LST
range, those LST will contain NaN in the delay
spectrum
'smoothinfo'
[dictionary] Dictionary specifying smoothing and/or
interpolation parameters. It has the following keys
and values:
'op_type' [string] Specifies the interpolating
operation. Must be specified (no
default). Accepted values are
'interp1d' (scipy.interpolate),
'median' (skimage.filters), 'tophat'
(astropy.convolution) and 'gaussian'
(astropy.convolution)
'interp_kind' [string (optional)] Specifies the
interpolation kind (if 'op_type' is
set to 'interp1d'). For accepted
values, see
scipy.interpolate.interp1d()
'window_size' [integer (optional)] Specifies the
size of the interpolating/smoothing
kernel. Only applies when 'op_type'
is set to 'median', 'tophat' or
'gaussian' The kernel is a tophat
function when 'op_type' is set to
'median' or 'tophat'. If refers to
FWHM when 'op_type' is set to
'gaussian'
resample [boolean] If set to True (default), resample the delay
spectrum axis to independent samples along delay axis. If
set to False, return the results as is even if they may be
be oversampled and not all samples may be independent
method [string] Specifies the Fourier transform method to be used.
Accepted values are 'fft' (default) for FFT and 'nufft' for
non-uniform FFT
apply_flags [boolean] If set to True (default), weights determined from
flags will be applied. If False, no weights from flagging
will be applied, and thus even flagged data will be included
Outputs:
A dictionary that contains the oversampled (if resample=False) or
resampled (if resample=True) delay spectrum information. It has the
following keys and values:
'freq_center' [numpy array] contains the center frequencies
(in Hz) of the frequency subbands of the subband
delay spectra. It is of size n_win. It is roughly
equivalent to redshift(s)
'freq_wts' [numpy array] Contains frequency weights applied
on each frequency sub-band during the subband delay
transform. It is of size n_win x nchan.
'bw_eff' [numpy array] contains the effective bandwidths
(in Hz) of the subbands being delay transformed. It
is of size n_win. It is roughly equivalent to width
in redshift or along line-of-sight
'shape' [string] shape of the window function applied.
Accepted values are 'rect' (rectangular), 'bhw'
(Blackman-Harris), 'bnw' (Blackman-Nuttall).
'fftpow' [scalar] the power to which the FFT of the window was
raised. The value is be a positive scalar with
default = 1.0
'npad' [scalar] Numbber of zero-padded channels before
performing the subband delay transform.
'lags' [numpy array] lags of the subband delay spectra
after padding in frequency during the transform. It
is of size nlags=nchan+npad if resample=True, where
npad is the number of frequency channels padded
specified under the key 'npad'. If resample=False,
nlags = number of delays after resampling only
independent delays. The lags roughly correspond to
k_parallel.
'lag_kernel' [numpy array] delay transform of the frequency
weights under the key 'freq_wts'. It is of size
n_win x nlst x ndays x ntriads x nlags.
nlags=nchan+npad if resample=True, where npad is the
number of frequency channels padded specified under
the key 'npad'. If resample=False, nlags = number of
delays after resampling only independent delays.
'lag_corr_length'
[numpy array] It is the correlation timescale (in
pixels) of the subband delay spectra. It is
proportional to inverse of effective bandwidth. It
is of size n_win. The unit size of a pixel is
determined by the difference between adjacent pixels
in lags under key 'lags' which in turn is
effectively inverse of the effective bandwidth of
the subband specified in bw_eff
'whole' [dictionary] Delay spectrum results corresponding to
bispectrum phase in 'prelim' key of attribute cpinfo.
Contains the following keys and values:
'dspec' [dictionary] Contains the following keys and
values:
'twts' [numpy array] Weights from time-based
flags that went into time-averaging.
Shape=(nlst,ndays,ntriads,nchan)
'mean' [numpy array] Delay spectrum of closure
phases based on their mean across time
intervals.
Shape=(nspw,nlst,ndays,ntriads,nlags)
'median'
[numpy array] Delay spectrum of closure
phases based on their median across time
intervals.
Shape=(nspw,nlst,ndays,ntriads,nlags)
'submodel' [dictionary] Delay spectrum results corresponding to
bispectrum phase in 'submodel' key of attribute cpinfo.
Contains the following keys and values:
'dspec' [numpy array] Delay spectrum of closure phases
Shape=(nspw,nlst,ndays,ntriads,nlags)
'residual' [dictionary] Delay spectrum results corresponding to
bispectrum phase in 'residual' key of attribute cpinfo
after subtracting 'submodel' bispectrum phase from that
of 'prelim'. It contains the following keys and values:
'dspec' [dictionary] Contains the following keys and
values:
'twts' [numpy array] Weights from time-based
flags that went into time-averaging.
Shape=(nlst,ndays,ntriads,nchan)
'mean' [numpy array] Delay spectrum of closure
phases based on their mean across time
intervals.
Shape=(nspw,nlst,ndays,ntriads,nlags)
'median'
[numpy array] Delay spectrum of closure
phases based on their median across time
intervals.
Shape=(nspw,nlst,ndays,ntriads,nlags)
'errinfo' [dictionary] It has two keys 'dspec0' and 'dspec1' each
of which are dictionaries with the following keys and
values:
'twts' [numpy array] Weights for the subsample
difference. It is of shape (nlst, ndays,
ntriads, nchan)
'mean' [numpy array] Delay spectrum of the
subsample difference obtained by using the
mean statistic. It is of shape (nspw, nlst,
ndays, ntriads, nlags)
'median'
[numpy array] Delay spectrum of the subsample
difference obtained by using the median
statistic. It is of shape (nspw, nlst, ndays,
ntriads, nlags)
------------------------------------------------------------------------
"""
try:
bw_eff
except NameError:
raise NameError('Effective bandwidth must be specified')
else:
if not isinstance(bw_eff, (int, float, list, NP.ndarray)):
raise TypeError('Value of effective bandwidth must be a scalar, list or numpy array')
bw_eff = NP.asarray(bw_eff).reshape(-1)
if NP.any(bw_eff <= 0.0):
raise ValueError('All values in effective bandwidth must be strictly positive')
if freq_center is None:
freq_center = NP.asarray(self.f[self.f.size/2]).reshape(-1)
elif isinstance(freq_center, (int, float, list, NP.ndarray)):
freq_center = NP.asarray(freq_center).reshape(-1)
if NP.any((freq_center <= self.f.min()) | (freq_center >= self.f.max())):
raise ValueError('Value(s) of frequency center(s) must lie strictly inside the observing band')
else:
raise TypeError('Values(s) of frequency center must be scalar, list or numpy array')
if (bw_eff.size == 1) and (freq_center.size > 1):
bw_eff = NP.repeat(bw_eff, freq_center.size)
elif (bw_eff.size > 1) and (freq_center.size == 1):
freq_center = NP.repeat(freq_center, bw_eff.size)
elif bw_eff.size != freq_center.size:
raise ValueError('Effective bandwidth(s) and frequency center(s) must have same number of elements')
if shape is not None:
if not isinstance(shape, str):
raise TypeError('Window shape must be a string')
if shape not in ['rect', 'bhw', 'bnw', 'RECT', 'BHW', 'BNW']:
raise ValueError('Invalid value for window shape specified.')
else:
shape = 'rect'
if fftpow is None:
fftpow = 1.0
else:
if not isinstance(fftpow, (int, float)):
raise TypeError('Power to raise window FFT by must be a scalar value.')
if fftpow < 0.0:
raise ValueError('Power for raising FFT of window by must be positive.')
if pad is None:
pad = 1.0
else:
if not isinstance(pad, (int, float)):
raise TypeError('pad fraction must be a scalar value.')
if pad < 0.0:
pad = 0.0
if verbose:
print('\tPad fraction found to be negative. Resetting to 0.0 (no padding will be applied).')
if not isinstance(datapool, str):
raise TypeError('Input datapool must be a string')
if datapool.lower() not in ['prelim']:
raise ValueError('Specified datapool not supported')
if visscaleinfo is not None:
if not isinstance(visscaleinfo, dict):
raise TypeError('Input visscaleinfo must be a dictionary')
if 'vis' not in visscaleinfo:
raise KeyError('Input visscaleinfo does not contain key "vis"')
if not isinstance(visscaleinfo['vis'], RI.InterferometerArray):
if 'lst' not in visscaleinfo:
raise KeyError('Input visscaleinfo does not contain key "lst"')
lst_vis = visscaleinfo['lst'] * 15.0
if not isinstance(visscaleinfo['vis'], (NP.ndarray,MA.MaskedArray)):
raise TypeError('Input visibilities must be a numpy or a masked array')
if not isinstance(visscaleinfo['vis'], MA.MaskedArray):
visscaleinfo['vis'] = MA.array(visscaleinfo['vis'], mask=NP.isnan(visscaleinfo['vis']))
vistriad = MA.copy(visscaleinfo['vis'])
else:
if 'bltriplet' not in visscaleinfo:
raise KeyError('Input dictionary visscaleinfo does not contain key "bltriplet"')
blind, blrefind, dbl = LKP.find_1NN(visscaleinfo['vis'].baselines, visscaleinfo['bltriplet'], distance_ULIM=0.2, remove_oob=True)
if blrefind.size != 3:
blind_missing = NP.setdiff1d(NP.arange(3), blind, assume_unique=True)
blind_next, blrefind_next, dbl_next = LKP.find_1NN(visscaleinfo['vis'].baselines, -1*visscaleinfo['bltriplet'][blind_missing,:], distance_ULIM=0.2, remove_oob=True)
if blind_next.size + blind.size != 3:
raise ValueError('Exactly three baselines were not found in the reference baselines')
else:
blind = NP.append(blind, blind_missing[blind_next])
blrefind = NP.append(blrefind, blrefind_next)
else:
blind_missing = []
vistriad = NP.transpose(visscaleinfo['vis'].skyvis_freq[blrefind,:,:], (0,2,1))
if len(blind_missing) > 0:
vistriad[-blrefind_next.size:,:,:] = vistriad[-blrefind_next.size:,:,:].conj()
vistriad = MA.array(vistriad, mask=NP.isnan(vistriad))
lst_vis = visscaleinfo['vis'].lst
viswts = MA.array(NP.ones_like(vistriad.data), mask=vistriad.mask, dtype=NP.float)
lst_out = self.cPhase.cpinfo['processed']['prelim']['lstbins'] * 15.0
if lst_vis.size == 1: # Apply the visibility scaling from one reference LST to all LST
vis_ref = vistriad * NP.ones(lst_out.size).reshape(1,-1,1)
wts_ref = viswts * NP.ones(lst_out.size).reshape(1,-1,1)
else:
vis_ref, wts_ref = OPS.interpolate_masked_array_1D(vistriad, viswts, 1, visscaleinfo['smoothinfo'], inploc=lst_vis, outloc=lst_out)
if not isinstance(method, str):
raise TypeError('Input method must be a string')
if method.lower() not in ['fft', 'nufft']:
raise ValueError('Specified FFT method not supported')
if not isinstance(apply_flags, bool):
raise TypeError('Input apply_flags must be boolean')
flagwts = 1.0
visscale = 1.0
if datapool.lower() == 'prelim':
if method.lower() == 'fft':
freq_wts = NP.empty((bw_eff.size, self.f.size), dtype=NP.float_) # nspw x nchan
frac_width = DSP.window_N2width(n_window=None, shape=shape, fftpow=fftpow, area_normalize=False, power_normalize=True)
window_loss_factor = 1 / frac_width
n_window = NP.round(window_loss_factor * bw_eff / self.df).astype(NP.int)
ind_freq_center, ind_channels, dfrequency = LKP.find_1NN(self.f.reshape(-1,1), freq_center.reshape(-1,1), distance_ULIM=0.51*self.df, remove_oob=True)
sortind = NP.argsort(ind_channels)
ind_freq_center = ind_freq_center[sortind]
ind_channels = ind_channels[sortind]
dfrequency = dfrequency[sortind]
n_window = n_window[sortind]
for i,ind_chan in enumerate(ind_channels):
window = NP.sqrt(frac_width * n_window[i]) * DSP.window_fftpow(n_window[i], shape=shape, fftpow=fftpow, centering=True, peak=None, area_normalize=False, power_normalize=True)
window_chans = self.f[ind_chan] + self.df * (NP.arange(n_window[i]) - int(n_window[i]/2))
ind_window_chans, ind_chans, dfreq = LKP.find_1NN(self.f.reshape(-1,1), window_chans.reshape(-1,1), distance_ULIM=0.51*self.df, remove_oob=True)
sind = NP.argsort(ind_window_chans)
ind_window_chans = ind_window_chans[sind]
ind_chans = ind_chans[sind]
dfreq = dfreq[sind]
window = window[ind_window_chans]
window = NP.pad(window, ((ind_chans.min(), self.f.size-1-ind_chans.max())), mode='constant', constant_values=((0.0,0.0)))
freq_wts[i,:] = window
npad = int(self.f.size * pad)
lags = DSP.spectral_axis(self.f.size + npad, delx=self.df, use_real=False, shift=True)
result = {'freq_center': freq_center, 'shape': shape, 'freq_wts': freq_wts, 'bw_eff': bw_eff, 'fftpow': fftpow, 'npad': npad, 'lags': lags, 'lag_corr_length': self.f.size / NP.sum(freq_wts, axis=-1), 'whole': {'dspec': {'twts': self.cPhase.cpinfo['processed'][datapool]['wts']}}, 'residual': {'dspec': {'twts': self.cPhase.cpinfo['processed'][datapool]['wts']}}, 'errinfo': {'dspec0': {'twts': self.cPhase.cpinfo['errinfo']['wts']['0']}, 'dspec1': {'twts': self.cPhase.cpinfo['errinfo']['wts']['1']}}, 'submodel': {}}
if visscaleinfo is not None:
visscale = NP.nansum(NP.transpose(vis_ref[NP.newaxis,NP.newaxis,:,:,:], axes=(0,3,1,2,4)) * freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], axis=-1, keepdims=True) / NP.nansum(freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], axis=-1, keepdims=True) # nspw x nlst x (ndays=1) x (nbl=3) x (nchan=1)
visscale = NP.sqrt(1.0/NP.nansum(1/NP.abs(visscale)**2, axis=-2, keepdims=True)) # nspw x nlst x (ndays=1) x (ntriads=1) x (nchan=1)
for dpool in ['errinfo', 'prelim', 'submodel', 'residual']:
if dpool.lower() == 'errinfo':
for diffind in range(2):
if apply_flags:
flagwts = NP.copy(self.cPhase.cpinfo['errinfo']['wts']['{0}'.format(diffind)].data)
flagwts = flagwts[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan
flagwts = 1.0 * flagwts / NP.mean(flagwts, axis=-1, keepdims=True) # (nspw=1) x nlst x ndays x ntriads x nchan
for stat in self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)]:
eicp = NP.copy(self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].data) # Minimum shape as stored
# eicp = NP.copy(self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].filled(0.0)) # Minimum shape as stored
eicp = NP.broadcast_to(eicp, self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].shape) # Broadcast to final shape
eicp = eicp[NP.newaxis,...] # nlst x ndayscomb x ntriads x nchan --> (nspw=1) x nlst x ndayscomb x ntriads x nchan
ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)]
result[dpool]['dspec{0}'.format(diffind)][stat] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df
else:
if dpool in self.cPhase.cpinfo['processed']:
if apply_flags:
flagwts = NP.copy(self.cPhase.cpinfo['processed'][datapool]['wts'].data)
flagwts = flagwts[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan
flagwts = 1.0 * flagwts / NP.mean(flagwts, axis=-1, keepdims=True) # (nspw=1) x nlst x ndays x ntriads x nchan
if dpool == 'submodel':
eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'].data) # Minimum shape as stored
# eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'].filled(1.0)) # Minimum shape as stored
eicp = NP.broadcast_to(eicp, self.cPhase.cpinfo['processed'][datapool]['eicp']['mean'].shape) # Broadcast to final shape
eicp = eicp[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan
ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)]
result[dpool]['dspec'] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df
else:
for key in self.cPhase.cpinfo['processed'][dpool]['eicp']:
eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'][key].data)
# eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'][key].filled(1.0))
eicp = eicp[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan
ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)]
if dpool == 'prelim':
result['whole']['dspec'][key] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df
else:
result[dpool]['dspec'][key] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df
result['lag_kernel'] = DSP.FT1D(NP.pad(flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df
self.cPhaseDS = result
if resample:
result_resampled = copy.deepcopy(result)
downsample_factor = NP.min((self.f.size + npad) * self.df / bw_eff)
result_resampled['lags'] = DSP.downsampler(result_resampled['lags'], downsample_factor, axis=-1, method='interp', kind='linear')
result_resampled['lag_kernel'] = DSP.downsampler(result_resampled['lag_kernel'], downsample_factor, axis=-1, method='interp', kind='linear')
for dpool in ['errinfo', 'prelim', 'submodel', 'residual']:
if dpool.lower() == 'errinfo':
for diffind in self.cPhase.cpinfo[dpool]['eicp_diff']:
for key in self.cPhase.cpinfo[dpool]['eicp_diff'][diffind]:
result_resampled[dpool]['dspec'+diffind][key] = DSP.downsampler(result_resampled[dpool]['dspec'+diffind][key], downsample_factor, axis=-1, method='FFT')
if dpool in self.cPhase.cpinfo['processed']:
if dpool == 'submodel':
result_resampled[dpool]['dspec'] = DSP.downsampler(result_resampled[dpool]['dspec'], downsample_factor, axis=-1, method='FFT')
else:
for key in self.cPhase.cpinfo['processed'][datapool]['eicp']:
if dpool == 'prelim':
result_resampled['whole']['dspec'][key] = DSP.downsampler(result_resampled['whole']['dspec'][key], downsample_factor, axis=-1, method='FFT')
else:
result_resampled[dpool]['dspec'][key] = DSP.downsampler(result_resampled[dpool]['dspec'][key], downsample_factor, axis=-1, method='FFT')
self.cPhaseDS_resampled = result_resampled
return result_resampled
else:
return result
############################################################################
def subset(self, selection=None):
"""
------------------------------------------------------------------------
Return triad and time indices to select a subset of processed data
Inputs:
selection [NoneType or dictionary] Selection parameters based on which
triad, LST, and day indices will be returned. If set to None
(default), all triad, LST, and day indices will be returned.
Otherwise it must be a dictionary with the following keys
and values:
'triads' [NoneType or list of 3-element tuples] If set
to None (default), indices of all triads are
returned. Otherwise, the specific triads must
be specified such as [(1,2,3), (1,2,4), ...]
and their indices will be returned
'lst' [NoneType, list or numpy array] If set to None
(default), indices of all LST are returned.
Otherwise must be a list or numpy array
containing indices to LST.
'days' [NoneType, list or numpy array] If set to None
(default), indices of all days are returned.
Otherwise must be a list or numpy array
containing indices to days.
Outputs:
Tuple (triad_ind, lst_ind, day_ind, day_ind_eicpdiff) containing the
triad, LST, day, and day-pair (for subsample differences) indices,
each as a numpy array
------------------------------------------------------------------------
"""
if selection is None:
selsection = {}
else:
if not isinstance(selection, dict):
raise TypeError('Input selection must be a dictionary')
triads = map(tuple, self.cPhase.cpinfo['raw']['triads'])
if 'triads' not in selection:
selection['triads'] = triads
if selection['triads'] is None:
selection['triads'] = triads
triad_ind = [triads.index(triad) for triad in selection['triads']]
triad_ind = NP.asarray(triad_ind)
lst_ind = None
if 'lst' not in selection:
if 'prelim' in self.cPhase.cpinfo['processed']:
lst_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0])
else:
if selection['lst'] is None:
if 'prelim' in self.cPhase.cpinfo['processed']:
lst_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0])
elif isinstance(selection['lst'], (list,NP.ndarray)):
if 'prelim' in self.cPhase.cpinfo['processed']:
lst_ind = selection['lst']
if NP.any(NP.logical_or(lst_ind < 0, lst_ind >= self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0])):
raise ValueError('Input processed lst indices out of bounds')
else:
raise TypeError('Wrong type for processed lst indices')
if lst_ind is None:
raise ValueError('LST index selection could not be performed')
day_ind = None
day_ind_eicpdiff = None
if 'days' not in selection:
if 'prelim' in self.cPhase.cpinfo['processed']:
day_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1])
if 'errinfo' in self.cPhase.cpinfo:
day_ind_eicpdiff = NP.arange(len(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs']))
else:
if selection['days'] is None:
if 'prelim' in self.cPhase.cpinfo['processed']:
day_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1])
if 'errinfo' in self.cPhase.cpinfo:
day_ind_eicpdiff = NP.arange(len(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs']))
elif isinstance(selection['days'], (list,NP.ndarray)):
if 'prelim' in self.cPhase.cpinfo['processed']:
day_ind = selection['days']
if NP.any(NP.logical_or(day_ind < 0, day_ind >= self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1])):
raise ValueError('Input processed day indices out of bounds')
if 'errinfo' in self.cPhase.cpinfo:
day_ind_eicpdiff = [i for i,item in enumerate(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs']) if len(set(item)-set(selection['days']))==0]
else:
raise TypeError('Wrong type for processed day indices')
if day_ind is None:
raise ValueError('Day index selection could not be performed')
return (triad_ind, lst_ind, day_ind, day_ind_eicpdiff)
############################################################################
def compute_power_spectrum(self, cpds=None, selection=None, autoinfo=None,
xinfo=None, cosmo=cosmo100, units='K', beamparms=None):
"""
------------------------------------------------------------------------
Compute power spectrum of closure phase data. It is in units of Mpc/h
Inputs:
cpds [dictionary] A dictionary that contains the 'oversampled' (if
resample=False) and/or 'resampled' (if resample=True) delay
spectrum information. If it is not specified the attributes
cPhaseDS['processed'] and cPhaseDS_resampled['processed'] are
used. Under each of these keys, it holds a dictionary that has
the following keys and values:
'freq_center' [numpy array] contains the center frequencies
(in Hz) of the frequency subbands of the subband
delay spectra. It is of size n_win. It is
roughly equivalent to redshift(s)
'freq_wts' [numpy array] Contains frequency weights applied
on each frequency sub-band during the subband
delay transform. It is of size n_win x nchan.
'bw_eff' [numpy array] contains the effective bandwidths
(in Hz) of the subbands being delay transformed.
It is of size n_win. It is roughly equivalent to
width in redshift or along line-of-sight
'shape' [string] shape of the window function applied.
Accepted values are 'rect' (rectangular), 'bhw'
(Blackman-Harris), 'bnw' (Blackman-Nuttall).
'fftpow' [scalar] the power to which the FFT of the window
was raised. The value is be a positive scalar
with default = 1.0
'npad' [scalar] Numbber of zero-padded channels before
performing the subband delay transform.
'lags' [numpy array] lags of the subband delay spectra
after padding in frequency during the transform.
It is of size nlags. The lags roughly correspond
to k_parallel.
'lag_kernel' [numpy array] delay transform of the frequency
weights under the key 'freq_wts'. It is of size
n_bl x n_win x nlags x n_t.
'lag_corr_length'
[numpy array] It is the correlation timescale
(in pixels) of the subband delay spectra. It is
proportional to inverse of effective bandwidth.
It is of size n_win. The unit size of a pixel is
determined by the difference between adjacent
pixels in lags under key 'lags' which in turn is
effectively inverse of the effective bandwidth
of the subband specified in bw_eff
'processed' [dictionary] Contains the following keys and
values:
'dspec' [dictionary] Contains the following keys
and values:
'twts' [numpy array] Weights from
time-based flags that went into
time-averaging.
Shape=(ntriads,npol,nchan,nt)
'mean' [numpy array] Delay spectrum of
closure phases based on their
mean across time intervals.
Shape=(nspw,npol,nt,ntriads,nlags)
'median'
[numpy array] Delay spectrum of
closure phases based on their
median across time intervals.
Shape=(nspw,npol,nt,ntriads,nlags)
selection [NoneType or dictionary] Selection parameters based on which
triad, LST, and day indices will be returned. If set to None
(default), all triad, LST, and day indices will be returned.
Otherwise it must be a dictionary with the following keys
and values:
'triads' [NoneType or list of 3-element tuples] If set
to None (default), indices of all triads are
returned. Otherwise, the specific triads must
be specified such as [(1,2,3), (1,2,4), ...]
and their indices will be returned
'lst' [NoneType, list or numpy array] If set to None
(default), indices of all LST are returned.
Otherwise must be a list or numpy array
containing indices to LST.
'days' [NoneType, list or numpy array] If set to None
(default), indices of all days are returned.
Otherwise must be a list or numpy array
containing indices to days.
autoinfo
[NoneType or dictionary] Specifies parameters for processing
before power spectrum in auto or cross modes. If set to None,
a dictionary will be created with the default values as
described below. The dictionary must have the following keys
and values:
'axes' [NoneType/int/list/tuple/numpy array] Axes that will
be averaged coherently before squaring (for auto) or
cross-multiplying (for cross) power spectrum. If set
to None (default), no axes are averaged coherently.
If set to int, list, tuple or numpy array, those axes
will be averaged coherently after applying the weights
specified under key 'wts' along those axes. 1=lst,
2=days, 3=triads.
'wts' [NoneType/list/numpy array] If not provided (equivalent
to setting it to None) or set to None (default), it is
set to a one element list which is a one element numpy
array of unity. Otherwise, it must be a list of same
number of elements as in key 'axes' and each of these
must be a numpy broadcast compatible array corresponding
to each of the axis specified in 'axes'
xinfo [NoneType or dictionary] Specifies parameters for processing
cross power spectrum. If set to None, a dictionary will be
created with the default values as described below. The
dictionary must have the following keys and values:
'axes' [NoneType/int/list/tuple/numpy array] Axes over which
power spectrum will be computed incoherently by cross-
multiplication. If set to None (default), no cross-
power spectrum is computed. If set to int, list, tuple
or numpy array, cross-power over those axes will be
computed incoherently by cross-multiplication. The
cross-spectrum over these axes will be computed after
applying the pre- and post- cross-multiplication
weights specified in key 'wts'. 1=lst, 2=days,
3=triads.
'collapse_axes'
[list] The axes that will be collpased after the
cross-power matrix is produced by cross-multiplication.
If this key is not set, it will be initialized to an
empty list (default), in which case none of the axes
is collapsed and the full cross-power matrix will be
output. it must be a subset of values under key 'axes'.
This will reduce it from a square matrix along that axis
to collapsed values along each of the leading diagonals.
1=lst, 2=days, 3=triads.
'dlst' [scalar] LST interval (in mins) or difference between LST
pairs which will be determined and used for
cross-power spectrum. Will only apply if values under
'axes' contains the LST axis(=1).
'dlst_range'
[scalar, numpy array, or NoneType] Specifies the LST
difference(s) in minutes that are to be used in the
computation of cross-power spectra. If a scalar, only
the diagonal consisting of pairs with that LST
difference will be computed. If a numpy array, those
diagonals consisting of pairs with that LST difference
will be computed. If set to None (default), the main
diagonal (LST difference of 0) and the first off-main
diagonal (LST difference of 1 unit) corresponding to
pairs with 0 and 1 unit LST difference are computed.
Applies only if key 'axes' contains LST axis (=1).
'avgcov'
[boolean] It specifies if the collapse of square
covariance matrix is to be collapsed further to a single
number after applying 'postX' weights. If not set or
set to False (default), this late stage collapse will
not be performed. Otherwise, it will be averaged in a
weighted average sense where the 'postX' weights would
have already been applied during the collapsing
operation
'wts' [NoneType or Dictionary] If not set, a default
dictionary (see default values below) will be created.
It must have the follwoing keys and values:
'preX' [list of numpy arrays] It contains pre-cross-
multiplication weights. It is a list where
each element in the list is a numpy array, and
the number of elements in the list must match
the number of entries in key 'axes'. If 'axes'
is set None, 'preX' may be set to a list
with one element which is a numpy array of ones.
The number of elements in each of the numpy
arrays must be numpy broadcastable into the
number of elements along that axis in the
delay spectrum.
'preXnorm'
[boolean] If False (default), no normalization
is done after the application of weights. If
set to True, the delay spectrum will be
normalized by the sum of the weights.
'postX' [list of numpy arrays] It contains post-cross-
multiplication weights. It is a list where
each element in the list is a numpy array, and
the number of elements in the list must match
the number of entries in key 'axes'. If 'axes'
is set None, 'preX' may be set to a list
with one element which is a numpy array of ones.
The number of elements in each of the numpy
arrays must be numpy broadcastable into the
number of elements along that axis in the
delay spectrum.
'preXnorm'
[boolean] If False (default), no normalization
is done after the application of 'preX' weights.
If set to True, the delay spectrum will be
normalized by the sum of the weights.
'postXnorm'
[boolean] If False (default), no normalization
is done after the application of postX weights.
If set to True, the delay cross power spectrum
will be normalized by the sum of the weights.
cosmo [instance of cosmology class from astropy] An instance of class
FLRW or default_cosmology of astropy cosmology module. Default
uses Planck 2015 cosmology, with H0=100 h km/s/Mpc
units [string] Specifies the units of output power spectum. Accepted
values are 'Jy' and 'K' (default)) and the power spectrum will
be in corresponding squared units.
Output:
Dictionary with the keys 'triads' ((ntriads,3) array), 'triads_ind',
((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst'
((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array),
'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday'
((ndays,) array), 'oversampled' and 'resampled' corresponding to whether
resample was set to False or True in call to member function FT().
Values under keys 'triads_ind' and 'lst_ind' are numpy array
corresponding to triad and time indices used in selecting the data.
Values under keys 'oversampled' and 'resampled' each contain a
dictionary with the following keys and values:
'z' [numpy array] Redshifts corresponding to the band centers in
'freq_center'. It has shape=(nspw,)
'lags' [numpy array] Delays (in seconds). It has shape=(nlags,).
'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to
'lags'. It has shape=(nspw,nlags)
'freq_center'
[numpy array] contains the center frequencies (in Hz) of the
frequency subbands of the subband delay spectra. It is of size
n_win. It is roughly equivalent to redshift(s)
'freq_wts'
[numpy array] Contains frequency weights applied on each
frequency sub-band during the subband delay transform. It is
of size n_win x nchan.
'bw_eff'
[numpy array] contains the effective bandwidths (in Hz) of the
subbands being delay transformed. It is of size n_win. It is
roughly equivalent to width in redshift or along line-of-sight
'shape' [string] shape of the frequency window function applied. Usual
values are 'rect' (rectangular), 'bhw' (Blackman-Harris),
'bnw' (Blackman-Nuttall).
'fftpow'
[scalar] the power to which the FFT of the window was raised.
The value is be a positive scalar with default = 1.0
'lag_corr_length'
[numpy array] It is the correlation timescale (in pixels) of
the subband delay spectra. It is proportional to inverse of
effective bandwidth. It is of size n_win. The unit size of a
pixel is determined by the difference between adjacent pixels
in lags under key 'lags' which in turn is effectively inverse
of the effective bandwidth of the subband specified in bw_eff
It further contains 3 keys named 'whole', 'submodel', and 'residual'
each of which is a dictionary. 'whole' contains power spectrum info
about the input closure phases. 'submodel' contains power spectrum info
about the model that will have been subtracted (as closure phase) from
the 'whole' model. 'residual' contains power spectrum info about the
closure phases obtained as a difference between 'whole' and 'submodel'.
It contains the following keys and values:
'mean' [numpy array] Delay power spectrum incoherently estiamted over
the axes specified in xinfo['axes'] using the 'mean' key in input
cpds or attribute cPhaseDS['processed']['dspec']. It has shape
that depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are not set,
those axes will be replaced with square covariance matrices. If
collapse_axes is provided but avgcov is False, those axes will be
of shape 2*Naxis-1.
'median'
[numpy array] Delay power spectrum incoherently averaged over
the axes specified in incohax using the 'median' key in input
cpds or attribute cPhaseDS['processed']['dspec']. It has shape
that depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are not set,
those axes will be replaced with square covariance matrices. If
collapse_axes is provided bu avgcov is False, those axes will be
of shape 2*Naxis-1.
'diagoffsets'
[dictionary] Same keys corresponding to keys under
'collapse_axes' in input containing the diagonal offsets for
those axes. If 'avgcov' was set, those entries will be removed
from 'diagoffsets' since all the leading diagonal elements have
been collapsed (averaged) further. Value under each key is a
numpy array where each element in the array corresponds to the
index of that leading diagonal. This should match the size of
the output along that axis in 'mean' or 'median' above.
'diagweights'
[dictionary] Each key is an axis specified in collapse_axes and
the value is a numpy array of weights corresponding to the
diagonal offsets in that axis.
'axesmap'
[dictionary] If covariance in cross-power is calculated but is
not collapsed, the number of dimensions in the output will have
changed. This parameter tracks where the original axis is now
placed. The keys are the original axes that are involved in
incoherent cross-power, and the values are the new locations of
those original axes in the output.
'nsamples_incoh'
[integer] Number of incoherent samples in producing the power
spectrum
'nsamples_coh'
[integer] Number of coherent samples in producing the power
spectrum
Examples:
(1)
Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags)
autoinfo = {'axes': 2, 'wts': None}
xinfo = {'axes': None, 'avgcov': False, 'collapse_axes': [],
'wts':{'preX': None, 'preXnorm': False,
'postX': None, 'postXnorm': False}}
Output delay power spectrum has shape (Nspw, Nlst, 1, Ntriads, Nlags)
(2)
Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags)
autoinfo = {'axes': 2, 'wts': None}
xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [],
'wts':{'preX': None, 'preXnorm': False,
'postX': None, 'postXnorm': False},
'dlst_range': None}
Output delay power spectrum has shape
(Nspw, 2, Nlst, 1, Ntriads, Ntriads, Nlags)
diagoffsets = {1: NP.arange(n_dlst_range)},
axesmap = {1: [1,2], 3: [4,5]}
(3)
Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags)
autoinfo = {'axes': 2, 'wts': None}
xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [3],
'dlst_range': [0.0, 1.0, 2.0]}
Output delay power spectrum has shape
(Nspw, 3, Nlst, 1, 2*Ntriads-1, Nlags)
diagoffsets = {1: NP.arange(n_dlst_range),
3: NP.arange(-Ntriads,Ntriads)},
axesmap = {1: [1,2], 3: [4]}
(4)
Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags)
autoinfo = {'axes': None, 'wts': None}
xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [1,3],
'dlst_range': [1.0, 2.0, 3.0, 4.0]}
Output delay power spectrum has shape
(Nspw, 4, Ndays, 2*Ntriads-1, Nlags)
diagoffsets = {1: NP.arange(n_dlst_range),
3: NP.arange(-Ntriads,Ntriads)},
axesmap = {1: [1], 3: [3]}
(5)
Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags)
autoinfo = {'axes': None, 'wts': None}
xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': [3],
'dlst_range': None}
Output delay power spectrum has shape
(Nspw, 2, Nlst, Ndays, 1, Nlags)
diagoffsets = {1: NP.arange(n_dlst_range)}, axesmap = {1: [1,2], 3: [4]}
(6)
Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags)
autoinfo = {'axes': None, 'wts': None}
xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': []}
Output delay power spectrum has shape
(Nspw, 1, Ndays, 1, Nlags)
diagoffsets = {}, axesmap = {1: [1], 3: [3]}
------------------------------------------------------------------------
"""
if not isinstance(units,str):
raise TypeError('Input parameter units must be a string')
if units.lower() == 'k':
if not isinstance(beamparms, dict):
raise TypeError('Input beamparms must be a dictionary')
if 'freqs' not in beamparms:
beamparms['freqs'] = self.f
beamparms_orig = copy.deepcopy(beamparms)
if autoinfo is None:
autoinfo = {'axes': None, 'wts': [NP.ones(1, dtpye=NP.float)]}
elif not isinstance(autoinfo, dict):
raise TypeError('Input autoinfo must be a dictionary')
if 'axes' not in autoinfo:
autoinfo['axes'] = None
else:
if autoinfo['axes'] is not None:
if not isinstance(autoinfo['axes'], (list,tuple,NP.ndarray,int)):
raise TypeError('Value under key axes in input autoinfo must be an integer, list, tuple or numpy array')
else:
autoinfo['axes'] = NP.asarray(autoinfo['axes']).reshape(-1)
if 'wts' not in autoinfo:
if autoinfo['axes'] is not None:
autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] * len(autoinfo['axes'])
else:
autoinfo['wts'] = [NP.ones(1, dtype=NP.float)]
else:
if autoinfo['axes'] is not None:
if not isinstance(autoinfo['wts'], list):
raise TypeError('wts in input autoinfo must be a list of numpy arrays')
else:
if len(autoinfo['wts']) != len(autoinfo['axes']):
raise ValueError('Input list of wts must be same as length of autoinfo axes')
else:
autoinfo['wts'] = [NP.ones(1, dtype=NP.float)]
if xinfo is None:
xinfo = {'axes': None, 'wts': {'preX': [NP.ones(1, dtpye=NP.float)], 'postX': [NP.ones(1, dtpye=NP.float)], 'preXnorm': False, 'postXnorm': False}}
elif not isinstance(xinfo, dict):
raise TypeError('Input xinfo must be a dictionary')
if 'axes' not in xinfo:
xinfo['axes'] = None
else:
if not isinstance(xinfo['axes'], (list,tuple,NP.ndarray,int)):
raise TypeError('Value under key axes in input xinfo must be an integer, list, tuple or numpy array')
else:
xinfo['axes'] = NP.asarray(xinfo['axes']).reshape(-1)
if 'wts' not in xinfo:
xinfo['wts'] = {}
for xkey in ['preX', 'postX']:
if xinfo['axes'] is not None:
xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] * len(xinfo['axes'])
else:
xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)]
xinfo['wts']['preXnorm'] = False
xinfo['wts']['postXnorm'] = False
else:
if xinfo['axes'] is not None:
if not isinstance(xinfo['wts'], dict):
raise TypeError('wts in input xinfo must be a dictionary')
for xkey in ['preX', 'postX']:
if not isinstance(xinfo['wts'][xkey], list):
raise TypeError('{0} wts in input xinfo must be a list of numpy arrays'.format(xkey))
else:
if len(xinfo['wts'][xkey]) != len(xinfo['axes']):
raise ValueError('Input list of {0} wts must be same as length of xinfo axes'.format(xkey))
else:
for xkey in ['preX', 'postX']:
xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)]
if 'preXnorm' not in xinfo['wts']:
xinfo['wts']['preXnorm'] = False
if 'postXnorm' not in xinfo['wts']:
xinfo['wts']['postXnorm'] = False
if not isinstance(xinfo['wts']['preXnorm'], NP.bool):
raise TypeError('preXnorm in input xinfo must be a boolean')
if not isinstance(xinfo['wts']['postXnorm'], NP.bool):
raise TypeError('postXnorm in input xinfo must be a boolean')
if 'avgcov' not in xinfo:
xinfo['avgcov'] = False
if not isinstance(xinfo['avgcov'], NP.bool):
raise TypeError('avgcov under input xinfo must be boolean')
if 'collapse_axes' not in xinfo:
xinfo['collapse_axes'] = []
if not isinstance(xinfo['collapse_axes'], (int,list,tuple,NP.ndarray)):
raise TypeError('collapse_axes under input xinfo must be an integer, tuple, list or numpy array')
else:
xinfo['collapse_axes'] = NP.asarray(xinfo['collapse_axes']).reshape(-1)
if (autoinfo['axes'] is not None) and (xinfo['axes'] is not None):
if NP.intersect1d(autoinfo['axes'], xinfo['axes']).size > 0:
raise ValueError("Inputs autoinfo['axes'] and xinfo['axes'] must have no intersection")
cohax = autoinfo['axes']
if cohax is None:
cohax = []
incohax = xinfo['axes']
if incohax is None:
incohax = []
if selection is None:
selection = {'triads': None, 'lst': None, 'days': None}
else:
if not isinstance(selection, dict):
raise TypeError('Input selection must be a dictionary')
if cpds is None:
cpds = {}
sampling = ['oversampled', 'resampled']
for smplng in sampling:
if smplng == 'oversampled':
cpds[smplng] = copy.deepcopy(self.cPhaseDS)
else:
cpds[smplng] = copy.deepcopy(self.cPhaseDS_resampled)
triad_ind, lst_ind, day_ind, day_ind_eicpdiff = self.subset(selection=selection)
result = {'triads': self.cPhase.cpinfo['raw']['triads'][triad_ind], 'triads_ind': triad_ind, 'lst': self.cPhase.cpinfo['processed']['prelim']['lstbins'][lst_ind], 'lst_ind': lst_ind, 'dlst': self.cPhase.cpinfo['processed']['prelim']['dlstbins'][lst_ind], 'days': self.cPhase.cpinfo['processed']['prelim']['daybins'][day_ind], 'day_ind': day_ind, 'dday': self.cPhase.cpinfo['processed']['prelim']['diff_dbins'][day_ind]}
dlstbin = NP.mean(self.cPhase.cpinfo['processed']['prelim']['dlstbins'])
if 'dlst_range' in xinfo:
if xinfo['dlst_range'] is None:
dlst_range = None
lstshifts = NP.arange(2) # LST index offsets of 0 and 1 are only estimated
else:
dlst_range = NP.asarray(xinfo['dlst_range']).ravel() / 60.0 # Difference in LST between a pair of LST (in hours)
if dlst_range.size == 1:
dlst_range = NP.insert(dlst_range, 0, 0.0)
lstshifts = NP.arange(max([0, NP.ceil(1.0*dlst_range.min()/dlstbin).astype(NP.int)]), min([NP.ceil(1.0*dlst_range.max()/dlstbin).astype(NP.int), result['lst'].size]))
else:
dlst_range = None
lstshifts = NP.arange(2) # LST index offsets of 0 and 1 are only estimated
result['lstXoffsets'] = lstshifts * dlstbin # LST interval corresponding to diagonal offsets created by the LST covariance
for smplng in sampling:
result[smplng] = {}
wl = FCNST.c / (cpds[smplng]['freq_center'] * U.Hz)
z = CNST.rest_freq_HI / cpds[smplng]['freq_center'] - 1
dz = CNST.rest_freq_HI / cpds[smplng]['freq_center']**2 * cpds[smplng]['bw_eff']
dkprll_deta = DS.dkprll_deta(z, cosmo=cosmo)
kprll = dkprll_deta.reshape(-1,1) * cpds[smplng]['lags']
rz_los = cosmo.comoving_distance(z) # in Mpc/h
drz_los = FCNST.c * cpds[smplng]['bw_eff']*U.Hz * (1+z)**2 / (CNST.rest_freq_HI * U.Hz) / (cosmo.H0 * cosmo.efunc(z)) # in Mpc/h
if units == 'Jy':
jacobian1 = 1 / (cpds[smplng]['bw_eff'] * U.Hz)
jacobian2 = drz_los / (cpds[smplng]['bw_eff'] * U.Hz)
temperature_from_fluxdensity = 1.0
elif units == 'K':
beamparms = copy.deepcopy(beamparms_orig)
omega_bw = self.beam3Dvol(beamparms, freq_wts=cpds[smplng]['freq_wts'])
jacobian1 = 1 / (omega_bw * U.Hz) # The steradian is present but not explicitly assigned
jacobian2 = rz_los**2 * drz_los / (cpds[smplng]['bw_eff'] * U.Hz)
temperature_from_fluxdensity = wl**2 / (2*FCNST.k_B)
else:
raise ValueError('Input value for units invalid')
factor = jacobian1 * jacobian2 * temperature_from_fluxdensity**2
result[smplng]['z'] = z
result[smplng]['kprll'] = kprll
result[smplng]['lags'] = NP.copy(cpds[smplng]['lags'])
result[smplng]['freq_center'] = cpds[smplng]['freq_center']
result[smplng]['bw_eff'] = cpds[smplng]['bw_eff']
result[smplng]['shape'] = cpds[smplng]['shape']
result[smplng]['freq_wts'] = cpds[smplng]['freq_wts']
result[smplng]['lag_corr_length'] = cpds[smplng]['lag_corr_length']
for dpool in ['whole', 'submodel', 'residual']:
if dpool in cpds[smplng]:
result[smplng][dpool] = {}
inpshape = list(cpds[smplng]['whole']['dspec']['mean'].shape)
inpshape[1] = lst_ind.size
inpshape[2] = day_ind.size
inpshape[3] = triad_ind.size
if len(cohax) > 0:
nsamples_coh = NP.prod(NP.asarray(inpshape)[NP.asarray(cohax)])
else:
nsamples_coh = 1
if len(incohax) > 0:
nsamples = NP.prod(NP.asarray(inpshape)[NP.asarray(incohax)])
nsamples_incoh = nsamples * (nsamples - 1)
else:
nsamples_incoh = 1
twts_multidim_idx = NP.ix_(lst_ind,day_ind,triad_ind,NP.arange(1)) # shape=(nlst,ndays,ntriads,1)
dspec_multidim_idx = NP.ix_(NP.arange(wl.size),lst_ind,day_ind,triad_ind,NP.arange(inpshape[4])) # shape=(nspw,nlst,ndays,ntriads,nchan)
max_wt_in_chan = NP.max(NP.sum(cpds[smplng]['whole']['dspec']['twts'].data, axis=(0,1,2)))
select_chan = NP.argmax(NP.sum(cpds[smplng]['whole']['dspec']['twts'].data, axis=(0,1,2)))
twts = NP.copy(cpds[smplng]['whole']['dspec']['twts'].data[:,:,:,[select_chan]]) # shape=(nlst,ndays,ntriads,nlags=1)
if nsamples_coh > 1:
awts_shape = tuple(NP.ones(cpds[smplng]['whole']['dspec']['mean'].ndim, dtype=NP.int))
awts = NP.ones(awts_shape, dtype=NP.complex)
awts_shape = NP.asarray(awts_shape)
for caxind,caxis in enumerate(cohax):
curr_awts_shape = NP.copy(awts_shape)
curr_awts_shape[caxis] = -1
awts = awts * autoinfo['wts'][caxind].reshape(tuple(curr_awts_shape))
for stat in ['mean', 'median']:
if dpool == 'submodel':
dspec = | NP.copy(cpds[smplng][dpool]['dspec'][dspec_multidim_idx]) | numpy.copy |
#!/usr/bin/env python
# coding: utf-8
from evidently.analyzers.base_analyzer import Analyzer
import pandas as pd
from pandas.api.types import is_numeric_dtype
import numpy as np
from scipy.stats import ks_2samp, chisquare, probplot
from sklearn import metrics
class RegressionPerformanceAnalyzer(Analyzer):
def calculate(self, reference_data: pd.DataFrame, production_data: pd.DataFrame, column_mapping):
result = dict()
if column_mapping:
date_column = column_mapping.get('datetime')
id_column = column_mapping.get('id')
target_column = column_mapping.get('target')
prediction_column = column_mapping.get('prediction')
num_feature_names = column_mapping.get('numerical_features')
target_names = column_mapping.get('target_names')
if num_feature_names is None:
num_feature_names = []
else:
num_feature_names = [name for name in num_feature_names if is_numeric_dtype(reference_data[name])]
cat_feature_names = column_mapping.get('categorical_features')
if cat_feature_names is None:
cat_feature_names = []
else:
cat_feature_names = [name for name in cat_feature_names if is_numeric_dtype(reference_data[name])]
else:
date_column = 'datetime' if 'datetime' in reference_data.columns else None
id_column = None
target_column = 'target' if 'target' in reference_data.columns else None
prediction_column = 'prediction' if 'prediction' in reference_data.columns else None
utility_columns = [date_column, id_column, target_column, prediction_column]
num_feature_names = list(set(reference_data.select_dtypes([np.number]).columns) - set(utility_columns))
cat_feature_names = list(set(reference_data.select_dtypes([np.object]).columns) - set(utility_columns))
target_names = None
result["utility_columns"] = {'date':date_column, 'id':id_column, 'target':target_column, 'prediction':prediction_column}
result["cat_feature_names"] = cat_feature_names
result["num_feature_names"] = num_feature_names
result['metrics'] = {}
if target_column is not None and prediction_column is not None:
reference_data.replace([np.inf, -np.inf], np.nan, inplace=True)
reference_data.dropna(axis=0, how='any', inplace=True)
#calculate quality metrics
me = np.mean(reference_data[prediction_column] - reference_data[target_column])
sde = | np.std(reference_data[prediction_column] - reference_data[target_column], ddof = 1) | numpy.std |
#
# Copyright (c) 2015, <NAME>
# All rights reserved.
#
import numpy as np
from triangulum.utils import aabb
from triangulum.third_party import transformations
def norm2(a):
return (a * a).sum(-1)
def norm(a):
return np.sqrt(norm2(a))
def normalize(a):
return a / norm(a)
def homogenize(a, w=1.0):
"""
Example:
a=[
[a00, a01],
[a10, a11],
[a20, a21]
], w=1
->
result=[
[a00, a01, w],
[a10, a11, w],
[a20, a21, w]
]
"""
return np.hstack([a, np.full((len(a), 1), w, a.dtype)])
def homo_translate(matrix, points):
points = np.array(points)
points_list = np.atleast_2d(points)
if points_list.shape != points.shape:
single_input = True
else:
single_input = False
points = points_list
if points.shape[-1] < matrix.shape[1]:
points = homogenize(points)
p = np.dot(points, matrix.T)
p = p[:, :-1] / p[:, -1, np.newaxis]
if single_input:
return p[0]
else:
return p
def scale_matrix(s, d=2):
if np.isscalar(s):
s = np.array([s]*d)
return np.diag(np.hstack([s, 1.0]))
def rotate_matrix2d(alpha):
return np.array([[np.cos(alpha), -np.sin(alpha), 0],
[np.sin(alpha), np.cos(alpha), 0],
[ 0, 0, 1]])
# def apply_matrix_to(matrix, indicies, dim): TODO: implement
# n, m = matrix.shape
# assert n == m
#
# indicies = list(indicies)
# for i in range(n):
# if i not in indicies:
# indicies.append(i)
#
# pre_permutation = np.zeros((n, n), np.int32)
# for i, j in enumerate(indicies):
# pre_permutation[i, j] = 1
#
# return np.dot(np.linalg.inv(pre_permutation), np.dot(matrix, pre_permutation))
def look_at_matrix(eye, target, up=(0, 0, 1), right=None):
"""
Camera frustum looks along -Z axis. See gluLookAt.
"""
# TODO: review
forward = np.float64(target) - eye
forward = normalize(forward)
if np.allclose(target[:2], eye[:2]) and up[2] == 1:
if right is not None:
right = normalize(right)
else:
right = normalize(np.array([1, 0, 0]))
else:
right = normalize(np.cross(forward, up))
down = np.cross(forward, right)
R = np.float64([right, -down, -forward])
tvec = -np.dot(R, eye)
return np.float32(np.vstack([np.column_stack([R, tvec]), [0, 0, 0, 1]]))
def ortho_matrix(aspect, near, far, width):
"""
Camera frustum looks along -Z axis.
Result frustum camera looks along -Z axis, like in OpenGL.
"""
height = aspect * width
P = transformations.clip_matrix(-width/2, width/2, -height/2, height/2, near, far, perspective=False)
P = np.dot(P, scale_matrix([1, 1, -1]))
return np.float32(P)
def perspective_matrix(aspect, near, far, fov_h=45):
"""
Camera frustum looks along -Z axis.
Result frustum camera looks along -Z axis, like in OpenGL.
"""
tan = np.tan(np.radians(fov_h) / 2)
right = tan * near
left = -right
bottom, top = aspect * left, aspect * right
P = transformations.clip_matrix(left, right, bottom, top, near, far, perspective=True)
P = np.dot(P, scale_matrix([1, 1, -1]))
return np.float32(-P)
def create_frustum_points(rt_mtx, k_mtx, ratio, frustums_depth=1.0):
rt_inv = np.linalg.inv(rt_mtx)
camera_corners = homo_translate(np.linalg.inv(k_mtx), aabb.rect_to_quad([[-1.0, -1.0 * ratio],
[1.0, 1.0 * ratio]]))
corners = np.hstack([camera_corners, [[-1]] * 4]) * frustums_depth
frustum_points = homo_translate(rt_inv, np.vstack([[[0, 0, 0]], corners]))
return frustum_points
def create_points_in_frustum(ps, frustum_points, ratio=1.0):
camera, ur, ul, ll, lr = frustum_points
result = ul + (ur - ul) * ps[:, 0].reshape(-1, 1) + (ll - ul) * (ps[:, 1].reshape(-1, 1) / ratio)
return result
def vdot(a, b):
"""
>>> vdot([1, 0, 0], [0, 1, 0])
array([0, 0, 1])
>>> vdot([1, 0, 0], [0, 0, 1])
array([ 0, -1, 0])
>>> vdot([1, 1, 0], [0, 0, 1])
array([ 1, -1, 0])
"""
return np.array([a[1] * b[2] - a[2] * b[1],
a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]])
def plane_by_points(points):
"""
>>> plane_by_points([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
array([ 1, 1, 1, -1])
"""
a, b, c = np.array(points)
ab, ac = b - a, c - a
n = vdot(ab, ac)
return np.hstack([n, -np.dot(n, points[0])])
def intersect_plane_line(plane, line_v, line_p):
"""
>>> intersect_plane_line([1, 0, 0, -1], [1, 1, 1], [-1, -1, -1])
array([ 1., 1., 1.])
>>> intersect_plane_line([0, 1, 0, -1], [1, 1, 1], [-1, 0, -1])
array([ 0., 1., 0.])
>>> intersect_plane_line([0, 0, 10, -10], [1, 1, 2], [-1, 0, -1])
array([ 0., 1., 1.])
"""
assert len(plane) == 4
assert len(line_v) == len(line_p) == 3
t = - (np.dot(plane, | np.hstack([line_p, 1]) | numpy.hstack |
import itertools
import numpy as np
"""
MAUCpy
~~~~~~
Contains two equations from Hand and Till's 2001 paper on a multi-class
approach to the AUC. The a_value() function is the probabilistic approximation
of the AUC found in equation 3, while MAUC() is the pairwise averaging of this
value for each of the classes. This is equation 7 in their paper.
Source of script: https://gist.github.com/stulacy/672114792371dc13b247
"""
def a_value(probabilities, zero_label=0, one_label=1):
"""
Approximates the AUC by the method described in Hand and Till 2001,
equation 3.
NB: The class labels should be in the set [0,n-1] where n = # of classes.
The class probability should be at the index of its label in the
probability list.
I.e. With 3 classes the labels should be 0, 1, 2. The class probability
for class '1' will be found in index 1 in the class probability list
wrapped inside the zipped list with the labels.
Args:
probabilities (list): A zipped list of the labels and the
class probabilities in the form (m = # data instances):
[(label1, [p(x1c1), p(x1c2), ... p(x1cn)]),
(label2, [p(x2c1), p(x2c2), ... p(x2cn)])
...
(labelm, [p(xmc1), p(xmc2), ... (pxmcn)])
]
zero_label (optional, int): The label to use as the class '0'.
Must be an integer, see above for details.
one_label (optional, int): The label to use as the class '1'.
Must be an integer, see above for details.
Returns:
The A-value as a floating point.
"""
# Obtain a list of the probabilities for the specified zero label class
expanded_points = [(instance[0], instance[1][zero_label]) for instance in probabilities if instance[0] == zero_label or instance[0] == one_label]
sorted_ranks = sorted(expanded_points, key=lambda x: x[1])
n0 = sum(1 for point in sorted_ranks if point[0] == zero_label)
n1 = sum(1 for point in sorted_ranks if point[0] == one_label)
sum_ranks = sum(index+1 for index, point in enumerate(sorted_ranks) if point[0] == zero_label) # Add 1 as ranks are one-based
return (sum_ranks - n0*(n0+1) / 2.0) / float(n0 * n1) # Eqn 3
def MAUC(data, num_classes=None):
"""
Calculates the MAUC over a set of multi-class probabilities and
their labels. This is equation 7 in Hand and Till's 2001 paper.
NB: The class labels should be in the set [0,n-1] where n = # of classes.
The class probability should be at the index of its label in the
probability list.
I.e. With 3 classes the labels should be 0, 1, 2. The class probability
for class '1' will be found in index 1 in the class probability list
wrapped inside the zipped list with the labels.
Args:
data (list): A zipped list (NOT A GENERATOR) of the labels and the
class probabilities in the form (m = # data instances):
[(label1, [p(x1c1), p(x1c2), ... p(x1cn)]),
(label2, [p(x2c1), p(x2c2), ... p(x2cn)])
...
(labelm, [p(xmc1), p(xmc2), ... (pxmcn)])
]
num_classes (int): The number of classes in the dataset - 1.
Returns:
The MAUC as a floating point value.
"""
if num_classes is None:
num_classes = len(data[0][1]) - 1
# Have to take average of A value with both classes acting as label 0 as this
# gives different outputs for more than 2 classes
sum_avals = sum((a_value(data, zero_label=pairing[0], one_label=pairing[1]) for pairing in itertools.permutations(range(num_classes), r=2)))
return sum_avals / float(num_classes * (num_classes-1)) # Eqn 7
def calcBCA(estimLabels, trueLabels, nrClasses):
# Balanced Classification Accuracy
bcaAll = []
for c0 in range(nrClasses):
for c1 in range(c0+1, nrClasses):
# c0 = positive class & c1 = negative class
TP = np.sum((estimLabels == c0) & (trueLabels == c0))
TN = np.sum((estimLabels == c1) & (trueLabels == c1))
FP = np.sum((estimLabels == c1) & (trueLabels == c0))
FN = np.sum((estimLabels == c0) & (trueLabels == c1))
# sometimes the sensitivity of specificity can be NaN, if the user doesn't forecast one of the classes.
# In this case we assume a default value for sensitivity/specificity
if (TP+FN) == 0:
sensitivity = 0.5
else:
sensitivity = TP/(TP+FN)
if (TN+FP) == 0:
specificity = 0.5
else:
specificity = TN/(TN+FP)
bcaCurr = 0.5*(sensitivity+specificity)
bcaAll += [bcaCurr]
# print('bcaCurr %f TP %f TN %f FP %f FN %f' % (bcaCurr, TP, TN, FP, FN))
return np.mean(bcaAll)
def calculate_WES(estimates, lowers, uppers, trues):
"""Weighted Error Score"""
coefs = 1 / (uppers - lowers)
return np.sum(coefs * np.abs(estimates - trues)) / np.sum(coefs)
def calculate_CPA(estimates, lowers, uppers, trues):
"""Coverage Probability Accuracy for 50% Confidence Interval"""
cov_prob = | np.sum((lowers < trues) & (uppers > trues)) | numpy.sum |
import functools
import typing as tp
import unittest
from dataclasses import dataclass
import einops
import hypothesis as hp
import jax
import jax.numpy as jnp
import numpy as np
from flax import linen
from hypothesis import strategies as st
import treex as tx
BIAS_INITS = (
tx.initializers.zeros,
tx.initializers.ones,
tx.initializers.normal(),
tx.initializers.uniform(),
)
KERNEL_INITS = BIAS_INITS + (
tx.initializers.xavier_uniform(),
tx.initializers.xavier_normal(),
tx.initializers.lecun_uniform(),
tx.initializers.lecun_normal(),
tx.initializers.kaiming_uniform(),
tx.initializers.kaiming_normal(),
)
A = tp.TypeVar("A")
class TestEmbed:
@hp.given(
batch_size=st.integers(min_value=1, max_value=32),
length=st.integers(min_value=1, max_value=32),
num_embeddings=st.integers(min_value=1, max_value=32),
training=st.booleans(),
features_out=st.integers(min_value=1, max_value=32), #
embedding_init=st.sampled_from(KERNEL_INITS),
)
@hp.settings(deadline=None, max_examples=20)
def test_equivalence(
self,
batch_size,
length,
num_embeddings,
training,
features_out,
embedding_init,
):
shape = (batch_size, length, length)
x = | np.random.randint(num_embeddings, size=shape) | numpy.random.randint |
import sys
sys.path.append('../')
from assignment2.layers import softmax, cross_entropy_loss
import numpy as np
def l2_regularization(W, reg_strength):
'''
Computes L2 regularization loss on weights and its gradient
Arguments:
W, np array - weights
reg_strength - float value
Returns:
loss, single value - l2 regularization loss
gradient, np.array same shape as W - gradient of weight by l2 loss
'''
loss = reg_strength * np.trace(np.matmul(W.T, W)) # L2(W) = λ * tr(W.T * W)
grad = 2 * reg_strength * W # dL2(W)/dW = 2 * λ * W
return loss, grad # L2(W), dL2(W)/dW
def softmax_with_cross_entropy(predictions, target_index):
'''
Computes softmax and cross-entropy loss for model predictions,
including the gradient
Arguments:
predictions, np array, shape is either (N) or (batch_size, N) -
classifier output
target_index: np array of int, shape is (1) or (batch_size) -
index of the true class for given sample(s)
Returns:
loss, single value - cross-entropy loss
dprediction, np array same shape as predictions - gradient of predictions by loss value
'''
probs = softmax(predictions)
loss = cross_entropy_loss(probs, target_index)
if len(probs.shape) == 1:
subtr = np.zeros(probs.shape)
subtr[target_index] = 1
dprediction = probs - subtr
else:
subtr = np.zeros(probs.shape)
subtr[range(len(target_index)), target_index] = 1
dprediction = (probs - subtr) / (predictions.shape[0])
return loss, dprediction
class Param:
'''
Trainable parameter of the model
Captures both parameter value and the gradient
'''
def __init__(self, value):
self.value = value
self.grad = np.zeros_like(value)
class ReLULayer:
def __init__(self):
self.X = None
def forward(self, X):
self.X = X.copy()
layer_X = X.copy()
layer_X[layer_X < 0] = 0
return layer_X
def backward(self, d_out):
X_back = self.X.copy()
X_back[X_back > 0] = 1
X_back[X_back <= 0] = 0
d_result = X_back * d_out
return d_result
def params(self):
return {}
def reset_grad(self):
pass
class FullyConnectedLayer:
def __init__(self, n_input, n_output):
self.W = Param(0.001 * np.random.randn(n_input, n_output))
self.B = Param(0.001 * np.random.randn(1, n_output))
self.X = None
def forward(self, X):
self.X = Param(X.copy())
output = np.dot(self.X.value, self.W.value) + self.B.value
return output
def backward(self, d_out):
self.W.grad = np.dot(self.X.value.T, d_out)
self.B.grad = np.array([np.sum(d_out, axis=0)])
d_input = np.dot(d_out, self.W.value.T)
return d_input
def params(self):
return { 'W': self.W, 'B': self.B }
def reset_grad(self):
self.W.grad = np.zeros_like(self.W.value)
self.B.grad = np.zeros_like(self.B.value)
class ConvolutionalLayer:
def __init__(self, in_channels, out_channels,
filter_size, padding):
'''
Initializes the layer
Arguments:
in_channels, int - number of input channels
out_channels, int - number of output channels
filter_size, int - size of the conv filter
padding, int - number of 'pixels' to pad on each side
'''
self.filter_size = filter_size
self.in_channels = in_channels
self.out_channels = out_channels
self.W = Param(
np.random.randn(filter_size, filter_size,
in_channels, out_channels)
)
self.B = Param(np.zeros(out_channels))
self.padding = padding
self.X = None
def forward(self, X):
batch_size, height, width, channels = X.shape
self.X = X
if self.padding:
self.X = np.zeros((batch_size,
height + 2 * self.padding,
width + 2 * self.padding,
channels), dtype=X.dtype)
self.X[:, self.padding: -self.padding, self.padding: -self.padding, :] = X
_, height, width, channels = self.X.shape
out_height = height - self.filter_size + 1
out_width = width - self.filter_size + 1
output = []
for y in range(out_height):
row = []
for x in range(out_width):
x_window = self.X[:, y: y + self.filter_size, x: x + self.filter_size, :]
x_window = np.transpose(x_window, axes=[0, 3, 2, 1])
x_window = x_window.reshape((batch_size, self.filter_size ** 2 * channels))
w_window = np.transpose(self.W.value, axes=[2, 0, 1, 3])
w_reshape = w_window.reshape((self.filter_size ** 2 * self.in_channels, self.out_channels))
out = np.dot(x_window, w_reshape)
row.append(np.array([out], dtype=self.W.value.dtype).reshape((batch_size, 1, 1, self.out_channels)))
output.append(np.dstack(row))
output = np.hstack(output) + self.B.value
return output
def backward(self, d_out):
batch_size, height, width, channels = self.X.shape
_, out_height, out_width, out_channels = d_out.shape
d_inp = np.zeros(self.X.shape)
for y in range(out_height):
for x in range(out_width):
d_window = d_out[:, y, x, :]
x_window = self.X[:, y: y + self.filter_size, x: x + self.filter_size, :]
x_window = np.transpose(x_window, axes=[0, 3, 1, 2])
x_window = x_window.reshape((batch_size, self.filter_size ** 2 * channels))
x_transpose = x_window.transpose()
w_window = np.transpose(self.W.value, axes=[2, 0, 1, 3])
w_window = w_window.reshape((self.filter_size ** 2 * self.in_channels, self.out_channels))
w_transpose = w_window.transpose()
d_w_window = np.dot(x_transpose, d_window)
d_w_window = d_w_window.reshape(self.in_channels, self.filter_size, self.filter_size, self.out_channels)
d_w_transpose = np.transpose(d_w_window, axes=[2, 1, 0, 3])
self.W.grad += d_w_transpose
E = np.ones(shape=(1, batch_size))
B = np.dot(E, d_window)
B = B.reshape((d_window.shape[1]))
self.B.grad += B
d_inp_xy = np.dot(d_window, w_transpose)#d_window.dot(w_window.transpose())
d_inp_xy = d_inp_xy.reshape((batch_size, channels, self.filter_size, self.filter_size))
d_inp_xy = np.transpose(d_inp_xy, axes=[0, 3, 2, 1])
d_inp[:, y: y + self.filter_size, x: x + self.filter_size, :] += d_inp_xy
if self.padding:
d_inp = d_inp[:, self.padding: -self.padding, self.padding: -self.padding, :]
return d_inp
def params(self):
return {'W': self.W, 'B': self.B }
def reset_grad(self):
self.W.grad = np.zeros_like(self.W.value)
self.B.grad = np.zeros_like(self.B.value)
class MaxPoolingLayer:
def __init__(self, pool_size, stride):
'''
Initializes the max pool
Arguments:
pool_size, int - area to pool
stride, int - step size between pooling windows
'''
self.pool_size = pool_size
self.stride = stride
self.X = None
def forward(self, X):
batch_size, height, width, channels = X.shape
self.X = X
out_height = (height - self.pool_size) / self.stride + 1
out_width = (width - self.pool_size) / self.stride + 1
if (not float(out_height).is_integer() and not float(out_width).is_integer()):
raise Exception(f"Stride and pool size aren't consistent for {height}, {width}")
out = np.zeros([int(batch_size), int(out_height), int(out_width), int(channels)])
# TODO: Implement maxpool forward pass
# Hint: Similarly to Conv layer, loop on
# output x/y dimension
y_1 = 0
for y in range(int(out_height)):
x_1 = 0
for x in range(int(out_width)):
out[:, y, x, :] += np.amax(self.X[:, y_1:y_1 + self.pool_size, x_1:x_1 + self.pool_size, :],
axis=(1, 2))
x_1 += self.stride
y_1 += self.stride
return out
def backward(self, d_out):
batch_size, height, width, channels = self.X.shape
_, out_height, out_width, channels = d_out.shape
in_l = | np.zeros_like(self.X) | numpy.zeros_like |
# This simulates determinatally-thinned point processes that have been
# fitted to thinned-point process based on the method outlined in the paper
# by Blaszczyszyn and Keeler[1], which is essentially the method developed
# by Kulesza and Taskar[2].
#
# This is the third file (of three files) to run to reproduce results similar
# to those presented in the paper by Blaszczyszyn and Keeler[1].
#
# The data used for fitting (or training) is stored in the file Subset.mat,
# which is generated with the MATLAB file SubsetGenerate.m; see
#
# https://github.com/hpaulkeeler/DetPoisson_MATLAB
#
# The fitting paramters are stored locally in the file SubsetFitParam.npz
#
# This code was originally written by <NAME> in MATLAB; see
# https://github.com/hpaulkeeler/DetPoisson_MATLAB
#
# REQUIREMENTS:
# Uses Statistics (and Machine learning) Toolbox for random variable.
#
# Author: <NAME>, Inria/ENS, Paris, and University of Melbourne,
# Melbourne, 2019
#
# References:
# [1] Blaszczyszyn and Keeler, Determinantal thinning of point processes
# with network learning applications, 2018.
# [2] Kulesza and Taskar, "Determinantal point processes for machine
# learning",Now Publisers, 2012
# [3] <NAME>, Kendall, and Mecke, "Stochastic geometry and its
# applications", Wiley.
# [4] Baddeley, Rubak and Turner, "Spatial point patterns: Methodology and
# applications with R, 2016.
# [5] Shirai and Takahashi, "Random point fields associated with certain
# Fredholm determinants I -- fermion, poisson and boson point", 2003.12
import numpy as np; #NumPy package for arrays, random number generation, etc
import matplotlib.pyplot as plt #for plotting
from matplotlib import collections as mc #for plotting line segments
from scipy.io import loadmat #for reading mat files
from scipy.optimize import minimize #For optimizing
from scipy.stats import poisson #for the Poisson probability mass function
from funNeighbourL import funNeighbourL
from funSimSimpleLDPP import funSimSimpleLDPP
plt.close("all"); # close all figures
numbSim=10**3;
###START Load up values from MATLAB .mat file START###
dataMATLAB=loadmat('Subset.mat');
lambda0=np.double(dataMATLAB['lambda']);#intensity of underlying Poisson PP
xx0=np.double(dataMATLAB['xx0']);
yy0=np.double(dataMATLAB['yy0']);
areaSample=np.double(dataMATLAB['areaSample']); #area of sample window
rSub=np.double(dataMATLAB['rSub']); #radius of matern or triangular process
lambdaSub=np.double(dataMATLAB['lambdaSub']); #intensity of subset PP
windowSample=dataMATLAB['windowSample'][0]; #vector describing window dims
choiceModel=np.int(dataMATLAB['choiceModel']); #model number (ie 1,2 or 3)
labelModel=str(dataMATLAB['labelModel'][0]); #name/label of model
booleDisk=np.int(dataMATLAB['booleDisk'])!=0; #if simulation window is disk
#x/y values of all underlying Poisson PPs
ppStructTemp=dataMATLAB['ppStructPoisson'];
numbSimTotal=ppStructTemp.size; #total number of simulations
#extract data for underlying Poisson point processes
xxList=[np.concatenate(ppStructTemp[ss][0][0]) for ss in range(numbSimTotal)];
yyList=[np.concatenate(ppStructTemp[ss][0][1]) for ss in range(numbSimTotal)];
ppXYPoisson=[(xxList[ss],yyList[ss])for ss in range(numbSimTotal)];
nList=[np.int(ppStructTemp[ss][0][2]) for ss in range(numbSimTotal)];
nArray= | np.array(nList) | numpy.array |
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
SIGMOID_THRESHOLD_MIN = -40
SIGMOID_THRESHOLD_MAX = 13
EXP_MAX_INPUT = 40
np.set_printoptions(threshold=1e6, suppress=True)
def sigmoid(x):
y = np.copy(x)
y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
return 1. / (1. + np.exp(-y))
def tanh(x):
y = -2. * x
y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
return (2. / (1. + np.exp(y))) - 1.
def gru_reference(input, w, num_direction, num_layers):
'''Compute bidirection gru for reference.'''
seq_len, batch_size, hidden_size = input.shape
def step(step_in, pre_h, wu, wr, wc, ru, rr, rc, bx_u, bx_r, bx_c, bh_u,
bh_r, bh_c):
reset_gate = sigmoid(
np.matmul(step_in, wu) + np.matmul(pre_h, ru) + bx_u + bh_u)
update_gate = sigmoid(
| np.matmul(step_in, wr) | numpy.matmul |
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 12 18:07:05 2018
@author: Denis
"""
import time
import numpy as np
def borders_m(data_cube, infos):
print('%s : Creating borders masks - start' % time.asctime())
masks = 0*data_cube
nan_masks = np.isnan(masks)
ag = infos.height
bg = 1
cg = infos.large
dg = 1
for i in range(infos.n_steps):
a = 0
ca = 1
b = infos.height-1
cb = 1
c = 0
cc = 1
d = infos.large-1
cd = 1
cont = 1
testnan = sum(sum( | np.logical_not(nan_masks[i]) | numpy.logical_not |
from maxcutpy import RandomMaxCut
import numpy as np
def test_random_initialization():
matrix = | np.array([[0,1,1],[1,0,5],[1,5,0]]) | numpy.array |
#
# EOSManager.py
#
# SEE ALSO
# - util_WriteXMLWithEOS
# - gwemlightcurves.KNTable
# SERIOUS LIMITATIONS
# - EOSFromFile : File i/o for each EOS creation will slow things donw. This command is VERY trivial, so we should be able
# to directly create the structure ourselves, using eos_alloc_tabular
# https://github.com/lscsoft/lalsuite/blob/master/lalsimulation/src/LALSimNeutronStarEOSTabular.c
rosDebug=False
import numpy as np
import os
import sys
import lal
import lalsimulation as lalsim
from scipy.integrate import quad
import scipy.interpolate as interp
import scipy
#import gwemlightcurves.table as gw_eos_table
from . import MonotonicSpline as ms
C_CGS=2.997925*10**10 # Argh, Monica!
DENSITY_CGS_IN_MSQUARED=7.42591549e-25 # g/cm^3 m^2 //GRUnits. Multiply by this to convert from CGS -> 1/m^2 units (_geom)
###
### SERVICE 0: General EOS structure
###
class EOSConcrete:
"""
Class characterizing a specific EOS solution. This structure *SHOULD*
- auto-build the mass-radius via a TOV solve
- provides ability to query the lambda(m) relationship and (in the future) higher-order multipole moments; etc
As many of these features are already provided by lalsimulation,
"""
def __init__(self,name=None):
self.name=name
self.eos = None
self.eos_fam = None
return None
def lambda_from_m(self, m):
eos_fam = self.eos_fam
if m<10**15:
m=m*lal.MSUN_SI
k2=lalsim.SimNeutronStarLoveNumberK2(m, eos_fam)
r=lalsim.SimNeutronStarRadius(m, eos_fam)
m=m*lal.G_SI/lal.C_SI**2
lam=2./(3*lal.G_SI)*k2*r**5
dimensionless_lam=lal.G_SI*lam*(1/m)**5
return dimensionless_lam
def pressure_density_on_grid_alternate(self,logrho_grid,enforce_causal=False):
"""
pressure_density_on_grid.
Input and output grid units are in SI (rho: kg/m^3; p = N/m^2)
Pressure provided by lalsuite (=EOM integration)
Density computed by m*n = (epsilon+p)/c^2mn exp(-h), which does NOT rely on lalsuite implementation
"""
dat_out = np.zeros(len(logrho_grid))
fam = self.eos_fam
eos = self.eos
npts_internal = 10000
p_internal = np.zeros(npts_internal)
rho_internal = np.zeros(npts_internal)
epsilon_internal = np.zeros(npts_internal)
hmax = lalsim.SimNeutronStarEOSMaxPseudoEnthalpy(eos)
if enforce_causal:
# strip out everything except the causal part.
hmax = lalsim.SimNeutronStarEOSMinAcausalPseudoEnthalpy(eos)
h = np.linspace(0.0001,hmax,npts_internal)
for indx in np.arange(npts_internal):
p_internal[indx] = lalsim.SimNeutronStarEOSPressureOfPseudoEnthalpy(h[indx],eos) # SI. Multiply by 10 to get CGS
epsilon_internal[indx] =lalsim.SimNeutronStarEOSEnergyDensityOfPseudoEnthalpy(h[indx],eos) # SI. Note factor of C^2 needed to get mass density
rho_internal[indx] =np.exp(-h[indx])* (epsilon_internal[indx]+p_internal[indx])/(lal.C_SI**2) #
# print epsilon_internal[10],rho_internal[10], p_internal[10], h[10]
logp_of_logrho = interp.interp1d(np.log10(rho_internal),np.log10(p_internal),kind='linear',bounds_error=False,fill_value=np.inf) # should change to Monica's spline
# print logrho_grid,
return logp_of_logrho(logrho_grid)
def pressure_density_on_grid(self,logrho_grid,reference_pair=None,enforce_causal=False):
"""
pressure_density_on_grid.
Input and output grid units are in SI (rho: kg/m^3; p = N/m^2)
POTENTIAL PROBLEMS OF USING LALSUITE
- lalinference_o2 / master: Unless patched, the *rest mass* density is not reliable.
To test with the unpatched LI version, use reference_pair to specify a low-density EOS.
This matching is highly suboptimal, so preferably test either (a) a patched code or (b) the alternative code below
"""
dat_out = np.zeros(len(logrho_grid))
fam = self.eos_fam
eos = self.eos
npts_internal = 10000
p_internal = np.zeros(npts_internal)
rho_internal = np.zeros(npts_internal)
hmax = lalsim.SimNeutronStarEOSMaxPseudoEnthalpy(eos)
if enforce_causal:
# strip out everything except the causal part.
hmax = lalsim.SimNeutronStarEOSMinAcausalPseudoEnthalpy(eos)
h = np.linspace(0.0001,hmax,npts_internal)
for indx in np.arange(npts_internal):
rho_internal[indx] = lalsim.SimNeutronStarEOSRestMassDensityOfPseudoEnthalpy(h[indx],eos) # SI. Multiply by 10^(-3) to get CGS
p_internal[indx] = lalsim.SimNeutronStarEOSPressureOfPseudoEnthalpy(h[indx],eos) # SI. Multiply by 10 to get CGS
if not (reference_pair is None):
indx_match = np.argmin( np.abs(np.log10(p_internal) - np.log10(reference_pair[1]))) # force agreement of densities at target pressure, if requested! Addresses bug /ambiguity in scaling of rest mass estimate; intend to apply in highly nonrelativistic regime
delta_rho = np.log10(reference_pair[0]) -np.log10(rho_internal[indx_match])
rho_internal *= np.power(10, delta_rho)
# print np.log10(np.c_[rho_internal,p_internal])
logp_of_logrho = interp.interp1d(np.log10(rho_internal),np.log10(p_internal),kind='linear',bounds_error=False,fill_value=np.inf) # should change to Monica's spline
# print logrho_grid,
return logp_of_logrho(logrho_grid)
def test_speed_of_sound_causal(self, test_only_under_mmax=True,fast_test=True):
"""
Test if EOS satisfies speed of sound.
Relies on low-level lalsimulation interpolation routines to get v(h) and as such is not very reliable
By DEFAULT, we are testing the part of the EOS that is
- at the largest pressure (assuming monotonic sound speed)
- associated with the maximum mass NS that is stable
We can also test the full table that is provided to us.
https://git.ligo.org/lscsoft/lalsuite/blob/lalinference_o2/lalinference/src/LALInference.c#L2513
"""
npts_internal = 1000
eos = self.eos
fam = self.eos_fam
# Largest NS provides largest attained central pressure
m_max_SI = self.mMaxMsun*lal.MSUN_SI
if not test_only_under_mmax:
hmax = lalsim.SimNeutronStarEOSMaxPseudoEnthalpy(eos)
else:
try:
pmax = lalsim.SimNeutronStarCentralPressure(m_max_SI,fam)
hmax = lalsim.SimNeutronStarEOSPseudoEnthalpyOfPressure(pmax,eos)
except:
# gatch gsl interpolation errors for example
return False
if fast_test:
# https://git.ligo.org/lscsoft/lalsuite/blob/lalinference_o2/lalinference/src/LALInference.c#L2513
try:
vsmax = lalsim.SimNeutronStarEOSSpeedOfSoundGeometerized(hmax, eos)
return vsmax <1.1
except:
# catch gsl interpolation errors for example
return False
else:
if rosDebug:
print(" performing comprehensive test ")
h = np.linspace(0.0001,hmax,npts_internal)
# h = np.linspace(0.0001,lalsim.SimNeutronStarEOSMinAcausalPseudoEnthalpy(eos),npts_internal)
vs_internal = np.zeros(npts_internal)
for indx in np.arange(npts_internal):
vs_internal[indx] = lalsim.SimNeutronStarEOSSpeedOfSoundGeometerized(h[indx],eos)
if rosDebug:
print(h[indx], vs_internal[indx])
return not np.any(vs_internal>1.1) # allow buffer, so we have some threshold
###
### SERVICE 1: lalsimutils structure
###
# See https://github.com/lscsoft/lalsuite/tree/master/lalsimulation/src for available types
class EOSLALSimulation(EOSConcrete):
def __init__(self,name):
self.name=name
self.eos = None
self.eos_fam = None
self.mMaxMsun=None
eos = lalsim.SimNeutronStarEOSByName(name)
fam = lalsim.CreateSimNeutronStarFamily(eos)
mmass = lalsim.SimNeutronStarMaximumMass(fam) / lal.MSUN_SI
self.eos = eos
self.eos_fam = fam
self.mMaxMsun = mmass
return None
###
### SERVICE 2: EOSFromFile
###
# Example directory: EOS_Tables
#dirEOSTablesBase = os.environ["EOS_TABLES"]
dirLALSimulationBase = os.environ["LALSIMULATION_DATADIR"] # LAL table data
## Add routines to find, parse standard directory of EOS files and load suitable metadata into memory
## Follow framework of NRWaveformCatalogManager3
class EOSFromDataFile(EOSConcrete):
"""
FromDataFileEquationOfState
(just accepts filename...not attempting to parse a catalog)
"""
def __init__(self,name=None,fname=None):
self.name=name
self.fname=fname
self.eos = None
self.eos_fam = None
self.mMax = None
self.eos, self.eos_fam = self.eos_ls()
return None
def eos_ls(self):
# From Monica, but using code from GWEMLightcurves
# https://gwemlightcurves.github.io/_modules/gwemlightcurves/KNModels/table.html
"""
EOS tables described by Ozel `here <https://arxiv.org/pdf/1603.02698.pdf>`_ and downloadable `here <http://xtreme.as.arizona.edu/NeutronStars/data/eos_tables.tar>`_. LALSim utilizes this tables, but needs some interfacing (i.e. conversion to SI units, and conversion from non monotonic to monotonic pressure density tables)
"""
obs_max_mass = 2.01 - 0.04 # used
print("Checking %s" % self.name)
eos_fname = ""
if os.path.exists(self.fname):
# NOTE: Adapted from code by <NAME>
print("Loading from %s" % self.fname)
bdens, press, edens = np.loadtxt(self.fname, unpack=True)
press *= DENSITY_CGS_IN_MSQUARED
edens *= DENSITY_CGS_IN_MSQUARED
eos_name = self.name
if not np.all(np.diff(press) > 0):
keep_idx = np.where(np.diff(press) > 0)[0] + 1
keep_idx = | np.concatenate(([0], keep_idx)) | numpy.concatenate |
""" Testing array utilities
"""
import sys
import numpy as np
from ..arrfuncs import as_native_array, pinv, eigh
from numpy.testing import (assert_array_almost_equal,
assert_array_equal)
from nose.tools import assert_true, assert_false, assert_equal, assert_raises
NATIVE_ORDER = '<' if sys.byteorder == 'little' else '>'
SWAPPED_ORDER = '>' if sys.byteorder == 'little' else '<'
def test_as_native():
arr = np.arange(5) # native
assert_equal(arr.dtype.byteorder, '=')
narr = as_native_array(arr)
assert_true(arr is narr)
sdt = arr.dtype.newbyteorder('s')
barr = arr.astype(sdt)
assert_equal(barr.dtype.byteorder, SWAPPED_ORDER)
narr = as_native_array(barr)
assert_false(barr is narr)
| assert_array_equal(barr, narr) | numpy.testing.assert_array_equal |
# -*- coding: utf-8 -*-
"""
Copyright (c) 2017 by <NAME>
This file is part of Statistical Parameter Estimation Tool (SPOTPY).
:author: <NAME>, <NAME>
This code tests the likelihood framework and present all existing function.
"""
import numpy as np
try:
import spotpy
except ImportError:
import sys
sys.path.append(".")
import spotpy
import unittest
from spotpy.likelihoods import LikelihoodError
# We use all available likelihood functions. The pydoc of every function tells, if we can add a
# parameter `param` to the function which includes model parameter. The `param` must be None or a tuple with values
# and names. If `param` is None, the needed values are calculated by the function itself.
class TestLikelihood(unittest.TestCase):
def setUp(self):
np.random.seed(12)
self.normal_data, self.normal_comparedata = np.random.normal(1500, 2530, 20), np.random.normal(15, 25, 20)
self.binom_data, self.binom_comparedata = np.random.binomial(20, 0.1, 20), np.random.binomial(20, 0.1, 20)
self.do_print = True
def test_logLikelihood(self):
l_normal = spotpy.likelihoods.logLikelihood(self.normal_data, self.normal_comparedata)
self.assertGreaterEqual(np.abs(l_normal), 900)
self.assertEqual(type(np.float(l_normal)), type(np.float(1)))
if self.do_print:
print("logLikelihood: " + str(l_normal))
l_binom = spotpy.likelihoods.logLikelihood(self.binom_data, self.binom_comparedata)
self.assertGreaterEqual(np.abs(l_binom), 900)
self.assertEqual(type(np.float(l_binom)), type(np.float(1)))
if self.do_print:
print("logLikelihood: " + str(l_binom))
def test_gaussianLikelihoodMeasErrorOut(self):
l_normal = spotpy.likelihoods.gaussianLikelihoodMeasErrorOut(self.normal_data, self.normal_comparedata)
self.assertGreaterEqual(-40, l_normal)
self.assertEqual(type(np.float(l_normal)), type(np.float(1)))
if self.do_print:
print("gaussianLikelihoodMeasErrorOut: " + str(l_normal))
l_binom = spotpy.likelihoods.gaussianLikelihoodMeasErrorOut(self.binom_data, self.binom_comparedata)
self.assertGreaterEqual(-40, l_binom)
self.assertEqual(type(np.float(l_binom)), type(np.float(1)))
if self.do_print:
print("gaussianLikelihoodMeasErrorOut: " + str(l_binom))
def test_gaussianLikelihoodHomoHeteroDataError(self):
l_normal = spotpy.likelihoods.gaussianLikelihoodHomoHeteroDataError(self.normal_data, self.normal_comparedata)
self.assertGreaterEqual(5, np.abs(l_normal))
self.assertEqual(type(np.float(l_normal)), type(np.float(1)))
if self.do_print:
print("gaussianLikelihoodHomoHeteroDataError: " + str(l_normal))
l_binom = spotpy.likelihoods.gaussianLikelihoodHomoHeteroDataError(self.binom_data, self.binom_comparedata)
self.assertGreaterEqual(10, np.abs(l_binom))
self.assertEqual(type(np.float(l_binom)), type(np.float(1)))
if self.do_print:
print("gaussianLikelihoodHomoHeteroDataError: " + str(l_binom))
def test_LikelihoodAR1NoC(self):
l_list = []
l_list.append(spotpy.likelihoods.LikelihoodAR1NoC(self.normal_data, self.normal_comparedata,
params=([0.98], ["likelihood_phi"])))
try:
l_list.append(spotpy.likelihoods.LikelihoodAR1NoC(self.normal_data, self.normal_comparedata,
params=([], [])))
except LikelihoodError as e:
print("LikelihoodError occurred: " + str(e))
l_list.append(spotpy.likelihoods.LikelihoodAR1NoC(self.normal_data, self.normal_comparedata,
params=([1.1], ["likelihood_phi"])))
l_list.append(spotpy.likelihoods.LikelihoodAR1NoC(self.binom_data, self.binom_data))
for l in l_list:
self.assertNotEqual(None, l)
if self.do_print:
print("LikelihoodAR1NoC: " + str(l))
def test_LikelihoodAR1WithC(self):
l_normal_list = []
try:
l_normal_list.append(spotpy.likelihoods.LikelihoodAR1WithC(self.normal_data, self.normal_comparedata,
params=([], [])))
except LikelihoodError as e:
print("Likelihood Error occurred " + str(e))
l_normal_list.append(spotpy.likelihoods.LikelihoodAR1WithC(self.normal_data, self.normal_comparedata,
params=([0.98], ["likelihood_phi"])))
l_normal_list.append(spotpy.likelihoods.LikelihoodAR1WithC(self.normal_data, self.normal_comparedata,
params=([1.1], ["likelihood_phi"])))
l_normal_list.append(spotpy.likelihoods.LikelihoodAR1WithC(self.binom_data, self.binom_comparedata))
for l_normal in l_normal_list:
self.assertNotEqual(None, l_normal)
if self.do_print:
print("LikelihoodAR1WithC: " + str(l_normal))
def test_generalizedLikelihoodFunction(self):
size = 1000
data, comparedata = np.random.normal(1500, 2530, size), np.random.normal(355, 25, size)
param_list = ["likelihood_beta", "likelihood_xi", "likelihood_sigma0", "likelihood_sigma1", "likelihood_phi1",
"likelihood_muh"]
l_normal_list = []
l_normal_list.append(spotpy.likelihoods.generalizedLikelihoodFunction(data, comparedata, params=
([-0.09, 1, 0.5, 0.567, 0.98, 57.32], param_list)))
try:
l_normal_list.append(spotpy.likelihoods.generalizedLikelihoodFunction(data, comparedata, params=
([], [])))
except LikelihoodError as e:
print("Likelihood Error occurred " + str(e))
l_normal_list.append(spotpy.likelihoods.generalizedLikelihoodFunction(data, comparedata, params=
([2, 1, 0.5, 0.567, 0.98, 57.32], param_list)))
l_normal_list.append(spotpy.likelihoods.generalizedLikelihoodFunction(data, comparedata, params=
([-0.09, 11, 0.5, 0.567, 0.98, 57.32], param_list)))
l_normal_list.append(spotpy.likelihoods.generalizedLikelihoodFunction(data, comparedata, params=
([-0.09, 1, 1.5, 0.567, 0.98, 57.32], param_list)))
l_normal_list.append(spotpy.likelihoods.generalizedLikelihoodFunction(data, comparedata, params=
([-0.09, 1, 0.5, 1.567, 0.98, 57.32], param_list)))
l_normal_list.append(spotpy.likelihoods.generalizedLikelihoodFunction(data, comparedata, params=
([-0.09, 1, 0.5, 0.567, 2.98, 57.32], param_list)))
l_normal_list.append(spotpy.likelihoods.generalizedLikelihoodFunction(data, comparedata, params=
([-0.09, 1, 0.5, 0.567, 0.98, 101], param_list)))
l_normal_list.append(spotpy.likelihoods.generalizedLikelihoodFunction(data, comparedata, params=
([-0.09, 0.0, 0.5, 0.567, 0.98, 101], param_list)))
for l_normal in l_normal_list:
self.assertNotEqual(None, l_normal)
self.assertEqual(type(np.float(l_normal)), type(np.float(1)))
if self.do_print:
print("generalizedLikelihoodFunction: " + str(l_normal))
l_binom = spotpy.likelihoods.generalizedLikelihoodFunction(self.binom_data, self.binom_comparedata)
self.assertNotEqual(None, l_binom)
self.assertGreaterEqual(-10000, l_binom)
self.assertEqual(type(np.float(l_binom)), type(np.float(1)))
if self.do_print:
print("generalizedLikelihoodFunction: " + str(l_binom))
def test_LaplacianLikelihood(self):
l_normal = spotpy.likelihoods.LaplacianLikelihood(self.normal_data, self.normal_comparedata)
self.assertNotEqual(None, l_normal)
self.assertEqual(type(np.float(l_normal)), type(np.float(1)))
if self.do_print:
print("LaplacianLikelihood: " + str(l_normal))
l_binom = spotpy.likelihoods.LaplacianLikelihood(self.binom_data, self.binom_comparedata)
self.assertNotEqual(None, l_normal)
self.assertEqual(type(np.float(l_binom)), type(np.float(1)))
if self.do_print:
print("LaplacianLikelihood: " + str(l_binom))
def test_SkewedStudentLikelihoodHomoscedastic(self):
l_normal = spotpy.likelihoods.SkewedStudentLikelihoodHomoscedastic(self.normal_data, self.normal_comparedata)
self.assertGreaterEqual(12, np.abs(l_normal))
self.assertEqual(type(np.float(l_normal)), type(np.float(1)))
if self.do_print:
print("SkewedStudentLikelihoodHomoscedastic: " + str(l_normal))
l_binom = spotpy.likelihoods.SkewedStudentLikelihoodHomoscedastic(self.binom_data, self.binom_comparedata)
self.assertGreaterEqual(17, np.abs(l_binom))
self.assertEqual(type(np.float(l_binom)), type(np.float(1)))
if self.do_print:
print("SkewedStudentLikelihoodHomoscedastic: " + str(l_binom))
def test_SkewedStudentLikelihoodHeteroscedastic(self):
l_normal_list = []
paramDependencies = ["likelihood_nu", "likelihood_kappa", "likelihood_phi"]
l_normal_list.append(
spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedastic(self.normal_data, self.normal_comparedata,
params=([2.4, 0.15, 0.87], paramDependencies)))
try:
l_normal_list.append(
spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedastic(self.normal_data, self.normal_comparedata,
params=([], [])))
except LikelihoodError as e:
print("An error occurred: " + str(e))
l_normal_list.append(
spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedastic(self.normal_data, self.normal_comparedata,
params=([1, 0.15, 1.87], paramDependencies)))
l_normal_list.append(
spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedastic(self.normal_data, self.normal_comparedata,
params=([1, 0.15, 0.87], paramDependencies)))
l_normal_list.append(
spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedastic(self.normal_data, self.normal_comparedata,
params=([1, -0.15, 0.87], paramDependencies)))
for l_normal in l_normal_list:
if not np.isnan(l_normal):
self.assertGreaterEqual(-100, l_normal)
self.assertEqual(type(np.float(l_normal)), type(np.float(1)))
if self.do_print:
print("SkewedStudentLikelihoodHeteroscedastic: " + str(l_normal))
l_binom = spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedastic(self.binom_data, self.binom_comparedata)
if not np.isnan(l_binom):
self.assertGreaterEqual(-100, l_binom)
self.assertEqual(type(np.float(l_binom)), type(np.float(1)))
if self.do_print:
print("SkewedStudentLikelihoodHeteroscedastic: " + str(l_binom))
def test_SkewedStudentLikelihoodHeteroscedasticAdvancedARModel(self):
l_normal_list = []
params = ["likelihood_nu", "likelihood_kappa", "likelihood_phi"]
l_normal_list.append(spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedasticAdvancedARModel(
self.normal_data, self.normal_comparedata, params=([4, 43, 0.4], params)))
try:
l_normal_list.append(spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedasticAdvancedARModel(
self.normal_data, self.normal_comparedata, params=([], [])))
except LikelihoodError as e:
print("Likelihood Error occurred " + str(e))
l_normal_list.append(spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedasticAdvancedARModel(
self.normal_data, self.normal_comparedata, params=([4, 43, 2.4], params)))
l_normal_list.append(spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedasticAdvancedARModel(
self.normal_data, self.normal_comparedata, params=([1, 43, 0.4], params)))
l_normal_list.append(spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedasticAdvancedARModel(
self.normal_data, self.normal_comparedata, params=([4, -3, 0.4], params)))
for l_normal in l_normal_list:
self.assertNotEqual(None, l_normal)
self.assertEqual(type(np.float(l_normal)), type(np.float(1)))
if self.do_print:
print("SkewedStudentLikelihoodHeteroscedasticAdvancedARModel: " + str(l_normal))
l_binom = spotpy.likelihoods.SkewedStudentLikelihoodHeteroscedasticAdvancedARModel(
self.normal_data, self.normal_comparedata)
self.assertNotEqual(None, l_binom)
self.assertEqual(type(np.float(l_binom)), type(np.float(1)))
if self.do_print:
print("SkewedStudentLikelihoodHeteroscedasticAdvancedARModel: " + str(l_binom))
def test_NoisyABCGaussianLikelihood(self):
l_normal = spotpy.likelihoods.NoisyABCGaussianLikelihood(self.normal_data, self.normal_comparedata)
self.assertNotEqual(None, l_normal)
self.assertEqual(type(np.float(l_normal)), type(np.float(1)))
if self.do_print:
print("NoisyABCGaussianLikelihood: " + str(l_normal))
l_binom = spotpy.likelihoods.NoisyABCGaussianLikelihood(self.binom_data, self.binom_data,
measerror=[0.0])
self.assertNotEqual(None, l_binom)
self.assertEqual(type(np.float(l_binom)), type( | np.float(1) | numpy.float |
import copy
import pdb
import numpy as np
from scipy import signal
from sklearn.preprocessing import normalize
from wfdb.processing.basic import get_filter_gain
from wfdb.processing.peaks import find_local_peaks
from wfdb.io.record import Record
class XQRS(object):
"""
The QRS detector class for the XQRS algorithm. The `XQRS.Conf`
class is the configuration class that stores initial parameters
for the detection. The `XQRS.detect` method runs the detection algorithm.
The process works as follows:
- Load the signal and configuration parameters.
- Bandpass filter the signal between 5 and 20 Hz, to get the
filtered signal.
- Apply moving wave integration (MWI) with a Ricker
(Mexican hat) wavelet onto the filtered signal, and save the
square of the integrated signal.
- Conduct learning if specified, to initialize running
parameters of noise and QRS amplitudes, the QRS detection
threshold, and recent R-R intervals. If learning is unspecified
or fails, use default parameters. See the docstring for the
`_learn_init_params` method of this class for details.
- Run the main detection. Iterate through the local maxima of
the MWI signal. For each local maxima:
- Check if it is a QRS complex. To be classified as a QRS,
it must come after the refractory period, cross the QRS
detection threshold, and not be classified as a T-wave
if it comes close enough to the previous QRS. If
successfully classified, update running detection
threshold and heart rate parameters.
- If not a QRS, classify it as a noise peak and update
running parameters.
- Before continuing to the next local maxima, if no QRS
was detected within 1.66 times the recent R-R interval,
perform backsearch QRS detection. This checks previous
peaks using a lower QRS detection threshold.
Attributes
----------
sig : 1d ndarray
The input ECG signal to apply the QRS detection on.
fs : int, float
The sampling frequency of the input signal.
conf : XQRS.Conf object, optional
The configuration object specifying signal configuration
parameters. See the docstring of the XQRS.Conf class.
Examples
--------
>>> import wfdb
>>> from wfdb import processing
>>> sig, fields = wfdb.rdsamp('sample-data/100', channels=[0])
>>> xqrs = processing.XQRS(sig=sig[:,0], fs=fields['fs'])
>>> xqrs.detect()
>>> wfdb.plot_items(signal=sig, ann_samp=[xqrs.qrs_inds])
"""
def __init__(self, sig, fs, conf=None):
if sig.ndim != 1:
raise ValueError('sig must be a 1d numpy array')
self.sig = sig
self.fs = fs
self.sig_len = len(sig)
self.conf = conf or XQRS.Conf()
self._set_conf()
class Conf(object):
"""
Initial signal configuration object for this QRS detector.
Attributes
----------
hr_init : int, float, optional
Initial heart rate in beats per minute. Used for calculating
recent R-R intervals.
hr_max : int, float, optional
Hard maximum heart rate between two beats, in beats per
minute. Used for refractory period.
hr_min : int, float, optional
Hard minimum heart rate between two beats, in beats per
minute. Used for calculating recent R-R intervals.
qrs_width : int, float, optional
Expected QRS width in seconds. Used for filter widths
indirect refractory period.
qrs_thr_init : int, float, optional
Initial QRS detection threshold in mV. Use when learning
is False, or learning fails.
qrs_thr_min : int, float, string, optional
Hard minimum detection threshold of QRS wave. Leave as 0
for no minimum.
ref_period : int, float, optional
The QRS refractory period.
t_inspect_period : int, float, optional
The period below which a potential QRS complex is
inspected to see if it is a T-wave.
"""
def __init__(self, hr_init=75, hr_max=200, hr_min=25, qrs_width=0.1,
qrs_thr_init=0.13, qrs_thr_min=0, ref_period=0.2,
t_inspect_period=0.36):
if hr_min < 0:
raise ValueError("'hr_min' must be >= 0")
if not hr_min < hr_init < hr_max:
raise ValueError("'hr_min' < 'hr_init' < 'hr_max' must be True")
if qrs_thr_init < qrs_thr_min:
raise ValueError("qrs_thr_min must be <= qrs_thr_init")
self.hr_init = hr_init
self.hr_max = hr_max
self.hr_min = hr_min
self.qrs_width = qrs_width
self.qrs_radius = self.qrs_width / 2
self.qrs_thr_init = qrs_thr_init
self.qrs_thr_min = qrs_thr_min
self.ref_period = ref_period
self.t_inspect_period = t_inspect_period
def _set_conf(self):
"""
Set configuration parameters from the Conf object into the detector
object. Time values are converted to samples, and amplitude values
are in mV.
Parameters
----------
N/A
Returns
-------
N/A
"""
self.rr_init = 60 * self.fs / self.conf.hr_init
self.rr_max = 60 * self.fs / self.conf.hr_min
self.rr_min = 60 * self.fs / self.conf.hr_max
# Note: if qrs_width is odd, qrs_width == qrs_radius*2 + 1
self.qrs_width = int(self.conf.qrs_width * self.fs)
self.qrs_radius = int(self.conf.qrs_radius * self.fs)
self.qrs_thr_init = self.conf.qrs_thr_init
self.qrs_thr_min = self.conf.qrs_thr_min
self.ref_period = int(self.conf.ref_period * self.fs)
self.t_inspect_period = int(self.conf.t_inspect_period * self.fs)
def _bandpass(self, fc_low=5, fc_high=20):
"""
Apply a bandpass filter onto the signal, and save the filtered
signal.
Parameters
----------
fc_low : int, float
The low frequency cutoff for the filter.
fc_high : int, float
The high frequency cutoff for the filter.
Returns
-------
N/A
"""
self.fc_low = fc_low
self.fc_high = fc_high
b, a = signal.butter(2, [float(fc_low) * 2 / self.fs,
float(fc_high) * 2 / self.fs], 'pass')
self.sig_f = signal.filtfilt(b, a, self.sig[self.sampfrom:self.sampto],
axis=0)
# Save the passband gain (x2 due to double filtering)
self.filter_gain = get_filter_gain(b, a, np.mean([fc_low, fc_high]),
self.fs) * 2
def _mwi(self):
"""
Apply moving wave integration (MWI) with a Ricker (Mexican hat)
wavelet onto the filtered signal, and save the square of the
integrated signal. The width of the hat is equal to the QRS width.
After integration, find all local peaks in the MWI signal.
Parameters
----------
N/A
Returns
-------
N/A
"""
wavelet_filter = signal.ricker(self.qrs_width, 4)
self.sig_i = signal.filtfilt(wavelet_filter, [1], self.sig_f,
axis=0) ** 2
# Save the MWI gain (x2 due to double filtering) and the total
# gain from raw to MWI
self.mwi_gain = get_filter_gain(wavelet_filter, [1],
np.mean([self.fc_low, self.fc_high]), self.fs) * 2
self.transform_gain = self.filter_gain * self.mwi_gain
self.peak_inds_i = find_local_peaks(self.sig_i, radius=self.qrs_radius)
self.n_peaks_i = len(self.peak_inds_i)
def _learn_init_params(self, n_calib_beats=8):
"""
Find a number of consecutive beats and use them to initialize:
- recent QRS amplitude
- recent noise amplitude
- recent R-R interval
- QRS detection threshold
The learning works as follows:
- Find all local maxima (largest sample within `qrs_radius`
samples) of the filtered signal.
- Inspect the local maxima until `n_calib_beats` beats are
found:
- Calculate the cross-correlation between a Ricker wavelet of
length `qrs_width`, and the filtered signal segment centered
around the local maximum.
- If the cross-correlation exceeds 0.6, classify it as a beat.
- Use the beats to initialize the previously described
parameters.
- If the system fails to find enough beats, the default
parameters will be used instead. See the docstring of
`XQRS._set_default_init_params` for details.
Parameters
----------
n_calib_beats : int, optional
Number of calibration beats to detect for learning
Returns
-------
N/A
"""
if self.verbose:
print('Learning initial signal parameters...')
last_qrs_ind = -self.rr_max
qrs_inds = []
qrs_amps = []
noise_amps = []
ricker_wavelet = signal.ricker(self.qrs_radius * 2, 4).reshape(-1,1)
# Find the local peaks of the signal.
peak_inds_f = find_local_peaks(self.sig_f, self.qrs_radius)
# Peak numbers at least qrs_width away from signal boundaries
peak_nums_r = np.where(peak_inds_f > self.qrs_width)[0]
peak_nums_l = np.where(peak_inds_f <= self.sig_len - self.qrs_width)[0]
# Skip if no peaks in range
if (not peak_inds_f.size or not peak_nums_r.size
or not peak_nums_l.size):
if self.verbose:
print('Failed to find %d beats during learning.'
% n_calib_beats)
self._set_default_init_params()
return
# Go through the peaks and find QRS peaks and noise peaks.
# only inspect peaks with at least qrs_radius around either side
for peak_num in range(peak_nums_r[0], peak_nums_l[-1]):
i = peak_inds_f[peak_num]
# Calculate cross-correlation between the filtered signal
# segment and a Ricker wavelet
# Question: should the signal be squared? Case for inverse QRS
# complexes
sig_segment = normalize((self.sig_f[i - self.qrs_radius:
i + self.qrs_radius]).reshape(-1, 1), axis=0)
xcorr = np.correlate(sig_segment[:, 0], ricker_wavelet[:,0])
# Classify as QRS if xcorr is large enough
if xcorr > 0.6 and i-last_qrs_ind > self.rr_min:
last_qrs_ind = i
qrs_inds.append(i)
qrs_amps.append(self.sig_i[i])
else:
noise_amps.append(self.sig_i[i])
if len(qrs_inds) == n_calib_beats:
break
# Found enough calibration beats to initialize parameters
if len(qrs_inds) == n_calib_beats:
if self.verbose:
print('Found %d beats during learning.' % n_calib_beats
+ ' Initializing using learned parameters')
# QRS amplitude is most important.
qrs_amp = np.mean(qrs_amps)
# Set noise amplitude if found
if noise_amps:
noise_amp = np.mean(noise_amps)
else:
# Set default of 1/10 of QRS amplitude
noise_amp = qrs_amp / 10
# Get R-R intervals of consecutive beats, if any.
rr_intervals = | np.diff(qrs_inds) | numpy.diff |
#!/usr/bin/env python
#
# Copyright (C) 2019
# <NAME>
# Centre of Excellence Cognitive Interaction Technology (CITEC)
# Bielefeld University
#
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
# and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
# products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
# THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K
from sklearn.decomposition import PCA
import os
import numpy as np
import pickle as pkl
from PIL import Image
from a2vq.src.helper import get_files_of_type
def preprocess_input(x, dim_ordering='default'):
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
assert dim_ordering in {'tf', 'th'}
if dim_ordering == 'th':
x[:, 0, :, :] -= 103.939
x[:, 1, :, :] -= 116.779
x[:, 2, :, :] -= 123.68
# 'RGB'->'BGR'
x = x[:, ::-1, :, :]
else:
x[:, :, :, 0] -= 103.939
x[:, :, :, 1] -= 116.779
x[:, :, :, 2] -= 123.68
# 'RGB'->'BGR'
x = x[:, :, :, ::-1]
return x
def create_arbitrary_image_ds(image_dir, output_dir, image_list=None):
deep_feats, image_list, img_tuple_resized = feature_extraction_of_arbitrary_image_ds(image_dir,image_list)
with open(os.path.join(output_dir,'features.pkl'),'wb') as f:
pkl.dump(deep_feats,f)
with open(os.path.join(output_dir,'filenames.pkl'),'wb') as f:
pkl.dump(image_list,f)
with open(os.path.join(output_dir,'images.pkl'),'wb') as f:
pkl.dump(img_tuple_resized,f)
print('done')
def feature_extraction_of_arbitrary_image_ds(image_dir, image_list=None):
if image_list is None:
image_list = get_files_of_type(image_dir,'jpg')
image_paths = []
for i in image_list:
image_paths.append(os.path.join(image_dir, i))
img_tuple = read_images(image_paths)
img_tuple_rgb = convert_image_tuple_to_rgb(img_tuple)
#img_tuple_resized = resize_image_tuple(img_tuple_rgb,size=(299,299,3))
img_tuple_resized = resize_image_tuple_to_max_edge_length(img_tuple_rgb, 80)
deep_feats = get_deep_feats(img_tuple_rgb,'vgg16')
return deep_feats, image_list, img_tuple_resized
def get_deep_feats(imgs, use_model='vgg16', pca_dim=None):
model, imgsize = get_model(use_model)
if pca_dim != None:
pca = PCA(pca_dim)
rtn_feats = []
for img in imgs:
img_data = preprocess_image(img,imgsize)
features = model.predict(img_data).flatten()
rtn_feats.append(features)
rtn_feats = np.array(rtn_feats)
if pca_dim != None:
rtn_feats = pca.fit_transform(rtn_feats)
return rtn_feats
def preprocess_image(img, imgsize):
img_load = np.array(Image.fromarray(img).resize(imgsize[:2]))
img_data = image.img_to_array(img_load)
img_data = | np.expand_dims(img_data, axis=0) | numpy.expand_dims |
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 16 11:27:05 2019
@author: <NAME>
"""
""" Quick Start
In order to use this program, you will need to do these things:
* Specify a value for the variable 'server' to indicate whether local files
will be input for, perhaps, debugging mode or file paths on a remote
server will be used.
* Specify appropriate values for the variables 'path1' and 'files1'
for input file paths.
* Determine whether the variable 'files1Short' is desired. This was based
on the authors file-naming conventions and will not be appropriate in
all circumstances. Other parts of the program will need to be revised
if this variable is not used for a shorter graph title.
* Ensure that inout data is in teh format indicated in comments below.
"""
"""
This Python 3 code performs the following tasks:
* Performs statistical tests on hit rate data:
- Tests whether the distribution of hits across the four categories is
different from a random allocation of hits across categories in proportion
to the number of articles in each category in a statistically significant way.
- Tests whether categorizing articles along the dimensions of novelty and
conventionality, individually, has explanatory power
- Test whether the number of hits in each category differs in a statistically
significant way from a ransom distribution of hit articles among the
categories by binning the remaining three categories together. This mitigates
issues that arise in some circumstances when an insuffiicent expeted number
of hits prevents a valid analysis in the case of the test outlined in the
first bullet point above.
* Performs the Spearman Rank Correlation Test between citation_count and all
other data columns
* Outputs JSON files to be used by a subsequent program to graph the data
* Outputs data in a format amenable to inclusion in LaTex file tables
"""
""" This program requires all of the Python packages below, which
are all included with the Anaconda distribution of Python """
import pandas as pd
import numpy as np
from scipy.stats import spearmanr
from scipy.stats import chisquare
from scipy.stats import binom
import json
import re
server = True
""" This function formats data for output in LaTex format to a specified
number of decimal places """
def formFloat (num,places):
fStr = '{:.'+str(places)+'f}'
num = float(int(float(fStr.format(num))*10**places+0.5))/10**places
if num <= 0.025:# or num >= 0.975:
return '\\textbf{'+fStr.format(num)+'}'
elif num <= 0.05:# or num >= .95:
return '\\textit{'+fStr.format(num)+'}'
else:
return fStr.format(num)
""" This function formats data for output in LaTex format
It also includes code for a dagger symbol where the number of expected
hits was less than the minimum required for a valid statistical test """
def formFloatDagger (num,places):
fStr = '{:.'+str(places)+'f}'
num[0] = float(int(float(fStr.format(num[0]))*10**places+0.5))/10**places
if num[0] <= 0.025: # or num[0] >= 0.975:
if num[1] >= 5.0:
return '\\textbf{'+fStr.format(num[0])+'}'
else:
return '$\dagger$ \\textbf{'+fStr.format(num[0])+'} '
elif num[0] <= 0.05: # or num[0] >= .95:
if num[1] >= 5.0:
return '\\textit{'+fStr.format(num[0])+'}'
else:
return '$\dagger$ \\textit{'+fStr.format(num[0])+'} '
else:
return fStr.format(num[0])
""" This function formats data for output in LaTex format
It also permits output of the string 'NA' when a numberical value
is not passed to the function. """
def formFloatDaggerNA (num,places):
try:
fStr = '{:.'+str(places)+'f}'
num = float(int(float(fStr.format(num))*10**places+0.5))/10**places
if num <= 0.025: # or num >= 0.975:
return '\\textbf{'+fStr.format(num)+'}'
elif num <= 0.05: # or num >= .95:
return '\\textit{'+fStr.format(num)+'}'
else:
return fStr.format(num)
except:
return str(num)
""" Calculates hit rate except returns 0.0 when the total number of articles
in a category is zero to avoid dividing by zero """
def percent(row):
if row['total']> 0:
return row['hit'] / row['total']
else:
return 0.0
""" This if-else block permits an alternate, local file to be input during debugging
server is a Boolean variable that, if True, indicates that the path and files in
if block are input and, otherwise, the path and files in the else block are input. """
""" Input file format """
""" Input requires the first line to have field names and subsequent comma-delimited text files
Data dictionary:
* source_id: a unique identifier for an article. We used IDs from the Web of
Science under license from Clarivate Analytics, which we cannot disclose.
These can be string values (do not enclose in quotes in data file if this is
the case).
* med: the median z-score of all the citations in the source article
* ten: the 10th percentile z-score (left tail) of the citation z-scores
* one: the 1st percentile z-score (left tail) of the citation z-scores
* citation_count: the number of tiems the source articles was cited
Example:
source_id,med,ten,one,citation_count
0,4.37535958641463,-0.368176148773802,-1.84767079802106,1
1,8.94701613716861,0.695385836097657,-1.0789085501296,6
2,17.9740470024929,-8.85622661474813,-10.3102229485467,14
"""
""" The Boolean variable 'server' controls which paths and files are input """
if server: # settings for production runs on server
path1 = '/path_to_remote_data_folder/'
files1 = ['data_1995/d1000_95_pubwise_zsc_med.csv','data_1995/imm95_pubwise_zsc_med.csv','data_1995/metab95_pubwise_zsc_med.csv', 'data_1995/ap95_pubwise_zsc_med.csv', \
'data_1985/d1000_85_pubwise_zsc_med.csv','data_1985/imm85_pubwise_zsc_med.csv','data_1985/metab85_pubwise_zsc_med.csv', 'data_1985/ap85_pubwise_zsc_med.csv', \
'data_2005/d1000_2005_pubwise_zsc_med.csv', 'data_2005/imm2005_pubwise_zsc_med.csv','data_2005/metab2005_pubwise_zsc_med.csv', 'data_2005/ap2005_pubwise_zsc_med.csv']
else: # settings for local debugging
path1 = '/path_to_local_data_folder/'
files1 = ['data_1995/d1000_95_pubwise_zsc_med.csv']
""" This statement extracts the filename from the path for succinct identification of the filename """
""" This statement may not be appropriate for alternate file naming conventions """
files1Short = [x.split('/')[-1] for x in files1]
""" Extract year and data set topic from filename """
years = [re.search('data_\d{4}',x).group(0).replace('data_','') for x in files1]
datasets = [re.sub('\d+','',re.search('/\w+_',x).group(0).split('_')[0].replace('/','')) for x in files1]
transDataset = {'imm':'Immunology', 'd':'Web of Science', 'metab':'Metabolism', 'ap':'Applied Physics'}
""" These lists are are used for coding results in Latex files, output in JSON files,
and create pandas DataFrames within the program """
cols = ['med','ten','one']
catConven = ['LC','HC']
catNovel = ['HN','LN']
catHit = ['hit','non-hit']
countRows = ['LNHC','HNLC','LNLC','HNHC']
countCols = catHit
countRowsBin = ['LN','HN','LC','HC']
""" Iterate through the inputted fiels """
for i in range(len(files1)):
""" These statements create empty dictionaries for storing results"""
binomRes = {} # dictionary for results of 2-category tests
Fig2Res = {} # dictionary for results of 4-category tests for data in the form of Uzzi's Fig. 2
Fig2IndRes = {} # dictionary for results of testing each of the 4 categories in Uzzi's Fig. 2 individually
graphDic = {} # Dictionary to store visualization data
df = pd.read_csv(path1+files1[i]) # read file
jsonCounts = json.loads('{}') # JSON string to store the results
#dicNewRow = {'file':files1[i]}
""" Compute Spearman Rank Correlation Tests on citation_count column with other columns """
dfRes = pd.DataFrame(columns=['file']+cols) # DataFrame for correlation results
newRow = [files1[i]]
for col in cols:
print('Spearman Rank Correlation for '+files1[i]+': Columns '+col+' and '+'citation_count')
result = spearmanr(df['citation_count'], df[col])
print(result,'\n\n')
newRow.append('Col. '+col+': corr = '+str(result[0]) + ', p = ' + str(result[1]))
#dicNewRow[col] = str(result[0]) + ',' + str(result[1])
dfRes.loc[files1[i]] = newRow #['1',1,2,3]
#pd.DataFrame.from_dict(dicNewRow, orient='index')
#dfRes = pd.concat([dfRes,pd.DataFrame.from_dict(dicNewRow, orient='index')])
""" Set Hits and Novelty thresholds and create new columns in the df DataFrame to store
the categorical labels """
citPerc10 = df['citation_count'].quantile(0.9)
citPerc5 = df['citation_count'].quantile(0.95)
citPerc2 = df['citation_count'].quantile(0.98)
citPerc1 = df['citation_count'].quantile(0.99)
median = df['med'].median()
""" Create DataFrame columns for categorical variables """
df['conven'] = | np.where(df['med']<=median,catConven[0],catConven[1]) | numpy.where |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''lcproc.py - <NAME> (<EMAIL>) - May 2017
This contains functions that serve as examples for running large batch jobs
processing HAT light curves.
'''
#############
## LOGGING ##
#############
import logging
from datetime import datetime
from traceback import format_exc
# setup a logger
LOGGER = None
LOGMOD = __name__
DEBUG = False
def set_logger_parent(parent_name):
globals()['LOGGER'] = logging.getLogger('%s.%s' % (parent_name, LOGMOD))
def LOGDEBUG(message):
if LOGGER:
LOGGER.debug(message)
elif DEBUG:
print('[%s - DBUG] %s' % (
datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'),
message)
)
def LOGINFO(message):
if LOGGER:
LOGGER.info(message)
else:
print('[%s - INFO] %s' % (
datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'),
message)
)
def LOGERROR(message):
if LOGGER:
LOGGER.error(message)
else:
print('[%s - ERR!] %s' % (
datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'),
message)
)
def LOGWARNING(message):
if LOGGER:
LOGGER.warning(message)
else:
print('[%s - WRN!] %s' % (
datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'),
message)
)
def LOGEXCEPTION(message):
if LOGGER:
LOGGER.exception(message)
else:
print(
'[%s - EXC!] %s\nexception was: %s' % (
datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'),
message, format_exc()
)
)
#############
## IMPORTS ##
#############
import os
import os.path
import sys
try:
import cPickle as pickle
from cStringIO import StringIO as strio
except:
import pickle
from io import BytesIO as strio
import gzip
import glob
import shutil
import multiprocessing as mp
from concurrent.futures import ProcessPoolExecutor
import base64
import numpy as np
import scipy.spatial as sps
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
try:
from tqdm import tqdm
TQDM = True
except:
TQDM = False
pass
# to turn a list of keys into a dict address
# from https://stackoverflow.com/a/14692747
from functools import reduce
from operator import getitem
def dict_get(datadict, keylist):
return reduce(getitem, keylist, datadict)
###################
## LOCAL IMPORTS ##
###################
# LC reading functions
from astrobase.hatsurveys.hatlc import read_and_filter_sqlitecurve, \
read_csvlc, normalize_lcdict_byinst
from astrobase.hatsurveys.hplc import read_hatpi_textlc, read_hatpi_pklc
from astrobase.astrokep import read_kepler_fitslc, read_kepler_pklc
from astrobase import periodbase, checkplot
from astrobase.varclass import varfeatures, starfeatures, periodicfeatures
from astrobase.lcmath import normalize_magseries, \
time_bin_magseries_with_errs, sigclip_magseries
from astrobase.periodbase.kbls import bls_snr
from astrobase.checkplot import _pkl_magseries_plot, \
_pkl_phased_magseries_plot, xmatch_external_catalogs, \
_read_checkplot_picklefile, _write_checkplot_picklefile
from astrobase.magnitudes import jhk_to_sdssr
#############################################
## MAPS FOR LCFORMAT TO LCREADER FUNCTIONS ##
#############################################
def read_pklc(lcfile):
'''
This just reads a pickle.
'''
try:
with open(lcfile,'rb') as infd:
lcdict = pickle.load(infd)
except UnicodeDecodeError:
with open(lcfile,'rb') as infd:
lcdict = pickle.load(infd, encoding='latin1')
return lcdict
# these translate filter operators given as strings to Python operators
FILTEROPS = {'eq':'==',
'gt':'>',
'ge':'>=',
'lt':'<',
'le':'<=',
'ne':'!='}
# used to figure out which period finder to run given a list of methods
PFMETHODS = {'bls':periodbase.bls_parallel_pfind,
'gls':periodbase.pgen_lsp,
'aov':periodbase.aov_periodfind,
'mav':periodbase.aovhm_periodfind,
'pdm':periodbase.stellingwerf_pdm,
'acf':periodbase.macf_period_find,
'win':periodbase.specwindow_lsp}
# LC format -> [default fileglob, function to read LC format]
LCFORM = {
'hat-sql':[
'*-hatlc.sqlite*', # default fileglob
read_and_filter_sqlitecurve, # function to read this LC
['rjd','rjd'], # default timecols to use for period/var
['aep_000','atf_000'], # default magcols to use for period/var
['aie_000','aie_000'], # default errcols to use for period/var
False, # default magsarefluxes = False
normalize_lcdict_byinst, # default special normalize function
],
'hat-csv':[
'*-hatlc.csv*',
read_csvlc,
['rjd','rjd'],
['aep_000','atf_000'],
['aie_000','aie_000'],
False,
normalize_lcdict_byinst,
],
'hp-txt':[
'HAT-*tfalc.TF1*',
read_hatpi_textlc,
['rjd','rjd'],
['iep1','itf1'],
['ire1','ire1'],
False,
None,
],
'hp-pkl':[
'*-pklc.pkl*',
read_hatpi_pklc,
['rjd','rjd'],
['iep1','itf1'],
['ire1','ire1'],
False,
None,
],
'kep-fits':[
'*_llc.fits',
read_kepler_fitslc,
['time','time'],
['sap.sap_flux','pdc.pdc_sapflux'],
['sap.sap_flux_err','pdc.pdc_sapflux_err'],
True,
None,
],
'kep-pkl':[
'-keplc.pkl',
read_kepler_pklc,
['time','time'],
['sap.sap_flux','pdc.pdc_sapflux'],
['sap.sap_flux_err','pdc.pdc_sapflux_err'],
True,
None,
],
# binned light curve format
'binned-hat':[
'*binned*hat*.pkl',
read_pklc,
['binned.aep_000.times','binned.atf_000.times'],
['binned.aep_000.mags','binned.atf_000.mags'],
['binned.aep_000.errs','binned.atf_000.errs'],
False,
None,
],
'binned-hp':[
'*binned*hp*.pkl',
read_pklc,
['binned.iep1.times','binned.itf1.times'],
['binned.iep1.mags','binned.itf1.mags'],
['binned.iep1.errs','binned.itf1.errs'],
False,
None,
],
'binned-kep':[
'*binned*kep*.pkl',
read_pklc,
['binned.sap_flux.times','binned.pdc_sapflux.times'],
['binned.sap_flux.mags','binned.pdc_sapflux.mags'],
['binned.sap_flux.errs','binned.pdc_sapflux.errs'],
True,
None,
],
}
def register_custom_lcformat(formatkey,
fileglob,
readerfunc,
timecols,
magcols,
errcols,
magsarefluxes=False,
specialnormfunc=None):
'''This adds a custom format LC to the dict above.
Allows handling of custom format light curves for astrobase lcproc
drivers. Once the format is successfully registered, light curves should
work transparently with all of the functions below, by simply calling them
with the formatkey in the lcformat keyword argument.
Args
----
formatkey: <string>: what to use as the key for your light curve format
fileglob: <string>: the default fileglob to use to search for light curve
files in this custom format. This is a string like
'*-whatever-???-*.*??-.lc'.
readerfunc: <function>: this is the function to use to read light curves in
the custom format. This should return a dictionary (the 'lcdict') with the
following signature (the keys listed below are required, but others are
allowed):
{'objectid':'<this object's name>',
'objectinfo':{'ra':<this object's right ascension>
'decl':<this object's declination>},
...time columns, mag columns, etc.}
timecols, magcols, errcols: <list>: these are all lists of strings
indicating which keys in the lcdict to use for processing. The lists must
all have the same dimensions, e.g. if timecols = ['timecol1','timecol2'],
then magcols must be something like ['magcol1','magcol2'] and errcols must
be something like ['errcol1', 'errcol2']. This allows you to process
multiple apertures or multiple types of measurements in one go.
Each element in these lists can be a simple key, e.g. 'time' (which would
correspond to lcdict['time']), or a composite key,
e.g. 'aperture1.times.rjd' (which would correspond to
lcdict['aperture1']['times']['rjd']). See the LCFORM dict above for
examples.
magsarefluxes: <boolean>: if this is True, then all functions will treat the
magnitude columns as flux instead, so things like default normalization and
sigma-clipping will be done correctly. If this is False, magnitudes will be
treated as magnitudes.
specialnormfunc: <function>: if you intend to use a special normalization
function for your lightcurves, indicate it here. If None, the default
normalization method used by lcproc is to find gaps in the time-series,
normalize measurements grouped by these gaps to zero, then normalize the
entire magnitude time series to global time series median using the
astrobase.lcmath.normalize_magseries function. The function should take and
return an lcdict of the same form as that produced by readerfunc above. For
an example of a special normalization function, see normalize_lcdict_by_inst
in the astrobase.hatlc module.
'''
globals()['LCFORM'][formatkey] = [
fileglob,
readerfunc,
timecols,
magcols,
errcols,
magsarefluxes,
specialnormfunc
]
LOGINFO('added %s to registry' % formatkey)
#######################
## UTILITY FUNCTIONS ##
#######################
def lclist_parallel_worker(task):
'''
This is a parallel worker for makelclist.
task[0] = lcf
task[1] = columns
task[2] = readerfunc
task[3] = lcndetkey
'''
lcf, columns, readerfunc, lcndetkey = task
# we store the full path of the light curve
lcobjdict = {'lcfname':lcf}
try:
# read the light curve in
lcdict = readerfunc(lcf)
if len(lcdict) == 2:
lcdict = lcdict[0]
# insert all of the columns
for colkey in columns:
if '.' in colkey:
getkey = colkey.split('.')
else:
getkey = [colkey]
try:
thiscolval = dict_get(lcdict, getkey)
except:
LOGWARNING('column %s does not exist for %s' %
(colkey, lcf))
thiscolval = np.nan
# update the lcobjdict with this value
lcobjdict[getkey[-1]] = thiscolval
except Exception as e:
LOGEXCEPTION('could not figure out columns for %s' % lcf)
# insert all of the columns as nans
for colkey in columns:
if '.' in colkey:
getkey = colkey.split('.')
else:
getkey = [colkey]
thiscolval = np.nan
# update the lclistdict with this value
lcobjdict[getkey[-1]] = thiscolval
# now get the actual ndets; this excludes nans and infs
for dk in lcndetkey:
try:
if '.' in dk:
getdk = dk.split('.')
else:
getdk = [dk]
ndetcol = dict_get(lcdict, getdk)
actualndets = ndetcol[np.isfinite(ndetcol)].size
lcobjdict['ndet_%s' % getdk[-1]] = actualndets
except:
lcobjdict['ndet_%s' % getdk[-1]] = np.nan
return lcobjdict
def make_lclist(basedir,
outfile,
lcformat='hat-sql',
fileglob=None,
recursive=True,
columns=['objectid',
'objectinfo.ra','objectinfo.decl',
'objectinfo.ndet','objectinfo.sdssr'],
makecoordindex=['objectinfo.ra','objectinfo.decl'],
maxlcs=None,
nworkers=20):
'''This generates a list file compatible with filter_lclist below.
Given a base directory where all the files are, and a light curve format,
this will find all light curves, pull out the keys in each lcdict requested
in the columns kwarg for each object, and write them to the requested output
pickle file. These keys should be pointers to scalar values (i.e. something
like objectinfo.ra is OK, but something like rjd won't work because it's a
vector).
If basedir is a list of directories, all of these will be searched
recursively to find the matching light curve files.
All of the keys in the columns kwarg should be present in the lcdict
generated by the reader function for the specified lcformat.
fileglob is a shell glob to use to select the filenames. If None, then the
default one for the provided lcformat will be used.
If recursive is True, then the function will search recursively in basedir
for any light curves matching the specified criteria. This may take a while,
especially on network filesystems.
If makecoordindex is not None, it must be a two-element list of the lcdict
keys for the right ascension and declination for each object. These will be
used to make a kdtree for fast look-up by position later by filter_lclist.
This returns a pickle file.
'''
if lcformat not in LCFORM or lcformat is None:
LOGERROR("can't figure out the light curve format")
return
if not fileglob:
fileglob = LCFORM[lcformat][0]
readerfunc = LCFORM[lcformat][1]
# this is to get the actual ndet
# set to the magnitudes column
lcndetkey = LCFORM[lcformat][3]
# handle the case where basedir is a list of directories
if isinstance(basedir, list):
matching = []
for bdir in basedir:
# now find the files
LOGINFO('searching for %s light curves in %s ...' % (lcformat,
bdir))
if recursive == False:
matching.extend(glob.glob(os.path.join(bdir, fileglob)))
else:
# use recursive glob for Python 3.5+
if sys.version_info[:2] > (3,4):
matching.extend(glob.glob(os.path.join(bdir,
'**',
fileglob),
recursive=True))
# otherwise, use os.walk and glob
else:
# use os.walk to go through the directories
walker = os.walk(bdir)
for root, dirs, files in walker:
for sdir in dirs:
searchpath = os.path.join(root,
sdir,
fileglob)
foundfiles = glob.glob(searchpath)
if foundfiles:
matching.extend(foundfiles)
# otherwise, handle the usual case of one basedir to search in
else:
# now find the files
LOGINFO('searching for %s light curves in %s ...' % (lcformat, basedir))
if recursive == False:
matching = glob.glob(os.path.join(basedir, fileglob))
else:
# use recursive glob for Python 3.5+
if sys.version_info[:2] > (3,4):
matching = glob.glob(os.path.join(basedir,
'**',
fileglob),recursive=True)
# otherwise, use os.walk and glob
else:
# use os.walk to go through the directories
walker = os.walk(basedir)
matching = []
for root, dirs, files in walker:
for sdir in dirs:
searchpath = os.path.join(root,
sdir,
fileglob)
foundfiles = glob.glob(searchpath)
if foundfiles:
matching.extend(foundfiles)
# now that we have all the files, process them
if matching and len(matching) > 0:
LOGINFO('found %s light curves' % len(matching))
# cut down matching to maxlcs
if maxlcs:
matching = matching[:maxlcs]
# prepare the output dict
lclistdict = {
'basedir':basedir,
'lcformat':lcformat,
'fileglob':fileglob,
'recursive':recursive,
'columns':columns,
'makecoordindex':makecoordindex,
'nfiles':len(matching),
'objects': {
}
}
# columns that will always be present in the output lclistdict
derefcols = ['lcfname']
derefcols.extend(['ndet_%s' % x.split('.')[-1] for x in lcndetkey])
for dc in derefcols:
lclistdict['objects'][dc] = []
# fill in the rest of the lclist columns from the columns kwarg
for col in columns:
# dereference the column
thiscol = col.split('.')
thiscol = thiscol[-1]
lclistdict['objects'][thiscol] = []
derefcols.append(thiscol)
# start collecting info
LOGINFO('collecting light curve info...')
tasks = [(x, columns, readerfunc, lcndetkey) for x in matching]
with ProcessPoolExecutor(max_workers=nworkers) as executor:
results = executor.map(lclist_parallel_worker, tasks)
results = [x for x in results]
# update the columns in the overall dict from the results of the
# parallel map
for result in results:
for xcol in derefcols:
lclistdict['objects'][xcol].append(result[xcol])
executor.shutdown()
# done with collecting info
# turn all of the lists in the lclistdict into arrays
for col in lclistdict['objects']:
lclistdict['objects'][col] = np.array(lclistdict['objects'][col])
# if we're supposed to make a spatial index, do so
if (makecoordindex and
isinstance(makecoordindex, list) and
len(makecoordindex) == 2):
try:
# deref the column names
racol, declcol = makecoordindex
racol = racol.split('.')[-1]
declcol = declcol.split('.')[-1]
# get the ras and decls
objra, objdecl = (lclistdict['objects'][racol],
lclistdict['objects'][declcol])
# get the xyz unit vectors from ra,decl
# since i had to remind myself:
# https://en.wikipedia.org/wiki/Equatorial_coordinate_system
cosdecl = np.cos(np.radians(objdecl))
sindecl = np.sin(np.radians(objdecl))
cosra = np.cos(np.radians(objra))
sinra = np.sin(np.radians(objra))
xyz = np.column_stack((cosra*cosdecl,sinra*cosdecl, sindecl))
# generate the kdtree
kdt = sps.cKDTree(xyz,copy_data=True)
# put the tree into the dict
lclistdict['kdtree'] = kdt
LOGINFO('kdtree generated for (ra, decl): %s' %
makecoordindex)
except Exception as e:
LOGEXCEPTION('could not make kdtree for (ra, decl): %s' %
makecoordindex)
raise
# write the pickle
with open(outfile,'wb') as outfd:
pickle.dump(lclistdict, outfd, protocol=pickle.HIGHEST_PROTOCOL)
LOGINFO('done. LC info -> %s' % outfile)
return outfile
else:
LOGERROR('no files found in %s matching %s' % (basedir, fileglob))
return None
def filter_lclist(listpickle,
objectidcol='objectid',
xmatchexternal=None,
xmatchdistarcsec=3.0,
externalcolnums=(0,1,2),
externalcolnames=['objectid','ra','decl'],
externalcoldtypes='U20,f8,f8',
externalcolsep=None,
externalcommentchar='#',
conesearch=None,
columnfilters=None,
conesearchworkers=1,
copylcsto=None):
'''This is used to collect light curves based on selection criteria.
Uses the output of make_lclist above. This function returns a list of light
curves matching various criteria speciifed by the xmatchexternal,
conesearch, and columnfilters kwargs. Use this function to generate input
lists for the parallel_varfeatures, parallel_pf, and parallel_timebin
functions below.
The filter operations are applied in this order if more than one is
specified: xmatchexternal -> conesearch -> columnfilters. All results from
these filter operations are joined using a logical AND operation.
Returns a two elem tuple: (matching_object_lcfiles, matching_objectids) if
conesearch and/or column filters are used. If xmatchexternal is also used, a
three-elem tuple is returned: (matching_object_lcfiles, matching_objectids,
extcat_matched_objectids).
Args
----
objectidcol is the name of the object ID column in the listpickle file.
If not None, xmatchexternal is a filename containing objectids, ras and decs
to match the objects in this listpickle to by their positions. Use the other
external* kwargs to provide the remaining info required:
xmatchdistarcsec is the distance to use when matching in arcseconds.
externalcolnums are the zero-indexed column numbers in the file containing
objectid, ra, dec values.
externalcolnames are the names of the columns to pull out from the external
catalog file.
externalcoldtypes are numpy dtype specifications for the objectid, ra, decl
columns in the external catalog file.
externalcolsep is the separator character to use to slice the external
catalog file into columns. If None, will use blank space (space/tab) as the
separator.
conesearch is a three-element list:
[center_ra_deg, center_decl_deg, search_radius_deg]
This is used with the kdtree in the lclist pickle to only return objects
that are in the specified region. consearchworkers specifies the number of
parallel workers that can be launched by scipy to search for objects in the
kdtree.
columnfilters is a list of strings indicating how to filter on columns in
the lclist pickle. All column filters are applied in the specified sequence
and are combined with a logical AND operator. The format of each filter
string should be:
'<lclist column>|<operator>|<operand>'
where:
<lclist column> is a column in the lclist dict
<operator> is one of: 'lt', 'gt', 'le', 'ge', 'eq', 'ne', which correspond
to the usual operators: <, >, <=, >=, ==, != respectively.
<operand> is a float, int, or string.
If copylcsto is not None, it is interpreted as a directory target to copy
all the light curves that match the specified conditions.
'''
with open(listpickle,'rb') as infd:
lclist = pickle.load(infd)
# generate numpy arrays of the matching object indexes. we do it this way so
# we can AND everything at the end, instead of having to look up the objects
# at these indices and running the columnfilter on them
xmatch_matching_index = np.full_like(lclist['objects'][objectidcol],
False,
dtype=np.bool)
conesearch_matching_index = np.full_like(lclist['objects'][objectidcol],
False,
dtype=np.bool)
# do the xmatch first
ext_matches = []
ext_matching_objects = []
if (xmatchexternal and
isinstance(xmatchexternal, str) and
os.path.exists(xmatchexternal)):
try:
# read in the external file
extcat = np.genfromtxt(xmatchexternal,
usecols=externalcolnums,
delimiter=externalcolsep,
names=externalcolnames,
dtype=externalcoldtypes,
comments=externalcommentchar)
ext_cosdecl = np.cos(np.radians(extcat['decl']))
ext_sindecl = np.sin(np.radians(extcat['decl']))
ext_cosra = np.cos(np.radians(extcat['ra']))
ext_sinra = np.sin(np.radians(extcat['ra']))
ext_xyz = np.column_stack((ext_cosra*ext_cosdecl,
ext_sinra*ext_cosdecl,
ext_sindecl))
ext_xyzdist = 2.0 * np.sin(np.radians(xmatchdistarcsec/3600.0)/2.0)
# get our kdtree
our_kdt = lclist['kdtree']
# get the external kdtree
ext_kdt = sps.cKDTree(ext_xyz)
# do a query_ball_tree
extkd_matchinds = ext_kdt.query_ball_tree(our_kdt, ext_xyzdist)
for extind, mind in enumerate(extkd_matchinds):
if len(mind) > 0:
ext_matches.append(mind[0])
# get the whole matching row for the ext objects recarray
ext_matching_objects.append(extcat[extind])
ext_matches = np.array(ext_matches)
if ext_matches.size > 0:
# update the xmatch_matching_index
xmatch_matching_index[ext_matches] = True
LOGINFO('xmatch: objects matched to %s within %.1f arcsec: %s' %
(extfile, extmatchdist, ext_matches.size))
else:
LOGERROR("xmatch: no objects were cross-matched to external "
"catalog spec: %s, can't continue" % xmatchexternal)
return None, None, None
except Exception as e:
LOGEXCEPTION('could not match to external catalog spec: %s' %
repr(xmatchexternal))
raise
# do the cone search next
if (conesearch and isinstance(conesearch, list) and len(conesearch) == 3):
try:
racenter, declcenter, searchradius = conesearch
cosdecl = np.cos(np.radians(declcenter))
sindecl = np.sin(np.radians(declcenter))
cosra = np.cos(np.radians(racenter))
sinra = np.sin(np.radians(racenter))
# this is the search distance in xyz unit vectors
xyzdist = 2.0 * np.sin(np.radians(searchradius)/2.0)
# get the kdtree
our_kdt = lclist['kdtree']
# look up the coordinates
kdtindices = our_kdt.query_ball_point([cosra*cosdecl,
sinra*cosdecl,
sindecl],
xyzdist,
n_jobs=conesearchworkers)
if kdtindices and len(kdtindices) > 0:
LOGINFO('cone search: objects within %.4f deg '
'of (%.3f, %.3f): %s' %
(searchradius, racenter, declcenter, len(kdtindices)))
# update the conesearch_matching_index
matchingind = kdtindices
conesearch_matching_index[np.array(matchingind)] = True
# we fail immediately if we found nothing. this assumes the user
# cares more about the cone-search than the regular column filters
else:
LOGERROR("cone-search: no objects were found within "
"%.4f deg of (%.3f, %.3f): %s, can't continue" %
(searchradius, racenter, declcenter, len(kdtindices)))
return None, None
except Exception as e:
LOGEXCEPTION('cone-search: could not run a cone-search, '
'is there a kdtree present in %s?' % listpickle)
raise
# now that we're done with cone-search, do the column filtering
allfilterinds = []
if columnfilters and isinstance(columnfilters, list):
# go through each filter
for cfilt in columnfilters:
try:
fcol, foperator, foperand = cfilt.split('|')
foperator = FILTEROPS[foperator]
# generate the evalstring
filterstr = (
"np.isfinite(lclist['objects']['%s']) & "
"(lclist['objects']['%s'] %s %s)"
) % (fcol, fcol, foperator, foperand)
filterind = eval(filterstr)
ngood = lclist['objects'][objectidcol][filterind].size
LOGINFO('filter: %s -> objects matching: %s ' % (cfilt, ngood))
allfilterinds.append(filterind)
except Exception as e:
LOGEXCEPTION('filter: could not understand filter spec: %s'
% cfilt)
LOGWARNING('filter: not applying this broken filter')
# now that we have all the filter indices good to go
# logical-AND all the things
# make sure we only do filtering if we were told to do so
if (xmatchexternal or conesearch or columnfilters):
filterstack = []
if xmatchexternal:
filterstack.append(xmatch_matching_index)
if conesearch:
filterstack.append(conesearch_matching_index)
if columnfilters:
filterstack.extend(allfilterinds)
finalfilterind = np.column_stack(filterstack)
finalfilterind = np.all(finalfilterind, axis=1)
# get the filtered object light curves and object names
filteredobjectids = lclist['objects'][objectidcol][finalfilterind]
filteredlcfnames = lclist['objects']['lcfname'][finalfilterind]
else:
filteredobjectids = lclist['objects'][objectidcol]
filteredlcfnames = lclist['objects']['lcfname']
# if copylcsto is not None, copy LCs over to it
if copylcsto is not None:
if not os.path.exists(copylcsto):
os.mkdir(copylcsto)
if TQDM:
lciter = tqdm(filteredlcfnames)
else:
lciter = filteredlcfnames
LOGINFO('copying matching light curves to %s' % copylcsto)
for lc in lciter:
shutil.copy(lc, copylcsto)
LOGINFO('done. objects matching all filters: %s' % filteredobjectids.size)
if xmatchexternal and len(ext_matching_objects) > 0:
return filteredlcfnames, filteredobjectids, ext_matching_objects
else:
return filteredlcfnames, filteredobjectids
##########################
## BINNING LIGHT CURVES ##
##########################
def timebinlc(lcfile,
binsizesec,
outdir=None,
lcformat='hat-sql',
timecols=None,
magcols=None,
errcols=None,
minbinelems=7):
'''
This bins the given light curve file in time using binsizesec.
'''
if lcformat not in LCFORM or lcformat is None:
LOGERROR('unknown light curve format specified: %s' % lcformat)
return None
(fileglob, readerfunc, dtimecols, dmagcols,
derrcols, magsarefluxes, normfunc) = LCFORM[lcformat]
# override the default timecols, magcols, and errcols
# using the ones provided to the function
if timecols is None:
timecols = dtimecols
if magcols is None:
magcols = dmagcols
if errcols is None:
errcols = derrcols
# get the LC into a dict
lcdict = readerfunc(lcfile)
if isinstance(lcdict, tuple) and isinstance(lcdict[0],dict):
lcdict = lcdict[0]
# skip already binned light curves
if 'binned' in lcdict:
LOGERROR('this light curve appears to be binned already, skipping...')
return None
for tcol, mcol, ecol in zip(timecols, magcols, errcols):
# dereference the columns and get them from the lcdict
if '.' in tcol:
tcolget = tcol.split('.')
else:
tcolget = [tcol]
times = dict_get(lcdict, tcolget)
if '.' in mcol:
mcolget = mcol.split('.')
else:
mcolget = [mcol]
mags = dict_get(lcdict, mcolget)
if '.' in ecol:
ecolget = ecol.split('.')
else:
ecolget = [ecol]
errs = dict_get(lcdict, ecolget)
# normalize here if not using special normalization
if normfunc is None:
ntimes, nmags = normalize_magseries(
times, mags,
magsarefluxes=magsarefluxes
)
times, mags, errs = ntimes, nmags, errs
# now bin the mag series as requested
binned = time_bin_magseries_with_errs(times,
mags,
errs,
binsize=binsizesec,
minbinelems=minbinelems)
# put this into the special binned key of the lcdict
# we use mcolget[-1] here so we can deal with dereferenced magcols like
# sap.sap_flux or pdc.pdc_sapflux
if 'binned' not in lcdict:
lcdict['binned'] = {mcolget[-1]: {'times':binned['binnedtimes'],
'mags':binned['binnedmags'],
'errs':binned['binnederrs'],
'nbins':binned['nbins'],
'timebins':binned['jdbins'],
'binsizesec':binsizesec}}
else:
lcdict['binned'][mcolget[-1]] = {'times':binned['binnedtimes'],
'mags':binned['binnedmags'],
'errs':binned['binnederrs'],
'nbins':binned['nbins'],
'timebins':binned['jdbins'],
'binsizesec':binsizesec}
# done with binning for all magcols, now generate the output file
# this will always be a pickle
if outdir is None:
outdir = os.path.dirname(lcfile)
outfile = os.path.join(outdir, '%s-binned%.1fsec-%s.pkl' %
(lcdict['objectid'], binsizesec, lcformat))
with open(outfile, 'wb') as outfd:
pickle.dump(lcdict, outfd, protocol=pickle.HIGHEST_PROTOCOL)
return outfile
def timebinlc_worker(task):
'''
This is a parallel worker for the function below.
task[0] = lcfile
task[1] = binsizesec
task[3] = {'outdir','lcformat','timecols','magcols','errcols','minbinelems'}
'''
lcfile, binsizesec, kwargs = task
try:
binnedlc = timebinlc(lcfile, binsizesec, **kwargs)
LOGINFO('%s binned using %s sec -> %s OK' %
(lcfile, binsizesec, binnedlc))
except Exception as e:
LOGEXCEPTION('failed to bin %s using binsizesec = %s' % (lcfile,
binsizesec))
return None
def parallel_timebin(lclist,
binsizesec,
maxobjects=None,
outdir=None,
lcformat='hat-sql',
timecols=None,
magcols=None,
errcols=None,
minbinelems=7,
nworkers=32,
maxworkertasks=1000):
'''
This bins all the light curves in lclist using binsizesec.
'''
if outdir and not os.path.exists(outdir):
os.mkdir(outdir)
if maxobjects is not None:
lclist = lclist[:maxobjects]
tasks = [(x, binsizesec, {'outdir':outdir,
'lcformat':lcformat,
'timecols':timecols,
'magcols':magcols,
'errcols':errcols,
'minbinelems':minbinelems}) for x in lclist]
pool = mp.Pool(nworkers, maxtasksperchild=maxworkertasks)
results = pool.map(timebinlc_worker, tasks)
pool.close()
pool.join()
resdict = {os.path.basename(x):y for (x,y) in zip(lclist, results)}
return resdict
def parallel_timebin_lcdir(lcdir,
binsizesec,
maxobjects=None,
outdir=None,
lcformat='hat-sql',
timecols=None,
magcols=None,
errcols=None,
minbinelems=7,
nworkers=32,
maxworkertasks=1000):
'''
This bins all the light curves in lcdir using binsizesec.
'''
# get the light curve glob associated with specified lcformat
if lcformat not in LCFORM or lcformat is None:
LOGERROR('unknown light curve format specified: %s' % lcformat)
return None
(fileglob, readerfunc, dtimecols, dmagcols,
derrcols, magsarefluxes, normfunc) = LCFORM[lcformat]
lclist = sorted(glob.glob(os.path.join(lcdir, fileglob)))
return parallel_timebin_lclist(lclist,
binsizesec,
maxobjects=maxobjects,
outdir=outdir,
lcformat=lcformat,
timecols=timecols,
magcols=magcols,
errcols=errcols,
minbinelems=minbinelems,
nworkers=nworkers,
maxworkertasks=maxworkertasks)
##########################
## VARIABILITY FEATURES ##
##########################
def get_varfeatures(lcfile,
outdir,
timecols=None,
magcols=None,
errcols=None,
mindet=1000,
lcformat='hat-sql'):
'''
This runs varfeatures on a single LC file.
'''
if lcformat not in LCFORM or lcformat is None:
LOGERROR('unknown light curve format specified: %s' % lcformat)
return None
(fileglob, readerfunc, dtimecols, dmagcols,
derrcols, magsarefluxes, normfunc) = LCFORM[lcformat]
# override the default timecols, magcols, and errcols
# using the ones provided to the function
if timecols is None:
timecols = dtimecols
if magcols is None:
magcols = dmagcols
if errcols is None:
errcols = derrcols
try:
# get the LC into a dict
lcdict = readerfunc(lcfile)
if isinstance(lcdict, tuple) and isinstance(lcdict[0],dict):
lcdict = lcdict[0]
resultdict = {'objectid':lcdict['objectid'],
'info':lcdict['objectinfo'],
'lcfbasename':os.path.basename(lcfile)}
# normalize using the special function if specified
if normfunc is not None:
lcdict = normfunc(lcdict)
for tcol, mcol, ecol in zip(timecols, magcols, errcols):
# dereference the columns and get them from the lcdict
if '.' in tcol:
tcolget = tcol.split('.')
else:
tcolget = [tcol]
times = dict_get(lcdict, tcolget)
if '.' in mcol:
mcolget = mcol.split('.')
else:
mcolget = [mcol]
mags = dict_get(lcdict, mcolget)
if '.' in ecol:
ecolget = ecol.split('.')
else:
ecolget = [ecol]
errs = dict_get(lcdict, ecolget)
# normalize here if not using special normalization
if normfunc is None:
ntimes, nmags = normalize_magseries(
times, mags,
magsarefluxes=magsarefluxes
)
times, mags, errs = ntimes, nmags, errs
# make sure we have finite values
finind = np.isfinite(times) & np.isfinite(mags) & np.isfinite(errs)
# make sure we have enough finite values
if mags[finind].size < mindet:
LOGINFO('not enough LC points: %s in normalized %s LC: %s' %
(mags[finind].size, mcol, os.path.basename(lcfile)))
resultdict[mcolget[-1]] = None
else:
# get the features for this magcol
lcfeatures = varfeatures.all_nonperiodic_features(
times, mags, errs
)
resultdict[mcolget[-1]] = lcfeatures
# now that we've collected all the magcols, we can choose which is the
# "best" magcol. this is defined as the magcol that gives us the
# smallest LC MAD.
try:
magmads = np.zeros(len(magcols))
for mind, mcol in enumerate(magcols):
if '.' in mcol:
mcolget = mcol.split('.')
else:
mcolget = [mcol]
magmads[mind] = resultdict[mcolget[-1]]['mad']
# smallest MAD index
bestmagcolind = np.where(magmads == np.min(magmads))[0]
resultdict['bestmagcol'] = magcols[bestmagcolind]
except:
resultdict['bestmagcol'] = None
outfile = os.path.join(outdir,
'varfeatures-%s.pkl' % resultdict['objectid'])
with open(outfile, 'wb') as outfd:
pickle.dump(resultdict, outfd, protocol=4)
return outfile
except Exception as e:
LOGEXCEPTION('failed to get LC features for %s because: %s' %
(os.path.basename(lcfile), e))
return None
def varfeatures_worker(task):
'''
This wraps varfeatures.
'''
try:
lcfile, outdir, timecols, magcols, errcols, mindet, lcformat = task
return get_varfeatures(lcfile, outdir,
timecols=timecols,
magcols=magcols,
errcols=errcols,
mindet=mindet,
lcformat=lcformat)
except:
return None
def serial_varfeatures(lclist,
outdir,
maxobjects=None,
timecols=None,
magcols=None,
errcols=None,
mindet=1000,
lcformat='hat-sql',
nworkers=None):
if maxobjects:
lclist = lclist[:maxobjects]
tasks = [(x, outdir, timecols, magcols, errcols, mindet, lcformat)
for x in lclist]
for task in tqdm(tasks):
result = varfeatures_worker(task)
def parallel_varfeatures(lclist,
outdir,
maxobjects=None,
timecols=None,
magcols=None,
errcols=None,
mindet=1000,
lcformat='hat-sql',
nworkers=None):
'''
This runs varfeatures in parallel for all light curves in lclist.
'''
# make sure to make the output directory if it doesn't exist
if not os.path.exists(outdir):
os.makedirs(outdir)
if maxobjects:
lclist = lclist[:maxobjects]
tasks = [(x, outdir, timecols, magcols, errcols, mindet, lcformat)
for x in lclist]
with ProcessPoolExecutor(max_workers=nworkers) as executor:
resultfutures = executor.map(varfeatures_worker, tasks)
results = [x for x in resultfutures]
resdict = {os.path.basename(x):y for (x,y) in zip(lclist, results)}
return resdict
def parallel_varfeatures_lcdir(lcdir,
outdir,
maxobjects=None,
timecols=None,
magcols=None,
errcols=None,
recursive=True,
mindet=1000,
lcformat='hat-sql',
nworkers=None):
'''
This runs parallel variable feature extraction for a directory of LCs.
'''
if lcformat not in LCFORM or lcformat is None:
LOGERROR('unknown light curve format specified: %s' % lcformat)
return None
fileglob = LCFORM[lcformat][0]
# now find the files
LOGINFO('searching for %s light curves in %s ...' % (lcformat, lcdir))
if recursive == False:
matching = glob.glob(os.path.join(lcdir, fileglob))
else:
# use recursive glob for Python 3.5+
if sys.version_info[:2] > (3,4):
matching = glob.glob(os.path.join(lcdir,
'**',
fileglob),recursive=True)
# otherwise, use os.walk and glob
else:
# use os.walk to go through the directories
walker = os.walk(lcdir)
matching = []
for root, dirs, files in walker:
for sdir in dirs:
searchpath = os.path.join(root,
sdir,
fileglob)
foundfiles = glob.glob(searchpath)
if foundfiles:
matching.extend(foundfiles)
# now that we have all the files, process them
if matching and len(matching) > 0:
LOGINFO('found %s light curves, getting varfeatures...' %
len(matching))
return parallel_varfeatures(matching,
outdir,
maxobjects=maxobjects,
timecols=timecols,
magcols=magcols,
errcols=errcols,
mindet=mindet,
lcformat=lcformat,
nworkers=nworkers)
else:
LOGERROR('no light curve files in %s format found in %s' % (lcformat,
lcdir))
return None
#######################
## PERIODIC FEATURES ##
#######################
def get_periodicfeatures(pfpickle,
lcbasedir,
outdir,
fourierorder=5,
# these are depth, duration, ingress duration
transitparams=[-0.01,0.1,0.1],
# these are depth, duration, depth ratio, secphase
ebparams=[-0.2,0.3,0.7,0.5],
pdiff_threshold=1.0e-4,
sidereal_threshold=1.0e-4,
sampling_peak_multiplier=5.0,
sampling_startp=None,
sampling_endp=None,
starfeatures=None,
timecols=None,
magcols=None,
errcols=None,
lcformat='hat-sql',
sigclip=10.0,
magsarefluxes=False,
verbose=True,
raiseonfail=False):
'''This gets all periodic features for the object.
If starfeatures is not None, it should be the filename of the
starfeatures-<objectid>.pkl created by get_starfeatures for this
object. This is used to get the neighbor's light curve and phase it with
this object's period to see if this object is blended.
'''
if lcformat not in LCFORM or lcformat is None:
LOGERROR('unknown light curve format specified: %s' % lcformat)
return None
(fileglob, readerfunc, dtimecols, dmagcols,
derrcols, magsarefluxes, normfunc) = LCFORM[lcformat]
# open the pfpickle
if pfpickle.endswith('.gz'):
infd = gzip.open(pfpickle)
else:
infd = open(pfpickle)
pf = pickle.load(infd)
infd.close()
lcfile = os.path.join(lcbasedir, pf['lcfbasename'])
objectid = pf['objectid']
if 'kwargs' in pf:
kwargs = pf['kwargs']
else:
kwargs = None
# override the default timecols, magcols, and errcols
# using the ones provided to the periodfinder
# if those don't exist, use the defaults from the lcformat def
if kwargs and 'timecols' in kwargs and timecols is None:
timecols = kwargs['timecols']
elif not kwargs and not timecols:
timecols = dtimecols
if kwargs and 'magcols' in kwargs and magcols is None:
magcols = kwargs['magcols']
elif not kwargs and not magcols:
magcols = dmagcols
if kwargs and 'errcols' in kwargs and errcols is None:
errcols = kwargs['errcols']
elif not kwargs and not errcols:
errcols = derrcols
# check if the light curve file exists
if not os.path.exists(lcfile):
LOGERROR("can't find LC %s for object %s" % (lcfile, objectid))
return None
# check if we have neighbors we can get the LCs for
if starfeatures is not None and os.path.exists(starfeatures):
with open(starfeatures,'rb') as infd:
starfeat = pickle.load(infd)
if starfeat['closestnbrlcfname'].size > 0:
nbr_full_lcf = starfeat['closestnbrlcfname'][0]
# check for this LC in the lcbasedir
if os.path.exists(os.path.join(lcbasedir,
os.path.basename(nbr_full_lcf))):
nbrlcf = os.path.join(lcbasedir,
os.path.basename(nbr_full_lcf))
# if it's not there, check for this file at the full LC location
elif os.path.exists(nbr_full_lcf):
nbrlcf = nbr_full_lcf
# otherwise, we can't find it, so complain
else:
LOGWARNING("can't find neighbor light curve file: %s in "
"its original directory: %s, or in this object's "
"lcbasedir: %s, skipping neighbor processing..." %
(os.path.basename(nbr_full_lcf),
os.path.dirname(nbr_full_lcf),
lcbasedir))
nbrlcf = None
else:
nbrlcf = None
else:
nbrlcf = None
# now, start processing for periodic feature extraction
try:
# get the object LC into a dict
lcdict = readerfunc(lcfile)
if isinstance(lcdict, tuple) and isinstance(lcdict[0],dict):
lcdict = lcdict[0]
# get the nbr object LC into a dict if there is one
if nbrlcf is not None:
nbrlcdict = readerfunc(nbrlcf)
if isinstance(nbrlcdict, tuple) and isinstance(nbrlcdict[0],dict):
nbrlcdict = nbrlcdict[0]
# this will be the output file
outfile = os.path.join(outdir, 'periodicfeatures-%s.pkl' % objectid)
# normalize using the special function if specified
if normfunc is not None:
lcdict = normfunc(lcdict)
if nbrlcf:
nbrlcdict = normfunc(nbrlcdict)
resultdict = {}
for tcol, mcol, ecol in zip(timecols, magcols, errcols):
# dereference the columns and get them from the lcdict
if '.' in tcol:
tcolget = tcol.split('.')
else:
tcolget = [tcol]
times = dict_get(lcdict, tcolget)
if nbrlcf:
nbrtimes = dict_get(nbrlcdict, tcolget)
else:
nbrtimes = None
if '.' in mcol:
mcolget = mcol.split('.')
else:
mcolget = [mcol]
mags = dict_get(lcdict, mcolget)
if nbrlcf:
nbrmags = dict_get(nbrlcdict, mcolget)
else:
nbrmags = None
if '.' in ecol:
ecolget = ecol.split('.')
else:
ecolget = [ecol]
errs = dict_get(lcdict, ecolget)
if nbrlcf:
nbrerrs = dict_get(nbrlcdict, ecolget)
else:
nbrerrs = None
#
# filter out nans, etc. from the object and any neighbor LC
#
# get the finite values
finind = | np.isfinite(times) | numpy.isfinite |
import numpy as np
import pandas as pd
from scipy.stats import beta
import deTiN.deTiN_utilities as du
np.seterr(all='ignore')
class model:
"""Model of tumor in normal (TiN) based on only candidate SSNVs. This estimate is most
reliable when there are greater then 6 mutations and TiN is less then ~30%. Previously
this estimate has been used on its own to assess TiN in targeted panel data where
copy number data is usually limited but SSNVs are well measured.
TiN estimate : model.TiN
Somatic classification of SSNVs : model.E_z (E_z > 0.5 -> somatic)"""
def __init__(self, candidate_sites, p_somatic, resolution=101, f_thresh=0.15, depth=15, hot_spots_file='NA',
skew=0.5):
# variables follow notation:
# ac = allele count n = normal t = tumor
# Variables for SSNV fit
self.TiN_range = np.linspace(0, 1, num=resolution)
self.af = np.linspace(0.005, 1, num=200)
# observed data
self.contig = candidate_sites['contig']
self.position = candidate_sites['position']
self.genomic_coord_x = candidate_sites['genomic_coord_x']
self.n_alt_count = np.array(candidate_sites['n_alt_count'])
self.n_ref_count = np.array(candidate_sites['n_ref_count'])
self.n_depth = self.n_alt_count + self.n_ref_count
self.normal_f = np.nan_to_num(np.true_divide(self.n_alt_count, self.n_depth))
self.t_alt_count = np.array(candidate_sites['t_alt_count'])
self.t_ref_count = np.array(candidate_sites['t_ref_count'])
self.t_depth = self.t_alt_count + self.t_ref_count
self.tumor_f = np.true_divide(self.t_alt_count, self.t_depth)
self.number_of_sites = len(self.n_alt_count)
self.candidate_sites = np.logical_and(np.logical_and(self.tumor_f > f_thresh, self.t_depth > depth),
self.n_depth > depth)
# hyperparameter
self.p_somatic = np.zeros([self.number_of_sites, 1]) + p_somatic
if hot_spots_file != 'NA':
hot_spots = pd.read_csv(hot_spots_file, sep='\t', low_memory=False, index_col=False)
if type(hot_spots['Chromosome'][0]) == str:
hot_spots['contig'] = du.chr2num(np.array(hot_spots['Chromosome']))
else:
hot_spots['contig'] = np.array(hot_spots['Chromosome']) - 1
hot_spots = hot_spots[np.isfinite(hot_spots['contig'])]
hot_spots['genomic_coord_x'] = du.hg19_to_linear_positions(
np.array(hot_spots['contig']), np.array(hot_spots['Position']))
for index, hot_spot in hot_spots.iterrows():
if np.size(np.where(self.genomic_coord_x == hot_spot['genomic_coord_x'])) > 0:
print('Using user provided probabilities for cancer hot spots:')
print(hot_spot['Chromosome'] + ' ' + hot_spot['Position'])
self.p_somatic[np.where(self.genomic_coord_x == hot_spot['genomic_coord_x'])] = hot_spot[
'Probability']
# parameter
self.TiN = 0
self.CI_tin_high = []
self.CI_tin_low = []
self.E_z = np.zeros([self.number_of_sites, 1])
self.skew = skew
# expected allele fraction of minor allele given allelic copy data
self.psi = .5 - np.array(candidate_sites['f_acs'])
self.t_het_direction = self.tumor_f < self.skew
self.t_het_direction = self.t_het_direction * -1
self.t_het_direction[self.t_het_direction == 0] = 1
# determine ratio of tumor to normal copies given tau and TiN at each locus
self.tau = candidate_sites['tau']
self.tin_correct_tau = np.multiply(self.TiN_range, candidate_sites['tau'][:, np.newaxis])
self.tin_correct_normal_tau = np.multiply((1 - self.TiN_range), 2)
self.CN_ratio = np.divide(self.tin_correct_tau, np.array(self.tin_correct_tau + self.tin_correct_normal_tau))
# random variables
self.rv_normal_af = beta(self.n_alt_count + 1, self.n_ref_count + 1)
self.rv_tumor_af = beta(self.t_alt_count + 1, self.t_ref_count + 1)
# conditionals
self.p_TiN_given_S = np.zeros([self.number_of_sites, resolution])
self.p_TiN_given_G = np.zeros([self.number_of_sites, resolution])
self.p_TiN_given_het = np.zeros([self.number_of_sites, resolution])
self.p_artifact = np.zeros([self.number_of_sites, 1])
# likelihood
self.TiN_likelihood = np.zeros([resolution, 1])
def generate_conditional_ps(self):
# p(TiN|Somatic) and p(TiN|Germline)
t_het_direction = np.ones([self.number_of_sites, len(self.af)])
t_het_direction[:, 0:np.int(np.round(np.true_divide(len(self.af), 2)))] = -1
self.afexp = np.repeat(np.expand_dims(self.af, 1), self.number_of_sites, axis=1).T
t_af_w = beta._cdf(self.afexp, np.expand_dims(self.t_alt_count + 1, 1),
np.expand_dims(self.t_ref_count + 1, 1)) - beta._cdf(self.afexp - 0.005,
np.expand_dims(self.t_alt_count + 1, 1),
np.expand_dims(self.t_ref_count + 1, 1))
f_t_af = self.skew - np.abs(self.skew - self.afexp)
t_af = np.multiply(self.afexp, np.expand_dims(self.n_depth, 1))
psi_t_af = self.skew - f_t_af
psi_t_af = np.multiply(psi_t_af, t_het_direction)
for TiN_idx, TiN in enumerate(self.TiN_range):
n_ac_given_tin = np.multiply(t_af, np.expand_dims(self.CN_ratio[:, TiN_idx], 1))
exp_f = self.skew + np.multiply(psi_t_af, np.expand_dims(self.CN_ratio[:, TiN_idx], 1))
n_het_ac_given_tin = np.multiply(exp_f, self.n_depth[:, np.newaxis])
self.p_TiN_given_S[:, TiN_idx] += np.sum(
np.multiply(beta._cdf(np.expand_dims(self.normal_f[:] + .01, 1), n_ac_given_tin + 1,
self.n_depth[:, np.newaxis] - n_ac_given_tin + 1) -
beta._cdf(np.expand_dims(self.normal_f[:], 1), n_ac_given_tin + 1,
self.n_depth[:, np.newaxis] - n_ac_given_tin + 1), t_af_w), axis=1)
self.p_TiN_given_het[:, TiN_idx] += np.sum(
np.multiply(beta._cdf(np.expand_dims(self.normal_f[:] + .01, 1), n_het_ac_given_tin + 1,
self.n_depth[:, np.newaxis] - n_het_ac_given_tin + 1) -
beta._cdf(np.expand_dims(self.normal_f[:], 1), n_het_ac_given_tin + 1,
self.n_depth[:, np.newaxis] - n_het_ac_given_tin + 1), t_af_w), axis=1)
self.p_artifact = beta._cdf(self.normal_f + .01, self.t_alt_count + 1, self.t_ref_count + 1) - beta._cdf(
self.normal_f, self.t_alt_count + 1, self.t_ref_count + 1)
self.p_TiN_given_G = np.multiply(1 - self.p_artifact[:, np.newaxis], self.p_TiN_given_het) + np.multiply(
self.p_artifact[:, np.newaxis], 1 - self.p_TiN_given_het)
def expectation_of_z_given_TiN(self):
# E step
numerator = self.p_somatic * np.expand_dims(self.p_TiN_given_S[:, self.TiN], 1)
denominator = numerator + (1 - self.p_somatic) * np.expand_dims(np.nan_to_num(self.p_TiN_given_G[:, self.TiN]),
1)
self.E_z = np.nan_to_num(np.true_divide(numerator, denominator))
def maximize_TiN_likelihood(self):
# M step
self.TiN_likelihood = np.nansum(np.multiply(self.E_z[self.candidate_sites],
np.ma.log(self.p_TiN_given_S[self.candidate_sites, :])), axis=0) + \
np.nansum(np.multiply(1 - self.E_z[self.candidate_sites],
np.ma.log(self.p_TiN_given_G[self.candidate_sites, :])), axis=0)
self.TiN = | np.argmax(self.TiN_likelihood) | numpy.argmax |
#! /usr/bin/env python
import tensorflow as tf
import numpy as np
import os
import data_helpers
from tensorflow.contrib import learn
import csv
from sklearn import metrics
import yaml
import itertools
preps = ['at', 'on', 'in', 'by', 'for', 'against', 'to', 'from', 'between', 'during', 'with', 'about', 'of']
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
if x.ndim == 1:
x = x.reshape((1, -1))
max_x = np.max(x, axis=1).reshape((-1, 1))
exp_x = np.exp(x - max_x)
return exp_x / np.sum(exp_x, axis=1).reshape((-1, 1))
with open("config.yml", 'r') as ymlfile:
cfg = yaml.load(ymlfile)
# Parameters
# ==================================================
# Data Parameters
# Eval Parameters
tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
tf.flags.DEFINE_string("checkpoint_dir", "/u/a/n/anant/539_project/runs/2017-12-10 17:11:50.923482,glove,baseline,fc-3-layer,quadruple-hidden-neurons/best_checkpoints", "Checkpoint directory from training run")
tf.flags.DEFINE_boolean("eval_train", False, "Evaluate on all training data")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
print("{}={}".format(attr.upper(), value))
print("")
datasets = None
# CHANGE THIS: Load data. Load your own data here
dataset_name = cfg["datasets"]["default"]
if FLAGS.eval_train:
if dataset_name == "mrpolarity":
datasets = data_helpers.get_datasets_mrpolarity(cfg["datasets"][dataset_name]["positive_data_file"]["path"],
cfg["datasets"][dataset_name]["negative_data_file"]["path"])
elif dataset_name == "20newsgroup":
datasets = data_helpers.get_datasets_20newsgroup(subset="test",
categories=cfg["datasets"][dataset_name]["categories"],
shuffle=cfg["datasets"][dataset_name]["shuffle"],
random_state=cfg["datasets"][dataset_name]["random_state"])
x_raw, y_test = data_helpers.load_data_labels(datasets)
y_test = np.argmax(y_test, axis=1)
print("Total number of test examples: {}".format(len(y_test)))
else:
if dataset_name == "mrpolarity":
datasets = {"target_names": ['positive_examples', 'negative_examples']}
x_raw = ["a masterpiece four years in the making", "everything is off."]
y_test = [1, 0]
else:
datasets = {"target_names": ['alt.atheism', 'comp.graphics', 'sci.med', 'soc.religion.christian']}
x_raw = ["The number of reported cases of gonorrhea in Colorado increased",
"I am in the market for a 24-bit graphics card for a PC"]
y_test = [2, 1]
x_words_raw, x_tags, x_labels, x_trees, x_indices, y, y_labels = data_helpers.load_data_labels('/u/a/n/anant/Dropbox/539_project/generated_test_data/')
x_words = x_words_raw
# x_words = x_words[1:1000]
# x_tags = x_tags[1:1000]
# x_labels = x_labels[1:1000]
# x_trees = x_trees[1:1000]
# x_indices = x_indices[1:1000]
# y_labels = y_labels[1:1000]
max_document_length = 50
valid_indices = []
for i in range(len(x_words)):
if len(x_words[i].split(" ")) <= max_document_length:
valid_indices.append(i)
# Map data into vocabulary
vocab_path = os.path.join(FLAGS.checkpoint_dir, "..", "vocab")
vocab_processor = learn.preprocessing.VocabularyProcessor.restore(vocab_path)
x_words = np.array(list(vocab_processor.transform(x_words)))
vocab_path = os.path.join(FLAGS.checkpoint_dir, "..", "tags_vocab")
tags_vocab_processor = learn.preprocessing.VocabularyProcessor.restore(vocab_path)
x_tags = np.array(list(tags_vocab_processor.transform(x_tags)))
vocab_path = os.path.join(FLAGS.checkpoint_dir, "..", "labels_vocab")
labels_vocab_processor = learn.preprocessing.VocabularyProcessor.restore(vocab_path)
x_labels = np.array(list(labels_vocab_processor.transform(x_labels)))
for i in range(max(max_document_length, len(x_words))):
if x_indices[i] < max_document_length:
x_words[i][int(x_indices[i])] = 0
x_indices = np.array(x_indices)
x_trees = | np.array(x_trees) | numpy.array |
import matplotlib
matplotlib.use("Agg")
from imageio import imread
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
import scipy.signal as sg
import scipy as sp
def get_im2col_indices(x_shape, field_height, field_width, padding=1, stride=1):
# from cs231n assignments
# First figure out what the size of the output should be
N, C, H, W = x_shape
assert (H + 2 * padding - field_height) % stride == 0
assert (W + 2 * padding - field_width) % stride == 0
out_height = (H + 2 * padding - field_height) / stride + 1
out_width = (W + 2 * padding - field_width) / stride + 1
i0 = np.repeat(np.arange(field_height), field_width)
i0 = np.tile(i0, C)
i1 = stride * np.repeat(np.arange(out_height), out_width)
j0 = np.tile(np.arange(field_width), field_height * C)
j1 = stride * np.tile(np.arange(out_width), out_height)
i = i0.reshape(-1, 1) + i1.reshape(1, -1)
j = j0.reshape(-1, 1) + j1.reshape(1, -1)
k = np.repeat( | np.arange(C) | numpy.arange |
import numpy as np
from itertools import product
from itertools import permutations
import matplotlib.pyplot as plt
import pickle
import os
import stimulus
import parameters
import analysis
class Motifs:
def __init__(self, data_dir, file_prefix, N = None):
self.motifs = {}
self.motif_sizes = [2,3,4]
data_files = os.listdir(data_dir)
for f in data_files:
if f.startswith(file_prefix):
print('Processing ', f)
self.current_filename = f
W, v = self.make_matrix(data_dir + f, 'elim_lesion', N)
print(type(W))
if type(W) is list:
for i,w1 in enumerate(W):
self.find_motifs(w1, v)
else:
self.find_motifs(W, v)
self.print_motif_list()
def make_matrix(self, filename, method, N):
x = pickle.load(open(filename, 'rb'))
beh_threshold = 0.1
val_th = 0.1
ind_accurate = np.where(np.array(x['accuracy_hist']) > 0.98)[0]
#N = np.argmax(ind_accurate)
#N = 6
print('N = ', N)
if method == 'elim_lesion' or method == 'elim':
parameters.update_parameters(x['par'])
s = stimulus.Stimulus()
trial_info = s.generate_trial()
if method == 'lesion':
significant_weights_rnn = x['model_performance']['accuracy'][-1] - x['lesion_accuracy_rnn'][0,:,:] > beh_threshold
significant_weights_out = x['model_performance']['accuracy'][-1] - x['lesion_accuracy_out'][0,:,:] > beh_threshold
v = np.array([0]*x['parameters']['num_exc_units'] + [1]*x['parameters']['num_inh_units'] \
+ [2]*x['parameters']['n_output'])
W = np.vstack((significant_weights_rnn, significant_weights_out))
d = W.shape[0] - W.shape[1]
W = np.hstack((W, np.zeros((W.shape[0], d))))
elif method == 'elim':
num_units = 50 - N
w1 = np.zeros((num_units, num_units))
w2 = np.zeros((3, num_units))
ind = np.where(x['gate_hist'][N]>0)[0]
for i in range(num_units):
for j in range(num_units):
w1[i,j] = x['weights_hist'][N]['w_rnn'][ind[i], ind[j]] > val_th
for j in range(3):
w2[j,i] = x['weights_hist'][N]['w_out'][j, ind[i]] > val_th
n_exc = int(np.sum(x['gate_hist'][N][:x['par']['num_exc']]))
n_inh = int(np.sum(x['gate_hist'][N][x['par']['num_exc']:]))
v = np.array([0]*n_exc + [1]*n_inh + [2]*x['par']['n_output'])
W = np.vstack((w1, w2))
d = W.shape[0] - W.shape[1]
W = np.hstack((W, np.zeros((W.shape[0], d))))
elif method == 'elim_lesion':
num_units = 50 - N
r = analysis.lesion_weights(trial_info, x['par']['h_init'], x['par']['syn_x_init'], x['par']['syn_u_init'], \
x['weights_hist'][N], x['gate_hist'][N])
#plt.imshow(np.squeeze(r['lesion_accuracy_rnn']), aspect='auto', interpolation = 'none')
#plt.colorbar()
#plt.show()
w1_full = np.tile(x['accuracy_hist'][N],(x['par']['n_hidden'],x['par']['n_hidden'])) - np.squeeze(r['lesion_accuracy_rnn']) > beh_threshold
w2_full = np.tile(x['accuracy_hist'][N],(x['par']['n_output'],x['par']['n_hidden'])) - np.squeeze(r['lesion_accuracy_out']) > beh_threshold
w1 = np.zeros((num_units, num_units))
w2 = np.zeros((3, num_units))
ind = np.where(x['gate_hist'][N]>0)[0]
for i in range(num_units):
for j in range(num_units):
w1[i,j] = w1_full[ind[i], ind[j]]
for j in range(3):
w2[j,i] = w2_full[j, ind[i]]
#plt.imshow(w1, aspect='auto', interpolation = 'none')
#plt.colorbar()
#plt.show()
print('accuracy ', x['accuracy_hist'][N])
n_exc = int(np.sum(x['gate_hist'][N][:x['par']['num_exc']]))
n_inh = int(np.sum(x['gate_hist'][N][x['par']['num_exc']:]))
v = np.array([0]*n_exc + [1]*n_inh + [2]*x['par']['n_output'])
W = np.vstack((w1, w2))
d = W.shape[0] - W.shape[1]
W = np.hstack((W, np.zeros((W.shape[0], d))))
plt.imshow(W, aspect='auto', interpolation = 'none')
plt.colorbar()
plt.show()
print(v)
elif method == 'stacked':
W = []
for i in range(x['W_rnn'].shape[0]):
w1 = np.reshape(x['W_rnn'][i,:], (50,50))>0.2
w2 = np.reshape(x['W_out'][i,:], (3,50))>0.2
v = np.array([0]*40 + [1]*10 + [2]*3)
W1 = np.vstack((w1, w2))
d = W1.shape[0] - W1.shape[1]
W1 = np.hstack((W1, np.zeros((W1.shape[0], d))))
W.append(W1)
return W, v
def connection_probs(self):
unique_labels = | np.unique(self.v) | numpy.unique |
"""
Random Variables.
This module implements random variables. Random variables are the main in- and outputs
of probabilistic numerical methods.
"""
from typing import Any, Callable, Dict, Generic, Optional, Tuple, TypeVar, Union
import numpy as np
from probnum import utils as _utils
from probnum.type import (
ArrayLikeGetitemArgType,
DTypeArgType,
FloatArgType,
RandomStateArgType,
RandomStateType,
ShapeArgType,
ShapeType,
)
try:
# functools.cached_property is only available in Python >=3.8
from functools import cached_property
except ImportError:
from cached_property import cached_property
_ValueType = TypeVar("ValueType")
class RandomVariable(Generic[_ValueType]):
"""
Random variables are the main objects used by probabilistic numerical methods.
Every probabilistic numerical method takes a random variable encoding the prior
distribution as input and outputs a random variable whose distribution encodes the
uncertainty arising from finite computation. The generic signature of a
probabilistic numerical method is:
``output_rv = probnum_method(input_rv, method_params)``
In practice, most random variables used by methods in ProbNum have Dirac or Gaussian
measure.
Instances of :class:`RandomVariable` can be added, multiplied, etc. with arrays and
linear operators. This may change their ``distribution`` and not necessarily all
previously available methods are retained.
The internals of :class:`RandomVariable` objects are assumed to be constant over
their whole lifecycle. This is due to the caches used to make certain computations
more efficient. As a consequence, altering the internal state of a
:class:`RandomVariable` (e.g. its mean, cov, sampling function, etc.) will result in
undefined behavior. In particular, this should be kept in mind when subclassing
:class:`RandomVariable` or any of its descendants.
Parameters
----------
shape :
Shape of realizations of this random variable.
dtype :
Data type of realizations of this random variable. If ``object`` will be
converted to ``numpy.dtype``.
as_value_type :
Function which can be used to transform user-supplied arguments, interpreted as
realizations of this random variable, to an easy-to-process, normalized format.
Will be called internally to transform the argument of functions like
``in_support``, ``cdf`` and ``logcdf``, ``pmf`` and ``logpmf`` (in
:class:`DiscreteRandomVariable`), ``pdf`` and ``logpdf`` (in
:class:`ContinuousRandomVariable`), and potentially by similar functions in
subclasses.
For instance, this method is useful if (``log``)``cdf`` and (``log``)``pdf``
both only work on :class:`np.float_` arguments, but we still want the user to be
able to pass Python :class:`float`. Then ``as_value_type`` should be set to
something like ``lambda x: np.float64(x)``.
See Also
--------
asrandvar : Transform into a :class:`RandomVariable`.
Examples
--------
"""
# pylint: disable=too-many-instance-attributes,too-many-public-methods
def __init__(
self,
shape: ShapeArgType,
dtype: DTypeArgType,
random_state: RandomStateArgType = None,
parameters: Optional[Dict[str, Any]] = None,
sample: Optional[Callable[[ShapeType], _ValueType]] = None,
in_support: Optional[Callable[[_ValueType], bool]] = None,
cdf: Optional[Callable[[_ValueType], np.float_]] = None,
logcdf: Optional[Callable[[_ValueType], np.float_]] = None,
quantile: Optional[Callable[[FloatArgType], _ValueType]] = None,
mode: Optional[Callable[[], _ValueType]] = None,
median: Optional[Callable[[], _ValueType]] = None,
mean: Optional[Callable[[], _ValueType]] = None,
cov: Optional[Callable[[], _ValueType]] = None,
var: Optional[Callable[[], _ValueType]] = None,
std: Optional[Callable[[], _ValueType]] = None,
entropy: Optional[Callable[[], np.float_]] = None,
as_value_type: Optional[Callable[[Any], _ValueType]] = None,
):
# pylint: disable=too-many-arguments,too-many-locals
"""Create a new random variable."""
self.__shape = _utils.as_shape(shape)
# Data Types
self.__dtype = np.dtype(dtype)
self.__median_dtype = RandomVariable.infer_median_dtype(self.__dtype)
self.__moment_dtype = RandomVariable.infer_moment_dtype(self.__dtype)
self._random_state = _utils.as_random_state(random_state)
# Probability distribution of the random variable
self.__parameters = parameters.copy() if parameters is not None else {}
self.__sample = sample
self.__in_support = in_support
self.__cdf = cdf
self.__logcdf = logcdf
self.__quantile = quantile
# Properties of the random variable
self.__mode = mode
self.__median = median
self.__mean = mean
self.__cov = cov
self.__var = var
self.__std = std
self.__entropy = entropy
# Utilities
self.__as_value_type = as_value_type
def __repr__(self) -> str:
return f"<{self.shape} {self.__class__.__name__} with dtype={self.dtype}>"
@property
def shape(self) -> ShapeType:
"""Shape of realizations of the random variable."""
return self.__shape
@cached_property
def ndim(self) -> int:
return len(self.__shape)
@cached_property
def size(self) -> int:
return int(np.prod(self.__shape))
@property
def dtype(self) -> np.dtype:
"""Data type of (elements of) a realization of this random variable."""
return self.__dtype
@property
def median_dtype(self) -> np.dtype:
"""The dtype of the :attr:`median`. It will be set to the dtype arising from
the multiplication of values with dtypes :attr:`dtype` and :class:`np.float_`.
This is motivated by the fact that, even for discrete random variables, e.g.
integer-valued random variables, the :attr:`median` might lie in between two
values in which case these values are averaged. For example, a uniform random
variable on :math:`\\{ 1, 2, 3, 4 \\}` will have a median of :math:`2.5`.
"""
return self.__median_dtype
@property
def moment_dtype(self) -> np.dtype:
"""The dtype of any (function of a) moment of the random variable, e.g. its
:attr:`mean`, :attr:`cov`, :attr:`var`, or :attr:`std`. It will be set to the
dtype arising from the multiplication of values with dtypes :attr:`dtype`
and :class:`np.float_`. This is motivated by the mathematical definition of a
moment as a sum or an integral over products of probabilities and values of the
random variable, which are represented as using the dtypes :class:`np.float_`
and :attr:`dtype`, respectively.
"""
return self.__moment_dtype
@property
def random_state(self) -> RandomStateType:
"""Random state of the random variable.
This attribute defines the RandomState object to use for drawing
realizations from this random variable.
If None (or np.random), the global np.random state is used.
If integer, it is used to seed the local :class:`~numpy.random.RandomState`
instance.
"""
return self._random_state
@random_state.setter
def random_state(self, seed: RandomStateArgType):
"""Get or set the RandomState object of the underlying distribution.
This can be either None or an existing RandomState object.
If None (or np.random), use the RandomState singleton used by np.random.
If already a RandomState instance, use it.
If an int, use a new RandomState instance seeded with seed.
"""
self._random_state = _utils.as_random_state(seed)
@property
def parameters(self) -> Dict[str, Any]:
"""
Parameters of the probability distribution.
The parameters of the distribution such as mean, variance, et cetera stored in a
``dict``.
"""
return self.__parameters.copy()
@cached_property
def mode(self) -> _ValueType:
"""
Mode of the random variable.
Returns
-------
mode : float
The mode of the random variable.
"""
if self.__mode is None:
raise NotImplementedError
mode = self.__mode()
RandomVariable._check_property_value(
"mode",
mode,
shape=self.__shape,
dtype=self.__dtype,
)
# Make immutable
if isinstance(mode, np.ndarray):
mode.setflags(write=False)
return mode
@cached_property
def median(self) -> _ValueType:
"""
Median of the random variable.
To learn about the dtype of the median, see :attr:`median_dtype`.
Returns
-------
median : float
The median of the distribution.
"""
if self.__shape != ():
raise NotImplementedError(
"The median is only defined for scalar random variables."
)
median = self.__median()
RandomVariable._check_property_value(
"median",
median,
shape=self.__shape,
dtype=self.__median_dtype,
)
# Make immutable
if isinstance(median, np.ndarray):
median.setflags(write=False)
return median
@cached_property
def mean(self) -> _ValueType:
"""
Mean :math:`\\mathbb{E}(X)` of the distribution.
To learn about the dtype of the mean, see :attr:`moment_dtype`.
Returns
-------
mean : array-like
The mean of the distribution.
"""
if self.__mean is None:
raise NotImplementedError
mean = self.__mean()
RandomVariable._check_property_value(
"mean",
mean,
shape=self.__shape,
dtype=self.__moment_dtype,
)
# Make immutable
if isinstance(mean, np.ndarray):
mean.setflags(write=False)
return mean
@cached_property
def cov(self) -> _ValueType:
"""
Covariance :math:`\\operatorname{Cov}(X) = \\mathbb{E}((X-\\mathbb{E}(X))(X-\\mathbb{E}(X))^\\top)`
of the random variable.
To learn about the dtype of the covariance, see :attr:`moment_dtype`.
Returns
-------
cov : array-like
The kernels of the random variable.
""" # pylint: disable=line-too-long
if self.__cov is None:
raise NotImplementedError
cov = self.__cov()
RandomVariable._check_property_value(
"covariance",
cov,
shape=(self.size, self.size) if self.ndim > 0 else (),
dtype=self.__moment_dtype,
)
# Make immutable
if isinstance(cov, np.ndarray):
cov.setflags(write=False)
return cov
@cached_property
def var(self) -> _ValueType:
"""
Variance :math:`\\operatorname{Var}(X) = \\mathbb{E}((X-\\mathbb{E}(X))^2)` of
the distribution.
To learn about the dtype of the variance, see :attr:`moment_dtype`.
Returns
-------
var : array-like
The variance of the distribution.
"""
if self.__var is None:
try:
var = np.diag(self.cov).reshape(self.__shape).copy()
except NotImplementedError as exc:
raise NotImplementedError from exc
else:
var = self.__var()
RandomVariable._check_property_value(
"variance",
var,
shape=self.__shape,
dtype=self.__moment_dtype,
)
# Make immutable
if isinstance(var, np.ndarray):
var.setflags(write=False)
return var
@cached_property
def std(self) -> _ValueType:
"""
Standard deviation of the distribution.
To learn about the dtype of the standard deviation, see :attr:`moment_dtype`.
Returns
-------
std : array-like
The standard deviation of the distribution.
"""
if self.__std is None:
try:
std = np.sqrt(self.var)
except NotImplementedError as exc:
raise NotImplementedError from exc
else:
std = self.__std()
RandomVariable._check_property_value(
"standard deviation",
std,
shape=self.__shape,
dtype=self.__moment_dtype,
)
# Make immutable
if isinstance(std, np.ndarray):
std.setflags(write=False)
return std
@cached_property
def entropy(self) -> np.float_:
if self.__entropy is None:
raise NotImplementedError
entropy = self.__entropy()
entropy = RandomVariable._ensure_numpy_float(
"entropy", entropy, force_scalar=True
)
return entropy
def in_support(self, x: _ValueType) -> bool:
if self.__in_support is None:
raise NotImplementedError
in_support = self.__in_support(self._as_value_type(x))
if not isinstance(in_support, bool):
raise ValueError(
f"The function `in_support` must return a `bool`, but its return value "
f"is of type `{type(x)}`."
)
return in_support
def sample(self, size: ShapeArgType = ()) -> _ValueType:
"""
Draw realizations from a random variable.
Parameters
----------
size : tuple
Size of the drawn sample of realizations.
Returns
-------
sample : array-like
Sample of realizations with the given ``size`` and the inherent ``shape``.
"""
if self.__sample is None:
raise NotImplementedError("No sampling method provided.")
return self.__sample(size=_utils.as_shape(size))
def cdf(self, x: _ValueType) -> np.float_:
"""
Cumulative distribution function.
Parameters
----------
x : array-like
Evaluation points of the cumulative distribution function.
The shape of this argument should be :code:`(..., S1, ..., SN)`, where
:code:`(S1, ..., SN)` is the :attr:`shape` of the random variable.
The cdf evaluation will be broadcast over all additional dimensions.
Returns
-------
q : array-like
Value of the cumulative density function at the given points.
"""
if self.__cdf is not None:
return RandomVariable._ensure_numpy_float(
"cdf", self.__cdf(self._as_value_type(x))
)
elif self.__logcdf is not None:
cdf = np.exp(self.logcdf(self._as_value_type(x)))
assert isinstance(cdf, np.float_)
return cdf
else:
raise NotImplementedError(
f"Neither the `cdf` nor the `logcdf` of the random variable object "
f"with type `{type(self).__name__}` is implemented."
)
def logcdf(self, x: _ValueType) -> np.float_:
"""
Log-cumulative distribution function.
Parameters
----------
x : array-like
Evaluation points of the cumulative distribution function.
The shape of this argument should be :code:`(..., S1, ..., SN)`, where
:code:`(S1, ..., SN)` is the :attr:`shape` of the random variable.
The logcdf evaluation will be broadcast over all additional dimensions.
Returns
-------
q : array-like
Value of the log-cumulative density function at the given points.
"""
if self.__logcdf is not None:
return RandomVariable._ensure_numpy_float(
"logcdf", self.__logcdf(self._as_value_type(x))
)
elif self.__cdf is not None:
logcdf = np.log(self.__cdf(x))
assert isinstance(logcdf, np.float_)
return logcdf
else:
raise NotImplementedError(
f"Neither the `logcdf` nor the `cdf` of the random variable object "
f"with type `{type(self).__name__}` is implemented."
)
def quantile(self, p: FloatArgType) -> _ValueType:
"""Quantile function.
The quantile function :math:`Q \\colon [0, 1] \\to \\mathbb{R}` of a random
variable :math:`X` is defined as
:math:`Q(p) = \\inf\\{ x \\in \\mathbb{R} \\colon p \\le F_X(x) \\}`, where
:math:`F_X \\colon \\mathbb{R} \\to [0, 1]` is the :meth:`cdf` of the random
variable. From the definition it follows that the quantile function always
returns values of the same dtype as the random variable. For instance, for a
discrete distribution over the integers, the returned quantiles will also be
integers. This means that, in general, :math:`Q(0.5)` is not equal to the
:attr:`median` as it is defined in this class. See
https://en.wikipedia.org/wiki/Quantile_function for more details and examples.
"""
if self.__shape != ():
raise NotImplementedError(
"The quantile function is only defined for scalar random variables."
)
if self.__quantile is None:
raise NotImplementedError
try:
p = _utils.as_numpy_scalar(p, dtype=np.floating)
except TypeError as exc:
raise TypeError(
"The given argument `p` can not be cast to a `np.floating` object."
) from exc
quantile = self.__quantile(p)
if quantile.shape != self.__shape:
raise ValueError(
f"The quantile function should return values of the same shape as the "
f"random variable, i.e. {self.__shape}, but it returned a value with "
f"{quantile.shape}."
)
if quantile.dtype != self.__dtype:
raise ValueError(
f"The quantile function should return values of the same dtype as the "
f"random variable, i.e. `{self.__dtype.name}`, but it returned a value "
f"with dtype `{quantile.dtype.name}`."
)
return quantile
def __getitem__(self, key: ArrayLikeGetitemArgType) -> "RandomVariable":
return RandomVariable(
shape=np.empty(shape=self.shape)[key].shape,
dtype=self.dtype,
random_state=_utils.derive_random_seed(self.random_state),
sample=lambda size: self.sample(size)[key],
mode=lambda: self.mode[key],
mean=lambda: self.mean[key],
var=lambda: self.var[key],
std=lambda: self.std[key],
entropy=lambda: self.entropy,
as_value_type=self.__as_value_type,
)
def reshape(self, newshape: ShapeArgType) -> "RandomVariable":
"""
Give a new shape to a random variable.
Parameters
----------
newshape : int or tuple of ints
New shape for the random variable. It must be compatible with the original
shape.
Returns
-------
reshaped_rv : ``self`` with the new dimensions of ``shape``.
"""
newshape = _utils.as_shape(newshape)
return RandomVariable(
shape=newshape,
dtype=self.dtype,
random_state=_utils.derive_random_seed(self.random_state),
sample=lambda size: self.sample(size).reshape(size + newshape),
mode=lambda: self.mode.reshape(newshape),
median=lambda: self.median.reshape(newshape),
mean=lambda: self.mean.reshape(newshape),
cov=lambda: self.cov,
var=lambda: self.var.reshape(newshape),
std=lambda: self.std.reshape(newshape),
entropy=lambda: self.entropy,
as_value_type=self.__as_value_type,
)
def transpose(self, *axes: int) -> "RandomVariable":
"""
Transpose the random variable.
Parameters
----------
axes : None, tuple of ints, or n ints
See documentation of numpy.ndarray.transpose.
Returns
-------
transposed_rv : The transposed random variable.
"""
return RandomVariable(
shape= | np.empty(shape=self.shape) | numpy.empty |
import pytest
import sys, os
import xarray as xr
import numpy as np
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import process
from process._common import ProcessArgumentRequired, ProcessArgumentInvalid
FIXTURES_FOLDER = os.path.join(os.path.dirname(__file__), 'fixtures')
###################################
# fixtures:
###################################
@pytest.fixture
def construct_data():
def _construct(data, bands, dims=('y', 'x', 'band'), band_aliases={"nir": "B08","red": "B04"}):
xrdata = xr.DataArray(
| np.array(data, dtype=np.float) | numpy.array |
from typing import Tuple, Dict, Any, Union, Callable
import numpy as np
import scipy.ndimage as ndi
from common.exceptionmanager import catch_error_exception
from common.functionutil import ImagesUtil
from preprocessing.imagegenerator import ImageGenerator
_epsilon = 1e-6
class TransformRigidImages(ImageGenerator):
def __init__(self,
size_image: Union[Tuple[int, int, int], Tuple[int, int]],
is_normalize_data: bool = False,
type_normalize_data: str = 'samplewise',
is_zca_whitening: bool = False,
is_inverse_transform: bool = False,
rescale_factor: float = None,
preprocessing_function: Callable[[np.ndarray], np.ndarray] = None
) -> None:
super(TransformRigidImages, self).__init__(size_image, num_images=1)
if is_normalize_data:
if type_normalize_data == 'featurewise':
self._featurewise_center = True
self._featurewise_std_normalization = True
self._samplewise_center = False
self._samplewise_std_normalization = False
else:
# type_normalize_data == 'samplewise'
self._featurewise_center = False
self._featurewise_std_normalization = False
self._samplewise_center = True
self._samplewise_std_normalization = True
else:
self._featurewise_center = False
self._featurewise_std_normalization = False
self._samplewise_center = False
self._samplewise_std_normalization = False
self._is_zca_whitening = is_zca_whitening
self._zca_epsilon = 1e-6
self._rescale_factor = rescale_factor
self._preprocessing_function = preprocessing_function
self._mean = None
self._std = None
self._principal_components = None
self._is_inverse_transform = is_inverse_transform
self._initialize_gendata()
def update_image_data(self, in_shape_image: Tuple[int, ...]) -> None:
# self._num_images = in_shape_image[0]
pass
def _initialize_gendata(self) -> None:
self._transform_matrix = None
self._transform_params = None
self._count_trans_in_images = 0
def _update_gendata(self, **kwargs) -> None:
seed = kwargs['seed']
(self._transform_matrix, self._transform_params) = self._calc_gendata_random_transform(seed)
self._count_trans_in_images = 0
def _get_image(self, in_image: np.ndarray) -> np.ndarray:
is_type_input_image = (self._count_trans_in_images == 0)
self._count_trans_in_images += 1
return self._get_transformed_image(in_image, is_type_input_image=is_type_input_image)
def _get_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray:
if ImagesUtil.is_without_channels(self._size_image, in_image.shape):
in_image = np.expand_dims(in_image, axis=-1)
is_reshape_input_image = True
else:
is_reshape_input_image = False
in_image = self._calc_transformed_image(in_image, is_type_input_image=is_type_input_image)
if is_type_input_image:
in_image = self._standardize(in_image)
if is_reshape_input_image:
in_image = np.squeeze(in_image, axis=-1)
return in_image
def _get_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray:
if ImagesUtil.is_without_channels(self._size_image, in_image.shape):
in_image = np.expand_dims(in_image, axis=-1)
is_reshape_input_image = True
else:
is_reshape_input_image = False
if is_type_input_image:
in_image = self._standardize_inverse(in_image)
in_image = self._calc_inverse_transformed_image(in_image, is_type_input_image=is_type_input_image)
if is_reshape_input_image:
in_image = np.squeeze(in_image, axis=-1)
return in_image
def _calc_transformed_image(self, in_array: np.ndarray, is_type_input_image: bool = False) -> np.ndarray:
raise NotImplementedError
def _calc_inverse_transformed_image(self, in_array: np.ndarray, is_type_input_image: bool = False) -> np.ndarray:
raise NotImplementedError
def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]:
raise NotImplementedError
def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]:
raise NotImplementedError
def _standardize(self, in_image: np.ndarray) -> np.ndarray:
if self._preprocessing_function:
in_image = self._preprocessing_function(in_image)
if self._rescale_factor:
in_image *= self._rescale_factor
if self._samplewise_center:
in_image -= np.mean(in_image, keepdims=True)
if self._samplewise_std_normalization:
in_image /= (np.std(in_image, keepdims=True) + _epsilon)
template_message_error = 'This ImageDataGenerator specifies \'%s\', but it hasn\'t been fit on any ' \
'training data. Fit it first by calling \'fit(numpy_data)\'.'
if self._featurewise_center:
if self._mean is not None:
in_image -= self._mean
else:
message = template_message_error % ('featurewise_center')
catch_error_exception(message)
if self._featurewise_std_normalization:
if self._std is not None:
in_image /= (self._std + _epsilon)
else:
message = template_message_error % ('featurewise_std_normalization')
catch_error_exception(template_message_error % (message))
if self._is_zca_whitening:
if self._principal_components is not None:
flatx = np.reshape(in_image, (-1, np.prod(in_image.shape[-3:])))
whitex = np.dot(flatx, self._principal_components)
in_image = np.reshape(whitex, in_image.shape)
else:
message = template_message_error % ('zca_whitening')
catch_error_exception(message)
return in_image
def _standardize_inverse(self, in_image: np.ndarray) -> np.ndarray:
template_message_error = 'This ImageDataGenerator specifies \'%s\', but it hasn\'t been fit on any ' \
'training data. Fit it first by calling \'fit(numpy_data)\'.'
if self._is_zca_whitening:
if self._principal_components is not None:
flatx = np.reshape(in_image, (-1, np.prod(in_image.shape[-3:])))
inverse_principal_componens = np.divide(1.0, self._principal_components)
whitex = np.dot(flatx, inverse_principal_componens)
in_image = np.reshape(whitex, in_image.shape)
else:
message = template_message_error % ('zca_whitening')
catch_error_exception(message)
if self._featurewise_std_normalization:
if self._std is not None:
in_image *= self._std
else:
message = template_message_error % ('featurewise_std_normalization')
catch_error_exception(message)
if self._featurewise_center:
if self._mean is not None:
in_image += self._mean
else:
message = template_message_error % ('featurewise_center')
catch_error_exception(message)
if self._samplewise_std_normalization:
in_image *= np.std(in_image, keepdims=True)
if self._samplewise_center:
in_image += np.mean(in_image, keepdims=True)
if self._rescale_factor:
in_image /= self._rescale_factor
if self._preprocessing_function:
catch_error_exception('Not implemented inverse preprocessing function')
return in_image
@staticmethod
def _flip_axis(in_image: np.ndarray, axis: int) -> np.ndarray:
in_image = np.asarray(in_image).swapaxes(axis, 0)
in_image = in_image[::-1, ...]
in_image = in_image.swapaxes(0, axis)
return in_image
@staticmethod
def _apply_channel_shift(in_image: np.ndarray, intensity: int, channel_axis: int = 0) -> np.ndarray:
in_image = np.rollaxis(in_image, channel_axis, 0)
min_x, max_x = np.min(in_image), np.max(in_image)
channel_images = [np.clip(x_channel + intensity, min_x, max_x) for x_channel in in_image]
in_image = np.stack(channel_images, axis=0)
in_image = np.rollaxis(in_image, 0, channel_axis + 1)
return in_image
def _apply_brightness_shift(self, in_image: np.ndarray, brightness: int) -> np.ndarray:
catch_error_exception('Not implemented brightness shifting option...')
# in_image = array_to_img(in_image)
# in_image = imgenhancer_Brightness = ImageEnhance.Brightness(in_image)
# in_image = imgenhancer_Brightness.enhance(brightness)
# in_image = img_to_array(in_image)
def get_text_description(self) -> str:
raise NotImplementedError
class TransformRigidImages2D(TransformRigidImages):
_img_row_axis = 0
_img_col_axis = 1
_img_channel_axis = 2
def __init__(self,
size_image: Tuple[int, int],
is_normalize_data: bool = False,
type_normalize_data: str = 'samplewise',
is_zca_whitening: bool = False,
rotation_range: float = 0.0,
width_shift_range: float = 0.0,
height_shift_range: float = 0.0,
brightness_range: Tuple[float, float] = None,
shear_range: float = 0.0,
zoom_range: Union[float, Tuple[float, float]] = 0.0,
channel_shift_range: float = 0.0,
fill_mode: str = 'nearest',
cval: float = 0.0,
horizontal_flip: bool = False,
vertical_flip: bool = False,
rescale_factor: float = None,
preprocessing_function: Callable[[np.ndarray], np.ndarray] = None
) -> None:
self._rotation_range = rotation_range
self._width_shift_range = width_shift_range
self._height_shift_range = height_shift_range
self._brightness_range = brightness_range
self._shear_range = shear_range
self._channel_shift_range = channel_shift_range
self._fill_mode = fill_mode
self._cval = cval
self._horizontal_flip = horizontal_flip
self._vertical_flip = vertical_flip
if np.isscalar(zoom_range):
self._zoom_range = (1 - zoom_range, 1 + zoom_range)
elif len(zoom_range) == 2:
self._zoom_range = (zoom_range[0], zoom_range[1])
else:
message = '\'zoom_range\' should be a float or a tuple of two floats. Received %s' % (str(zoom_range))
catch_error_exception(message)
if self._brightness_range is not None:
if len(self._brightness_range) != 2:
message = '\'brightness_range\' should be a tuple of two floats. Received %s' % (str(brightness_range))
catch_error_exception(message)
super(TransformRigidImages2D, self).__init__(size_image,
is_normalize_data=is_normalize_data,
type_normalize_data=type_normalize_data,
is_zca_whitening=is_zca_whitening,
rescale_factor=rescale_factor,
preprocessing_function=preprocessing_function)
def _calc_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray:
# Apply: 1st: rigid transformations
# 2nd: channel shift intensity / flipping
if self._transform_matrix is not None:
in_image = self._apply_transform(in_image, self._transform_matrix,
channel_axis=self._img_channel_axis,
fill_mode=self._fill_mode, cval=self._cval)
if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None):
in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'],
channel_axis=self._img_channel_axis)
if self._transform_params.get('flip_horizontal', False):
in_image = self._flip_axis(in_image, axis=self._img_col_axis)
if self._transform_params.get('flip_vertical', False):
in_image = self._flip_axis(in_image, axis=self._img_row_axis)
if is_type_input_image and (self._transform_params.get('brightness') is not None):
in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness'])
return in_image
def _calc_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray:
# Apply: 1st: channel shift intensity / flipping
# 2nd: rigid transformations
if is_type_input_image and (self._transform_params.get('brightness') is not None):
in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness'])
if self._transform_params.get('flip_vertical', False):
in_image = self._flip_axis(in_image, axis=self._img_row_axis)
if self._transform_params.get('flip_horizontal', False):
in_image = self._flip_axis(in_image, axis=self._img_col_axis)
if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None):
in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'],
channel_axis=self._img_channel_axis)
if self._transform_matrix is not None:
in_image = self._apply_transform(in_image, self._transform_matrix,
channel_axis=self._img_channel_axis,
fill_mode=self._fill_mode, cval=self._cval)
return in_image
def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]:
# compute composition of homographies
if seed is not None:
np.random.seed(seed)
# ****************************************************
if self._rotation_range:
theta = np.deg2rad(np.random.uniform(-self._rotation_range, self._rotation_range))
else:
theta = 0
if self._height_shift_range:
tx = np.random.uniform(-self._height_shift_range, self._height_shift_range)
if np.max(self._height_shift_range) < 1:
tx *= self._size_image[self._img_row_axis]
else:
tx = 0
if self._width_shift_range:
ty = np.random.uniform(-self._width_shift_range, self._width_shift_range)
if np.max(self._width_shift_range) < 1:
ty *= self._size_image[self._img_col_axis]
else:
ty = 0
if self._shear_range:
shear = np.deg2rad(np.random.uniform(-self._shear_range, self._shear_range))
else:
shear = 0
if self._zoom_range[0] == 1 and self._zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 2)
flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip
flip_vertical = (np.random.random() < 0.5) * self._vertical_flip
channel_shift_intensity = None
if self._channel_shift_range != 0:
channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range)
brightness = None
if self._brightness_range is not None:
brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1])
transform_parameters = {'flip_horizontal': flip_horizontal,
'flip_vertical': flip_vertical,
'channel_shift_intensity': channel_shift_intensity,
'brightness': brightness}
# ****************************************************
# ****************************************************
transform_matrix = None
if theta != 0:
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
transform_matrix = rotation_matrix
if tx != 0 or ty != 0:
shift_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix)
if shear != 0:
shear_matrix = np.array([[1, -np.sin(shear), 0],
[0, np.cos(shear), 0],
[0, 0, 1]])
transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix)
if zx != 1 or zy != 1:
zoom_matrix = np.array([[zx, 0, 0],
[0, zy, 0],
[0, 0, 1]])
transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix)
if transform_matrix is not None:
h, w = self._size_image[self._img_row_axis], self._size_image[self._img_col_axis]
transform_matrix = self._transform_matrix_offset_center(transform_matrix, h, w)
# ****************************************************
return (transform_matrix, transform_parameters)
def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]:
# compute composition of inverse homographies
if seed is not None:
np.random.seed(seed)
# ****************************************************
if self._rotation_range:
theta = np.deg2rad(np.random.uniform(-self._rotation_range, self._rotation_range))
else:
theta = 0
if self._height_shift_range:
tx = np.random.uniform(-self._height_shift_range, self._height_shift_range)
if self._height_shift_range < 1:
tx *= self._size_image[self._img_row_axis]
else:
tx = 0
if self._width_shift_range:
ty = np.random.uniform(-self._width_shift_range, self._width_shift_range)
if self._width_shift_range < 1:
ty *= self._size_image[self._img_col_axis]
else:
ty = 0
if self._shear_range:
shear = np.deg2rad(np.random.uniform(-self._shear_range, self._shear_range))
else:
shear = 0
if self._zoom_range[0] == 1 and self._zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 2)
flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip
flip_vertical = (np.random.random() < 0.5) * self._vertical_flip
channel_shift_intensity = None
if self._channel_shift_range != 0:
channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range)
brightness = None
if self._brightness_range is not None:
brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1])
transform_parameters = {'flip_horizontal': flip_horizontal,
'flip_vertical': flip_vertical,
'channel_shift_intensity': channel_shift_intensity,
'brightness': brightness}
# ****************************************************
# ****************************************************
transform_matrix = None
if theta != 0:
rotation_matrix = np.array([[np.cos(theta), np.sin(theta), 0],
[-np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
transform_matrix = rotation_matrix
if tx != 0 or ty != 0:
shift_matrix = np.array([[1, 0, -tx],
[0, 1, -ty],
[0, 0, 1]])
transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix)
if shear != 0:
shear_matrix = np.array([[1, np.tan(shear), 0],
[0, 1.0 / np.cos(shear), 0],
[0, 0, 1]])
transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix)
if zx != 1 or zy != 1:
zoom_matrix = np.array([[1.0 / zx, 0, 0],
[0, 1.0 / zy, 0],
[0, 0, 1]])
transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix)
if transform_matrix is not None:
h, w = self._size_image[self._img_row_axis], self._size_image[self._img_col_axis]
transform_matrix = self._transform_matrix_offset_center(transform_matrix, h, w)
# ****************************************************
return (transform_matrix, transform_parameters)
@staticmethod
def _transform_matrix_offset_center(matrix: np.ndarray, x: int, y: int) -> np.ndarray:
o_x = float(x) / 2 + 0.5
o_y = float(y) / 2 + 0.5
offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix)
return transform_matrix
@staticmethod
def _apply_transform(in_image: np.ndarray, transform_matrix: np.ndarray,
channel_axis: int = 0, fill_mode: str = 'nearest', cval: float = 0.0) -> np.ndarray:
in_image = np.rollaxis(in_image, channel_axis, 0)
final_affine_matrix = transform_matrix[:2, :2]
final_offset = transform_matrix[:2, 2]
channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order=1,
mode=fill_mode, cval=cval) for x_channel in in_image]
in_image = np.stack(channel_images, axis=0)
in_image = np.rollaxis(in_image, 0, channel_axis + 1)
return in_image
def get_text_description(self) -> str:
message = 'Rigid 2D transformations of images, with parameters...\n'
message += 'rotation (plane_XY) range: \'%s\'...\n' % (self._rotation_range)
message += 'shift (width, height) range: \'(%s, %s)\'...\n' \
% (self._width_shift_range, self._height_shift_range)
message += 'flip (horizontal, vertical): \'(%s, %s)\'...\n' \
% (self._horizontal_flip, self._vertical_flip)
message += 'zoom (min, max) range: \'(%s, %s)\'...\n' % (self._zoom_range[0], self._zoom_range[1])
message += 'shear (plane_XY) range: \'%s\'...\n' % (self._shear_range)
message += 'fill mode, when applied transformation: \'%s\'...\n' % (self._fill_mode)
return message
class TransformRigidImages3D(TransformRigidImages):
_img_dep_axis = 0
_img_row_axis = 1
_img_col_axis = 2
_img_channel_axis = 3
def __init__(self,
size_image: Tuple[int, int, int],
is_normalize_data: bool = False,
type_normalize_data: str = 'samplewise',
is_zca_whitening: bool = False,
rotation_xy_range: float = 0.0,
rotation_xz_range: float = 0.0,
rotation_yz_range: float = 0.0,
width_shift_range: float = 0.0,
height_shift_range: float = 0.0,
depth_shift_range: float = 0.0,
brightness_range: Tuple[float, float] = None,
shear_xy_range: float = 0.0,
shear_xz_range: float = 0.0,
shear_yz_range: float = 0.0,
zoom_range: Union[float, Tuple[float, float]] = 0.0,
channel_shift_range: float = 0.0,
fill_mode: str = 'nearest',
cval: float = 0.0,
horizontal_flip: bool = False,
vertical_flip: bool = False,
axialdir_flip: bool = False,
rescale_factor: float = None,
preprocessing_function: Callable[[np.ndarray], np.ndarray] = None
) -> None:
self._rotation_xy_range = rotation_xy_range
self._rotation_xz_range = rotation_xz_range
self._rotation_yz_range = rotation_yz_range
self._width_shift_range = width_shift_range
self._height_shift_range = height_shift_range
self._depth_shift_range = depth_shift_range
self._brightness_range = brightness_range
self._shear_xy_range = shear_xy_range
self._shear_xz_range = shear_xz_range
self._shear_yz_range = shear_yz_range
self._channel_shift_range = channel_shift_range
self._fill_mode = fill_mode
self._cval = cval
self._horizontal_flip = horizontal_flip
self._vertical_flip = vertical_flip
self._axialdir_flip = axialdir_flip
if np.isscalar(zoom_range):
self._zoom_range = (1 - zoom_range, 1 + zoom_range)
elif len(zoom_range) == 2:
self._zoom_range = (zoom_range[0], zoom_range[1])
else:
message = '\'zoom_range\' should be a float or a tuple of two floats. Received %s' % (str(zoom_range))
catch_error_exception(message)
if self._brightness_range is not None:
if len(self._brightness_range) != 2:
message = '\'brightness_range\' should be a tuple of two floats. Received %s' % (str(brightness_range))
catch_error_exception(message)
super(TransformRigidImages3D, self).__init__(size_image,
is_normalize_data=is_normalize_data,
type_normalize_data=type_normalize_data,
is_zca_whitening=is_zca_whitening,
rescale_factor=rescale_factor,
preprocessing_function=preprocessing_function)
def _calc_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray:
# Apply: 1st: rigid transformations
# 2nd: channel shift intensity / flipping
if self._transform_matrix is not None:
in_image = self._apply_transform(in_image, self._transform_matrix,
channel_axis=self._img_channel_axis,
fill_mode=self._fill_mode, cval=self._cval)
if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None):
in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'],
channel_axis=self._img_channel_axis)
if self._transform_params.get('flip_horizontal', False):
in_image = self._flip_axis(in_image, axis=self._img_col_axis)
if self._transform_params.get('flip_vertical', False):
in_image = self._flip_axis(in_image, axis=self._img_row_axis)
if self._transform_params.get('flip_axialdir', False):
in_image = self._flip_axis(in_image, axis=self._img_dep_axis)
if is_type_input_image and (self._transform_params.get('brightness') is not None):
in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness'])
return in_image
def _calc_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray:
# Apply: 1st: channel shift intensity / flipping
# 2nd: rigid transformations
if is_type_input_image and (self._transform_params.get('brightness') is not None):
in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness'])
if self._transform_params.get('flip_axialdir', False):
in_image = self._flip_axis(in_image, axis=self._img_dep_axis)
if self._transform_params.get('flip_vertical', False):
in_image = self._flip_axis(in_image, axis=self._img_row_axis)
if self._transform_params.get('flip_horizontal', False):
in_image = self._flip_axis(in_image, axis=self._img_col_axis)
if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None):
in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'],
channel_axis=self._img_channel_axis)
if self._transform_matrix is not None:
in_image = self._apply_transform(in_image, self._transform_matrix,
channel_axis=self._img_channel_axis,
fill_mode=self._fill_mode, cval=self._cval)
return in_image
def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]:
# compute composition of homographies
if seed is not None:
np.random.seed(seed)
# ****************************************************
if self._rotation_xy_range:
angle_xy = np.deg2rad(np.random.uniform(-self._rotation_xy_range, self._rotation_xy_range))
else:
angle_xy = 0
if self._rotation_xz_range:
angle_xz = np.deg2rad(np.random.uniform(-self._rotation_xz_range, self._rotation_xz_range))
else:
angle_xz = 0
if self._rotation_yz_range:
angle_yz = np.deg2rad(np.random.uniform(-self._rotation_yz_range, self._rotation_yz_range))
else:
angle_yz = 0
if self._height_shift_range:
tx = np.random.uniform(-self._height_shift_range, self._height_shift_range)
if self._height_shift_range < 1:
tx *= self._size_image[self._img_row_axis]
else:
tx = 0
if self._width_shift_range:
ty = np.random.uniform(-self._width_shift_range, self._width_shift_range)
if self._width_shift_range < 1:
ty *= self._size_image[self._img_col_axis]
else:
ty = 0
if self._depth_shift_range:
tz = np.random.uniform(-self._depth_shift_range, self._depth_shift_range)
if self._depth_shift_range < 1:
tz *= self._size_image[self._img_dep_axis]
else:
tz = 0
if self._shear_xy_range:
shear_xy = np.deg2rad(np.random.uniform(-self._shear_xy_range, self._shear_xy_range))
else:
shear_xy = 0
if self._shear_xz_range:
shear_xz = np.deg2rad(np.random.uniform(-self._shear_xz_range, self._shear_xz_range))
else:
shear_xz = 0
if self._shear_yz_range:
shear_yz = np.deg2rad(np.random.uniform(-self._shear_yz_range, self._shear_yz_range))
else:
shear_yz = 0
if self._zoom_range[0] == 1 and self._zoom_range[1] == 1:
(zx, zy, zz) = (1, 1, 1)
else:
(zx, zy, zz) = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 3)
flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip
flip_vertical = (np.random.random() < 0.5) * self._vertical_flip
flip_axialdir = (np.random.random() < 0.5) * self._axialdir_flip
channel_shift_intensity = None
if self._channel_shift_range != 0:
channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range)
brightness = None
if self._brightness_range is not None:
brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1])
transform_parameters = {'flip_horizontal': flip_horizontal,
'flip_vertical': flip_vertical,
'flip_axialdir': flip_axialdir,
'channel_shift_intensity': channel_shift_intensity,
'brightness': brightness}
# ****************************************************
# ****************************************************
transform_matrix = None
if angle_xy != 0:
rotation_matrix = np.array([[1, 0, 0, 0],
[0, np.cos(angle_xy), -np.sin(angle_xy), 0],
[0, np.sin(angle_xy), np.cos(angle_xy), 0],
[0, 0, 0, 1]])
transform_matrix = rotation_matrix
if angle_xz != 0:
rotation_matrix = np.array([[np.cos(angle_xz), np.sin(angle_xz), 0, 0],
[-np.sin(angle_xz), np.cos(angle_xz), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
transform_matrix = \
rotation_matrix if transform_matrix is None else np.dot(transform_matrix, rotation_matrix)
if angle_yz != 0:
rotation_matrix = np.array([[np.cos(angle_yz), 0, np.sin(angle_yz), 0],
[0, 1, 0, 0],
[-np.sin(angle_yz), 0, np.cos(angle_yz), 0],
[0, 0, 0, 1]])
transform_matrix = \
rotation_matrix if transform_matrix is None else np.dot(transform_matrix, rotation_matrix)
if tx != 0 or ty != 0 or tz != 0:
shift_matrix = np.array([[1, 0, 0, tz],
[0, 1, 0, tx],
[0, 0, 1, ty],
[0, 0, 0, 1]])
transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix)
if shear_xy != 0:
shear_matrix = np.array([[1, 0, 0, 0],
[0, 1, -np.sin(shear_xy), 0],
[0, 0, np.cos(shear_xy), 0],
[0, 0, 0, 1]])
transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix)
if shear_xz != 0:
shear_matrix = np.array([[np.cos(shear_xz), 0, 0, 0],
[-np.sin(shear_xz), 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix)
if shear_yz != 0:
shear_matrix = np.array([[np.cos(shear_yz), 0, 0, 0],
[0, 1, 0, 0],
[-np.sin(shear_yz), 0, 1, 0],
[0, 0, 0, 1]])
transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix)
if zx != 1 or zy != 1 or zz != 1:
zoom_matrix = np.array([[zz, 0, 0, 0],
[0, zx, 0, 0],
[0, 0, zy, 0],
[0, 0, 0, 1]])
transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix)
if transform_matrix is not None:
(d, h, w) = (self._size_image[self._img_dep_axis],
self._size_image[self._img_row_axis],
self._size_image[self._img_col_axis])
transform_matrix = self._transform_matrix_offset_center(transform_matrix, d, h, w)
# ****************************************************
return (transform_matrix, transform_parameters)
def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]:
# compute composition of inverse homographies
if seed is not None:
np.random.seed(seed)
# ****************************************************
if self._rotation_xy_range:
angle_xy = np.deg2rad(np.random.uniform(-self._rotation_xy_range, self._rotation_xy_range))
else:
angle_xy = 0
if self._rotation_xz_range:
angle_xz = np.deg2rad(np.random.uniform(-self._rotation_xz_range, self._rotation_xz_range))
else:
angle_xz = 0
if self._rotation_yz_range:
angle_yz = np.deg2rad( | np.random.uniform(-self._rotation_yz_range, self._rotation_yz_range) | numpy.random.uniform |
import os
#__MAYAVI__ = False
#try:
# os.environ["QT_API"] = "pyqt"
# from mayavi import mlab
# __MAYAVI__ = True
#except:
# try:
# os.environ["QT_API"] = "pyside"
# from mayavi import mlab
# __MAYAVI__ = True
# except:
# print("Unable to import mayavi")
from ionotomo.geometry.tri_cubic import TriCubic
from ionotomo.astro.frames.uvw_frame import UVW
import numpy as np
import pylab as plt
import astropy.coordinates as ac
import astropy.time as at
import astropy.units as au
## utility functions
try:
import cmocean
phase_cmap = cmocean.cm.phase
except:
phase_cmap = plt.cm.hsv
def interp_nearest(x,y,z,x_,y_):
dx = np.subtract.outer(x_,x)
dy = np.subtract.outer(y_,y)
r = dx**2
dy *= dy
r += dy
np.sqrt(r,out=r)
arg = np.argmin(r,axis=1)
z_ = z[arg]
return z_
def plot_tci(tci,rays=None,filename=None,show=False):
'''Plot the given tci using mayavi if possible.
tci : TriCubic object to plot
rays : array of shape (num_antennas, num_times, num_dirs, 4, num_steps)
filename : name of figure file to save to without extension e.g. "figure1"
show : boolean, whether to show the resulting figure.'''
xmin = tci.xvec[0]
xmax = tci.xvec[-1]
ymin = tci.yvec[0]
ymax = tci.yvec[-1]
zmin = tci.zvec[0]
zmax = tci.zvec[-1]
X,Y,Z = np.mgrid[xmin:xmax:len(tci.xvec)*1j,
ymin:ymax:len(tci.yvec)*1j,
zmin:zmax:len(tci.zvec)*1j]
#reshape array
data = tci.get_shaped_array()
xy = np.mean(data,axis=2)
yz = np.mean(data,axis=0)
zx = np.mean(data,axis=1)
fig,(ax1,ax2,ax3) = plt.subplots(1,3)
ax1.imshow(xy,origin='lower',aspect='auto')
ax1.set_title("X-Y projection")
ax2.imshow(yz,origin='lower',aspect='auto')
ax2.set_title("Y-Z projection")
ax3.imshow(zx,origin='lower',aspect='auto')
ax3.set_title("Z-X projection")
if filename is not None:
plt.savefig("{}.png".format(filename),format='png')
if show:
plt.show()
else:
plt.close()
def make_animation(datafolder,prefix='fig',fps=3):
'''Given a datafolder with figures of format `prefix`-%04d.png create a
video at framerate `fps`.
Output is datafolder/animation.mp4'''
if os.system('ffmpeg -framerate {} -i {}/{}-%04d.png -vf scale="trunc(iw/2)*2:trunc(ih/2)*2" -c:v libx264 -profile:v high -pix_fmt yuv420p -g 30 -r 30 {}/animation.mp4'.format(fps,datafolder,prefix,datafolder)):
print("{}/animation.mp4 exists already".format(datafolder))
def animate_tci_slices(TCI,output_folder,num_seconds=10.):
'''Animate the slicing of a tci by showing the xz, yz, zy planes as they
sweep across the volume (possibly depreciated)'''
try:
os.makedirs(output_folder)
except:
pass
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(12,12))
ax1 = fig.add_subplot(221, projection='3d')
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)
M = TCI.get_shaped_array()
if np.sum(M<0) > 0:
print("Using linear scaling")
log_spacing = False
else:
print("Using log scaling")
log_spacing = True
M[M==0] = | np.min(M[M>0]) | numpy.min |
# -*- mode: python; coding: utf-8 -*-
# Copyright 2018 <NAME>
# Licensed under the 2-clause BSD license.
from argparse import Namespace
import numpy as np
from . import utils
def set_b(b, block=[1, 1], **kwargs):
"""
Process b request. Sets data_type ('image', 'spectrum', 'profile'), and imSize
Parameters
----------
b: list of pairs -> returns that list
one pair -> returns that as a list
float -> returns a full image grid
'disc' (or 'disk') -> returns [[0.0, 0.0]]
'stamp:bres:xmin,xmax,ymin,ymax' -> returns grid of postage stamp
'start:stop:step[<angle] -> string defining line
'n1,n2,n3[<angle]' -> csv list of b magnitudes
block: image block as pair, e.g. [4, 10] is "block 4 of 10"
kwargs : other args as necessary
Returns
-------
Namespace
contains b, block, data_type, imSize
"""
# Deal with strings
return_value = Namespace(b=None, data_type=None, block=block, imSize=None)
if isinstance(b, str):
b = b.lower()
if b.startswith('dis'):
return_value.b = [b]
return_value.data_type = 'spectrum'
elif b.startswith('stamp'):
bres = float(b.split(':')[1])
bext = [float(x) for x in b.split(':')[2].split(',')]
return_value.b = []
for x in np.arange(bext[0], bext[1] + bres / 2.0, bres):
for y in np.arange(bext[2], bext[3] + bres / 2.0, bres):
return_value.b.append([y, x])
xbr = len( | np.arange(bext[2], bext[3] + bres / 2.0, bres) | numpy.arange |
import argparse
import datetime
import typing
import pandas as pd
import numpy as np
import h5py
import utils
import os
import tqdm
import json
import multiprocessing
def get_stations_coordinates(stations) -> typing.Dict[str, typing.Tuple]:
"""
:return: dictionnary of str -> (coord_x, coord_y) mapping station coordinates to pixel
"""
# takes one hdf5 path
hdf5_path = "/project/cq-training-1/project1/data/hdf5v7_8bit/2015.01.01.0800.h5"
with h5py.File(hdf5_path, 'r') as h5_data:
lats, lons = utils.fetch_hdf5_sample("lat", h5_data, 0), utils.fetch_hdf5_sample("lon", h5_data, 0)
stations_coords = {}
for region, lats_lons in stations.items():
coords = (np.argmin( | np.abs(lats - lats_lons[0]) | numpy.abs |
'''
code in python3
Needs to be in the same directory as SONG (/.../song/)
The python part of song call songy is written in python2. Make the following change:
In /song/python/songy.py line 170:
range(0,N*(N+1)/2) --> list(range(0,int(N*(N+1)/2)))
'''
####################################################################################### import
import numpy as np
import os
import sys
from numba import numba,jit,prange,config
import h5py
import subprocess
#import matplotlib.pyplot as plt
import time
import params_relic as params
import importlib
importlib.reload(params)
sys.path.insert(0, params.song_path+'python') # path to python module of song
import songy as s
from classy import Class
import warnings
warnings.filterwarnings("ignore")
#######################################################################################
####################################################################################### SONG wrapper
def run_song(hkmax,hkmin):
''' Call this function in song repository:
It will create the ini and pre files from the global parameters and run song
'''
ini_file=r"""output = delta_cdm_bk
T_cmb = 2.7255
N_eff = 3.046
reio_parametrization = reio_none
tau_reio = 0.0952
k_pivot = 0.05
A_s = {}
n_s = {}
YHe = 0.2477055
gauge = newtonian
output_single_precision = yes
output_class_perturbations = yes
background_verbose = 1
thermodynamics_verbose = 1
primordial_verbose = 1
spectra_verbose = 1
nonlinear_verbose = 1
lensing_verbose = 1
output_verbose = 1
perturbations_verbose = 1
perturbations2_verbose = 2
transfer_verbose = 1
transfer2_verbose = 1
bessels_verbose = 1
bessels2_verbose = 1
bispectra_verbose = 1
fisher_verbose = 1
format = camb
write parameters = yes
h={}
omega_b={}
omega_cdm={}
Omega_k={}
primordial_local_fnl_phi={}
z_out={}"""
pre_file=r"""sources2_k3_sampling = {}
k3_size = {}
k_min_tau0 = 0.05
k_max_tau0_over_l_max = 2.8
k_step_sub =0.1
k_logstep_super = 1.2
k_step_super = 0.025
k_step_transition = 0.2
quadsources_time_interpolation = cubic
sources_time_interpolation = linear
sources_k3_interpolation = cubic #linear
tau_start_evolution_song = 0
start_small_k_at_tau_c_over_tau_h_song = 0.001
start_large_k_at_tau_h_over_tau_k_song = 0.04
sources2_k_sampling = {}
k_min_custom_song = {}
k_max_custom_song = {}
k_size_custom_song = {}"""
ini="./matter_{}.ini".format(params.key_song)
pre="./matter_{}.pre".format(params.key_song)
file = open(ini, "w")
file.write(ini_file.format(params.A_s,params.n_s,params.h,params.omega_b*params.h**2,
params.omega_cdm*params.h**2,params.omega_k,params.fnl,params.z))
file.close()
file = open(pre, "w")
if params.interp in ['nearest','lin']:
file.write(pre_file.format('lin',int(params.N_song_k3),'lin',hkmin,hkmax,int(params.N_song_k12)))
else :
file.write(pre_file.format('smart',int(params.N_song_k3),'lin',hkmin,hkmax,int(params.N_song_k12)))
file.close()
os.system("./song "+ini+' '+pre)
os.system("mv "+params.song_path+'output/sources_song_z000.dat '+params.song_path+"output/sources_song_z000_{}.dat".format(params.key_song))
def song_output(hkmax,hkmin,force):
''' Once song has run, this function load the output by using
songy (see song/python/songy.py) routine FixedTauFile.
It return the needed output:
-song.get_source(b'delta_cdm') = song :second order kernel mulptiply by two transfer functions i.e.
K(k1,k2,k3)*T_delta(k1)*T_delta(k2) in the expression
int_k1_k2 (K(k1,k2,k3) T_delta(k1) T_delta(k2) zeta(k1) zeta(k2))
-song.tau conformal time corresponding to the redshift. It is needed to get the velocity potential (dK/dtau)
-song.k1, song.k2, song.k3: grie of mode
-song.flatidx: Song output shape is weird ! see song/python/songy.py
-dk12,dk3: step of the grid
'''
filename='sources_song_z000_{}.dat'.format(params.key_song)
if not os.path.isfile(params.song_path+'output/'+filename) :
print(params.song_path+'output/{} not found'.format(filename))
print('===========================================================================================')
run_song(hkmax,hkmin)
elif force:
print('force running SONG')
#os.system("rm "+params.song_path+'output/{} not found'.format(filename))
print('===========================================================================================')
run_song(hkmax,hkmin)
print('===========================================================================================')
print('loading '+params.song_path+'output/{}'.format(filename))
song=s.FixedTauFile(params.song_path+'output/'+filename)
if len(params.source)==0 and (len(song.k1)!=params.N_song_k12 \
or np.min(song.k1)!=hkmin or np.max(song.k1)!=hkmax):
print('The output '+params.song_path+'output/ found does not have the right shape or hkmax/hkmin')
print('SONG N_song_k1={}, you ask {}'.format(len(song.k1),params.N_song_k12))
print('SONG N_song_k3={}, you ask {}'.format(len(song.k3[0]),params.N_song_k3))
print('SONG hkmin={}, you ask {}'.format(np.min(song.k1),hkmin))
print('SONG hkmax={}, you ask {}'.format(np.max(song.k1),hkmax))
print('===========================================================================================')
dk12=song.k1[1]-song.k1[0]
k3=np.concatenate(song.k3)
if params.interp in ['nearest','lin']:
dk3=np.diff(song.k3)[:,0]
else :
dk3=np.array([],dtype=np.float32)
for k1_ind,k1 in enumerate(song.k1):
for k2_ind,k2 in enumerate(song.k2[k1_ind]):
k3_ind=song.flatidx[k1_ind,k2_ind]
dk3=np.append(dk3,song.k3[k3_ind][2]-song.k3[k3_ind][1])
k3sizes_cumsum = np.zeros(len(song.k3sizes_cumsum)+2,dtype=int)
k3sizes_cumsum[1:-1]=song.k3sizes_cumsum
k3sizes_cumsum[-1] =len(k3)
return np.concatenate(song.get_source(b'delta_cdm')),song.tau,song.k1,np.concatenate(song.k2),k3,song.flatidx,dk12,dk3,k3sizes_cumsum
def song_main(hkmax,hkmin,force=False):
'''Main function for SONG '''
source,tau,k1,k2,k3,flatidx,dk12,dk3,k3sizes_cumsum=song_output(hkmax,hkmin,force)
return source,k1/params.h,k2/params.h,k3/params.h,flatidx,dk12/params.h,dk3/params.h,k3sizes_cumsum
#######################################################################################
####################################################################################### first order transfert fct
def trans(clss=True):
'''
This function returns the Primordial power spectrum, the transfer functions of delta_cdm and phi, and
derivative of the last transfer function.
-Primordial power spectrum: Primordial = A_s(k/k_0)**(ns-1) / (k**3/(2*np.pi**2)).
-delta_cdm transfer function: tr_delta_cdm(k,z)*zeta(k)=delta_cdm(k,z)
-potential transfer function: tr_phi(z,k)*zeta(k)=phi(z,k)
'''
if not clss:
song=s.FixedTauFile(params.song_path+"output/sources_song_z000_{}.dat".format(params.key_song))
song.first_order_sources['k']/=params.h
tr_delta_cdm=song.first_order_sources[b'delta_cdm']
tr_delta_b =song.first_order_sources[b'delta_b']
song.first_order_sources[b'delta_m']= (params.omega_b/(params.omega_b+params.omega_cdm)*tr_delta_b \
+ params.omega_cdm/(params.omega_b+params.omega_cdm)*tr_delta_cdm)
song.first_order_sources[b'phi']= song.first_order_sources[b'delta_m']*(-3*params.H**2/2)/(song.first_order_sources['k']**2+3*params.H**2)
dk=np.diff(np.append(song.first_order_sources['k'],song.first_order_sources['k'][-1]*2-song.first_order_sources['k'][-2]))
dT=np.diff(np.append(song.first_order_sources[b'phi'],song.first_order_sources[b'phi'][-1]*2-song.first_order_sources[b'phi'][-2]))
song.first_order_sources[b'dTdk'] = dT/dk
return song.first_order_sources
else:
clss = Class()
clss.set({'gauge': 'newtonian', 'h':params.h,'omega_b':params.omega_b*params.h**2, 'omega_cdm': params.omega_cdm*params.h**2,
'output':'dTk,vTk','z_pk':1000})
clss.compute()
#clss=np.loadtxt('class_tk.dat')
tr=clss.get_transfer(z=params.z)
tr['k'] = tr.pop('k (h/Mpc)')
dk=np.diff(np.append(tr['k'],tr['k'][-1]*2-tr['k'][-2]))
dT=np.diff(np.append(tr['phi'],tr['phi'][-1]*2-tr['phi'][-2]))
tr['dTdk'] = dT/dk
tr['d_m'] = (params.omega_cdm*tr['d_cdm'] + params.omega_b*tr['d_b'])/(params.omega_b+params.omega_cdm)
tr['t_m'] = (params.omega_cdm*tr['t_cdm'] + params.omega_b*tr['t_b'])/(params.omega_b+params.omega_cdm)
tr['v_m'] = -tr['t_m']/tr['k']**2/params.h
return tr
#clas = np.loadtxt('gevolution-1.2/class_tk.dat')
#k=clas[:,0]
#dk=np.diff(np.append(k,k[-1]*2-k[-2]))
#dT=np.diff(np.append(clas[:,6],clas[:,6][-1]*2-clas[:,6][-2]))
#xi = (clas[:,3] - 3*clas[:,6])/k**2
#first_order_sources={'k':clas[:,0],b'delta_cdm':clas[:,3],b'phi':clas[:,6],b'dTdk':dT/dk,b'xi':xi,b'v':-2*clas[:,6]/3/params.H}
#return first_order_sources
def primordial(k):
return params.A_s*(k/(params.k_pivot/params.h))**(params.n_s-1)/k**3*2*np.pi**2
def powerspectrum(k,delta_cdm):
prim = primordial(k)
T=np.interp(k,delta_cdm[0],delta_cdm[1])
return prim*T**2
#######################################################################################
####################################################################################### mode grid
def k_distrib(k_min,N,klbd,absolute=True):
''' Inputs:
-k_min: Minimum mode to be consider. Setting k_min automatically set the step dk=k_min
because in order for k-k1 to be always on the grid k1, we need to include 0 and to have a
constant step dk.
-N size of the grid. In order to include 0. If it is not odd, we set N+=1
(the final ifft return the right even N grid)
-klbd: k_lambda:
if absolute==True:
the function will return the closest in the grid
else:
klbd is considered as being a ratio, return kL=k[N//2:][int(klbd*N//2)]
output:
klin_concat,kmax,N,dk,klambda
-k: list of k coordinate
-kmax: largest mode to be considered
-N like input
-k_min in float32
-kL: actual k_lambda
'''
if N%2==0:
print('N has to be odd to include 0: N+=1')
N+=1
params.N=N
k=np.linspace(-(N//2)*k_min,N//2*k_min,N,dtype=np.float32)
if absolute:
idxL=np.where(np.abs(klbd-k[N//2:])==np.min(np.abs(klbd-k[N//2:])))[0]
kL=k[N//2:][idxL][0]
else:
kL=k[N//2:][int(klbd*N//2)]
return k,np.float32(N//2*k_min),N,np.float32(k_min),kL
def W(grid,field):
if params.coarse_graine:
l = 2*np.pi/params.kmin/(N-1)
k1,k2,k3=grid[0][N//2:]*l/2/np.pi,grid[1]*l/2/np.pi,grid[2]*l/2/np.pi
W=(np.sinc(k1)*np.sinc(k2)*np.sinc(k3))
return W*field
else:
return field
def ifft(field):
'''This function performs the inverse Fourier transform. It uses the numpy function irfftn.
The input array has first to be re-organized.
In this code, the array filed is organized this way field=(z=0:Nyquist,y=-Nyquist:0:Nyquist,x=-Nyquist:0:Nyquist)
which means shape(field)=(N//2+1,N,N) (Reminder: in the code, N is always odd while N_input is even, N=N_input+1).
The python modules takes as an input an array organized as follow:
field=(x=0:Nyquist-1:-1:-Nyquist, y=0:Nyquist-1:-1:-Nyquist, z=0:Nyquist) which means shape(field)=(N//2+1,N-1,N-1)
Note that -Nyquist=+Nyquist since N_input is even.
'''
field[0,params.N//2,:params.N//2]=np.conjugate(field[0,params.N//2,params.N//2+1:][::-1])
field[0,:params.N//2,:] =np.conjugate(field[0,params.N//2+1:,:][::-1,::-1])
return np.fft.irfftn(np.fft.ifftshift(field.transpose()[:-1,:-1],axes=(0,1)),(params.N-1,params.N-1,params.N-1) )
# Equivalent to :
#new_field=np.zeros((N//2+1,N-1,N-1),dtype=np.complex64)
#new_field[:,N//2+1:,N//2+1:]=field[:,1:N//2,1:N//2]
#new_field[:,:N//2+1,:N//2+1]=field[:,N//2:,N//2:]
#new_field[:,:N//2+1,N//2+1:]=field[:,N//2:,1:N//2]
#new_field[:,N//2+1:,:N//2+1]=field[:,1:N//2,N//2:]
#return np.fft.irfftn(new_field.transpose(),(N-1,N-1,N-1))
def fft(f_field):
field=np.zeros((params.N//2+1,params.N,params.N),dtype=np.complex)
field[:,:-1,:-1]=np.fft.fftshift(np.fft.rfftn(f_field),axes=(0,1)).transpose()
field[:,-1],field[:,:,-1]=field[:,0],field[:,:,0]
return field
def read_h5(filename,dtype=np.float32):
if len(filename)==0:
f1 = h5py.File(params.output_path+params.key+'_{}{}_{}.h5'.format(field,order,real), 'r')
dat1=np.array(f1['data'],dtype=dtype)
return dat1
else:
f1 = h5py.File(filename, 'r')
dat1=np.array(f1['data'],dtype=dtype)
return dat1
def save_h5(filename,f):
hf = h5py.File(filename, 'w') # Save in h5 format
hf.create_dataset('data', data=f) #
hf.close()
#######################################################################################
####################################################################################### First order stochastic potential
def zeta_realisation(k_grid):
'''
Generate the linear curvature perturbation field (N//2+1,N,N) at redshift z in half of Fourier space.
The reality condition ensures the other half.
The computation is in 3 steps:
-compute the modulus of k in the grid (k)
-interpolate transfer function and primordial power spectrum tr=T(k) and P=P(k)
-randomly draw the real/imaginary part of the primordial curvature zeta following a Gaussian PDF with std=sqrt(P(k)/2)
'''
def random (k):
with np.errstate(divide='ignore'):
P=primordial(k)
zeta_ini_Re=np.random.normal(0,(params.N-1)**3*np.sqrt(P/2*params.kmin**3/(2*np.pi)**3),k.shape) #https://nms.kcl.ac.uk/eugene.lim/AdvCos/lecture2.pdf
zeta_ini_Im=np.random.normal(0,(params.N-1)**3*np.sqrt(P/2*params.kmin**3/(2*np.pi)**3),k.shape)
# equivalent :
#rho = np.random.normal(0,(N-1)**3*np.sqrt(P*params.kmin**3/(2*np.pi)**3),k.shape)
#phase = np.random.uniform(0,2*np.pi,k.shape)
#zeta_ini_Re=rho*np.cos(phase)
#zeta_ini_Im=rho*np.sin(phase)
return np.complex64(zeta_ini_Re+zeta_ini_Im*1j)
k=np.sqrt(k_grid[0][params.N//2:]**2+k_grid[1]**2+k_grid[2]**2)
zeta=random(k)
zeta[np.isnan(zeta)]=0
# Even N in real space give a N+1 FFT grid with symmetries !
zeta[1:-1,-1,1:-1]=zeta[1:-1,0,1:-1] #z&x Plan
zeta[1:-1,1:-1,-1]=zeta[1:-1,1:-1,0] #z&y Plan
# Zmax plan Surfaces
zeta[-1,1:params.N//2,1:params.N//2] =np.conjugate(zeta[-1,params.N//2+1:-1,params.N//2+1:-1][::-1,::-1])
zeta[-1,params.N//2+1:-1,1:params.N//2]=np.conjugate(zeta[-1,1:params.N//2,params.N//2+1:-1][::-1,::-1])
# Zmax plan lines X constant and Y constant
zeta[-1,params.N//2,1:params.N//2]=np.conjugate(zeta[-1,params.N//2,params.N//2+1:-1][::-1])
zeta[-1,1:params.N//2,params.N//2]= | np.conjugate(zeta[-1,params.N//2+1:-1,params.N//2][::-1]) | numpy.conjugate |
import copy
import cv2
# import torch
from mindspore import Tensor
import numpy as np
from PIL import Image
from util.config import config as cfg
from util.misc import find_bottom, find_long_edges, split_edge_seqence, \
norm2, vector_sin, split_edge_seqence_by_step, sample, fourier_transform, \
clockwise, find_start_point
def pil_load_img(path):
image = Image.open(path)
image = np.array(image)
return image
class TextInstance(object):
def __init__(self, points, orient, text):
self.orient = orient
self.text = text
self.bottoms = None
self.e1 = None
self.e2 = None
if self.text != "#":
self.label = 1
else:
self.label = -1
remove_points = []
self.points = np.array(points)
if len(points) > 4:
# remove point if area is almost unchanged after removing it
ori_area = cv2.contourArea(points)
for p in range(len(points)):
# attempt to remove p
index = list(range(len(points)))
index.remove(p)
area = cv2.contourArea(points[index])
if np.abs(ori_area - area)/ori_area < 0.0017 and len(points) - len(remove_points) > 4:
remove_points.append(p)
self.points = np.array([point for i, point in enumerate(points) if i not in remove_points])
else:
self.points = np.array(points)
def find_bottom_and_sideline(self):
self.bottoms = find_bottom(self.points) # find two bottoms of this Text
self.e1, self.e2 = find_long_edges(self.points, self.bottoms) # find two long edge sequence
def disk_cover(self, n_disk=15):
"""
cover text region with several disks
:param n_disk: number of disks
:return:
"""
inner_points1 = split_edge_seqence(self.points, self.e1, n_disk)
inner_points2 = split_edge_seqence(self.points, self.e2, n_disk)
inner_points2 = inner_points2[::-1] # innverse one of long edge
center_points = (inner_points1 + inner_points2) / 2 # disk center
radii = norm2(inner_points1 - center_points, axis=1) # disk radius
return inner_points1, inner_points2, center_points, radii
def equal_width_bbox_cover(self, step=16.0):
inner_points1, inner_points2 = split_edge_seqence_by_step(self.points, self.e1, self.e2, step=step)
inner_points2 = inner_points2[::-1] # innverse one of long edge
center_points = (inner_points1 + inner_points2) / 2 # disk center
return inner_points1, inner_points2, center_points
def __repr__(self):
return str(self.__dict__)
def __getitem__(self, item):
return getattr(self, item)
class TextDataset(object):
def __init__(self, transform, is_training=False):
super().__init__()
self.transform = transform
self.is_training = is_training
@staticmethod
def fill_polygon(mask, pts, value):
cv2.fillPoly(mask, [pts.astype(np.int32)], color=(value,))
def make_text_region(self, img, polygon, tr_mask, train_mask, x_map, y_map, k, scale=1/2):
[h, w] = img.shape[:2]
h = int(h * scale)
w = int(w * scale)
deal_mask = np.zeros((h, w), np.uint8)
points = (polygon.points * scale).astype(np.int32)
cv2.fillPoly(tr_mask, [points], color=(1,))
cv2.fillPoly(deal_mask, [points], color=(1,))
if polygon.text == '#':
cv2.fillPoly(train_mask, [points], color=(0,))
pts = sample(polygon.points * scale)
pts = find_start_point(pts)
c = fourier_transform(pts, k)
c = clockwise(c, k)
vector_x = np.real(c)
vector_y = np.imag(c)
for i in range(-k, k+1):
if i != 0:
x_map[:, :, i + k] = deal_mask * vector_x[i + k] + (1 - deal_mask) * x_map[:, :, i + k]
y_map[:, :, i + k] = deal_mask * vector_y[i + k] + (1 - deal_mask) * y_map[:, :, i + k]
else:
for y, x in np.argwhere(deal_mask > 0.5):
x_map[y, x, k] = vector_x[k] - x
y_map[y, x, k] = vector_y[k] - y
def make_text_center_line(self, sideline1, sideline2,
center_line, tcl_msk1, expand=0.3, shrink=1):
p1 = np.mean(sideline1, axis=0)
p2 = np.mean(sideline2, axis=0)
vpp = vector_sin(p1 - p2)
if vpp >= 0:
top_line = sideline2
bot_line = sideline1
else:
top_line = sideline1
bot_line = sideline2
if len(center_line) < 5:
shrink = 0
for i in range(shrink, len(center_line) - 1 - shrink):
c1 = center_line[i]
c2 = center_line[i + 1]
top1 = top_line[i]
top2 = top_line[i + 1]
bottom1 = bot_line[i]
bottom2 = bot_line[i + 1]
p1 = c1 + (top1 - c1) * expand
p2 = c1 + (bottom1 - c1) * expand
p3 = c2 + (bottom2 - c2) * expand
p4 = c2 + (top2 - c2) * expand
ploy1 = np.stack([p1, p2, p3, p4])
self.fill_polygon(tcl_msk1, ploy1, value=1)
def get_training_data(self, image, polygons, k, image_id, image_path):
H, W, _ = image.shape
if self.transform:
image, polygons = self.transform(image, copy.copy(polygons))
h, w, _ = image.shape
tr_mask_3 = np.zeros((int(h/8), int(w/8), 1), np.uint8)
train_mask_3 = np.ones((int(h/8), int(w/8), 1), np.uint8)
tcl_mask_3 = np.zeros((int(h / 8), int(w / 8), 1), np.uint8)
x_map_3 = np.zeros((int(h/8), int(w/8), 2 * k + 1), np.float32)
y_map_3 = np.zeros((int(h/8), int(w/8), 2 * k + 1), np.float32)
tr_mask_4 = np.zeros((int(h/16), int(w/16), 1), np.uint8)
train_mask_4 = np.ones((int(h/16), int(w/16), 1), np.uint8)
tcl_mask_4 = np.zeros((int(h/16), int(w/16), 1), np.uint8)
x_map_4 = np.zeros((int(h/16), int(w/16), 2 * k + 1), np.float32)
y_map_4 = np.zeros((int(h/16), int(w/16), 2 * k + 1), np.float32)
tr_mask_5 = np.zeros((int(h/32), int(w/32), 1), np.uint8)
train_mask_5 = np.ones((int(h/32), int(w/32), 1), np.uint8)
tcl_mask_5 = np.zeros((int(h/32), int(w/32), 1), np.uint8)
x_map_5 = np.zeros((int(h/32), int(w/32), 2 * k + 1), np.float32)
y_map_5 = np.zeros((int(h/32), int(w/32), 2 * k + 1), np.float32)
if polygons is not None:
for polygon in polygons:
x_max = polygon.points[:, 0].max()
x_min = polygon.points[:, 0].min()
y_max = polygon.points[:, 1].max()
y_min = polygon.points[:, 1].min()
dx = x_max - x_min
dy = y_max - y_min
criterion = max(dx, dy) / (h + 1e-5)
polygon.find_bottom_and_sideline()
sideline1, sideline2, center_points = polygon.equal_width_bbox_cover(step=4.0)
if criterion < 0.4:
self.make_text_region(image, polygon, tr_mask_3, train_mask_3, x_map_3, y_map_3, k, scale=1 / 8)
self.make_text_center_line(sideline1/8, sideline2/8, center_points/8, tcl_mask_3)
if criterion > 0.3 and criterion < 0.7:
self.make_text_region(image, polygon, tr_mask_4, train_mask_4, x_map_4, y_map_4, k, scale=1 / 16)
self.make_text_center_line(sideline1/16, sideline2/16, center_points/16, tcl_mask_4)
if criterion > 0.6:
self.make_text_region(image, polygon, tr_mask_5, train_mask_5, x_map_5, y_map_5, k, scale=1 / 32)
self.make_text_center_line(sideline1/32, sideline2/32, center_points/32, tcl_mask_5)
# clip value (0, 1)
tr_mask_3 = np.clip(tr_mask_3, 0, 1)
train_mask_3 = np.clip(train_mask_3, 0, 1)
tcl_mask_3 = np.clip(tcl_mask_3, 0, 1)
tr_mask_4 = np.clip(tr_mask_4, 0, 1)
train_mask_4 = np.clip(train_mask_4, 0, 1)
tcl_mask_4 = np.clip(tcl_mask_4, 0, 1)
tr_mask_5 = np.clip(tr_mask_5, 0, 1)
train_mask_5 = np.clip(train_mask_5, 0, 1)
tcl_mask_5 = np.clip(tcl_mask_5, 0, 1)
label_3 = np.concatenate([tr_mask_3, train_mask_3, x_map_3, y_map_3, tcl_mask_3], axis=2)
label_4 = | np.concatenate([tr_mask_4, train_mask_4, x_map_4, y_map_4, tcl_mask_4], axis=2) | numpy.concatenate |
from unittest import TestCase
import os.path as osp
import numpy as np
from datumaro.components.annotation import AnnotationType, Bbox
from datumaro.components.dataset import Dataset
from datumaro.components.extractor import DatasetItem
from datumaro.util.test_utils import TestDir, compare_datasets
from datumaro.util.test_utils import run_datum as run
import datumaro.plugins.voc_format.format as VOC
from ..requirements import Requirements, mark_requirement
class YoloIntegrationScenarios(TestCase):
@mark_requirement(Requirements.DATUM_GENERAL_REQ)
def test_can_save_and_load_yolo_dataset(self):
target_dataset = Dataset.from_iterable([
DatasetItem(id='1', subset='train',
image=np.ones((10, 15, 3)),
annotations=[
Bbox(3.0, 3.0, 2.0, 3.0, label=4),
Bbox(0.0, 2.0, 4.0, 2.0, label=2)
]
)
], categories=['label_' + str(i) for i in range(10)])
with TestDir() as test_dir:
yolo_dir = osp.join(__file__[:__file__.rfind(osp.join('tests', ''))],
'tests', 'assets', 'yolo_dataset')
run(self, 'create', '-o', test_dir)
run(self, 'import', '-p', test_dir, '-f', 'yolo', yolo_dir)
export_dir = osp.join(test_dir, 'export_dir')
run(self, 'export', '-p', test_dir, '-o', export_dir,
'-f', 'yolo', '--', '--save-images')
parsed_dataset = Dataset.import_from(export_dir, format='yolo')
compare_datasets(self, target_dataset, parsed_dataset)
@mark_requirement(Requirements.DATUM_GENERAL_REQ)
def test_can_export_mot_as_yolo(self):
target_dataset = Dataset.from_iterable([
DatasetItem(id='1', subset='train',
annotations=[
Bbox(0.0, 4.0, 4.0, 8.0, label=2)
]
)
], categories=['label_' + str(i) for i in range(10)])
with TestDir() as test_dir:
mot_dir = osp.join(__file__[:__file__.rfind(osp.join('tests', ''))],
'tests', 'assets', 'mot_dataset')
run(self, 'create', '-o', test_dir)
run(self, 'import', '-p', test_dir, '-f', 'mot_seq', mot_dir)
yolo_dir = osp.join(test_dir, 'yolo_dir')
run(self, 'export', '-p', test_dir, '-o', yolo_dir,
'-f', 'yolo', '--', '--save-images')
parsed_dataset = Dataset.import_from(yolo_dir, format='yolo')
compare_datasets(self, target_dataset, parsed_dataset)
@mark_requirement(Requirements.DATUM_GENERAL_REQ)
def test_can_convert_voc_to_yolo(self):
target_dataset = Dataset.from_iterable([
DatasetItem(id='2007_000001', subset='train',
image=np.ones((10, 20, 3)),
annotations=[
Bbox(1.0, 2.0, 2.0, 2.0, label=8),
Bbox(4.0, 5.0, 2.0, 2.0, label=15),
Bbox(5.5, 6, 2, 2, label=22),
]
)
], categories=[label.name for label in
VOC.make_voc_categories()[AnnotationType.label]])
with TestDir() as test_dir:
voc_dir = osp.join(__file__[:__file__.rfind(osp.join('tests', ''))],
'tests', 'assets', 'voc_dataset', 'voc_dataset1')
yolo_dir = osp.join(test_dir, 'yolo_dir')
run(self, 'convert', '-if', 'voc', '-i', voc_dir,
'-f', 'yolo', '-o', yolo_dir, '--', '--save-images')
parsed_dataset = Dataset.import_from(yolo_dir, format='yolo')
compare_datasets(self, target_dataset, parsed_dataset,
require_images=True)
@mark_requirement(Requirements.DATUM_GENERAL_REQ)
def test_can_ignore_non_supported_subsets(self):
source_dataset = Dataset.from_iterable([
DatasetItem(id='img1', subset='test',
image= | np.ones((10, 20, 3)) | numpy.ones |
import numpy as np
from scipy.integrate import odeint
import scipy.integrate as integrator
import matplotlib.pyplot as plt
import time
import sys
from cliente import Cliente # cliente OPCUA
import random
import threading
class QuadrupleTank():
def __init__(self, x0, Hmax, voltmax):
self.x0 = x0
self.t = 0
# Parámetros
self.A = [28, 32, 28, 32] # cm^2
self.a = [0.071, 0.057, 0.071, 0.057] # cm^2
self.g = 981 # cm/s^2
self.rho = 1 # g/cm^3
self.kout = 0.5
self.kin = 3.33
self.time_scaling = 1
# self.gamma = [0.7, 0.6] # %
self.gamma = [0.35, 0.35] # %
self.volt = [0., 0.] # %
self.voltmax = voltmax
self.x = self.x0
self.ti = 0
self.Ts = 0
self.Hmax = Hmax
self.Hmin = 0.0
# Restricciones físicas de los tanques
def Limites(self):
for i in range(len(self.x)):
if self.x[i] > self.Hmax:
self.x[i] = self.Hmax
elif self.x[i] < 1e-2:
self.x[i] = 1e-2
for i in range(2):
if self.volt[i] > 1:
self.volt[i] = 1
elif self.volt[i] < -1:
self.volt[i] = -1
# Ecuaciones diferenciales de los tanques
def xd_func(self, x, t):
xd0 = -self.a[0] / self.A[0] * | np.sqrt(2 * self.g * x[0]) | numpy.sqrt |
from physDBD import ConvertMomentsToNMomentsLayer, DeathRxnLayer, \
BirthRxnLayer, EatRxnLayer, ConvertNMomentsTEtoMomentsTE
# Depreciation warnings
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
import copy
import os
import shutil
import numpy as np
import tensorflow as tf
class Vals:
nv = 3
nh = 2
batch_size = 2
i_death = 0
i_birth = 0
i_predator = 1
i_prey = 0
_mu = np.array([19., 45., 62., 4., 8.])
_cov = np.array([
[30., 67., 107., 10., 9.],
[67., 162., 241., 20., 27.],
[107., 241., 402., 40., 27.],
[10., 20., 40., 5., 0.],
[9., 27., 27., 0., 9.]
])
_ncov = np.array([
[391., 922., 1285., 86., 161.],
[922., 2187., 3031., 200., 387.],
[1285., 3031., 4246., 288., 523.],
[86., 200., 288., 21., 32.],
[161., 387., 523., 32., 73.]
])
_mu_TE = np.array([3.0, 5.0, 2.0, 1.0, 0.8])
_ncov_TE = np.array([
[12.0, 6.0, 3.0, 2.0, 1.0],
[6.0, 18.0, 4.0, 3.0, 1.0],
[3.0, 4.0, 16.0, 2.0, 1.0],
[2.0, 3.0, 2.0, 8.0, 0.5],
[1.0, 1.0, 1.0, 0.5, 6.0]
])
@classmethod
def mu_TE(cls):
return np.tile(cls._mu_TE, (cls.batch_size,1))
@classmethod
def ncov_TE(cls):
return np.tile(cls._ncov_TE, (cls.batch_size,1,1))
@classmethod
def mu(cls):
return np.tile(cls._mu, (cls.batch_size,1))
@classmethod
def cov(cls):
return | np.tile(cls._cov, (cls.batch_size,1,1)) | numpy.tile |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
NAME
Global field generator for remapping intercomparison
PURPOSE
Reads 2 mesh data files (Exodus or SCRIP) and evaluates any one of, or
combination of 3 fields (TPW, Cloud Fraction, Terrain) derived from
Spherical Harmonic expansions of satellite global composite data.
PROGRAMMER(S)
<NAME>, <NAME>, <NAME>
REVISION HISTORY
REFERENCES
'''
# %%
import shutil
import time
import sys
import getopt
import pyshtools
import math as mt
import numpy as np
from numpy import matlib
import plotly as py
import plotly.figure_factory as FF
from scipy.spatial import Delaunay
from netCDF4 import Dataset # http://code.google.com/p/netcdf4-python/
from computeAreaIntegral import computeAreaIntegral, computeAreaIntegralWithGQ, getGaussNodesWeights
import computeSphericalCartesianTransforms as sphcrt
import multiprocessing
from multiprocessing import Process
from itertools import repeat
# %% Utility functions
def computeSpectrum(ND, lfPower, hfPower, degIntersect):
psd = np.zeros(ND)
# Compute power spectrum array from coefficients (Power Law assumed)
degs = np.arange(ND, dtype=float)
# degs[0] = np.inf
degs[0] = 1.0E-8
# Check that we aren't fitting a constant function (Terrain)
for ii in range(ND):
if degs[ii] < degIntersect:
if lfPower[1] > -5.0:
psd[ii] = lfPower[0] * \
np.power(degs[ii], lfPower[1]) + lfPower[2]
else:
psd[ii] = lfPower[2]
elif degs[ii] >= degIntersect:
if hfPower[1] > -5.0:
psd[ii] = hfPower[0] * \
np.power(degs[ii], hfPower[1]) + hfPower[2]
else:
psd[ii] = hfPower[2]
return degs, psd
def evaluate_field_a2(lon, lat):
# thisVar = (2.0 + np.cos(dFLonLat[1]) * np.cos(dFLonLat[1]) * np.cos(2.0 * dFLonLat[0])) # test == 1
# thisVar = (2.0 + (np.sin(2.0 * dFLonLat[1]))**16.0 * np.cos(16.0 * dFLonLat[0])) # test == 2
# print(lon, lat, (2.0 + np.cos(lat) * np.cos(lat) * np.cos(2.0 * lon)))
return (2.0 + np.cos(lat) * np.cos(lat) * np.cos(2.0 * lon))
def computeCellAverageSerial(clm, varCon, varCoord, order, avg):
# Compute the number of cells and initialize
NEL = np.size(varCon, 0)
varSample = np.zeros(NEL)
# Loop over each cell and get cell average
for ii in range(NEL):
# NP.UNIQUE SORTS AND DESTROYS CONNECTIVITY CELL NORMALS!!!
cdex = varCon[ii, :] - 1
thisCell = varCoord[:, cdex]
varSample[ii] = computeAreaIntegral(clm, thisCell, order, avg, False)
return varSample
def computeCellAverage(clm, varCon, varCoord, order, avg, nprocs):
# return computeCellAverageSerial(clm, varCon, varCoord, order, avg)
# Compute the number of cells and initialize
NEL = np.size(varCon, 0)
varSample = np.zeros(NEL,)
GN, GW = getGaussNodesWeights(order)
# Loop over each cell and get cell average
pool = multiprocessing.Pool(processes=nprocs)
results = pool.starmap(computeAreaIntegralWithGQ, zip(
repeat(clm), [varCoord[:, varCon[ii, :] - 1] for ii in range(NEL)], repeat(GN), repeat(GW), repeat(avg), repeat(False)))
pool.close()
pool.join()
varSample = np.array(results, dtype='f8')[:, 0]
varAreas = np.array(results, dtype='f8')[:, 1]
return varSample
def computeRandomizedCoefficients(ND):
# Initialize the coefficients array
coeffs = np.zeros((2, ND, ND))
# Set the random integer seed
seed = 384
# Loop over ND (number of degrees)
for kk in range(ND):
nrand = np.ones((2, kk + 1))
# Initialize random numbers with number of coefficients at this degree
if kk == 0:
rand = (1103515245 * seed + 25214903917 + 12345) % 2147483647
# Loop over the coefficients at this degree
for ll in range(0, kk + 1):
nrand[0, ll] = rand
rand = (1103515245 * rand + 25214903917 + 12345) % 2147483647
nrand[1, ll] = rand
rand = (1103515245 * rand + 25214903917 + 12345) % 2147483647
# Turn the random set into double
nrand = np.multiply(nrand, 1.0 / 2147483647.0)
# Set the coefficients at degree kk+1
coeffs[:2, kk, :kk + 1] = 2.0 * np.add(2.0 * nrand[:2, :], -1.0)
return coeffs
def computeNormalizedCoefficients(N, psd, coeffsLD):
# Initialize SHCoeffs with a randomized realization of coefficients
clm = pyshtools.SHCoeffs.from_random(psd, seed=384)
# Compute the randomized coefficients and update instance of SHCoeffs
clm.coeffs = computeRandomizedCoefficients(ND)
# Force the coefficients to have the same power as the given spectrum
power_per_l = pyshtools.spectralanalysis.spectrum(
clm.coeffs, normalization='4pi', unit='per_l')
clm.coeffs *= np.sqrt(psd[0:ND] *
np.reciprocal(power_per_l))[np.newaxis, :, np.newaxis]
# Combine the coefficients, low degree from data and high degree randomized
clm.coeffs[0, 0:4, 0:4] = coeffsLD
# Returns the SH coefficients object
return clm
# Parse the command line
def parseCommandLine(argv):
# Mesh information files
sampleMesh = ''
ExodusSingleConn = False
ExodusMultiConn = False
SCRIPwithoutConn = False
SCRIPwithConn = False
SpectralElement = False
# Sampling order
sampleCentroid = False
sampleOrder = 4
# SET WHICH FIELDS TO EVALUATE
EvaluateAll = False
EvaluateTPW = False # Total Precipitable Water
EvaluateCFR = False # Global Cloud Fraction
EvaluateTPO = False # Global topography
EvaluateA1 = False # Analytical function 1
EvaluateA2 = False # Analytical function 2
ShowPlots = False # Whether we want to show the profile plots for variables
# Number of modes used up to 512
numModes = 32
# Pseudo-random number generator seed
seed = 384
# Number of processes to use for sampling
nprocs = 1
def usage():
print('Driver Usage:\n',
'CANGAFieldGenDriver.py',
'--pm <sampleMeshFile>',
'--so <sampleOrderInteger>',
'--nm <numberSHModesMax768>',
'--rseed <randnumSeed>',
'--evaluateAllFields',
'--evaluateTotalPrecipWater',
'--evaluateCloudFraction',
'--evaluateGlobalTerrain',
'--evaluateA1',
'--evaluateA2',
'--showPlots',
'--meshConfiguration',
'--SpectralElementMesh',
'--processes <nprocs>')
try:
opts, args = getopt.getopt(argv, 'hv:',
['pm=', 'so=', 'nm=', 'rseed=', 'evaluateAllFields',
'evaluateTotalPrecipWater', 'evaluateCloudFraction', 'evaluateGlobalTerrain',
'evaluateA1', 'evaluateA2', 'showPlots',
'ExodusSingleConn', 'ExodusMultiConn', 'SCRIPwithoutConn',
'SCRIPwithConn', 'SpectralElementMesh', 'processes='])
except getopt.GetoptError:
print('Command line arguments were not properly set or error in parsing.\n')
usage()
sys.exit(2)
for opt, arg in opts:
# Request for usage help
if opt == '-h':
usage()
sys.exit()
elif opt == '--pm':
sampleMesh = arg
elif opt == '--so':
if int(arg) == 1:
sampleOrder = int(arg)
sampleCentroid = True
else:
if int(arg) % 2 == 0 and int(arg) < 200:
sampleOrder = int(arg)
else:
sys.exit(
"[FATAL] Error in option passed for --so. Sample order must be \\in (0, 200)")
elif opt == '--nm':
numModes = int(arg)
elif opt == '--rseed':
seed = int(arg)
elif opt == '--evaluateAllFields':
EvaluateAll = True
elif opt == '--evaluateTotalPrecipWater':
EvaluateTPW = True
elif opt == '--evaluateCloudFraction':
EvaluateCFR = True
elif opt == '--evaluateGlobalTerrain':
EvaluateTPO = True
elif opt == '--evaluateA1':
EvaluateA1 = True
elif opt == '--evaluateA2':
EvaluateA2 = True
elif opt == '--ExodusSingleConn':
ExodusSingleConn = True
elif opt == '--ExodusMultiConn':
ExodusMultiConn = True
elif opt == '--SCRIPwithoutConn':
SCRIPwithoutConn = True
elif opt == '--SCRIPwithConn':
SCRIPwithConn = True
elif opt == '--SpectralElementMesh':
SpectralElement = True
elif opt == '--showPlots':
ShowPlots = True
elif opt == '--processes':
nprocs = int(arg)
# Check that the number of modes requested doesn't exceed 512
if numModes > 512:
print('Setting maximum number of expansion modes: 512.')
numModes = 512
# Check that only one configuration is chosen
configs = [
ExodusSingleConn,
ExodusMultiConn,
SCRIPwithoutConn,
SCRIPwithConn]
numConfigs = sum(bool(x) for x in configs)
if numConfigs > 1:
print('ONE mesh configuration option must be set!')
print('None of the options are set.')
sys.exit(2)
if EvaluateAll:
EvaluateTPW = EvaluateCFR = EvaluateTPO = EvaluateA1 = EvaluateA2 = True
if 2 * sampleOrder - 1 < numModes:
print("WARNING: The quadrature sampling order of %d is insufficient to exactly integrate SPH expansions of order %d!" % (
sampleOrder, numModes))
return sampleMesh, numModes, seed, \
sampleCentroid, sampleOrder, \
EvaluateTPW, EvaluateCFR, EvaluateTPO, \
EvaluateA1, EvaluateA2, ShowPlots, \
ExodusSingleConn, ExodusMultiConn, SCRIPwithoutConn, \
SCRIPwithConn, SpectralElement, nprocs
if __name__ == '__main__':
print('Welcome to CANGA remapping intercomparison field generator!')
print('Authors: <NAME>, <NAME>, <NAME>, 2019')
# Parse the commandline! COMMENT OUT TO RUN IN IDE
mesh_file, ND, seed, sampleCentroid, sampleOrder, \
EvaluateTPW, EvaluateCFR, EvaluateTPO, \
EvaluateA1, EvaluateA2, ShowPlots, \
ExodusSingleConn, ExodusMultiConn, SCRIPwithoutConn, \
SCRIPwithConn, SpectralElement, nprocs \
= parseCommandLine(sys.argv[1:])
# Set the name for the new data file
stripDir = mesh_file.split('/')
onlyFilename = stripDir[len(stripDir) - 1]
data_file = 'sample_NM' + \
str(ND) + '_O' + str(sampleOrder) + '_' + (onlyFilename.split('.'))[0]
# Let us decipher what our final output file name should be with
# approrpriate suffixes
outFileName = data_file
if SpectralElement:
outFileName += '_GLL'
if EvaluateTPW:
outFileName += '_TPW'
if EvaluateCFR:
outFileName += '_CFR'
if EvaluateTPO:
outFileName += '_TPO'
if EvaluateA1:
outFileName += '_A1'
if EvaluateA2:
outFileName += '_A2'
outFileName += '.nc'
print('File name for sampled mesh data: ', outFileName)
print('Number of SH degrees for sampling set to: ', ND)
print('Maximum Gaussian quadrature order to be used: ', 2 * sampleOrder - 1)
if ExodusSingleConn or ExodusMultiConn:
if SpectralElement:
connCell = 'element_gll_conn'
coordCell = 'grid_gll_cart'
else:
if ExodusSingleConn:
connCell = 'connect1'
elif ExodusMultiConn:
connCell = 'connect0'
coordCell = 'coord'
# Open the .g mesh files for reading
m_fid = Dataset(mesh_file)
# Get connectivity and coordinate arrays (check for multiple
# connectivity)
varCon = m_fid.variables[connCell][:]
varCoord = m_fid.variables[coordCell][:]
# Get the rectilinear attribute if available
try:
print('Rectilinear mesh detected; field variable written as 2D')
rectilinear = m_fid.rectilinear
# Get the 2D size of the field array from mesh file
NLON = m_fid.rectilinear_dim1_size
NLAT = m_fid.rectilinear_dim0_size
except BaseException:
print('NOT a rectilinear mesh.')
rectilinear = False
elif ExodusMultiConn:
numElTypes = 'num_el_blk'
numDims = 'cart_dims'
connCell = 'element_corners_id'
coordCell = 'grid_corners_cart'
numVerts = 'grid_corners_size'
# Open the .g mesh files for reading
m_fid = Dataset(mesh_file)
start = time.time()
# Get connectivity and coordinate arrays
varConnList = []
numVertList = []
numConnBlocks = len(m_fid.dimensions[numElTypes])
for cc in range(numConnBlocks):
# Get this connectivity array (El X corners)
connName = 'connect' + str(cc + 1)
thisConn = m_fid.variables[connName][:]
# Get the number of corners for this connectivity block
# Column dimension of connectivity
numVertList.append(thisConn.shape[1])
# Append to the list of connectivity blocks
varConnList.append(m_fid.variables[connName][:])
# Get the maximum number of vertices
maxVerts = np.amax(np.array(numVertList))
# Loop over the blocks again and pad columns up to the max vertices
for cc in range(numConnBlocks):
numVert2Pad = maxVerts - numVertList[cc]
if numVert2Pad == 0:
continue
# Pad with redundant last coord ID up to the max vertices
lastCol = np.expand_dims(varConnList[cc][:, -1], axis=1)
thisPadding = np.matlib.repmat(lastCol, 1, numVert2Pad)
varConnList[cc] = np.hstack((varConnList[cc], thisPadding))
# Vertical stack of the connectivity lists
varCon = np.vstack(tuple(varConnList))
varCoord = m_fid.variables['coord'][:]
try:
print('Storing connectivity and coordinate arrays from Exodus mesh files.')
numEdges = 'num_nod_per_el'
numCells = 'num_el_in_blk'
meshFileOut = m_fid.createDimension(numEdges, maxVerts)
meshFileOut = m_fid.createDimension(numCells, varCon.shape[0])
meshFileOut = m_fid.createDimension(numVerts, np.size(varCoord, 1))
meshFileOut = m_fid.createDimension(numDims, 3)
meshFileOut = m_fid.createVariable(
connCell, 'i4', (numCells, numEdges))
meshFileOut[:] = varCon
meshFileOut = m_fid.createVariable(
coordCell, 'f8', (numDims, numVerts))
meshFileOut[:] = varCoord
except RuntimeError:
print('Cell connectivity and grid vertices exist in mesh data file.')
endt = time.time()
print(
'Time to precompute EXODUS multi-connectivity mesh info (sec): ',
endt - start)
elif SCRIPwithoutConn:
numEdges = 'grid_corners'
numCells = 'grid_size'
numDims = 'cart_dims'
numVerts = 'grid_corners_size'
if SpectralElement:
connCell = 'element_gll_conn'
coordCell = 'grid_gll_cart'
else:
connCell = 'element_corners_id'
coordCell = 'grid_corners_cart'
# Open the .nc SCRIP files for reading
m_fid = Dataset(mesh_file)
start = time.time()
try:
print('Reading connectivity and coordinate arrays from raw SCRIP')
varCon = m_fid.variables[connCell][:]
varCoord = m_fid.variables[coordCell][:]
except BaseException:
print('PRE-PROCESSING NOT DONE ON THIS MESH FILE!')
endt = time.time()
print('Time to read SCRIP mesh info (sec): ', endt - start)
elif SCRIPwithConn:
numEdges = 'ncorners'
numCells = 'ncells'
numDims = 'cart_dims'
if SpectralElement:
connCell = 'element_gll_conn'
coordCell = 'grid_gll_cart'
else:
connCell = 'element_corners'
coordCell = 'grid_corners_cart'
# Open the .nc SCRIP files for reading
m_fid = Dataset(mesh_file)
# Get the list of available variables
varList = m_fid.variables.keys()
# Get RAW (no ID) connectivity and coordinate arrays
varCon = m_fid.variables[connCell][:]
varCon = varCon.T
start = time.time()
try:
print('Reading coordinate arrays from raw SCRIP')
varCoord = m_fid.variables[coordCell][:]
except BaseException:
print('PRE-PROCESSING NOT DONE ON THIS MESH FILE!')
endt = time.time()
print('Time to read SCRIP mesh info (sec): ', endt - start)
if SpectralElement:
# Compute Lon/Lat coordinates from GLL nodes
varLonLat = sphcrt.computeCart2LL(varCoord.T)
else:
# Compute Lon/Lat coordinates from centroids
varCent = sphcrt.computeCentroids(varCon, varCoord)
varLonLat = sphcrt.computeCart2LL(varCent)
# Convert to degrees from radians
varLonLat_deg = 180.0 / mt.pi * varLonLat
m_fid.close()
# Define our global variables for fields
TPWvar = np.zeros(3)
CFRvar = np.zeros(3)
TPOvar = np.zeros(3)
# %% Begin the SH reconstructions
def Evaluate_TPW_Field():
start = time.time()
print('Computing Total Precipitable Water on sampling mesh...')
# Set the power spectrum coefficients
lfPower = [5.84729561e+04, -2.91678103e-04, -5.83966265e+04]
hfPower = [2.17936330e+02, -1.99788552e+00, -7.94469251e-04]
degIntersect = 1.8161917668847762
# Compute the parent power spectrum for TPW
degsTPW, psdTPW = computeSpectrum(ND, lfPower, hfPower, degIntersect)
# Set the low degree coefficients (large scale structures)
coeffsLD_TPW = np.array([[2.45709150e+01, 0.0, 0.0, 0.0],
[4.00222122e+00, 2.39412571e+00, 0.0, 0.0],
[-1.36433589e+01, 3.90520866e-03,
4.70350344e-01, 0.0],
[-3.54931720e+00, -1.23629157e+00, 4.01454924e-01, 1.76782768e+00]])
# Make the SH coefficients object for this field
clmTPW = computeNormalizedCoefficients(ND, psdTPW, coeffsLD_TPW)
# Evaluate actual spherical harmonic modes as solution;
# change ls, ms below
# lmax = 100
# clmTPW = pyshtools.SHCoeffs.from_zeros(lmax)
# clmTPW.set_coeffs(values=[1], ls=[2], ms=[2])
# THIS NEEDS TO CHANGE TO SUPPORT FE GRIDS
# Expand the coefficients and check the field
if sampleCentroid or SpectralElement:
TPWvar = clmTPW.expand(
lon=varLonLat_deg[:, 0], lat=varLonLat_deg[:, 1])
else:
TPWvar = computeCellAverage(
clmTPW, varCon, varCoord, sampleOrder, True, nprocs)
print('Total Precipitable Water Global integral: ', np.sum(TPWvar))
# Compute rescaled data from 0.0 to max
minTPW = np.amin(TPWvar)
maxTPW = np.amax(TPWvar)
deltaTPW = abs(maxTPW - minTPW)
deltaTPW = deltaTPW if deltaTPW > 1e-10 else 1.0
TPWvar = np.add(TPWvar, -minTPW)
TPWvar *= maxTPW / deltaTPW
endt = time.time()
print('Time to compute TPW (mm): ', endt - start)
return_dict['TPWvar'] = TPWvar
# %%
def Evaluate_CFR_Field():
start = time.time()
print('Computing Cloud Fraction on sampling mesh...')
# Set the power spectrum coefficients
lfPower = [8.38954430e+00, -1.85962382e-04, -8.38439294e+00]
hfPower = [1.25594628e-01, -1.99203168e+00, 1.91763519e-06]
degIntersect = 8.322269484619733
# Compute the parent power spectrum for CFR
degsCFR, psdCFR = computeSpectrum(ND, lfPower, hfPower, degIntersect)
# Set the low degree coefficients (large scale structures)
coeffsLD_CFR = np.array([[6.65795054e-01, 0.0, 0.0, 0.0],
[-2.45480409e-02, 2.24697424e-02, 0.0, 0.0],
[5.72322008e-02, 3.41184683e-02, -
7.71082815e-03, 0.0],
[1.86562455e-02, 4.34697733e-04, 8.91735978e-03, -5.53756958e-03]])
# Make the SH coefficients object for this field
clmCFR = computeNormalizedCoefficients(ND, psdCFR, coeffsLD_CFR)
# THIS NEEDS TO CHANGE TO SUPPORT FE GRIDS
# Expand the coefficients and check the field
if sampleCentroid or SpectralElement:
CFRvar = clmCFR.expand(
lon=varLonLat_deg[:, 0], lat=varLonLat_deg[:, 1])
else:
CFRvar = computeCellAverage(
clmCFR, varCon, varCoord, sampleOrder, True, nprocs)
print('Cloud Fraction Global integral: ', np.sum(CFRvar))
# Compute rescaled data from 0.0 to max
minCFR = np.amin(CFRvar)
maxCFR = np.amax(CFRvar)
deltaCFR = abs(maxCFR - minCFR)
deltaCFR = deltaCFR if deltaCFR > 1e-10 else 1.0
CFRvar = np.add(CFRvar, -minCFR)
CFRvar *= maxCFR / deltaCFR
# Set all values greater than 1.0 to 1.0 (creates discontinuities)
CFRvar[CFRvar >= 1.0] = 1.0
endt = time.time()
print('Time to compute CFR (0.0 to 1.0): ', endt - start)
return_dict['CFRvar'] = CFRvar
# %%
def Evaluate_TPO_Field():
start = time.time()
print('Computing Global Terrain on sampling mesh...')
# Set the power spectrum coefficients
lfPower = [1.79242815e+05, -4.28193211e+01, 7.68040558e+05]
hfPower = [9.56198160e+06, -1.85485966e+00, -2.63553217e+01]
degIntersect = 3.8942282772035255
# Compute the parent power spectrum for CFR
degsTPO, psdTPO = computeSpectrum(ND, lfPower, hfPower, degIntersect)
# Set the low degree coefficients (large scale structures)
coeffsLD_TPO = np.array([[-2.38452711e+03, 0.0, 0.0, 0.0],
[-6.47223253e+02, -6.06453097e+02, 0.0, 0.0],
[5.67394318e+02, 3.32672611e+02, -
4.17639577e+02, 0.0],
[1.57403492e+02, 1.52896988e+02, 4.47106726e+02, -1.40553447e+02]])
# Make the SH coefficients object for this field
clmTPO = computeNormalizedCoefficients(ND, psdTPO, coeffsLD_TPO)
# THIS NEEDS TO CHANGE TO SUPPORT FE GRIDS
# Expand the coefficients and check the field
if sampleCentroid or SpectralElement:
TPOvar = clmTPO.expand(
lon=varLonLat_deg[:, 0], lat=varLonLat_deg[:, 1])
else:
TPOvar = computeCellAverage(
clmTPO, varCon, varCoord, sampleOrder, True, nprocs)
print('Global Terrain Global integral: ', np.sum(TPOvar))
# Rescale to -1.0 to 1.0
minTPO = np.amin(TPOvar)
maxTPO = np.amax(TPOvar)
deltaTPO = abs(maxTPO - minTPO)
deltaTPO = deltaTPO if deltaTPO > 1e-10 else 1.0
TPOvar = np.add(TPOvar, -0.5 * (maxTPO + minTPO))
TPOvar *= 2.0 / deltaTPO
# Rescale topography to real Earth max/min
minTPO = -10994.0 # Depth at Challenger Deep
maxTPO = 8848.0 # Elevation of Mt. Everest ASL
deltaTPO = abs(maxTPO - minTPO)
TPOvar *= (0.5 * deltaTPO)
TPOvar += 0.5 * (maxTPO + minTPO)
endt = time.time()
print('Time to compute TPO (m): ', endt - start)
return_dict['TPOvar'] = TPOvar
# %%
def Evaluate_A1_Field():
start = time.time()
print('Computing Analytical Field 1 sampling on mesh...')
# Evaluate actual spherical harmonic modes as solution;
# change ls, ms below
lmax = 100
clmA1 = pyshtools.SHCoeffs.from_zeros(lmax)
# This evaluates P_3^3
clmA1.set_coeffs(values=[1], ls=[3], ms=[2])
clmA1.set_coeffs(values=[1], ls=[3], ms=[3])
# THIS NEEDS TO CHANGE TO SUPPORT FE GRIDS
# Expand the coefficients and check the field
if sampleCentroid or SpectralElement:
A1var = clmA1.expand(
lon=varLonLat_deg[:, 0], lat=varLonLat_deg[:, 1])
print(
'Analytical Solution 1 Global sum: ',
np.sum(A1var) / A1var.shape[0])
else:
A1var = computeCellAverage(
clmA1, varCon, varCoord, sampleOrder, True, nprocs)
print(
'Analytical Solution 1 Global integral: ',
np.sum(A1var) / A1var.shape[0])
endt = time.time()
print('Time to compute A1 Field: ', endt - start)
return_dict['A1var'] = A1var
# %%
def Evaluate_A2_Field():
start = time.time()
print('Computing Analytical Field 2 sampling on mesh...')
# THIS NEEDS TO CHANGE TO SUPPORT FE GRIDS
# Expand the coefficients and check the field
# if sampleCentroid or SpectralElement:
if sampleCentroid or SpectralElement:
A2var = evaluate_field_a2(lon=varLonLat[:, 0], lat=varLonLat[:, 1])
print(
'Analytical Solution 2 Global sum: ',
np.sum(A2var) / A2var.shape[0])
else:
# A2var = computeCellAverageSerial(evaluate_field_a2, varCon, varCoord, sampleOrder, True)
A2var = computeCellAverage(
evaluate_field_a2,
varCon,
varCoord,
sampleOrder,
True,
nprocs)
print(
'Analytical Solution 2 Global integral: ',
np.sum(A2var) / A2var.shape[0])
endt = time.time()
print('Time to compute A2 Field: ', endt - start)
return_dict['A2var'] = A2var
# %%
manager = multiprocessing.Manager()
return_dict = manager.dict()
# Let us aggregate all the jobs that need to be done and then
# let the multiprocessing manager take care of it.
jobs = []
evaluation_routines = []
if EvaluateTPW:
evaluation_routines.append(Evaluate_TPW_Field)
if EvaluateCFR:
evaluation_routines.append(Evaluate_CFR_Field)
if EvaluateTPO:
evaluation_routines.append(Evaluate_TPO_Field)
if EvaluateA1:
evaluation_routines.append(Evaluate_A1_Field)
if EvaluateA2:
evaluation_routines.append(Evaluate_A2_Field)
for fn in evaluation_routines:
p = Process(target=fn)
jobs.append(p)
p.start()
for p in jobs:
p.join()
if EvaluateTPW:
TPWvar = return_dict['TPWvar']
if EvaluateCFR:
CFRvar = return_dict['CFRvar']
if EvaluateTPO:
TPOvar = return_dict['TPOvar']
if EvaluateA1:
A1var = return_dict['A1var']
if EvaluateA2:
A2var = return_dict['A2var']
# %% Copy grid files and store the new test data (source and target)
shutil.copy(mesh_file, outFileName)
# write lon, lat, and test data variables
data_fid = Dataset(outFileName, 'a')
# Set the dimension name depending on the mesh file format
if ExodusSingleConn:
numCells = 'num_el_in_blk1'
elif ExodusMultiConn:
numCells = 'num_el_in_blk0'
elif SCRIPwithoutConn:
numCells = 'grid_size'
elif SCRIPwithConn:
numCells = 'ncells'
if SpectralElement:
numCells = 'grid_gll_size'
# Process the sampling file
if SCRIPwithConn:
lonNC = data_fid.createVariable('nlon', 'f8', (numCells,))
lonNC[:] = varLonLat_deg[:, 0]
latNC = data_fid.createVariable('nlat', 'f8', (numCells,))
latNC[:] = varLonLat_deg[:, 1]
else:
lonNC = data_fid.createVariable(
'lon', 'f8', (numCells,)) if 'lon' not in data_fid.variables.keys() else data_fid.variables['lon']
lonNC[:] = varLonLat_deg[:, 0]
latNC = data_fid.createVariable(
'lat', 'f8', (numCells,)) if 'lat' not in data_fid.variables.keys() else data_fid.variables['lat']
latNC[:] = varLonLat_deg[:, 1]
if rectilinear:
slon = 'lonDim'
slat = 'latDim'
data_fid.createDimension(slon, NLON)
data_fid.createDimension(slat, NLAT)
if EvaluateTPW:
TPWNC = data_fid.createVariable('TotalPrecipWater', 'f8', (slat, slon)) if 'TotalPrecipWater' not in data_fid.variables.keys(
) else data_fid.variables['TotalPrecipWater']
field = | np.reshape(TPWvar, (NLAT, NLON)) | numpy.reshape |
#! /usr/bin/env python3
import os
import sys
import numpy as np
from multiprocessing import Pool
from datetime import datetime
import arrow
data_dir = 'raw_data/'
out_dir = 'clean_data/'
out_dir = os.path.dirname(out_dir) + '/'
if out_dir:
os.makedirs(out_dir, exist_ok=True)
def decode_to_bool(bytes_to_decode):
if bytes_to_decode == b'True': return True
else: return False
def process_motion(fname):
print(fname)
data = np.loadtxt(data_dir + fname, dtype = 'bool', delimiter=',', usecols=1, converters = {1:decode_to_bool})
times = np.loadtxt(data_dir + fname, dtype = 'datetime64', delimiter=',', usecols=0, converters = {0:np.datetime64})
times = (times + np.timedelta64(30, 's')).astype('datetime64[m]')
return clean_and_save(times, data, fname)
def process_light(fname):
data = np.loadtxt(data_dir+fname, delimiter=',', usecols=1)
times = np.loadtxt(data_dir+fname, dtype = 'datetime64', delimiter=',', usecols=0, converters = {0:np.datetime64})
times = (times + np.timedelta64(30, 's')).astype('datetime64[m]')
return clean_and_save(times, data, fname)
def clean_and_save(times, data, fname):
# split data into multiple spans if data represents multiple different
# periods seperated by at least a day of no data
ind = []
previous_time = times[0]
for i, time in enumerate(times):
if time - previous_time >= np.timedelta64(1, 'D'):
ind.append(i)
previous_time = time
time_spans = np.split(times, ind)
data_spans = np.split(data, ind)
for data_span, time_span in zip(data_spans, time_spans):
# Fill in or average duplicates in uncleaned data
# if multiple data points represent the same minute, average them
# if a minute's data point is missing, use the previous minutes value
# if we aren't looking at several days or more of data, skip it
if time_span[-1] - time_span[0] < np.timedelta64(4, 'D'): continue
minutes = np.arange(time_span[0], time_span[-1], dtype='datetime64[m]')
clean_data = np.ndarray((minutes.shape[0], 2))
for i, minute in enumerate(minutes):
clean_data[i, 0] = arrow.get(minute.astype(datetime)).timestamp
match = data_span[time_span == minute]
if match.shape[0] > 1:
if type(match[0]) is np.bool_:
clean_data[i,1] = | np.mean(match) | numpy.mean |
"""Contains the audio featurizer class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from data_utils.utility import read_manifest
from data_utils.audio import AudioSegment
from python_speech_features import mfcc
from python_speech_features import delta
class AudioFeaturizer(object):
"""Audio featurizer, for extracting features from audio contents of
AudioSegment or SpeechSegment.
Currently, it supports feature types of linear spectrogram and mfcc.
:param specgram_type: Specgram feature type. Options: 'linear'.
:type specgram_type: str
:param stride_ms: Striding size (in milliseconds) for generating frames.
:type stride_ms: float
:param window_ms: Window size (in milliseconds) for generating frames.
:type window_ms: float
:param max_freq: When specgram_type is 'linear', only FFT bins
corresponding to frequencies between [0, max_freq] are
returned; when specgram_type is 'mfcc', max_feq is the
highest band edge of mel filters.
:types max_freq: None|float
:param target_sample_rate: Audio are resampled (if upsampling or
downsampling is allowed) to this before
extracting spectrogram features.
:type target_sample_rate: float
:param use_dB_normalization: Whether to normalize the audio to a certain
decibels before extracting the features.
:type use_dB_normalization: bool
:param target_dB: Target audio decibels for normalization.
:type target_dB: float
"""
def __init__(self,
specgram_type='linear',
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
target_sample_rate=16000,
use_dB_normalization=True,
target_dB=-20):
self._specgram_type = specgram_type
self._stride_ms = stride_ms
self._window_ms = window_ms
self._max_freq = max_freq
self._target_sample_rate = target_sample_rate
self._use_dB_normalization = use_dB_normalization
self._target_dB = target_dB
def featurize(self,
audio_segment,
allow_downsampling=True,
allow_upsampling=True):
"""Extract audio features from AudioSegment or SpeechSegment.
:param audio_segment: Audio/speech segment to extract features from.
:type audio_segment: AudioSegment|SpeechSegment
:param allow_downsampling: Whether to allow audio downsampling before
featurizing.
:type allow_downsampling: bool
:param allow_upsampling: Whether to allow audio upsampling before
featurizing.
:type allow_upsampling: bool
:return: Spectrogram audio feature in 2darray.
:rtype: ndarray
:raises ValueError: If audio sample rate is not supported.
"""
# upsampling or downsampling
if ((audio_segment.sample_rate > self._target_sample_rate and
allow_downsampling) or
(audio_segment.sample_rate < self._target_sample_rate and
allow_upsampling)):
audio_segment.resample(self._target_sample_rate)
if audio_segment.sample_rate != self._target_sample_rate:
raise ValueError("Audio sample rate is not supported. "
"Turn allow_downsampling or allow up_sampling on.")
# decibel normalization
if self._use_dB_normalization:
audio_segment.normalize(target_db=self._target_dB)
# extract spectrogram
return self._compute_specgram(audio_segment.samples,
audio_segment.sample_rate)
def _compute_specgram(self, samples, sample_rate):
"""Extract various audio features."""
if self._specgram_type == 'linear':
return self._compute_linear_specgram(
samples, sample_rate, self._stride_ms, self._window_ms,
self._max_freq)
elif self._specgram_type == 'mfcc':
return self._compute_mfcc(samples, sample_rate, self._stride_ms,
self._window_ms, self._max_freq)
else:
raise ValueError("Unknown specgram_type %s. "
"Supported values: linear." % self._specgram_type)
def _compute_linear_specgram(self,
samples,
sample_rate,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
eps=1e-14):
"""Compute the linear spectrogram from FFT energy."""
if max_freq is None:
max_freq = sample_rate / 2
if max_freq > sample_rate / 2:
raise ValueError("max_freq must not be greater than half of "
"sample rate.")
if stride_ms > window_ms:
raise ValueError("Stride size must not be greater than "
"window size.")
stride_size = int(0.001 * sample_rate * stride_ms)
window_size = int(0.001 * sample_rate * window_ms)
specgram, freqs = self._specgram_real(
samples,
window_size=window_size,
stride_size=stride_size,
sample_rate=sample_rate)
ind = np.where(freqs <= max_freq)[0][-1] + 1
return np.log(specgram[:ind, :] + eps)
def _specgram_real(self, samples, window_size, stride_size, sample_rate):
"""Compute the spectrogram for samples from a real signal."""
# extract strided windows
truncate_size = (len(samples) - window_size) % stride_size
samples = samples[:len(samples) - truncate_size]
nshape = (window_size, (len(samples) - window_size) // stride_size + 1)
nstrides = (samples.strides[0], samples.strides[0] * stride_size)
windows = np.lib.stride_tricks.as_strided(
samples, shape=nshape, strides=nstrides)
assert np.all(
windows[:, 1] == samples[stride_size:(stride_size + window_size)])
# window weighting, squared Fast Fourier Transform (fft), scaling
weighting = np.hanning(window_size)[:, None]
fft = np.fft.rfft(windows * weighting, axis=0)
fft = np.absolute(fft)
fft = fft**2
scale = np.sum(weighting**2) * sample_rate
fft[1:-1, :] *= (2.0 / scale)
fft[(0, -1), :] /= scale
# prepare fft frequency list
freqs = float(sample_rate) / window_size * np.arange(fft.shape[0])
return fft, freqs
def _compute_mfcc(self,
samples,
sample_rate,
stride_ms=10.0,
window_ms=20.0,
max_freq=None):
"""Compute mfcc from samples."""
if max_freq is None:
max_freq = sample_rate / 2
if max_freq > sample_rate / 2:
raise ValueError("max_freq must not be greater than half of "
"sample rate.")
if stride_ms > window_ms:
raise ValueError("Stride size must not be greater than "
"window size.")
# compute the 13 cepstral coefficients, and the first one is replaced
# by log(frame energy)
mfcc_feat = mfcc(
signal=samples,
samplerate=sample_rate,
winlen=0.001 * window_ms,
winstep=0.001 * stride_ms,
highfreq=max_freq)
# Deltas
d_mfcc_feat = delta(mfcc_feat, 2)
# Deltas-Deltas
dd_mfcc_feat = delta(d_mfcc_feat, 2)
# transpose
mfcc_feat = np.transpose(mfcc_feat)
d_mfcc_feat = np.transpose(d_mfcc_feat)
dd_mfcc_feat = | np.transpose(dd_mfcc_feat) | numpy.transpose |
from odbAccess import *
from abaqusConstants import *
from textRepr import *
import timeit
import numpy as np
import os
import sys
start_time = timeit.default_timer()
index = sys.argv[-1]
# print(index)
# index = float(index)
index = int(index)
# print(index)
odbFile = os.path.join(os.getcwd(), "single_element_simulation_" + str(index) + ".odb")
odb = openOdb(path=odbFile)
step1 = odb.steps.values()[0]
his_key = 'Element PART-1-1.1 Int Point 1 Section Point 1'
region = step1.historyRegions[his_key]
LE22 = region.historyOutputs['LE22'].data
S22 = region.historyOutputs['S22'].data
# t = np.array(LE22)[:, 0]
x = | np.array(LE22) | numpy.array |
import dask.array as da
import inspect as insp
import numpy as np
from numba import njit, prange
from edt import edt
import scipy.ndimage as spim
import scipy.spatial as sptl
from skimage.segmentation import watershed
from skimage.morphology import ball, disk, square, cube
from porespy.tools import _check_for_singleton_axes
from porespy.tools import extend_slice
from porespy.tools import Results
from porespy.filters import chunked_func
from porespy import settings
from loguru import logger
def snow_partitioning(im, dt=None, r_max=4, sigma=0.4):
r"""
Partition the void space into pore regions using a marker-based
watershed algorithm, with specially filtered peaks as markers.
Parameters
----------
im : array_like
A boolean image of the domain, with ``True`` indicating the pore
space and ``False`` elsewhere.
dt : array_like, optional
The distance transform of the pore space. This is done
automatically if not provided, but if the distance transform has
already been computed then supplying it can save some time.
r_max : int
The radius of the spherical structuring element to use in the
Maximum filter stage that is used to find peaks. The default is 4.
sigma : float
The standard deviation of the Gaussian filter used in step 1. The
default is 0.4. If 0 is given then the filter is not applied,
which is useful if a distance transform is supplied as the ``im``
argument that has already been processed.
Returns
-------
results : Results object
A custom object with the follow data as attributes:
- 'im'
The binary image of the void space
- 'dt'
The distance transform of the image
- 'peaks'
The peaks of the distance transform after applying the steps
of the SNOW algorithm
- 'regions'
The void space partitioned into pores using a marker
based watershed with the peaks found by the SNOW algorithm
Notes
-----
The SNOW network extraction algorithm (Sub-Network of an
Over-segmented Watershed) was designed to handle to perculiarities of
high porosity materials, but it applies well to other materials as
well.
References
----------
[1] <NAME>. "A versatile and efficient network extraction
algorithm using marker-based watershed segmenation". Physical Review
E. (2017)
"""
logger.trace("Beginning SNOW algorithm")
im_shape = np.array(im.shape)
if im.dtype is not bool:
logger.trace("Converting supplied image to boolean")
im = im > 0
if dt is None:
logger.trace("Peforming distance transform")
if np.any(im_shape == 1):
dt = edt(im.squeeze())
dt = dt.reshape(im.shape)
else:
dt = edt(im)
if sigma > 0:
logger.trace(f"Applying Gaussian blur with sigma = {sigma}")
dt = spim.gaussian_filter(input=dt, sigma=sigma)
peaks = find_peaks(dt=dt, r_max=r_max, divs=1)
logger.debug(f"Initial number of peaks: {spim.label(peaks)[1]}")
peaks = trim_saddle_points(peaks=peaks, dt=dt)
logger.debug(f"Peaks after trimming saddle points: {spim.label(peaks)[1]}")
peaks = trim_nearby_peaks(peaks=peaks, dt=dt)
peaks, N = spim.label(peaks)
logger.debug(f"Peaks after trimming nearby peaks: {N}")
# Note that the mask argument results in some void voxels left unlabeled
regions = watershed(image=-dt, markers=peaks)
regions = regions * (im > 0)
tup = Results()
tup.im = im
tup.dt = dt
tup.peaks = peaks
tup.regions = regions
return tup
def snow_partitioning_n(im, r_max=4, sigma=0.4):
r"""
This function partitions an imaging oontain an arbitrary number of
phases into regions using a marker-based watershed segmentation. Its
an extension of snow_partitioning function with all phases partitioned
together.
Parameters
----------
im : ndarray
Image of porous material where each phase is represented by unique
integer starting from 1 (0's are ignored).
r_max : scalar
The radius of the spherical structuring element to use in the
Maximum filter stage that is used to find peaks. The default is 4.
sigma : scalar
The standard deviation of the Gaussian filter used. The default is
0.4. If 0 is given then the filter is not applied.
Returns
-------
results : Results object
A custom object with the follow data as attributes:
- 'im'
The original image of the porous material
- 'dt'
The combined distance transform in alll phases of the image
- 'phase_max_label'
The list of max label of each phase in order to
distinguish between each other
- 'regions'
The partitioned regions of n phases using a marker
based watershed with the peaks found by the SNOW algorithm
References
----------
[1] <NAME>. "A versatile and efficient network extraction
algorithm using marker-based watershed segmentation". Physical Review
E. (2017)
[2] <NAME> et al. "Dual network extraction algorithm to investigate
multiple transport processes in porous materials: Image-based modeling
of pore and grain-scale processes". Computers in Chemical Engineering.
(2019)
See Also
--------
snow_partitioning
Notes
-----
In principle it is possible to perform a distance transform on each
phase separately, merge these into a single image, then apply the
watershed only once. This, however, has been found to create edge
artifacts between regions arising from the way watershed handles
plateaus in the distance transform. To overcome this, this function
applies the watershed to each of the distance transforms separately,
then merges the segmented regions back into a single image.
"""
# Perform snow on each phase and merge all segmentation and dt together
phases_num = np.unique(im * 1)
phases_num = | np.trim_zeros(phases_num) | numpy.trim_zeros |
"""
This module contains the functions needed to use the spherical harmonic techniques
"""
import numpy as np
import scipy.sparse
from scipy.special import lpmv, spherical_jn, spherical_yn
from numba import jit
#@jit(nopython=True)
def sub2indSH(m,n):
"""
i = sub2indSH(m,n)
Convert Spherical Harmonic (m,n) indices to array index i
Assumes that i iterates from 0 (Python style)
"""
i = n**2 + n + m
return i
#@jit(nopython=True)
def ind2subSH(i):
"""
(m,n) = ind2subSH(i)
Convert array index i to Spherical Harmonic (m,n) indices
Assumes that i iterates from 0 (Python style)
Assumes that arguments are NumPy arrays
"""
n = np.ceil(np.sqrt(i+1)-1);
m = i - n**2 - n;
return (m,n)
#@jit(nopython=True)
def cart2sph(x,y,z):
"""
(r, alpha, sinbeta, cosbeta) = Cart2Sph(x,y,z)
Converts Cartesian coordinates (x,y,z) into Spherical Polar Coordinates
(r, alpha, beta), where alpha is azimuth angle (angle in radians from the
positive x axis, with rotation around the positive z axis according to
the right-hand screw rule) and beta is polar angle (angle in radians from
the positive z axis). beta can alternatively be returned as two arrays of
its cos and sin values.
It is assumed that x, y and z are all the same size.
The returned arrays will be the same size as the arguments.
"""
r = np.sqrt(x**2 + y**2 + z**2)
rho = np.sqrt(x**2 + y**2)
alpha = np.arctan2(y, x)
cosbeta = z / r
sinbeta = rho / r
return r, alpha, sinbeta, cosbeta
#@jit(nopython=True)
def reflect_sh(Bnm, xFlag, yFlag, zFlag):
"""
Bnm = ReflectSH(Bnm, xFlag, yFlag, zFlag)
Reflect an Spherical Harmonic representation of a sound-field in 1 to 3 cartesian axes.
Argumments:
Bnm Vector of Spherical Harmonic weights. Must have (Order+1)^2 entries, where Order is an integer.
xFlag Boolean indicating whether to flip in the x-direction
yFlag Boolean indicating whether to flip in the y-direction
zFlag Boolean indicating whether to flip in the z-direction
"""
# Get lists of n and m values:
(m, n) = ind2subSH(np.arange(Bnm.size))
# Reflecting in Z:
if zFlag:
Bnm = Bnm * ((-1)**(n+m)).reshape((np.size(m),1))
# Reflecting in X:
if xFlag:
Bnm = Bnm * ((-1)**m).reshape((np.size(m),1))
# Reflecting in X or Y:
if xFlag**yFlag: # XOR
#for n in range(int(np.ceil(np.sqrt(Bnm.size)))-1):
for n in np.arange(max(n)+1):
i = sub2indSH(np.arange(-n,n+1),n).astype(int)
Bnm[i,0] = np.flip(Bnm[i,0])
return Bnm
#@jit(nopython=True)
def get_translation_matrix(t,k,OrderS,OrderR):
"""
T = GetTranslationMatrix(t,k,OrderS,OrderR)
Computes a translation matrix T from the coefficients of a Spherical
Harmonic source (outgoing spherical Hankel radial functions) to the
coefficients at a Spherical Harmonic receiver (spherical Bessel radial
functions) location at position t relative to the source. It is assumed
that both spherical coordinate systems (source and receiver) are aligned
to the same Cartesian system in which t is expressed. a is the polar
angle from the postive z axis.
Essentially computes equation 3.2.17 of:
<NAME>., & <NAME>. (2005). Fast Multipole Methods for the
Helmholtz Equation in Three Dimensions (1st ed.). Elsevier Science.
Arguments:
t Cartesian translation vector (1x3 real row vector)
k Wavenumber (positive real scalar or vector in radians/meter)
OrderS Order of the source (non-negative real integer scalar)
OrderR Order of the receiver (non-negative real integer scalar)
This file also contains the sub-functions
GetStructuralTranslationCoefficients and Wigner3jSymbol.
"""
OrderT = OrderS + OrderR
S = GetStructuralTranslationCoefficients(OrderS,OrderR)
# Express t in spherical coordinates:
[r,alpha,sinbeta,cosbeta] = cart2sph(t[0],t[1],t[2])
# Evaluate spherical harmonic functions:
Y, dy_dbeta, dy_dalpha = spherical_harmonic_all(OrderT, np.array([[alpha]]), np.array([[sinbeta]]), np.array([[cosbeta]]))
# Allocated results array:
T = np.zeros(((OrderR+1)**2, (OrderS+1)**2))
# Loop over translation order & compute summation:
for nT in np.arange(OrderT+1):
h, dhdz = spherical_hankel_out(nT,k*r) # Compute radial function:
for mT in np.arange(-nT, nT+1):
iT = sub2indSH(mT,nT)
T = T + h * Y[0][int(iT)] * S[int(iT),:,:] #!!!
return T
#@jit(nopython=True)
def GetStructuralTranslationCoefficients(OrderS,OrderR):
"""
S = GetStructuralTranslationCoefficients(OrderS,OrderR)
Computes the 'Structural Translation Coefficients' used in Spherical
Harmonic translation routines, as defined in section 3.2.1 of:
<NAME>., & <NAME>. (2005). Fast Multipole Methods for the
Helmholtz Equation in Three Dimensions (1st ed.). Elsevier Science.
Arguments:
OrderS Order of the source (non-negative real integer scalar)
OrderR Order of the receiver (non-negative real integer scalar)
Returned variable is a 3D array of size [(OrderR+1)**2, (OrderS+1)**2,
(OrderR+OrderS+1)**2].
"""
# Order required for translation:
OrderT = OrderS + OrderR
# Allocate cell array:
S = | np.zeros(((OrderT+1)**2, (OrderR+1)**2, (OrderS+1)**2), dtype = np.complex64) | numpy.zeros |
#! /usr/bin/python3
# -*- coding: utf-8 -*-
"""
********
BST file
********
"""
__author__ = '<NAME>'
__copyright__ = 'Copyright 2021, nenupy'
__credits__ = ['<NAME>']
__maintainer__ = 'Alan'
__email__ = '<EMAIL>'
__status__ = 'Production'
__all__ = [
"XST"
]
from abc import ABC
import os
from itertools import islice
from astropy.time import Time, TimeDelta
from astropy.coordinates import SkyCoord, AltAz, Angle
import astropy.units as u
from astropy.io import fits
from healpy.fitsfunc import write_map, read_map
from healpy.pixelfunc import mask_bad, nside2resol
import numpy as np
import json
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib.colorbar import ColorbarBase
from matplotlib.ticker import LinearLocator
from matplotlib.colors import Normalize
from matplotlib.cm import get_cmap
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import dask.array as da
from dask.diagnostics import ProgressBar
import nenupy
from os.path import join, dirname
from nenupy.astro.target import FixedTarget, SolarSystemTarget
from nenupy.io.io_tools import StatisticsData
from nenupy.io.bst import BST_Slice
from nenupy.astro import wavelength, altaz_to_radec, l93_to_etrs, etrs_to_enu
from nenupy.astro.uvw import compute_uvw
from nenupy.astro.sky import HpxSky
from nenupy.astro.pointing import Pointing
from nenupy.instru import NenuFAR, MiniArray, read_cal_table, freq2sb, nenufar_miniarrays
from nenupy import nenufar_position, DummyCtMgr
import logging
log = logging.getLogger(__name__)
# ============================================================= #
# ------------------------- XST_Slice ------------------------- #
# ============================================================= #
class XST_Slice:
""" """
def __init__(self, mini_arrays, time, frequency, value):
self.mini_arrays = mini_arrays
self.time = time
self.frequency = frequency
self.value = value
# --------------------------------------------------------- #
# ------------------------ Methods ------------------------ #
def plot_correlaton_matrix(self, mask_autocorrelations: bool = False, **kwargs):
"""
"""
max_ma_index = self.mini_arrays.max() + 1
all_mas = np.arange(max_ma_index)
matrix = np.full([max_ma_index, max_ma_index], np.nan, "complex")
ma1, ma2 = np.tril_indices(self.mini_arrays.size, 0)
for ma in all_mas:
if ma not in self.mini_arrays:
ma1[ma1 >= ma] += 1
ma2[ma2 >= ma] += 1
mask = None
if mask_autocorrelations:
mask = ma1 != ma2 # cross_correlation mask
matrix[ma2[mask], ma1[mask]] = np.mean(self.value, axis=(0, 1))[mask]
fig = plt.figure(figsize=kwargs.get("figsize", (10, 10)))
ax = fig.add_subplot(111)
ax.set_aspect("equal")
data = np.absolute(matrix)
if kwargs.get("decibel", True):
data = 10*np.log10(data)
im = ax.pcolormesh(
all_mas,
all_mas,
data,
shading="nearest",
cmap=kwargs.get("cmap", "YlGnBu"),
vmin=kwargs.get("vmin", np.nanmin(data)),
vmax=kwargs.get("vmax", np.nanmax(data))
)
ax.set_xticks(all_mas[::2])
ax.set_yticks(all_mas[::2])
ax.grid(alpha=0.5)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.3)
cbar = fig.colorbar(im, cax=cax)
cbar.set_label(kwargs.get("colorbar_label", "dB" if kwargs.get("decibel", True) else "Amp"))
# Axis abels
ax.set_xlabel(f"Mini-Array index")
ax.set_ylabel(f"Mini-Array index")
# Title
ax.set_title(kwargs.get("title", ""))
# Save or show the figure
figname = kwargs.get("figname", "")
if figname != "":
plt.savefig(
figname,
dpi=300,
bbox_inches="tight",
transparent=True
)
log.info(f"Figure '{figname}' saved.")
else:
plt.show()
plt.close("all")
def rephase_visibilities(self, phase_center, uvw):
""" """
# Compute the zenith original phase center
zenith = SkyCoord(
np.zeros(self.time.size),
np.ones(self.time.size)*90,
unit="deg",
frame=AltAz(
obstime=self.time,
location=nenufar_position
)
)
zenith_phase_center = altaz_to_radec(zenith)
# Define the rotation matrix
def rotation_matrix(skycoord):
"""
"""
ra_rad = skycoord.ra.rad
dec_rad = skycoord.dec.rad
if np.isscalar(ra_rad):
ra_rad = np.array([ra_rad])
dec_rad = np.array([dec_rad])
cos_ra = np.cos(ra_rad)
sin_ra = np.sin(ra_rad)
cos_dec = np.cos(dec_rad)
sin_dec = np.sin(dec_rad)
return np.array([
[cos_ra, -sin_ra, np.zeros(ra_rad.size)],
[-sin_ra*sin_dec, -cos_ra*sin_dec, cos_dec],
[sin_ra*cos_dec, cos_ra*cos_dec, sin_dec],
])
# Transformation matrices
to_origin = rotation_matrix(zenith_phase_center) # (3, 3, ntimes)
to_new_center = rotation_matrix(phase_center) # (3, 3, 1)
total_transformation = np.matmul(
np.transpose(
to_new_center,
(2, 0, 1)
),
to_origin
) # (3, 3, ntimes)
rotUVW = np.matmul(
np.expand_dims(
(to_origin[2, :] - to_new_center[2, :]).T,
axis=1
),
np.transpose(
to_origin,
(2, 1, 0)
)
) # (ntimes, 1, 3)
phase = np.matmul(
rotUVW,
np.transpose(uvw, (0, 2, 1))
) # (ntimes, 1, nvis)
rotate_visibilities = np.exp(
2.j*np.pi*phase/wavelength(self.frequency).to(u.m).value[None, :, None]
) # (ntimes, nfreqs, nvis)
new_uvw = np.matmul(
uvw, # (ntimes, nvis, 3)
np.transpose(total_transformation, (2, 0, 1))
)
return rotate_visibilities, new_uvw
def make_image(self,
resolution: u.Quantity = 1*u.deg,
fov_radius: u.Quantity = 25*u.deg,
phase_center: SkyCoord = None,
stokes: str = "I"
):
"""
:Example:
xst = XST("XST.fits")
data = xst.get_stokes("I")
sky = data.make_image(
resolution=0.5*u.deg,
fov_radius=27*u.deg,
phase_center=SkyCoord(277.382, 48.746, unit="deg")
)
sky[0, 0, 0].plot(
center=SkyCoord(277.382, 48.746, unit="deg"),
radius=24.5*u.deg
)
"""
exposure = self.time[-1] - self.time[0]
# Compute XST UVW coordinates (zenith phased)
uvw = compute_uvw(
interferometer=NenuFAR()[self.mini_arrays],
phase_center=None, # will be zenith
time=self.time,
)
# Prepare visibilities rephasing
rephase_matrix, uvw = self.rephase_visibilities(
phase_center=phase_center,
uvw=uvw
)
# Mask auto-correlations
ma1, ma2 = np.tril_indices(self.mini_arrays.size, 0)
cross_mask = ma1 != ma2
uvw = uvw[:, cross_mask, :]
# Transform to lambda units
wvl = wavelength(self.frequency).to(u.m).value
uvw = uvw[:, None, :, :]/wvl[None, :, None, None] # (t, f, bsl, 3)
# Mean in time
uvw = np.mean(uvw, axis=0)
# Prepare the sky
sky = HpxSky(
resolution=resolution,
time=self.time[0] + exposure/2,
frequency=np.mean(self.frequency),
polarization=np.array([stokes]),
value=np.nan
)
# Compute LMN coordinates
image_mask = sky.visible_mask[0, 0, 0]
image_mask *= sky.coordinates.separation(phase_center) <= fov_radius
l, m, n = sky.compute_lmn(
phase_center=phase_center,
coordinate_mask=image_mask
)
lmn = np.array([l, m, (n - 1)], dtype=np.float32).T
n_pix = l.size
lmn = da.from_array(
lmn,
chunks=(np.floor(n_pix/os.cpu_count()), 3)
)
# Transform to Dask array
n_bsl = uvw.shape[1]
n_freq = self.frequency.size
n_pix = l.size
uvw = da.from_array(
uvw.astype(np.float32),
chunks=(n_freq, np.floor(n_bsl/os.cpu_count()), 3)
)
# Compute the phase
uvwlmn = np.sum(uvw[:, :, None, :] * lmn[None, None, :, :], axis=-1)
phase = | np.exp( -2j * np.pi * uvwlmn ) | numpy.exp |
"""@package deepac.nn_train
Train a NN on Illumina reads.
Requires a config file describing the available devices, data loading mode, input sequence length, network architecture,
paths to input files and how should be the model trained.
"""
import numpy as np
import tensorflow as tf
import re
import os
import sys
import errno
import warnings
from contextlib import redirect_stdout
import math
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Dropout, Activation, Input, Lambda, Masking
from tensorflow.keras.layers import concatenate, add, multiply, average, maximum, Flatten
from tensorflow.keras.layers import LSTM, Bidirectional
from tensorflow.keras.layers import Conv1D, GlobalMaxPooling1D, GlobalAveragePooling1D, MaxPooling1D, AveragePooling1D
import tensorflow.keras.backend as K
from tensorflow.keras.callbacks import CSVLogger, ModelCheckpoint, EarlyStopping, TensorBoard
from tensorflow.keras.utils import plot_model
from tensorflow.keras import regularizers
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.initializers import orthogonal
from tensorflow.keras.models import load_model
from deepac.utils import ReadSequence, CSVMemoryLogger, set_mem_growth, DatasetParser
class RCConfig:
"""
RCNet configuration class.
"""
def __init__(self, config):
"""RCConfig constructor"""
try:
self.strategy_dict = {
"MirroredStrategy": tf.distribute.MirroredStrategy,
"OneDeviceStrategy": tf.distribute.OneDeviceStrategy,
"CentralStorageStrategy": tf.distribute.experimental.CentralStorageStrategy,
"MultiWorkerMirroredStrategy": tf.distribute.experimental.MultiWorkerMirroredStrategy,
"TPUStrategy": tf.distribute.experimental.TPUStrategy,
}
# Devices Config #
# Get the number of available GPUs
try:
self.strategy = config['Devices']['DistStrategy']
except KeyError:
print("Unknown distribution strategy. Using MirroredStrategy.")
self.strategy = "MirroredStrategy"
self._n_gpus = 0
self.tpu_strategy = None
# for using tf.device instead of strategy
try:
self.simple_build = config['Devices'].getboolean('Simple_build') if tf.executing_eagerly() else True
except KeyError:
self.simple_build = False if tf.executing_eagerly() else True
self.base_batch_size = config['Training'].getint('BatchSize')
self.batch_size = self.base_batch_size
self.set_n_gpus()
self.model_build_device = config['Devices']['Device_build']
# Data Loading Config #
# If using generators to load data batch by batch, set up the number of batch workers and the queue size
self.use_generators_keras = config['DataLoad'].getboolean('LoadTrainingByBatch')
self.use_tf_data = config['DataLoad'].getboolean('Use_TFData')
self.multiprocessing = config['DataLoad'].getboolean('Multiprocessing')
self.batch_loading_workers = config['DataLoad'].getint('BatchWorkers')
self.batch_queue = config['DataLoad'].getint('BatchQueue')
# Input Data Config #
# Set the sequence length and the alphabet
self.seq_length = config['InputData'].getint('SeqLength')
self.alphabet = "ACGT"
self.seq_dim = len(self.alphabet)
try:
self.mask_zeros = config['InputData'].getboolean('MaskZeros')
except KeyError:
self.mask_zeros = False
# subread settings (subread = first k nucleotides of a read)
self.use_subreads = config['InputData'].getboolean('UseSubreads')
self.min_subread_length = config['InputData'].getint('MinSubreadLength')
self.max_subread_length = config['InputData'].getint('MaxSubreadLength')
self.dist_subread = config['InputData']['DistSubread']
# Architecture Config #
# Set the seed
if config['Architecture']['Seed'] == "none" or config['Architecture']['Seed'] == "None":
self.seed = None
else:
self.seed = config['Architecture'].getint('Seed')
# Set the initializer (choose between He and Glorot uniform)
self.init_mode = config['Architecture']['WeightInit']
self._initializer_dict = {
"he_uniform": tf.keras.initializers.he_uniform(self.seed), # scale=2, mode=fan_in
"glorot_uniform": tf.keras.initializers.glorot_uniform(self.seed), # scale=1, mode=fan_avg
}
self.initializers = {}
if self.init_mode == 'custom':
self.initializers["conv"] = self._initializer_dict[config['Architecture']['WeightInit_Conv']]
self.initializers["merge"] = self._initializer_dict[config['Architecture']['WeightInit_Merge']]
self.initializers["lstm"] = self._initializer_dict[config['Architecture']['WeightInit_LSTM']]
self.initializers["dense"] = self._initializer_dict[config['Architecture']['WeightInit_Dense']]
self.initializers["out"] = self._initializer_dict[config['Architecture']['WeightInit_Out']]
else:
self.initializers["conv"] = self._initializer_dict[config['Architecture']['WeightInit']]
self.initializers["merge"] = self._initializer_dict[config['Architecture']['WeightInit']]
self.initializers["lstm"] = self._initializer_dict[config['Architecture']['WeightInit']]
self.initializers["dense"] = self._initializer_dict[config['Architecture']['WeightInit']]
self.initializers["out"] = self._initializer_dict[config['Architecture']['WeightInit']]
self.ortho_gain = config['Architecture'].getfloat('OrthoGain')
# Define the network architecture
self.rc_mode = config['Architecture']['RC_Mode']
self.n_conv = config['Architecture'].getint('N_Conv')
try:
self.skip_size = config['Architecture'].getint('Skip_Size')
except KeyError:
self.skip_size = 0
self.n_recurrent = config['Architecture'].getint('N_Recurrent')
self.n_dense = config['Architecture'].getint('N_Dense')
self.input_dropout = config['Architecture'].getfloat('Input_Dropout')
self.conv_units = [int(u) for u in config['Architecture']['Conv_Units'].split(',')]
self.conv_filter_size = [int(s) for s in config['Architecture']['Conv_FilterSize'].split(',')]
self.conv_dilation = [int(s) for s in config['Architecture']['Conv_Dilation'].split(',')]
self.conv_stride = [int(s) for s in config['Architecture']['Conv_Stride'].split(',')]
self.conv_activation = config['Architecture']['Conv_Activation']
try:
self.padding = config['Architecture']['Conv_Padding']
except KeyError:
self.padding = "same"
self.conv_bn = config['Architecture'].getboolean('Conv_BN')
self.conv_pooling = config['Architecture']['Conv_Pooling']
self.conv_dropout = config['Architecture'].getfloat('Conv_Dropout')
self.recurrent_units = [int(u) for u in config['Architecture']['Recurrent_Units'].split(',')]
self.recurrent_bn = config['Architecture'].getboolean('Recurrent_BN')
if self.n_recurrent == 1 and self.recurrent_bn:
raise ValueError("RC-BN is intended for RC layers with 2D output. Use RC-Conv1D or RC-LSTM returning"
" sequences.")
self.recurrent_dropout = config['Architecture'].getfloat('Recurrent_Dropout')
merge_dict = {
# motif on fwd fuzzy OR rc (Goedel t-conorm)
"maximum": maximum,
# motif on fwd fuzzy AND rc (product t-norm)
"multiply": multiply,
# motif on fwd PLUS/"OR" rc (Shrikumar-style)
"add": add,
# motif on fwd PLUS/"OR" rc (Shrikumar-style), rescaled
"average": average
}
if self.rc_mode != "none":
self.dense_merge = merge_dict.get(config['Architecture']['Dense_Merge'])
if self.dense_merge is None:
raise ValueError('Unknown dense merge function')
self.dense_units = [int(u) for u in config['Architecture']['Dense_Units'].split(',')]
self.dense_activation = config['Architecture']['Dense_Activation']
self.dense_bn = config['Architecture'].getboolean('Dense_BN')
self.dense_dropout = config['Architecture'].getfloat('Dense_Dropout')
try:
self.mc_dropout = config['Architecture'].getboolean('MC_Dropout')
self.dropout_training_mode = None if not self.mc_dropout else True
except KeyError:
self.mc_dropout = False
self.dropout_training_mode = None
# If needed, weight classes
self.use_weights = config['ClassWeights'].getboolean('UseWeights')
if self.use_weights:
try:
counts = [float(x) for x in config['ClassWeights']['ClassCounts'].split(',')]
except KeyError:
counts = [config['ClassWeights'].getfloat('ClassCount_0'),
config['ClassWeights'].getfloat('ClassCount_1')]
sum_count = sum(counts)
weights = [sum_count/(2*class_count) for class_count in counts]
classes = range(len(counts))
self.class_weight = dict(zip(classes, weights))
self.log_init = False
if self.log_init:
self.output_bias = tf.keras.initializers.Constant(np.log(counts[1]/counts[0]))
else:
self.output_bias = 'zeros'
else:
self.class_weight = None
self.output_bias = 'zeros'
# Paths Config #
# Set the input data paths
self.x_train_path = config['Paths']['TrainingData']
self.y_train_path = config['Paths']['TrainingLabels']
self.x_val_path = config['Paths']['ValidationData']
self.y_val_path = config['Paths']['ValidationLabels']
# Set the run name
self.runname = config['Paths']['RunName']
# Training Config #
# Set the number op epochs, batch size and the optimizer
self.epoch_start = config['Training'].getint('EpochStart') - 1
self.epoch_end = config['Training'].getint('EpochEnd')
self.patience = config['Training'].getint('Patience')
try:
self.l1 = config['Training'].getfloat('Lambda_L1')
except KeyError:
self.l1 = 0.0
self.l2 = config['Training'].getfloat('Lambda_L2')
self.regularizer = regularizers.L1L2(self.l1, self.l2)
self.learning_rate = config['Training'].getfloat('LearningRate')
self.optimization_method = config['Training']['Optimizer']
if self.optimization_method == "adam":
self.optimizer = Adam(lr=self.learning_rate)
else:
warnings.warn("Custom learning rates implemented for Adam only. Using default Keras learning rate.")
self.optimizer = self.optimization_method
# If needed, log the memory usage
self.log_memory = config['Training'].getboolean('MemUsageLog')
self.summaries = config['Training'].getboolean('Summaries')
self.log_superpath = config['Training']['LogPath']
self.log_dir = os.path.join(self.log_superpath, "{runname}-logs".format(runname=self.runname))
self.use_tb = config['Training'].getboolean('Use_TB')
if self.use_tb:
self.tb_hist_freq = config['Training'].getint('TBHistFreq')
except KeyError as ke:
sys.exit("The config file is not compatible with this version of DeePaC. "
"Missing keyword: {}".format(ke))
except AttributeError as ae:
sys.exit("The config file is not compatible with this version of DeePaC. "
"Error: {}".format(ae))
def set_tf_session(self):
"""Set TF session."""
# If no GPUs, use CPUs
if self._n_gpus == 0:
self.model_build_device = '/cpu:0'
set_mem_growth()
def set_n_gpus(self):
self._n_gpus = len(tf.config.get_visible_devices('GPU'))
self.batch_size = self.base_batch_size * self._n_gpus if self._n_gpus > 0 else self.base_batch_size
def get_n_gpus(self):
return self._n_gpus
def set_tpu_resolver(self, tpu_resolver):
if tpu_resolver is not None:
self.tpu_strategy = tf.distribute.experimental.TPUStrategy(tpu_resolver)
self.batch_size = self.base_batch_size * self.tpu_strategy.num_replicas_in_sync
class RCNet:
"""
Reverse-complement neural network class.
"""
def __init__(self, config, training_mode=True, verbose_load=False):
"""RCNet constructor and config parsing"""
self.config = config
if self.config.use_tf_data and not tf.executing_eagerly():
warnings.warn("Training with TFRecordDatasets supported only in eager mode. Looking for .npy files...")
self.config.use_tf_data = False
self.config.set_tf_session()
self.history = None
self.verbose_load = verbose_load
self._t_sequence = None
self._v_sequence = None
self.training_sequence = None
self.x_train = None
self.y_train = None
self.length_train = 0
self.val_indices = None
self.x_val = None
self.y_val = None
self.validation_data = (self.x_val, self.y_val)
self.length_val = 0
self.model = None
if training_mode:
try:
os.makedirs(self.config.log_dir)
except OSError as e:
if e.errno != errno.EEXIST:
raise
self._set_callbacks()
# Set strategy
if self.config.tpu_strategy is not None:
self.strategy = self.config.tpu_strategy
elif self.config.simple_build:
self.strategy = None
elif self.config.strategy == "OneDeviceStrategy":
self.strategy = self.config.strategy_dict[self.config.strategy](self.config.model_build_device)
else:
self.strategy = self.config.strategy_dict[self.config.strategy]()
if float(tf.__version__[:3]) > 2.1 and self.config.epoch_start > 0:
checkpoint_name = self.config.log_dir + "/{runname}-".format(runname=self.config.runname)
model_file = checkpoint_name + "e{epoch:03d}.h5".format(epoch=self.config.epoch_start)
print("Loading " + model_file)
with self.get_device_strategy_scope():
self.model = load_model(model_file)
else:
# Build the model using the CPU or GPU or TPU
with self.get_device_strategy_scope():
if self.config.rc_mode == "full":
self._build_rc_model()
elif self.config.rc_mode == "siam":
self._build_siam_model()
elif self.config.rc_mode == "none":
self._build_simple_model()
else:
raise ValueError('Unrecognized RC mode')
if self.config.epoch_start > 0:
print("WARNING: loading a pre-trained model will reset the optimizer state. Please update to TF>=2.2.")
checkpoint_name = self.config.log_dir + "/{runname}-".format(runname=self.config.runname)
model_file = checkpoint_name + "e{epoch:03d}.h5".format(epoch=self.config.epoch_start)
path = re.sub("\.h5$", "", model_file)
weights_path = path + "_weights.h5"
print("Loading " + weights_path)
self.model.load_weights(weights_path)
def get_device_strategy_scope(self):
if self.config.simple_build:
device_strategy_scope = tf.device(self.config.model_build_device)
else:
device_strategy_scope = self.strategy.scope()
return device_strategy_scope
def load_data(self):
"""Load datasets"""
print("Loading...")
if self.config.use_tf_data:
prefetch_size = tf.data.experimental.AUTOTUNE
def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\.").search(filename).group(1)) for filename in filenames]
return np.max(n) + 1
parser = DatasetParser(self.config.seq_length)
train_filenames = tf.io.gfile.glob(self.config.x_train_path + "/*.tfrec")
self.length_train = count_data_items(train_filenames)
self.training_sequence = \
parser.read_dataset(train_filenames).shuffle(buffer_size=self.config.batch_size*self.config.batch_queue)
self.training_sequence = \
self.training_sequence.repeat().batch(self.config.batch_size).prefetch(prefetch_size)
val_filenames = tf.io.gfile.glob(self.config.x_val_path + "/*.tfrec")
self.length_val = count_data_items(val_filenames)
self.validation_data = \
parser.read_dataset(val_filenames).repeat().batch(self.config.batch_size).prefetch(prefetch_size)
elif self.config.use_generators_keras:
# Prepare the generators for loading data batch by batch
self.x_train = np.load(self.config.x_train_path, mmap_mode='r')
self.y_train = np.load(self.config.y_train_path, mmap_mode='r')
self._t_sequence = ReadSequence(self.x_train, self.y_train, self.config.batch_size,
self.config.use_subreads, self.config.min_subread_length,
self.config.max_subread_length, self.config.dist_subread,
verbose_id="TRAIN" if self.verbose_load else None)
self.training_sequence = self._t_sequence
self.length_train = len(self.x_train)
# Prepare the generators for loading data batch by batch
self.x_val = np.load(self.config.x_val_path, mmap_mode='r')
self.y_val = np.load(self.config.y_val_path, mmap_mode='r')
self._v_sequence = ReadSequence(self.x_val, self.y_val, self.config.batch_size,
self.config.use_subreads, self.config.min_subread_length,
self.config.max_subread_length, self.config.dist_subread,
verbose_id="VAL" if self.verbose_load else None)
self.validation_data = self._v_sequence
self.length_val = len(self.x_val)
else:
# ... or load all the data to memory
self.x_train = np.load(self.config.x_train_path)
self.y_train = np.load(self.config.y_train_path)
self.length_train = self.x_train.shape
# ... or load all the data to memory
self.x_val = np.load(self.config.x_val_path)
self.y_val = np.load(self.config.y_val_path)
self.val_indices = np.arange(len(self.y_val))
np.random.shuffle(self.val_indices)
self.x_val = self.x_val[self.val_indices]
self.y_val = self.y_val[self.val_indices]
self.validation_data = (self.x_val, self.y_val)
self.length_val = self.x_val.shape[0]
def _add_lstm(self, inputs, return_sequences):
# LSTM with sigmoid activation corresponds to the CuDNNLSTM
if not tf.executing_eagerly() and (self.config.get_n_gpus() > 0
and re.match("cpu", self.config.model_build_device, re.IGNORECASE) is None):
x = Bidirectional(tf.compat.v1.keras.layers.CuDNNLSTM(self.config.recurrent_units[0],
kernel_initializer=self.config.initializers["lstm"],
recurrent_initializer=orthogonal(
gain=self.config.ortho_gain,
seed=self.config.seed),
kernel_regularizer=self.config.regularizer,
return_sequences=return_sequences))(inputs)
else:
x = Bidirectional(LSTM(self.config.recurrent_units[0], kernel_initializer=self.config.initializers["lstm"],
recurrent_initializer=orthogonal(gain=self.config.ortho_gain,
seed=self.config.seed),
kernel_regularizer=self.config.regularizer,
return_sequences=return_sequences,
recurrent_activation='sigmoid'))(inputs)
return x
def _add_siam_lstm(self, inputs_fwd, inputs_rc, return_sequences, units):
# LSTM with sigmoid activation corresponds to the CuDNNLSTM
if not tf.executing_eagerly() and (self.config.get_n_gpus() > 0
and re.match("cpu", self.config.model_build_device, re.IGNORECASE) is None):
shared_lstm = Bidirectional(
tf.compat.v1.keras.layers.CuDNNLSTM(units,
kernel_initializer=self.config.initializers["lstm"],
recurrent_initializer=orthogonal(
gain=self.config.ortho_gain,
seed=self.config.seed),
kernel_regularizer=self.config.regularizer,
return_sequences=return_sequences))
else:
shared_lstm = Bidirectional(LSTM(units, kernel_initializer=self.config.initializers["lstm"],
recurrent_initializer=orthogonal(gain=self.config.ortho_gain,
seed=self.config.seed),
kernel_regularizer=self.config.regularizer,
return_sequences=return_sequences,
recurrent_activation='sigmoid'))
x_fwd = shared_lstm(inputs_fwd)
x_rc = shared_lstm(inputs_rc)
return x_fwd, x_rc
def _add_rc_lstm(self, inputs, return_sequences, units):
revcomp_in = Lambda(lambda x: K.reverse(x, axes=(1, 2)), output_shape=inputs.shape[1:],
name="reverse_complement_lstm_input_{n}".format(n=self._current_recurrent+1))
inputs_rc = revcomp_in(inputs)
x_fwd, x_rc = self._add_siam_lstm(inputs, inputs_rc, return_sequences, units)
if return_sequences:
rev_axes = (1, 2)
else:
rev_axes = 1
revcomp_out = Lambda(lambda x: K.reverse(x, axes=rev_axes), output_shape=x_rc.shape[1:],
name="reverse_lstm_output_{n}".format(n=self._current_recurrent + 1))
x_rc = revcomp_out(x_rc)
out = concatenate([x_fwd, x_rc], axis=-1)
return out
def _add_siam_conv1d(self, inputs_fwd, inputs_rc, units, kernel_size, dilation_rate=1, stride=1):
shared_conv = Conv1D(filters=units, kernel_size=kernel_size, dilation_rate=dilation_rate,
padding=self.config.padding,
kernel_initializer=self.config.initializers["conv"],
kernel_regularizer=self.config.regularizer,
strides=stride)
x_fwd = shared_conv(inputs_fwd)
x_rc = shared_conv(inputs_rc)
return x_fwd, x_rc
def _add_rc_conv1d(self, inputs, units, kernel_size, dilation_rate=1, stride=1):
revcomp_in = Lambda(lambda x: K.reverse(x, axes=(1, 2)), output_shape=inputs.shape[1:],
name="reverse_complement_conv1d_input_{n}".format(n=self._current_conv+1))
inputs_rc = revcomp_in(inputs)
x_fwd, x_rc = self._add_siam_conv1d(inputs, inputs_rc, units, kernel_size, dilation_rate, stride)
revcomp_out = Lambda(lambda x: K.reverse(x, axes=(1, 2)), output_shape=x_rc.shape[1:],
name="reverse_complement_conv1d_output_{n}".format(n=self._current_conv + 1))
x_rc = revcomp_out(x_rc)
out = concatenate([x_fwd, x_rc], axis=-1)
return out
def _add_siam_batchnorm(self, inputs_fwd, inputs_rc):
input_shape = inputs_rc.shape
if len(input_shape) != 3:
raise ValueError("Intended for RC layers with 2D output. Use RC-Conv1D or RC-LSTM returning sequences."
"Expected dimension: 3, but got: " + str(len(input_shape)))
out = concatenate([inputs_fwd, inputs_rc], axis=1)
out = BatchNormalization()(out)
split_shape = out.shape[1] // 2
new_shape = [split_shape, input_shape[2]]
fwd_out = Lambda(lambda x: x[:, :split_shape, :], output_shape=new_shape,
name="split_batchnorm_fwd_output_{n}".format(n=self._current_bn+1))
rc_out = Lambda(lambda x: x[:, split_shape:, :], output_shape=new_shape,
name="split_batchnorm_rc_output1_{n}".format(n=self._current_bn+1))
x_fwd = fwd_out(out)
x_rc = rc_out(out)
return x_fwd, x_rc
def _add_rc_batchnorm(self, inputs):
input_shape = inputs.shape
if len(input_shape) != 3:
raise ValueError("Intended for RC layers with 2D output. Use RC-Conv1D or RC-LSTM returning sequences."
"Expected dimension: 3, but got: " + str(len(input_shape)))
split_shape = inputs.shape[-1] // 2
new_shape = [input_shape[1], split_shape]
fwd_in = Lambda(lambda x: x[:, :, :split_shape], output_shape=new_shape,
name="split_batchnorm_fwd_input_{n}".format(n=self._current_bn+1))
rc_in = Lambda(lambda x: K.reverse(x[:, :, split_shape:], axes=(1, 2)), output_shape=new_shape,
name="split_batchnorm_rc_input_{n}".format(n=self._current_bn+1))
inputs_fwd = fwd_in(inputs)
inputs_rc = rc_in(inputs)
x_fwd, x_rc = self._add_siam_batchnorm(inputs_fwd, inputs_rc)
rc_out = Lambda(lambda x: K.reverse(x, axes=(1, 2)), output_shape=x_rc.shape,
name="split_batchnorm_rc_output2_{n}".format(n=self._current_bn+1))
x_rc = rc_out(x_rc)
out = concatenate([x_fwd, x_rc], axis=-1)
return out
def _add_siam_merge_dense(self, inputs_fwd, inputs_rc, units, merge_function=add):
shared_dense = Dense(units, kernel_initializer=self.config.initializers["merge"],
kernel_regularizer=self.config.regularizer)
x_fwd = shared_dense(inputs_fwd)
x_rc = shared_dense(inputs_rc)
out = merge_function([x_fwd, x_rc])
return out
def _add_rc_merge_dense(self, inputs, units, merge_function=add):
split_shape = inputs.shape[-1] // 2
fwd_in = Lambda(lambda x: x[:, :split_shape], output_shape=[split_shape],
name="split_merging_dense_input_fwd_{n}".format(n=1))
rc_in = Lambda(lambda x: x[:, split_shape:], output_shape=[split_shape],
name="split_merging_dense_input_rc_{n}".format(n=1))
x_fwd = fwd_in(inputs)
x_rc = rc_in(inputs)
rc_rev = Lambda(lambda x: K.reverse(x, axes=1), output_shape=x_rc.shape[1:],
name="reverse_merging_dense_input_{n}".format(n=1))
x_rc = rc_rev(x_rc)
return self._add_siam_merge_dense(x_fwd, x_rc, units, merge_function)
def _add_skip(self, source, residual):
stride = int(round(source.shape[1] / residual.shape[1]))
if (source.shape[1] != residual.shape[1]) or (source.shape[-1] != residual.shape[-1]):
source = Conv1D(filters=residual.shape[-1], kernel_size=1, strides=stride, padding=self.config.padding,
kernel_initializer=self.config.initializer,
kernel_regularizer=self.config.regularizer)(source)
return add([source, residual])
def _add_siam_skip(self, source_fwd, source_rc, residual_fwd, residual_rc):
# Cast Dimension to int for TF 1 compatibility
stride_fwd = int(round(int(source_fwd.shape[1]) / int(residual_fwd.shape[1])))
stride_rc = int(round(int(source_rc.shape[1]) / int(residual_rc.shape[1])))
assert stride_fwd == stride_rc, "Fwd and rc shapes differ."
fwd_equal = (source_fwd.shape[1] == residual_fwd.shape[1]) and (source_fwd.shape[-1] == residual_fwd.shape[-1])
rc_equal = (source_rc.shape[1] == residual_rc.shape[1]) and (source_rc.shape[-1] == residual_rc.shape[-1])
if not (fwd_equal and rc_equal):
source_fwd, source_rc = self._add_siam_conv1d(source_fwd, source_rc,
units=residual_fwd.shape[-1],
kernel_size=1, stride=stride_fwd)
return add([source_fwd, residual_fwd]), add([source_rc, residual_rc])
def _add_rc_skip(self, source, residual):
equal = (source.shape[1] == residual.shape[1]) and (source.shape[-1] == residual.shape[-1])
if equal:
return add([source, residual])
else:
split_shape_src = source.shape[-1] // 2
new_shape_src = [source.shape[1], split_shape_src]
split_shape_res = residual.shape[-1] // 2
new_shape_res = [residual.shape[1], split_shape_res]
fwd_src_in = Lambda(lambda x: x[:, :, :split_shape_src],
output_shape=new_shape_src,
name="forward_skip_src_in_{n}".format(n=self._current_conv + 1))
rc_src_in = Lambda(lambda x: K.reverse(x[:, :, split_shape_src:], axes=(1, 2)),
output_shape=new_shape_src,
name="reverse_complement_skip_src_in_{n}".format(n=self._current_conv + 1))
fwd_res_in = Lambda(lambda x: x[:, :, :split_shape_res],
output_shape=new_shape_res,
name="forward_skip_res_in_{n}".format(n=self._current_conv + 1))
rc_res_in = Lambda(lambda x: K.reverse(x[:, :, split_shape_res:], axes=(1, 2)),
output_shape=new_shape_res,
name="reverse_complement_skip_res_in{n}".format(n=self._current_conv + 1))
source_fwd = fwd_src_in(source)
residual_fwd = fwd_res_in(residual)
source_rc = rc_src_in(source)
residual_rc = rc_res_in(residual)
x_fwd, x_rc = self._add_siam_skip(source_fwd, source_rc, residual_fwd, residual_rc)
revcomp_out = Lambda(lambda x: K.reverse(x, axes=(1, 2)), output_shape=x_rc.shape[1:],
name="reverse_complement_skip_output_{n}".format(n=self._current_conv + 1))
x_rc = revcomp_out(x_rc)
out = concatenate([x_fwd, x_rc], axis=-1)
return out
def _add_rc_pooling(self, inputs, pooling_layer):
input_shape = inputs.shape
if len(input_shape) != 3:
raise ValueError("Intended for RC layers with 2D output. Use RC-Conv1D or RC-LSTM returning sequences."
"Expected dimension: 3, but got: " + str(len(input_shape)))
split_shape = inputs.shape[-1] // 2
new_shape = [input_shape[1], split_shape]
fwd_in = Lambda(lambda x: x[:, :, :split_shape], output_shape=new_shape,
name="split_pooling_fwd_input_{n}".format(n=self._current_pool+1))
rc_in = Lambda(lambda x: K.reverse(x[:, :, split_shape:], axes=(1, 2)), output_shape=new_shape,
name="split_pooling_rc_input_{n}".format(n=self._current_pool+1))
inputs_fwd = fwd_in(inputs)
inputs_rc = rc_in(inputs)
x_fwd = pooling_layer(inputs_fwd)
x_rc = pooling_layer(inputs_rc)
rc_out = Lambda(lambda x: K.reverse(x, axes=(1, 2)), output_shape=x_rc.shape,
name="split_pooling_rc_output_{n}".format(n=self._current_pool+1))
x_rc = rc_out(x_rc)
out = concatenate([x_fwd, x_rc], axis=-1)
return out
def _build_simple_model(self):
"""Build the standard network"""
print("Building model...")
# Number of added recurrent layers
self._current_recurrent = 0
# Initialize input
inputs = Input(shape=(self.config.seq_length, self.config.seq_dim))
if self.config.mask_zeros:
x = Masking()(inputs)
else:
x = inputs
# The last recurrent layer should return the output for the last unit only.
# Previous layers must return output for all units
return_sequences = True if self.config.n_recurrent > 1 else False
# Input dropout
if not np.isclose(self.config.input_dropout, 0.0):
x = Dropout(self.config.input_dropout, seed=self.config.seed)(x, training=self.config.dropout_training_mode)
else:
x = inputs
# First convolutional/recurrent layer
if self.config.n_conv > 0:
# Convolutional layers will always be placed before recurrent ones
# Standard convolutional layer
x = Conv1D(filters=self.config.conv_units[0], kernel_size=self.config.conv_filter_size[0],
padding=self.config.padding,
kernel_initializer=self.config.initializers["conv"],
kernel_regularizer=self.config.regularizer,
strides=self.config.conv_stride[0])(x)
if self.config.conv_bn:
# Standard batch normalization layer
x = BatchNormalization()(x)
# Add activation
x = Activation(self.config.conv_activation)(x)
elif self.config.n_recurrent > 0:
# If no convolutional layers, the first layer is recurrent.
# CuDNNLSTM requires a GPU and tensorflow with cuDNN
x = self._add_lstm(x, return_sequences)
if self.config.recurrent_bn and return_sequences:
# Standard batch normalization layer
x = BatchNormalization()(x)
# Add dropout
x = Dropout(self.config.recurrent_dropout, seed=self.config.seed)(x,
training=self.config.dropout_training_mode)
# First recurrent layer already added
self._current_recurrent = 1
else:
raise ValueError('First layer should be convolutional or recurrent')
if self.config.skip_size > 0:
start = x
else:
start = None
# For next convolutional layers
for i in range(1, self.config.n_conv):
# Add pooling first
if self.config.conv_pooling == 'max':
x = MaxPooling1D()(x)
elif self.config.conv_pooling == 'average':
x = AveragePooling1D()(x)
elif not (self.config.conv_pooling in ['last_max', 'last_average', 'none']):
# Skip pooling if it should be applied to the last conv layer or skipped altogether.
# Throw a ValueError if the pooling method is unrecognized.
raise ValueError('Unknown pooling method')
# Add dropout (drops whole features)
if not np.isclose(self.config.conv_dropout, 0.0):
x = Dropout(self.config.conv_dropout, seed=self.config.seed)(x,
training=self.config.dropout_training_mode)
# Add layer
# Standard convolutional layer
x = Conv1D(filters=self.config.conv_units[i], kernel_size=self.config.conv_filter_size[i],
padding=self.config.padding,
kernel_initializer=self.config.initializers["conv"],
kernel_regularizer=self.config.regularizer,
strides=self.config.conv_stride[i])(x)
# Pre-activation skip connections https://arxiv.org/pdf/1603.05027v2.pdf
if self.config.skip_size > 0:
if i % self.config.skip_size == 0:
end = x
x = self._add_skip(start, end)
start = x
# Add batch norm
if self.config.conv_bn:
# Standard batch normalization layer
x = BatchNormalization()(x)
# Add activation
x = Activation(self.config.conv_activation)(x)
# Pooling layer
if self.config.n_conv > 0:
if self.config.conv_pooling == 'max' or self.config.conv_pooling == 'last_max':
if self.config.n_recurrent == 0:
# If no recurrent layers, use global pooling
x = GlobalMaxPooling1D()(x)
else:
# for recurrent layers, use normal pooling
x = MaxPooling1D()(x)
elif self.config.conv_pooling == 'average' or self.config.conv_pooling == 'last_average':
if self.config.n_recurrent == 0:
# if no recurrent layers, use global pooling
x = GlobalAveragePooling1D()(x)
else:
# for recurrent layers, use normal pooling
x = AveragePooling1D()(x)
elif self.config.conv_pooling == 'none':
if self.config.n_recurrent == 0:
x = Flatten()(x)
else:
raise ValueError('No pooling ("none") is not compatible with following LSTM layers.')
else:
# Skip pooling if needed or throw a ValueError if the pooling method is unrecognized
# (should be thrown above)
raise ValueError('Unknown pooling method')
# Add dropout (drops whole features)
if not np.isclose(self.config.conv_dropout, 0.0):
x = Dropout(self.config.conv_dropout, seed=self.config.seed)(x,
training=self.config.dropout_training_mode)
# Recurrent layers
for i in range(self._current_recurrent, self.config.n_recurrent):
if i == self.config.n_recurrent - 1:
# In the last layer, return output only for the last unit
return_sequences = False
# Add a bidirectional recurrent layer. CuDNNLSTM requires a GPU and tensorflow with cuDNN
x = self._add_lstm(inputs, return_sequences)
if self.config.recurrent_bn and return_sequences:
# Standard batch normalization layer
x = BatchNormalization()(x)
# Add dropout
x = Dropout(self.config.recurrent_dropout, seed=self.config.seed)(x,
training=self.config.dropout_training_mode)
# Dense layers
for i in range(0, self.config.n_dense):
x = Dense(self.config.dense_units[i],
kernel_initializer=self.config.initializers["dense"],
kernel_regularizer=self.config.regularizer)(x)
if self.config.dense_bn:
# Standard batch normalization layer
x = BatchNormalization()(x)
x = Activation(self.config.dense_activation)(x)
x = Dropout(self.config.dense_dropout, seed=self.config.seed)(x,
training=self.config.dropout_training_mode)
# Output layer for binary classification
x = Dense(1,
kernel_initializer=self.config.initializers["out"],
kernel_regularizer=self.config.regularizer, bias_initializer=self.config.output_bias)(x)
x = Activation('sigmoid')(x)
# Initialize the model
self.model = Model(inputs, x)
def _build_rc_model(self):
"""Build the RC network"""
print("Building RC-model...")
# Number of added recurrent layers
self._current_recurrent = 0
self._current_conv = 0
self._current_bn = 0
self._current_pool = 0
# Initialize input
inputs = Input(shape=(self.config.seq_length, self.config.seq_dim))
if self.config.mask_zeros:
x = Masking()(inputs)
else:
x = inputs
# The last recurrent layer should return the output for the last unit only.
# Previous layers must return output for all units
return_sequences = True if self.config.n_recurrent > 1 else False
# Input dropout
if not | np.isclose(self.config.input_dropout, 0.0) | numpy.isclose |
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Apr. 1 2019
NCA-18650 cell
@author: shpark
Parameters from NCA-18650
Reference:
Park et al., "Optimal Experimental Design for Parameterization of an Electrochemical Lithium-ion Battery Model"
Journal of The Electrochemical Society, 165(7), 2018
"""
import numpy as np
p={}
#==============================================================================
# Geometric params
#==============================================================================
# Thickness of each layer
p['L_n'] = 79.0e-6 # Thickness of negative electrode [m]
p['L_s'] = 80.0e-6 # Thickness of separator [m]
p['L_p'] = 61.5e-6 # Thickness of positive electrode [m]
L_ccn = 25e-6; # Thickness of negative current collector [m]
L_ccp = 25e-6; # Thickness of negative current collector [m]
# Particle Radii
p['R_s_n'] = 2.0249e-05 # Radius of solid particles in negative electrode [m]
p['R_s_p'] = 1.6973e-05 # Radius of solid particles in positive electrode [m]
# Volume fractions
p['epsilon_s_n'] = 0.543889597565723 # Volume fraction in solid for neg. electrode
p['epsilon_s_p'] = 0.666364981170368 # Volume fraction in solid for pos. electrode
p['epsilon_e_n'] = 0.347495486967184 # Volume fraction in electrolyte for neg. electrode
p['epsilon_e_s'] = 0.5 # Volume fraction in electrolyte for separator
p['epsilon_e_p'] = 0.330000000000000 # Volume fraction in electrolyte for pos. electrode
p['epsilon_f_n'] = 1 - p['epsilon_s_n'] - p['epsilon_e_n'] # Volume fraction of filler in neg. electrode
p['epsilon_f_p'] = 1 - p['epsilon_s_p'] - p['epsilon_e_p'] # Volume fraction of filler in pos. electrode
# Specific interfacial surface area
p['a_s_n'] = 3*p['epsilon_s_n'] / p['R_s_n'] # Negative electrode [m^2/m^3]
p['a_s_p'] = 3*p['epsilon_s_p'] / p['R_s_p'] # Positive electrode [m^2/m^3]
#==============================================================================
# Transport params
#==============================================================================
p['D_s_n0'] = 2.63029669224544e-14 # Diffusion coeff for solid in neg. electrode, [m^2/s]
p['D_s_p0'] = 6.81035680483463e-14 # Diffusion coeff for solid in pos. electrode, [m^2/s]
# Conductivity of solid
p['sig_n'] = 100 # Conductivity of solid in neg. electrode, [1/Ohms*m]
p['sig_p'] = 100 # Conductivity of solid in pos. electrode, [1/Ohms*m]
#==============================================================================
# Kinetic params
#==============================================================================
p['R_f_n'] = 0 # Resistivity of SEI layer, [Ohms*m^2]
p['R_f_p'] = 0 # Resistivity of SEI layer, [Ohms*m^2]
#p.R_c = 2.5e-03;%5.1874e-05/p.Area; % Contact Resistance/Current Collector Resistance, [Ohms-m^2]
# Nominal Reaction rates
p['k_n0'] = 7.50e-03 # Reaction rate in neg. electrode, [(A/m^2)*(mol^3/mol)^(1+alpha)]
p['k_p0'] = 2.30e-03 # Reaction rate in pos. electrode, [(A/m^2)*(mol^3/mol)^(1+alpha)]
#==============================================================================
# Thermodynamic params
#==============================================================================
# Thermal dynamics
p['C_p'] = 2000 # Heat capacity, [J/kg-K]
p['R_th'] = 2 # Thermal resistance, [K/W]
p['mth'] = 0.834 # Mass of cell [Kg]
# Activation Energies
# Taken from Zhang et al (2014) [Harbin]
# http://dx.doi.org/10.1016/j.jpowsour.2014.07.110
# All units are [J/mol]
p['E_kn'] = 37.48e+3
p['E_kp'] = 39.57e+3
p['E_Dsn'] = 42.77e+3
p['E_Dsp'] = 18.55e+3
p['E_De'] = 37.04e+3
p['E_kappa_e'] = 34.70e+3
# Ambient Temperature
p['T_amb'] = 298.15 # [K]
p['T_ref'] = 298.15 # [K] for ElectrolyteACT
#==============================================================================
# Miscellaneous
#==============================================================================
p['R'] = 8.314472; # Gas constant, [J/mol-K]
p['Faraday'] = 96485.3329 # Faraday constant [Coulombs/mol]
p['Area'] = 1.425 # Electrode current collector area [m^2]
p['alph'] = 0.5 # Charge transfer coefficients
p['t_plus'] = 0.45 # Transference number
p['brug'] = 1.8 # Bruggeman porosity
#==============================================================================
# Concentrations
#==============================================================================
p['c_s_n_max'] = 3.71e+04 # Max concentration in anode, [mol/m^3]
p['c_s_p_max'] = 5.10e+04 # Max concentration in cathode, [mol/m^3]
p['n_Li_s'] = 0.1406 # Total moles of lithium in solid phase [mol]
p['c_e0'] = 1.0e3 # Electrolyte concentration [mol/m^3]
#==============================================================================
# Discretization params
#==============================================================================
p['PadeOrder'] = 3
p['Nr'] = 20
p['delta_r_n'] = 1/float(p['Nr'])
p['delta_r_p'] = 1/float(p['Nr'])
p['Nxn'] = 10;
p['Nxs'] = 5;
p['Nxp'] = 10;
p['Nx'] = p['Nxn']+p['Nxs']+p['Nxp']
p['delta_x_n'] = 1 / float(p['Nxn'])
p['delta_x_s'] = 1 / float(p['Nxs'])
p['delta_x_p'] = 1 / float(p['Nxp'])
def refPotentialAnode_casadi(theta):
c_n=np.array([-0.084294960339275,
0.920754744005144,
-0.500066623566425,
0.062731837918546,
0.782151587417570,
-0.373761901864611,
0.019988184317997,
0.543282314780430,
-0.295609630222051,
0.040970248093866,
0.231152288743602,
-0.217847875913234,
0.068744203951316,
0.353848415118256,
-0.114753994434564,
-0.028613032233089,
0.260671608316041,
-0.212058177468640,
-0.025506157489854,
0.211741908826122,
-0.241880220004548,
0.188872027034948,
0.867520021192469,
-0.225038983698359,
-0.111904175370177,
0.537399173641857,
-0.020780743382893,
0.108353745941168,
0.537735904911254,
-0.020226723056513,
0.171375773597772,
0.729717193288193,
-0.323902793428930,
0.064143152162965,
1.289849595601526,
0.704961322280748,
0.023028206444624,
0.481699223765299,
-0.076233450161839,
-0.182559256738691,
0.830851470359638,
-0.226362977193547,
-0.040952011143767,
1.626936110900125,
0.295695270567609,
-1.000228763094078,
0.007914258576845,
-0.016476666187381,
-0.341740372496750,
0.001274961492701,
-0.004879090290810,
-0.930906698538900,
0.001549868904555,
-0.010583717929547,
2.554274538083029,
-0.012402969675540,
-0.029257893810540,
-0.512533408582419,
0.066122834568301,
-0.077930639597751,
-0.499673574757569,
0.044470609922510,
-0.134483437256594,
1.904111886758372,
-0.035336812622768,
-0.306171040837701,
-1.122974595772499,
0.028740372472439,
-0.079271479637875,
-0.093855421675871,
0.930843806570863,
-0.516652668839875,
-0.846383609865041,
0.012151749801329,
-0.029511731110250,
-0.561782895480513,
0.098392530745244,
-0.109853910868333,
-0.818206413176353,
0.026850808833446,
-0.051805538572186,
-0.525543070925015,
0.188590232596615,
-0.192054642003214,
-0.046580230674248,
0.002863828671823,
-0.000914487593373,
2.650656293235332,
-0.008182255230700,
-0.117937922743741,
-0.295664205008775,
0.137690106957231,
-0.310460986123659,
-0.835065551163236,
0.711574616090746,
-0.997353098073145,
0.415746756470558,
0.423984781966332,
3.189835673119072,
0.413779708001205,
0.426343693564050,
3.190867502582611])
Uref=c_n[0]*np.exp(-((theta - c_n[1])**2/c_n[2]**2))+ \
c_n[3]*np.exp(-((theta - c_n[4])**2/c_n[5]**2))+ \
c_n[6]*np.exp(-((theta - c_n[7])**2/c_n[8]**2))+ \
c_n[9]*np.exp(-((theta - c_n[10])**2/c_n[11]**2))+ \
c_n[12]*np.exp(-((theta - c_n[13])**2/c_n[14]**2))+ \
c_n[15]*np.exp(-((theta - c_n[16])**2/c_n[17]**2))+ \
c_n[18]*np.exp(-((theta - c_n[19])**2/c_n[20]**2))+ \
c_n[21]*np.exp(-((theta - c_n[22])**2/c_n[23]**2))+ \
c_n[24]*np.exp(-((theta - c_n[25])**2/c_n[26]**2))+ \
c_n[27]*np.exp(-((theta - c_n[28])**2/c_n[29]**2))+ \
c_n[30]*np.exp(-((theta - c_n[31])**2/c_n[32]**2))+ \
c_n[33]*np.exp(-((theta - c_n[34])**2/c_n[35]**2))+ \
c_n[36]*np.exp(-((theta - c_n[37])**2/c_n[38]**2))+ \
c_n[39]*np.exp(-((theta - c_n[40])**2/c_n[41]**2))+ \
c_n[42]*np.exp(-((theta - c_n[43])**2/c_n[44]**2))+ \
c_n[45]*np.exp(-((theta - c_n[46])**2/c_n[47]**2))+ \
c_n[48]*np.exp(-((theta - c_n[49])**2/c_n[50]**2))+ \
c_n[51]*np.exp(-((theta - c_n[52])**2/c_n[53]**2))+ \
c_n[54]*np.exp(-((theta - c_n[55])**2/c_n[56]**2))+ \
c_n[57]*np.exp(-((theta - c_n[58])**2/c_n[59]**2))+ \
c_n[60]*np.exp(-((theta - c_n[61])**2/c_n[62]**2))+ \
c_n[63]*np.exp(-((theta - c_n[64])**2/c_n[65]**2))+ \
c_n[66]*np.exp(-((theta - c_n[67])**2/c_n[68]**2))+ \
c_n[69]*np.exp(-((theta - c_n[70])**2/c_n[71]**2))+ \
c_n[72]*np.exp(-((theta - c_n[73])**2/c_n[74]**2))+ \
c_n[75]*np.exp(-((theta - c_n[76])**2/c_n[77]**2))+ \
c_n[78]* | np.exp(-((theta - c_n[79])**2/c_n[80]**2)) | numpy.exp |
import os
import unittest
from unittest import mock
from unittest.mock import MagicMock
import numpy as np
import pandas as pd
import redback
dirname = os.path.dirname(__file__)
class TestTransient(unittest.TestCase):
def setUp(self) -> None:
self.time = np.array([1, 2, 3])
self.time_err = np.array([0.2, 0.3, 0.4])
self.y = np.array([3, 4, 2])
self.y_err = np.sqrt(self.y)
self.redshift = 0.75
self.data_mode = 'counts'
self.name = "GRB123456"
self.photon_index = 2
self.use_phase_model = False
self.transient = redback.transient.transient.Transient(
time=self.time, time_err=self.time_err, counts=self.y,
redshift=self.redshift, data_mode=self.data_mode, name=self.name,
photon_index=self.photon_index, use_phase_model=self.use_phase_model)
def tearDown(self) -> None:
del self.time
del self.time_err
del self.y
del self.y_err
del self.redshift
del self.data_mode
del self.name
del self.photon_index
del self.use_phase_model
del self.transient
def test_ttes_data_mode_setting(self):
bin_ttes = MagicMock(return_value=(self.time, self.y))
ttes = np.arange(0, 1, 1000)
self.data_mode = 'ttes'
self.bin_size = 0.1
self.transient = redback.transient.transient.Transient(
ttes=ttes, redshift=self.redshift, data_mode=self.data_mode, name=self.name,
photon_index=self.photon_index, bin_ttes=bin_ttes)
bin_ttes.assert_called_once()
def test_data_mode_switches(self):
self.assertTrue(self.transient.counts_data)
self.assertFalse(self.transient.luminosity_data)
self.assertFalse(self.transient.flux_data)
self.assertFalse(self.transient.flux_density_data)
self.assertFalse(self.transient.magnitude_data)
self.assertFalse(self.transient.tte_data)
def test_set_data_mode_switch(self):
self.transient.flux_data = True
self.assertTrue(self.transient.flux_data)
self.assertFalse(self.transient.counts_data)
def test_get_time_via_x(self):
self.assertTrue(np.array_equal(self.time, self.transient.x))
self.assertTrue(np.array_equal(self.time_err, self.transient.x_err))
def test_get_time_via_x_luminosity_data(self):
new_times = np.array([1, 2, 3])
new_time_errs = np.array([0.1, 0.2, 0.3])
self.transient.time_rest_frame = new_times
self.transient.time_rest_frame_err = new_time_errs
self.transient.data_mode = "luminosity"
self.assertTrue(np.array_equal(new_times, self.transient.x))
self.assertTrue(np.array_equal(new_time_errs, self.transient.x_err))
def test_x_same_as_time(self):
self.assertTrue(np.array_equal(self.transient.x, self.transient.time))
def test_xerr_same_as_time_err(self):
self.assertTrue(np.array_equal(self.transient.x_err, self.transient.time_err))
def test_set_use_phase_model(self):
self.assertFalse(self.transient.use_phase_model)
def test_xlabel(self):
self.assertEqual(r"Time since burst [days]", self.transient.xlabel)
self.transient.use_phase_model = True
self.assertEqual(r"Time [MJD]", self.transient.xlabel)
def test_ylabel(self):
self.assertEqual(r'Counts', self.transient.ylabel)
self.transient.luminosity_data = True
self.assertEqual(r'Luminosity [$10^{50}$ erg s$^{-1}$]', self.transient.ylabel)
self.transient.magnitude_data = True
self.assertEqual(r'Magnitude', self.transient.ylabel)
self.transient.flux_data = True
self.assertEqual(r'Flux [erg cm$^{-2}$ s$^{-1}$]', self.transient.ylabel)
self.transient.flux_density_data = True
self.assertEqual(r'Flux density [mJy]', self.transient.ylabel)
self.transient.flux_density_data = False
with self.assertRaises(ValueError):
_ = self.transient.ylabel
def test_use_phase_model_time_attribute(self):
self.transient = redback.transient.transient.Transient(
time_mjd=self.time, time_mjd_err=self.time_err, counts=self.y, redshift=self.redshift,
data_mode=self.data_mode, name=self.name, photon_index=self.photon_index,
use_phase_model=True)
self.assertTrue(np.array_equal(self.transient.time_mjd, self.transient.x))
self.assertTrue(np.array_equal(self.transient.time_mjd_err, self.transient.x_err))
def test_set_x(self):
new_x = np.array([2, 3, 4])
self.transient.x = new_x
self.assertTrue(np.array_equal(new_x, self.transient.x))
self.assertTrue(np.array_equal(new_x, self.transient.time))
def test_set_x_err(self):
new_x_err = np.array([3, 4, 5])
self.transient.x_err = new_x_err
self.assertTrue(np.array_equal(new_x_err, self.transient.x_err))
self.assertTrue(np.array_equal(new_x_err, self.transient.time_err))
def test_set_y(self):
new_y = np.array([7, 8, 9])
self.transient.y = new_y
self.assertTrue(np.array_equal(new_y, self.transient.y))
self.assertTrue(np.array_equal(new_y, self.transient.counts))
def test_set_y_err(self):
new_y_err = np.array([7, 8, 9])
self.transient.y_err = new_y_err
self.assertTrue(np.array_equal(new_y_err, self.transient.y_err))
self.assertTrue(np.array_equal(new_y_err, self.transient.counts_err))
def test_y_same_as_counts(self):
self.assertTrue(np.array_equal(self.transient.y, self.transient.counts))
def test_yerr_same_as_counts(self):
self.assertTrue(np.array_equal(self.transient.y_err, self.transient.counts_err))
def test_redshift(self):
self.assertEqual(self.redshift, self.transient.redshift)
def test_get_data_mode(self):
self.assertEqual(self.data_mode, self.transient.data_mode)
def test_set_data_mode(self):
new_data_mode = "luminosity"
self.transient.data_mode = new_data_mode
self.assertEqual(new_data_mode, self.transient.data_mode)
def test_set_illegal_data_mode(self):
with self.assertRaises(ValueError):
self.transient.data_mode = "abc"
def test_plot_lightcurve(self):
pass
# self.transient.plot_lightcurve(model=None)
def test_plot_data(self):
pass
# self.transient.plot_data()
class TestOpticalTransient(unittest.TestCase):
def setUp(self) -> None:
self.time = np.array([1, 2, 3])
self.time_err = np.array([0.2, 0.3, 0.4])
self.y = np.array([3, 4, 2])
self.y_err = np.sqrt(self.y)
self.redshift = 0.75
self.data_mode = 'flux_density'
self.name = "SN2000A"
self.photon_index = 2
self.use_phase_model = False
self.bands = np.array(['i', 'g', 'g'])
self.active_bands = np.array(['g'])
self.transient = redback.transient.transient.OpticalTransient(
time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err,
redshift=self.redshift, data_mode=self.data_mode, name=self.name,
photon_index=self.photon_index, use_phase_model=self.use_phase_model, bands=self.bands,
active_bands=self.active_bands)
def tearDown(self) -> None:
del self.time
del self.time_err
del self.y
del self.y_err
del self.redshift
del self.data_mode
del self.name
del self.photon_index
del self.use_phase_model
del self.bands
del self.active_bands
del self.transient
def test_load_data_magnitude(self):
name = "optical_transient_test_data"
transient_dir = f"{dirname}/data"
processed_file_path = f"{transient_dir}/{name}.csv"
data_mode = "magnitude"
time_days, time_mjd, magnitude, magnitude_err, bands, system = \
self.transient.load_data(processed_file_path=processed_file_path, data_mode=data_mode)
expected_time_days = np.array([0.4813999999969383, 0.49020000000018626])
expected_time_mjd = np.array([57982.9814, 57982.9902])
expected_magnitude = np.array([17.48, 18.26])
expected_magnitude_err = np.array([0.02, 0.15])
expected_bands = np.array(["i", "H"])
expected_system = np.array(["AB", "AB"])
self.assertTrue(np.allclose(expected_time_days, time_days))
self.assertTrue(np.allclose(expected_time_mjd, time_mjd))
self.assertTrue(np.allclose(expected_magnitude, magnitude))
self.assertTrue(np.allclose(expected_magnitude_err, magnitude_err))
self.assertTrue(np.array_equal(expected_bands, bands))
self.assertTrue(np.array_equal(expected_system, system))
def test_load_data_flux_density(self):
name = "optical_transient_test_data"
transient_dir = f"{dirname}/data"
data_mode = "flux_density"
processed_file_path = f"{transient_dir}/{name}.csv"
time_days, time_mjd, flux_density, flux_density_err, bands, system = \
self.transient.load_data(processed_file_path=processed_file_path, data_mode=data_mode)
expected_time_days = np.array([0.4813999999969383, 0.49020000000018626])
expected_time_mjd = np.array([57982.9814, 57982.9902])
expected_flux_density = np.array([0.36982817978026444, 0.1803017740859559])
expected_flux_density_err = np.array([0.006812898591418732, 0.024911116226263914])
expected_bands = np.array(["i", "H"])
expected_system = np.array(["AB", "AB"])
self.assertTrue(np.allclose(expected_time_days, time_days))
self.assertTrue(np.allclose(expected_time_mjd, time_mjd))
self.assertTrue(np.allclose(expected_flux_density, flux_density))
self.assertTrue(np.allclose(expected_flux_density_err, flux_density_err))
self.assertTrue(np.array_equal(expected_bands, bands))
self.assertTrue(np.array_equal(expected_system, system))
def test_load_data_all(self):
name = "optical_transient_test_data"
transient_dir = f"{dirname}/data"
processed_file_path = f"{transient_dir}/{name}.csv"
data_mode = "all"
time_days, time_mjd, flux_density, flux_density_err, magnitude, magnitude_err, bands, system = \
self.transient.load_data(processed_file_path=processed_file_path, data_mode=data_mode)
expected_time_days = np.array([0.4813999999969383, 0.49020000000018626])
expected_time_mjd = np.array([57982.9814, 57982.9902])
expected_flux_density = np.array([0.36982817978026444, 0.1803017740859559])
expected_flux_density_err = np.array([0.006812898591418732, 0.024911116226263914])
expected_magnitude = np.array([17.48, 18.26])
expected_magnitude_err = np.array([0.02, 0.15])
expected_bands = np.array(["i", "H"])
expected_system = np.array(["AB", "AB"])
self.assertTrue(np.allclose(expected_time_days, time_days))
self.assertTrue(np.allclose(expected_time_mjd, time_mjd))
self.assertTrue(np.allclose(expected_flux_density, flux_density))
self.assertTrue(np.allclose(expected_flux_density_err, flux_density_err))
self.assertTrue(np.allclose(expected_magnitude, magnitude))
self.assertTrue(np.allclose(expected_magnitude_err, magnitude_err))
self.assertTrue(np.array_equal(expected_bands, bands))
self.assertTrue(np.array_equal(expected_system, system))
def test_get_from_open_access_catalogue(self):
with mock.patch("redback.transient.transient.OpticalTransient.load_data") as m:
expected_time_days = np.array([0.4813999999969383, 0.49020000000018626])
expected_time_mjd = np.array([57982.9814, 57982.9902])
expected_flux_density = np.array([0.36982817978026444, 0.1803017740859559])
expected_flux_density_err = np.array([0.006812898591418732, 0.024911116226263914])
expected_magnitude = np.array([17.48, 18.26])
expected_magnitude_err = np.array([0.02, 0.15])
expected_bands = np.array(["i", "H"])
expected_system = np.array(["AB", "AB"])
m.return_value = \
expected_time_days, expected_time_mjd, expected_flux_density, expected_flux_density_err, \
expected_magnitude, expected_magnitude_err, expected_bands, expected_system
name = "test"
transient = redback.transient.transient.OpticalTransient.from_open_access_catalogue(name=name)
self.assertTrue(transient.magnitude_data)
self.assertEqual(name, transient.name)
self.assertTrue(np.allclose(expected_time_days, transient.time))
self.assertTrue(np.allclose(expected_time_mjd, transient.time_mjd))
self.assertTrue(np.allclose(expected_flux_density, transient.flux_density))
self.assertTrue(np.allclose(expected_flux_density_err, transient.flux_density_err))
self.assertTrue(np.allclose(expected_magnitude, transient.magnitude))
self.assertTrue(np.allclose(expected_magnitude_err, transient.magnitude_err))
self.assertTrue(np.array_equal(expected_bands, transient.bands))
self.assertTrue(np.array_equal(expected_system, transient.system))
def test_set_active_bands(self):
self.assertTrue(np.array_equal(np.array(self.active_bands), self.transient.active_bands))
def test_set_active_bands_all(self):
self.transient = redback.transient.transient.OpticalTransient(
time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err,
redshift=self.redshift, data_mode=self.data_mode, name=self.name,
photon_index=self.photon_index, use_phase_model=self.use_phase_model, bands=self.bands,
active_bands='all')
self.assertTrue(np.array_equal(np.array(['g', 'i']), self.transient.active_bands))
def test_set_frequencies_from_bands(self):
expected = [1, 2, 2]
bands_to_frequency = MagicMock(return_value=expected)
self.transient = redback.transient.transient.OpticalTransient(
time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err,
redshift=self.redshift, data_mode=self.data_mode, name=self.name,
photon_index=self.photon_index, use_phase_model=self.use_phase_model, bands=self.bands,
active_bands=self.active_bands, bands_to_frequency=bands_to_frequency)
self.assertTrue(np.array_equal(expected, self.transient.frequency))
bands_to_frequency.assert_called_once()
def test_set_frequencies_default(self):
frequency = np.array([1, 2, 2])
self.transient = redback.transient.transient.OpticalTransient(
time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err,
redshift=self.redshift, data_mode=self.data_mode, name=self.name,
photon_index=self.photon_index, use_phase_model=self.use_phase_model, bands=self.bands,
frequency=frequency, active_bands=self.active_bands)
self.assertTrue(np.array_equal(frequency, self.transient.frequency))
def test_get_filtered_data(self):
filtered_x, filtered_x_err, filtered_y, filtered_y_err = self.transient.get_filtered_data()
expected_x = self.time[1:]
expected_x_err = self.time_err[1:]
expected_y = self.y[1:]
expected_y_err = self.y_err[1:]
self.assertTrue(np.array_equal(expected_x, filtered_x))
self.assertTrue(np.array_equal(expected_x_err, filtered_x_err))
self.assertTrue(np.array_equal(expected_y, filtered_y))
self.assertTrue(np.array_equal(expected_y_err, filtered_y_err))
def test_get_filtered_data_no_x_err(self):
self.transient.x_err = None
_, filtered_x_err, _, _ = self.transient.get_filtered_data()
self.assertIsNone(filtered_x_err)
def test_get_filtered_data_illegal_data_mode(self):
with self.assertRaises(ValueError):
self.transient.luminosity_data = True
self.transient.get_filtered_data()
def test_meta_data_not_available(self):
self.assertIsNone(self.transient.meta_data)
@mock.patch("pandas.read_csv")
def test_meta_data_from_csv(self, read_csv):
self.transient.directory_structure = redback.get_data.directory.DirectoryStructure(
directory_path='data', raw_file_path=None, processed_file_path=None)
expected = dict(a=1)
read_csv.return_value = expected
self.transient._set_data()
self.assertDictEqual(expected, self.transient.meta_data)
def test_transient_dir(self):
with mock.patch('redback.get_data.directory.open_access_directory_structure') as m:
expected = 'expected'
m.return_value = expected, '_', '_'
self.assertEqual(expected, self.transient.transient_dir)
def test_unique_bands(self):
expected = np.array(['g', 'i'])
self.assertTrue(np.array_equal(expected, self.transient.unique_bands))
def test_list_of_band_indices(self):
expected = [np.array([1, 2]), np.array([0])]
self.assertTrue(np.array_equal(expected[0], self.transient.list_of_band_indices[0]))
self.assertTrue(np.array_equal(expected[1], self.transient.list_of_band_indices[1]))
def test_default_colors(self):
expected = ["g", "r", "i", "z", "y", "J", "H", "K"]
self.assertListEqual(expected, self.transient.default_filters)
def test_get_colors(self):
with mock.patch('matplotlib.cm.rainbow') as m:
expected = 'rainbow'
m.return_value = expected
self.assertEqual(expected, self.transient.get_colors(filters=['a', 'b']))
class TestAfterglow(unittest.TestCase):
def setUp(self) -> None:
self.time = np.array([1, 2, 3])
self.time_err = np.array([0.2, 0.3, 0.4])
self.y = np.array([3, 4, 2])
self.y_err = np.sqrt(self.y)
self.data_mode = 'flux'
self.name = "GRB070809"
self.use_phase_model = False
self.bands = np.array(['i', 'g', 'g'])
self.active_bands = np.array(['g'])
self.FluxToLuminosityConverter = MagicMock()
self.Truncator = MagicMock()
self.sgrb = redback.transient.afterglow.SGRB(
time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err,
data_mode=self.data_mode, name=self.name,
use_phase_model=self.use_phase_model, bands=self.bands,
active_bands=self.active_bands, FluxToLuminosityConverter=self.FluxToLuminosityConverter,
Truncator=self.Truncator)
self.sgrb_luminosity = redback.transient.afterglow.SGRB(
time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err,
data_mode="luminosity", name=self.name,
use_phase_model=self.use_phase_model, bands=self.bands,
active_bands=self.active_bands, FluxToLuminosityConverter=self.FluxToLuminosityConverter,
Truncator=self.Truncator)
self.sgrb_flux_density = redback.transient.afterglow.SGRB(
time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err,
data_mode="flux_density", name=self.name,
use_phase_model=self.use_phase_model, bands=self.bands,
active_bands=self.active_bands, FluxToLuminosityConverter=self.FluxToLuminosityConverter,
Truncator=self.Truncator)
self.sgrb_not_existing = redback.transient.afterglow.SGRB(
time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err,
data_mode=self.data_mode, name="123456",
use_phase_model=self.use_phase_model, bands=self.bands,
active_bands=self.active_bands, FluxToLuminosityConverter=self.FluxToLuminosityConverter,
Truncator=self.Truncator)
self.sgrb_magnitude = redback.transient.afterglow.SGRB(
time=self.time, time_err=self.time_err, magnitude=self.y, magnitude_err=self.y_err,
data_mode="magnitude", name=self.name,
use_phase_model=self.use_phase_model, bands=self.bands,
active_bands=self.active_bands, FluxToLuminosityConverter=self.FluxToLuminosityConverter,
Truncator=self.Truncator)
self.sgrb_all_active_bands = redback.transient.afterglow.SGRB(
time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err,
data_mode=self.data_mode, name=self.name,
use_phase_model=self.use_phase_model, bands=self.bands,
active_bands='all', FluxToLuminosityConverter=self.FluxToLuminosityConverter, Truncator=self.Truncator)
def tearDown(self) -> None:
del self.time
del self.time_err
del self.y
del self.y_err
del self.data_mode
del self.name
del self.use_phase_model
del self.bands
del self.active_bands
del self.sgrb
del self.sgrb_not_existing
del self.sgrb_magnitude
del self.sgrb_all_active_bands
del self.FluxToLuminosityConverter
def test_stripped_name(self):
expected = "070809"
self.assertEqual(expected, self.sgrb._stripped_name)
def test_truncate(self):
expected_x = 0
expected_x_err = 1
expected_y = 2
expected_yerr = 3
return_value = expected_x, expected_x_err, expected_y, expected_yerr
truncator = MagicMock(return_value=MagicMock(truncate=MagicMock(return_value=return_value)))
self.sgrb.Truncator = truncator
self.sgrb.truncate()
self.assertListEqual(
[expected_x, expected_x_err, expected_y, expected_yerr],
[self.sgrb.x, self.sgrb.x_err, self.sgrb.y, self.sgrb.y_err])
def test_set_active_bands(self):
self.assertTrue(np.array_equal(np.array(self.active_bands), self.sgrb.active_bands))
def test_set_active_bands_all(self):
self.assertTrue(np.array_equal(np.array(['g', 'i']), self.sgrb_all_active_bands.active_bands))
def test_set_frequencies_from_bands(self):
expected = [1, 2, 2]
bands_to_frequency = MagicMock(return_value=expected)
self.sgrb = redback.transient.afterglow.SGRB(
time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err,
data_mode=self.data_mode, name=self.name,
use_phase_model=self.use_phase_model, bands=self.bands,
active_bands=self.active_bands, bands_to_frequency=bands_to_frequency)
self.assertTrue(np.array_equal(expected, self.sgrb.frequency))
bands_to_frequency.assert_called_once()
def test_set_frequencies_default(self):
frequency = np.array([1, 2, 2])
self.sgrb = redback.transient.afterglow.SGRB(
time=self.time, time_err=self.time_err, flux_density=self.y, flux_density_err=self.y_err,
data_mode=self.data_mode, name=self.name,
use_phase_model=self.use_phase_model, bands=self.bands,
frequency=frequency, active_bands=self.active_bands)
self.assertTrue(np.array_equal(frequency, self.sgrb.frequency))
def test_get_filtered_data(self):
filtered_x, filtered_x_err, filtered_y, filtered_y_err = self.sgrb_magnitude.get_filtered_data()
expected_x = self.time[1:]
expected_x_err = self.time_err[1:]
expected_y = self.y[1:]
expected_y_err = self.y_err[1:]
self.assertTrue(np.array_equal(expected_x, filtered_x))
self.assertTrue(np.array_equal(expected_x_err, filtered_x_err))
self.assertTrue(np.array_equal(expected_y, filtered_y))
self.assertTrue(np.array_equal(expected_y_err, filtered_y_err))
def test_get_filtered_data_no_x_err(self):
self.sgrb_magnitude.x_err = None
_, filtered_x_err, _, _ = self.sgrb_magnitude.get_filtered_data()
self.assertIsNone(filtered_x_err)
def test_get_filtered_data_illegal_data_mode(self):
with self.assertRaises(ValueError):
self.sgrb.get_filtered_data()
def test_event_table(self):
expected = "/tables/SGRB_table.txt"
self.assertIn(expected, self.sgrb.event_table)
def test_meta_data_from_csv(self):
with mock.patch("pandas.read_csv") as m:
field_name = 'BAT Photon Index (15-150 keV) (PL = simple power-law, CPL = cutoff power-law)'
data_frame = pd.DataFrame.from_dict({field_name: [0, 1, np.nan]})
m.return_value = data_frame
expected = np.array([0, 1, 0])
self.sgrb._set_data()
self.assertTrue(np.array_equal(expected, np.array(self.sgrb.meta_data[field_name])))
def test_photon_index(self):
self.assertEqual(1.69, self.sgrb.photon_index)
def test_photon_index_missing(self):
self.assertTrue( | np.isnan(self.sgrb_not_existing.photon_index) | numpy.isnan |
# ====== #
# Eval #
# ====== #
# Libraries
from datasets import ToyDatasetEval # (this needs to be imported before torch, because cv2 needs to be imported before torch for some reason)
from model import ToyNet
import torch
import torch.utils.data
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import pickle
import matplotlib as mpl
# matplotlib.use("Agg")
import matplotlib.pyplot as plt
import cv2
# Eval Params
batch_size = 32
M = 64
max_logvar = 2.0
# Load Evaluation Dataset
print("Loading evaluation dataset...")
val_dataset = ToyDatasetEval()
num_val_batches = int(len(val_dataset)/batch_size)
print("num_val_batches: {}\n".format(num_val_batches))
val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False)
# Load Trained Models
networks = []
print("Loading trained models...")
for i in range(M):
network = ToyNet("eval_Ensemble-Adam_1_M1024", project_dir="/workspace/evaluating_bdl/toyRegression").cuda()
network.load_state_dict(torch.load("/workspace/evaluating_bdl/toyRegression/training_logs/model_Ensemble-Adam_1_M1024_%d/checkpoints/model_Ensemble-Adam_1_M1024_epoch_150.pth" % i))
network.eval() # (set in evaluation mode, this affects BatchNorm and dropout)
networks.append(network)
M = float(len(networks))
print (M)
# History
x_values = []
final_mean_values = []
final_sigma_tot_values = [] # Total Uncertainty Values
final_sigma_epi_values = [] # Episdemic Uncertainty Values
final_sigma_alea_values = [] # Aleatoric Uncertainty Values
print("Evaluating models...")
for step, (x) in enumerate(val_loader):
# Convert to Cuda Tensor and add dimension, [batch_size] -> [batch_size, 1]
x = Variable(x).cuda().unsqueeze(1) # (shape: (batch_size, 1))
means = []
log_vars = []
for network in networks:
# Predict
outputs = network(x)
mean = outputs[0] # (shape: (batch_size, ))
log_var = outputs[1] # (shape: (batch_size, )) (log(sigma^2))
log_var = max_logvar - F.relu(max_logvar - log_var)
means.append(mean)
log_vars.append(log_var)
for i in range(x.size(0)):
x_value = x[i].data.cpu().numpy()[0]
# Retrieve mean, var values from the GPU tensors
mean_values = []
for mean in means:
mean_value = mean[i].data.cpu().numpy()[0]
mean_values.append(mean_value)
sigma_alea_values = []
for log_var in log_vars:
sigma_alea_value = torch.exp(log_var[i]).data.cpu().numpy()[0]
sigma_alea_values.append(sigma_alea_value)
# Average Mean, Aleatoric and Epistemic Uncertainties values.
# Please refer to Appendix A - Approximating a mixture of Gaussian distributions
# The variables in each one of the following for's will be iterated M times.
mean_value = 0.0
for value in mean_values:
mean_value += value/M # Average of All the Predicted Mean(x), hat{mu}(x)
sigma_epi_value = 0.0
for value in mean_values:
sigma_epi_value += ((value - mean_value)**2)/M
sigma_alea_value = 0.0
for value in sigma_alea_values:
sigma_alea_value += value/M
sigma_tot_value = sigma_epi_value + sigma_alea_value
# print(sigma_tot_value)
x_values.append(x_value) # (1000, )
final_mean_values.append(mean_value) # (1000, )
final_sigma_epi_values.append(sigma_epi_value) # (1000, )
final_sigma_alea_values.append(sigma_alea_value) # (1000, )
final_sigma_tot_values.append(sigma_tot_value) # (1000, )
# ============================== #
# Predictive Uncertainty Plots #
# ============================== #
print("Preparing Plots...")
plt.figure(1)
plt.plot(x_values, final_mean_values, "r", label=r"Predicted: $\hat{\mu}(x)$")
plt.fill_between(x_values, | np.array(final_mean_values) | numpy.array |
import numpy as np
import pandas as pd
import pytest
from scipy import stats
from locan import LocData
from locan.analysis import BlinkStatistics
from locan.analysis.blinking import _blink_statistics, _DistributionFits
def test__blink_statistics_0():
# frame with on and off periods up to three frames and starting with one-frame on-period.
frames = np.array([0, 4, 6, 7, 8, 12, 13])
results = _blink_statistics(frames, memory=0, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [1, 1, 3, 2])
assert np.array_equal(results["off_periods"], [3, 1, 3])
assert np.array_equal(results["on_periods_frame"], [0, 4, 6, 12])
assert np.array_equal(results["off_periods_frame"], [1, 5, 9])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0], [1], [2, 3, 4], [5, 6]]
)
]
)
results = _blink_statistics(frames, memory=1, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [1, 5, 2])
assert np.array_equal(results["off_periods"], [3, 3])
assert np.array_equal(results["on_periods_frame"], [0, 4, 12])
assert np.array_equal(results["off_periods_frame"], [1, 9])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0], [1, 2, 3, 4], [5, 6]]
)
]
)
results = _blink_statistics(frames, memory=10, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [14])
assert np.array_equal(results["off_periods"], [])
assert np.array_equal(results["on_periods_frame"], [0])
assert np.array_equal(results["off_periods_frame"], [])
assert all(
[
np.array_equal(one, two)
for one, two in zip(results["on_periods_indices"], [[0, 1, 2, 3, 4, 5, 6]])
]
)
def test__blink_statistics_1():
# frame with on and off periods up to three frames and starting with two-frame on-period.
frames = np.array([0, 1, 3, 6, 7, 8, 12, 13])
results = _blink_statistics(frames, memory=0, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [2, 1, 3, 2])
assert np.array_equal(results["off_periods"], [1, 2, 3])
assert np.array_equal(results["on_periods_frame"], [0, 3, 6, 12])
assert np.array_equal(results["off_periods_frame"], [2, 4, 9])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1], [2], [3, 4, 5], [6, 7]]
)
]
)
results = _blink_statistics(frames, memory=1, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [4, 3, 2])
assert np.array_equal(results["off_periods"], [2, 3])
assert np.array_equal(results["on_periods_frame"], [0, 6, 12])
assert np.array_equal(results["off_periods_frame"], [4, 9])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1, 2], [3, 4, 5], [6, 7]]
)
]
)
results = _blink_statistics(frames, memory=10, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [14])
assert np.array_equal(results["off_periods"], [])
assert np.array_equal(results["on_periods_frame"], [0])
assert np.array_equal(results["off_periods_frame"], [])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1, 2, 3, 4, 5, 6, 7]]
)
]
)
def test__blink_statistics_2():
# frame with on and off periods up to three frames and starting with two-frame on-period.
frames = np.array([0, 1, 3, 6, 7, 8, 12, 13]) + 1
results = _blink_statistics(frames, memory=0, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [2, 1, 3, 2])
assert np.array_equal(results["off_periods"], [1, 1, 2, 3])
assert np.array_equal(results["on_periods_frame"], [1, 4, 7, 13])
assert np.array_equal(results["off_periods_frame"], [0, 3, 5, 10])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1], [2], [3, 4, 5], [6, 7]]
)
]
)
results = _blink_statistics(frames, memory=1, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [5, 3, 2])
assert np.array_equal(results["off_periods"], [2, 3])
assert np.array_equal(results["on_periods_frame"], [0, 7, 13])
assert np.array_equal(results["off_periods_frame"], [5, 10])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1, 2], [3, 4, 5], [6, 7]]
)
]
)
results = _blink_statistics(frames, memory=10, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [15])
assert np.array_equal(results["off_periods"], [])
assert np.array_equal(results["on_periods_frame"], [0])
assert np.array_equal(results["off_periods_frame"], [])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1, 2, 3, 4, 5, 6, 7]]
)
]
)
def test__blink_statistics_3():
# frame with on and off periods up to three frames and starting with off-period.
frames = np.array([0, 1, 4, 6, 7, 8, 12, 13]) + 4
results = _blink_statistics(frames, memory=0, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [2, 1, 3, 2])
assert np.array_equal(results["off_periods"], [4, 2, 1, 3])
assert np.array_equal(results["on_periods_frame"], [4, 8, 10, 16])
assert np.array_equal(results["off_periods_frame"], [0, 6, 9, 13])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1], [2], [3, 4, 5], [6, 7]]
)
]
)
results = _blink_statistics(frames, memory=0, remove_heading_off_periods=True)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [2, 1, 3, 2])
assert np.array_equal(results["off_periods"], [2, 1, 3])
assert np.array_equal(results["on_periods_frame"], [4, 8, 10, 16])
assert np.array_equal(results["off_periods_frame"], [6, 9, 13])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1], [2], [3, 4, 5], [6, 7]]
)
]
)
results = _blink_statistics(frames, memory=2, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [9, 2])
assert np.array_equal(results["off_periods"], [4, 3])
assert np.array_equal(results["on_periods_frame"], [4, 16])
assert np.array_equal(results["off_periods_frame"], [0, 13])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1, 2, 3, 4, 5], [6, 7]]
)
]
)
results = _blink_statistics(frames, memory=2, remove_heading_off_periods=True)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [9, 2])
assert np.array_equal(results["off_periods"], [3])
assert np.array_equal(results["on_periods_frame"], [4, 16])
assert np.array_equal(results["off_periods_frame"], [13])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1, 2, 3, 4, 5], [6, 7]]
)
]
)
results = _blink_statistics(frames, memory=10, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [18])
assert np.array_equal(results["off_periods"], [])
assert np.array_equal(results["on_periods_frame"], [0])
assert np.array_equal(results["off_periods_frame"], [])
assert np.array_equal(results["on_periods_indices"], [[0, 1, 2, 3, 4, 5, 6, 7]])
def test__blink_statistics_4():
# frame with on and off periods up to three frames and starting with off-period.
frames = np.array([0, 1, 4, 6, 12, 13]) + 2
results = _blink_statistics(frames, memory=0, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [2, 1, 1, 2])
assert np.array_equal(results["off_periods"], [2, 2, 1, 5])
assert np.array_equal(results["on_periods_frame"], [2, 6, 8, 14])
assert np.array_equal(results["off_periods_frame"], [0, 4, 7, 9])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1], [2], [3], [4, 5]]
)
]
)
results = _blink_statistics(frames, memory=0, remove_heading_off_periods=True)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [2, 1, 1, 2])
assert np.array_equal(results["off_periods"], [2, 1, 5])
assert np.array_equal(results["on_periods_frame"], [2, 6, 8, 14])
assert np.array_equal(results["off_periods_frame"], [4, 7, 9])
assert all(
[
np.array_equal(one, two)
for one, two in zip(
results["on_periods_indices"], [[0, 1], [2], [3], [4, 5]]
)
]
)
results = _blink_statistics(frames, memory=3, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [9, 2])
assert np.array_equal(results["off_periods"], [5])
assert np.array_equal(results["on_periods_frame"], [0, 14])
assert np.array_equal(results["off_periods_frame"], [9])
assert all(
[
np.array_equal(one, two)
for one, two in zip(results["on_periods_indices"], [[0, 1, 2, 3], [4, 5]])
]
)
results = _blink_statistics(frames, memory=3, remove_heading_off_periods=True)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [7, 2])
assert np.array_equal(results["off_periods"], [5])
assert np.array_equal(results["on_periods_frame"], [2, 14])
assert np.array_equal(results["off_periods_frame"], [9])
assert all(
[
np.array_equal(one, two)
for one, two in zip(results["on_periods_indices"], [[0, 1, 2, 3], [4, 5]])
]
)
results = _blink_statistics(frames, memory=10, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [16])
assert np.array_equal(results["off_periods"], [])
assert np.array_equal(results["on_periods_frame"], [0])
assert np.array_equal(results["off_periods_frame"], [])
assert all(
[
np.array_equal(one, two)
for one, two in zip(results["on_periods_indices"], [[0, 1, 2, 3, 4, 5]])
]
)
def test__blink_statistics_5(caplog):
# frame with on and off periods including repeated frames.
frames = np.array([0, 1, 4, 4, 6, 7, 8, 12, 12, 13]) + 4
results = _blink_statistics(frames, memory=0, remove_heading_off_periods=False)
assert len(results["on_periods"]) == len(results["on_periods_frame"])
assert len(results["off_periods"]) == len(results["off_periods_frame"])
assert np.array_equal(results["on_periods"], [2, 1, 3, 2])
assert np.array_equal(results["off_periods"], [4, 2, 1, 3])
assert np.array_equal(results["on_periods_frame"], [4, 8, 10, 16])
assert | np.array_equal(results["off_periods_frame"], [0, 6, 9, 13]) | numpy.array_equal |
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 10 15:57:42 2019
@author: mahal
"""
import numpy as np
import scipy.stats as ss
import heapq
class Cell:
def __init__(self, cell_coord, instantiated_motion, instantiated_iteration):
self.coord = cell_coord
self.coverage = 1
self.instantiated_iteration = instantiated_iteration + 1
self.score = 1
self.importance = 0
self.cntNeighbors = 0
self.numExpansion = 1
self.motions = [instantiated_motion]
self.coverage_motion_cnt = -1
def selectMotion(self):
num_motions = len(self.motions)
x = | np.arange(num_motions) | numpy.arange |
import os, io
import numpy as np
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, ZeroPadding2D, BatchNormalization
from tensorflow.keras.layers import Activation
import cv2
from sklearn.model_selection import train_test_split
import time
from PIL import Image
def load_train_data(way_x, way_y):
train_x, train_y = [], []
for j in sorted(os.listdir(way_x)):
flore_x = os.path.join(way_x, j)
flore_y = os.path.join(way_y, j)
for i in sorted(os.listdir(flore_x)):
image = cv2.imread(os.path.join(flore_x, i))
image = cv2.resize(image, (455, 256))
image = np.asarray(image)
if 'lost_image' in locals():
frame_to_frame = np.concatenate([lost_image, image], axis=2)
lost_image = image
train_x.append(frame_to_frame)
else:
lost_image = image
if os.path.isfile(os.path.join(flore_y, i)):
print(i)
image = cv2.imread(os.path.join(flore_y, i))
image = cv2.resize(image, (455, 256))
image = np.asarray(image)
train_y.append(image)
del lost_image
train_x = np.asarray(train_x)
train_y = np.asarray(train_y)
train_x = train_x / 255
train_y = train_y / 255
return train_x, train_y
def model_init(input_shape):
model = Sequential()
model.add(Conv2D(16, (3, 3), input_shape=input_shape, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization(batch_size=16))
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BatchNormalization(batch_size=16))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(UpSampling2D(size=(2, 2)))
model.add(BatchNormalization(batch_size=16))
model.add(Conv2D(32, (2, 2), padding='same'))
model.add(Activation('relu'))
model.add(BatchNormalization(batch_size=16))
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(UpSampling2D(size=(2, 2)))
model.add(ZeroPadding2D(padding=((0, 0), (1, 2)))) # Zero padding for fitting output layers shape
model.add(BatchNormalization(batch_size=16))
model.add(Conv2D(16, (2, 2), padding='same'))
model.add(Activation('relu'))
model.add(BatchNormalization(batch_size=16))
model.add(Conv2D(16, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(BatchNormalization(batch_size=16))
model.add(Conv2D(3, (1, 1)))
model.add(Activation('sigmoid'))
model.compile(
optimizer="adam",
loss=tensorflow.losses.binary_crossentropy,
metrics=["accuracy"])
return model
def train(model, train_x, train_y, test_x, test_y, epochs=20, batch_size=16):
model.fit(
train_x, train_y,
epochs=epochs,
batch_size=batch_size,
validation_data=(test_x, test_y)
)
model.save_weights('1.h5')
return model
def write_video(file_path):
model.load_weights(input("Путь к файлу весов: "))
cap = cv2.VideoCapture(file_path)
h, w = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = int(cap.get(cv2.CAP_PROP_FPS))
buf = []
images = []
lost_time = time.time()
all_time = time.time()
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
count = 0
agr_time = 0
avr_img = 0
step_x = 10
step_y = 10
ret, control_image = cap.read()
if ret:
control_image = cv2.resize(control_image, (455, 256))
control_image = | np.asarray(control_image) | numpy.asarray |
import numpy as np
def get_distances(data, factual, counterfactual):
"""
Computes distances 1 to 4
:param data: Dataframe with original data
:param factual: List of features
:param counterfactual: List of features
:return: Array of distances 1 to 4
"""
d1 = d1_distance(factual, counterfactual)
d2 = d2_distance(factual, counterfactual, data)
d3 = d3_distance(factual, counterfactual, data)
d4 = d4_distance(factual, counterfactual)
return np.array([d1, d2, d3, d4])
def d1_distance(instance, cf):
"""
Compute d1-distance
:param instance: List of original feature
:param cf: List of counterfactual feature
:return: Scalar number
"""
# get difference between original and counterfactual
delta = get_delta(instance, cf)
# compute elements which are greater than 0
delta_bin = [i != 0 for i in delta]
delta_bin = delta_bin[:-1] # loose label column
d1 = sum(delta_bin)
return d1
def d2_distance(instance, cf, df):
"""
Compute d2 distance
:param instance: List of original feature
:param cf: List of counterfactual feature
:param df: Dataframe object of dataset
:return: Scalar number
"""
# get difference between original and counterfactual
delta = get_delta(instance, cf)
delta = delta[:-1] # loose label column
# get range of every feature
range = get_range(df)
d2 = [ | np.abs(x[0] / x[1]) | numpy.abs |
# features.py - feature extraction and plotting
# Bregman - music information retrieval toolkit
"""
Overview
========
To get features from audio signals, or any signal, use a feature extractor class.
Feature extractors are derived from the base Features class in module **features_base**.
Instantiate any feature extractor class with a signal vector, or audio file name, and
feature parameter keywrod arguments. E.g.::
::
myFeatures = featureExtractor(fileName, param1=value1, param2=value2, ...)
The global default feature-extractor parameters are defined in a parameter dictionary:
::
default_feature_params()
{
'sample_rate': 44100, # The audio sample rate
'feature':'cqft', # Which feature to extract (automatic for Features derived classes)
'nbpo': 12, # Number of Bands Per Octave for front-end filterbank
'ncoef' : 10, # Number of cepstral coefficients to use for cepstral features
'lcoef' : 1, # Starting cepstral coefficient
'lo': 62.5, # Lowest band edge frequency of filterbank
'hi': 16000, # Highest band edge frequency of filterbank
'nfft': 16384, # FFT length for filterbank
'wfft': 8192, # FFT signal window length
'nhop': 4410, # FFT hop size
'window' : 'hamm', # FFT window type
'log10': False, # Whether to use log output
'magnitude': True, # Whether to use magnitude (False=power)
'power_ext': ".power",# File extension for power files
'intensify' : False, # Whether to use critical band masking in chroma extraction
'onsets' : False, # Whether to use onset-synchronus features
'verbosity' : 1 # How much to tell the user about extraction
}
Parameter keywords can be passed explicitly as formal arguments or as a keyword argument parameter dict:, e.g.:
::
myFeatures = featureExtractor(fileName, nbpo=24, nhop=2205 )
myFeatures = featureExtractor(fileName, **{'nbpo':24, 'nhop':2205} )
To make a new feature extractor, just derive your new class from the Features class.
New feature extractor classes might override default parameters and override the *extract* method:
::
class MyExtractor(Features):
def __init__(self, arg, **feature_params):
feature_params['feature'] = 'hcqft'
Features.__init__(self, arg, feature_params)
def extract(self):
Features.extract(self)
self.X = do_some_extra_stuff(self.X) # further process the features
self.__setattr__('new_parameter', new_value) # set up some new feature attributes
Features instance members
=========================
Any instance of the Features class (including all the feature extractors below) contain the feature parameters as class members.
Additionally, a number of other useful class members are provided as follows:
::
F = LogFrequencySpectrum(x) # An example instance of the Features class (or F=LogFrequencyCepstrum(x), etc...)
F.any_feature_parameter # any keyword parameter: sample_rate, feature, nbpo, ncoef, lcoef, lo, hi, etc...
F.X # instance features expressed as a N x T column-wise observation matrix for N-dimensional features
F.STFT # complex-valued half spectrum of the STFT
F.POWER # total power per frame
F.Q # if log spectrum invoked, contains the constant-Q transform matrix for STFT->CQFT, else None
F.CQFT # if log spectrum invoked, contains the CQFT feature matrix
F.MFCC # if log cepstrum invoked, contains the MFCC feature matrix
# Private (hidden) members that may be useful
F._outN # size of the front-end output (F.fftN/2+1)
F._cqtN # size of the log spectrum output
F._fftfrqs # The center frequencies, up to F.hi, of the front-end filterbank (STFT)
F._logfrqs # The center frequences, up to F.hi, of the log frequency transform (if extracted)
F._logfbws # The bandwidths of the log frequency transform (if extracted)
Feature Extractors
==================
"""
__version__ = '1.0'
__author__ = '<NAME>'
__copyright__ = "Copyright (C) 2010 <NAME>, Dartmouth College, All Rights Reserved"
__license__ = "GPL Version 2.0 or Higher"
__email__ = '<EMAIL>'
import pylab as P
import numpy as np
import glob
from . import error
from . import plca
from .sound import *
from .audiodb import *
import pdb
from .features_base import Features, feature_plot, feature_scale
# All features exposed as separate classes
# Frequency Domain
class LinearFrequencySpectrum(Features):
"""
Linear-frequency spectrum, the short-time Fourier transform.
::
feature = 'stft' # The underlying algorithm
For the STFT implementation, the following parameters control the trade-off between information in time and information in frequency:
::
nfft = 16384 # default fft size
wfft = 8192 # default window size
nhop = 4410 # default hop size
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='stft'
Features.__init__(self, arg, feature_params)
class LogFrequencySpectrum(Features):
"""
Log-frequency constant-Q spectrum
::
feature_params['feature']='cqft'
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='cqft'
Features.__init__(self, arg, feature_params)
class MelFrequencySpectrum(Features):
"""
Mel-frequency constant-Q spectrum (same as log-frequency constant-Q spectrum)
::
feature_params['feature']='cqft'
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='cqft'
Features.__init__(self, arg, feature_params)
class Chromagram(Features):
""""
Chromagram
::
feature_params['feature']='chroma'
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='chroma'
Features.__init__(self, arg, feature_params)
class HighQuefrencyChromagram(Features):
""""
HighQuefrenyChromagram (High-Pass Liftered with MFCCs)
::
feature_params['feature']='hchroma'
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='hchroma'
Features.__init__(self, arg, feature_params)
# Cepstral Domain
#class LinearFrequencyCepstrum(Features):
# """
# Linear-frequency cepstrum
# ::
# feature_params['feature']='lcqft'
# """
# def __init__(self, arg=None, **feature_params):
# feature_params['feature']='lcqft'
# Features.__init__(self, arg, feature_params)
class LogFrequencyCepstrum(Features):
"""
Log-frequency cepstrum (same as mel-frequency cepstrum)
::
feature_params['feature']='mfcc'
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='mfcc'
Features.__init__(self, arg, feature_params)
class MelFrequencyCepstrum(Features):
"""
Log-frequency cepstrum (approximates MFCC, same as log-frequency cepstrum)
::
feature_params['feature']='mfcc'
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='mfcc'
Features.__init__(self, arg, feature_params)
# Quefrency-Domain Liftered
# class LowQuefrencyLinearSpectrum(Features):
# def __init__(self, arg=None, **feature_params):
# Features.__init__(self, arg, feature_params)
# class HighQuefrencyLinearSpectrum(Features):
# def __init__(self, arg=None, **feature_params):
# Features.__init__(self, arg, feature_params)
class LowQuefrencyLogFrequencySpectrum(Features):
"""
Low-Quefrency Log Frequency Spectrum
::
feature_params['feature']='lcqft'
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='lcqft'
Features.__init__(self, arg, feature_params)
class HighQuefrencyLogFrequencySpectrum(Features):
"""
High-Quefrency Log-Frequency Spectrum:
::
feature_params['feature']='hcqft'
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='hcqft'
Features.__init__(self, arg, feature_params)
class LowQuefrencyMelSpectrum(Features):
"""
Low-Quefrency Mel-Frequency Spectrum
::
feature_params['feature']='lcqft'
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='lcqft'
Features.__init__(self, arg, feature_params)
class HighQuefrencyMelSpectrum(Features):
"""
High-Quefrency Mel-Frequency Spectrum:
::
feature_params['feature']='hcqft'
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='hcqft'
Features.__init__(self, arg, feature_params)
# Time Domain
class RMS(Features):
"""
Root mean square (RMS)
::
feature_params['feature']='power'
feature_params['mantitude']=True
feature_params['log10']=False
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='power'
feature_params['mantitude']=True
feature_params['log10']=False
Features.__init__(self, arg, feature_params)
class LinearPower(Features):
"""
Linear power
::
feature_params['feature']='power'
feature_params['mantitude']=False
feature_params['log10']=False
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='power'
feature_params['mantitude']=False
feature_params['log10']=False
Features.__init__(self, arg, feature_params)
class dBPower(Features):
"""
deci-Bel power (dB power)
::
feature_params['feature']='power'
feature_params['mantitude']=False
feature_params['log10']=True
"""
def __init__(self, arg=None, **feature_params):
feature_params['feature']='power'
feature_params['mantitude']=False
feature_params['log10']=True
Features.__init__(self, arg, feature_params)
# Statistics and Derivatives
class LinearFrequencySpectrumCentroid(Features):
"""
Linear-Frequency Spectrum Centroid
"""
def __init__(self, arg, **kwargs):
kwargs['feature']='stft'
Features.__init__(self, arg, kwargs)
def extract(self):
Features.extract(self)
self.X = (self.X.T * self._fftfrqs).sum(1) / self.X.T.sum(1)
class LogFrequencySpectrumCentroid(Features):
"""
Log-Frequency Spectrum Centroid
"""
def __init__(self, arg, **kwargs):
kwargs['feature']='cqft'
Features.__init__(self, arg, kwargs)
def extract(self):
Features.extract(self)
self.X = (self.X.T * self._logfrqs).sum(1) / self.X.T.sum(1)
class MelFrequencySpectrumCentroid(Features):
"""
Mel-Frequency Spectrum Centroid
"""
def __init__(self, arg, **kwargs):
kwargs['feature']='cqft'
Features.__init__(self, arg, kwargs)
def extract(self):
Features.extract(self)
self.X = (self.X.T * self._logfrqs).sum(1) / self.X.T.sum(1)
class LinearFrequencySpectrumSpread(Features):
"""
Linear-Frequency Spectrum Spread
"""
def __init__(self, arg, **kwargs):
kwargs['feature']='stft'
Features.__init__(self, arg, kwargs)
def extract(self):
Features.extract(self)
mf = (self.X.T * self._fftfrqs).sum(1) / self.X.T.sum(1)
self.X = (((self.X / self.X.T.sum(1)).T * ((P.atleast_2d(self._fftfrqs).T - mf)).T)**2).sum(1)
class LogFrequencySpectrumSpread(Features):
"""
Log-Frequency Spectrum Spread
"""
def __init__(self, arg, **kwargs):
kwargs['feature']='cqft'
Features.__init__(self, arg, kwargs)
def extract(self):
Features.extract(self)
mf = (self.X.T * self._logfrqs).sum(1) / self.X.T.sum(1)
self.X = (((self.X / self.X.T.sum(1)).T * ((P.atleast_2d(self._logfrqs).T - mf)).T)**2).sum(1)
class MelFrequencySpectrumSpread(Features):
"""
Mel-Frequency Spectrum Spread
"""
def __init__(self, arg, **kwargs):
kwargs['feature']='cqft'
Features.__init__(self, arg, kwargs)
def extract(self):
Features.extract(self)
mf = (self.X.T * self._logfrqs).sum(1) / self.X.T.sum(1)
self.X = (((self.X / self.X.T.sum(1)).T * ((P.atleast_2d(self._logfrqs).T - mf)).T)**2).sum(1)
#TODO: have STFT calculate _fftfreqs so axis plots are easy
# have feature_plot be intelligent about feature dimensions
# check frame count and last frame behaviour
# limit frames read with keyword argument
class LinearFrequencySpectrumFlux(Features):
"""
LinearFrequencySpectrumFlux
"""
def __init__(self, arg, **kwargs):
kwargs['feature']='stft'
Features.__init__(self, arg, kwargs)
def extract(self):
Features.extract(self)
self.X = P.sqrt((P.diff(self.X)**2).sum(0))/self.X.shape[0]
class LogFrequencySpectrumFlux(Features):
"""
LogFrequencySpectrumFlux
"""
def __init__(self, arg, **kwargs):
kwargs['feature']='cqft'
Features.__init__(self, arg, kwargs)
def extract(self):
Features.extract(self)
self.X = P.sqrt((P.diff(self.X)**2).sum(0))/self.X.shape[0]
class MelFrequencySpectrumFlux(Features):
"""
MelFrequencySpectrumFlux
"""
def __init__(self, arg, **kwargs):
kwargs['feature']='cqft'
Features.__init__(self, arg, kwargs)
def extract(self):
Features.extract(self)
self.X = P.sqrt((P.diff(self.X)**2).sum(0))/self.X.shape[0]
class LowQuefrencyCepstrumFlux(Features):
"""
LowQuefrencyCepstrumFlux
"""
def __init__(self, arg, **kwargs):
kwargs['feature']='lcqft'
Features.__init__(self, arg, kwargs)
def extract(self):
Features.extract(self)
self.X = P.sqrt((P.diff(self.X)**2).sum(0))/self.X.shape[0]
# LinearFrequencyModulationPowerSpectrum
class LinearFrequencyModulationPowerSpectrum(Features):
"""
LinearFrequencyModulationPowerSpectrum
"""
_log = False
_window = None
_hop = None
def __init__(self, arg, window=None, hop=None, logscale=False, **kwargs):
kwargs['feature']='stft'
self._window, self._hop, self._log = window, hop, logscale
Features.__init__(self, arg, kwargs)
def extract(self):
Features.extract(self)
self._hop = 1 if self._hop is None else self._hop
window, hop = self._window, self._hop
if window and hop is not None:
fp = self.feature_params
num_frames = int((window*fp['sample_rate'])/(1000.0*fp['nhop']))
num_hop = int((hop*fp['sample_rate'])/(1000.0*fp['nhop']))
print(num_frames, num_hop)
if not num_frames and num_hop :
raise ValueError("num_frames and num_hop too small for FFT window / hop")
else :
Y = []
for k in range(0,self.X.shape[1]-window+1,num_hop):
X = log(self.X[:,np.arange(k,k+num_frames)]+np.finfo(np.float32).eps) if self._log else self.X[:, | np.arange(k,k+num_frames) | numpy.arange |
# coding: utf-8
# This notebook provides an example code for using the IGA2D class
# In[1]:
import IGA
import numpy as np
import matplotlib.pyplot as plt
#get_ipython().magic(u'matplotlib inline')
# In[2]:
def run_case_1(num_knots, order, delta, norm, quad_degree=10):
h = 1.0 / num_knots
if delta > h:
num_boundary_elements = np.ceil(delta / h)
else:
num_boundary_elements = 1
omega_p1 = np.linspace(-delta, 0, num=(num_boundary_elements + 1))
omega = np.linspace(0, 1, num=(num_knots+1))
omega_p2 = np.linspace(1, 1 + delta, num=(num_boundary_elements + 1))
knot_vector = np.r_[-delta * np.ones(order), omega_p1[:-1], omega[:-1], omega_p2, np.ones(order) * (1 + delta)]
iga = IGA.PD1D(knot_vector, order, delta)
iga.degree = quad_degree
u = lambda x: x * (1 - x)
b = lambda x: np.ones(x.shape[0])
iga.compute_solutions(u, b, num_boundary_elements)
return iga.compute_error(norm=norm)
# In[ ]:
dofs = np.array([100,700])
errs = [ run_case_1(num_knots, order=1, delta=0.25, norm=2, quad_degree=4) for num_knots in dofs ]
# In[ ]:
# In[ ]:
#Fit a straight line
coefs = np.polyfit( | np.log10(1.0 / dofs) | numpy.log10 |
import numpy as np
import matplotlib.pyplot as plt
from FUNCS import FNS
# variable class for body frame module
class MapVar:
def __init__(self, ax, limit, origin, ret_size):
self.ax = ax
self.origin = origin
self.center = origin
self.ret_size = ret_size
self.trk_change = 0
self.offset = 0
self.ax.set_xlim(0, limit[0])
self.ax.set_ylim(0, limit[1])
self.ax.set_zlim(0, limit[2])
# target variables
self.target = np.zeros(3)
self.estimate = np.zeros(3)
self.targ_data = np.zeros((2, 2))
self.targ, = self.ax.plot([], [], [], 'o', color='blue', markersize=6, label='veridical')
self.targ_line, = self.ax.plot([], [], [], color='red', linestyle='dotted')
self.left_line, = self.ax.plot([], [], [], color='blue', linestyle='dotted')
self.right_line, = self.ax.plot([], [], [], color='blue', linestyle='dotted')
self.cent_line, = self.ax.plot([], [], [], color='black', linestyle='dotted')
# estimate variables
self.est, = self.ax.plot([], [], [], 'o', color='red', markersize=6, label='estimate')
self.left_est, = self.ax.plot([], [], [], color='red', linestyle='dotted')
self.right_est, = self.ax.plot([], [], [], color='red', linestyle='dotted')
# body frame variables
self.head, = self.ax.plot([], [], [], color='black')
self.head_cent, = self.ax.plot([], [], [], 'x', color='black', markersize=2.5)
self.left_eye, = self.ax.plot([], [], [], color='black')
self.right_eye, = self.ax.plot([], [], [], color='black')
self.left_cent, = self.ax.plot([], [], [], 'x', color='black', markersize=2.5)
self.right_cent, = self.ax.plot([], [], [], 'x', color='black', markersize=2.5)
self.left_fov, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5)
self.right_fov, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5)
self.column, = self.ax.plot([], [], [], color='black')
self.column_jnt, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5)
self.pectoral, = self.ax.plot([], [], [], color='black')
self.pelvic, = self.ax.plot([], [], [], color='black')
self.CoM, = self.ax.plot([], [], [], 'x', color='blue', markersize=2.5)
self.left_uplimb, = self.ax.plot([], [], [], color='black')
self.left_uplimb_jnt, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5)
self.right_uplimb, = self.ax.plot([], [], [], color='black')
self.right_uplimb_jnt, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5)
self.left_lowlimb, = self.ax.plot([], [], [], color='black')
self.left_lowlimb_jnt, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5)
self.right_lowlimb, = self.ax.plot([], [], [], color='black')
self.right_lowlimb_jnt, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5)
# muscles variables
self.base_frame, = self.ax.plot([], [], [], color='black')
self.thorax_frame, = self.ax.plot([], [], [], color='black')
self.lumbar_frame, = self.ax.plot([], [], [], color='black')
self.pect_frame, = self.ax.plot([], [], [], color='black')
self.humr_frame, = self.ax.plot([], [], [], color='black')
self.shoul_frame, = self.ax.plot([], [], [], color='black')
self.elbow_frame, = self.ax.plot([], [], [], color='black')
self.pelv_frame, = self.ax.plot([], [], [], color='black')
self.femr_frame, = self.ax.plot([], [], [], color='black')
self.hip_frame, = self.ax.plot([], [], [], color='black')
self.knee_frame, = self.ax.plot([], [], [], color='black')
self.left_neck_mus, = self.ax.plot([], [], [], color='red')
self.right_neck_mus, = self.ax.plot([], [], [], color='red')
self.left_trunk_mus, = self.ax.plot([], [], [], color='red')
self.right_trunk_mus, = self.ax.plot([], [], [], color='red')
self.shoul_horz, = self.ax.plot([], [], [], color='red')
self.shoul_vert, = self.ax.plot([], [], [], color='red')
self.elbow_vert, = self.ax.plot([], [], [], color='red')
self.wrist_vert, = self.ax.plot([], [], [], color='red')
self.hip_horz, = self.ax.plot([], [], [], color='red')
self.hip_vert, = self.ax.plot([], [], [], color='red')
self.knee_vert, = self.ax.plot([], [], [], color='red')
self.ankle_vert, = self.ax.plot([], [], [], color='red')
self.column, = self.ax.plot([], [], [], color='black')
self.left_limb, = self.ax.plot([], [], [], color='black')
self.right_limb, = self.ax.plot([], [], [], color='black')
self.left_joints, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5)
self.left_inserts, = self.ax.plot([], [], [], 'o', color='blue', markersize=2.5)
self.right_joints, = self.ax.plot([], [], [], 'o', color='red', markersize=2.5)
self.right_inserts, = self.ax.plot([], [], [], 'o', color='blue', markersize=2.5)
# external force variables
self.fof = np.zeros((2, 3, 2))
self.grf = np.zeros((2, 3, 2))
# method class for body frame module
class MapFun:
def __init__(self, eye_data, axial_data, append_data, MapVar):
self.MapVar = MapVar
self.FNS = FNS()
self.origin = MapVar.origin
self.ret_size = self.MapVar.ret_size
self.magnify = 7
self.ang_rang = np.radians((-45, 45))
self.dist_rang = np.array((5, 50))
self.default = -5
# initialize eye positions and joint angles
self.eye_rot = FNS().eye_init()
self.neck_rot, self.trunk_rot = FNS().column_init()
self.uplimb_rot = (FNS().uplimb_init(), FNS().uplimb_init())
self.lowlimb_rot = (FNS().lowlimb_init(), FNS().lowlimb_init())
# updated eye positions and joint angles
self.eye_data = eye_data
self.axial_data = axial_data
self.append_data = append_data
# draw lines of sight from target to eyes
def targ_plt(self, head_cent, head_ahead, left_targ, right_targ):
targ = self.MapVar.target
targ_data = self.MapVar.targ_data
self.MapVar.targ.set_data(targ[0], targ[1])
self.MapVar.targ.set_3d_properties(targ[2])
if np.array_equal(targ_data, np.zeros((2, 2))) != True:
#targ_line = np.transpose(np.array((targ, head_cent)), (1, 0))
#self.MapVar.targ_line.set_data(targ_line[0], targ_line[1])
#self.MapVar.targ_line.set_3d_properties(targ_line[2])
left_line = np.transpose(np.array((targ, left_targ)), (1, 0))
self.MapVar.left_line.set_data(left_line[0], left_line[1])
self.MapVar.left_line.set_3d_properties(left_line[2])
right_line = np.transpose(np.array((targ, right_targ)), (1, 0))
self.MapVar.right_line.set_data(right_line[0], right_line[1])
self.MapVar.right_line.set_3d_properties(right_line[2])
#cent_line = np.transpose(np.array((head_ahead, head_cent)), (1, 0))
#self.MapVar.cent_line.set_data(cent_line[0], cent_line[1])
#self.MapVar.cent_line.set_3d_properties(cent_line[2])
# draw lines of sight from estimate to eyes
def est_plt(self, est, left_fov, right_fov):
self.MapVar.est.set_data(est[0], est[1])
self.MapVar.est.set_3d_properties(est[2])
left_est = np.transpose(np.array((est, left_fov)), (1, 0))
self.MapVar.left_est.set_data(left_est[0], left_est[1])
self.MapVar.left_est.set_3d_properties(left_est[2])
right_est = np.transpose(np.array((est, right_fov)), (1, 0))
self.MapVar.right_est.set_data(right_est[0], right_est[1])
self.MapVar.right_est.set_3d_properties(right_est[2])
# compute head and eye positions in the body frame and do not update if shift=0 indicates the feet are
# driven into ground
def head_cpt(self, shift):
FNS = self.FNS
magn = self.magnify
size = self.ret_size
left_targ_hit, right_targ_hit = self.MapVar.targ_data
self.eye_rot = self.eye_data
left_eye_rot, right_eye_rot = self.eye_rot
if shift == 0:
neck_rot_vert, neck_rot_horz = self.neck_rot
truk_rot_vert, truk_rot_horz = self.trunk_rot
else:
self.neck_rot, self.trunk_rot = self.axial_data
neck_rot_vert, neck_rot_horz = self.neck_rot
truk_rot_vert, truk_rot_horz = self.trunk_rot
column = self.column_cpt(shift)[0]
base = np.array((column[0][0], column[1][0], column[2][0]))
head_cent = base + FNS.vert_up(truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 3 * magn)
head_ahead = head_cent + FNS.latr_front(truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 20)
left_cent = head_cent + FNS.latr_left(truk_rot_horz + neck_rot_horz, 0, 2 * magn)
right_cent = head_cent + FNS.latr_right(truk_rot_horz + neck_rot_horz, 0, 2 * magn)
left_rad_est, left_ang_est = FNS.polar_tran((magn / size) * left_eye_rot[0], (magn / size) * left_eye_rot[1])
left_fov = left_cent + FNS.latr_right(truk_rot_horz + neck_rot_horz, left_ang_est, left_rad_est)
right_rad_est, right_ang_est = FNS.polar_tran((magn / size) * right_eye_rot[0], (magn / size) * right_eye_rot[1])
right_fov = right_cent + FNS.latr_right(truk_rot_horz + neck_rot_horz, right_ang_est, right_rad_est)
left_rad_verd, left_ang_verd = FNS.polar_tran((magn / size) * left_targ_hit[0], (magn / size) * left_targ_hit[1])
left_targ = left_cent + FNS.latr_right(truk_rot_horz + neck_rot_horz, left_ang_verd, left_rad_verd)
right_rad_verd, right_ang_verd = FNS.polar_tran((magn / size) * right_targ_hit[0], (magn / size) * right_targ_hit[1])
right_targ = right_cent + FNS.latr_right(truk_rot_horz + neck_rot_horz, right_ang_verd, right_rad_verd)
head, left_eye, right_eye = FNS.head_plane(head_cent, truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, magn)
head = np.transpose(np.array((head[0], head[1], head[3], head[2], head[0])), (1, 0))
left_eye = np.transpose(np.array((left_eye[0], left_eye[1], left_eye[3], left_eye[2], left_eye[0])), (1, 0))
right_eye = np.transpose(np.array((right_eye[0], right_eye[1], right_eye[3], right_eye[2], right_eye[0])), (1, 0))
return (head_cent, head, head_ahead), (left_eye, right_eye), (left_cent, right_cent), \
(left_fov, right_fov), (left_targ, right_targ)
# draw head and eye positions
def head_plt(self, head_cent, head, left_eye, right_eye, left_cent, right_cent, left_fov, right_fov):
self.MapVar.head.set_data(head[0], head[1])
self.MapVar.head.set_3d_properties(head[2])
self.MapVar.head_cent.set_data(head_cent[0], head_cent[1])
self.MapVar.head_cent.set_3d_properties(head_cent[2])
self.MapVar.left_eye.set_data(left_eye[0], left_eye[1])
self.MapVar.left_eye.set_3d_properties(left_eye[2])
self.MapVar.left_cent.set_data(left_cent[0], left_cent[1])
self.MapVar.left_cent.set_3d_properties(left_cent[2])
self.MapVar.right_eye.set_data(right_eye[0], right_eye[1])
self.MapVar.right_eye.set_3d_properties(right_eye[2])
self.MapVar.right_cent.set_data(right_cent[0], right_cent[1])
self.MapVar.right_cent.set_3d_properties(right_cent[2])
self.MapVar.left_fov.set_data(left_fov[0], left_fov[1])
self.MapVar.left_fov.set_3d_properties(left_fov[2])
self.MapVar.right_fov.set_data(right_fov[0], right_fov[1])
self.MapVar.right_fov.set_3d_properties(right_fov[2])
# compute position of center of mass due to column and/or leg movements and mode=(0, 1) indicates left leg
# swing and right leg stance and mode=(1, 0) the reverse situation
def CoM_shift(self, mode):
FNS = self.FNS
origin = self.MapVar.origin
dep = self.default
truk_rot_vert, truk_rot_horz = self.axial_data[1]
(left_hip_rot_vert, left_hip_rot_horz), (left_knee_rot_vert, left_knee_rot_horz), \
(left_ankle_rot_vert, left_ankle_rot_horz) = self.append_data[1][0]
(right_hip_rot_vert, right_hip_rot_horz), (right_knee_rot_vert, right_knee_rot_horz), \
(right_ankle_rot_vert, right_ankle_rot_horz) = self.append_data[1][1]
# shift of CoM due to column movement
shift_col = FNS.vert_up(0, 0, 10) - FNS.vert_up(truk_rot_horz, truk_rot_vert, 10)
if mode == (0, 1):
# shift of CoM due to forward left leg movement
shift_limb = FNS.vert_up(0, 0, 35) - FNS.vert_up(right_hip_rot_horz, right_hip_rot_vert, 20) - \
FNS.vert_up(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert, 15)
shift = shift_col + shift_limb
# check if left foot is driven into ground
left_foot, right_foot = self.lowlimb_tst(shift)
if left_foot[2] < dep:
shift = np.zeros(3)
self.MapVar.center = origin - shift
return 0
else:
shift = shift * np.array((1, -1, 1))
self.MapVar.offset = shift * self.MapVar.trk_change + self.MapVar.offset * (1 - self.MapVar.trk_change)
# update CoM position
self.MapVar.center = origin - shift + self.MapVar.offset
return 1
if mode == (1, 0):
# shift of CoM due to forward right leg movement
shift_limb = FNS.vert_up(0, 0, 35) - FNS.vert_up(left_hip_rot_horz, left_hip_rot_vert, 20) - \
FNS.vert_up(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert, 15)
shift = shift_col + shift_limb
# check if right foot is driven into ground
left_foot, right_foot = self.lowlimb_tst(shift)
if right_foot[2] < dep:
shift = np.zeros(3)
self.MapVar.center = origin - shift
return 0
else:
shift = shift * np.array((1, 1, 1))
self.MapVar.offset = shift * self.MapVar.trk_change + self.MapVar.offset * (1 - self.MapVar.trk_change)
# update CoM position
self.MapVar.center = origin - shift + self.MapVar.offset
return 1
# compute positions of base of head, cervic (neck), thorax (for pectoral girdle), lumbar (CoM), and sacrum
# (pelvic and for pelvic girdle)
def column_cpt(self, shift):
FNS = self.FNS
if shift == 0:
neck_rot_vert, neck_rot_horz = self.neck_rot
truk_rot_vert, truk_rot_horz = self.trunk_rot
else:
self.neck_rot, self.trunk_rot = self.axial_data
neck_rot_vert, neck_rot_horz = self.neck_rot
truk_rot_vert, truk_rot_horz = self.trunk_rot
center = self.MapVar.center
lumbar = center
sacrum = lumbar - FNS.vert_up(truk_rot_horz, truk_rot_vert, 10)
thorax = lumbar + FNS.vert_up(truk_rot_horz, truk_rot_vert, 30)
cervic = thorax + FNS.vert_up(truk_rot_horz, truk_rot_vert, 10)
base = cervic + FNS.vert_up(truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 5)
left_pectoral = thorax + FNS.latr_left(truk_rot_horz, 0, 10)
right_pectoral = thorax + FNS.latr_right(truk_rot_horz, 0, 10)
left_pelvic = sacrum + FNS.latr_left(0, 0, 5)
right_pelvic = sacrum + FNS.latr_right(0, 0, 5)
column = np.transpose(np.array((base, cervic, thorax, lumbar, sacrum)), (1, 0))
pectoral = np.transpose(np.array((left_pectoral, thorax, right_pectoral)), (1, 0))
pelvic = np.transpose(np.array((left_pelvic, sacrum, right_pelvic)), (1, 0))
return column, pectoral, pelvic
# draw positions of column segments
def column_plt(self, column, pectoral, pelvic):
self.MapVar.column.set_data(column[0], column[1])
self.MapVar.column.set_3d_properties(column[2])
self.MapVar.pectoral.set_data(pectoral[0], pectoral[1])
self.MapVar.pectoral.set_3d_properties(pectoral[2])
self.MapVar.pelvic.set_data(pelvic[0], pelvic[1])
self.MapVar.pelvic.set_3d_properties(pelvic[2])
cervic = (column[0][1], column[1][1], column[2][1])
sacrum = (column[0][4], column[1][4], column[2][4])
CoM = (column[0][3], column[1][3], column[2][3])
column_jnt = np.transpose(np.array((cervic, sacrum)), (1, 0))
self.MapVar.column_jnt.set_data(column_jnt[0], column_jnt[1])
self.MapVar.column_jnt.set_3d_properties(column_jnt[2])
self.MapVar.CoM.set_data(CoM[0], CoM[1])
self.MapVar.CoM.set_3d_properties(CoM[2])
# compute positions of shoulders elbows and wrists of upper limbs
def uplimb_cpt(self, shift):
FNS = self.FNS
pectoral = self.column_cpt(shift)[1]
left_shoulder = np.array((pectoral[0][0], pectoral[1][0], pectoral[2][0]))
right_shoulder = np.array((pectoral[0][2], pectoral[1][2], pectoral[2][2]))
if shift == 0:
(left_shoul_rot_vert, left_shoul_rot_horz), (left_elbow_rot_vert, left_elbow_rot_horz), \
(left_wrist_rot_vert, left_wrist_rot_horz) = self.uplimb_rot[0]
(right_shoul_rot_vert, right_shoul_rot_horz), (right_elbow_rot_vert, right_elbow_rot_horz), \
(right_wrist_rot_vert, right_wrist_rot_horz) = self.uplimb_rot[1]
else:
self.uplimb_rot = self.append_data[0]
(left_shoul_rot_vert, left_shoul_rot_horz), (left_elbow_rot_vert, left_elbow_rot_horz), \
(left_wrist_rot_vert, left_wrist_rot_horz) = self.uplimb_rot[0]
(right_shoul_rot_vert, right_shoul_rot_horz), (right_elbow_rot_vert, right_elbow_rot_horz), \
(right_wrist_rot_vert, right_wrist_rot_horz) = self.uplimb_rot[1]
left_elbow = left_shoulder + FNS.vert_down(left_shoul_rot_horz, left_shoul_rot_vert, 15)
left_wrist = left_elbow + FNS.vert_down(left_shoul_rot_horz, left_shoul_rot_vert + left_elbow_rot_vert, 10)
left_hand = left_wrist + FNS.vert_down(left_shoul_rot_horz, left_shoul_rot_vert + left_elbow_rot_vert +
left_wrist_rot_vert, 5)
right_elbow = right_shoulder + FNS.vert_down(right_shoul_rot_horz, right_shoul_rot_vert, 15)
right_wrist = right_elbow + FNS.vert_down(right_shoul_rot_horz, right_shoul_rot_vert + right_elbow_rot_vert, 10)
right_hand = right_wrist + FNS.vert_down(right_shoul_rot_horz, right_shoul_rot_vert + right_elbow_rot_vert +
right_wrist_rot_vert, 5)
left_limb = np.transpose(np.array((left_shoulder, left_elbow, left_wrist, left_hand)), (1, 0))
right_limb = np.transpose(np.array((right_shoulder, right_elbow, right_wrist, right_hand)), (1, 0))
return left_limb, right_limb
# draw positions of upper limbs
def uplimb_plt(self, left_uplimb, right_uplimb):
self.MapVar.left_uplimb.set_data(left_uplimb[0], left_uplimb[1])
self.MapVar.left_uplimb.set_3d_properties(left_uplimb[2])
left_shoul = (left_uplimb[0][0], left_uplimb[1][0], left_uplimb[2][0])
left_elbow = (left_uplimb[0][1], left_uplimb[1][1], left_uplimb[2][1])
left_wrist = (left_uplimb[0][2], left_uplimb[1][2], left_uplimb[2][2])
left_uplimb_jnt = np.transpose(np.array((left_shoul, left_elbow, left_wrist)), (1, 0))
self.MapVar.left_uplimb_jnt.set_data(left_uplimb_jnt[0], left_uplimb_jnt[1])
self.MapVar.left_uplimb_jnt.set_3d_properties(left_uplimb_jnt[2])
self.MapVar.right_uplimb.set_data(right_uplimb[0], right_uplimb[1])
self.MapVar.right_uplimb.set_3d_properties(right_uplimb[2])
right_shoul = (right_uplimb[0][0], right_uplimb[1][0], right_uplimb[2][0])
right_elbow = (right_uplimb[0][1], right_uplimb[1][1], right_uplimb[2][1])
right_wrist = (right_uplimb[0][2], right_uplimb[1][2], right_uplimb[2][2])
right_uplimb_jnt = np.transpose(np.array((right_shoul, right_elbow, right_wrist)), (1, 0))
self.MapVar.right_uplimb_jnt.set_data(right_uplimb_jnt[0], right_uplimb_jnt[1])
self.MapVar.right_uplimb_jnt.set_3d_properties(right_uplimb_jnt[2])
# compute positions of hips, knees and ankles of lower limbs
def lowlimb_cpt(self, shift):
FNS = self.FNS
pelvic = self.column_cpt(shift)[2]
left_hip = np.array((pelvic[0][0], pelvic[1][0], pelvic[2][0]))
right_hip = np.array((pelvic[0][2], pelvic[1][2], pelvic[2][2]))
if shift == 0:
(left_hip_rot_vert, left_hip_rot_horz), (left_knee_rot_vert, left_knee_rot_horz), \
(left_ankle_rot_vert, left_ankle_rot_horz) = self.lowlimb_rot[0]
(right_hip_rot_vert, right_hip_rot_horz), (right_knee_rot_vert, right_knee_rot_horz), \
(right_ankle_rot_vert, right_ankle_rot_horz) = self.lowlimb_rot[1]
else:
self.lowlimb_rot = self.append_data[1]
(left_hip_rot_vert, left_hip_rot_horz), (left_knee_rot_vert, left_knee_rot_horz), \
(left_ankle_rot_vert, left_ankle_rot_horz) = self.lowlimb_rot[0]
(right_hip_rot_vert, right_hip_rot_horz), (right_knee_rot_vert, right_knee_rot_horz), \
(right_ankle_rot_vert, right_ankle_rot_horz) = self.lowlimb_rot[1]
left_knee = left_hip + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert, 20)
left_ankle = left_knee + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert, 15)
left_foot = left_ankle + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert +
left_ankle_rot_vert + np.pi / 2, 5)
left_limb = np.transpose(np.array((left_hip, left_knee, left_ankle, left_foot)), (1, 0))
right_knee = right_hip + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert, 20)
right_ankle = right_knee + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert, 15)
right_foot = right_ankle + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert +
right_ankle_rot_vert + np.pi / 2, 5)
right_limb = np.transpose(np.array((right_hip, right_knee, right_ankle, right_foot)), (1, 0))
return left_limb, right_limb
# draw positions of lower limbs
def lowlimb_plt(self, left_lowlimb, right_lowlimb):
self.MapVar.left_lowlimb.set_data(left_lowlimb[0], left_lowlimb[1])
self.MapVar.left_lowlimb.set_3d_properties(left_lowlimb[2])
left_hip = (left_lowlimb[0][0], left_lowlimb[1][0], left_lowlimb[2][0])
left_knee = (left_lowlimb[0][1], left_lowlimb[1][1], left_lowlimb[2][1])
left_ankle = (left_lowlimb[0][2], left_lowlimb[1][2], left_lowlimb[2][2])
left_lowlimb_jnt = np.transpose(np.array((left_hip, left_knee, left_ankle)), (1, 0))
self.MapVar.left_lowlimb_jnt.set_data(left_lowlimb_jnt[0], left_lowlimb_jnt[1])
self.MapVar.left_lowlimb_jnt.set_3d_properties(left_lowlimb_jnt[2])
self.MapVar.right_lowlimb.set_data(right_lowlimb[0], right_lowlimb[1])
self.MapVar.right_lowlimb.set_3d_properties(right_lowlimb[2])
right_hip = (right_lowlimb[0][0], right_lowlimb[1][0], right_lowlimb[2][0])
right_knee = (right_lowlimb[0][1], right_lowlimb[1][1], right_lowlimb[2][1])
right_ankle = (right_lowlimb[0][2], right_lowlimb[1][2], right_lowlimb[2][2])
right_lowlimb_jnt = np.transpose(np.array((right_hip, right_knee, right_ankle)), (1, 0))
self.MapVar.right_lowlimb_jnt.set_data(right_lowlimb_jnt[0], right_lowlimb_jnt[1])
self.MapVar.right_lowlimb_jnt.set_3d_properties(right_lowlimb_jnt[2])
# test if shift of CoM would cause either feet into ground
def lowlimb_tst(self, shift):
FNS = self.FNS
neck_rot_vert, neck_rot_horz = self.axial_data[0]
truk_rot_vert, truk_rot_horz = self.axial_data[1]
center = self.MapVar.origin - shift
sacrum = center - FNS.vert_up(truk_rot_horz, truk_rot_vert, 10)
lumbar = center
thorax = center + FNS.vert_up(truk_rot_horz, truk_rot_vert, 30)
cervic = thorax + FNS.vert_up(truk_rot_horz, truk_rot_vert, 10)
base = cervic + FNS.vert_up(truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 5)
left_hip = sacrum + FNS.latr_left(0, 0, 5)
right_hip = sacrum + FNS.latr_right(0, 0, 5)
(left_hip_rot_vert, left_hip_rot_horz), (left_knee_rot_vert, left_knee_rot_horz), \
(left_ankle_rot_vert, left_ankle_rot_horz) = self.append_data[1][0]
(right_hip_rot_vert, right_hip_rot_horz), (right_knee_rot_vert, right_knee_rot_horz), \
(right_ankle_rot_vert, right_ankle_rot_horz) = self.append_data[1][1]
left_knee = left_hip + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert, 20)
left_ankle = left_knee + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert, 15)
left_foot = left_ankle + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert +
left_ankle_rot_vert + np.pi / 2, 5)
right_knee = right_hip + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert, 20)
right_ankle = right_knee + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert, 15)
right_foot = right_ankle + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert +
right_ankle_rot_vert + np.pi / 2, 5)
return left_foot, right_foot
# compute external torque for force of gravity and ground reaction force from joint positions of lower limbs
def ext_forc(self, shift):
FNS = self.FNS
dep = 0.2 * self.default
fof = np.zeros((2, 3, 2))
grf = np.zeros((2, 3, 2))
base, cervic, thorax, lumbar, sacrum = np.transpose(self.column_cpt(shift)[0], (1, 0))
left_hip, left_knee, left_ankle, left_foot = np.transpose(self.lowlimb_cpt(shift)[0], (1, 0))
right_hip, right_knee, right_ankle, right_foot = np.transpose(self.lowlimb_cpt(shift)[1], (1, 0))
# magnitude of external force
mass = (50 + 5 + 20) * 0.001
# moment arm of force of gravity
CoM = np.array((lumbar[0], lumbar[1], left_hip[2]))
moment = np.linalg.norm(left_hip - CoM)
fof[0][0][0] = moment * mass
CoM = np.array((lumbar[0], lumbar[1], left_knee[2]))
moment = np.linalg.norm(left_knee - CoM)
fof[0][1][0] = moment * mass
CoM = np.array((lumbar[0], lumbar[1], left_ankle[2]))
moment = np.linalg.norm(left_ankle - CoM)
fof[0][2][0] = moment * mass
CoM = np.array((lumbar[0], lumbar[1], right_hip[2]))
moment = np.linalg.norm(right_hip - CoM)
fof[1][0][0] = moment * mass
CoM = np.array((lumbar[0], lumbar[1], right_knee[2]))
moment = np.linalg.norm(right_knee - CoM)
fof[1][1][0] = moment * mass
CoM = np.array((lumbar[0], lumbar[1], right_ankle[2]))
moment = np.linalg.norm(right_ankle - CoM)
fof[1][2][0] = moment * mass
self.MapVar.fof = fof
# moment arm of ground reaction force
left_cond = FNS.delta_fn(FNS.cond_fn(left_ankle[2], -dep), 1)
right_cond = FNS.delta_fn(FNS.cond_fn(right_ankle[2], -dep), 1)
# both feet on ground
if left_cond == 1 and right_cond == 1:
mid_dist = np.linalg.norm(left_ankle - right_ankle) / 2
cent = left_ankle + 0.5 * (right_ankle - left_ankle)
CoP = np.array((cent[0], cent[1], left_ankle[2]))
moment = np.linalg.norm(left_ankle - CoP)
grf[0][2][0] = moment * mass
CoP = np.array((cent[0], cent[1], left_knee[2]))
moment = np.linalg.norm(left_knee - CoP)
grf[0][1][0] = moment * mass
CoP = np.array((cent[0], cent[1], left_hip[2]))
moment = | np.linalg.norm(left_hip - CoP) | numpy.linalg.norm |
import numpy as np
from typing import Callable, Optional
class KalmanFilter(object):
def __init__(self, x0, P0, F, G, N, H):
self.x = np.array(x0)
self.P = np.array(P0)
self.F = np.array(F)
self.G = | np.array(G) | numpy.array |
import sys, os
this_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.realpath(this_dir + '/../magphase/src'))
import numpy as np
from matplotlib import pyplot as plt
import libutils as lu
import libaudio as la
import magphase as mp
from scikits.talkbox import lpc
from scipy.signal import lfilter
from scipy import interpolate
def lpc_to_mag(v_lpc, fft_len=4096):
'''
Computed the magnitude spectrum from LPC coefficients using approximation by FFT method.
'''
v_imp = np.r_[1, np.zeros(fft_len-1)]
v_imp_filt = lfilter(np.array([1.0]), v_lpc, v_imp)
v_mag = np.absolute(np.fft.fft(v_imp_filt))
v_mag = la.remove_hermitian_half(v_mag[None,:])[0]
return v_mag
def get_formant_locations_from_spec_env(v_sp_env):
'''
v_sp_env could be in db, log, or absolute value.
'''
v_mag_diff = np.diff(v_sp_env)
v_mag_diff[v_mag_diff>=0.0] = 1.0
v_mag_diff[v_mag_diff<0.0] = -1.0
v_mag_diff_diff = np.diff(v_mag_diff)
v_frmnts_bins = np.where(v_mag_diff_diff<0.0)[0] + 1
v_frmnts_gains = v_sp_env[v_frmnts_bins]
return v_frmnts_bins, v_frmnts_gains
def get_formant_locations_from_raw_long_frame(v_sig, v_pm, nx, fft_len):
'''
nx: frame index
'''
#v_sig, fs = la.read_audio_file(wavfile)
# Epoch detection:
#v_pm_sec, v_voi = la.reaper_epoch_detection(wavfile)
#v_pm = lu.round_to_int(v_pm_sec * fs)
# Raw-long Frame extraction:
v_frm_long = v_sig[v_pm[nx-2]:v_pm[nx+2]+1]
# Win:
left_len = v_pm[nx] - v_pm[nx-2]
right_len = v_pm[nx+2] - v_pm[nx]
v_win = la.gen_non_symmetric_win(left_len, right_len, np.hanning, b_norm=False)
v_frm_long_win = v_frm_long * v_win
# Spectrum:
v_mag = np.absolute(np.fft.fft(v_frm_long_win, n=fft_len))
v_mag_db = la.db(la.remove_hermitian_half(v_mag[None,:])[0])
# Formant extraction -LPC method:--------------------------------------------------
v_lpc, v_e, v_refl = lpc(v_frm_long_win, 120)
b_use_lpc_roots = False
if b_use_lpc_roots:
v_lpc_roots = np.roots(v_lpc)
v_lpc_angles = np.angle(v_lpc_roots)
v_lpc_angles = v_lpc_angles[v_lpc_angles>=0]
v_lpc_angles = np.sort(v_lpc_angles)
fft_len_half = 1 + fft_len / 2
v_lpc_roots_bins = v_lpc_angles * fft_len_half / np.pi
v_lpc_mag = lpc_to_mag(v_lpc, fft_len=fft_len)
v_lpc_mag_db = la.db(v_lpc_mag)
v_lpc_mag_db = v_lpc_mag_db - | np.mean(v_lpc_mag_db) | numpy.mean |
"""Test becquerel's Spectrum."""
import pytest
import datetime
import numpy as np
from uncertainties import ufloat, UFloat, unumpy
import becquerel as bq
TEST_DATA_LENGTH = 256
TEST_COUNTS = 4
TEST_GAIN = 8.23
TEST_EDGES_KEV = np.arange(TEST_DATA_LENGTH + 1) * TEST_GAIN
def make_data(lam=TEST_COUNTS, size=TEST_DATA_LENGTH):
"""Build a vector of random counts."""
floatdata = np.random.poisson(lam=lam, size=size)
return floatdata.astype(int)
def make_spec(t, lt=None, lam=TEST_COUNTS):
"""Get spectrum to use in parameterized tests.
Pytest Note:
one might think you could do:
@pytest.mark.parametrize('spec1, spec2', [
(uncal_spec, uncal_spec),
(cal_spec, cal_spec)
])
def test_add(spec1, spec2):
...
but you can't put fixtures inside parametrize(). Thus the fixtures
call this function for simplicity.
"""
if t == "uncal":
return bq.Spectrum(make_data(lam=lam), livetime=lt)
elif t == "cal":
return bq.Spectrum(
make_data(lam=lam), bin_edges_kev=TEST_EDGES_KEV, livetime=lt
)
elif t == "cal_new":
return bq.Spectrum(
make_data(lam=lam),
livetime=lt,
bin_edges_kev=np.arange(TEST_DATA_LENGTH + 1) * 0.67,
)
elif t == "applied_energy_cal":
spec = bq.Spectrum(
make_data(lam=lam),
livetime=lt,
)
cal = bq.Calibration("p[0] * x", [0.67])
spec.apply_calibration(cal)
return spec
elif t == "cal_cps":
return bq.Spectrum(
cps=make_data(lam=lam), bin_edges_kev=TEST_EDGES_KEV, livetime=lt
)
elif t == "uncal_long":
return bq.Spectrum(make_data(lam=lam, size=TEST_DATA_LENGTH * 2), livetime=lt)
elif t == "uncal_cps":
return bq.Spectrum(cps=make_data(lam=lam), livetime=lt)
elif t == "data":
return make_data()
else:
return t
@pytest.fixture
def spec_data():
"""Build a vector of random counts."""
return make_data()
@pytest.fixture
def uncal_spec(spec_data):
"""Generate an uncalibrated spectrum."""
return make_spec("uncal")
@pytest.fixture
def uncal_spec_2(spec_data):
"""Generate an uncalibrated spectrum (2nd instance)."""
return make_spec("uncal")
@pytest.fixture
def uncal_spec_cps(spec_data):
"""Generate an uncalibrated spectrum with cps data."""
return make_spec("uncal_cps")
@pytest.fixture
def uncal_spec_long(spec_data):
"""Generate an uncalibrated spectrum, of longer length."""
return make_spec("uncal_long")
@pytest.fixture
def cal_spec(spec_data):
"""Generate a calibrated spectrum."""
return make_spec("cal")
@pytest.fixture
def cal_spec_2(spec_data):
"""Generate a calibrated spectrum (2nd instance)."""
return make_spec("cal")
# ----------------------------------------------
# Test Spectrum.__init__()
# ----------------------------------------------
def test_uncal(uncal_spec):
"""Test simple uncalibrated construction."""
assert len(uncal_spec.counts) == TEST_DATA_LENGTH
assert not uncal_spec.is_calibrated
assert uncal_spec.energy_cal is None
def test_uncal_cps(uncal_spec_cps):
"""Test simple uncalibrated construction w CPS. More CPS tests later"""
assert len(uncal_spec_cps.cps) == TEST_DATA_LENGTH
assert not uncal_spec_cps.is_calibrated
assert uncal_spec_cps.energy_cal is None
def test_cal(cal_spec):
"""Test simple calibrated construction."""
assert len(cal_spec.counts) == TEST_DATA_LENGTH
assert len(cal_spec.bin_edges_kev) == TEST_DATA_LENGTH + 1
assert len(cal_spec.bin_centers_kev) == TEST_DATA_LENGTH
assert cal_spec.is_calibrated
def test_init_exceptions(spec_data):
"""Test errors on initialization."""
with pytest.raises(bq.SpectrumError):
bq.Spectrum([])
with pytest.raises(bq.SpectrumError):
bq.Spectrum(cps=[])
with pytest.raises(bq.SpectrumError):
bq.Spectrum(spec_data, bin_edges_kev=TEST_EDGES_KEV[:-1])
with pytest.raises(bq.SpectrumError):
bq.Spectrum(cps=spec_data, bin_edges_kev=TEST_EDGES_KEV[:-1])
with pytest.raises(bq.SpectrumError):
bq.Spectrum(spec_data, cps=spec_data)
with pytest.raises(bq.SpectrumError):
bq.Spectrum(bin_edges_kev=TEST_EDGES_KEV)
bad_edges = TEST_EDGES_KEV.copy()
bad_edges[12] = bad_edges[9]
with pytest.raises(ValueError):
bq.Spectrum(spec_data, bin_edges_kev=bad_edges)
def test_uncalibrated_exception(uncal_spec):
"""Test UncalibratedError."""
with pytest.raises(bq.UncalibratedError):
uncal_spec.bin_centers_kev
def test_negative_input(spec_data):
"""Make sure negative values in counts throw an exception,
and exception is not raised if uncs are provided."""
neg_spec = spec_data[:]
neg_spec[::2] *= -1
neg_uncs = np.where(neg_spec < 0, np.nan, 1)
with pytest.raises(bq.SpectrumError):
spec = bq.Spectrum(neg_spec)
spec = bq.Spectrum(neg_spec, uncs=neg_uncs)
assert np.any(spec.counts_vals < 0)
assert np.any(np.isnan(spec.counts_uncs))
@pytest.mark.parametrize("spec_type", ["uncal", "cal", "uncal_long", "cal"])
def test_init_with_lists(spec_type):
spec = make_spec(spec_type)
assert np.all(
bq.Spectrum(
counts=list(spec.counts_vals),
bin_edges_raw=spec.bin_edges_raw,
).counts_vals
== spec.counts_vals
)
# ----------------------------------------------
# Test Spectrum.from_listmode behavior
# ----------------------------------------------
NBINS = 100
NEDGES = NBINS + 1
MEAN = 1000.0
STDDEV = 50.0
NSAMPLES = 10000
XMIN, XMAX = 0.0, 2000.0
BW = (XMAX - XMIN) / (1.0 * NBINS)
lmd = np.random.normal(MEAN, STDDEV, NSAMPLES)
log_bins = np.logspace(1, 4, num=NEDGES, base=10.0)
def make_spec_listmode(t, is_cal=False, apply_cal=False):
if t == "uniform":
spec = bq.Spectrum.from_listmode(
lmd, is_cal=is_cal, bins=NBINS, xmin=XMIN, xmax=XMAX
)
elif t == "log":
spec = bq.Spectrum.from_listmode(lmd, is_cal=is_cal, bins=log_bins)
elif t == "default":
spec = bq.Spectrum.from_listmode(lmd, is_cal=is_cal)
else:
return t
if apply_cal:
cal = bq.Calibration.from_linear([0.0, TEST_GAIN])
spec.apply_calibration(cal)
assert spec.energy_cal is not None
return spec
@pytest.mark.parametrize("is_cal", [False, True])
@pytest.mark.parametrize("apply_cal", [None, False, True])
def test_listmode_uniform(is_cal, apply_cal):
"""Test listmode spectra with uniform binning.
It's easy to introduce off-by-one errors in histogramming listmode data,
so run quite a few sanity checks here and in the following tests.
"""
if is_cal and apply_cal:
return
spec = make_spec_listmode("uniform", is_cal, apply_cal)
xmin, xmax, bw = XMIN, XMAX, BW
if apply_cal and not is_cal:
xmin *= TEST_GAIN
xmax *= TEST_GAIN
bw *= TEST_GAIN
edges, widths, _ = spec.get_bin_properties()
assert len(spec) == NBINS
assert np.all(np.isclose(widths, bw))
assert edges[0] == xmin
assert edges[-1] == xmax
assert len(edges) == NBINS + 1
assert spec.has_uniform_bins()
@pytest.mark.parametrize("is_cal", [False, True])
@pytest.mark.parametrize("apply_cal", [None, False, True])
def test_listmode_non_uniform(is_cal, apply_cal):
"""Test listmode spectra with non-uniform bins."""
if is_cal and apply_cal:
return
spec = make_spec_listmode("log", is_cal, apply_cal)
assert len(spec) == NBINS
assert spec.has_uniform_bins() is False
@pytest.mark.parametrize("is_cal", [False, True])
@pytest.mark.parametrize("apply_cal", [None, False, True])
def test_listmode_no_args(is_cal, apply_cal):
"""Test listmode spectra without args."""
spec = make_spec_listmode("default", is_cal, apply_cal)
assert len(spec) == int(np.ceil(max(lmd)))
def test_listmode_is_cal():
"""Test that initially-calibrated listmode data matches uncal data."""
spec = make_spec_listmode("default", is_cal=True)
e0, w0, c0 = spec.get_bin_properties(use_kev=True)
e1, w1, c1 = spec.get_bin_properties(use_kev=False)
assert np.allclose(e0, e1)
assert np.allclose(w0, w1)
assert np.allclose(c0, c1)
@pytest.mark.parametrize("spec_str", ["uniform", "log"])
@pytest.mark.parametrize("is_cal", [False, True])
@pytest.mark.parametrize("apply_cal", [None, False, True])
def test_find_bin_index(spec_str, is_cal, apply_cal):
"""Test that find_bin_index works for various spectrum objects."""
spec = make_spec_listmode(spec_str, is_cal, apply_cal)
edges, widths, _ = spec.get_bin_properties()
xmin, xmax = edges[0], edges[-1]
assert spec.find_bin_index(xmin) == 0
assert spec.find_bin_index(xmin + widths[0] / 4.0) == 0
assert spec.find_bin_index(xmax - widths[-1] / 4.0) == len(spec) - 1
assert np.all(spec.find_bin_index(edges[:-1]) == np.arange(len(spec)))
@pytest.mark.parametrize("spec_str", ["uniform", "default", "log"])
@pytest.mark.parametrize("is_cal", [False, True])
@pytest.mark.parametrize("apply_cal", [None, False, True])
def test_index_out_of_bounds(spec_str, is_cal, apply_cal):
"""Raise a SpectrumError when we look for a bin index out of bounds, or an
UncalibratedError when we ask to search bin_edges_kev in an uncal spectrum.
"""
spec = make_spec_listmode(spec_str, is_cal, apply_cal)
edges, widths, _ = spec.get_bin_properties()
xmin, xmax = edges[0], edges[-1]
# out of histogram bounds
with pytest.raises(bq.SpectrumError):
spec.find_bin_index(xmax)
with pytest.raises(bq.SpectrumError):
spec.find_bin_index(xmin - widths[0] / 4.0)
# UncalibratedError if not calibrated and we ask for calibrated
if not spec.is_calibrated:
with pytest.raises(bq.UncalibratedError):
spec.find_bin_index(xmin, use_kev=True)
@pytest.mark.parametrize("is_cal", [False, True])
@pytest.mark.parametrize("apply_cal", [None, False, True])
def test_bin_index_types(is_cal, apply_cal):
"""Additional bin index type checking."""
spec = make_spec_listmode("uniform", is_cal, apply_cal)
assert isinstance(spec.find_bin_index(XMIN), (int, np.integer))
assert isinstance(spec.find_bin_index([XMIN]), np.ndarray)
# ----------------------------------------------
# Test Spectrum repr behavior
# ----------------------------------------------
def test_repr(cal_spec):
repr(cal_spec)
def test_str(cal_spec):
str(cal_spec)
# ----------------------------------------------
# Test Spectrum livetime properties
# ----------------------------------------------
@pytest.fixture(params=[86400, 300.6, 0.88])
def livetime(request):
return request.param
def test_livetime_arg(spec_data, livetime):
"""Test manual livetime input."""
spec = bq.Spectrum(spec_data, livetime=livetime)
assert spec.livetime == livetime
def test_livetime_arg_cps(spec_data, livetime):
"""Test manual livetime input with CPS."""
cps = spec_data / float(livetime)
spec = bq.Spectrum(cps=cps, livetime=livetime)
assert spec.livetime == livetime
def test_no_livetime(spec_data):
"""Test livetime property when not specified."""
spec = bq.Spectrum(spec_data)
assert spec.livetime is None
cps_spec = bq.Spectrum(cps=spec_data / 300.6)
assert cps_spec.livetime is None
# ----------------------------------------------
# Test start_time, stop_time, realtime
# ----------------------------------------------
@pytest.mark.parametrize(
"start, stop",
[
(
datetime.datetime(2017, 1, 1, 17, 0, 3),
datetime.datetime(2017, 1, 1, 18, 0, 3),
),
("2017-01-19 17:21:00", "2017-01-20 14:19:32"),
(datetime.datetime(2017, 1, 1, 0, 30, 0, 385), "2017-01-01 12:44:22"),
],
)
@pytest.mark.parametrize("rt", [3600, 2345.6])
def test_acqtime_construction(spec_data, start, stop, rt):
"""Test construction with 2 out of 3 of start, stop, and realtime."""
bq.Spectrum(spec_data, start_time=start, stop_time=stop)
bq.Spectrum(spec_data, start_time=start, realtime=rt)
bq.Spectrum(spec_data, realtime=rt, stop_time=stop)
@pytest.mark.parametrize(
"start, stop, rt, expected_err",
[
("2017-01-19 17:21:00", "2017-01-20 17:21:00", 86400, bq.SpectrumError),
("2017-01-19 17:21:00", "2017-01-18 17:21:00", None, ValueError),
],
)
def test_bad_acqtime_construction(spec_data, start, stop, rt, expected_err):
"""Test bad construction of a spectrum with start, stop, or realtimes."""
with pytest.raises(expected_err):
bq.Spectrum(spec_data, start_time=start, stop_time=stop, realtime=rt)
def test_bad_realtime_livetime(spec_data):
"""Test error of livetime > realtime."""
with pytest.raises(ValueError):
bq.Spectrum(spec_data, livetime=300, realtime=290)
# ----------------------------------------------
# Test uncertainties in Spectrum
# ----------------------------------------------
def test_construct_float_int(spec_data):
"""Construct spectrum with non-UFloats (float and int)."""
spec = bq.Spectrum(spec_data)
assert isinstance(spec.counts[0], UFloat)
spec = bq.Spectrum(spec_data.astype(float))
assert isinstance(spec.counts[0], UFloat)
def test_construct_ufloat(spec_data):
"""Construct spectrum with UFloats"""
ucounts = unumpy.uarray(spec_data, np.ones_like(spec_data))
spec = bq.Spectrum(ucounts)
assert isinstance(spec.counts[0], UFloat)
assert spec.counts[0].std_dev == 1
def test_construct_float_int_uncs(spec_data):
"""Construct spectrum with non-UFloats and specify uncs."""
uncs = np.ones_like(spec_data)
spec = bq.Spectrum(spec_data, uncs=uncs)
assert isinstance(spec.counts[0], UFloat)
uncs2 = np.array([c.std_dev for c in spec.counts])
assert np.allclose(uncs2, 1)
def test_construct_errors(spec_data):
"""Construct spectrum with UFloats plus uncs and get an error."""
uncs = np.ones_like(spec_data)
ucounts = unumpy.uarray(spec_data, uncs)
with pytest.raises(bq.core.utils.UncertaintiesError):
bq.Spectrum(ucounts, uncs=uncs)
ucounts[0] = 1
with pytest.raises(bq.core.utils.UncertaintiesError):
bq.Spectrum(ucounts)
def test_properties(spec_data):
"""Test counts_vals and counts_uncs."""
spec = bq.Spectrum(spec_data)
assert isinstance(spec.counts[0], UFloat)
assert np.allclose(spec.counts_vals, spec_data)
expected_uncs = np.sqrt(spec_data)
expected_uncs[expected_uncs == 0] = 1
assert np.allclose(spec.counts_uncs, expected_uncs)
uncs = spec_data
ucounts = unumpy.uarray(spec_data, uncs)
spec = bq.Spectrum(ucounts)
assert np.allclose(spec.counts_vals, spec_data)
assert np.allclose(spec.counts_uncs, uncs)
uncs = np.ones_like(spec_data)
spec = bq.Spectrum(spec_data, uncs=uncs)
assert np.allclose(spec.counts_uncs, uncs)
# ----------------------------------------------
# Test Spectrum.bin_widths
# ----------------------------------------------
def test_bin_widths_kev(cal_spec):
"""Test Spectrum.bin_widths_kev"""
cal_spec.bin_widths_kev
assert len(cal_spec.bin_widths_kev) == len(cal_spec.counts)
assert np.allclose(cal_spec.bin_widths_kev, TEST_GAIN)
def test_bin_widths_uncal(uncal_spec):
"""Test Spectrum.bin_widths_raw"""
uncal_spec.bin_widths_raw
assert len(uncal_spec.bin_widths_raw) == len(uncal_spec.counts)
# ----------------------------------------------
# Test Spectrum CPS and CPS/keV
# ----------------------------------------------
@pytest.mark.parametrize(
"construction_kwargs",
[
{"livetime": 300.0},
{"livetime": 300.0, "bin_edges_kev": TEST_EDGES_KEV},
],
)
def test_cps(spec_data, construction_kwargs):
"""Test cps property and uncertainties on uncal and cal spectrum."""
spec = bq.Spectrum(spec_data, **construction_kwargs)
spec.cps
spec.cps_vals
spec.cps_uncs
assert np.all(spec.counts_vals == spec_data)
assert np.allclose(spec.cps_vals, spec_data / spec.livetime)
assert np.allclose(spec.cps_uncs, spec.counts_uncs / spec.livetime)
def test_cpskev(spec_data, livetime):
"""Test cpskev property and uncertainties"""
spec = bq.Spectrum(spec_data, livetime=livetime, bin_edges_kev=TEST_EDGES_KEV)
spec.cpskev
spec.cpskev_vals
spec.cpskev_uncs
assert np.allclose(
spec.cpskev_vals, spec_data / spec.bin_widths_kev / float(livetime)
)
assert np.allclose(
spec.cpskev_uncs, spec.counts_uncs / spec.bin_widths_kev / float(livetime)
)
def test_cps_cpsspec(spec_data, livetime):
"""Test cps property of CPS-style spectrum."""
spec = bq.Spectrum(cps=spec_data / float(livetime))
assert spec.cps is not None
assert np.all(spec.cps_vals == spec_data / float(livetime))
assert np.all(np.isnan(spec.cps_uncs))
with pytest.raises(bq.SpectrumError):
spec.counts
with pytest.raises(bq.SpectrumError):
spec.counts_vals
with pytest.raises(bq.SpectrumError):
spec.counts_uncs
def test_cps_errors(uncal_spec):
"""Test errors in CPS."""
with pytest.raises(bq.SpectrumError):
uncal_spec.cps
def test_cpskev_errors(spec_data):
"""Test errors in CPS/keV."""
spec = bq.Spectrum(spec_data, livetime=300.9)
with pytest.raises(bq.UncalibratedError):
spec.cpskev
# ----------------------------------------------
# Test addition and subtraction of spectra
# ----------------------------------------------
@pytest.mark.parametrize(
"lt1, lt2", [(300, 600), (12.6, 0.88), (300, 12.6), (12.6, None), (None, None)]
)
@pytest.mark.parametrize("type1, type2", [("uncal", "uncal"), ("cal", "cal")])
def test_add(type1, type2, lt1, lt2):
"""Test addition of spectra"""
spec1, spec2 = (make_spec(type1, lt=lt1), make_spec(type2, lt=lt2))
if lt1 and lt2:
tot = spec1 + spec2
assert tot.livetime == lt1 + lt2
else:
with pytest.warns(bq.SpectrumWarning):
tot = spec1 + spec2
assert tot.livetime is None
assert np.all(tot.counts == spec1.counts + spec2.counts)
assert np.all(tot.counts_vals == spec1.counts_vals + spec2.counts_vals)
@pytest.mark.parametrize(
"type1, type2, expected_error",
[
("uncal", "cal", bq.SpectrumError),
("uncal", "uncal_long", bq.SpectrumError),
("uncal", "data", TypeError),
("data", "uncal", TypeError),
("uncal", 5, TypeError),
(5, "cal", TypeError),
("cal", "asdf", TypeError),
("asdf", "uncal", TypeError),
("uncal", "data", TypeError),
("cal", "cal_new", NotImplementedError),
],
)
def test_add_sub_errors(type1, type2, expected_error):
"""Test addition and subtraction that causes errors"""
spec1, spec2 = make_spec(type1), make_spec(type2)
with pytest.raises(expected_error):
spec1 + spec2
with pytest.raises(expected_error):
spec1 - spec2
@pytest.mark.parametrize("type1, type2", [("uncal", "uncal"), ("cal", "cal")])
def test_add_uncs(type1, type2):
"""Test uncertainties on addition of uncal spectra"""
spec1, spec2 = make_spec(type1), make_spec(type2)
with pytest.warns(bq.SpectrumWarning):
tot = spec1 + spec2
uncs = np.sqrt(spec1.counts_uncs**2 + spec2.counts_uncs**2)
assert np.allclose(tot.counts_uncs, uncs)
@pytest.mark.parametrize(
"type1, type2, lt1, lt2",
[
("uncal_cps", "uncal_cps", 300, 12.6),
("uncal_cps", "uncal_cps", None, 12.6),
("uncal_cps", "uncal_cps", None, None),
],
)
def test_add_sub_cps(type1, type2, lt1, lt2):
"""Test addition and subtraction of CPS spectra"""
spec1, spec2 = (make_spec(type1, lt=lt1), make_spec(type2, lt=lt2))
tot = spec1 + spec2
assert np.all(tot.cps_vals == spec1.cps_vals + spec2.cps_vals)
assert tot.livetime is None
diff = spec1 - spec2
assert diff.livetime is None
assert np.all(diff.cps_vals == spec1.cps_vals - spec2.cps_vals)
@pytest.mark.parametrize(
"type1, type2, lt1, lt2",
[
("uncal", "uncal_cps", None, None),
("uncal_cps", "uncal", None, None),
("uncal", "uncal_cps", 300, None),
("uncal_cps", "uncal", None, 300),
("uncal", "uncal_cps", 300, 600),
("uncal_cps", "uncal", 600, 300),
],
)
def test_adddition_errors(type1, type2, lt1, lt2):
"""Test errors during addition of mixed spectra"""
spec1, spec2 = (make_spec(type1, lt=lt1), make_spec(type2, lt=lt2))
with pytest.raises(bq.SpectrumError):
spec1 + spec2
@pytest.mark.parametrize("lt1, lt2", [(300, 600), (12.6, 0.88), (300, 12.6)])
@pytest.mark.parametrize("type1, type2", [("uncal", "uncal"), ("cal", "cal")])
def test_subtract_counts(type1, type2, lt1, lt2):
"""Test Spectrum subtraction with counts"""
spec1, spec2 = (make_spec(type1, lt=lt1), make_spec(type2, lt=lt2))
with pytest.warns(bq.SpectrumWarning):
diff = spec1 - spec2
assert diff.livetime is None
assert np.allclose(diff.cps_vals, spec1.cps_vals - spec2.cps_vals)
assert np.all(diff.cps_uncs > spec1.cps_uncs)
assert np.all(diff.cps_uncs > spec2.cps_uncs)
@pytest.mark.parametrize(
"type1, type2, lt1, lt2",
[
("uncal", "uncal_cps", None, None),
("uncal_cps", "uncal", None, None),
("uncal", "uncal_cps", None, 300),
("uncal_cps", "uncal", 300, None),
("uncal", "uncal_cps", 300, None),
("uncal_cps", "uncal", None, 300),
],
)
def test_subtract_errors(type1, type2, lt1, lt2):
"""Test errors/warnings during subtraction of mixed spectra"""
spec1, spec2 = (make_spec(type1, lt=lt1), make_spec(type2, lt=lt2))
if lt1 is None and lt2 is None:
with pytest.raises(bq.SpectrumError):
diff = spec1 - spec2
else:
with pytest.warns(bq.SpectrumWarning):
diff = spec1 - spec2
assert diff.livetime is None
# ----------------------------------------------
# Test multiplication and division of spectra
# ----------------------------------------------
@pytest.mark.parametrize("factor", [0.88, 1, 2, 43.6])
@pytest.mark.parametrize("spectype", ["uncal", "cal"])
def test_basic_mul_div(spectype, factor):
"""
Basic multiplication/division of uncalibrated spectrum by a scalar.
"""
spec = make_spec(spectype)
mult_left = spec * factor
assert np.allclose(mult_left.counts_vals, factor * spec.counts_vals)
assert np.allclose(mult_left.counts_uncs, factor * spec.counts_uncs)
assert mult_left.livetime is None
mult_right = factor * spec
assert np.allclose(mult_right.counts_vals, factor * spec.counts_vals)
assert np.allclose(mult_right.counts_uncs, factor * spec.counts_uncs)
assert mult_right.livetime is None
div = spec / factor
assert np.allclose(div.counts_vals, spec.counts_vals / factor)
assert np.allclose(div.counts_uncs, spec.counts_uncs / factor)
assert div.livetime is None
@pytest.mark.parametrize("factor", [0.88, 1, 2, 43.6])
def test_cps_mul_div(uncal_spec_cps, factor):
"""Multiplication/division of a CPS spectrum."""
mult_left = uncal_spec_cps * factor
assert np.allclose(mult_left.cps_vals, factor * uncal_spec_cps.cps_vals)
assert mult_left.livetime is None
mult_right = factor * uncal_spec_cps
assert np.allclose(mult_right.cps_vals, factor * uncal_spec_cps.cps_vals)
assert mult_right.livetime is None
div = uncal_spec_cps / factor
assert np.allclose(div.cps_vals, uncal_spec_cps.cps_vals / factor)
assert div.livetime is None
@pytest.mark.parametrize("factor", [ufloat(0.88, 0.01), ufloat(1, 0.1), ufloat(43, 1)])
@pytest.mark.parametrize("spectype", ["uncal", "cal"])
def test_uncal_mul_div_uncertainties(spectype, factor):
"""
Multiplication/division of uncal spectrum by a scalar with uncertainty.
"""
spec = make_spec(spectype)
mult_left = spec * factor
assert np.allclose(mult_left.counts_vals, factor.nominal_value * spec.counts_vals)
assert np.all(
(mult_left.counts_uncs > factor.nominal_value * spec.counts_uncs)
| (spec.counts_vals == 0)
)
assert mult_left.livetime is None
mult_right = factor * spec
assert np.allclose(mult_right.counts_vals, factor.nominal_value * spec.counts_vals)
assert np.all(
(mult_right.counts_uncs > factor.nominal_value * spec.counts_uncs)
| (spec.counts_vals == 0)
)
assert mult_right.livetime is None
div = spec / factor
assert np.allclose(div.counts_vals, spec.counts_vals / factor.nominal_value)
assert np.all(
(div.counts_uncs > spec.counts_uncs / factor.nominal_value)
| (spec.counts_vals == 0)
)
assert div.livetime is None
@pytest.mark.parametrize(
"type1, type2, error",
[
("uncal", "uncal", TypeError),
("uncal", "asdf", TypeError),
("uncal", "data", TypeError),
("uncal", 0, ValueError),
("uncal", np.inf, ValueError),
("uncal", np.nan, ValueError),
("uncal", ufloat(0, 1), ValueError),
("uncal", ufloat(np.inf, np.nan), ValueError),
],
)
def test_mul_div_errors(type1, type2, error):
"""Multiplication/division errors."""
spec, bad_factor = make_spec(type1), make_spec(type2)
with pytest.raises(error):
spec * bad_factor
with pytest.raises(error):
bad_factor * spec
with pytest.raises(error):
spec / bad_factor
# ----------------------------------------------
# Test Spectrum.calibrate_like
# ----------------------------------------------
def test_calibrate_like(uncal_spec, cal_spec):
"""Test calibrate_like with an uncalibrated spectrum."""
uncal_spec.calibrate_like(cal_spec)
assert uncal_spec.is_calibrated
assert np.all(uncal_spec.bin_edges_kev == cal_spec.bin_edges_kev)
def test_recalibrate_like(cal_spec):
"""Test calibrate_like with an already calibrated spectrum."""
cal_new = make_spec("cal_new")
edges1 = cal_spec.bin_edges_kev
cal_spec.calibrate_like(cal_new)
assert cal_spec.is_calibrated
assert np.all(cal_spec.bin_edges_kev == cal_new.bin_edges_kev)
assert cal_spec.bin_edges_kev[-1] != edges1[-1]
def test_calibrate_like_error(uncal_spec, uncal_spec_2):
"""Test that calibrate_like raises an error if arg is uncalibrated"""
with pytest.raises(bq.UncalibratedError):
uncal_spec.calibrate_like(uncal_spec_2)
def test_calibrate_like_copy(uncal_spec, cal_spec):
"""Test that calibrate_like makes a copy of the bin edges"""
uncal_spec.calibrate_like(cal_spec)
assert uncal_spec.bin_edges_kev is not cal_spec.bin_edges_kev
cal_spec.rm_calibration()
assert uncal_spec.is_calibrated
# ----------------------------------------------
# Test Spectrum.combine_bins
# ----------------------------------------------
@pytest.mark.parametrize("spectype", ["uncal", "cal", "uncal_cps"])
def test_combine_bins(spectype):
"""Test combine_bins with no padding."""
spec = make_spec(spectype)
f = 8
combined = spec.combine_bins(f)
assert len(combined) == TEST_DATA_LENGTH / f
if spec._counts is not None:
assert combined.counts_vals[0] == np.sum(spec.counts_vals[:f])
assert np.sum(combined.counts_vals) == np.sum(spec.counts_vals)
else:
assert combined.cps_vals[0] == np.sum(spec.cps_vals[:f])
assert np.sum(combined.cps_vals) == np.sum(spec.cps_vals)
@pytest.mark.parametrize("spectype", ["uncal", "cal", "uncal_cps"])
def test_combine_bins_padding(spectype):
"""Test combine_bins with padding (an uneven factor)."""
spec = make_spec(spectype)
f = 10
combined = spec.combine_bins(f)
assert len(combined) == np.ceil(float(TEST_DATA_LENGTH) / f)
if spec._counts is not None:
assert combined.counts_vals[0] == np.sum(spec.counts_vals[:f])
assert np.sum(combined.counts_vals) == np.sum(spec.counts_vals)
else:
assert combined.cps_vals[0] == np.sum(spec.cps_vals[:f])
assert np.sum(combined.cps_vals) == np.sum(spec.cps_vals)
# calibration methods tested in energycal_test.py
# ----------------------------------------------
# Test Spectrum.downsample
# ----------------------------------------------
@pytest.mark.parametrize("spectype", ["uncal", "cal"])
@pytest.mark.parametrize("f", [2, 1.5, 999.99])
def test_downsample(spectype, f):
"""Test Spectrum.downsample on uncalibrated and calibrated spectra"""
spec = make_spec(spectype, lam=1000)
s1 = np.sum(spec.counts_vals)
spec2 = spec.downsample(f)
s2 = np.sum(spec2.counts_vals)
r = float(s2) / s1
five_sigma = 5 * np.sqrt(s1 / f) / (s1 / f)
assert np.isclose(r, 1.0 / f, atol=five_sigma)
def test_no_downsample(cal_spec):
"""Test that downsample(1) doesn't do anything"""
s1 = np.sum(cal_spec.counts_vals)
spec2 = cal_spec.downsample(1.0)
s2 = np.sum(spec2.counts_vals)
assert s1 == s2
def test_zero_downsample(cal_spec):
"""Test that downsample(very large number) gives 0"""
spec2 = cal_spec.downsample(10**10)
s2 = np.sum(spec2.counts_vals)
assert s2 == 0
def test_downsample_handle_livetime(cal_spec):
"""Test handle_livetime behavior"""
f = 2
test_livetime = 300.0
cal_spec.livetime = test_livetime
spec2 = cal_spec.downsample(f)
assert spec2.livetime is None
spec3 = cal_spec.downsample(f, handle_livetime="preserve")
assert spec3.livetime == cal_spec.livetime
spec4 = cal_spec.downsample(f, handle_livetime="reduce")
assert spec4.livetime == cal_spec.livetime / f
def test_downsample_error(cal_spec):
"""Test that downsample(<1) raises ValueError"""
with pytest.raises(ValueError):
cal_spec.downsample(0.5)
def test_downsample_cps_error(uncal_spec_cps):
"""Test that downsampling a CPS spectrum gives a SpectrumError"""
with pytest.raises(bq.SpectrumError):
uncal_spec_cps.downsample(12)
def test_downsample_handle_livetime_error(uncal_spec):
"""Test bad value of handle_livetime"""
with pytest.raises(ValueError):
uncal_spec.downsample(5, handle_livetime="asdf")
# ----------------------------------------------
# Test Spectrum.__len__
# ----------------------------------------------
@pytest.fixture(params=[1, 8, 256, 16384])
def length(request):
return request.param
def test_len(length):
"""Test len(spectrum)"""
floatdata = np.random.poisson(lam=TEST_COUNTS, size=length)
spec = bq.Spectrum(floatdata.astype(int))
assert len(spec) == length
def test_len_cps(length, livetime):
"""Test len(spectrum) for a CPS-based spectrum"""
floatdata = np.random.poisson(lam=TEST_COUNTS, size=length)
spec = bq.Spectrum(cps=floatdata / livetime)
assert len(spec) == length
# ----------------------------------------------
# Test Spectrum.copy
# ----------------------------------------------
def test_copy_uncal(uncal_spec):
"""Test copy method on uncal spectrum"""
uncal2 = uncal_spec.copy()
assert np.all(uncal2.counts_vals == uncal_spec.counts_vals)
assert np.all(uncal2.counts_uncs == uncal_spec.counts_uncs)
assert uncal2 is not uncal_spec
assert uncal2.counts is not uncal_spec.counts
assert uncal2.counts[0] is not uncal_spec.counts[0]
def test_copy_cal(cal_spec):
"""Test copy method on cal spectrum"""
cal2 = cal_spec.copy()
assert np.all(cal2.counts_vals == cal_spec.counts_vals)
assert np.all(cal2.counts_uncs == cal_spec.counts_uncs)
assert np.all(cal2.bin_edges_kev == cal_spec.bin_edges_kev)
assert cal2 is not cal_spec
assert cal2.counts is not cal_spec.counts
assert cal2.counts[0] is not cal_spec.counts[0]
assert cal2.bin_edges_kev is not cal_spec.bin_edges_kev
# ----------------------------------------------
# Test Spectrum.rebin
# ----------------------------------------------
@pytest.fixture(
params=[
TEST_EDGES_KEV.copy(),
TEST_EDGES_KEV.copy()[1:-2],
np.linspace(
TEST_EDGES_KEV.min(), TEST_EDGES_KEV.max(), len(TEST_EDGES_KEV) + 10
),
],
ids=["same edges", "subset of edges", "same bounds more bins"],
)
def rebin_new_edges(request):
return request.param.astype(float)
@pytest.fixture(
params=["interpolation", "listmode"],
ids=["interpolation method", "listmode method"],
)
def rebin_method(request):
return request.param
@pytest.fixture(
params=[("uncal", 300), ("uncal", None), ("cal_cps", None)],
ids=[
"uncalibrated spectrum with livetime",
"uncalibrated spectrum without livetime",
"calibrated spectrum with cps",
],
)
def rebin_spectrum_failure(request):
return make_spec(request.param[0], lt=request.param[1])
def test_spectrum_rebin_failure(rebin_spectrum_failure, rebin_new_edges, rebin_method):
with pytest.raises(bq.SpectrumError):
rebin_spectrum_failure.rebin(
rebin_new_edges, method=rebin_method, zero_pad_warnings=False
)
@pytest.fixture(
params=[("cal", 300), ("cal", None), ("cal_cps", 300)],
ids=[
"calibrated spectrum with livetime",
"calibrated spectrum without livetime",
"calibrated spectrum with cps and livetime",
],
)
def rebin_spectrum_success(request):
return make_spec(request.param[0], lt=request.param[1])
def test_spectrum_rebin_success(rebin_spectrum_success, rebin_new_edges, rebin_method):
kwargs = dict(
out_edges=rebin_new_edges, method=rebin_method, zero_pad_warnings=False
)
if (rebin_spectrum_success._counts is None) and (rebin_method == "listmode"):
with pytest.warns(bq.SpectrumWarning):
spec = rebin_spectrum_success.rebin(**kwargs)
else:
spec = rebin_spectrum_success.rebin(**kwargs)
assert np.isclose(rebin_spectrum_success.counts_vals.sum(), spec.counts_vals.sum())
if rebin_spectrum_success.livetime is None:
assert spec.livetime is None
else:
assert | np.isclose(rebin_spectrum_success.livetime, spec.livetime) | numpy.isclose |
# -*- coding: utf-8 -*-
"""
Spyder Editor
Code written by <NAME> with modifications by <NAME> and <NAME>
This file produces plots comparing our first order sensitivity with BS vega.
"""
# %%
# To run the stuff, you need the package plotly in your anaconda "conda install plotly"
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import plotly.io as pio
init_notebook_mode()
pio.renderers.default='svg'
import numpy as np
import numpy.random
import pandas as pd
from scipy.stats import norm, multivariate_normal
from scipy.optimize import minimize
import time
_tstart_stack = []
def tic():
_tstart_stack.append(time.time())
def toc(fmt="Elapsed: %s s"):
print(fmt % (time.time() - _tstart_stack.pop()))
# %%
# We first provide the computation of a call option according to BS (we assume Log normal distribution)
# definition of the dplus and minus functions
# and the BS formula.
def dplus(S, K, T, sigma):
sigmaT = sigma * T ** 0.5
return np.log(S/K)/sigmaT + sigmaT/2
def dminus(S, K, T, sigma):
sigmaT = sigma * T ** 0.5
return np.log(S/K)/sigmaT - sigmaT/2
def BS(S, K, T, sigma, Type = 1):
factor1 = S * norm.cdf(Type * dplus(S, K, T, sigma))
factor2 = K * norm.cdf(Type * dminus(S, K, T, sigma))
return Type * (factor1 - factor2)
# Now we provide the computation for the exact call according to the computations in BDT
# We take p = 2
def Robust_Call_Exact_fun(S, K, T, sigma, delta):
def fun(v): #v[0] = a, v[1] = lambda
price = BS(S,max(K - (2 * v[0] + 1)/ (2 * v[1]),0.000001), T, sigma)
return price + v[0] ** 2 / (2 * v[1]) + 0.5 * v[1] * delta ** 2
def cons_fun(v): # the value of v[0] should be constrained to keep strike positive
tmp = K - (2 * v[0] + 1)/ (2 * v[1])
return tmp
cons = ({'type': 'ineq', 'fun' : cons_fun})
guess = | np.array([0, 1]) | numpy.array |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import math
import onnx
from onnx import helper, TensorProto, mapping
import torch
import torchvision
import topi
import topi.testing
import tvm
from tvm import te
from tvm import relay
from tvm.contrib import graph_runtime
from tvm.relay.testing.config import ctx_list
import scipy
def get_input_data_shape_dict(graph_def, input_data):
if isinstance(input_data, list):
input_names = {}
shape_dict = {}
for i, _ in enumerate(input_data):
input_names[i] = graph_def.graph.input[i].name
shape_dict[input_names[i]] = input_data[i].shape
else:
input_names = graph_def.graph.input[0].name
shape_dict = {input_names: input_data.shape}
return input_names, shape_dict
def get_tvm_output_with_vm(graph_def, input_data, target, ctx, opset=None):
""" Generic function to execute and get tvm output with vm executor"""
_, shape_dict = get_input_data_shape_dict(graph_def, input_data)
mod, params = relay.frontend.from_onnx(graph_def, shape_dict, opset=opset)
ex = relay.create_executor('vm', mod=mod, ctx=ctx, target=target)
indata = tvm.nd.array(input_data)
result = ex.evaluate()(indata)
return result.asnumpy()
def get_tvm_output(graph_def, input_data, target, ctx, output_shape=None, output_dtype='float32', opset=None):
""" Generic function to execute and get tvm output"""
target = 'llvm'
input_names, shape_dict = get_input_data_shape_dict(graph_def, input_data)
mod, params = relay.frontend.from_onnx(graph_def, shape_dict, opset=opset)
with tvm.transform.PassContext(opt_level=1):
graph, lib, params = relay.build(mod,
target,
params=params)
ctx = tvm.cpu(0)
m = graph_runtime.create(graph, lib, ctx)
# set inputs
if isinstance(input_data, list):
for i, e in enumerate(input_names):
# Its possible for some onnx inputs to not be needed in the tvm
# module, confirm its present before setting.
try:
m.set_input(input_names[i], tvm.nd.array(
input_data[i].astype(input_data[i].dtype)))
except:
continue
else:
m.set_input(input_names, tvm.nd.array(
input_data.astype(input_data.dtype)))
m.set_input(**params)
# execute
m.run()
# get outputs
if isinstance(output_shape, list) and isinstance(output_dtype, list):
tvm_output_list = []
for i, _ in enumerate(output_shape):
tvm_output = m.get_output(i)
tvm_output_list.append(tvm_output.asnumpy())
return tvm_output_list
else:
tvm_output = m.get_output(0)
return tvm_output.asnumpy()
def get_onnxruntime_output(model, inputs, dtype='float32'):
import onnxruntime.backend
rep = onnxruntime.backend.prepare(model, 'CPU')
if isinstance(inputs, list) and len(inputs) > 1:
ort_out = rep.run(inputs)
else:
x = inputs.astype(dtype)
ort_out = rep.run(x)[0]
return ort_out
def verify_onnx_forward_impl(graph_file, data_shape, out_shape):
dtype = 'float32'
x = np.random.uniform(size=data_shape)
model = onnx.load_model(graph_file)
c2_out = get_onnxruntime_output(model, x, dtype)
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, x, target, ctx, out_shape, dtype)
tvm.testing.assert_allclose(c2_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_reshape():
in_shape = (4, 3, 3, 4)
ref_shape = (6, 2, 4, 3)
ref_array = np.array(ref_shape)
ref_node = onnx.helper.make_node('Constant',
inputs=[],
outputs=['ref_in'],
value=onnx.helper.make_tensor(name='const_tensor',
data_type=onnx.TensorProto.INT32,
dims=ref_array.shape,
vals=ref_array.flatten().astype(int)))
reshape_node = helper.make_node("Reshape", ["in", "ref_in"], ["out"])
graph = helper.make_graph([ref_node, reshape_node],
"reshape_test",
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(ref_shape))])
model = helper.make_model(graph, producer_name='reshape_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('int32')
tvm_out = get_tvm_output(model, x, target, ctx, ref_shape, 'float32')
tvm.testing.assert_allclose(ref_shape, tvm_out.shape)
def test_expand():
def _test_expand(name, data, shape, ref_data):
shape_array = np.array(shape)
shape_node = onnx.helper.make_node('Constant',
inputs=[],
outputs=['shape'],
value=onnx.helper.make_tensor(name = 'const_tensor',
data_type = onnx.TensorProto.INT32,
dims = shape_array.shape,
vals = shape_array.flatten().astype('int32')))
expand_node = helper.make_node("Expand", ["in", "shape"], ["out"])
graph = helper.make_graph([shape_node, expand_node],
"expand_test",
inputs = [helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(data.shape))],
outputs = [helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(ref_data.shape))])
model = helper.make_model(graph, producer_name=name)
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, data, target, ctx, ref_data.shape, 'float32')
tvm.testing.assert_allclose(ref_data, tvm_out)
in_shape = (3, 1)
shape = (3, 4)
data = np.random.uniform(size=in_shape).astype(np.float32)
ref_data = np.tile(data, 4)
_test_expand('expand_with_dim_unchanged_test', data, shape, ref_data)
in_shape = (3, 1)
shape = (2, 1, 6)
data = np.random.uniform(size=in_shape).astype(np.float32)
ref_data = data * np.ones(shape, dtype=np.float32)
_test_expand('expand_with_dim_changed_test', data, shape, ref_data)
def verify_depth_to_space(inshape, outshape, mode, blockSize):
node = onnx.helper.make_node('DepthToSpace',
inputs=['x'],
outputs=['y'],
blocksize=blockSize)
graph = helper.make_graph([node],
"depth_to_space_test",
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))])
model = helper.make_model(graph, producer_name='depth_to_space_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=inshape).astype('float32')
tvm_out = get_tvm_output(model, x, target, ctx, outshape, 'float32')
onnx_out = get_onnxruntime_output(model, x, 'float32')
tvm.testing.assert_allclose(onnx_out, tvm_out)
def test_depth_to_space():
# current onnx.checker use OpSet-1 version of DepthToSpace, which doesn't have a mode argument.
# TO-DO, we can add mode arguement to test CRD mode and DCR mode
# in the future when we update to a newer onnx version.
verify_depth_to_space((1, 8, 2, 3), (1, 2, 4, 6), mode="CRD", blockSize=2)
def verify_space_to_depth(inshape, outshape, blockSize):
node = onnx.helper.make_node('SpaceToDepth',
inputs=['x'],
outputs=['y'],
blocksize=blockSize)
graph = helper.make_graph([node],
"space_to_depth_test",
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))])
model = helper.make_model(graph, producer_name='space_to_depth_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=inshape).astype('float32')
tvm_out = get_tvm_output(model, x, target, ctx, outshape, 'float32')
onnx_out = get_onnxruntime_output(model, x, 'float32')
tvm.testing.assert_allclose(onnx_out, tvm_out)
def test_space_to_depth():
verify_space_to_depth((1, 1, 4, 6), (1, 4, 2, 3), 2)
def test_shape():
in_shape = (4, 3, 3, 4)
ref_shape = (6, 2, 4, 3)
ref_array = np.array(ref_shape)
ref_node = onnx.helper.make_node('Constant',
inputs=[],
outputs=['ref_in'],
value=onnx.helper.make_tensor(name='const_tensor',
data_type=onnx.TensorProto.INT32,
dims=ref_array.shape,
vals=ref_array.flatten().astype(int)))
reshape_node = helper.make_node("Reshape", ["in", "ref_in"], ["out"])
shape_node = helper.make_node("Shape", ['out'], ['final_out'])
graph = helper.make_graph([ref_node, reshape_node, shape_node],
"shape_test",
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("final_out",
TensorProto.FLOAT, list(ref_shape))])
model = helper.make_model(graph, producer_name='shape_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('int32')
tvm_out = get_tvm_output(model, x, target, ctx, ref_shape, 'int32')
tvm.testing.assert_allclose(ref_shape, tvm_out)
def _test_power_iteration(x_shape, y_shape):
if isinstance(y_shape, int):
y_shape = [y_shape]
x = np.random.uniform(size=x_shape).astype(np.float32)
y = np.random.uniform(size=y_shape).astype(np.float32)
np_res = np.power(x, y).astype(np.float32)
res = helper.make_node("Pow", ['x', 'y'], ['out'])
graph = helper.make_graph([res],
'power_test',
inputs=[helper.make_tensor_value_info("x",
TensorProto.FLOAT, list(x_shape)),
helper.make_tensor_value_info("y",
TensorProto.FLOAT, list(y_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(np_res.shape))])
model = helper.make_model(graph, producer_name='power_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x, y], target, ctx, np_res.shape)
tvm.testing.assert_allclose(np_res, tvm_out, rtol=1e-5, atol=1e-5)
def test_power():
_test_power_iteration((1, 3), (1))
_test_power_iteration((2, 3), (2, 3))
_test_power_iteration((2, 3), (1, 3))
def test_squeeze():
in_shape = (1, 3, 1, 3, 1, 1)
out_shape = (3, 3)
y = helper.make_node("Squeeze", ['in'], ['out'], axes=[0, 2, 4, 5])
graph = helper.make_graph([y],
'squeeze_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='squeeze_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('float32')
tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_shape, tvm_out.shape)
def test_flatten():
in_shape = (1, 3, 4, 4)
axis = 1
ref_shape = (1, 48)
flatten_node = helper.make_node("Flatten", ["in"], ["out"], axis=axis)
graph = helper.make_graph([flatten_node],
"flatten_test",
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(ref_shape))])
model = helper.make_model(graph, producer_name='flatten_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('int32')
tvm_out = get_tvm_output(model, x, target, ctx, ref_shape, 'float32')
tvm.testing.assert_allclose(ref_shape, tvm_out.shape)
def test_unsqueeze():
in_shape = (3, 3)
axis = (0, 3, 4)
out_shape = (1, 3, 3, 1, 1)
y = helper.make_node("Unsqueeze", ['in'], ['out'], axes=list(axis))
graph = helper.make_graph([y],
'squeeze_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='squeeze_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('float32')
tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_shape, tvm_out.shape)
def verify_gather(in_shape, indices, axis, dtype):
x = np.random.uniform(size=in_shape).astype(dtype)
indices = np.array(indices, dtype="int32")
out_np = np.take(x, indices, axis=axis)
y = helper.make_node("Gather", ['in', 'indices'], ['out'], axis=axis)
graph = helper.make_graph([y],
'gather_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape)),
helper.make_tensor_value_info("indices",
TensorProto.INT32, list(indices.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_np.shape))])
model = helper.make_model(graph, producer_name='gather_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [x, indices], target, ctx, out_np.shape)
tvm.testing.assert_allclose(out_np, tvm_out)
def test_gather():
verify_gather((4,), [1], 0, 'int32')
verify_gather((1, 4), [0], 0, 'int32')
verify_gather((4,), [[[1, 0], [0, 1]]], 0, 'float32')
verify_gather((2, 2), [[[1, 0], [0, 1]]], 1, 'int32')
verify_gather((3, 3, 3), [[[1, 0]]], -1, 'int32')
verify_gather((4, 3, 5, 6), [[2, 1, 0, 0]], 0, 'float32')
def verify_scatter(in_shape, indices, axis):
x = np.random.uniform(size=in_shape).astype("float32")
indices = np.array(indices, dtype="int32")
updates = np.random.uniform(size=indices.shape).astype("float32")
y = helper.make_node("ScatterElements", ['data', 'indices', 'updates'], ['output'], axis=axis)
graph = helper.make_graph([y],
'scatter_test',
inputs=[helper.make_tensor_value_info("data",
TensorProto.FLOAT, list(in_shape)),
helper.make_tensor_value_info("indices",
TensorProto.INT32, list(indices.shape)),
helper.make_tensor_value_info("updates",
TensorProto.FLOAT, list(indices.shape))],
outputs=[helper.make_tensor_value_info("output",
TensorProto.FLOAT, list(in_shape))])
model = helper.make_model(graph, producer_name='scatter_test')
onnx_out = get_onnxruntime_output(model, [x, indices, updates])
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [x, indices, updates], target, ctx, onnx_out[0].shape)
tvm.testing.assert_allclose(onnx_out[0], tvm_out)
def test_scatter():
verify_scatter((4,), [1], 0)
verify_scatter((1, 4), [[0]], 0)
verify_scatter((4,), [2, 3], 0)
verify_scatter((2, 2), [[1, 0], [0, 1]], 1)
verify_scatter((3, 3, 3), [[[-1, -3]]], -1)
verify_scatter((4, 3, 5, 6), [[[[2, 1, 0, 0]]]], 0)
def _test_slice_iteration_v1(indata, outdata, starts, ends, axes=None):
if axes:
y = helper.make_node(
"Slice", ['in'], ['out'], axes=axes, starts=starts, ends=ends)
else:
y = helper.make_node(
"Slice", ['in'], ['out'], starts=starts, ends=ends)
graph = helper.make_graph([y],
'slice_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='slice_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, indata, target, ctx, outdata.shape, 'float32', opset=1)
tvm.testing.assert_allclose(outdata, tvm_out)
def _test_slice_iteration_v10(indata, outdata, starts, ends, axes=None):
if isinstance(starts, int):
starts = (starts, )
if isinstance(ends, int):
ends = (ends, )
if isinstance(axes, int):
axes = (axes, )
starts = np.asarray(starts)
ends = np.asarray(ends)
inputs = [
helper.make_tensor_value_info("data", TensorProto.FLOAT,
list(indata.shape)),
helper.make_tensor_value_info("starts", TensorProto.INT32,
list(starts.shape)),
helper.make_tensor_value_info("ends", TensorProto.INT32,
list(ends.shape))
]
initializer = [
helper.make_tensor("starts", TensorProto.INT32, list(starts.shape),
starts),
helper.make_tensor("ends", TensorProto.INT32, list(ends.shape), ends)
]
if axes:
axes = np.asarray(axes)
y = helper.make_node("Slice", ["data", "starts", "ends", "axes"],
["out"])
inputs.append(
helper.make_tensor_value_info("axes", TensorProto.INT32,
list(axes.shape)))
initializer.append(
helper.make_tensor("axes", TensorProto.INT32, list(axes.shape),
axes))
else:
y = helper.make_node("Slice", ["data", "starts", "ends"], ["out"])
graph = helper.make_graph([y],
'slice_test',
inputs=inputs,
outputs=[
helper.make_tensor_value_info(
"out", TensorProto.FLOAT,
list(outdata.shape))
],
initializer=initializer)
model = helper.make_model(graph, producer_name='slice_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model,
indata,
target,
ctx,
outdata.shape,
'float32',
opset=10)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_slice():
x = np.random.randn(20, 10, 5).astype(np.float32)
_test_slice_iteration_v1(x, x[0:3, 0:10], (0, 0), (3, 10), (0, 1))
_test_slice_iteration_v1(x, x[:, :, 3:4], (0, 0, 3), (20, 10, 4))
_test_slice_iteration_v1(x, x[:, 1:1000], (1), (1000), (1))
_test_slice_iteration_v1(x, x[:, 0:-1], (0), (-1), (1))
_test_slice_iteration_v10(x, x[0:3, 0:10], (0, 0), (3, 10), (0, 1))
_test_slice_iteration_v10(x, x[:, :, 3:4], (0, 0, 3), (20, 10, 4))
_test_slice_iteration_v10(x, x[:, 1:1000], (1), (1000), (1))
_test_slice_iteration_v10(x, x[:, 0:-1], (0), (-1), (1))
def _test_onnx_op_elementwise(inshape, outfunc, npargs, dtype, opname, kwargs):
indata = np.random.uniform(-1, 1, size=inshape).astype(dtype)
outdata = outfunc(indata, **npargs)
y = helper.make_node(opname, ['in'], ['out'], **kwargs)
graph = helper.make_graph([y],
opname+'_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name=opname+'_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, indata, target, ctx, outdata.shape, dtype)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_floor():
_test_onnx_op_elementwise((2, 4, 5, 6), np.floor,
{}, 'float32', 'Floor', {})
def test_ceil():
_test_onnx_op_elementwise((2, 4, 5, 6), np.ceil, {}, 'float32', 'Ceil', {})
def test_clip():
_test_onnx_op_elementwise((2, 4, 5, 6),
np.clip,
{'a_min': -1.0, 'a_max': 1.0},
'float32',
'Clip',
{'min': -1.0, 'max': 1.0})
def test_round():
_test_onnx_op_elementwise((2, 4, 5, 6), np.round, {}, 'float32', 'Round', {})
def _test_finite_ops(inshape, outfunc, npargs, dtype, opname, kwargs):
indata = np.random.choice(a=[np.nan, np.inf, -np.inf, 0.5, 1.0, 0], size=inshape).astype(dtype)
outdata = outfunc(indata, **npargs)
y = helper.make_node(opname, ['in'], ['out'], **kwargs)
graph = helper.make_graph([y],
opname+'_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.BOOL, list(outdata.shape))])
model = helper.make_model(graph, producer_name=opname+'_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, indata, target, ctx, outdata.shape, dtype)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_isinf():
_test_finite_ops((2, 4, 5, 6), np.isinf, {}, 'float32', 'IsInf', {})
def test_isnan():
_test_finite_ops((2, 4, 5, 6), np.isnan, {}, 'float32', 'IsNaN', {})
def verify_gather_nd(in_shape, indices, dtype):
x = np.random.uniform(size=in_shape).astype(dtype)
indices = np.array(indices, dtype="int32")
out_np = topi.testing.gather_nd_python(x, indices)
y = helper.make_node("GatherND", ['in', 'indices'], ['out'])
graph = helper.make_graph([y],
'gather_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape)),
helper.make_tensor_value_info("indices",
TensorProto.INT32, list(indices.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_np.shape))])
model = helper.make_model(graph, producer_name='gather_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [x, indices], target, ctx, out_np.shape)
tvm.testing.assert_allclose(out_np, tvm_out)
def test_gather_nd():
verify_gather_nd((2, 2), [[0,0],[1,1]], 'int32')
verify_gather_nd((3, 3, 3), [[0,1],[1,0]] , 'float32')
verify_gather_nd((4, 3, 5, 6), [[2, 1, 0, 0]], 'float32')
def test_onehot():
indices_shape = [10]
indices_array = np.random.randint(
low=0, high=9, size=indices_shape, dtype='int32')
depth = 10
values = np.asarray([0, 1])
out_np = np.eye(depth)[indices_array.reshape(-1)]
onehot_node = helper.make_node(
"OneHot", ["indices", "depth", "values"], ["out"])
graph = helper.make_graph([onehot_node],
"onehot_test",
inputs=[helper.make_tensor_value_info("indices",
TensorProto.INT32, indices_shape),
helper.make_tensor_value_info("depth",
TensorProto.INT32, [1]),
helper.make_tensor_value_info("values",
TensorProto.INT32, values.shape)],
initializer=[helper.make_tensor("depth", TensorProto.INT32, [1], [depth]),
helper.make_tensor("values", TensorProto.INT32, values.shape, values)],
outputs=[helper.make_tensor_value_info("out", TensorProto.INT32, out_np.shape)])
model = helper.make_model(graph, producer_name="onehot_test")
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [indices_array], target, ctx, out_np.shape)
tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_matmul():
a_shape = (4, 3)
b_shape = (3, 4)
a_array = np.random.uniform(size=a_shape).astype('float32')
b_array = np.random.uniform(size=b_shape).astype('float32')
out_np = np.matmul(a_array, b_array)
mul_node = helper.make_node("MatMul", ["a", "b"], ["out"])
graph = helper.make_graph([mul_node],
"matmul_test",
inputs=[helper.make_tensor_value_info("a",
TensorProto.FLOAT, list(a_shape)),
helper.make_tensor_value_info("b",
TensorProto.FLOAT, list(b_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_np.shape))])
model = helper.make_model(graph, producer_name='matmul_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_array, b_array], target, ctx, out_np.shape)
tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5)
def verify_batch_matmul(a_shape, b_shape):
a_array = np.random.uniform(size=a_shape).astype('float32')
b_array = np.random.uniform(size=b_shape).astype('float32')
out_np = np.matmul(a_array, b_array)
mul_node = helper.make_node("MatMul", ["a", "b"], ["out"])
graph = helper.make_graph([mul_node],
"matmul_test",
inputs=[helper.make_tensor_value_info("a",
TensorProto.FLOAT, list(a_shape)),
helper.make_tensor_value_info("b",
TensorProto.FLOAT, list(b_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_np.shape))])
model = helper.make_model(graph, producer_name='matmul_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_array, b_array], target, ctx, out_np.shape)
tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_batch_matmul():
verify_batch_matmul((2, 3, 4, 3), (2, 3, 3, 4))
verify_batch_matmul((2, 4, 3), (3, 4))
verify_batch_matmul((2, 3, 4, 3), (3, 4))
def verify_lrn(shape, nsize, dtype, alpha=None, beta=None, bias=None):
in_array = np.random.uniform(size=shape).astype(dtype)
if alpha == None and beta == None and bias == None:
alpha = 0.0001
beta = 0.75
bias = 1.0
node = onnx.helper.make_node(
'LRN', inputs=['in'], outputs=['out'], size=nsize)
else:
node = onnx.helper.make_node('LRN', inputs=['in'], outputs=['out'], alpha=alpha,
beta=beta, bias=bias, size=nsize)
graph = helper.make_graph([node],
"lrn_test",
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(shape))])
model = helper.make_model(graph, producer_name='lrn_test')
def _get_python_lrn():
square_sum = np.zeros(shape).astype(dtype)
for n, c, h, w in np.ndindex(in_array.shape):
square_sum[n, c, h, w] = sum(in_array[n,
max(0, c - int(math.floor((nsize - 1) / 2))):
min(5, c + int(math.ceil((nsize - 1) / 2)) + 1),
h,
w] ** 2)
py_out = in_array / ((bias + (alpha / nsize) * square_sum) ** beta)
return py_out
for target, ctx in ctx_list():
input_name = model.graph.input[0].name
py_out = _get_python_lrn()
tvm_out = get_tvm_output(
model, in_array, target, ctx, py_out.shape, 'float32')
tvm.testing.assert_allclose(py_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_lrn():
verify_lrn((5, 5, 5, 5), 3, 'float32')
verify_lrn((5, 5, 5, 5), 3, 'float32', alpha=0.0002, beta=0.5, bias=2.0)
def verify_instance_norm(shape, axis=1):
def _get_python_instance_norm(x, gamma, beta, epsilon=1e-5):
dims_x = len(x.shape)
axis = tuple(range(2, dims_x))
mean = np.mean(x, axis=axis, keepdims=True)
var = np.var(x, axis=axis, keepdims=True)
dim_ones = (1,) * (dims_x - 2)
gamma = gamma.reshape(-1, *dim_ones)
beta = beta.reshape(-1, *dim_ones)
return gamma * (x - mean) / np.sqrt(var + epsilon) + beta
x = np.random.randn(*shape).astype(np.float32)
gamma = np.random.randn(shape[1]).astype(np.float32)
beta = np.random.randn(shape[1]).astype(np.float32)
epsilon = 1e-5
y = _get_python_instance_norm(x, gamma, beta, epsilon).astype(np.float32)
node = onnx.helper.make_node(
'InstanceNormalization',
inputs=['x', 'gamma', 'beta'],
outputs=['y'],
epsilon=epsilon,
)
graph = helper.make_graph([node],
"instance_norm_test",
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(shape)),
helper.make_tensor_value_info(
"gamma", TensorProto.FLOAT, (shape[1],)),
helper.make_tensor_value_info("beta", TensorProto.FLOAT, (shape[1],))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(shape))])
model = helper.make_model(graph, producer_name='instance_norm_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [x, gamma, beta], target, ctx, shape, 'float32')
tvm.testing.assert_allclose(y, tvm_out, rtol=1e-5, atol=1e-5)
def test_instance_norm():
verify_instance_norm((2, 3, 4, 5))
verify_instance_norm((32, 64, 80, 64))
verify_instance_norm((8, 6, 5))
verify_instance_norm((8, 7, 6, 5, 4))
def _test_upsample_nearest():
scale = 2
in_shape = (1, 1, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in'], [
'out'], mode='nearest', scales=[1.0, 1.0, 2.0, 2.0])
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.upsampling_python(
in_array, (scale, scale), "NCHW")
graph = helper.make_graph([y],
'upsample_nearest_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='upsample_nearest_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out)
def _test_upsample3d_nearest():
scale = 2
in_shape = (1, 1, 3, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in'], [
'out'], mode='nearest', scales=[1.0, 1.0, 2.0, 2.0, 2.0])
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.upsampling3d_python(
in_array, (scale, scale, scale), "NCDHW")
graph = helper.make_graph([y],
'upsample_nearest_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='upsample_nearest_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out)
def _test_upsample_bilinear():
scale = 2
in_shape = (1, 1, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in'], [
'out'], mode='linear', scales=[1.0, 1.0, 2.0, 2.0])
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.bilinear_resize_python(
in_array, (3*scale, 3*scale), "NCHW")
graph = helper.make_graph([y],
'upsample_bilinear_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='upsample_bilinear_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5)
def _test_upsample_bilinear_opset9():
scale = 2
in_shape = (1, 1, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in', 'scales'], ['out'], mode='linear')
scales = [1, 1, 2, 2]
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.bilinear_resize_python(
in_array, (3*scale, 3*scale), "NCHW")
ref_node = helper.make_node('Constant',
inputs=[],
outputs=['const'],
value=onnx.helper.make_tensor(name='const_tensor',
data_type=TensorProto.FLOAT,
dims=scales,
vals=np.random.random(scales).flatten().astype(float)))
shape_node = helper.make_node("Shape", ['const'], ['scales'])
graph = helper.make_graph([ref_node, shape_node, y],
'upsample_bilinear_opset9_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(
graph, producer_name='upsample_bilinear_opset9_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5)
def _test_upsample3d_trilinear():
scale = 2
in_shape = (1, 1, 3, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in', 'scales'], ['out'], mode='linear')
scales = [1.0, 1.0, 2.0, 2.0, 2.0]
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.trilinear_resize3d_python(
in_array, (3*scale, 3*scale, 3*scale), "NCDHW", coordinate_transformation_mode="half_pixel")
ref_array = np.array(scales)
ref_node = helper.make_node('Constant',
inputs=[],
outputs=['scales'],
value=onnx.helper.make_tensor(name='const_tensor',
data_type=TensorProto.FLOAT,
dims=ref_array.shape,
vals=ref_array.flatten().astype(float)))
graph = helper.make_graph([ref_node, y],
'upsample_trilinear_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(
graph, producer_name='upsample_trilinear_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5)
def test_upsample():
_test_upsample_nearest()
_test_upsample_bilinear()
_test_upsample_bilinear_opset9()
_test_upsample3d_nearest()
_test_upsample3d_trilinear()
def _test_softmax(inshape, axis):
opname = 'Softmax'
indata = np.random.uniform(size=inshape).astype(np.float32)
outshape = inshape
outdata = topi.testing.softmax_python(indata)
if isinstance(axis, int):
y = helper.make_node(opname, ['in'], ['out'], axis=axis)
elif axis is None:
y = helper.make_node(opname, ['in'], ['out'])
graph = helper.make_graph([y],
opname+'_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name=opname+'_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, indata, target, ctx, outshape, 'float32')
tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5)
def test_softmax():
_test_softmax((1, 10), None)
_test_softmax((1, 10), 1)
def verify_min(input_dim):
dtype = 'float32'
a_np1 = np.random.uniform(size=input_dim).astype(dtype)
a_np2 = np.random.uniform(size=input_dim).astype(dtype)
a_np3 = np.random.uniform(size=input_dim).astype(dtype)
b_np = np.min((a_np1, a_np2, a_np3), axis=0)
min_node = helper.make_node("Min", ["a_np1", "a_np2", "a_np3"], ["out"])
graph = helper.make_graph([min_node],
"Min_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np2",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np3",
TensorProto.FLOAT, list(input_dim))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(b_np.shape))])
model = helper.make_model(graph, producer_name='Min_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_forward_min():
verify_min((1, 3, 20, 20))
verify_min((20, 20))
def verify_max(input_dim):
dtype = 'float32'
a_np1 = np.random.uniform(size=input_dim).astype(dtype)
a_np2 = np.random.uniform(size=input_dim).astype(dtype)
a_np3 = np.random.uniform(size=input_dim).astype(dtype)
b_np = np.max((a_np1, a_np2, a_np3), axis=0)
max_node = helper.make_node("Max", ["a_np1", "a_np2", "a_np3"], ["out"])
graph = helper.make_graph([max_node],
"Max_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np2",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np3",
TensorProto.FLOAT, list(input_dim))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(b_np.shape))])
model = helper.make_model(graph, producer_name='Max_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_forward_max():
verify_max((1, 3, 20, 20))
verify_max((20, 20))
def verify_mean(input_dim):
dtype = 'float32'
a_np1 = np.random.uniform(size=input_dim).astype(dtype)
a_np2 = np.random.uniform(size=input_dim).astype(dtype)
a_np3 = np.random.uniform(size=input_dim).astype(dtype)
b_np = np.mean((a_np1, a_np2, a_np3), axis=0)
mean_node = helper.make_node("Mean", ["a_np1", "a_np2", "a_np3"], ["out"])
graph = helper.make_graph([mean_node],
"Mean_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np2",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np3",
TensorProto.FLOAT, list(input_dim))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(b_np.shape))])
model = helper.make_model(graph, producer_name='Mean_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_forward_mean():
verify_mean((1, 3, 20, 20))
verify_mean((20, 20))
def verify_hardsigmoid(input_dim, alpha, beta):
dtype = 'float32'
a_np1 = np.random.uniform(size=input_dim).astype(dtype)
b_np = np.clip(a_np1 * alpha + beta, 0, 1)
hardsigmoid_node = helper.make_node("HardSigmoid", ["a_np1"], [
"out"], alpha=alpha, beta=beta)
graph = helper.make_graph([hardsigmoid_node],
"HardSigmoid_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.FLOAT, list(input_dim))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(b_np.shape))])
model = helper.make_model(graph, producer_name='HardSigmoid_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [a_np1], target, ctx, b_np.shape)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_forward_hardsigmoid():
verify_hardsigmoid((1, 3, 20, 20), 0.5, 0.6)
verify_hardsigmoid((20, 20), 0.3, 0.4)
def verify_argmin(input_dim, axis=None, keepdims=None):
def _argmin_numpy(data, axis=0, keepdims=True):
result = np.argmin(data, axis=axis)
if (keepdims == 1):
result = np.expand_dims(result, axis)
return result.astype(data.dtype)
a_np1 = np.random.uniform(-10, 10, input_dim).astype(np.int32)
if keepdims is None and axis is None:
b_np = _argmin_numpy(a_np1)
node = onnx.helper.make_node('ArgMin',
inputs=['a_np1'],
outputs=['out'])
elif axis is None:
b_np = _argmin_numpy(a_np1, keepdims=keepdims)
node = onnx.helper.make_node('ArgMin',
inputs=['a_np1'],
outputs=['out'],
keepdims=keepdims)
elif keepdims is None:
b_np = _argmin_numpy(a_np1, axis=axis)
node = onnx.helper.make_node('ArgMin',
inputs=['a_np1'],
outputs=['out'],
axis=axis)
else:
b_np = _argmin_numpy(a_np1, axis=axis, keepdims=keepdims)
node = onnx.helper.make_node('ArgMin',
inputs=['a_np1'],
outputs=['out'],
axis=axis,
keepdims=keepdims)
graph = helper.make_graph([node],
"argmin_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.INT32, list(a_np1.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.INT32, list(b_np.shape))])
model = helper.make_model(graph, producer_name='argmin_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_np1], target, ctx, b_np.shape, b_np.dtype)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def verify_argmax(input_dim, axis=None, keepdims=None):
def _argmax_numpy(data, axis=0, keepdims=True):
result = np.argmax(data, axis=axis)
if (keepdims == 1):
result = np.expand_dims(result, axis)
return result.astype(data.dtype)
a_np1 = np.random.uniform(-10, 10, input_dim).astype(np.int32)
if keepdims is None and axis is None:
b_np = _argmax_numpy(a_np1)
node = onnx.helper.make_node('ArgMax',
inputs=['a_np1'],
outputs=['out'])
elif axis is None:
b_np = _argmax_numpy(a_np1, keepdims=keepdims)
node = onnx.helper.make_node('ArgMax',
inputs=['a_np1'],
outputs=['out'],
keepdims=keepdims)
elif keepdims is None:
b_np = _argmax_numpy(a_np1, axis=axis)
node = onnx.helper.make_node('ArgMax',
inputs=['a_np1'],
outputs=['out'],
axis=axis)
else:
b_np = _argmax_numpy(a_np1, axis=axis, keepdims=keepdims)
node = onnx.helper.make_node('ArgMax',
inputs=['a_np1'],
outputs=['out'],
axis=axis,
keepdims=keepdims)
graph = helper.make_graph([node],
"argmax_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.INT32, list(a_np1.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.INT32, list(b_np.shape))])
model = helper.make_model(graph, producer_name='argmax_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_np1], target, ctx, b_np.shape, b_np.dtype)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_forward_arg_min_max():
'''Verify argmin and argmax'''
verify_argmin([3, 4, 4])
verify_argmax([3, 4, 4])
verify_argmin([3, 4, 4], axis=1)
verify_argmax([3, 4, 4], axis=0)
verify_argmin([3, 4, 4], keepdims=0)
verify_argmax([3, 4, 4], keepdims=1)
for axis in [None, 0, 1, 2]:
for keepdims in [None, True, False]:
verify_argmin([3, 4, 4], axis, keepdims)
verify_argmax([3, 4, 4], axis, keepdims)
def verify_constantofshape(input_dim, value, dtype):
out = np.empty(shape=input_dim, dtype=dtype)
out.fill(value)
fill_node = helper.make_node("ConstantOfShape", ["input"], ["output"],
value=helper.make_tensor(
'value',
mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)],
(1, ), (value, )))
inputs = [
helper.make_tensor_value_info("input", TensorProto.FLOAT, input_dim)
]
graph = helper.make_graph(
[fill_node],
"fill_test",
inputs,
outputs=[
helper.make_tensor_value_info("output", TensorProto.FLOAT,
list(out.shape))
],
initializer=[
helper.make_tensor("input", TensorProto.INT32, (len(input_dim), ),
input_dim)
])
model = helper.make_model(graph, producer_name='fill_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [], target, ctx, out.shape)
tvm.testing.assert_allclose(out, tvm_out, rtol=1e-5, atol=1e-5)
def test_constantofshape():
verify_constantofshape((2, 3, 4, 5), 10, 'float32')
verify_constantofshape((3, 3), 0, 'int32')
verify_constantofshape((1, 2, 3), -1, 'float32')
def verify_pad(indata, pads, mode='constant', value=0.0):
indata = np.array(indata).astype(np.float32)
# numpy expect result
len_dim = len(pads) // 2
np_pads = [(pads[i], pads[i+len_dim]) for i in range(len_dim)]
# onnx graph
if mode in ['edge', 'reflect']:
outdata = np.pad(indata, pad_width=np_pads, mode=mode)
node = helper.make_node(
'Pad',
inputs=['input'],
outputs=['output'],
mode=mode,
pads=pads,
)
else:
outdata = np.pad(indata, pad_width=np_pads,
mode='constant', constant_values=value)
node = helper.make_node(
'Pad',
inputs=['input'],
outputs=['output'],
mode='constant',
pads=pads,
value=value
)
graph = helper.make_graph([node],
'pad_test',
inputs=[helper.make_tensor_value_info("input",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("output",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='pad_test')
# tvm result
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, indata, target, ctx, outdata.shape, 'float32', opset=2)
tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5)
def verify_pad_v11(indata, pads, mode='constant', value=0.0):
indata = np.array(indata).astype(np.float32)
# numpy expect result
len_dim = len(pads) // 2
np_pads = [(pads[i], pads[i+len_dim]) for i in range(len_dim)]
pads = np.array(pads)
# onnx graph
if mode in ['edge', 'reflect']:
inputs = [indata, pads]
outdata = np.pad(indata, pad_width=np_pads, mode=mode)
node = helper.make_node(
'Pad',
inputs=['input', 'pads'],
outputs=['output'],
mode=mode
)
graph = helper.make_graph([node],
'pad_test',
inputs=[helper.make_tensor_value_info("input",
TensorProto.FLOAT, list(indata.shape)),
helper.make_tensor_value_info("pads",
TensorProto.INT64,(len(pads),))],
initializer=[helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads)],
outputs=[helper.make_tensor_value_info("output",
TensorProto.FLOAT, list(outdata.shape))])
else:
inputs = [indata, pads, np.array([value])]
outdata = np.pad(indata, pad_width=np_pads,
mode='constant', constant_values=value)
node = helper.make_node(
'Pad',
inputs=['input', 'pads', 'constant_value'],
outputs=['output'],
mode='constant'
)
graph = helper.make_graph([node],
'pad_test',
inputs=[helper.make_tensor_value_info("input",
TensorProto.FLOAT, list(indata.shape)),
helper.make_tensor_value_info("pads",
TensorProto.INT64,(len(pads),)),
helper.make_tensor_value_info("constant_value",
TensorProto.INT64,(1,)),
],
initializer=[helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads),
helper.make_tensor("constant_value", TensorProto.FLOAT, (1,), [value])],
outputs=[helper.make_tensor_value_info("output",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='pad_test')
# tvm result
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, inputs, target, ctx, outdata.shape, 'float32', opset=11)
tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5)
def test_pad():
verify_pad(np.random.randn(2, 2).astype(
np.float32), [0, 1, 0, 0], 'constant', 0.0)
verify_pad(np.random.randn(2, 3).astype(
np.float32), [1, 0, 0, 1], 'constant', 0.0)
verify_pad(np.random.randn(3, 2).astype(
np.float32), [0, 0, 1, 0], 'constant', 5.0)
verify_pad(np.random.randn(1, 3, 4, 5).astype(
np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'edge')
verify_pad(np.random.randn(1, 3, 4, 5).astype(
np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'reflect')
verify_pad_v11(np.random.randn(2, 2).astype(
np.float32), [0, 1, 0, 0], 'constant', 0.0)
verify_pad_v11(np.random.randn(2, 3).astype(
np.float32), [1, 0, 0, 1], 'constant', 0.0)
verify_pad_v11(np.random.randn(3, 2).astype(
np.float32), [0, 0, 1, 0], 'constant', 5.0)
verify_pad_v11(np.random.randn(1, 3, 4, 5).astype(
np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'edge')
verify_pad_v11(np.random.randn(1, 3, 4, 5).astype(
np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'reflect')
def verify_reduce_func(func, data, axis, keepdims):
inshape = data.shape
outshape = np.sum(data, axis=axis, keepdims=keepdims == 1).shape
if axis:
node = onnx.helper.make_node(func,
inputs=['x'],
outputs=['y'],
axes=axis,
keepdims=keepdims)
else:
node = onnx.helper.make_node(func,
inputs=['x'],
outputs=['y'],
keepdims=keepdims)
graph = helper.make_graph([node],
"reduce_test",
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))])
model = helper.make_model(graph, producer_name='reduce_test')
onnx_out = get_onnxruntime_output(model, data, 'float32')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, data, target, ctx, outshape, 'float32')
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_all_reduce_funcs():
funcs = ["ReduceMax",
"ReduceMean",
"ReduceMin",
"ReduceProd",
"ReduceSum",
'ReduceSumSquare',
"ReduceLogSum",
"ReduceLogSumExp",
"ReduceL1",
"ReduceL2"]
for func in funcs:
for keepdims in [True, False]:
verify_reduce_func(func,
np.random.randn(3, 2, 2).astype(np.float32),
axis=None, keepdims=keepdims)
verify_reduce_func(func,
np.random.randn(3, 2, 3).astype(np.float32),
axis=None, keepdims=keepdims)
verify_reduce_func(func,
np.random.randn(3, 3, 3).astype(np.float32),
axis=(1,), keepdims=keepdims)
verify_reduce_func(func,
np.random.randn(3, 3, 3, 1).astype(np.float32),
axis=(1, 2), keepdims=keepdims)
verify_reduce_func(func,
np.random.randn(3, 3, 3, 1).astype(np.float32),
axis=(1,), keepdims=keepdims)
verify_reduce_func(func,
np.random.randn(1, 3, 4, 1).astype(np.float32),
axis=(1,), keepdims=keepdims)
def verify_split(indata, outdatas, split, axis=0):
indata = np.array(indata).astype(np.float32)
outdatas = [np.array(o).astype(np.float32) for o in outdatas]
if split:
split_index = range(len(split))
else:
split_index = range(len(outdatas))
node = helper.make_node(
'Split',
inputs=['input'],
outputs=['output_{}'.format(i) for i in range(len(split_index))],
axis=axis,
split=split
)
graph = helper.make_graph([node],
'split_test',
inputs=[helper.make_tensor_value_info("input",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("output_{}".format(i),
TensorProto.FLOAT, list(outdatas[i].shape))
for i in range(len(split_index))
])
model = helper.make_model(graph, producer_name='split_test')
for target, ctx in ctx_list():
output_shape = [o.shape for o in outdatas]
output_type = ['float32', 'float32', 'float32']
tvm_out = get_tvm_output(
model, indata, target, ctx, output_shape, output_type)
for o, t in zip(outdatas, tvm_out):
tvm.testing.assert_allclose(o, t)
def test_split():
# 1D
verify_split([1., 2., 3., 4., 5., 6.], [
[1., 2.], [3., 4.], [5., 6.]], [2, 2, 2], 0)
verify_split([1., 2., 3., 4., 5., 6.], [
[1., 2.], [3.], [4., 5., 6.]], [2, 1, 3], 0)
# 2D
verify_split([[1., 2., 3., 4.], [7., 8., 9., 10.]],
[[[1., 2.], [7., 8.]], [[3., 4.], [9., 10.]]], [2, 2], 1)
# Split evenly (unstack)
verify_split([1, 2, 3], [[1], [2], [3]], False)
def test_binary_ops():
in_shape = (1, 2, 3, 3)
dtype = "float32"
out_shape = in_shape
def verify_binary_ops(op, x, y, out_np, x_name='in1', y_name='in2', broadcast=None):
if broadcast is None:
z = helper.make_node(op, [x_name, y_name], ['out'])
else:
z = helper.make_node(op, [x_name, y_name], ['out'], broadcast=1)
graph = helper.make_graph([z],
'_test',
inputs=[helper.make_tensor_value_info(x_name,
TensorProto.FLOAT, list(in_shape)),
helper.make_tensor_value_info(y_name,
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x, y], target, ctx)
tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5)
x = np.random.uniform(size=in_shape).astype(dtype)
y = np.random.uniform(size=in_shape).astype(dtype)
z = np.random.uniform(size=(3,)).astype(dtype)
verify_binary_ops("Add", x, y, x + y, broadcast=None)
verify_binary_ops("Add", x, z, x + z, broadcast=True)
verify_binary_ops("Sub", x, y, x - y, broadcast=None)
verify_binary_ops("Sub", x, z, x - z, broadcast=True)
verify_binary_ops("Mul", x, y, x * y, broadcast=None)
verify_binary_ops("Mul", x, z, x * z, broadcast=True)
verify_binary_ops("Mul", x, x, x * x, x_name='in1', y_name='in1', broadcast=None)
verify_binary_ops("Div", x, y, x / y, broadcast=None)
verify_binary_ops("Div", x, z, x / z, broadcast=True)
verify_binary_ops("Sum", x, y, x + y, broadcast=None)
verify_binary_ops("Greater", x, y, x > y, broadcast=True)
verify_binary_ops("Less", x, y, x < y, broadcast=True)
verify_binary_ops("Equal", x, y, x == y, broadcast=True)
def test_single_ops():
in_shape = (1, 2, 3, 3)
dtype = "float32"
out_shape = in_shape
def verify_single_ops(op, x, out_np, rtol=1e-5, atol=1e-5):
z = helper.make_node(op, ['in1'], ['out'])
graph = helper.make_graph([z],
'_test',
inputs=[helper.make_tensor_value_info("in1",
TensorProto.FLOAT, list(in_shape)), ],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x], target, ctx)
tvm.testing.assert_allclose(out_np, tvm_out, rtol=rtol, atol=atol)
x = np.random.uniform(size=in_shape).astype(dtype)
verify_single_ops("Neg", x, -x)
verify_single_ops("Abs", x, np.abs(x))
verify_single_ops("Reciprocal", x, 1/x)
verify_single_ops("Sqrt", x, np.sqrt(x))
verify_single_ops("Relu", x, np.maximum(x, 0))
verify_single_ops("Exp", x, np.exp(x))
verify_single_ops("Log", x, np.log(x))
verify_single_ops("Log", x, np.log(x))
verify_single_ops("ACos", x, np.arccos(x))
verify_single_ops("ACosh", x, np.arccosh(x))
verify_single_ops("ASin", x, np.arcsin(x))
verify_single_ops("ASinh", x, np.arcsinh(x))
verify_single_ops("ATan", x, np.arctan(x))
verify_single_ops("ATanh", x, np.arctanh(x))
verify_single_ops("Cos", x, np.cos(x))
verify_single_ops("Cosh", x, np.cosh(x))
verify_single_ops("Sin", x, np.sin(x))
verify_single_ops("Sinh", x, np.sinh(x))
verify_single_ops("Tan", x, np.tan(x))
verify_single_ops("Tanh", x, np.tanh(x))
verify_single_ops("Sigmoid", x, 1 / (1 + np.exp(-x)))
verify_single_ops("Softsign", x, x / (1 + np.abs(x)))
verify_single_ops("SoftPlus", x, np.log(1 + np.exp(x)))
def test_leaky_relu():
def leaky_relu_x(x, alpha):
return np.where(x >= 0, x, x * alpha)
_test_onnx_op_elementwise((2, 4, 5, 6),
leaky_relu_x,
{'alpha': 0.25},
'float32',
'LeakyRelu',
{'alpha': 0.25})
def test_elu():
def elu_x(x, alpha):
return np.where(x > 0, x, alpha * (np.exp(x) - 1.0))
_test_onnx_op_elementwise((2, 4, 5, 6),
elu_x,
{'alpha': 0.25},
'float32',
'Elu',
{'alpha': 0.25})
def test_selu():
def selu_x(x, alpha, gamma):
return gamma * np.where(x > 0, x, alpha * (np.exp(x) - 1.0))
_test_onnx_op_elementwise((2, 4, 5, 6),
selu_x,
{'alpha': 0.25, 'gamma': 0.3},
'float32',
'Selu',
{'alpha': 0.25, 'gamma': 0.3})
def test_prelu():
def verify_prelu(x_shape, a_shape):
node = helper.make_node('PRelu',
inputs=['X', 'slope'],
outputs=['Y'])
graph = helper.make_graph([node],
"prelu_test",
inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, list(x_shape)),
helper.make_tensor_value_info("slope", TensorProto.FLOAT, list(a_shape))],
outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(x_shape))])
model = helper.make_model(graph, producer_name='prelu_test')
indata = np.random.uniform(-10, 10, x_shape).astype(np.float32)
slopedata = np.random.uniform(-10, 10, a_shape).astype(np.float32)
onnx_out = get_onnxruntime_output(model, [indata, slopedata])
for target, ctx in [('llvm', tvm.cpu())]:
tvm_out = get_tvm_output(model, [indata, slopedata], target, ctx, list(x_shape),
output_dtype='float32')
tvm.testing.assert_allclose(onnx_out[0], tvm_out, rtol=1e-05, atol=1e-05)
verify_prelu([3,4,5,6], [1, 4, 1, 1])
verify_prelu([1,8,5,6], [1, 8, 1, 1])
verify_prelu([2,12,16,16], [1, 12, 1, 1])
def test_ThresholdedRelu():
def ThresholdedRelu_x(x, alpha):
out_np = np.clip(x, alpha, np.inf)
out_np[out_np == alpha] = 0
return out_np
_test_onnx_op_elementwise((2, 4, 5, 6),
ThresholdedRelu_x,
{'alpha': 0.25},
'float32',
'ThresholdedRelu',
{'alpha': 0.25})
def test_ScaledTanh():
def ScaledTanh_x(x, alpha, beta):
return alpha * np.tanh(beta * x)
_test_onnx_op_elementwise((2, 4, 5, 6),
ScaledTanh_x,
{'alpha': 0.25, 'beta': 0.3},
'float32',
'ScaledTanh',
{'alpha': 0.25, 'beta': 0.3})
def test_ParametricSoftplus():
def ParametricSoftplus_x(x, alpha, beta):
return alpha * np.log(np.exp(beta * x) + 1)
_test_onnx_op_elementwise((2, 4, 5, 6),
ParametricSoftplus_x,
{'alpha': 0.25, 'beta': 0.3},
'float32',
'ParametricSoftplus',
{'alpha': 0.25, 'beta': 0.3})
def test_Scale():
def Scale_x(x, scale):
return scale * x
_test_onnx_op_elementwise((2, 4, 5, 6),
Scale_x,
{'scale': 0.25},
'float32',
'Scale',
{'scale': 0.25})
def test_LogSoftmax():
_test_onnx_op_elementwise((1, 4),
topi.testing.log_softmax_python,
{},
'float32',
'LogSoftmax',
{'axis': 1})
def check_torch_conversion(model, input_size):
dummy_input = torch.randn(*input_size)
file_name = '{}.onnx'.format(model.__name__)
# Set verbose=True for more output
torch.onnx.export(model(), dummy_input, file_name,
export_params=True, verbose=False)
onnx_model = onnx.load(file_name)
for target, ctx in ctx_list():
input_data = np.random.uniform(size=input_size).astype('int32')
c2_out = get_onnxruntime_output(onnx_model, input_data)
tvm_out = get_tvm_output(onnx_model, input_data, target, ctx)
tvm.testing.assert_allclose(c2_out, tvm_out)
def test_resnet():
check_torch_conversion(torchvision.models.resnet18, (1, 3, 224, 224))
# check_torch_conversion(torchvision.models.resnet101, (1,3,224,224))
# def test_alexnet():
# Torch's ONNX export does not support the adaptive pooling used by AlexNet?
# check_torch_conversion(torchvision.models.alexnet, (1,3,224,224))
# Torch's ONNX export does not support the adaptive pooling used by vgg16?
# def test_vgg16():
# check_torch_conversion(torchvision.models.vgg16, (1,3,224,224))
# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_squeezenet():
# # Torch's ONNX export does not support the max pooling used by Squezenet
# check_torch_conversion(torchvision.models.squeezenet1_0, (1,3,224,224))
def test_densenet():
check_torch_conversion(torchvision.models.densenet161, (1, 3, 224, 224))
def test_inception():
check_torch_conversion(torchvision.models.inception_v3, (1, 3, 224, 224))
# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_googlenet():
# check_torch_conversion(torchvision.models.googlenet, (1,3,224,224))
# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_shufflenetv2():
# check_torch_conversion(torchvision.models.shufflenetv2, (1,3,224,224))
def test_sign():
def Sign_x(x):
return np.sign(x)
_test_onnx_op_elementwise((3, 4, 5, 6),
Sign_x,
{},
'float32',
'Sign',
{})
def verify_not(indata, dtype):
x = indata.astype(dtype)
outdata = np.logical_not(x)
node = helper.make_node('Not', inputs=['in'], outputs=['out'],)
graph = helper.make_graph([node],
'not_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.BOOL, list(x.shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))])
model = helper.make_model(graph, producer_name='not_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x], target, ctx, outdata.shape)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_not():
# 2d
verify_not(indata=(np.random.randn(3, 4) > 0), dtype=bool)
# 3d
verify_not(indata=(np.random.randn(3, 4, 5) > 0), dtype=bool)
# 4d
verify_not(indata=(np.random.randn(3, 4, 5, 6) > 0), dtype=bool)
def verify_and(indata, dtype):
x = indata[0].astype(dtype)
y = indata[1].astype(dtype)
outdata = np.logical_and(x, y)
node = helper.make_node('And', inputs=['in1', 'in2'], outputs=['out'], )
graph = helper.make_graph([node],
'and_test',
inputs=[helper.make_tensor_value_info("in1", TensorProto.BOOL, list(x.shape)),
helper.make_tensor_value_info("in2", TensorProto.BOOL, list(y.shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))])
model = helper.make_model(graph, producer_name='and_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x, y], target, ctx, outdata.shape)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_and():
# 2d
x = (np.random.randn(3, 4) > 0)
y = (np.random.randn(3, 4) > 0)
verify_and(indata=[x, y], dtype=bool)
# 3d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(3, 4, 5) > 0)
verify_and(indata=[x, y], dtype=bool)
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0)
y = (np.random.randn(3, 4, 5, 6) > 0)
verify_and(indata=[x, y], dtype=bool)
# 3d vs 1d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(5) > 0)
verify_and(indata=[x, y], dtype=bool)
# 3d vs 2d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(4, 5) > 0)
verify_and(indata=[x, y], dtype=bool)
def verify_tile_v1(indata, outdata, **kwargs):
node = helper.make_node('Tile', inputs=['in'], outputs=['out'], **kwargs)
graph = helper.make_graph([node],
'tile_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='tile_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [indata], target, ctx, outdata.shape, opset=1)
tvm.testing.assert_allclose(outdata, tvm_out)
def verify_tile_v6(indata, repeats, outdata):
node = helper.make_node('Tile',
inputs=['input', 'repeats'],
outputs=['out'])
graph = helper.make_graph(
[node],
'tile_test',
inputs=[
helper.make_tensor_value_info("input", TensorProto.FLOAT,
list(indata.shape)),
helper.make_tensor_value_info("repeats", TensorProto.INT64,
list(repeats.shape))
],
outputs=[
helper.make_tensor_value_info("out", TensorProto.FLOAT,
list(outdata.shape))
],
initializer=[
helper.make_tensor("repeats", TensorProto.INT64,
list(repeats.shape), repeats)
])
model = helper.make_model(graph, producer_name='tile_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [indata],
target,
ctx,
outdata.shape,
opset=6)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_tile():
x = np.random.rand(2, 3, 4, 5).astype(np.float32)
repeats = np.random.randint(
low=1, high=10, size=(np.ndim(x),)).astype(np.int64)
z = np.tile(x, repeats)
verify_tile_v1(x, z, repeats=repeats)
verify_tile_v6(x, repeats, z)
def verify_erf(indata, outdata):
node = helper.make_node('Erf', inputs=['in'], outputs=['out'])
graph = helper.make_graph([node],
'erf_test',
inputs=[helper.make_tensor_value_info(
'in', TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info('out', TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='erf_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [indata], target, ctx, outdata.shape)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_erf():
x = np.random.rand(2, 3, 4, 6).astype(np.float32)
z = scipy.special.erf(x)
verify_erf(x, z)
def verify_where(condition, x, y, dtype, outdata):
node = helper.make_node('Where', inputs=['condition', 'x', 'y'], outputs=['out'])
graph = helper.make_graph([node],
'where_test',
inputs=[helper.make_tensor_value_info('condition', TensorProto.BOOL, list(condition.shape)),
helper.make_tensor_value_info('x', dtype, list(x.shape)),
helper.make_tensor_value_info('y', dtype, list(y.shape))],
outputs=[helper.make_tensor_value_info('out', dtype, list(outdata.shape))])
model = helper.make_model(graph, producer_name='where_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [condition, x, y], target, ctx, outdata.shape)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_where():
condition = np.array([[1, 0], [1, 1]], dtype=np.bool)
x = np.array([[1, 2], [3, 4]], dtype=np.int64)
y = np.array([[9, 8], [7, 6]], dtype=np.int64)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.INT64, outdata)
x = np.array([[1, 2], [3, 4]], dtype=np.float32)
y = np.array([[9, 8], [7, 6]], dtype=np.float32)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.FLOAT, outdata)
x = np.array(1, dtype=np.float32)
y = np.array([2], dtype=np.float32)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.FLOAT, outdata)
x = np.array([2], dtype=np.float32)
y = np.array(1, dtype=np.float32)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.FLOAT, outdata)
condition = np.array(1, dtype=np.bool)
x = np.array([[1, 2], [3, 4]], dtype=np.float32)
y = np.array([[5, 6], [7, 8]], dtype=np.float32)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.FLOAT, outdata)
x = np.array([[1, 2], [3, 4]], dtype=np.float32)
y = np.array([[1], [7]], dtype=np.float32)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.FLOAT, outdata)
def verify_or(indata, dtype):
x = indata[0].astype(dtype)
y = indata[1].astype(dtype)
outdata = np.logical_or(x, y)
node = helper.make_node('Or', inputs=['in1', 'in2'], outputs=['out'], )
graph = helper.make_graph([node],
'or_test',
inputs=[helper.make_tensor_value_info("in1", TensorProto.BOOL, list(x.shape)),
helper.make_tensor_value_info("in2", TensorProto.BOOL, list(y.shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))])
model = helper.make_model(graph, producer_name='or_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x, y], target, ctx, outdata.shape)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_or():
# 2d
x = (np.random.randn(3, 4) > 0)
y = (np.random.randn(3, 4) > 0)
verify_or(indata=[x, y], dtype=bool)
# 3d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(3, 4, 5) > 0)
verify_or(indata=[x, y], dtype=bool)
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0)
y = (np.random.randn(3, 4, 5, 6) > 0)
verify_or(indata=[x, y], dtype=bool)
# 3d vs 1d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(5) > 0)
verify_or(indata=[x, y], dtype=bool)
# 3d vs 2d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(4, 5) > 0)
verify_or(indata=[x, y], dtype=bool)
def test_batch_norm():
def verify_batch_norm(in_shape):
batchnorm = onnx.helper.make_node('BatchNormalization',
inputs=["x", "scale", "B", "mean", "var"],
outputs=['Y'])
graph = helper.make_graph([batchnorm],
"batchnorm_test",
inputs=[helper.make_tensor_value_info("x",
TensorProto.FLOAT, list(in_shape)),
helper.make_tensor_value_info("scale",
TensorProto.FLOAT, [in_shape[1]]),
helper.make_tensor_value_info("B",
TensorProto.FLOAT, [in_shape[1]]),
helper.make_tensor_value_info("mean",
TensorProto.FLOAT, [in_shape[1]]),
helper.make_tensor_value_info("var",
TensorProto.FLOAT, [in_shape[1]]),
],
outputs=[helper.make_tensor_value_info("Y",
TensorProto.FLOAT, list(in_shape))])
model = helper.make_model(graph, producer_name='batchnorm_test')
for target, ctx in ctx_list():
x = | np.random.uniform(size=in_shape) | numpy.random.uniform |
from itertools import product
import numpy as np
from numpy.linalg import lstsq
from numpy.testing import assert_allclose
import pandas as pd
import pytest
from linearmodels.panel.data import PanelData
from linearmodels.panel.model import FamaMacBeth
from linearmodels.shared.exceptions import (
InferenceUnavailableWarning,
MissingValueWarning,
)
from linearmodels.tests.panel._utility import (
access_attributes,
assert_frame_similar,
datatypes,
generate_data,
)
pytestmark = pytest.mark.filterwarnings(
"ignore::linearmodels.shared.exceptions.MissingValueWarning"
)
missing = [0.0, 0.20]
has_const = [True, False]
perms = list(product(missing, datatypes, has_const))
ids = ["-".join(str(param) for param in perms) for perm in perms]
@pytest.fixture(params=perms, ids=ids)
def data(request):
missing, datatype, const = request.param
return generate_data(
missing, datatype, const=const, other_effects=1, ntk=(25, 200, 5)
)
def test_fama_macbeth(data):
res = FamaMacBeth(data.y, data.x).fit(debiased=True)
y = PanelData(data.y)
x = PanelData(data.x)
missing = y.isnull | x.isnull
y.drop(missing)
x.drop(missing)
y = y.dataframe
x = x.dataframe
times = y.index.levels[1]
params = []
for t in times:
_y = y.xs(t, level=1)
_x = x.xs(t, level=1)
if _x.shape[0] < _x.shape[1]:
continue
_x = _x.loc[_y.index]
params.append(lstsq(_x.values, _y.values, rcond=None)[0])
params = np.array(params).squeeze()
all_params = params
params = params.mean(0)
assert_allclose(params.squeeze(), res.params)
assert_allclose(all_params, res.all_params.dropna(how="all"))
e_params = all_params - params[None, :]
ntime = e_params.shape[0]
cov = e_params.T @ e_params / ntime / (ntime - 1)
assert_allclose(cov, np.asarray(res.cov))
access_attributes(res)
def test_unknown_cov_type(data):
with pytest.raises(ValueError):
FamaMacBeth(data.y, data.x).fit(cov_type="unknown")
@pytest.mark.smoke
def test_fama_macbeth_kernel_smoke(data):
FamaMacBeth(data.y, data.x).fit(cov_type="kernel")
FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="bartlett")
FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="newey-west")
FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="parzen")
FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="qs")
FamaMacBeth(data.y, data.x).fit(cov_type="kernel", bandwidth=3)
res = FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="andrews")
access_attributes(res)
def test_fitted_effects_residuals(data):
mod = FamaMacBeth(data.y, data.x)
res = mod.fit()
expected = mod.exog.values2d @ res.params.values
expected = pd.DataFrame(expected, index=mod.exog.index, columns=["fitted_values"])
assert_allclose(res.fitted_values, expected)
assert_frame_similar(res.fitted_values, expected)
expected.iloc[:, 0] = mod.dependent.values2d - expected.values
expected.columns = ["idiosyncratic"]
assert_allclose(res.idiosyncratic, expected)
assert_frame_similar(res.idiosyncratic, expected)
expected.iloc[:, 0] = np.nan
expected.columns = ["estimated_effects"]
assert_allclose(res.estimated_effects, expected)
assert_frame_similar(res.estimated_effects, expected)
@pytest.mark.filterwarnings(
"always::linearmodels.shared.exceptions.MissingValueWarning"
)
def test_block_size_warnings():
y = np.arange(12.0)[:, None]
x = np.ones((12, 3))
x[:, 1] = np.arange(12.0)
x[:, 2] = np.arange(12.0) ** 2
idx = pd.MultiIndex.from_product(
[["a", "b", "c"], pd.date_range("2000-1-1", periods=4)]
)
y = pd.DataFrame(y, index=idx, columns=["y"])
x = pd.DataFrame(x, index=idx, columns=["x1", "x2", "x3"])
with pytest.warns(MissingValueWarning):
FamaMacBeth(y.iloc[:11], x.iloc[:11])
with pytest.warns(InferenceUnavailableWarning):
FamaMacBeth(y.iloc[::4], x.iloc[::4])
def test_block_size_error():
y = np.arange(12.0)[:, None]
x = | np.ones((12, 2)) | numpy.ones |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
def activation_statistics(init_func=lambda fan_in, fan_out: | np.random.randn(fan_in, fan_out) | numpy.random.randn |
# -*- mode: python; coding: utf-8 -*
# Copyright (c) 2018 Radio Astronomy Software Group
# Licensed under the 2-clause BSD License
from __future__ import absolute_import, division, print_function
import numpy as np
import warnings
import copy
from .uvbase import UVBase
from . import parameter as uvp
from . import utils as uvutils
class UVCal(UVBase):
""" A class defining calibration solutions
Currently supported file types: calfits
Attributes:
UVParameter objects: For full list see UVCal Parameters
(http://pyuvdata.readthedocs.io/en/latest/uvcal.html).
Some are always required, some are required for certain cal_types
and others are always optional.
"""
def __init__(self):
self._Nfreqs = uvp.UVParameter('Nfreqs',
description='Number of frequency channels',
expected_type=int)
self._Njones = uvp.UVParameter('Njones',
description='Number of Jones calibration'
'parameters (Number of Jones matrix elements '
'calculated in calibration).',
expected_type=int)
desc = ('Number of times with different calibrations calculated '
'(if a calibration is calculated over a range of integrations, '
'this gives the number of separate calibrations along the time axis).')
self._Ntimes = uvp.UVParameter('Ntimes', description=desc,
expected_type=int)
self._history = uvp.UVParameter('history',
description='String of history, units English',
form='str', expected_type=str)
self._Nspws = uvp.UVParameter('Nspws', description='Number of spectral windows '
'(ie non-contiguous spectral chunks). '
'More than one spectral window is not '
'currently supported.', expected_type=int)
desc = ('Time range (in JD) that cal solutions are valid for.'
'list: [start_time, end_time] in JD.')
self._time_range = uvp.UVParameter('time_range', description=desc,
form=2, expected_type=float)
desc = ('Name of telescope. e.g. HERA. String.')
self._telescope_name = uvp.UVParameter('telescope_name',
description=desc,
form='str',
expected_type=str)
desc = ('Number of antennas that have data associated with them '
'(i.e. length of ant_array), which may be smaller than the number'
'of antennas in the telescope (i.e. length of antenna_numbers).')
self._Nants_data = uvp.UVParameter('Nants_data', description=desc,
expected_type=int)
desc = ('Number of antennas in the antenna_numbers array. May be larger '
'than the number of antennas with gains associated with them.')
self._Nants_telescope = uvp.UVParameter('Nants_telescope',
description=desc,
expected_type=int)
desc = ('Array of integer antenna numbers that appear in self.gain_array, with shape (Nants_data,). '
'This array is ordered to match the inherent ordering of the zeroth axis of self.gain_array.')
self._ant_array = uvp.UVParameter('ant_array', description=desc,
expected_type=int, form=('Nants_data',))
desc = ('Array of antenna names with shape (Nants_telescope,). '
'Ordering of elements matches ordering of antenna_numbers.')
self._antenna_names = uvp.UVParameter('antenna_names',
description=desc,
form=('Nants_telescope',),
expected_type=str)
desc = ('Array of all integer-valued antenna numbers in the telescope with shape (Nants_telescope,). '
'Ordering of elements matches that of antenna_names. This array is not necessarily identical '
'to ant_array, in that this array holds all antenna numbers associated with the telescope, not '
'just antennas with data, and has an in principle non-specific ordering.')
self._antenna_numbers = uvp.UVParameter('antenna_numbers',
description=desc,
form=('Nants_telescope',),
expected_type=int)
self._spw_array = uvp.UVParameter('spw_array',
description='Array of spectral window '
'numbers, shape (Nspws).', form=('Nspws',),
expected_type=int)
desc = 'Array of frequencies, center of the channel, shape (Nspws, Nfreqs), units Hz.'
self._freq_array = uvp.UVParameter('freq_array', description=desc,
form=('Nspws', 'Nfreqs'),
expected_type=np.float,
tols=1e-3) # mHz
desc = ('Channel width of of a frequency bin. Units Hz.')
self._channel_width = uvp.UVParameter('channel_width',
description=desc,
expected_type=np.float,
tols=1e-3)
desc = ('Array of antenna polarization integers, shape (Njones). '
'linear pols -5:-8 (jxx, jyy, jxy, jyx).'
'circular pols -1:-4 (jrr, jll. jrl, jlr).')
self._jones_array = uvp.UVParameter('jones_array',
description=desc,
expected_type=int,
acceptable_vals=list(np.arange(-8, 0)),
form=('Njones',))
desc = ('Array of calibration solution times, center of integration, '
'shape (Ntimes), units Julian Date')
self._time_array = uvp.UVParameter('time_array', description=desc,
form=('Ntimes',),
expected_type=np.float,
tols=1e-3 / (60.0 * 60.0 * 24.0))
desc = ('Integration time of a time bin, units seconds.')
self._integration_time = uvp.UVParameter('integration_time',
description=desc,
expected_type=np.float,
tols=1e-3) # 1ms
desc = ('The convention for applying the calibration solutions to data.'
'Values are "divide" or "multiply", indicating that to calibrate '
'one should divide or multiply uncalibrated data by gains. '
'Mathematically this indicates the alpha exponent in the equation: '
'calibrated data = gain^alpha * uncalibrated data. A value of '
'"divide" represents alpha=-1 and "multiply" represents alpha=1.')
self._gain_convention = uvp.UVParameter('gain_convention', form='str',
expected_type=str,
description=desc,
acceptable_vals=['divide', 'multiply'])
desc = ('Array of flags to be applied to calibrated data (logical OR '
'of input and flag generated by calibration). True is flagged. '
'Shape: (Nants_data, Nspws, Nfreqs, Ntimes, Njones), type = bool.')
self._flag_array = uvp.UVParameter('flag_array', description=desc,
form=('Nants_data', 'Nspws', 'Nfreqs',
'Ntimes', 'Njones'),
expected_type=np.bool)
desc = ('Array of qualities of calibration solutions. '
'The shape depends on cal_type, if the cal_type is "gain" or '
'"unknown", the shape is: (Nants_data, Nspws, Nfreqs, Ntimes, Njones), '
'if the cal_type is "delay", the shape is (Nants_data, Nspws, 1, Ntimes, Njones), '
'type = float.')
self._quality_array = uvp.UVParameter('quality_array', description=desc,
form=('Nants_data', 'Nspws', 'Nfreqs',
'Ntimes', 'Njones'),
expected_type=np.float)
desc = ('Orientation of the physical dipole corresponding to what is '
'labelled as the x polarization. Options are "east" '
'(indicating east/west orientation) and "north" (indicating '
'north/south orientation)')
self._x_orientation = uvp.UVParameter('x_orientation', description=desc,
expected_type=str,
acceptable_vals=['east', 'north'])
# --- cal_type parameters ---
desc = ('cal type parameter. Values are delay, gain or unknown.')
self._cal_type = uvp.UVParameter('cal_type', form='str',
expected_type=str, value='unknown',
description=desc,
acceptable_vals=['delay', 'gain', 'unknown'])
desc = ('Required if cal_type = "gain". Array of gains, '
'shape: (Nants_data, Nspws, Nfreqs, Ntimes, Njones), type = complex float.')
self._gain_array = uvp.UVParameter('gain_array', description=desc,
required=False,
form=('Nants_data', 'Nspws', 'Nfreqs',
'Ntimes', 'Njones'),
expected_type=np.complex)
desc = ('Required if cal_type = "delay". Array of delays with units of seconds. '
'Shape: (Nants_data, Nspws, 1, Ntimes, Njones), type = float.')
self._delay_array = uvp.UVParameter('delay_array', description=desc,
required=False,
form=('Nants_data', 'Nspws', 1, 'Ntimes', 'Njones'),
expected_type=np.float)
desc = ('Required if cal_type = "delay". Frequency range that solutions are valid for.'
'list: [start_frequency, end_frequency] in Hz.')
self._freq_range = uvp.UVParameter('freq_range', required=False,
description=desc, form=2,
expected_type=float, tols=1e-3)
# --- cal_style parameters ---
desc = ('Style of calibration. Values are sky or redundant.')
self._cal_style = uvp.UVParameter('cal_style', form='str',
expected_type=str,
description=desc,
acceptable_vals=['sky', 'redundant'])
desc = ('Required if cal_style = "sky". Short string describing field '
'center or dominant source.')
self._sky_field = uvp.UVParameter('sky_field', form='str', required=False,
expected_type=str, description=desc)
desc = ('Required if cal_style = "sky". Name of calibration catalog.')
self._sky_catalog = uvp.UVParameter('sky_catalog', form='str', required=False,
expected_type=str, description=desc)
desc = ('Required if cal_style = "sky". Phase reference antenna.')
self._ref_antenna_name = uvp.UVParameter('ref_antenna_name', form='str',
required=False,
expected_type=str, description=desc)
desc = ('Number of sources used.')
self._Nsources = uvp.UVParameter('Nsources', required=False,
expected_type=np.int, description=desc)
desc = ('Range of baselines used for calibration.')
self._baseline_range = uvp.UVParameter('baseline_range', form=2,
required=False,
expected_type=np.float, description=desc)
desc = ('Name of diffuse model.')
self._diffuse_model = uvp.UVParameter('diffuse_model', form='str',
required=False,
expected_type=str, description=desc)
# --- truly optional parameters ---
desc = ('The gain scale of the calibration, which indicates the units of the '
'calibrated visibilities. For example, Jy or K str.')
self._gain_scale = uvp.UVParameter('gain_scale', form='str',
expected_type=str,
description=desc, required=False)
desc = ('Array of input flags, True is flagged. shape: (Nants_data, Nspws, '
'Nfreqs, Ntimes, Njones), type = bool.')
self._input_flag_array = uvp.UVParameter('input_flag_array',
description=desc,
required=False,
form=('Nants_data', 'Nspws', 'Nfreqs',
'Ntimes', 'Njones'),
expected_type=np.bool)
desc = ('Origin (on github for e.g) of calibration software. Url and branch.')
self._git_origin_cal = uvp.UVParameter('git_origin_cal', form='str',
expected_type=str,
description=desc,
required=False)
desc = ('Commit hash of calibration software (from git_origin_cal) used '
'to generate solutions.')
self._git_hash_cal = uvp.UVParameter('git_hash_cal', form='str',
expected_type=str,
description=desc,
required=False)
desc = ('Name of observer who calculated solutions in this file.')
self._observer = uvp.UVParameter('observer', form='str',
description=desc,
expected_type=str,
required=False)
desc = ('Array of qualities of the calibration for entire arrays. '
'The shape depends on cal_type, if the cal_type is "gain" or '
'"unknown", the shape is: (Nspws, Nfreqs, Ntimes, Njones), '
'if the cal_type is "delay", the shape is (Nspws, 1, Ntimes, Njones), '
'type = float.')
self._total_quality_array = uvp.UVParameter('total_quality_array', description=desc,
form=('Nspws', 'Nfreqs',
'Ntimes', 'Njones'),
expected_type=np.float,
required=False)
desc = ('Any user supplied extra keywords, type=dict. Keys should be '
'8 character or less strings if writing to calfits files. '
'Use the special key "comment" for long multi-line string comments.')
self._extra_keywords = uvp.UVParameter('extra_keywords', required=False,
description=desc, value={},
spoof_val={}, expected_type=dict)
super(UVCal, self).__init__()
def check(self, check_extra=True, run_check_acceptability=True):
"""
Check that all required parameters are set reasonably.
Check that required parameters exist and have appropriate shapes.
Optionally check if the values are acceptable.
Args:
run_check_acceptability: Option to check if values in required parameters
are acceptable. Default is True.
"""
# Make sure requirements are set properly for cal_style
if self.cal_style == 'sky':
self.set_sky()
elif self.cal_style == 'redundant':
self.set_redundant()
# check for deprecated x_orientation strings and convert to new values (if possible)
if self.x_orientation is not None:
if self.x_orientation not in self._x_orientation.acceptable_vals:
warn_string = ('x_orientation {xval} is not one of [{vals}], '
.format(xval=self.x_orientation,
vals=(', ').join(self._x_orientation.acceptable_vals)))
if self.x_orientation.lower() == 'e':
self.x_orientation = 'east'
warn_string += 'converting to "east".'
elif self.x_orientation.lower() == 'n':
self.x_orientation = 'north'
warn_string += 'converting to "north".'
else:
warn_string += 'cannot be converted.'
warnings.warn(warn_string + ' Only [{vals}] will be supported '
'starting in version 1.5'
.format(vals=(', ').join(self._x_orientation.acceptable_vals)),
DeprecationWarning)
# first run the basic check from UVBase
super(UVCal, self).check(check_extra=check_extra,
run_check_acceptability=run_check_acceptability)
# require that all entries in ant_array exist in antenna_numbers
if not all(ant in self.antenna_numbers for ant in self.ant_array):
raise ValueError('All antennas in ant_array must be in antenna_numbers.')
# issue warning if extra_keywords keys are longer than 8 characters
for key in self.extra_keywords.keys():
if len(key) > 8:
warnings.warn('key {key} in extra_keywords is longer than 8 '
'characters. It will be truncated to 8 if written '
'to a calfits file format.'.format(key=key))
# issue warning if extra_keywords values are lists, arrays or dicts
for key, value in self.extra_keywords.items():
if isinstance(value, (list, dict, np.ndarray)):
warnings.warn('{key} in extra_keywords is a list, array or dict, '
'which will raise an error when writing calfits '
'files'.format(key=key))
return True
def set_gain(self):
"""Set cal_type to 'gain' and adjust required parameters."""
self.cal_type = 'gain'
self._gain_array.required = True
self._delay_array.required = False
self._freq_range.required = False
self._quality_array.form = self._gain_array.form
self._total_quality_array.form = self._gain_array.form[1:]
def set_delay(self):
"""Set cal_type to 'delay' and adjust required parameters."""
self.cal_type = 'delay'
self._gain_array.required = False
self._delay_array.required = True
self._freq_range.required = True
self._quality_array.form = self._delay_array.form
self._total_quality_array.form = self._delay_array.form[1:]
def set_unknown_cal_type(self):
"""Set cal_type to 'unknown' and adjust required parameters."""
self.cal_type = 'unknown'
self._gain_array.required = False
self._delay_array.required = False
self._freq_range.required = False
self._quality_array.form = self._gain_array.form
self._total_quality_array.form = self._gain_array.form[1:]
def set_sky(self):
"""Set cal_style to 'sky' and adjust required parameters."""
self.cal_style = 'sky'
self._sky_field.required = True
self._sky_catalog.required = True
self._ref_antenna_name.required = True
def set_redundant(self):
"""Set cal_style to 'redundant' and adjust required parameters."""
self.cal_style = 'redundant'
self._sky_field.required = False
self._sky_catalog.required = False
self._ref_antenna_name.required = False
def select(self, antenna_nums=None, antenna_names=None,
frequencies=None, freq_chans=None,
times=None, jones=None, run_check=True, check_extra=True,
run_check_acceptability=True, inplace=True):
"""
Select specific antennas, frequencies, times and
jones polarization terms to keep in the object while discarding others.
The history attribute on the object will be updated to identify the
operations performed.
Args:
antenna_nums: The antennas numbers to keep in the object (antenna
positions and names for the removed antennas will be retained).
This cannot be provided if antenna_names is also provided.
antenna_names: The antennas names to keep in the object (antenna
positions and names for the removed antennas will be retained).
This cannot be provided if antenna_nums is also provided.
frequencies: The frequencies to keep in the object.
freq_chans: The frequency channel numbers to keep in the object.
times: The times to keep in the object.
jones: The jones polarization terms to keep in the object.
run_check: Option to check for the existence and proper shapes of
required parameters after downselecting data on this object. Default is True.
check_extra: Option to check shapes and types of optional parameters
as well as required ones. Default is True.
run_check_acceptability: Option to check acceptable range of the values of
required parameters after downselecting data on this object. Default is True.
inplace: Option to perform the select directly on self (True, default) or return
a new UVCal object, which is a subselection of self (False)
"""
if inplace:
cal_object = self
else:
cal_object = copy.deepcopy(self)
# build up history string as we go
history_update_string = ' Downselected to specific '
n_selects = 0
if antenna_names is not None:
if antenna_nums is not None:
raise ValueError('Only one of antenna_nums and antenna_names can be provided.')
antenna_names = uvutils._get_iterable(antenna_names)
antenna_nums = []
for s in antenna_names:
if s not in cal_object.antenna_names:
raise ValueError('Antenna name {a} is not present in the antenna_names array'.format(a=s))
ind = np.where(np.array(cal_object.antenna_names) == s)[0][0]
antenna_nums.append(cal_object.antenna_numbers[ind])
if antenna_nums is not None:
antenna_nums = uvutils._get_iterable(antenna_nums)
history_update_string += 'antennas'
n_selects += 1
ant_inds = np.zeros(0, dtype=np.int)
for ant in antenna_nums:
if ant in cal_object.ant_array:
ant_inds = np.append(ant_inds, np.where(cal_object.ant_array == ant)[0])
else:
raise ValueError('Antenna number {a} is not present in the '
' array'.format(a=ant))
ant_inds = list(sorted(set(list(ant_inds))))
cal_object.Nants_data = len(ant_inds)
cal_object.ant_array = cal_object.ant_array[ant_inds]
cal_object.flag_array = cal_object.flag_array[ant_inds, :, :, :, :]
cal_object.quality_array = cal_object.quality_array[ant_inds, :, :, :, :]
if cal_object.cal_type == 'delay':
cal_object.delay_array = cal_object.delay_array[ant_inds, :, :, :, :]
else:
cal_object.gain_array = cal_object.gain_array[ant_inds, :, :, :, :]
if cal_object.input_flag_array is not None:
cal_object.input_flag_array = cal_object.input_flag_array[ant_inds, :, :, :, :]
if cal_object.total_quality_array is not None:
warnings.warn('Cannot preserve total_quality_array when changing '
'number of antennas; discarding')
cal_object.total_quality_array = None
if times is not None:
times = uvutils._get_iterable(times)
if n_selects > 0:
history_update_string += ', times'
else:
history_update_string += 'times'
n_selects += 1
time_inds = np.zeros(0, dtype=np.int)
for jd in times:
if jd in cal_object.time_array:
time_inds = np.append(time_inds, np.where(cal_object.time_array == jd)[0])
else:
raise ValueError('Time {t} is not present in the time_array'.format(t=jd))
time_inds = list(sorted(set(list(time_inds))))
cal_object.Ntimes = len(time_inds)
cal_object.time_array = cal_object.time_array[time_inds]
if cal_object.Ntimes > 1:
time_separation = | np.diff(cal_object.time_array) | numpy.diff |
from epidag.fitting import BayesResult
from epidag.fitting.alg.fitter import Fitter
import numpy as np
import numpy.random as rd
from abc import ABCMeta, abstractmethod
__author__ = 'TimeWz667'
__all__ = ['ABCSMC']
class AbsStepper(metaclass=ABCMeta):
def __init__(self, name, lo, up):
self.Name = name
self.Lower, self.Upper = lo, up
@abstractmethod
def propose(self, v, scale):
pass
class BinaryStepper(AbsStepper):
def propose(self, v, scale):
return v
class DoubleStepper(AbsStepper):
def propose(self, v, scale):
return v + rd.normal() * scale
class IntegerStepper(AbsStepper):
def propose(self, v, scale):
return np.round(rd.normal(v, scale))
class Steppers:
def __init__(self, model):
self.Nodes = dict()
temp = model.sample_prior()
for p in model.ParameterNodes:
pp = model.BN[p].get_distribution(temp)
if pp.Type == 'Binary':
step = BinaryStepper(p, 0, 1)
elif pp.Type == 'Integer':
step = IntegerStepper(p, pp.Lower, pp.Upper)
else:
step = DoubleStepper(p, pp.Lower, pp.Upper)
self.Nodes[p] = step
def mutate(self, model, gene, scales):
new = gene.clone()
mutated = dict()
for key, node in self.Nodes.items():
while True:
proposed = node.propose(new[key], scales[key])
if node.Lower < proposed < node.Upper:
mutated[key] = proposed
break
new.impulse(mutated)
new.LogPrior = model.evaluate_prior(new)
return new
def wt_sd(vs, wts):
vs = np.array(vs)
wts = wts / wts.sum()
mu = (wts * vs) / len(wts)
return np.sqrt(np.sum(wts * (vs - mu) * (vs - mu)))
class ABCSMC(Fitter):
def __init__(self, name_logger="ABCSMC", alpha=0.9, p_thres=0.7):
Fitter.__init__(self, name_logger, alpha=alpha, p_thres=p_thres)
def fit(self, model, **kwargs):
n_post = kwargs['n_post']
max_stay = kwargs['max_stay'] if 'max_stay' in kwargs else 5
max_round = kwargs['max_round'] if 'max_round' in kwargs else 20
trj = list()
n_round = n_stay = 0
n_eval = n_post
steppers = Steppers(model)
self.info('Initialising')
post, d0, wts, eps0 = self.__initialise(n_post, model)
rec = {
'Round': n_round,
'Eval': n_eval,
'Eps':eps0,
'ESS': 1 / np.sum(wts * wts),
'ACC': 1
}
self.info('Round {}, ESS {:0.0f}, Eps {:0.4g}, Acceptance {:.1f}%'.format(
rec['Round'], rec['ESS'], rec['Eps'], rec['ACC'] * 100
))
trj.append(rec)
# Iteration
while True:
# Update eps
n_round += 1
eps1 = self.find_eps(d0, eps0)
if eps1 > eps0:
n_stay += 1
eps1 = eps0
else:
n_stay = 0
# Step 1 Updating weight
act_np0, a, wts = self.__update_weights(d0, wts, eps0, eps1)
# Step 2 Resampling
post, d1, wts = self.__resample(post, d0, wts)
# Step 3 MH stepping
post, d1, n_eval, acc = self.__step_mh(post, wts, d0, eps1, n_eval, steppers, model)
rec = {
'Round': n_round,
'Eval': n_eval,
'Eps': eps1,
'ESS': 1 / np.sum(wts * wts),
'ACC': acc
}
trj.append(rec)
self.info('Round {}, ESS {:0.4g}, Eps {:0.4g}, Acceptance {:.1f}%'.format(
rec['Round'], rec['ESS'], rec['Eps'], rec['ACC'] * 100
))
if n_round >= max_round or (n_stay >= max_stay and n_round > 3):
break
eps0, d0 = eps1, d1
self.info('Completed')
res = BayesResult(nodes=post, model=model, alg=self)
res.Benchmarks.update(rec)
res.Benchmarks['Niter'] = n_post
return res
def is_updatable(self):
return True
def update(self, res, **kwargs):
pass
def find_eps(self, ds, eps):
e0 = sum(d for d in ds if d < eps) / len(ds)
et = self.Parameters['alpha'] * e0
ds = list(ds)
ds.sort(key = lambda x : -x)
for eps1 in ds:
e1 = sum(d for d in ds if d < eps1) / len(ds)
if e1 <= et:
return eps1
else:
return eps
def __initialise(self, n_post, model):
post = list()
while len(post) < n_post:
p = model.sample_prior()
p.LogPrior = model.evaluate_prior(p)
di = model.evaluate_distance(p)
if np.isfinite(di):
p.LogLikelihood = - di
post.append(p)
d0 = [-p.LogLikelihood for p in post]
wts = np.ones(n_post) / n_post
eps0 = float('inf')
return post, d0, wts, eps0
def __update_weights(self, ds, wts, eps0, eps1):
ds = np.array(ds)
act_np0 = ds < eps0
act_np1 = ds < eps1
a = act_np0 > 0
wts[a] *= act_np1[a] / act_np0[a]
wts[1 - act_np0] = 0
wts /= wts.sum()
return act_np0, a, wts
def __resample(self, post, ds, wts):
n_post = len(post)
ess_thres = len(post) * self.Parameters['p_thres']
ds = np.array(ds)
if ess_thres * sum(wts * wts) > 1:
assert sum(wts > 0) > 2
alive = wts > 0
ind = [k for k, v in enumerate(alive) if v]
re_ind = rd.choice(ind, size=n_post, replace=True, p=wts[wts > 0])
post = [post[i].clone() for i in re_ind]
d1 = ds[re_ind]
wts = np.ones(n_post) / n_post
else:
d1 = ds
return post, d1, wts
def __step_mh(self, post, wts, ds, eps1, n_eval, steppers, model):
n_post = len(post)
tau = {p: wt_sd([d[p] for d in post], wts) for p in model.ParameterNodes}
post_p = list(post)
dp = np.zeros(n_post)
for i in range(n_post):
di = float('inf')
pars = post[i]
while | np.isinf(di) | numpy.isinf |
import numpy as np
import pytest
from numpy.testing import (
assert_, assert_allclose, assert_equal, assert_warns, assert_raises)
from statsmodels.tsa.arima.datasets.brockwell_davis_2002 import lake, oshorts
from statsmodels.tsa.arima.estimators.gls import gls
@pytest.mark.low_precision('Test against Example 6.6.1 in Brockwell and Davis'
' (2016)')
def test_brockwell_davis_example_661():
endog = oshorts.copy()
exog = np.ones_like(endog)
# Here we restrict the iterations to 1 and test against the values in the
# text (set tolerance=1 to suppress to warning that it didn't converge)
res, _ = gls(endog, exog, order=(0, 0, 1), max_iter=1, tolerance=1)
assert_allclose(res.exog_params, -4.745, atol=1e-3)
assert_allclose(res.ma_params, -0.818, atol=1e-3)
assert_allclose(res.sigma2, 2041, atol=1)
# Here we do not restrict the iterations and test against the values in
# the last row of Table 6.2 (note: this table does not report sigma2)
res, _ = gls(endog, exog, order=(0, 0, 1))
assert_allclose(res.exog_params, -4.780, atol=1e-3)
assert_allclose(res.ma_params, -0.848, atol=1e-3)
@pytest.mark.low_precision('Test against Example 6.6.2 in Brockwell and Davis'
' (2016)')
def test_brockwell_davis_example_662():
endog = lake.copy()
exog = np.c_[np.ones_like(endog), np.arange(1, len(endog) + 1) * 1.0]
res, _ = gls(endog, exog, order=(2, 0, 0))
# Parameter values taken from Table 6.3 row 2, except for sigma2 and the
# last digit of the exog_params[0], which were given in the text
assert_allclose(res.exog_params, [10.091, -.0216], atol=1e-3)
assert_allclose(res.ar_params, [1.005, -.291], atol=1e-3)
assert_allclose(res.sigma2, .4571, atol=1e-3)
def test_integrated():
# Get the lake data
endog1 = lake.copy()
exog1 = np.c_[np.ones_like(endog1), np.arange(1, len(endog1) + 1) * 1.0]
endog2 = np.r_[0, np.cumsum(endog1)]
exog2 = np.c_[[0, 0], np.cumsum(exog1, axis=0).T].T
# Estimate without integration
p1, _ = gls(endog1, exog1, order=(1, 0, 0))
# Estimate with integration
with assert_warns(UserWarning):
p2, _ = gls(endog2, exog2, order=(1, 1, 0))
assert_allclose(p1.params, p2.params)
def test_integrated_invalid():
# Test for invalid versions of integrated model
# - include_constant=True is invalid if integration is present
endog = lake.copy()
exog = np.arange(1, len(endog) + 1) * 1.0
assert_raises(ValueError, gls, endog, exog, order=(1, 1, 0),
include_constant=True)
def test_results():
endog = lake.copy()
exog = np.c_[np.ones_like(endog), np.arange(1, len(endog) + 1) * 1.0]
# Test for results output
p, res = gls(endog, exog, order=(1, 0, 0))
assert_('params' in res)
assert_('converged' in res)
assert_('differences' in res)
assert_('iterations' in res)
assert_('arma_estimator' in res)
| assert_('arma_results' in res) | numpy.testing.assert_ |
'''
=========================================================================
Author: <NAME>
Company:
Filename:
Last modifed: 06.04.2017 by <NAME>
Description: Functional test
=========================================================================
=========================================================================
'''
import numpy as np
import ext3DLBPpy
print("=============================================")
test = "RD_LBP_P42g_R2"
array = np.array([
[[24,71,216,122,134],[201,78,152,165,81],[86,204,66,35,60],[34,119,51,154,24],[99,186,118,117,11]],
[[173,236,8,108,76],[102,188,23,116,75],[128,194,214,183,170],[28,60,176,35,2],[128,169,226,73,129]],
[[10,188,199,151,145],[245,44,14,47,138],[109,113,133,216,164],[81,155,37,47,250],[170,32,152,33,5]],
[[112,213,120,243,183],[23,234,98,219,188],[216,73,184,198,27],[240,145,5,3,11],[241,46,251,210,97]],
[[138,80,145,230,158],[187,239,68,19,245],[147,165,106,237,218],[90,204,70,250,127],[167,169,162,129,58]]
], dtype=np.int32)
mur = 194
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 21;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 0 failed!"
print("RD_LBP_P42g_R2: test 0 passed!")
array = np.array([
[[116,235,109,207,121],[244,97,251,165,68],[110,198,1,216,82],[169,10,46,9,58],[127,21,218,204,248]],
[[254,227,152,219,117],[4,247,223,80,238],[170,113,34,234,24],[224,253,93,235,8],[2,60,145,79,43]],
[[121,7,128,85,72],[212,20,236,228,38],[178,157,125,131,5],[78,199,43,243,120],[180,8,150,241,39]],
[[62,242,230,56,38],[194,198,223,34,201],[98,99,238,185,26],[22,105,156,76,135],[236,142,109,7,103]],
[[156,53,152,247,143],[1,37,174,237,254],[120,180,196,48,16],[65,245,162,90,13],[145,53,58,88,77]]
], dtype=np.int32)
mur = 163
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 18;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 1 failed!"
print("RD_LBP_P42g_R2: test 1 passed!")
array = np.array([
[[129,53,10,247,219],[242,154,55,53,63],[69,71,94,238,22],[122,215,3,109,38],[121,11,193,144,70]],
[[248,16,240,137,124],[70,208,250,151,90],[64,172,48,98,35],[29,191,211,67,236],[130,222,221,218,162]],
[[12,225,156,0,51],[9,85,213,116,195],[127,155,19,144,245],[151,209,110,151,79],[115,54,2,114,94]],
[[14,178,253,195,250],[29,176,228,103,234],[183,54,116,93,40],[32,234,124,82,84],[206,14,32,221,64]],
[[166,181,244,88,84],[221,220,41,173,181],[58,235,96,8,9],[207,193,8,234,181],[151,25,90,149,237]]
], dtype=np.int32)
mur = 60
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 2 failed!"
print("RD_LBP_P42g_R2: test 2 passed!")
array = np.array([
[[32,34,95,135,137],[237,64,177,152,164],[3,243,74,33,221],[99,114,191,203,222],[179,1,203,6,134]],
[[156,154,13,191,187],[22,227,62,230,170],[177,27,153,123,2],[59,80,172,102,89],[158,5,66,126,131]],
[[237,57,11,195,61],[221,77,7,117,175],[41,219,141,74,127],[152,124,173,215,112],[11,76,33,243,252]],
[[98,108,90,146,27],[64,90,90,91,26],[148,19,6,85,247],[229,199,122,17,51],[62,75,216,130,112]],
[[126,181,72,58,19],[133,153,0,195,200],[3,11,65,40,152],[78,28,149,161,205],[254,58,112,198,21]]
], dtype=np.int32)
mur = 185
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 3 failed!"
print("RD_LBP_P42g_R2: test 3 passed!")
array = np.array([
[[11,225,62,178,161],[174,222,139,110,35],[208,58,217,28,72],[186,125,40,113,88],[117,205,216,62,92]],
[[13,112,153,186,46],[106,33,169,195,206],[15,96,58,30,167],[104,237,136,40,14],[17,111,155,147,248]],
[[252,79,13,5,131],[119,30,229,214,20],[242,148,222,6,119],[134,117,235,112,179],[94,208,253,61,44]],
[[162,226,79,130,174],[253,42,217,69,24],[54,142,236,4,200],[194,235,148,114,101],[195,143,160,107,169]],
[[240,26,89,150,104],[94,174,81,52,68],[39,134,147,163,249],[138,143,43,53,254],[115,252,92,211,176]]
], dtype=np.int32)
mur = 240
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 15;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 4 failed!"
print("RD_LBP_P42g_R2: test 4 passed!")
array = np.array([
[[207,155,53,93,113],[130,102,10,209,250],[47,170,202,43,165],[86,4,90,13,27],[117,150,101,10,152]],
[[172,87,15,85,212],[102,202,240,227,41],[116,203,35,217,83],[161,171,50,99,6],[68,78,204,201,92]],
[[148,177,81,60,55],[159,68,108,39,199],[206,122,211,125,240],[57,54,85,202,190],[75,117,175,89,47]],
[[97,138,62,81,57],[151,36,157,20,203],[230,232,47,231,203],[240,219,58,157,2],[114,92,62,96,179]],
[[253,46,122,147,201],[64,39,234,52,250],[74,68,79,155,6],[139,89,180,144,99],[235,135,176,134,113]]
], dtype=np.int32)
mur = 3
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 23;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 5 failed!"
print("RD_LBP_P42g_R2: test 5 passed!")
array = np.array([
[[154,189,16,197,163],[21,224,165,25,236],[169,97,140,90,60],[37,78,46,76,139],[115,43,47,121,153]],
[[235,234,138,150,15],[136,58,107,115,3],[209,45,23,80,243],[61,21,45,175,139],[117,116,51,213,44]],
[[151,52,209,131,114],[118,226,246,54,208],[130,194,138,202,128],[62,169,3,230,236],[62,61,11,170,96]],
[[242,102,235,195,221],[132,28,215,146,119],[170,5,87,197,99],[42,77,99,121,58],[41,1,16,171,208]],
[[120,91,6,64,223],[225,175,134,7,81],[243,241,50,124,239],[57,248,199,17,243],[203,44,148,157,181]]
], dtype=np.int32)
mur = 156
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 19;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 6 failed!"
print("RD_LBP_P42g_R2: test 6 passed!")
array = np.array([
[[103,197,29,1,81],[64,71,182,211,74],[236,249,69,63,167],[18,50,230,253,224],[158,182,21,202,132]],
[[179,153,74,239,19],[40,71,130,182,119],[219,102,134,222,60],[189,204,179,79,143],[154,31,137,16,221]],
[[122,59,71,213,84],[119,15,139,188,177],[134,54,27,175,113],[127,252,193,103,106],[90,218,205,183,224]],
[[112,109,170,206,152],[36,13,146,176,30],[23,134,25,114,133],[159,108,20,80,71],[40,83,198,31,204]],
[[187,62,228,237,34],[90,220,92,134,6],[112,150,170,109,16],[0,121,165,113,0],[200,24,172,137,173]]
], dtype=np.int32)
mur = 203
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 26;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 7 failed!"
print("RD_LBP_P42g_R2: test 7 passed!")
array = np.array([
[[59,143,67,220,242],[143,215,25,183,200],[36,195,223,169,247],[131,99,96,35,206],[77,104,252,246,90]],
[[154,28,172,82,78],[118,0,151,219,192],[134,221,141,44,166],[20,34,194,23,13],[204,180,64,37,231]],
[[118,62,91,2,77],[46,24,174,91,253],[248,122,106,166,91],[159,47,31,79,9],[181,185,64,20,223]],
[[110,254,199,131,226],[121,25,22,120,157],[253,4,30,143,221],[160,14,200,41,144],[201,213,118,251,53]],
[[241,224,189,87,226],[162,31,204,18,231],[49,244,15,240,182],[159,168,27,150,186],[186,7,155,249,183]]
], dtype=np.int32)
mur = 113
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 23;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 8 failed!"
print("RD_LBP_P42g_R2: test 8 passed!")
array = np.array([
[[12,118,172,215,61],[200,39,97,44,197],[148,80,208,33,129],[249,71,117,117,243],[7,238,171,119,90]],
[[77,45,134,240,174],[124,237,225,163,52],[118,175,14,104,195],[230,222,2,144,126],[21,130,223,240,222]],
[[131,40,88,119,212],[123,2,193,143,218],[61,140,168,240,72],[191,141,122,212,136],[196,180,170,219,142]],
[[197,152,87,129,60],[169,232,159,108,10],[130,9,140,62,59],[193,218,32,160,84],[234,49,146,74,47]],
[[139,95,133,20,104],[197,185,89,229,233],[178,226,125,36,26],[36,84,4,224,143],[116,205,166,192,121]]
], dtype=np.int32)
mur = 46
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 22;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 9 failed!"
print("RD_LBP_P42g_R2: test 9 passed!")
array = np.array([
[[28,223,132,44,87],[39,44,206,12,112],[54,3,48,63,12],[22,177,3,120,154],[111,235,88,154,56]],
[[140,238,156,189,166],[17,174,123,65,151],[238,166,221,219,150],[254,172,3,237,134],[135,83,162,151,244]],
[[24,209,14,153,220],[75,248,94,68,47],[93,80,40,61,15],[50,1,60,180,118],[224,84,218,105,107]],
[[167,224,238,62,67],[51,126,117,94,124],[42,121,128,48,41],[32,90,242,8,129],[79,118,194,222,148]],
[[1,70,211,174,239],[73,243,254,58,37],[99,195,147,98,80],[89,159,224,76,35],[121,75,44,203,54]]
], dtype=np.int32)
mur = 48
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 27;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 10 failed!"
print("RD_LBP_P42g_R2: test 10 passed!")
array = np.array([
[[243,223,207,74,157],[16,141,221,47,154],[170,68,76,152,146],[220,242,43,155,123],[245,32,67,60,39]],
[[19,204,76,189,33],[126,142,68,188,232],[90,235,68,40,247],[210,218,253,106,60],[160,135,46,129,145]],
[[185,106,71,204,205],[83,173,240,236,206],[195,188,8,13,131],[219,189,214,145,187],[215,103,247,6,162]],
[[94,104,71,98,160],[96,248,151,184,65],[135,250,165,34,86],[115,17,66,241,226],[67,149,5,241,166]],
[[69,205,242,95,28],[161,21,201,204,105],[115,205,152,128,127],[137,125,120,215,13],[135,248,8,159,146]]
], dtype=np.int32)
mur = 15
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 21;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 11 failed!"
print("RD_LBP_P42g_R2: test 11 passed!")
array = np.array([
[[64,48,214,158,140],[109,252,12,77,62],[241,196,135,203,193],[224,118,14,225,69],[5,165,4,241,238]],
[[248,247,242,199,215],[230,67,244,170,120],[64,100,86,118,213],[192,26,159,124,162],[73,103,250,34,202]],
[[177,144,191,93,208],[38,58,50,192,122],[23,64,45,193,159],[125,254,96,33,161],[251,217,204,42,135]],
[[3,165,254,72,204],[142,14,9,118,203],[196,141,13,104,209],[223,54,51,147,102],[147,97,232,168,165]],
[[106,184,22,87,115],[237,135,137,41,230],[245,177,135,97,43],[123,230,15,89,107],[234,216,61,209,117]]
], dtype=np.int32)
mur = 155
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 12 failed!"
print("RD_LBP_P42g_R2: test 12 passed!")
array = np.array([
[[207,128,220,216,145],[175,8,37,60,121],[250,9,44,129,185],[146,121,57,110,72],[175,142,191,93,140]],
[[73,245,9,28,224],[213,180,41,47,63],[142,182,75,105,245],[82,25,11,170,165],[146,97,165,165,58]],
[[50,54,164,143,159],[99,106,97,76,215],[192,13,136,6,105],[218,146,234,207,14],[142,83,197,138,65]],
[[41,175,1,174,160],[1,113,243,212,128],[200,203,151,100,150],[246,91,111,31,197],[190,57,63,61,205]],
[[93,184,71,106,220],[223,95,191,163,11],[112,76,102,186,170],[122,137,35,73,105],[47,139,120,159,24]]
], dtype=np.int32)
mur = 57
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 21;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 13 failed!"
print("RD_LBP_P42g_R2: test 13 passed!")
array = np.array([
[[161,82,239,42,19],[226,229,204,71,228],[173,47,104,201,231],[48,199,91,51,136],[159,166,198,226,143]],
[[198,15,101,116,107],[53,186,103,154,40],[80,193,226,1,5],[27,182,47,110,80],[2,10,172,104,82]],
[[48,194,85,118,132],[126,158,208,81,111],[68,104,67,146,16],[205,58,105,87,242],[7,245,242,149,185]],
[[66,48,0,202,29],[132,110,205,247,160],[148,187,93,20,168],[213,109,108,145,138],[245,101,74,179,236]],
[[42,28,43,83,2],[137,92,76,85,211],[144,161,254,11,189],[175,227,154,38,241],[50,12,54,53,114]]
], dtype=np.int32)
mur = 133
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 14 failed!"
print("RD_LBP_P42g_R2: test 14 passed!")
array = np.array([
[[208,55,97,33,77],[194,39,39,121,194],[88,234,225,117,156],[85,174,191,253,182],[201,28,23,140,248]],
[[109,186,209,81,31],[191,125,133,228,148],[28,226,6,248,86],[191,22,194,131,103],[48,95,207,25,73]],
[[106,74,235,246,197],[146,152,67,159,55],[209,231,5,123,143],[135,94,185,10,37],[218,195,109,81,134]],
[[102,83,44,241,110],[127,6,85,57,215],[96,24,117,1,94],[108,245,51,153,140],[16,107,115,249,254]],
[[216,20,32,231,52],[17,247,95,175,182],[218,73,57,194,120],[251,217,122,214,94],[20,1,16,170,30]]
], dtype=np.int32)
mur = 98
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 25;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 15 failed!"
print("RD_LBP_P42g_R2: test 15 passed!")
array = np.array([
[[198,9,91,100,228],[155,24,56,156,82],[8,148,19,73,52],[230,132,149,224,106],[155,0,218,59,146]],
[[107,132,35,147,195],[8,169,248,191,29],[106,242,124,139,90],[8,20,228,121,82],[219,234,151,44,1]],
[[120,140,20,60,226],[152,242,70,179,39],[210,208,17,173,47],[202,179,186,205,110],[174,73,54,178,251]],
[[138,76,178,119,99],[75,28,140,85,179],[41,228,119,166,15],[246,186,150,242,223],[145,181,246,189,240]],
[[219,47,31,119,210],[176,214,14,14,35],[137,52,242,9,96],[173,119,60,3,202],[235,120,141,219,106]]
], dtype=np.int32)
mur = 150
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 16 failed!"
print("RD_LBP_P42g_R2: test 16 passed!")
array = np.array([
[[30,153,179,189,9],[54,177,30,105,171],[209,185,96,120,249],[146,145,46,245,92],[11,32,21,233,121]],
[[45,169,9,229,210],[190,200,54,68,89],[7,37,249,127,11],[110,86,142,22,19],[38,165,129,72,242]],
[[19,106,84,1,13],[135,26,243,29,50],[148,188,88,156,188],[71,136,53,170,47],[131,98,253,119,90]],
[[107,21,11,181,173],[111,185,59,142,140],[136,157,15,194,158],[99,251,22,64,210],[231,57,210,59,96]],
[[227,124,122,59,182],[103,185,244,32,29],[104,43,125,53,152],[169,50,239,1,176],[9,97,64,35,69]]
], dtype=np.int32)
mur = 166
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 15;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 17 failed!"
print("RD_LBP_P42g_R2: test 17 passed!")
array = np.array([
[[208,124,154,122,18],[27,143,228,48,243],[208,180,187,45,98],[17,7,190,28,82],[214,192,189,107,195]],
[[14,118,80,125,164],[179,19,161,139,182],[236,181,10,32,13],[218,144,220,46,206],[118,68,129,63,13]],
[[2,15,224,63,121],[197,243,129,155,143],[203,78,99,78,51],[75,187,215,57,131],[245,26,71,179,25]],
[[223,81,15,126,217],[32,124,231,226,209],[99,44,177,34,61],[178,152,120,63,224],[3,145,91,79,234]],
[[44,70,236,119,99],[22,24,37,165,169],[126,170,98,52,175],[43,28,158,118,38],[207,10,125,231,78]]
], dtype=np.int32)
mur = 225
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 18 failed!"
print("RD_LBP_P42g_R2: test 18 passed!")
array = np.array([
[[71,114,193,115,151],[18,23,82,120,145],[37,59,137,217,176],[237,196,153,200,166],[243,195,171,4,218]],
[[36,168,26,105,23],[200,251,14,206,215],[84,238,49,208,234],[198,136,21,106,96],[85,36,52,196,235]],
[[204,42,92,83,22],[230,29,136,154,241],[230,117,28,192,25],[44,43,25,254,73],[248,47,204,25,197]],
[[222,223,247,163,199],[20,101,65,2,189],[0,42,220,222,150],[128,217,222,116,195],[204,121,114,227,232]],
[[222,83,19,227,45],[82,254,91,201,98],[42,91,110,163,215],[173,51,231,12,132],[73,254,186,94,71]]
], dtype=np.int32)
mur = 82
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 19 failed!"
print("RD_LBP_P42g_R2: test 19 passed!")
array = np.array([
[[203,238,183,117,64],[104,5,197,181,232],[112,133,170,98,27],[217,186,227,140,121],[137,105,172,172,89]],
[[16,57,166,220,124],[203,62,157,169,128],[168,105,105,71,170],[128,120,146,109,201],[198,108,205,137,110]],
[[253,133,53,190,22],[77,116,203,172,223],[21,97,26,133,152],[219,75,101,238,83],[41,81,209,15,23]],
[[92,192,201,99,143],[151,223,129,173,183],[205,248,157,9,167],[87,95,237,37,16],[192,77,97,36,216]],
[[111,24,142,115,157],[253,94,53,216,192],[115,138,247,102,164],[159,183,173,41,44],[34,245,78,5,130]]
], dtype=np.int32)
mur = 18
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 27;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 20 failed!"
print("RD_LBP_P42g_R2: test 20 passed!")
array = np.array([
[[60,89,135,88,51],[239,250,21,212,223],[175,69,21,150,206],[160,207,239,184,76],[96,38,176,98,26]],
[[219,222,7,157,16],[72,204,79,209,206],[234,227,161,89,31],[164,200,90,17,2],[99,199,52,30,79]],
[[88,166,249,130,18],[0,101,32,144,236],[26,105,222,38,39],[36,193,56,49,117],[120,130,147,145,164]],
[[61,53,207,101,17],[35,110,91,247,216],[172,92,38,225,169],[169,157,187,78,98],[95,189,212,248,217]],
[[27,5,13,60,218],[59,183,130,148,143],[77,198,50,30,32],[65,137,79,145,69],[202,178,44,206,216]]
], dtype=np.int32)
mur = 211
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 21 failed!"
print("RD_LBP_P42g_R2: test 21 passed!")
array = np.array([
[[58,122,105,172,0],[129,149,26,149,62],[62,234,222,234,205],[206,151,100,118,31],[47,248,148,174,189]],
[[96,142,87,189,106],[141,190,120,162,110],[105,199,17,33,127],[7,186,143,81,12],[194,10,114,228,20]],
[[31,228,111,254,165],[89,140,176,21,251],[20,3,59,99,216],[69,17,207,91,117],[136,237,9,105,211]],
[[1,195,94,48,241],[85,146,154,184,128],[67,140,107,239,235],[1,45,252,99,229],[155,131,46,45,234]],
[[134,171,219,133,95],[141,102,169,192,65],[134,249,185,99,3],[193,181,188,228,92],[234,212,165,40,209]]
], dtype=np.int32)
mur = 223
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 22 failed!"
print("RD_LBP_P42g_R2: test 22 passed!")
array = np.array([
[[93,254,14,165,183],[139,192,178,16,64],[61,155,209,37,178],[107,80,52,204,44],[167,133,75,88,6]],
[[13,108,219,56,27],[198,187,237,96,77],[117,10,27,25,249],[215,81,10,81,199],[231,192,69,157,238]],
[[236,137,190,139,60],[74,225,9,139,241],[43,81,93,17,83],[29,140,142,118,116],[55,140,130,105,217]],
[[250,152,46,186,57],[73,91,240,165,227],[104,32,44,122,236],[212,100,193,166,178],[197,202,132,7,61]],
[[57,247,224,172,171],[112,45,224,137,13],[226,56,181,53,223],[223,240,140,71,176],[9,229,9,165,78]]
], dtype=np.int32)
mur = 224
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 34;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 23 failed!"
print("RD_LBP_P42g_R2: test 23 passed!")
array = np.array([
[[35,183,246,137,193],[181,17,50,242,148],[160,17,210,41,62],[58,155,213,53,202],[114,111,230,156,69]],
[[60,205,137,63,198],[198,92,157,154,173],[65,161,156,156,38],[140,206,90,79,56],[165,97,122,119,35]],
[[99,112,119,7,199],[201,96,249,122,57],[243,178,213,242,58],[96,110,238,176,45],[107,189,145,89,226]],
[[167,21,1,91,177],[239,19,158,6,176],[17,102,160,120,247],[46,151,253,118,227],[13,216,51,73,83]],
[[97,89,167,143,11],[168,42,88,178,232],[179,168,191,63,175],[200,59,183,240,29],[141,86,116,63,208]]
], dtype=np.int32)
mur = 34
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 24 failed!"
print("RD_LBP_P42g_R2: test 24 passed!")
array = np.array([
[[122,11,171,102,246],[104,69,138,16,165],[161,195,170,84,75],[16,91,213,208,211],[11,202,124,147,79]],
[[212,184,92,77,144],[231,22,37,114,164],[59,219,211,76,188],[62,127,144,120,153],[81,13,226,105,176]],
[[196,171,16,85,188],[190,194,178,202,252],[79,25,196,222,77],[162,142,250,224,159],[219,213,74,224,94]],
[[240,188,96,144,40],[28,163,44,202,46],[33,10,190,136,113],[32,171,36,28,42],[166,92,112,66,131]],
[[116,252,72,23,221],[215,48,114,229,191],[239,171,157,218,167],[61,15,70,199,71],[9,22,46,76,158]]
], dtype=np.int32)
mur = 51
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 25 failed!"
print("RD_LBP_P42g_R2: test 25 passed!")
array = np.array([
[[165,194,204,67,65],[168,85,21,31,10],[123,225,174,36,211],[152,16,111,32,113],[95,33,61,14,171]],
[[80,91,7,117,45],[172,110,126,198,29],[56,194,231,148,175],[46,199,123,237,203],[224,207,11,233,102]],
[[106,0,118,234,208],[3,198,79,165,131],[44,198,129,38,95],[15,119,63,66,20],[3,232,55,243,162]],
[[24,6,97,22,247],[36,94,34,101,99],[7,193,35,200,212],[181,3,13,48,14],[199,183,226,243,60]],
[[1,216,143,40,196],[57,182,228,71,242],[138,140,95,159,95],[111,82,125,139,159],[144,190,101,52,106]]
], dtype=np.int32)
mur = 65
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 26 failed!"
print("RD_LBP_P42g_R2: test 26 passed!")
array = np.array([
[[79,169,23,33,222],[57,111,94,78,191],[61,250,81,159,245],[1,220,123,109,123],[117,194,43,71,34]],
[[237,0,196,217,110],[130,193,196,136,134],[152,221,74,21,7],[204,58,88,78,210],[190,12,180,226,245]],
[[61,119,215,114,51],[118,68,107,26,165],[83,196,29,36,233],[165,126,149,225,151],[185,127,158,131,147]],
[[218,118,155,197,148],[251,63,114,1,45],[237,120,219,181,226],[46,43,195,38,48],[232,1,62,78,202]],
[[229,60,166,185,179],[50,117,33,138,153],[33,122,69,189,239],[22,160,171,97,151],[111,162,233,100,77]]
], dtype=np.int32)
mur = 107
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 22;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 27 failed!"
print("RD_LBP_P42g_R2: test 27 passed!")
array = np.array([
[[18,249,201,130,135],[239,55,70,44,148],[140,42,173,50,161],[167,180,191,43,2],[223,59,193,40,148]],
[[249,114,54,55,128],[95,90,217,242,70],[182,192,26,30,61],[6,66,96,30,218],[114,228,64,75,44]],
[[187,10,210,91,134],[50,10,6,175,47],[24,172,253,5,234],[10,161,186,114,69],[29,199,124,35,74]],
[[106,68,81,188,180],[253,219,87,126,17],[253,149,28,9,86],[200,59,40,4,188],[58,107,216,73,180]],
[[125,105,141,253,183],[52,45,26,51,54],[224,249,244,97,209],[83,180,12,54,137],[149,174,116,152,151]]
], dtype=np.int32)
mur = 232
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 28 failed!"
print("RD_LBP_P42g_R2: test 28 passed!")
array = np.array([
[[21,122,36,241,181],[118,76,16,122,254],[252,48,170,95,137],[149,230,89,38,12],[148,189,24,161,59]],
[[3,52,123,56,118],[229,245,100,130,187],[36,39,157,8,201],[205,138,212,112,215],[50,142,34,112,105]],
[[154,46,181,42,192],[127,71,254,125,187],[161,129,65,217,60],[80,184,253,217,134],[87,254,226,145,184]],
[[38,127,154,131,165],[206,220,8,196,229],[47,108,41,0,156],[81,189,178,97,20],[188,61,47,85,124]],
[[74,75,5,196,199],[19,142,182,98,108],[159,211,155,215,0],[59,20,56,67,207],[153,127,71,124,70]]
], dtype=np.int32)
mur = 160
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 20;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 29 failed!"
print("RD_LBP_P42g_R2: test 29 passed!")
array = np.array([
[[30,53,132,5,117],[244,194,218,88,78],[126,67,120,35,51],[243,201,50,4,128],[4,250,199,124,11]],
[[15,207,110,53,123],[251,100,44,131,31],[104,131,174,87,249],[177,107,175,25,18],[249,186,184,31,194]],
[[200,34,10,59,188],[1,241,235,149,72],[192,161,155,122,92],[89,154,94,112,84],[14,42,154,93,74]],
[[219,58,50,114,48],[191,81,169,242,175],[63,0,188,5,153],[193,207,236,203,232],[57,36,206,251,139]],
[[218,187,51,219,247],[218,193,236,30,102],[160,54,168,166,156],[112,167,237,153,156],[80,72,164,19,144]]
], dtype=np.int32)
mur = 251
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 30 failed!"
print("RD_LBP_P42g_R2: test 30 passed!")
array = np.array([
[[40,97,199,116,240],[150,88,79,136,217],[201,151,80,173,64],[196,49,155,123,196],[106,180,149,165,227]],
[[173,220,161,171,231],[159,52,127,17,166],[86,74,161,108,41],[221,229,177,221,95],[228,238,194,175,88]],
[[93,127,217,41,9],[58,16,0,41,192],[194,142,61,181,161],[200,58,209,134,2],[106,214,158,61,239]],
[[101,37,234,160,47],[201,103,22,178,65],[156,135,193,134,165],[26,47,118,45,39],[145,6,16,66,183]],
[[222,243,125,68,198],[147,57,117,249,225],[32,40,187,172,50],[12,221,122,106,215],[143,165,228,22,229]]
], dtype=np.int32)
mur = 3
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 22;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 31 failed!"
print("RD_LBP_P42g_R2: test 31 passed!")
array = np.array([
[[166,231,148,162,204],[162,54,71,103,84],[161,8,141,148,2],[28,215,41,99,178],[253,69,153,121,45]],
[[37,162,215,7,67],[32,159,138,228,64],[58,145,9,94,189],[168,56,48,235,202],[173,81,79,109,244]],
[[40,208,194,63,230],[225,209,184,152,56],[192,144,246,77,76],[209,165,69,36,49],[87,117,110,212,138]],
[[155,99,110,209,84],[201,237,111,205,99],[90,208,197,148,221],[241,250,98,206,247],[78,91,243,131,37]],
[[90,97,181,210,78],[248,45,254,171,179],[177,31,143,191,122],[49,3,174,55,207],[192,119,67,230,168]]
], dtype=np.int32)
mur = 95
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 32 failed!"
print("RD_LBP_P42g_R2: test 32 passed!")
array = np.array([
[[246,83,18,248,200],[75,157,193,39,130],[16,169,90,186,127],[191,77,193,115,90],[35,167,24,92,183]],
[[178,209,219,71,224],[39,98,41,172,223],[73,75,244,226,5],[176,161,129,12,182],[178,184,220,45,206]],
[[68,203,184,215,91],[185,64,20,105,16],[11,166,188,6,173],[217,99,87,216,207],[165,130,211,183,27]],
[[60,49,195,12,36],[13,109,76,75,14],[33,181,94,34,142],[23,221,177,149,78],[8,23,228,83,215]],
[[76,42,51,222,184],[31,110,185,37,41],[4,180,60,101,54],[41,47,130,30,84],[174,131,65,42,248]]
], dtype=np.int32)
mur = 129
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 23;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 33 failed!"
print("RD_LBP_P42g_R2: test 33 passed!")
array = np.array([
[[148,108,111,26,164],[181,100,184,99,232],[194,127,35,47,34],[63,184,239,230,116],[89,77,169,30,75]],
[[114,71,183,70,184],[67,35,83,103,94],[111,166,124,240,222],[138,244,103,198,63],[119,161,11,0,82]],
[[102,29,120,54,195],[184,219,192,22,138],[6,90,119,125,175],[116,196,233,136,164],[148,10,241,148,253]],
[[237,10,5,231,190],[52,38,202,88,1],[39,65,115,86,233],[55,177,152,32,211],[165,16,41,63,59]],
[[55,194,159,133,163],[84,141,3,203,7],[198,230,80,100,125],[125,132,247,195,74],[50,190,229,31,229]]
], dtype=np.int32)
mur = 177
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 16;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 34 failed!"
print("RD_LBP_P42g_R2: test 34 passed!")
array = np.array([
[[68,99,55,202,69],[253,22,58,110,40],[6,40,190,110,29],[152,195,230,215,211],[149,56,120,91,210]],
[[165,72,17,184,149],[196,132,133,139,173],[0,61,241,93,166],[56,238,239,190,72],[138,121,148,53,151]],
[[171,154,148,83,244],[49,120,14,192,211],[244,53,254,116,249],[97,238,128,105,135],[123,177,231,28,81]],
[[39,123,138,229,242],[241,62,229,178,241],[84,216,197,175,194],[27,67,126,211,182],[201,143,17,241,168]],
[[136,198,139,246,210],[243,130,89,212,169],[26,181,198,31,45],[90,66,69,197,115],[86,214,213,186,214]]
], dtype=np.int32)
mur = 128
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 18;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 35 failed!"
print("RD_LBP_P42g_R2: test 35 passed!")
array = np.array([
[[224,59,227,23,14],[34,30,184,181,131],[181,254,219,247,43],[157,120,193,120,192],[198,34,103,128,41]],
[[186,192,8,12,46],[244,178,86,194,65],[166,215,109,42,207],[122,218,215,161,237],[131,54,226,17,78]],
[[44,171,157,248,94],[15,215,5,190,247],[209,79,76,176,105],[206,40,125,170,171],[6,137,43,101,139]],
[[147,127,238,120,156],[250,239,72,140,1],[10,33,1,51,200],[176,187,24,108,218],[243,111,3,102,233]],
[[142,132,65,3,201],[129,206,52,226,144],[37,97,141,190,184],[52,217,92,18,73],[58,194,6,64,251]]
], dtype=np.int32)
mur = 149
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 36 failed!"
print("RD_LBP_P42g_R2: test 36 passed!")
array = np.array([
[[33,103,198,159,216],[46,70,94,32,215],[149,5,252,142,226],[175,238,82,60,78],[187,67,249,133,72]],
[[158,239,17,132,181],[198,86,110,191,22],[123,175,42,136,222],[89,72,201,2,44],[190,136,20,150,115]],
[[161,8,124,111,211],[244,103,186,59,190],[105,148,220,58,179],[175,54,244,239,196],[180,134,3,164,230]],
[[61,176,244,208,144],[235,22,21,185,89],[168,209,223,178,224],[225,154,32,134,247],[249,20,229,222,48]],
[[241,20,140,15,79],[97,32,218,127,64],[237,65,118,112,92],[192,164,50,101,212],[2,208,139,92,89]]
], dtype=np.int32)
mur = 168
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 16;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 37 failed!"
print("RD_LBP_P42g_R2: test 37 passed!")
array = np.array([
[[182,44,56,19,129],[57,92,154,102,144],[143,152,193,150,149],[241,204,237,77,218],[63,11,29,80,66]],
[[163,109,53,145,132],[217,165,39,113,230],[32,253,41,239,109],[219,44,139,170,3],[112,9,47,201,47]],
[[173,203,112,134,94],[17,178,105,114,29],[136,176,145,123,94],[241,56,248,249,203],[228,233,47,22,61]],
[[49,202,7,66,81],[216,192,187,227,88],[100,141,91,57,173],[219,177,94,76,235],[249,116,52,218,135]],
[[15,208,77,24,62],[253,242,123,36,249],[210,100,207,109,215],[223,1,23,92,213],[179,108,137,232,19]]
], dtype=np.int32)
mur = 171
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 18;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 38 failed!"
print("RD_LBP_P42g_R2: test 38 passed!")
array = np.array([
[[77,196,246,102,179],[195,246,90,138,151],[47,47,248,42,50],[50,210,12,248,144],[123,173,139,128,168]],
[[84,216,159,202,143],[246,246,51,230,83],[137,116,24,163,195],[114,51,108,26,36],[211,215,53,50,185]],
[[96,135,75,56,183],[142,177,105,163,183],[12,148,122,168,243],[71,252,84,4,177],[251,254,74,134,179]],
[[105,203,144,248,237],[157,146,46,253,171],[54,147,115,120,151],[206,233,52,156,119],[210,87,158,239,247]],
[[102,239,73,132,219],[197,242,182,29,156],[112,146,45,103,210],[228,169,90,22,188],[5,112,100,113,157]]
], dtype=np.int32)
mur = 252
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 39 failed!"
print("RD_LBP_P42g_R2: test 39 passed!")
array = np.array([
[[10,82,131,132,115],[206,201,236,160,182],[107,242,99,111,38],[122,141,47,182,134],[109,180,16,128,212]],
[[142,238,207,144,30],[158,230,69,136,114],[105,31,173,215,117],[116,118,153,153,215],[221,225,135,51,116]],
[[39,202,194,210,183],[4,97,138,92,44],[150,254,22,145,122],[115,225,24,126,7],[164,89,20,13,159]],
[[202,135,225,158,166],[132,49,74,76,17],[221,180,10,106,98],[7,9,92,24,2],[235,104,68,79,20]],
[[180,111,0,52,141],[34,37,205,17,155],[89,28,5,174,84],[220,222,173,230,22],[13,160,101,106,67]]
], dtype=np.int32)
mur = 181
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 21;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 40 failed!"
print("RD_LBP_P42g_R2: test 40 passed!")
array = np.array([
[[119,249,59,146,67],[104,246,221,150,132],[123,4,64,150,22],[170,227,73,180,103],[88,15,76,71,238]],
[[219,189,135,29,20],[232,91,72,222,104],[170,217,115,156,8],[81,47,66,164,90],[137,115,215,190,244]],
[[250,41,200,118,8],[181,178,223,206,16],[184,252,6,163,36],[225,176,107,22,35],[94,53,120,183,11]],
[[155,215,160,53,154],[120,149,101,98,47],[121,54,183,186,165],[155,213,128,151,16],[187,205,253,196,235]],
[[241,196,118,244,110],[128,153,106,52,76],[63,77,96,33,34],[126,76,47,38,214],[28,27,101,72,138]]
], dtype=np.int32)
mur = 45
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 41 failed!"
print("RD_LBP_P42g_R2: test 41 passed!")
array = np.array([
[[219,143,75,123,45],[65,233,55,100,79],[117,69,115,210,53],[182,115,242,39,242],[179,125,101,26,27]],
[[7,209,160,136,2],[180,53,154,33,54],[70,19,97,65,247],[137,3,184,18,162],[142,241,252,253,225]],
[[89,224,74,192,226],[136,73,61,202,162],[138,20,76,24,87],[154,118,44,1,184],[135,66,81,182,149]],
[[236,183,132,241,1],[219,222,103,212,75],[163,37,245,250,11],[233,200,213,200,29],[245,24,172,196,43]],
[[17,179,136,147,210],[3,159,70,62,122],[19,59,224,151,114],[211,25,81,81,71],[13,199,6,106,251]]
], dtype=np.int32)
mur = 43
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 32;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 42 failed!"
print("RD_LBP_P42g_R2: test 42 passed!")
array = np.array([
[[5,190,5,113,165],[146,157,77,136,60],[110,243,3,148,148],[54,23,201,248,212],[129,169,55,41,107]],
[[68,180,95,110,40],[89,217,145,178,51],[251,178,74,1,103],[38,112,26,254,122],[200,236,91,42,7]],
[[133,118,46,81,159],[135,119,190,181,192],[102,52,209,187,87],[240,230,101,170,90],[50,184,146,186,197]],
[[127,240,249,205,157],[201,168,44,180,216],[223,179,223,126,68],[243,148,112,226,170],[214,233,95,218,179]],
[[77,201,179,222,220],[194,113,44,254,112],[190,106,58,1,219],[172,69,108,164,8],[30,162,181,168,154]]
], dtype=np.int32)
mur = 106
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 21;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 43 failed!"
print("RD_LBP_P42g_R2: test 43 passed!")
array = np.array([
[[225,58,111,126,155],[157,142,183,214,76],[122,46,30,172,220],[52,182,89,87,55],[244,26,200,87,129]],
[[167,17,50,165,243],[214,108,131,79,56],[235,13,221,62,126],[145,225,23,169,94],[168,125,25,250,232]],
[[240,226,63,147,13],[201,108,124,10,87],[48,238,250,85,148],[83,59,2,126,191],[248,127,39,105,190]],
[[102,232,7,187,69],[71,164,147,31,183],[60,186,180,133,183],[231,199,224,129,214],[63,52,75,173,206]],
[[116,230,132,191,37],[215,20,245,220,141],[120,135,10,48,220],[161,196,119,168,14],[17,243,66,105,223]]
], dtype=np.int32)
mur = 91
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 22;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 44 failed!"
print("RD_LBP_P42g_R2: test 44 passed!")
array = np.array([
[[206,31,146,226,113],[201,104,221,152,34],[209,152,47,230,163],[1,36,53,129,41],[15,167,22,117,200]],
[[134,47,213,102,63],[19,214,252,49,119],[99,249,169,68,176],[91,57,233,6,134],[143,188,177,172,161]],
[[56,58,244,42,229],[173,141,215,21,167],[48,237,39,142,169],[213,216,31,37,71],[100,185,218,109,26]],
[[145,220,11,2,41],[105,229,116,153,113],[13,121,88,54,82],[237,74,144,171,141],[31,49,253,187,30]],
[[31,194,82,171,3],[18,223,8,139,9],[216,103,132,105,22],[80,218,156,228,182],[210,202,217,31,164]]
], dtype=np.int32)
mur = 168
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 24;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 45 failed!"
print("RD_LBP_P42g_R2: test 45 passed!")
array = np.array([
[[193,242,5,41,242],[85,112,81,110,96],[148,182,33,73,206],[88,181,173,22,2],[78,238,170,143,248]],
[[59,58,80,208,242],[31,33,200,169,62],[252,55,133,216,193],[80,161,18,158,69],[173,27,105,55,110]],
[[130,214,134,119,79],[49,83,143,21,128],[165,148,115,243,87],[150,212,165,16,23],[228,148,6,240,13]],
[[31,140,228,163,153],[100,191,239,147,165],[32,221,160,92,83],[35,117,222,134,128],[65,47,54,81,41]],
[[61,48,185,213,41],[29,197,94,165,104],[151,7,131,239,60],[211,113,236,69,68],[228,48,251,212,64]]
], dtype=np.int32)
mur = 64
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 46 failed!"
print("RD_LBP_P42g_R2: test 46 passed!")
array = np.array([
[[102,66,170,247,124],[121,188,124,150,1],[142,177,214,37,187],[222,94,155,61,70],[152,240,118,15,237]],
[[233,230,28,182,20],[119,89,98,29,65],[215,95,8,68,127],[1,160,156,252,14],[98,238,167,127,56]],
[[199,121,4,64,20],[130,103,63,123,147],[96,165,32,188,101],[196,157,216,186,21],[34,249,179,163,221]],
[[2,202,5,155,184],[33,108,50,230,12],[117,172,224,8,97],[209,166,159,90,137],[27,230,105,253,22]],
[[186,249,34,185,126],[43,100,231,233,228],[196,228,118,147,9],[243,167,127,247,83],[123,225,153,208,155]]
], dtype=np.int32)
mur = 143
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 25;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 47 failed!"
print("RD_LBP_P42g_R2: test 47 passed!")
array = np.array([
[[90,187,50,83,174],[102,120,103,125,117],[19,138,142,100,207],[166,152,162,161,79],[82,229,187,137,131]],
[[153,230,62,237,38],[13,35,221,134,20],[159,133,26,26,251],[112,19,200,66,117],[85,91,167,85,19]],
[[204,89,161,219,7],[58,229,219,153,87],[244,11,10,226,28],[164,48,91,124,140],[91,75,159,48,122]],
[[132,189,66,23,182],[90,156,80,66,104],[28,76,242,68,184],[144,75,151,156,135],[146,183,98,208,152]],
[[228,116,188,200,187],[180,249,93,166,96],[36,136,100,179,242],[83,95,83,96,183],[13,202,213,2,113]]
], dtype=np.int32)
mur = 118
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 23;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 48 failed!"
print("RD_LBP_P42g_R2: test 48 passed!")
array = np.array([
[[132,35,25,129,141],[28,84,234,230,133],[188,105,239,180,68],[198,154,77,76,41],[192,210,163,218,180]],
[[6,150,127,198,155],[85,119,47,173,89],[26,4,103,107,252],[176,225,30,176,86],[30,225,4,245,20]],
[[189,244,190,132,176],[108,157,42,157,25],[231,112,2,120,97],[164,216,208,17,95],[245,231,91,47,201]],
[[41,166,134,243,117],[233,199,149,152,48],[149,132,249,122,215],[190,12,175,156,249],[48,220,123,46,229]],
[[184,120,63,116,22],[186,223,62,195,248],[158,40,24,94,106],[186,212,134,27,167],[8,9,97,55,93]]
], dtype=np.int32)
mur = 24
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 26;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 49 failed!"
print("RD_LBP_P42g_R2: test 49 passed!")
array = np.array([
[[218,177,126,33,177],[30,177,104,195,206],[237,247,85,118,29],[170,49,76,220,111],[146,78,45,136,213]],
[[11,193,194,81,181],[159,173,159,159,174],[48,181,144,134,16],[83,244,219,193,246],[4,85,47,28,71]],
[[137,141,251,178,27],[140,103,59,94,154],[150,246,139,176,195],[189,117,89,222,240],[54,0,83,81,107]],
[[174,36,86,98,196],[243,126,206,222,189],[147,251,203,130,156],[126,164,211,62,160],[124,72,126,239,72]],
[[208,28,128,229,72],[50,230,132,22,192],[115,76,63,188,167],[181,87,239,150,211],[162,38,198,36,213]]
], dtype=np.int32)
mur = 237
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 16;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 50 failed!"
print("RD_LBP_P42g_R2: test 50 passed!")
array = np.array([
[[245,179,200,150,65],[227,23,227,235,220],[189,153,80,220,7],[123,79,77,100,199],[83,187,132,130,28]],
[[109,51,179,125,103],[103,116,217,122,80],[248,252,175,99,6],[144,42,203,236,17],[162,83,89,63,195]],
[[40,34,72,113,147],[69,157,188,17,247],[50,233,199,235,18],[59,200,88,60,137],[211,136,218,184,98]],
[[233,49,0,119,8],[22,182,18,243,69],[197,50,125,172,10],[220,185,86,121,120],[47,98,252,176,174]],
[[100,108,80,30,88],[119,152,53,99,28],[196,28,44,88,184],[165,153,189,14,142],[210,170,130,151,215]]
], dtype=np.int32)
mur = 167
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 51 failed!"
print("RD_LBP_P42g_R2: test 51 passed!")
array = np.array([
[[146,110,217,216,84],[93,197,19,129,116],[239,241,232,28,31],[214,174,110,143,63],[14,129,168,228,250]],
[[169,156,166,7,105],[133,80,99,252,10],[73,175,122,145,173],[34,25,65,159,252],[53,104,7,212,80]],
[[109,88,144,211,212],[130,68,81,252,57],[179,199,12,92,101],[32,82,44,19,163],[111,163,198,182,131]],
[[84,235,219,124,224],[116,230,94,206,74],[124,15,254,87,35],[56,244,70,106,218],[68,182,162,68,250]],
[[251,107,146,73,29],[241,95,238,27,208],[40,197,68,10,4],[23,127,143,245,149],[25,244,28,32,19]]
], dtype=np.int32)
mur = 199
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 27;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 52 failed!"
print("RD_LBP_P42g_R2: test 52 passed!")
array = np.array([
[[252,231,135,73,252],[240,183,168,55,122],[149,91,39,171,66],[99,14,195,172,117],[201,86,6,153,140]],
[[60,32,190,181,100],[150,125,79,175,17],[129,179,125,240,202],[138,45,38,114,6],[212,78,165,6,22]],
[[187,22,219,77,56],[200,156,19,61,178],[35,21,102,117,234],[131,120,36,112,173],[125,70,233,74,4]],
[[6,80,158,8,50],[47,238,65,62,207],[21,2,177,172,36],[67,100,207,207,111],[120,123,188,16,160]],
[[101,11,1,62,101],[206,177,35,138,95],[37,219,132,156,57],[12,47,229,111,30],[129,140,112,82,149]]
], dtype=np.int32)
mur = 209
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 53 failed!"
print("RD_LBP_P42g_R2: test 53 passed!")
array = np.array([
[[193,20,209,83,61],[3,34,102,32,81],[102,244,12,9,156],[41,172,153,252,18],[191,226,15,91,73]],
[[23,230,22,96,15],[89,158,126,181,177],[48,138,228,233,90],[250,84,156,197,66],[74,7,232,155,102]],
[[21,240,98,151,53],[214,193,96,163,99],[242,168,86,160,18],[177,24,191,244,104],[153,164,24,152,18]],
[[51,47,180,216,183],[132,79,3,39,160],[184,252,118,41,236],[89,170,196,77,184],[45,192,178,196,227]],
[[248,32,28,177,63],[136,229,178,131,51],[102,79,202,36,191],[66,121,50,54,230],[50,181,86,87,180]]
], dtype=np.int32)
mur = 148
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 17;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 54 failed!"
print("RD_LBP_P42g_R2: test 54 passed!")
array = np.array([
[[24,95,252,157,201],[202,245,65,230,31],[134,149,113,136,154],[107,8,67,240,109],[90,190,189,59,191]],
[[185,40,172,229,250],[195,159,53,123,24],[201,125,109,63,3],[126,64,230,168,88],[112,188,140,11,189]],
[[165,36,42,150,92],[53,124,32,126,181],[56,219,155,5,182],[81,21,105,189,67],[223,27,101,248,237]],
[[17,37,77,186,145],[25,135,203,82,184],[153,203,200,209,245],[63,192,38,150,145],[246,45,217,101,36]],
[[175,36,89,59,101],[123,49,96,174,36],[82,204,106,244,177],[2,149,53,194,158],[147,83,163,43,252]]
], dtype=np.int32)
mur = 106
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 55 failed!"
print("RD_LBP_P42g_R2: test 55 passed!")
array = np.array([
[[170,231,10,107,140],[113,26,131,63,162],[147,13,78,165,135],[71,209,225,108,103],[101,131,201,131,125]],
[[251,96,40,208,217],[169,133,183,26,19],[67,240,57,43,126],[22,137,206,68,18],[228,81,114,161,101]],
[[88,182,220,22,206],[33,135,24,15,218],[107,68,90,75,155],[116,243,191,124,178],[31,22,160,139,246]],
[[206,103,110,45,128],[114,48,86,89,48],[129,43,7,244,196],[7,128,134,112,114],[124,33,61,166,0]],
[[126,118,48,58,191],[30,31,15,251,103],[84,130,252,16,233],[25,123,92,7,232],[4,117,45,206,148]]
], dtype=np.int32)
mur = 105
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 27;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 56 failed!"
print("RD_LBP_P42g_R2: test 56 passed!")
array = np.array([
[[32,223,54,151,154],[171,179,230,33,135],[230,31,216,66,208],[46,214,8,172,224],[11,147,34,143,154]],
[[103,54,161,117,37],[204,73,61,29,97],[122,51,85,28,144],[148,12,182,68,11],[7,150,229,100,46]],
[[167,70,243,100,189],[1,17,66,100,238],[93,167,244,88,221],[3,162,163,13,218],[68,98,228,86,242]],
[[200,104,144,213,106],[78,222,32,141,101],[122,233,124,141,179],[35,251,26,69,171],[198,177,89,9,77]],
[[169,94,94,83,91],[149,251,66,43,234],[130,210,150,11,99],[12,18,146,48,186],[168,202,73,91,2]]
], dtype=np.int32)
mur = 136
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 57 failed!"
print("RD_LBP_P42g_R2: test 57 passed!")
array = np.array([
[[251,62,202,99,199],[129,117,206,7,56],[178,112,110,101,217],[188,222,185,18,159],[172,27,198,60,119]],
[[117,191,250,37,86],[235,81,50,53,189],[181,218,145,50,39],[119,131,51,14,248],[93,108,232,12,57]],
[[200,39,25,131,135],[254,156,143,80,212],[78,215,183,9,38],[252,212,147,105,128],[97,176,237,164,155]],
[[47,227,198,104,205],[104,5,233,182,54],[87,102,92,137,21],[113,114,31,47,90],[101,153,156,172,121]],
[[75,78,95,46,47],[88,69,79,159,186],[30,120,239,139,170],[3,146,104,246,118],[180,76,124,193,155]]
], dtype=np.int32)
mur = 1
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 58 failed!"
print("RD_LBP_P42g_R2: test 58 passed!")
array = np.array([
[[179,107,138,52,120],[65,15,76,133,92],[80,154,37,10,217],[186,124,194,186,205],[181,38,109,83,108]],
[[250,209,106,120,203],[122,209,39,210,20],[39,180,148,155,140],[20,96,98,128,248],[6,74,152,0,48]],
[[252,167,141,110,123],[165,5,67,238,228],[181,131,93,202,21],[158,102,97,240,36],[183,198,104,77,94]],
[[219,154,24,212,1],[223,151,16,25,14],[243,71,84,78,10],[251,188,206,49,235],[36,231,129,14,132]],
[[194,64,151,24,102],[54,99,144,230,143],[226,71,216,97,168],[63,112,21,213,102],[159,146,41,23,225]]
], dtype=np.int32)
mur = 55
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 21;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 59 failed!"
print("RD_LBP_P42g_R2: test 59 passed!")
array = np.array([
[[238,206,16,231,25],[229,67,218,43,94],[90,176,250,172,156],[106,149,178,185,210],[164,185,228,45,134]],
[[120,11,217,55,228],[144,202,193,122,105],[218,145,159,191,40],[122,50,60,214,249],[222,135,4,14,250]],
[[153,194,239,111,162],[234,129,237,220,213],[108,106,153,182,133],[181,152,76,145,247],[151,157,246,66,189]],
[[135,112,237,59,47],[251,27,180,34,48],[34,243,43,28,182],[3,38,24,230,181],[40,254,117,219,131]],
[[54,38,112,85,63],[132,242,44,59,45],[129,94,215,73,151],[74,22,87,175,38],[141,73,254,25,180]]
], dtype=np.int32)
mur = 177
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 60 failed!"
print("RD_LBP_P42g_R2: test 60 passed!")
array = np.array([
[[54,128,249,54,29],[213,124,78,215,38],[127,227,143,218,177],[123,75,217,87,42],[197,86,2,129,123]],
[[179,130,49,70,58],[233,159,53,120,22],[236,31,226,0,213],[5,66,178,42,135],[106,16,10,70,225]],
[[2,229,39,58,115],[141,211,235,71,26],[50,245,14,3,201],[223,21,154,123,8],[185,45,163,78,89]],
[[209,155,168,132,93],[171,159,132,226,133],[87,81,141,181,198],[23,58,141,185,236],[214,123,169,21,91]],
[[106,185,230,127,86],[179,252,94,224,193],[64,242,219,125,120],[52,43,111,187,143],[45,34,195,205,204]]
], dtype=np.int32)
mur = 59
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 61 failed!"
print("RD_LBP_P42g_R2: test 61 passed!")
array = np.array([
[[109,197,86,51,115],[103,139,230,104,142],[244,253,150,81,112],[108,222,226,50,238],[183,182,105,68,63]],
[[226,40,82,58,45],[115,197,203,32,50],[17,208,53,99,88],[10,216,144,110,89],[56,163,97,96,222]],
[[103,183,246,163,166],[146,102,77,232,139],[217,171,63,148,165],[157,187,186,45,162],[191,112,253,253,129]],
[[188,71,110,136,190],[151,187,43,50,189],[252,90,108,214,29],[177,140,251,170,95],[58,61,225,156,152]],
[[243,71,115,138,55],[152,137,52,229,95],[76,117,204,27,248],[220,234,47,24,197],[140,18,137,104,116]]
], dtype=np.int32)
mur = 219
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 62 failed!"
print("RD_LBP_P42g_R2: test 62 passed!")
array = np.array([
[[147,96,94,227,222],[8,21,182,104,164],[120,54,170,243,93],[40,26,62,253,67],[105,91,148,147,48]],
[[102,25,186,86,192],[181,77,178,30,10],[110,181,4,222,246],[217,225,47,185,61],[25,235,100,9,18]],
[[44,97,220,4,24],[246,79,207,252,92],[58,122,168,65,131],[51,100,189,96,75],[140,29,57,196,107]],
[[244,227,160,231,183],[237,155,216,39,2],[188,12,154,124,5],[131,135,17,186,14],[243,67,104,158,65]],
[[36,6,238,118,172],[89,89,3,88,44],[181,139,123,113,135],[29,230,33,204,249],[244,247,102,190,42]]
], dtype=np.int32)
mur = 83
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 19;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 63 failed!"
print("RD_LBP_P42g_R2: test 63 passed!")
array = np.array([
[[236,242,155,26,204],[125,185,114,88,57],[68,150,38,24,119],[213,135,91,198,42],[75,71,133,111,29]],
[[212,166,80,129,131],[95,187,213,223,102],[213,65,4,162,220],[41,82,136,140,76],[164,176,34,62,197]],
[[151,154,161,199,136],[160,22,123,127,50],[26,107,192,59,227],[190,73,249,35,252],[163,109,133,235,162]],
[[163,76,28,195,229],[60,19,247,124,158],[104,103,216,242,39],[5,150,59,18,157],[189,197,63,123,92]],
[[136,103,206,157,142],[188,172,24,11,218],[26,86,179,82,124],[214,198,207,75,136],[124,1,180,225,29]]
], dtype=np.int32)
mur = 129
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 19;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 64 failed!"
print("RD_LBP_P42g_R2: test 64 passed!")
array = np.array([
[[14,188,121,139,10],[190,50,234,93,170],[97,70,250,6,59],[179,69,43,174,244],[254,226,68,65,73]],
[[143,176,172,139,127],[100,207,160,189,222],[188,8,27,240,180],[184,4,23,138,29],[252,84,180,113,91]],
[[23,235,170,122,35],[112,73,133,163,215],[219,210,179,51,76],[248,248,96,193,116],[184,70,115,45,227]],
[[229,186,234,166,177],[253,223,167,228,252],[79,170,187,73,75],[195,201,238,116,217],[158,206,28,7,20]],
[[160,41,115,172,139],[35,22,38,248,90],[27,1,207,96,80],[123,137,162,164,123],[35,23,48,31,63]]
], dtype=np.int32)
mur = 252
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 23;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 65 failed!"
print("RD_LBP_P42g_R2: test 65 passed!")
array = np.array([
[[214,199,241,200,146],[15,215,153,7,18],[202,22,142,6,139],[0,149,214,68,251],[200,6,19,211,106]],
[[155,181,251,69,212],[45,155,198,227,230],[244,250,13,219,239],[97,44,48,238,186],[192,115,164,104,13]],
[[244,150,170,168,158],[103,126,167,227,159],[247,85,23,169,155],[90,236,102,1,71],[35,93,85,134,93]],
[[175,16,34,185,41],[177,89,137,186,120],[154,163,216,136,187],[238,134,173,214,17],[131,79,31,139,248]],
[[22,202,139,184,109],[221,37,145,163,72],[134,208,240,213,213],[208,128,246,232,57],[178,90,42,98,146]]
], dtype=np.int32)
mur = 165
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 66 failed!"
print("RD_LBP_P42g_R2: test 66 passed!")
array = np.array([
[[214,201,179,145,184],[94,248,131,53,150],[26,238,204,166,90],[65,211,229,145,137],[150,253,235,197,76]],
[[113,81,26,13,151],[15,59,149,157,0],[200,129,155,176,32],[140,116,140,231,212],[27,126,128,199,182]],
[[55,155,36,252,90],[73,253,167,116,3],[102,208,216,24,160],[213,65,26,137,233],[20,150,171,215,52]],
[[121,73,210,200,166],[207,44,214,143,219],[65,154,80,210,217],[100,244,97,150,197],[32,57,26,65,64]],
[[98,47,169,22,231],[215,127,210,140,65],[138,197,190,128,74],[69,129,154,203,231],[228,164,72,14,237]]
], dtype=np.int32)
mur = 36
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 25;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 67 failed!"
print("RD_LBP_P42g_R2: test 67 passed!")
array = np.array([
[[160,125,114,121,12],[145,181,84,20,44],[135,50,122,2,106],[247,243,232,101,76],[151,69,32,58,50]],
[[96,20,200,29,63],[223,138,192,35,174],[121,76,105,152,40],[174,192,111,217,203],[20,119,31,183,65]],
[[78,195,83,26,16],[134,19,240,28,57],[79,156,144,104,27],[58,49,184,148,172],[228,136,87,115,242]],
[[231,34,59,44,16],[46,224,180,122,119],[199,104,176,10,34],[67,111,142,28,185],[44,191,36,234,78]],
[[108,165,102,239,19],[106,218,57,107,62],[245,162,171,201,229],[4,47,57,182,43],[247,158,6,61,76]]
], dtype=np.int32)
mur = 65
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 14;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 68 failed!"
print("RD_LBP_P42g_R2: test 68 passed!")
array = np.array([
[[3,208,180,2,108],[206,31,208,26,184],[73,132,22,24,42],[128,204,127,153,86],[66,168,149,7,172]],
[[202,20,148,202,216],[132,217,161,244,219],[38,40,21,205,117],[43,12,26,121,136],[92,30,74,88,152]],
[[160,33,102,250,62],[69,44,132,238,34],[59,17,9,207,146],[127,118,198,168,231],[91,185,237,43,70]],
[[213,252,242,190,121],[128,43,139,51,102],[42,233,85,142,238],[59,102,154,76,128],[20,21,35,48,205]],
[[199,147,29,249,29],[197,168,57,252,183],[102,215,132,28,71],[181,3,200,23,126],[39,195,31,75,40]]
], dtype=np.int32)
mur = 141
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 69 failed!"
print("RD_LBP_P42g_R2: test 69 passed!")
array = np.array([
[[210,235,135,226,197],[234,209,226,177,191],[94,180,221,91,186],[244,95,11,92,2],[120,52,198,82,217]],
[[163,218,212,248,66],[137,246,24,199,152],[239,13,229,141,85],[23,68,64,4,76],[202,23,165,154,149]],
[[51,207,5,217,61],[79,126,200,114,89],[244,67,56,8,131],[253,71,0,133,99],[227,243,57,50,27]],
[[54,175,114,215,240],[85,143,231,44,182],[51,224,59,50,169],[110,243,110,141,123],[148,99,230,10,190]],
[[60,50,14,142,207],[179,184,161,140,54],[28,183,228,9,168],[48,106,218,212,226],[172,225,144,126,218]]
], dtype=np.int32)
mur = 209
V = 3
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array)
truth = 43;
assert LBPcode==truth, "RD_LBP_P42g_R2: test 70 failed!"
print("RD_LBP_P42g_R2: test 70 passed!")
array = | np.array([
[[66,254,113,216,105],[83,58,137,155,176],[91,8,29,67,231],[8,56,179,226,32],[173,1,93,70,209]],
[[137,125,170,31,137],[178,116,113,189,66],[90,135,120,91,6],[177,232,238,43,192],[100,115,83,113,133]],
[[239,236,125,125,206],[71,92,73,215,214],[29,155,223,198,132],[72,104,1,94,64],[156,120,93,51,153]],
[[213,7,74,40,172],[237,210,155,64,89],[49,95,196,8,107],[128,77,253,16,124],[106,63,57,56,36]],
[[38,182,236,70,90],[129,63,142,242,97],[177,81,71,2,222],[113,5,144,48,248],[168,114,240,35,192]]
], dtype=np.int32)
mur = 140
V = 4
lbp = ext3DLBPpy.RD_LBP_P42g_R2(mur, V)
LBPcode = lbp.convert(array) | numpy.array |
import numpy as np
import numpy.linalg as la
import scipy.interpolate as inter
import scipy.optimize as opt
from numpy.polynomial.legendre import leggauss
import numpy.random as ra
from neml.nlsolvers import MaximumIterations, MaximumSubdivisions, newton, scalar_newton
class Driver(object):
"""
Superclass of all drivers, basically just sets up history and reports
results.
"""
def __init__(self, model, verbose = False, rtol = 1.0e-6, atol = 1.0e-10,
miter = 25, T_init = 0.0, no_thermal_strain = False):
"""
Parameters:
model: material model to play with
verbose: verbose output
rtol: relative tolerance, where needed
atol: absolute tolerance, where needed
miter: maximum iterations, where needed
"""
self.model = model
self.verbose = verbose
self.rtol = rtol
self.atol = atol
self.miter = miter
self.nts = no_thermal_strain
self.stress_int = [np.zeros((6,))]
self.stored_int = [self.model.init_store()]
self.T_int = [T_init]
self.t_int = [0.0]
self.u_int = [0.0]
self.p_int = [0.0]
@property
def stress(self):
return np.array(self.stress_int)
@property
def stored(self):
return np.array(self.stored_int)
@property
def history(self):
return self.stored[:,:self.model.nhist]
@property
def T(self):
return np.array(self.T_int)
@property
def t(self):
return np.array(self.t_int)
@property
def u(self):
return np.array(self.u_int)
@property
def p(self):
return np.array(self.p_int)
class Driver_sd(Driver):
"""
Superclass of generic small strain drivers, contains generic step methods.
"""
def __init__(self, *args, **kwargs):
"""
Parameters:
model: material model to play with
verbose: verbose output
rtol: relative tolerance, where needed
atol: absolute tolerance, where needed
miter: maximum iterations, where needed
"""
super(Driver_sd, self).__init__(*args, **kwargs)
self.strain_int = [np.zeros((6,))]
self.thermal_strain_int = [np.zeros((6,))]
self.mechanical_strain_int = [np.zeros((6,))]
def solve_try(self, RJ, x0, extra = []):
"""
Try several different nonlinear solvers in the hope that at least
one will converge
Parameters:
RJ: function that returns the residual equations and associated
Jacobian
x0: initial guess
extra: list of extra solver functions of the type below
"""
def s1(x0i):
try:
x = newton(RJ, x0i, verbose = self.verbose,
rtol = self.rtol, atol = self.atol, miter = self.miter)
return x, True
except Exception:
return np.zeros((12,)), False
def s2(x0i):
try:
res = opt.root(RJ, x0i, jac = True, method = 'lm')
return res.x, res.success
except Exception:
return np.zeros((12,)), False
def s3(x0i):
try:
x = newton(RJ, x0i, verbose = self.verbose,
rtol = self.rtol, atol = self.atol, miter = self.miter,
linesearch = 'backtracking')
return x, True
except Exception:
return np.zeros((12,)), False
solvers = [s1,s3]
guesses = [x0] + extra
success = False
for xi in guesses:
for solv in solvers:
x, success = solv(xi)
if success:
break
if success:
break
if not success:
raise MaximumIterations()
return x
@property
def strain(self):
return np.array(self.strain_int)
@property
def thermal_strain(self):
return np.array(self.thermal_strain_int)
@property
def mechanical_strain(self):
return np.array(self.mechanical_strain_int)
def update_thermal_strain(self, T_np1):
"""
Move the thermal strains to the next step
Parameters:
T_np1: next temperature
"""
if self.nts:
return np.zeros((6,))
else:
dT = T_np1 - self.T_int[-1]
a_np1 = self.model.alpha(T_np1)
a_n = self.model.alpha(self.T_int[-1])
return self.thermal_strain_int[-1] + dT * (a_np1 + a_n) / 2 * np.array([1.0,1,1,0,0,0])
def strain_step(self, e_np1, t_np1, T_np1):
"""
Take a strain-controlled step
Parameters:
e_np1: next strain
t_np1: next time
T_np1: next temperature
"""
enext = self.update_thermal_strain(T_np1)
s_np1, h_np1, A_np1, u_np1, p_np1 = self.model.update_sd(e_np1 - enext,
self.mechanical_strain_int[-1],
T_np1, self.T_int[-1], t_np1, self.t_int[-1], self.stress_int[-1],
self.stored_int[-1], self.u_int[-1], self.p_int[-1])
self.strain_int.append(np.copy(e_np1))
self.mechanical_strain_int.append(e_np1 - enext)
self.thermal_strain_int.append(enext)
self.stress_int.append(np.copy(s_np1))
self.stored_int.append(np.copy(h_np1))
self.T_int.append(T_np1)
self.t_int.append(t_np1)
self.u_int.append(u_np1)
self.p_int.append(p_np1)
def stress_step(self, s_np1, t_np1, T_np1):
"""
Take a stress-controlled step
Parameters:
s_np1: next stress
t_np1: next time
T_np1: next temperature
"""
enext = self.update_thermal_strain(T_np1)
def RJ(e):
s, h, A, u, p = self.model.update_sd(e - enext, self.mechanical_strain_int[-1],
T_np1, self.T_int[-1], t_np1, self.t_int[-1],
self.stress_int[-1],
self.stored_int[-1], self.u_int[-1], self.p_int[-1])
R = s - s_np1
return R, A
if len(self.strain_int) > 1:
inc = self.strain_int[-1] - self.strain_int[-2]
extra = [self.strain_int[-1] + inc]
else:
extra = []
e_np1 = self.solve_try(RJ, self.strain_int[-1], extra = extra)
self.strain_step(e_np1, t_np1, T_np1)
def erate_step(self, sdir, erate, t_np1, T_np1,
einc_guess = None, ainc_guess = None):
"""
Drive in a given stress direction at a prescribed strain rate, like
an actual "stress controlled" experiment.
Parameters:
sdir: stress direction
erate: strain rate (in the direction)
t_np1: next time
T_np1: next temperature
einc_guess: a guess at the strain increment
ainc_guess: a guess at the stress increment
"""
sdir = sdir / la.norm(sdir)
dt = t_np1 - self.t_int[-1]
enext = self.update_thermal_strain(T_np1)
def RJ(x):
a = x[0]
e_inc = x[1:]
s, h, A, u, p = self.model.update_sd(self.strain_int[-1] + e_inc - enext,
self.mechanical_strain_int[-1],
T_np1, self.T_int[-1], t_np1, self.t_int[-1], self.stress_int[-1],
self.stored_int[-1],
self.u_int[-1], self.p_int[-1])
R = np.zeros((7,))
J = np.zeros((7,7))
R[:6] = s - (sdir * a + self.stress_int[-1])
R[6] = np.dot(e_inc, sdir) / dt - erate
J[:6,0] = -sdir
J[:6,1:] = A
J[6,0] = 0.0
J[6,1:] = sdir / dt
return R, J
x0 = np.zeros((7,))
if einc_guess is not None:
x0[1:] = einc_guess
else:
x0[1:] = sdir / 10000.0
if ainc_guess is not None:
x0[0] = ainc_guess
else:
x0[0] = 1.0
x = self.solve_try(RJ, x0)
e_np1 = self.strain_int[-1] + x[1:]
self.strain_step(e_np1, t_np1, T_np1)
return x[1:], x[0]
def erate_einc_step(self, sdir, erate, einc, T_np1, **kwargs):
"""
Similar to erate_step but specify the strain increment instead of the
time increment.
Parameters:
sdir: stress direction
erate: strain rate, in stress direction
einc: strain increment, in stress direction
T_np1: temperature at next time step
"""
dt = einc / erate
return self.erate_step(sdir, erate, self.t_int[-1] + dt, T_np1, **kwargs)
def srate_sinc_step(self, sdir, srate, sinc, T_np1):
"""
Similar to rate_step but specify the stress increment instead of the
time increment.
Parameters:
sdir: stress direction
srate: stress rate
sinc: stress increment
T_np1: temperature at next time step
"""
if np.allclose(sdir, 0.0):
s_np1 = self.stress_int[-1]
else:
s_np1 = self.stress_int[-1] + sdir / la.norm(sdir) * sinc
if np.isclose(srate, 0.0):
dt = 0.0
else:
dt = np.abs(np.dot(s_np1 - self.stress_int[-1], sdir) / srate)
self.stress_step(s_np1, self.t_int[-1] + dt, T_np1)
def strain_hold_step(self, i, t_np1, T_np1, q = 1.0, E = -1.0):
"""
A special, mixed step which holds the strain in index i constant
while holding the stress in the other directions to their previous
values
Parameters:
i: index to hold
t_np1: next time
T_np1: next temperature
q: follow up factor
E: Young's modulus to use -- must redo interface at some point
"""
if not np.isclose(q, 1.0) and np.isclose(E, -1.0):
raise ValueError("You must supply the Youngs modulus")
enext = self.update_thermal_strain(T_np1)
oset = sorted(list(set(range(6)) - set([i])))
def RJ(e_np1):
s, h, A, u, p = self.model.update_sd(e_np1 - enext,
self.mechanical_strain_int[-1],
T_np1, self.T_int[-1], t_np1, self.t_int[-1], self.stress_int[-1],
self.stored_int[-1], self.u_int[-1], self.p_int[-1])
R = np.zeros((6,))
R[0] = (e_np1[i] - self.strain_int[-1][i]
) + (s[i] - self.stress_int[-1][i]) / E * (q - 1)
R[1:] = s[oset] - self.stress_int[-1][oset]
J = np.zeros((6,6))
J[0,0] = 1.0
J[0,:] += A[i,:] / E * (q - 1)
J[1:,:] = A[oset,:][:]
return R, J
x0 = np.copy(self.strain_int[-1])
e_np1 = self.solve_try(RJ, x0)
self.strain_step(e_np1, t_np1, T_np1)
def uniaxial_test(model, erate, T = 300.0, emax = 0.05, nsteps = 250,
sdir = np.array([1,0,0,0,0,0]), verbose = False,
offset = 0.2/100.0, history = None, tdir = np.array([0,1,0,0,0,0]),
rtol = 1e-6, atol = 1e-10, miter = 25):
"""
Make a uniaxial stress/strain curve
Parameters:
model: material model
erate: strain rate
Keyword Args:
T: temperature, default 300.0
emax: maximum strain, default 5%
nsteps: number of steps to use, default 250
sdir: stress direction, default tension in x
verbose: whether to be verbose
offset: used to calculate yield stress
history: initial model history
tdir: transverse direction for Poisson's ratio
Returns:
dict: results dictionary containing...
**Results in dictionary:**
================= ============================================
Name Description
================= ============================================
strain strain in direction
stress stress in direction
energy_density strain energy density
plastic_work plastic dissipation
youngs young's modulus of initial curve
yield yield stress implied by curve
poissons poisson's ratio implied by non-axial strains
================= ============================================
"""
e_inc = emax / nsteps
driver = Driver_sd(model, verbose = verbose, T_init = T, rtol = rtol,
atol = atol, miter = miter)
if history is not None:
driver.stored_int[0] = history
strain = [0.0]
stress = [0.0]
for i in range(nsteps):
if i == 0:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T)
else:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T,
einc_guess = einc, ainc_guess = ainc)
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
strain = np.array(strain)
stress = np.array(stress)
# Calculate the yield stress and Young's modulus
E = np.abs(stress[1]) / np.abs(strain[1])
nu = -np.dot(driver.strain_int[1], tdir) / np.dot(
driver.strain_int[1], sdir)
sfn = inter.interp1d(np.abs(strain), np.abs(stress))
tfn = lambda e: E * (e - offset)
try:
sYe = opt.brentq(lambda e: sfn(e) - tfn(e), 0.0, np.max(strain))
sY = tfn(sYe)
except Exception:
sY = np.inf
return {'strain': strain, 'stress': stress,
'energy_density': np.copy(driver.u),
'plastic_work': np.copy(driver.p),
'youngs': E, 'yield': sY, 'poissons': nu,
'history': driver.stored_int[-1]}
def strain_cyclic(model, emax, R, erate, ncycles, T = 300.0, nsteps = 50,
sdir = np.array([1,0,0,0,0,0]), hold_time = None, n_hold = 25,
verbose = False, check_dmg = False, dtol = 0.75):
"""
Strain controlled cyclic test.
Parameters:
emax: maximum strain
R: R = emin / emax
erate: strain rate to go at
ncycles: number of cycles
T: temperature, default 300
Keyword Args:
nsteps: number of steps per half cycle
sdir: stress direction, defaults to x and tension first
hold_time: if None don't hold, if scalar then hold symmetrically top/bot
if an array specify different hold times for first direction
(default tension) and second direction
n_hold: number of steps to hold over
verbose: whether to be verbose
check_dmg: check to see if material damage exceeds dtol, stop the
simulation when that happens
dtol: damage to stop at
Returns:
dict: results dictionary containing...
**Results in dictionary:**
============= ========================
Name Description
============= ========================
strain: strain in direction
stress: stress in direction
cycles: list of cycle numbers
max: maximum stress per cycle
min: minimum stress per cycle
mean: mean stress per cycle
============= ========================
"""
# Setup
driver = Driver_sd(model, verbose = verbose, T_init = T)
emin = emax * R
if hold_time:
if np.isscalar(hold_time):
hold_time = [hold_time, hold_time]
else:
hold_time = [0,0]
# Setup results
strain = [0.0]
stress = [0.0]
time = [0.0]
cycles = []
smax = []
smin = []
smean = []
ecycle = []
pcycle = []
# First half cycle
if verbose:
print("Initial half cycle")
e_inc = emax / nsteps
try:
for i in range(nsteps):
if i == 0:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T)
else:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = einc,
ainc_guess = ainc)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + e_inc / erate)
except Exception as e:
print("Failed to make first half cycle")
raise e
# Begin cycling
for s in range(ncycles):
if verbose:
print("Cycle %i" % s)
try:
# Tension hold
if hold_time[0] > 0.0:
dt = hold_time[0] / n_hold
for i in range(n_hold):
einc, ainc = driver.erate_step(sdir, 0.0, time[-1] + dt, T,
einc_guess = np.zeros((6,)), ainc_guess = -1)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + dt)
si = len(driver.strain_int)
e_inc = np.abs(emin - emax) / nsteps
for i in range(nsteps):
if i == 0:
einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T,
einc_guess = -einc, ainc_guess = -ainc)
else:
einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T,
einc_guess = einc, ainc_guess = ainc)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + e_inc / erate)
# Compression hold
if hold_time[1] > 0.0:
dt = hold_time[1] / n_hold
for i in range(n_hold):
einc, ainc = driver.erate_step(sdir, 0.0, time[-1] + dt, T,
einc_guess = np.zeros((6,)), ainc_guess = -1)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + dt)
e_inc = np.abs(emax - emin) / nsteps
for i in range(nsteps):
if i == 0:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T,
einc_guess = -einc, ainc_guess = -ainc)
else:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T,
einc_guess = einc, ainc_guess = ainc)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + e_inc / erate)
# Calculate
if np.isnan(max(stress[si:])) or np.isnan(min(stress[si:])):
break
cycles.append(s)
smax.append(max(stress[si:]))
smin.append(min(stress[si:]))
smean.append((smax[-1]+smin[-1])/2)
ecycle.append(driver.u_int[-1])
pcycle.append(driver.p_int[-1])
except Exception as e:
break
# Setup and return
return {"strain": np.array(strain), "stress": np.array(stress),
"cycles": np.array(cycles, dtype = int), "max": np.array(smax),
"min": np.array(smin), "mean": np.array(smean),
"energy_density": np.array(ecycle), "plastic_work": np.array(pcycle),
"history": driver.stored_int[-1], "time": np.array(time)}
def strain_cyclic_extrapolated(model, emax, R, erate, ncycles, T = 300.0, nsteps = 50,
sdir = np.array([1,0,0,0,0,0]), hold_time = None, n_hold = 25,
verbose = False, check_dmg = False, dtol = 0.75, min_cycle=3, unit_extrapolate = 10,
jump_delta_N=10, allowable_jump_stress=5.0):
"""
Strain controlled cyclic test extrapolation.
Extra Keyword Args:
min_cycle minimum cycles to start the extrapolation process
unit_extrapolate number of cycles to perform single cycle extrapolation
jump_delta_N number of cycles to jump
allowable_jump_stress extrapolate when stress jump is within this limit
Returns:
dict: results dictionary containing...
**Results in dictionary:**
============= ========================
Name Description
============= ========================
cycles: list of cycle numbers
max: maximum stress per cycle
min: minimum stress per cycle
============= ========================
"""
# Setup
driver = Driver_sd(model, verbose = verbose, T_init = T)
emin = emax * R
if hold_time:
if np.isscalar(hold_time):
hold_time = [hold_time, hold_time]
else:
hold_time = [0,0]
# Setup results
strain = [0.0]
stress = [0.0]
time = [0.0]
cycles = []
smax = []
smin = []
smean = []
ecycle = []
pcycle = []
# First half cycle
if verbose:
print("Initial half cycle")
e_inc = emax / nsteps
try:
for i in range(nsteps):
if i == 0:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T)
else:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = einc,
ainc_guess = ainc)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + e_inc / erate)
except Exception as e:
print("Failed to make first half cycle")
raise e
s = 0
# steps in one cycle
if (hold_time[0] > 0) and (hold_time[1] == 0):
steps = 2*nsteps + n_hold
elif (hold_time[1] > 0) and (hold_time[0] == 0):
steps = 2*nsteps + n_hold
elif (hold_time[0] > 0) and (hold_time[1] > 0):
steps = 2*nsteps + 2*n_hold
else:
steps = 2*nsteps
extrapolate = False
while s < ncycles:
if verbose:
print("Cycle %i" % s)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
print("Damage check exceeded")
break
if (s >= min_cycle) and (extrapolate == True): # No extrapolation before min_cycle
if (s <= unit_extrapolate): # single cycle jump for first unit_extrapolate cycles
delta_N = 1
else:
delta_N = jump_delta_N # specified cycles to jump
n = len(driver.stored_int)
# extrapolating history
pos_hist_last_last = driver.stored_int[n - 1 - steps]
pos_hist_last = driver.stored_int[n-1]
dN_1 = cycles[-1] - cycles[-2]
pos_extrapolated_history = pos_hist_last + (pos_hist_last - pos_hist_last_last)*delta_N/dN_1
# extrapolating smax
smax_last_last = smax[-2]
smax_last = smax[-1]
extrapolated_smax = smax_last + (smax_last - smax_last_last)*delta_N/dN_1
# extrapolating smax
smin_last_last = smin[-2]
smin_last = smin[-1]
extrapolated_smin = smin_last + (smin_last - smin_last_last)*delta_N/dN_1
# criteria for extrapolation
pos_stress_last_last = driver.stress_int[n - 1 - 2*steps]
pos_stress_last = driver.stress_int[n-1]
pos_extrapolated_stress = pos_stress_last + (pos_stress_last - pos_stress_last_last)*delta_N/dN_1
stress_jump = pos_extrapolated_stress[0] - pos_stress_last[0]
if np.fabs(stress_jump) <= allowable_jump_stress:
s = s + delta_N
if s > ncycles:
break
driver.stored_int.append(pos_extrapolated_history)
driver.stress_int.append(pos_extrapolated_stress)
smax.append(extrapolated_smax)
smin.append(extrapolated_smin)
cycles.append(s)
extrapolate = False
else:
extrapolate = False
else:
try:
if hold_time[0] > 0.0:
dt = hold_time[0] / n_hold
for i in range(n_hold):
einc, ainc = driver.erate_step(sdir, 0.0, time[-1] + dt, T,
einc_guess = np.zeros((6,)), ainc_guess = -1)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + dt)
si = len(driver.strain_int)
e_inc = np.abs(emin - emax) / nsteps
for i in range(nsteps):
if i == 0:
einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T,
einc_guess = -einc, ainc_guess = -ainc)
else:
einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T,
einc_guess = einc, ainc_guess = ainc)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + e_inc / erate)
# Compression hold
if hold_time[1] > 0.0:
dt = hold_time[1] / n_hold
for i in range(n_hold):
einc, ainc = driver.erate_step(sdir, 0.0, time[-1] + dt, T,
einc_guess = np.zeros((6,)), ainc_guess = -1)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + dt)
e_inc = np.abs(emax - emin) / nsteps
for i in range(nsteps):
if i == 0:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T,
einc_guess = -einc, ainc_guess = -ainc)
else:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T,
einc_guess = einc, ainc_guess = ainc)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + e_inc / erate)
# Calculate
if np.isnan(max(stress[si:])) or np.isnan(min(stress[si:])):
break
s += 1
cycles.append(s)
smax.append(max(stress[si:]))
smin.append(min(stress[si:]))
smean.append((smax[-1]+smin[-1])/2)
ecycle.append(driver.u_int[-1])
pcycle.append(driver.p_int[-1])
extrapolate = True
except Exception as e:
break
# Setup and return
return {"cycles": np.array(cycles, dtype = int), "max": np.array(smax),
"min": np.array(smin),"time": np.array(time)}
def strain_cyclic_followup(model, emax, R, erate, ncycles,
q = 1.0, T = 300.0, nsteps = 50,
sind = 0, hold_time = None, n_hold = 25,
verbose = False, check_dmg = False, dtol = 0.75,
logspace = False):
"""
Strain controlled cyclic test with follow up.
This is a "fallback" to the old version that does things by index
so that I can use the index-based hold routine with follow up
Parameters:
emax: maximum strain
R: R = emin / emax
erate: strain rate to go at
ncycles: number of cycles
Keyword Args:
q: follow up factor
T: temperature, default 300
nsteps: number of steps per half cycle
sind: index to pull on
hold_time: if None don't hold, if scalar then hold symmetrically top/bot
if an array specify different hold times for first direction
(default tension) and second direction
n_hold: number of steps to hold over
verbose: whether to be verbose
check_dmg: check to see if damage exceeds a threshold
dtol: damage threshold
logspace: logspace the hold time steps (instead of linspace)
Returns:
dict: dictionary of results...
**Results in dictionary**
========= ========================
Name Description
========= ========================
strain strain in direction
stress stress in direction
cycles list of cycle numbers
max maximum stress per cycle
min minimum stress per cycle
mean mean stress per cycle
========= ========================
"""
# Setup
sdir = np.zeros((6,))
sdir[sind] = 1.0
res = uniaxial_test(model, erate, T = T, emax = 1.0e-4, nsteps = 2)
E = res['youngs']
driver = Driver_sd(model, verbose = verbose, T_init = T)
emin = emax * R
if hold_time:
if np.isscalar(hold_time):
hold_time = [hold_time, hold_time]
else:
hold_time = [0,0]
# Setup results
strain = [0.0]
stress = [0.0]
time = [0.0]
cycles = []
smax = []
smin = []
smean = []
ecycle = []
pcycle = []
# First half cycle
if verbose:
print("Initial half cycle")
e_inc = emax / nsteps
try:
for i in range(nsteps):
if i == 0:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T)
else:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = einc,
ainc_guess = ainc)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + e_inc / erate)
except Exception as e:
print("Failed to make first half cycle")
raise e
# Begin cycling
for s in range(ncycles):
if verbose:
print("Cycle %i" % s)
try:
# Tension hold
if hold_time[0] > 0.0:
if logspace:
dts = np.diff(np.logspace(0, np.log10(hold_time[0]), n_hold+1))
else:
dts = np.diff(np.linspace(0,hold_time[0],n_hold+1))
#dt = hold_time[0] / n_hold
for i, dt in enumerate(dts):
driver.strain_hold_step(sind, time[-1] + dt, T,
q = q, E = E)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + dt)
si = len(driver.strain_int)
e_inc = np.abs(emin - emax) / nsteps
for i in range(nsteps):
if i == 0:
einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T,
einc_guess = np.zeros((6,)), ainc_guess = -1)
else:
einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T,
einc_guess = einc, ainc_guess = ainc)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + e_inc / erate)
# Compression hold
if hold_time[1] > 0.0:
if logspace:
dts = np.diff(np.logspace(0, np.log10(hold_time[1]), n_hold+1))
else:
dts = np.diff(np.linspace(0,hold_time[1],n_hold+1))
for i, dt in enumerate(dts):
driver.strain_hold_step(sind, time[-1] + dt, T,
q = q, E = E)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + dt)
e_inc = np.abs(emax - emin) / nsteps
for i in range(nsteps):
if i == 0:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T,
einc_guess = np.zeros((6,)), ainc_guess = 1.0)
else:
einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T,
einc_guess = einc, ainc_guess = ainc)
if check_dmg:
if driver.stored_int[-1][0] > dtol:
raise Exception("Damage check exceeded")
strain.append(np.dot(driver.strain_int[-1], sdir))
stress.append(np.dot(driver.stress_int[-1], sdir))
time.append(time[-1] + e_inc / erate)
# Calculate
if np.isnan(max(stress[si:])) or np.isnan(min(stress[si:])):
break
cycles.append(s)
smax.append(max(stress[si:]))
smin.append(min(stress[si:]))
smean.append((smax[-1]+smin[-1])/2)
ecycle.append(driver.u_int[-1])
pcycle.append(driver.p_int[-1])
except Exception as e:
break
# Setup and return
return {"strain": np.array(strain), "stress": np.array(stress),
"cycles": np.array(cycles, dtype = int), "max": np.array(smax),
"min": np.array(smin), "mean": np.array(smean),
"energy_density": np.array(ecycle), "plastic_work": np.array(pcycle),
"history": driver.stored_int[-1], "time": | np.array(time) | numpy.array |
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mpltcols
import matplotlib.patches as mpatches
from typing import Tuple
def cMDS(D: np.ndarray,
is_similarity: bool = False
) -> Tuple:
'''
Computes Classical Multidimensional Scaling from a given distance, or
similarity, matrix D.
Parameters
----------
D : np.ndarray
A distance, or similarity, matrix (squared matrix)
is_similarity: bool
Determines if D is a similarity matrix (True) or a
distance matrix (False)
Returns
-------
Tuple
F.T: np.ndarray
transposed configuration matrix F
D_sq: np.ndarray
squared distance matrix D
B: np.ndarray
double centering matrix = -0.5*J*D^2*J
e_vals: np.array
eigenvalues of B
Modified from: http://www.nervouscomputer.com/hfs/cmdscale-in-python/
'''
assert D.shape[0] == D.shape[1]
if is_similarity:
D = 1 - D # If D is a similarity matrix, convert it to a distance matrix
# Number of samples
n = len(D)
# Create the Squared proximity matrix
D_sq = D**2
# Generate the Centering matrix: J
# Defined as the identity matrix I_n minums an nxn all-ones matrix
e1 = np.ones((n,1))
m = ( | np.ones((n, 1)) | numpy.ones |
#/usr/bin/env python
import rospy
import numpy as np
import cv2
import sys
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
cvb=CvBridge()
i_rgb=0
i_depth=0
rgb_mem=None
depth_mem=None
first_flag_depth=True
first_flag_rgb=True
depth_folder = ""
rgb_folder = ""
def imnormalize(xmax,image):
"""
Normalize a list of sample image data in the range of 0 to 1
: image:image data.
: return: Numpy array of normalize data
"""
xmin = 0
a = 0
b = 255
return ((np.array(image,dtype=np.float32) - xmin) * (b - a)) / (xmax - xmin)
def grabrgb(msg):
global i_rgb
global rgb_mem
global first_flag_rgb
if i_rgb <= i_depth :
try:
cv_image = cvb.imgmsg_to_cv2(msg,"bgr8")
except CvBridgeError as e:
print(e)
image_normal= np.array(cv_image)
if first_flag_rgb == True :
rgb_mem = np.copy(image_normal)
np.save(rgb_folder+"/frame"+str(i_rgb)+".npy",image_normal)
cv2.imwrite(rgb_folder+"/frame"+str(i_rgb)+".jpg", image_normal)
first_flag_rgb=False
elif np.array_equal(rgb_mem,image_normal) :
return
else :
rgb_mem = | np.copy(image_normal) | numpy.copy |
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 6 12:09:43 2014
@author: jc3e13
Too many little modules were cluttering the directory so I have shoved them
all into one miscellaneous 'utilities' module.
To keep things simple this should only import modules from the python standard
library or numpy and scipy.
"""
import numpy as np
import scipy.signal as sig
import scipy.io as io
import scipy.stats as stats
from datetime import datetime, timedelta
class Bunch(object):
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def wrapphase(x):
"""Keep phase between 0 and 2pi."""
return np.pi * 2 * (x / (np.pi * 2) - np.floor_divide(x, np.pi * 2))
def closearr(x):
"""Add first array value to end. 1D arrays only!"""
return np.hstack((x, x[0]))
def convolve_smooth(x, win=10, mode="same"):
"""Smooth data using a given window size, in units of array elements, using
the numpy.convolve function."""
return np.convolve(x, np.ones((win,)), mode=mode) / win
def repand(func, *args):
"""
Perform bitwise and (&) operation on any number of arrays.
Parameters
----------
func : function
The function that converts the arrays into boolean arrays. e.g.
np.isfinite
args : arrays
The arrays to compare. They must all be the same shape.
Returns
-------
out : boolean ndarray
Array of booleans.
"""
out = np.full_like(args[0], True, dtype=bool)
for arg in args:
out = out & func(arg)
return out
def datenum_to_datetime(datenum):
"""
Convert a MATLAB datenums into python datetimes.
Parameters
----------
datenum : array_like
MATLAB datenumber which is the number of days since 0000-01-00.
Returns
-------
dt : ndarray
Python datetime. See datetime module.
"""
def convert(datenum):
try:
return (
datetime.fromordinal(int(datenum))
+ timedelta(days=datenum % 1)
- timedelta(days=366)
)
except ValueError:
return np.nan
if np.iterable(datenum):
datenumar = np.asarray(datenum)
shape = datenumar.shape
dt = np.array([convert(el) for el in datenumar.flat])
dt = dt.reshape(shape)
else:
dt = convert(datenum)
return dt
def datetime64_to_datenum(dt):
"""Skeleton function might work needs improving."""
dt = dt.astype("datetime64[s]")
dt0 = np.datetime64("0000-01-01T00:00:00")
return (dt - dt0) / np.timedelta64(86400, "s") + 1
def datetime_to_datenum(dt):
"""
Convert a python datetime object into a MATLAB datenum.
Parameters
----------
dt : array_like
Python datetime. See datetime module.
Returns
-------
datenum : ndarray
MATLAB datenumber which is the number of days since 0000-01-00.
"""
def convert(dt):
try:
mdn = dt + timedelta(days=366)
frac_seconds = (dt - datetime(dt.year, dt.month, dt.day)).seconds / 86400.0
frac_microseconds = dt.microsecond / 8.64e10
return mdn.toordinal() + frac_seconds + frac_microseconds
except ValueError:
return np.nan
if np.iterable(dt):
dtar = np.asarray(dt)
shape = dtar.shape
datenum = np.array([convert(el) for el in dtar.flat])
datenum = datenum.reshape(shape)
else:
datenum = convert(dt)
return datenum
def lldist(lon, lat):
"""Calculates the distance between longitude and latitude coordinates on a
spherical earth with radius using the Haversine formula. Code modified from
the MATLAB m_map toolbox function m_lldist.m.
Parameters
----------
lon : 1-D numpy.ndarray of floats.
Longitude values. [degrees]
lat : 1-D numpy.ndarray of floats.
Latitude values. [degrees]
Returns
-------
dist : 1-D numpy.ndarray of floats.
Distance between lon and lat positions. [km]
Notes
-----
This functionality does exist in the Gibbs seawater toolbox as gsw.dist.
"""
lon = np.asarray(lon)
lat = np.asarray(lat)
pi180 = np.pi / 180.0
earth_radius = 6378.137 # [km]
lat1 = lat[:-1] * pi180
lat2 = lat[1:] * pi180
dlon = np.diff(lon) * pi180
dlat = lat2 - lat1
a = (np.sin(dlat / 2.0)) ** 2 + np.cos(lat1) * np.cos(lat2) * (
np.sin(dlon / 2.0)
) ** 2
angles = 2.0 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))
dist = earth_radius * angles
return dist
def distll(lon_0, lat_0, x, y):
""" """
pi180 = np.pi / 180.0
earth_radius = 6378.137 # [km]
r = earth_radius * np.cos(pi180 * lat_0)
dlons = x / (r * pi180)
dlats = y / (earth_radius * pi180)
lons = lon_0 + dlons
lats = lat_0 + dlats
return lons, lats
def mid(x, axis=0):
"""Returns mid point values along given axis."""
ndim = np.ndim(x)
if ndim == 1:
return 0.5 * (x[1:] + x[:-1])
elif ndim > 1:
x_ = | np.swapaxes(x, axis, 0) | numpy.swapaxes |
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
from statsmodels.nonparametric.smoothers_lowess import lowess
from matplotlib.collections import LineCollection
import re
from . import colors
color_styles = colors.color_styles
plt.style.use('fivethirtyeight')
def _bin_data(data, yname, xname, bins=50, agg_fn=np.mean):
data = data.dropna()
hist, edges = np.histogram(data[xname], bins=bins)
bin_midpoint = np.zeros(edges.shape[0]-1)
binned_df = pd.DataFrame(np.zeros((edges.shape[0]-1, 1)))
for i in range(edges.shape[0]-1):
bin_midpoint[i] = (edges[i] + edges[i+1]) / 2
if i < edges.shape[0]-2:
dat_temp = data.loc[(data[xname] >= edges[i]) & (
data[xname] < edges[i+1]), :]
binned_df.loc[binned_df.index[i], yname] = agg_fn(dat_temp[yname])
binned_df.loc[binned_df.index[i], xname] = bin_midpoint[i]
binned_df.loc[binned_df.index[i], 'n_obs'] = dat_temp.shape[0]
else:
dat_temp = data.loc[(data[xname] >= edges[i]) & (
data[xname] <= edges[i+1]), :]
binned_df.loc[binned_df.index[i], yname] = agg_fn(dat_temp[yname])
binned_df.loc[binned_df.index[i], xname] = bin_midpoint[i]
binned_df.loc[binned_df.index[i], 'n_obs'] = dat_temp.shape[0]
return binned_df
##TODO: Add some Prof. XU's interflex and fect estimation and plot functions
class _regview(object):
"""
panelview:
extract data
panel eda
panel
effect list, if len(effect) equals to two, the first is crosssection while the second is time
formula: outcome ~ *key + @treatment + (control1 + control2 + control3)
"""
def __init__(self,data,outcome=None,key=None,treatment =None, controls=None,effect=None,
entity_effects=False,
TimeEffects=False,
bins =None,
th = None,
main = None
):
if effect:
data = data.set_index(effect)
if len(effect) == 2:
data = data.sort_index(level=0) ###TODO: this is for my convenience, but I have to write in a more general way
##TODO: support formula
self.outcome = outcome
self.key = key
self.treatment = treatment
self.controls = controls
self.effect = effect
self.data = data
self.main = main
self.th =th
self.bins =bins
#heatmap
def panelviewtreat(self,cmp=None):
if self.effect == None:
err = "to draw panel data plots, you must set index first"
raise ValueError(err)
t = sorted(set(self.data.index.get_level_values(1)))
r = sorted(set(self.data.index.get_level_values(0)))
ma_li = []
for i in r:
r_li = []
for j in t:
if j in self.data.loc[i].index:
r_li.append(self.data.loc[i].loc[j][self.treatment])
else:
r_li.append(np.nan)
ma_li.append(r_li)
ma = np.asarray(ma_li)
cmap = mpl.colors.ListedColormap(['#3D71A0', '#B70050'])
x = np.arange(ma.shape[1] + 1)
y = np.arange(ma.shape[0] + 1)
if cmp:
cmap = mpl.colors.ListedColormap(cmp)
size_x = 10
size_y = round(10/len(x)*len(y))
fig, ax = plt.subplots(figsize=(size_x,size_y),dpi=400)
im = ax.pcolor(x, y, ma, vmin=0, vmax=1,cmap=cmap)
ax.vlines(np.arange(ma.shape[1]), ymin=0, ymax=ma.shape[0],linestyles='-', alpha=0.4,lw=.2)
ax.hlines(np.arange(ma.shape[0]), xmin=0, xmax=ma.shape[1],linestyles='-', alpha=0.4,lw=.2)
miss = mpl.lines.Line2D([], [], color='#EAF2F8',ls='', marker = 's',label='missing')
uncon = mpl.lines.Line2D([], [], color= '#3D71A0',ls='', marker = 's',label='under control')
untreat = mpl.lines.Line2D([], [], color= '#B70050',ls='', marker = 's',label='under treatment')
# etc etc
plt.legend(bbox_to_anchor=(.8, -.03),handles=[miss, uncon,untreat],ncol=3)
##set main
if self.main:
ax.set_title(self.main)
## set labels
ax.set_yticks(np.arange(ma.shape[0])+0.5)
ax.set_yticklabels(r)
ax.set_xticks(np.arange(ma.shape[1])+0.5)
ax.set_xticklabels(t,rotation=90)
##lables
ax.set_xlabel(self.effect[0], fontsize=18)
ax.set_ylabel(self.effect[1], fontsize=16)
##line
def panelviewline(self,colormap = ['#B5D4E9', '#E4B4B4']):
if self.effect == None:
err = "to draw panel data plots, you must set index first"
raise ValueError(err)
def _color_line(d,cate,y,t,c): #data, category, y(outcome), treatment, color
x = d.loc[cate].index
y = d.loc[cate][y]
t = d.loc[cate][t]
# select how to color
color = []
for i in range(len(y)):
if t.iloc[i] == 0:
color.append(c[0])
else:
color.append(c[1])
# get segments
xy = | np.array([x, y]) | numpy.array |
import os
import glob
import numpy as np
import math
"""
Conversion between kitti coordinates and camera coordinates is:
Cam: x,y,z ==> Kitti: -y,-z,x
"""
BASE_DIR="./"
LABEL_DIR="training/label_2"
LOC_DIR="training/locational"
REF="_out1"
def read_client_dir():
folders = next(os.walk(BASE_DIR))[1]
return folders
def distance_check(loc1, loc2):
distance=np.sqrt((loc1[0]-loc2[0])**2+(loc1[1]-loc2[1])**2+(loc1[2]-loc2[2])**2)
if distance>1:
return True
def get_path(label_folder,loc_folder,ref_folder,fname):
label_path=os.path.join(label_folder,fname)
loc_path=os.path.join(loc_folder,fname)
ref_path=os.path.join(ref_folder,fname)
return label_path, loc_path, ref_path
def tx_label(count,save_folder):
car_count=0
#clients=read_client_dir()
clients=['_out1', '_out2', '_out3', '_out4']
print(clients)
for ind in range(count):
fname = ("%06d.txt"%ind)
txmed_labels=[]
txmed_locs=[]
ref_locs=[]
for cur_client in clients:
label_folder=os.path.join(cur_client,LABEL_DIR)
loc_folder=os.path.join(cur_client,LOC_DIR)
ref_folder=os.path.join(REF,LOC_DIR)
label_path, loc_path, ref_path = get_path(label_folder,loc_folder,ref_folder,fname)
#for label_path, loc_path, ref_path in zip(label_paths, loc_paths, ref_paths):
loc=open(loc_path,'r').read()
ref=open(ref_path,'r').read()
ref = np.array([float(i) for i in ref.split()])
loc = np.array([float(i) for i in loc.split()])
label_f=open(label_path,'r')
labels = [line.rstrip('\n') for line in label_f]
#if len(labels)==0:
# np.savetxt(os.path.join(save_folder,os.path.basename(label_path)),txmed_labels,delimiter=' ')
# continue
for label in labels:
label = np.array([float(i) for i in label.split() if i!= 'Car'])
if cur_client==REF:
ref_locs.append(label[[10,11,12]])
continue
#print(label.shape)
yaw=np.radians(-ref[4])
yaw2=np.radians(-loc[4])
rot = np.matrix(np.identity(2))
rot[0,0]=np.cos(yaw)
rot[0,1]=-np.sin(yaw)
rot[1,0]=np.sin(yaw)
rot[1,1]=np.cos(yaw)
rel_loc=loc-ref
#print(rel_loc)
rel_loc[0],rel_loc[1] = rot*np.array([[rel_loc[0]],[rel_loc[1]]])
#print(rel_loc)
txm_mat = get_matrix(rel_loc)
label_location=label[10:13]
label[3:7]=txm_bbox(label[10:13],label[7:10])
label_location[[1,2,0]]=label_location[[0,1,2]]
#print(label_location)
label_rot_y=label[13]
label_location=np.concatenate((label_location,[1]))[np.newaxis]
#print(label_location.shape)
txmed_location=txm_mat*label_location.T
label[10:13]=txmed_location[0:3].flatten()
label[[10,11,12]]=label[[11,12,10]]
label[13]=label_rot_y+yaw2-yaw
label[3:7]=txm_bbox(label[10:13],label[7:10])
label_str=[]
for ind,elem in enumerate(label):
if ind<7:
label_str.append(str(int(elem)))
else:
label_str.append(str(elem))
save=True
for loc2 in ref_locs:
if distance_check(label[[10,11,12]], loc2):
continue
else:
save=False
break
for loc2 in txmed_locs:
if distance_check(label[[10,11,12]], loc2) and save:
continue
else:
save=False
break
if save:
car_count+=1
txmed_locs.append(label[[10,11,12]])
txmed_labels.append('Car '+' '.join([elem for elem in label_str]))
filename=os.path.join(save_folder,os.path.basename(label_path))
with open(filename, 'w') as f:
labels_str="\n".join([str(label) for label in txmed_labels])
f.write(labels_str)
f.close()
#np.savetxt(os.path.join(save_folder,os.path.basename(label_path)),txmed_labels,delimiter=' ',fmt='%c')
print("\n\n\n{}\n\n\n".format(car_count))
return
def get_matrix(rel_loc,sc_x=1.0, sc_y=1.0,sc_z=1.0):
"""
Creates matrix from carla transform.
"""
x,y,z,pitch,yaw,roll = rel_loc
#yaw=yaw+180
c_y = np.cos(np.radians(yaw))
s_y = np.sin(np.radians(yaw))
c_r = np.cos(np.radians(roll))
s_r = np.sin(np.radians(roll))
c_p = np.cos(np.radians(pitch))
s_p = np.sin(np.radians(pitch))
matrix = np.matrix(np.identity(4))
matrix[0, 3] = x
matrix[1, 3] = y
matrix[2, 3] = z
matrix[0, 0] = sc_x*c_p * c_y
matrix[0, 1] = sc_y*(c_y * s_p * s_r - s_y * c_r)
matrix[0, 2] = -sc_z*(c_y * s_p * c_r + s_y * s_r)
matrix[1, 0] = sc_x*s_y * c_p
matrix[1, 1] = sc_y*(s_y * s_p * s_r + c_y * c_r)
matrix[1, 2] = sc_z*(-s_y * s_p * c_r + c_y * s_r)
matrix[2, 0] = sc_x*s_p
matrix[2, 1] = -sc_y*(c_p * s_r)
matrix[2, 2] = sc_z*(c_p * c_r)
return matrix
def get_datapoint_count(folders):
label_count = -1
loc_count = -1
count = -1
for folder in folders:
label_dir = os.path.join(BASE_DIR,folder,LABEL_DIR)
loc_dir = os.path.join(BASE_DIR,folder,LOC_DIR)
label_count= len([name for name in os.listdir(label_dir) if name.endswith('.txt')])
loc_count= len([name for name in os.listdir(loc_dir) if name.endswith('.txt')])
if label_count == loc_count:
if count == label_count or count == -1:
count = label_count
else:
print("Folder %s doesn't match in count" %(folder))
return None
else:
print("Folder %s has unmatched loc and label counts" %folder)
return None
return count
def txm_bbox(loc,dim):
WINDOW_WIDTH = 1248
WINDOW_HEIGHT = 384
MINI_WINDOW_WIDTH = 320
MINI_WINDOW_HEIGHT = 180
WINDOW_WIDTH_HALF = WINDOW_WIDTH / 2
WINDOW_HEIGHT_HALF = WINDOW_HEIGHT / 2
k = | np.identity(3) | numpy.identity |
# AUTOGENERATED! DO NOT EDIT! File to edit: 03_shape.ipynb (unless otherwise specified).
__all__ = ['getElemetType', 'tria_scheme', 'tetra_scheme', 'getGaussPoints', 'getShapeLine2', 'getShapeLine3',
'getShapeTria3', 'getShapeTria6', 'getShapeQuad4', 'getShapeQuad8', 'getShapeQuad9', 'getShapeTetra4',
'getShapeTetra10', 'getShapeHexa8', 'getShapeHexa20', 'getAllShapeFunctions']
# Cell
import numpy as np
from scipy.special.orthogonal import p_roots as gauss_scheme
np.set_printoptions(precision=4)
# Cell
def getElemetType(elemCoords):
"Determine the element type"
dict = {
"numDim_1": {
"numNodes_2": "Line2",
"numNodes_3": "Line3"
},
"numDim_2": {
"numNodes_3": "Tria3",
"numNodes_4": "Quad4",
"numNodes_6": "Tria6",
"numNodes_8": "Quad8",
"numNodes_9": "Quad9",
},
"numDim_3": {
"numNodes_4": "Tetra4",
"numNodes_8": "Hexa8",
"numNodes_10": "Tetra10",
"numNodes_20": "Hexa20"
},
}
try:
numNodes = elemCoords.shape[0]
numDim = elemCoords.shape[1] if elemCoords.shape[1] else 1
ElemType = dict.get(f"numDim_{numDim}").get(f"numNodes_{numNodes}")
if ElemType:
return ElemType
else:
raise NotImplementedError(
f"No {numDim}D element with {numNodes} nodes is available"
)
except NotImplementedError as error:
print(error)
except IndexError:
print("No valid coordinates array")
except AttributeError:
print("No valid coordinates array")
except TypeError:
print("No valid coordinates array")
# Cell
def tria_scheme(order):
if order is 1:
xi = [[1./3., 1./3.]]
weight = [[1.]]
elif order is 3:
r1 = 1./6.
r2 = 2./3.
w1 = 1./3.
xi = [[r1,r1],[r2,r1],[r1,r2]]
weight = [[w1],[w1],[w1]]
elif order is 4:
r1 = 1./5.
r2 = 3./5.
r3 = 1./3.
w1 = 0.52083333
w2 = 0.52083333
w3 = 0.52083333
w4 = -0.56250000
xi = [[r1,r1],[r2,r1],[r1,r2],[r3,r3]]
weight = [[w1],[w2],[w3],[w4]]
return xi, weight
# Cell
def tetra_scheme(order):
if order is 1:
xi = [[1./4., 1./4., 1./4.]]
weight = [[1.]]
elif order is 4:
r1 = 0.5854102
r2 = 0.1381966
w1 = 1./4.
xi = [[r1,r2,r2],[r2,r1,r2],[r2,r2,r1],[r2,r2,r2]]
weight = [[w1],[w1],[w1],[w1]]
elif order is 5:
r1 = 1./4.
r2 = 1./2.
r3 = 1./6.
w1 = 9./20.
w2 = -4./5.
xi = [[r2,r3,r3],[r3,r2,r3],[r3,r3,r2],[r3,r3,r3],[r1,r1,r1]]
weight = [[w1],[w1],[w1],[w1],[w2]]
return xi, weight
# Cell
def getGaussPoints(elemType, reduced=False):
point = []
weight = []
if "Line" in elemType:
stdOrder = 2 if "2" in elemType else 3
if reduced: stdOrder -= 1
ip, w = gauss_scheme(stdOrder)
point = [[ip[i]] for i in range(stdOrder)]
weight = [[w[i]] for i in range(stdOrder)]
elif "Tria" in elemType:
stdOrder = 1 if "3" in elemType else 4
if stdOrder == 4 and reduced: stdOrder = 3
point, weight = tria_scheme(stdOrder)
elif "Quad" in elemType:
stdOrder = 2 if "4" in elemType else 3
if reduced: stdOrder -= 1
ip, w = gauss_scheme(stdOrder)
point = [[ip[j], ip[i]] for i in range(stdOrder) for j in range(stdOrder)]
weight = [[w[j]*w[i]] for i in range(stdOrder) for j in range(stdOrder)]
elif "Tetra" in elemType:
stdOrder = 1 if "4" in elemType else 5
if stdOrder == 5 and reduced: stdOrder = 4
point, weight = tetra_scheme(stdOrder)
elif "Hexa" in elemType:
stdOrder = 2 if "8" in elemType else 3
if reduced: stdOrder -= 1
ip, w = gauss_scheme(stdOrder)
point = [[ip[k], ip[j], ip[i]] for i in range(stdOrder) for j in range(stdOrder) for k in range(stdOrder)]
weight = [[w[k]*w[j]*w[i]] for i in range(stdOrder) for j in range(stdOrder) for k in range(stdOrder)]
return np.array(point), np.array(weight)
# Cell
def getShapeLine2(gaussPoint):
# Check the dimension of physical space
if gaussPoint.shape[0] != 1:
raise NotImplementedError("1D only")
############################################################################################################
# gauss points coords
xi = gaussPoint[0]
############################################################################################################
# Tuple with xi_a combinatory
xi_comb = [-1,1]
############################################################################################################
# Calculate shape functions
N = np.array([0.5*(1+sign*xi) for sign in xi_comb])
############################################################################################################
# Calculate derivatives of shape functions-> xi
dN = np.array([0.5*sign for sign in xi_comb])
return N, dN
# Cell
def getShapeLine3(gaussPoint):
# Check the dimension of physical space
if gaussPoint.shape[0] != 1:
raise NotImplementedError("1D only")
############################################################################################################
# gauss points coords
xi = gaussPoint[0]
############################################################################################################
# Tuple with xi_a combinatory
xi_comb = [-1,1]
############################################################################################################
# Calculate shape functions
N_lateral = np.array([0.5*item*xi*(1+item*xi) for item in xi_comb])
N_middle = np.array([(1+xi)*(1-xi)])
N = np.hstack((N_lateral[0], N_middle, N_lateral[1]))
############################################################################################################
# Calculate derivatives of shape functions -> xi
dN_lateral = np.array([0.5*item*(1+2.*item*xi) for item in xi_comb])
dN_middle = np.array([-2.*xi])
dN = np.hstack((dN_lateral[0], dN_middle, dN_lateral[1]))
return N, dN
# Cell
def getShapeTria3(gaussPoint):
# Check the dimension of physical space
if gaussPoint.shape[0] != 2:
raise NotImplementedError("2D only")
############################################################################################################
# gauss points coords
L1 = gaussPoint[0]
L2 = gaussPoint[1]
L3 = 1-L1-L2
############################################################################################################
# Calculate shape functions
N = np.array([L1, L2, L3])
############################################################################################################
# Calculate derivatives of shape functions-> xi
dN_dxi = np.array([1., 0., -1.])
# Calculate derivatives of shape functions-> eta
dN_deta = | np.array([0., 1., -1.]) | numpy.array |
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""MaskRcnn tpositive and negative sample screening for Rcnn."""
import numpy as np
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore.ops import operations as P
from mindspore.common.tensor import Tensor
from mindspore import context
class BboxAssignSampleForRcnn(nn.Cell):
"""
Bbox assigner and sampler definition.
Args:
config (dict): Config.
batch_size (int): Batchsize.
num_bboxes (int): The anchor nums.
add_gt_as_proposals (bool): add gt bboxes as proposals flag.
Returns:
Tensor, multiple output tensors.
Examples:
BboxAssignSampleForRcnn(config, 2, 1024, True)
"""
def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals):
super(BboxAssignSampleForRcnn, self).__init__()
cfg = config
if context.get_context("device_target") == "Ascend":
self.cast_type = mstype.float16
self.np_cast_type = np.float16
else:
self.cast_type = mstype.float32
self.np_cast_type = np.float32
self.batch_size = batch_size
self.neg_iou_thr = cfg.neg_iou_thr_stage2
self.pos_iou_thr = cfg.pos_iou_thr_stage2
self.min_pos_iou = cfg.min_pos_iou_stage2
self.num_gts = cfg.num_gts
self.num_bboxes = num_bboxes
self.num_expected_pos = cfg.num_expected_pos_stage2
self.num_expected_neg = cfg.num_expected_neg_stage2
self.num_expected_total = cfg.num_expected_total_stage2
self.add_gt_as_proposals = add_gt_as_proposals
self.label_inds = Tensor(np.arange(1, self.num_gts + 1).astype(np.int32))
self.add_gt_as_proposals_valid = Tensor(np.array(self.add_gt_as_proposals * np.ones(self.num_gts),
dtype=np.int32))
self.concat = P.Concat(axis=0)
self.max_gt = P.ArgMaxWithValue(axis=0)
self.max_anchor = P.ArgMaxWithValue(axis=1)
self.sum_inds = P.ReduceSum()
self.iou = P.IOU()
self.greaterequal = P.GreaterEqual()
self.greater = P.Greater()
self.select = P.Select()
self.gatherND = P.GatherNd()
self.squeeze = P.Squeeze()
self.cast = P.Cast()
self.logicaland = P.LogicalAnd()
self.less = P.Less()
self.random_choice_with_mask_pos = P.RandomChoiceWithMask(self.num_expected_pos)
self.random_choice_with_mask_neg = P.RandomChoiceWithMask(self.num_expected_neg)
self.reshape = P.Reshape()
self.equal = P.Equal()
self.bounding_box_encode = P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(0.1, 0.1, 0.2, 0.2))
self.concat_axis1 = P.Concat(axis=1)
self.logicalnot = P.LogicalNot()
self.tile = P.Tile()
# Check
self.check_gt_one = Tensor(np.array(-1 * | np.ones((self.num_gts, 4)) | numpy.ones |
import numpy as np
from collections import defaultdict as ddict
from ptsnet.arrays import Table2D, Table, ObjArray
from ptsnet.parallel.partitioning import even, get_partition
from ptsnet.simulation.constants import MEM_POOL_POINTS, PIPE_START_RESULTS, PIPE_END_RESULTS, NODE_RESULTS, CLOSED_PROTECTION_RESULTS, POINT_PROPERTIES, G
from ptsnet.utils.data import is_array
from ptsnet.arrays.selectors import SelectorSet
from ptsnet.simulation.funcs import run_general_junction, run_interior_step, run_pump_step, run_valve_step, run_open_protections, run_closed_protections
from ptsnet.profiler.profiler import Profiler
class Worker:
def __init__(self, **kwargs):
self.send_queue = None
self.recv_queue = None
self.router = kwargs['router']
self.wn = kwargs['wn']
self.ss = kwargs['ss']
self.global_where = kwargs['where']
self.time_step = kwargs['time_step']
self.time_steps = kwargs['time_steps']
self.mem_pool_points = None
self.point_properties = None
self.num_nodes = 0 # number of nodes in worker
self.num_start_pipes = 0 # number of start pipes in worker
self.num_end_pipes = 0 # number of end pipes in worker
self.num_jip_nodes = 0 # number of just-in-pipes junction nodes in worker
self.num_open_protections = 0 # number of open surge protections
self.num_closed_protections = 0 # number of closed surge protections
self.where = SelectorSet(['points', 'pipes', 'nodes', 'valves', 'pumps', 'open_protections', 'closed_protections'])
self.processors = even(kwargs['num_points'], self.router['main'].size)
self.is_innactive = False
innactive_processors = np.empty(self.router['main'].size, dtype=bool)
self.results = {}
self.profiler_on = kwargs['profiler_on']
self.profiler = Profiler(self.router['main'].rank, is_on = self.profiler_on)
###
self.profiler.start('get_partition')
self.partition = get_partition(
self.processors, self.router['main'].rank, self.global_where, self.ss,
self.wn, self.router['main'].size, kwargs['inpfile'])
self.profiler.stop('get_partition')
###
###
self.profiler.start('check_processor_innactivity')
if self.partition is None:
self.is_innactive = True
self.router['main'].Alltoall(np.ones(self.router['main'].size, dtype=bool)*self.is_innactive, innactive_processors)
if np.any(innactive_processors):
self.is_innactive = True
self.profiler.stop('check_processor_innactivity')
###
raise SystemError(" Partitioning is innecficient due to unused processor(s), try executing the parallel routine with less processors")
self.profiler.stop('check_processor_innactivity')
###
self.points = self.partition['points']['global_idx']
self.num_points = len(self.points) # ponts assigned to the worker
self.local_points = np.arange(self.num_points)
###
self.profiler.start('_create_selectors')
self._create_selectors()
self.profiler.stop('_create_selectors')
###
###
self.profiler.start('_define_worker_comm_queues')
self._define_worker_comm_queues()
self.profiler.stop('_define_worker_comm_queues')
###
###
self.profiler.start('_define_dist_graph_comm')
self._define_dist_graph_comm()
self.profiler.stop('_define_dist_graph_comm')
###
self._comm_buffer_head = []
self._recv_points = []
for r in self.recv_queue.values:
self._comm_buffer_head.append(np.zeros(len(r)))
self._recv_points.extend(r)
self._comm_buffer_flow = np.array(self._comm_buffer_head, dtype = object)
self._comm_buffer_head = np.array(self._comm_buffer_head, dtype = object)
###
self.profiler.start('_allocate_memory')
if self.router['main'].rank == 0:
self.local_to_global = {}
self._allocate_memory()
self.profiler.stop('_allocate_memory')
###
###
self.profiler.start('_load_initial_conditions')
self._load_initial_conditions()
self.profiler.stop('_load_initial_conditions')
###
def _allocate_memory(self):
self.mem_pool_points = Table2D(MEM_POOL_POINTS, self.num_points, 2)
self.point_properties = Table(POINT_PROPERTIES, self.num_points)
if self.num_nodes > 0:
self.results['node'] = Table2D(NODE_RESULTS, self.num_nodes, self.time_steps,
labels = self.ss['node'].labels[self.where.nodes['all_to_points',]])
are_my_uboundaries = self.global_where.points['are_uboundaries'] \
[self.processors[self.global_where.points['are_uboundaries']] == self.router['main'].rank]
self.where.points['are_my_uboundaries'] = self.local_points[np.isin(self.points, are_my_uboundaries)]
are_my_dboundaries = self.global_where.points['are_dboundaries'] \
[self.processors[self.global_where.points['are_dboundaries']] == self.router['main'].rank]
self.where.points['are_my_dboundaries'] = self.local_points[np.isin(self.points, are_my_dboundaries)]
ppoints_start = self.points[self.where.points['are_my_dboundaries']]
ppoints_end = self.points[self.where.points['are_my_uboundaries']]
pipes_start = self.global_where.points['to_pipes'][ppoints_start]
pipes_end = self.global_where.points['to_pipes'][ppoints_end]
self.num_start_pipes = len(ppoints_start)
self.num_end_pipes = len(ppoints_end)
if self.num_start_pipes > 0:
self.results['pipe.start'] = Table2D(PIPE_START_RESULTS, len(ppoints_start), self.time_steps, labels = self.ss['pipe'].labels[pipes_start])
if self.num_end_pipes > 0:
self.results['pipe.end'] = Table2D(PIPE_END_RESULTS, len(ppoints_end), self.time_steps, labels = self.ss['pipe'].labels[pipes_end])
# Root processor gathers indexes to facilitate reading results
node_indexes = self.router['main'].gather(self.where.nodes['all_to_points',], root = 0)
pipe_start_indexes = self.router['main'].gather(pipes_start, root = 0)
pipe_end_indexes = self.router['main'].gather(pipes_end, root = 0)
if self.router['main'].rank == 0:
node_indexes = np.concatenate(node_indexes)
pipe_start_indexes = np.concatenate(pipe_start_indexes)
pipe_end_indexes = np.concatenate(pipe_end_indexes)
node_labels = self.ss['node'].labels[node_indexes]
pipe_start_labels = self.ss['pipe'].labels[pipe_start_indexes]
pipe_end_labels = self.ss['pipe'].labels[pipe_end_indexes]
self.local_to_global['node'] = {l : i for i, l in enumerate(node_labels)}
self.local_to_global['pipe.start'] = {l : i for i, l in enumerate(pipe_start_labels)}
self.local_to_global['pipe.end'] = {l : i for i, l in enumerate(pipe_end_labels)}
def _define_dist_graph_comm(self):
self.router.add_communicator('local', self.router['main'].Create_dist_graph_adjacent(
sources = self.recv_queue.labels,
destinations = self.send_queue.labels,
sourceweights = list(map(len, self.recv_queue.values)),
destweights = list(map(len, self.send_queue.values))))
def _define_worker_comm_queues(self):
local_points = self.partition['points']['local_idx']
pp = self.processors[self.points]
pp_idx = np.where(pp != self.router['main'].rank)[0]
ppoints = self.points[pp_idx]
# Define receive queue
self.recv_queue = ObjArray()
for i, p in enumerate(pp_idx):
if not pp[p] in self.recv_queue.indexes:
self.recv_queue[pp[p]] = []
self.recv_queue[pp[p]].append(ppoints[i])
# Define send queue
self.send_queue = ObjArray()
uboundaries = self.points[self.where.points['are_uboundaries']]
dboundaries = self.points[self.where.points['are_dboundaries']]
inner = self.points[self.where.points['are_inner']]
for p in self.recv_queue.labels:
self.recv_queue[p] = np.sort(self.recv_queue[p])
urq = np.isin(self.recv_queue[p], uboundaries)
drq = np.isin(self.recv_queue[p], dboundaries)
irq = np.isin(self.recv_queue[p], inner)
extra_b = np.append(self.recv_queue[p][urq] - 1, self.recv_queue[p][drq] + 1)
extra_i = np.append(self.recv_queue[p][irq] - 1, self.recv_queue[p][irq] + 1)
extra = np.append(extra_b, extra_i)
reduced_extra = extra[np.isin(extra, self.points)]
real_extra = [local_points[r] for r in reduced_extra[self.processors[reduced_extra] == self.router['main'].rank]] # local idx
if len(real_extra) > 0:
if not p in self.send_queue.indexes:
self.send_queue[p] = []
self.send_queue[p].extend(real_extra)
self.recv_queue[p] = np.sort([local_points[r] for r in self.recv_queue[p]]) # convert to local idx
for p in self.send_queue.labels:
self.send_queue[p] = np.sort(np.unique(self.send_queue[p]))
def _create_selectors(self):
jip_nodes = self.partition['nodes']['global_idx']
lpoints = self.partition['points']['local_idx']
self.where.points['just_in_pipes'] = np.array([lpoints[npoint] for npoint in self.partition['nodes']['points']]).astype(int)
self.where.points['are_tanks'] = np.where(np.isin(self.points, self.partition['tanks']['points']))[0]
self.where.points['are_reservoirs'] = np.where(np.isin(self.points, self.partition['reservoirs']['points']))[0]
njip = np.cumsum(self.partition['nodes']['context'])
self.where.nodes['just_in_pipes',] = njip[:-1]
self.where.nodes['to_points'] = self.where.points['just_in_pipes'][self.where.nodes['just_in_pipes',][:-1]]
nonpipe = np.isin(self.global_where.points['are_boundaries'], self.global_where.points['are_valve'])
nonpipe = nonpipe | np.isin(self.global_where.points['are_boundaries'], self.global_where.points['are_pump'])
local_points = | np.isin(self.global_where.points['are_boundaries'], self.points[self.processors[self.points] == self.router['main'].rank]) | numpy.isin |
import streamlit as st
import IPython.display as ipd
from pydub import AudioSegment
import numpy as np
from PIL import Image
from load_css import local_css
import pandas as pd
import os
import datetime
# librosa is a Python library for analyzing audio and music. It can be used to extract the data from the audio files we will see it later.
import librosa
import librosa.display
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, OneHotEncoder
# to play the audio files
from IPython.display import Audio
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.layers import *
import base64
@st.cache(allow_output_mutation=True)
def get_base64_of_bin_file(bin_file):
with open(bin_file, 'rb') as f:
data = f.read()
return base64.b64encode(data).decode()
@st.cache(allow_output_mutation=True)
def load_our_model():
model = tf.keras.models.load_model('covidtest.h5')
return model
local_css("style.css")
st.markdown(" <h1 style='text-align: center; color: black;'><span class='highlight slateblue'>Corona Detection App</span></h1>", unsafe_allow_html=True)
st.markdown("\n")
st.markdown(" <h3 style='text-align: center; color: black;'><span class='highlight slateblue'>To Know about the working of App and to Display Wave Plot, please click</span></h3>", unsafe_allow_html=True)
st.markdown(" <h3 style='text-align: center; color: black;'><span class='highlight slateblue'>on Expand to show option Button below.</span></h3>", unsafe_allow_html=True)
my_expander = st.beta_expander("Expand to show option", expanded=False)
with my_expander:
choice = st.multiselect("Enter Your Choice", ('How does it work ?', 'Display Wave Plot'))
if 'How does it work ?' in choice:
st.markdown("<div><span class='highlight blue'>Hello and Welcome to our AI enabled Covid Detection App.Let us describe you how it works :- </span></div>", unsafe_allow_html=True)
st.markdown("<div><span class='highlight blue'>• Upload an audio of about three seconds in which your cough sound can be heard clearly </span></div>", unsafe_allow_html=True)
st.markdown("<div><span class='highlight blue'> by clicking on the Browse Files button </span></div>", unsafe_allow_html=True)
st.markdown("<div><span class='highlight blue'>• Once the file is uploaded the AI Model will display the result on the screen.. </span></div>", unsafe_allow_html=True)
st.markdown("<div><span class='highlight blue'>• Once your result is displayed and you want to obtain a prediction for any other audio file then</span></div>", unsafe_allow_html=True)
st.markdown("<div><span class='highlight blue'> it is recommended to reload the page. </span></div>", unsafe_allow_html=True)
st.markdown("<div><span class='highlight blue'>• At last, we wish you to stay healthy and Covid Negative. Don't forget to wear Mask and</span></div>", unsafe_allow_html=True)
st.markdown("<div><span class='highlight blue'> maintain Social Distancing.</span><div>", unsafe_allow_html=True)
st.markdown("\n")
st.markdown(" <h3 style='text-align: center; color: black;'><span class='highlight slateblue'>Upload Your Audio File Below</span></h3>", unsafe_allow_html=True)
st.markdown(" <h5 style='text-align: center; color: black;'><span class='highlight slateblue'>The audio file should be of about three seconds containing the cough sound.</span></h5>", unsafe_allow_html=True)
def set_png_as_page_bg(png_file):
bin_str = get_base64_of_bin_file(png_file)
page_bg_img = '''
<style>
body {
background-image: url("data:image/png;base64,%s");
background-size: cover;
}
</style>
''' % bin_str
st.markdown(page_bg_img, unsafe_allow_html=True)
return
set_png_as_page_bg('abcd.png')
from numpy import load
Y = load('Y.npy', allow_pickle = True)
encoder = OneHotEncoder()
Y = encoder.fit_transform(np.array(Y).reshape(-1,1)).toarray()
tr = | load('tr.npy') | numpy.load |
"""
Module for customising opensim segmented muscle points
"""
import os
import re
import math
import json
import shutil
import numpy as np
import copy
from gias3.musculoskeletal.bonemodels import bonemodels
from gias3.musculoskeletal import osim
from mapclientplugins.gait2392somsomusclestep.muscleVolumeCalculator import muscleVolumeCalculator
from numpy import pi
from scipy.interpolate import interp1d
SELF_DIR = os.path.split(__file__)[0]
DATA_DIR = os.path.join(SELF_DIR, 'data/node_numbers/')
TEMPLATE_OSIM_PATH = os.path.join(SELF_DIR, 'data', 'gait2392_simbody_wrap.osim')
VALID_SEGS = {'pelvis', 'femur-l', 'femur-r', 'tibia-l', 'tibia-r'}
OSIM_FILENAME = 'gait2392_simbody.osim'
VALID_UNITS = ('nm', 'um', 'mm', 'cm', 'm', 'km')
TIBFIB_SUBMESHES = ('tibia', 'fibula')
TIBFIB_SUBMESH_ELEMS = {'tibia': range(0, 46), 'fibula': range(46, 88), }
TIBFIB_BASISTYPES = {'tri10': 'simplex_L3_L3', 'quad44': 'quad_L3_L3'}
def dim_unit_scaling(in_unit, out_unit):
"""
Calculate the scaling factor to convert from the input unit (in_unit) to
the output unit (out_unit). in_unit and out_unit must be a string and one
of ['nm', 'um', 'mm', 'cm', 'm', 'km'].
inputs
======
in_unit : str
Input unit
out_unit :str
Output unit
returns
=======
scaling_factor : float
"""
unit_vals = {
'nm': 1e-9,
'um': 1e-6,
'mm': 1e-3,
'cm': 1e-2,
'm': 1.0,
'km': 1e3,
}
if in_unit not in unit_vals:
raise ValueError(
'Invalid input unit {}. Must be one of {}'.format(
in_unit, list(unit_vals.keys())
)
)
if out_unit not in unit_vals:
raise ValueError(
'Invalid input unit {}. Must be one of {}'.format(
in_unit, list(unit_vals.keys())
)
)
return unit_vals[in_unit] / unit_vals[out_unit]
def update_femur_opensim_acs(femur_model):
femur_model.acs.update(
*bonemodels.model_alignment.createFemurACSOpenSim(
femur_model.landmarks['femur-HC'],
femur_model.landmarks['femur-MEC'],
femur_model.landmarks['femur-LEC'],
side=femur_model.side
)
)
def update_tibiafibula_opensim_acs(tibiafibula_model):
tibiafibula_model.acs.update(
*bonemodels.model_alignment.createTibiaFibulaACSOpenSim(
tibiafibula_model.landmarks['tibiafibula-MM'],
tibiafibula_model.landmarks['tibiafibula-LM'],
tibiafibula_model.landmarks['tibiafibula-MC'],
tibiafibula_model.landmarks['tibiafibula-LC'],
side=tibiafibula_model.side
)
)
def split_tibia_fibula_gfs(tib_fib_gf):
tib = tib_fib_gf.makeGFFromElements(
'tibia',
TIBFIB_SUBMESH_ELEMS['tibia'],
TIBFIB_BASISTYPES,
)
fib = tib_fib_gf.makeGFFromElements(
'fibula',
TIBFIB_SUBMESH_ELEMS['fibula'],
TIBFIB_BASISTYPES,
)
return tib, fib
def local_osim_2_global(body, model):
# find the knee angle
knee = model.joints['knee_l']
kneeAngle = model.joints['knee_l'].coordSets['knee_angle_l'].defaultValue
knee_lTrans = np.zeros(3)
# get the spline values
trans1X = knee.getSimmSplineParams('translation1')[0]
trans1Y = knee.getSimmSplineParams('translation1')[1]
f = interp1d(trans1X, trans1Y, kind='cubic')
knee_lTrans[0] = f(kneeAngle)
trans2X = knee.getSimmSplineParams('translation2')[0]
trans2Y = knee.getSimmSplineParams('translation2')[1]
f2 = interp1d(trans2X, trans2Y, kind='cubic')
knee_lTrans[1] = f2(kneeAngle)
# find the knee angle
knee = model.joints['knee_r']
kneeAngle = model.joints['knee_r'].coordSets['knee_angle_r'].defaultValue
knee_rTrans = np.zeros(3)
# get the spline values
trans1X = knee.getSimmSplineParams('translation1')[0]
trans1Y = knee.getSimmSplineParams('translation1')[1]
f = interp1d(trans1X, trans1Y, kind='cubic')
knee_rTrans[0] = f(kneeAngle)
trans2X = knee.getSimmSplineParams('translation2')[0]
trans2Y = knee.getSimmSplineParams('translation2')[1]
f2 = interp1d(trans2X, trans2Y, kind='cubic')
knee_rTrans[1] = f2(kneeAngle)
trans = None
if body == 'pelvis':
trans = np.zeros(3)
elif body == 'femur_l':
trans = model.joints['hip_l'].locationInParent
elif body == 'femur_r':
trans = model.joints['hip_r'].locationInParent
elif body == 'tibia_l':
trans = (model.joints['hip_l'].locationInParent +
knee_lTrans)
elif body == 'tibia_r':
trans = (model.joints['hip_r'].locationInParent +
knee_rTrans)
elif body == 'talus_l':
trans = (model.joints['hip_l'].locationInParent +
knee_lTrans +
model.joints['ankle_l'].locationInParent)
elif body == 'talus_r':
trans = (model.joints['hip_r'].locationInParent +
knee_rTrans +
model.joints['ankle_r'].locationInParent)
elif body == 'calcn_l':
trans = (model.joints['hip_l'].locationInParent +
knee_lTrans +
model.joints['ankle_l'].locationInParent +
model.joints['subtalar_l'].locationInParent)
elif body == 'calcn_r':
trans = (model.joints['hip_r'].locationInParent +
knee_rTrans +
model.joints['ankle_r'].locationInParent +
model.joints['subtalar_r'].locationInParent)
elif body == 'toes_l':
trans = (model.joints['hip_l'].locationInParent +
knee_lTrans +
model.joints['ankle_l'].locationInParent +
model.joints['subtalar_l'].locationInParent +
model.joints['mtp_l'].locationInParent)
elif body == 'toes_r':
trans = (model.joints['hip_r'].locationInParent +
knee_rTrans +
model.joints['ankle_r'].locationInParent +
model.joints['subtalar_r'].locationInParent +
model.joints['mtp_r'].locationInParent)
return trans
class Gait2392MuscleCustomiser(object):
def __init__(self, config, ll=None, osimmodel=None, landmarks=None):
"""
Class for customising gait2392 muscle points using host-mesh fitting
inputs
======
config : dict
Dictionary of option. (work in progress) Example:
{
'osim_output_dir': '/path/to/output/model.osim',
'in_unit': 'mm',
'out_unit': 'm',
'write_osim_file': True,
'update_knee_splines': False,
'static_vas': False,
}
ll : LowerLimbAtlas instance
Model of lower limb bone geometry and pose
osimmodel : opensim.Model instance
The opensim model instance to customise
"""
self.config = config
self.ll = ll
self.trcdata = landmarks
self.gias_osimmodel = None
self._workflow_location = None
if osimmodel is not None:
self.set_osim_model(osimmodel)
self._unit_scaling = dim_unit_scaling(
self.config['in_unit'], self.config['out_unit']
)
def set_osim_model(self, model):
self.gias_osimmodel = osim.Model(model=model)
def cust_pelvis(self):
pelvis = self.ll.models['pelvis']
# load the pelvis muscle attachment node numbers
with open(DATA_DIR + 'pelvisNodeNumbers.txt') as infile:
pelvisData = json.load(infile)
pelvisAttachmentNodeNums = list(pelvisData.values())
pelvisMuscleNames = list(pelvisData.keys())
pelvisMuscleNames = [str(item) for item in pelvisMuscleNames]
# This method appears to be taking quite a while to complete (like 5
# minutes), is this expected? This wasn't being used in musclecusthfm.
# the muscle attachments were selected an a 24x24 mesh
pelvisPoints, lhF = pelvis.gf.triangulate([24, 24])
# Align the discretised pelvis points and the muscle attachments to the
# opensims pelvis local coordinate system.
localPelvisPoints = pelvis.acs.map_local(pelvisPoints) / 1000
pelvisAttachments = localPelvisPoints[pelvisAttachmentNodeNums]
for i in range(len(pelvisMuscleNames)):
muscle = self.gias_osimmodel.muscles[str(pelvisMuscleNames[i])]
pathPoints = muscle.path_points
s = sorted(muscle.path_points.keys())
aSite = None
# aSite will be 0 if attachment is an origin and -1 if insertion
if pathPoints[s[0]].body.name == 'pelvis':
aSite = 0
elif pathPoints[s[-1]].body.name == 'pelvis':
aSite = -1
# update the location of the pathpoint
pp = pathPoints[s[aSite]]
pp.location = pelvisAttachments[i]
def cust_femur_l(self):
leftFemur = self.ll.models['femur-l']
# load in the femur muscle attachment node numbers
with open(DATA_DIR + 'leftFemurNodeNumbers.txt') as infile:
leftFemurData = json.load(infile)
leftFemurAttachmentNodeNums = list(leftFemurData.values())
leftFemurMuscleNames = list(leftFemurData.keys())
leftFemurMuscleNames = [str(item) for item in leftFemurMuscleNames]
# update the geometric field coordinate system to match opensims
update_femur_opensim_acs(leftFemur)
# the muscle attachments were selected an a 24x24 mesh
leftFemurPoints, lhF = leftFemur.gf.triangulate([24, 24])
# align the discretised femur points and the muscle attachments to the
# opensims femur local coordinate system
localLeftFemurPoints = leftFemur.acs.map_local(leftFemurPoints) / 1000
leftFemurAttachments = localLeftFemurPoints[
leftFemurAttachmentNodeNums]
for i in range(len(leftFemurMuscleNames)):
muscleLeft = self.gias_osimmodel.muscles[
str(leftFemurMuscleNames[i])]
pathPointsLeft = muscleLeft.path_points
sL = sorted(muscleLeft.path_points.keys())
aSite = None
# aSite will be 0 if attachment is an origin and -1 if insertion
if pathPointsLeft[sL[0]].body.name == 'femur_l':
aSite = 0
elif pathPointsLeft[sL[-1]].body.name == 'femur_l':
aSite = -1
# update the location of the pathpoint
ppL = pathPointsLeft[sL[aSite]]
ppL.location = leftFemurAttachments[i]
def cust_femur_r(self):
rightFemur = self.ll.models['femur-r']
rightFemur.side = 'right'
with open(DATA_DIR + 'rightFemurNodeNumbers.txt') as infile:
rightFemurData = json.load(infile)
rightFemurAttachmentNodeNums = list(rightFemurData.values())
rightFemurMuscleNames = list(rightFemurData.keys())
rightFemurMuscleNames = [str(item) for item in rightFemurMuscleNames]
# update the geometric field coordinate system to match opensims
update_femur_opensim_acs(rightFemur)
rightFemurPoints, rhF = rightFemur.gf.triangulate([24, 24])
localRightFemurPoints = rightFemur.acs.map_local(
rightFemurPoints) / 1000
rightFemurAttachments = localRightFemurPoints[
rightFemurAttachmentNodeNums]
# update attachments
for i in range(len(rightFemurMuscleNames)):
muscleRight = self.gias_osimmodel.muscles[
str(rightFemurMuscleNames[i])]
pathPointsRight = muscleRight.path_points
sR = sorted(muscleRight.path_points.keys())
aSite = None
# aSite will be 0 if attachment is an origin and -1 if insertion
if pathPointsRight[sR[0]].body.name == 'femur_r':
aSite = 0
elif pathPointsRight[sR[-1]].body.name == 'femur_r':
aSite = -1
ppR = pathPointsRight[sR[aSite]]
ppR.location = rightFemurAttachments[i]
def cust_tibia_l(self):
# The tibia, patella and fibula all use the same fieldwork model to
# align with opensim
leftTibFib = self.ll.models['tibiafibula-l']
leftPatella = self.ll.models['patella-l']
update_tibiafibula_opensim_acs(leftTibFib)
leftTib, leftFib = split_tibia_fibula_gfs(leftTibFib.gf)
# load in the tibia muscle attachment node numbers
with open(DATA_DIR + 'leftTibiaNodeNumbers.txt') as infile:
leftTibiaData = json.load(infile)
leftTibiaAttachmentNodeNums = list(leftTibiaData.values())
leftTibiaMuscleNames = list(leftTibiaData.keys())
leftTibiaMuscleNames = [str(item) for item in leftTibiaMuscleNames]
# load in the fibula muscle attachment node numbers
with open(DATA_DIR + 'leftFibulaNodeNumbers.txt') as infile:
leftFibulaData = json.load(infile)
leftFibulaAttachmentNodeNums = list(leftFibulaData.values())
leftFibulaMuscleNames = list(leftFibulaData.keys())
leftFibulaMuscleNames = [str(item) for item in leftFibulaMuscleNames]
# load in the patella muscle attachment node numbers
with open(DATA_DIR + 'leftPatellaNodeNumbers.txt') as infile:
leftPatellaData = json.load(infile)
leftPatellaAttachmentNodeNums = list(leftPatellaData.values())
leftPatellaMuscleNames = list(leftPatellaData.keys())
leftPatellaMuscleNames = [str(item) for item in leftPatellaMuscleNames]
leftTibiaPoints, lhF = leftTib.triangulate([24, 24])
leftFibulaPoints, lhF = leftFib.triangulate([24, 24])
leftPatellaPoints, lhf = leftPatella.gf.triangulate([24, 24])
localLeftTibiaPoints = leftTibFib.acs.map_local(leftTibiaPoints) / 1000
leftTibiaAttachments = localLeftTibiaPoints[
leftTibiaAttachmentNodeNums]
localLeftFibulaPoints = leftTibFib.acs.map_local(
leftFibulaPoints) / 1000
leftFibulaAttachments = localLeftFibulaPoints[
leftFibulaAttachmentNodeNums]
localLeftPatellaPoints = leftTibFib.acs.map_local(
leftPatellaPoints) / 1000
leftPatellaAttachments = localLeftPatellaPoints[
leftPatellaAttachmentNodeNums]
# update the tibia attachments
for i in range(len(leftTibiaMuscleNames)):
muscleLeft = self.gias_osimmodel.muscles[
str(leftTibiaMuscleNames[i])]
pathPointsLeft = muscleLeft.path_points
sL = sorted(muscleLeft.path_points.keys())
aSite = None
# aSite will be 0 if attachment is an origin and -1 if insertion
if pathPointsLeft[sL[0]].body.name == 'tibia_l':
aSite = 0
elif pathPointsLeft[sL[-1]].body.name == 'tibia_l':
aSite = -1
ppL = pathPointsLeft[sL[aSite]]
ppL.location = leftTibiaAttachments[i]
# update the fibula attachments
for i in range(len(leftFibulaMuscleNames)):
muscleLeft = self.gias_osimmodel.muscles[
str(leftFibulaMuscleNames[i])]
pathPointsLeft = muscleLeft.path_points
sL = sorted(muscleLeft.path_points.keys())
aSite = None
# aSite will be 0 if attachment is an origin and -1 if insertion
if pathPointsLeft[sL[0]].body.name == 'tibia_l':
aSite = 0
elif pathPointsLeft[sL[-1]].body.name == 'tibia_l':
aSite = -1
ppL = pathPointsLeft[sL[aSite]]
ppL.location = leftFibulaAttachments[i]
# update the patella attachments
for i in range(len(leftPatellaMuscleNames)):
muscleLeft = self.gias_osimmodel.muscles[
str(leftPatellaMuscleNames[i])]
pathPointsLeft = muscleLeft.path_points
sL = sorted(muscleLeft.path_points.keys())
aSite = None
# aSite will be 0 if attachment is an origin and -1 if insertion
if pathPointsLeft[sL[0]].body.name == 'tibia_l':
aSite = 0
elif pathPointsLeft[sL[-1]].body.name == 'tibia_l':
aSite = -1
ppL = pathPointsLeft[sL[aSite]]
ppL.location = leftPatellaAttachments[i]
def cust_tibia_r(self):
rightTibFib = self.ll.models['tibiafibula-r']
rightPatella = self.ll.models['patella-r']
update_tibiafibula_opensim_acs(rightTibFib)
rightTib, rightFib = split_tibia_fibula_gfs(rightTibFib.gf)
# load in the tibia attachment node numbers
with open(DATA_DIR + 'rightTibiaNodeNumbers.txt') as infile:
rightTibiaData = json.load(infile)
rightTibiaAttachmentNodeNums = list(rightTibiaData.values())
rightTibiaMuscleNames = list(rightTibiaData.keys())
rightTibiaMuscleNames = [str(item) for item in rightTibiaMuscleNames]
# load in the fibula attachment node numbers
with open(DATA_DIR + 'rightFibulaNodeNumbers.txt') as infile:
rightFibulaData = json.load(infile)
rightFibulaAttachmentNodeNums = list(rightFibulaData.values())
rightFibulaMuscleNames = list(rightFibulaData.keys())
rightFibulaMuscleNames = [str(item) for item in rightFibulaMuscleNames]
# load in the patella attachment node numbers
with open(DATA_DIR + 'rightPatellaNodeNumbers.txt') as infile:
rightPatellaData = json.load(infile)
rightPatellaAttachmentNodeNums = list(rightPatellaData.values())
rightPatellaMuscleNames = list(rightPatellaData.keys())
rightPatellaMuscleNames = [
str(item) for item in rightPatellaMuscleNames]
rightTibiaPoints, lhF = rightTib.triangulate([24, 24])
rightFibulaPoints, lhF = rightFib.triangulate([24, 24])
rightPatellaPoints, lhf = rightPatella.gf.triangulate([24, 24])
localRightTibiaPoints = rightTibFib.acs.map_local(
rightTibiaPoints) / 1000
rightTibiaAttachments = localRightTibiaPoints[
rightTibiaAttachmentNodeNums]
localRightFibulaPoints = rightTibFib.acs.map_local(
rightFibulaPoints) / 1000
rightFibulaAttachments = localRightFibulaPoints[
rightFibulaAttachmentNodeNums]
localRightPatellaPoints = rightTibFib.acs.map_local(
rightPatellaPoints) / 1000
rightPatellaAttachments = localRightPatellaPoints[
rightPatellaAttachmentNodeNums]
for i in range(len(rightTibiaMuscleNames)):
muscleRight = self.gias_osimmodel.muscles[
str(rightTibiaMuscleNames[i])]
pathPointsRight = muscleRight.path_points
sR = sorted(muscleRight.path_points.keys())
aSite = None
# aSite will be 0 if attachment is an origin and -1 if insertion
if pathPointsRight[sR[0]].body.name == 'tibia_r':
aSite = 0
elif pathPointsRight[sR[-1]].body.name == 'tibia_r':
aSite = -1
ppR = pathPointsRight[sR[aSite]]
ppR.location = rightTibiaAttachments[i]
for i in range(len(rightFibulaMuscleNames)):
muscleRight = self.gias_osimmodel.muscles[
str(rightFibulaMuscleNames[i])]
pathPointsRight = muscleRight.path_points
sR = sorted(muscleRight.path_points.keys())
aSite = None
# aSite will be 0 if attachment is an origin and -1 if insertion
if pathPointsRight[sR[0]].body.name == 'tibia_r':
aSite = 0
elif pathPointsRight[sR[-1]].body.name == 'tibia_r':
aSite = -1
ppR = pathPointsRight[sR[aSite]]
ppR.location = rightFibulaAttachments[i]
for i in range(len(rightPatellaMuscleNames)):
muscleRight = self.gias_osimmodel.muscles[
str(rightPatellaMuscleNames[i])]
pathPointsRight = muscleRight.path_points
sR = sorted(muscleRight.path_points.keys())
aSite = None
# aSite will be 0 if attachment is an origin and -1 if insertion
if pathPointsRight[sR[0]].body.name == 'tibia_r':
aSite = 0
elif pathPointsRight[sR[-1]].body.name == 'tibia_r':
aSite = -1
ppR = pathPointsRight[sR[aSite]]
ppR.location = rightPatellaAttachments[i]
def set_workflow_location(self, location):
self._workflow_location = location
def write_cust_osim_model(self):
self.gias_osimmodel.save(
os.path.join(self._workflow_location,
self.config['osim_output_dir'], OSIM_FILENAME)
)
def customise(self):
# Note: a number of PathPoints that were scaled in the previous plugin
# are also being scaled here. Are both of these necessary?
self.cust_pelvis()
self.cust_femur_l()
self.cust_tibia_l()
self.cust_femur_r()
self.cust_tibia_r()
# What is being done in the following methods that wasn't in the
# previous plugin or one of the cust (^) methods? They seem to be
# updating the same values that were updated earlier.
self.update_hip_muscles()
self.update_knee_muscles()
self.update_foot_muscles()
self.update_wrap_points()
# The gait2392 default marker set was comprehensively updated in the
# previous plugin. Many of the markers being added here appear to be
# duplicates of gait2392 markers. If we need to add any additional
# markers to the Model we should use this method.
# self.update_marker_set()
if self.config['update_max_iso_forces']:
self.update_max_iso_forces()
# Currently, none of the OFL and TSL values are being re-calculated
# after updating the PathPoints. They have been scaled in the previous
# plugin but could be done more accurately here.
if self.config['write_osim_file']:
self.write_cust_osim_model()
self.move_mesh_files()
def move_mesh_files(self):
output_directory = os.path.join(self._workflow_location, self.config['osim_output_dir'])
source_dir = os.path.join(self._workflow_location, '../output/Geometry')
target_dir = os.path.join(output_directory, './Geometry')
if os.path.exists(target_dir):
shutil.rmtree(target_dir)
shutil.move(source_dir, target_dir)
# This method assumes the current max iso force is in mm and multiplies it
# to get the value in cm. I'm not sure it should be doing this (or not like
# this at least). It should depend on the plugin configuration, right?
def update_max_iso_forces(self):
osimModel = self.gias_osimmodel
subjectHeight = float(self.config['subject_height'])
subjectMass = float(self.config['subject_mass'])
# calculate muscle volumes using Handsfield (2014)
osimAbbr, muscleVolume = muscleVolumeCalculator(
subjectHeight, subjectMass)
# load Opensim model muscle set
allMuscles = osimModel.get_muscles()
allMusclesNames = list(range(allMuscles.getSize()))
oldValue = np.zeros([allMuscles.getSize(), 1])
optimalFibreLength = np.zeros([allMuscles.getSize(), 1])
penAngleAtOptFibLength = np.zeros([allMuscles.getSize(), 1])
for i in range(allMuscles.getSize()):
allMusclesNames[i] = allMuscles.get(i).getName()
oldValue[i] = allMuscles.get(i).getMaxIsometricForce()
optimalFibreLength[i] = allMuscles.get(i).getOptimalFiberLength()
penAngleAtOptFibLength[i] = np.rad2deg(
allMuscles.get(i).getPennationAngleAtOptimalFiberLength())
# convert opt. fibre length from [m] to [cm] to match volume units
# [cm^3]
# Shouldn't this (and the volume units) depend on the plugin config?
optimalFibreLength *= 100
allMusclesNamesCut = list(range(allMuscles.getSize()))
for i in range(len(allMusclesNames)):
# delete trailing '_r' or '_l'
currMuscleName = allMusclesNames[i][0:-2]
# split the name from any digit in its name and only keep the first
# string.
currMuscleName = re.split(r'(\d+)', currMuscleName)
currMuscleName = currMuscleName[0]
# store in cell
allMusclesNamesCut[i] = currMuscleName
# calculate ratio of old max isometric forces for
# multiple-lines-of-action muscles.
newAbsVolume = np.zeros([allMuscles.getSize(), 1])
fracOfGroup = np.zeros([allMuscles.getSize(), 1])
for i in range(allMuscles.getSize()):
currMuscleName = allMusclesNamesCut[i]
currIndex = [
j for j, x in enumerate(osimAbbr) if x == currMuscleName]
# currIndex = osimAbbr.index(currMuscleName)
if currIndex:
currValue = muscleVolume[currIndex]
newAbsVolume[i] = currValue
# The peroneus longus/brevis and the extensors (EDL, EHL) have to
# be treated seperatly as they are represented as a combined muscle
# group in Handsfield, 2014. The following method may not be the
# best!
if currMuscleName == 'per_brev' or currMuscleName == 'per_long':
currMuscleNameIndex = np.array([0, 0])
tmpIndex = [j for j, x in enumerate(
allMusclesNamesCut) if x == 'per_brev']
currMuscleNameIndex[0] = tmpIndex[0]
tmpIndex = [j for j, x in enumerate(
allMusclesNamesCut) if x == 'per_long']
currMuscleNameIndex[1] = tmpIndex[0]
currIndex = [j for j, x in enumerate(osimAbbr) if x == 'per_']
currValue = muscleVolume[currIndex]
newAbsVolume[i] = currValue
elif currMuscleName == 'ext_dig' or currMuscleName == 'ext_hal':
currMuscleNameIndex = np.array([0, 0])
tmpIndex = [j for j, x in enumerate(
allMusclesNamesCut) if x == 'ext_dig']
currMuscleNameIndex[0] = tmpIndex[0]
tmpIndex = [j for j, x in enumerate(
allMusclesNamesCut) if x == 'ext_hal']
currMuscleNameIndex[1] = tmpIndex[0]
currIndex = [j for j, x in enumerate(osimAbbr) if x == 'ext_']
currValue = muscleVolume[currIndex]
newAbsVolume[i] = currValue
else:
# find all instances of each muscle
currMuscleNameIndex = [j for j, x in enumerate(
allMusclesNamesCut) if x == currMuscleName]
# only require half of the results as we only need muscles from
# one side
currMuscleNameIndex = currMuscleNameIndex[0:int(len(
currMuscleNameIndex) / 2)]
# find how much of the total muscle volume this muscle contributes
fracOfGroup[i] = oldValue[i] / sum(oldValue[currMuscleNameIndex])
# calculate new maximal isometric muscle forces
specificTension = 61 # N/cm^2 from Zajac 1989
newVolume = fracOfGroup * newAbsVolume
# maxIsoMuscleForce = specificTension * (newVolume/optimalFibreLength)
# * np.cos(math.degrees(penAngleAtOptFibLength))
# Update muscles of loaded model (in workspace only!), change model
# name and print new osim file.
maxIsoMuscleForce = np.zeros([allMuscles.getSize(), 1])
for i in range(allMuscles.getSize()):
maxIsoMuscleForce[i] = specificTension * (
newVolume[i] / optimalFibreLength[i]) * np.cos(
math.radians(penAngleAtOptFibLength[i]))
# only update, if new value is not zero. Else do not override the
# original value.
if maxIsoMuscleForce[i] != 0:
allMuscles.get(i).setMaxIsometricForce(maxIsoMuscleForce[i][0])
def update_hip_muscles(self):
muscleNames = ['glut_max1_l', 'glut_max2_l', 'glut_max3_l', 'peri_l',
'iliacus_l', 'psoas_l', 'glut_max1_r', 'glut_max2_r',
'glut_max3_r', 'peri_r', 'psoas_r', 'iliacus_r']
joint = 'hip'
body = 'pelvis'
# joint - the joint that the muscles cross (currently only works for
# muscles that cross a single joint)
# body - the body that the origins of the muscles are attached to
# this has only been tested for muscles that cross the hip
# load in the original model
mO = osim.Model(TEMPLATE_OSIM_PATH)
mO.init_system()
# for each muscle
for i in range(len(muscleNames)):
# display the pathpoints for both muscles
muscleO = mO.muscles[muscleNames[i]]
muscle = self.gias_osimmodel.muscles[muscleNames[i]]
side = muscle.name[-2:]
# find the transformation between the two bodies the muscles are
# attached to
transO = mO.joints[joint + side].locationInParent
trans = self.gias_osimmodel.joints[joint + side].locationInParent
pathPointsO = copy.copy(muscleO.path_points)
pathPoints = copy.copy(muscle.path_points)
for j in range(len(pathPointsO)):
if list(pathPointsO.values())[j].body.name == body:
list(pathPointsO.values())[j].location -= transO
list(pathPoints.values())[j].location -= trans
# ################################################## #
# ###############Transform Points################### #
# ################################################## #
# find the path point names for the origin and the insertion
sortedKeys = sorted(muscle.path_points.keys())
# the origin will be the first sorted key and the insertion last
orig = sortedKeys[0]
ins = sortedKeys[-1]
# find vector between origins and insertions
v1 = pathPoints[orig].location - pathPointsO[orig].location
v2 = pathPoints[ins].location - pathPointsO[ins].location
# the new points are going to be found by translating the points
# based on a weighting mulitplied by these two vectors
# the weighting will be how far along the muscle the point it
# find the total muscle length
segments = np.zeros([len(pathPointsO) - 1, 3])
lengths = np.zeros(len(pathPointsO) - 1)
for j in range(len(pathPointsO) - 1):
segments[j] = pathPointsO[muscle.name + '-P' + str(
j + 2)].location - pathPointsO[
muscle.name + '-P' + str(j + 1)].location
lengths[j] = np.linalg.norm(segments[j])
Tl = np.sum(lengths)
# Define the weighting function
# for the points calculate the magnitude of the new vector and at
# what angle
for j in range(len(pathPointsO) - 2):
# the second pathpoint will be the first via point
p = pathPointsO[muscle.name + '-P' + str(j + 2)].location
# find how far along the muscle the point is
dl = np.sum(lengths[:j + 1])
# create the new points by finding adding a weighted vector
pNew = ((dl / Tl) * v2) + ((1 - dl / Tl) * v1) + p
# update the opensim model
muscle.path_points[muscle.name + '-P' + str(
j + 2)].location = pNew
# tranform the points back to the main body local coordinate system
for j in range(len(pathPoints)):
if list(pathPoints.values())[j].body.name == body:
list(pathPoints.values())[j].location += trans
def update_knee_muscles(self):
muscleNames = ['bifemlh_l', 'semimem_l', 'semiten_l', 'sar_l', 'tfl_l',
'grac_l', 'rect_fem_l', 'bifemlh_r', 'semimem_r',
'semiten_r', 'sar_r', 'tfl_r', 'grac_r', 'rect_fem_r',
'bifemsh_l', 'vas_med_l', 'vas_int_l', 'vas_lat_l',
'bifemsh_r', 'vas_med_r', 'vas_int_r', 'vas_lat_r',
'med_gas_l', 'lat_gas_l', 'med_gas_r', 'lat_gas_r']
# This is being done multiple times. Should move outside this method.
# load in the original model
mO = osim.Model(TEMPLATE_OSIM_PATH)
mO.init_system()
for i in range(len(muscleNames)):
# display the pathpoints for both muscles
muscleO = mO.muscles[muscleNames[i]]
muscle = self.gias_osimmodel.muscles[muscleNames[i]]
pathPointsO = copy.copy(muscleO.path_points)
pathPoints = copy.copy(muscle.path_points)
for j in range(len(pathPointsO)):
list(pathPointsO.values())[j].location += local_osim_2_global(
list(pathPointsO.values())[j].body.name, mO)
list(pathPoints.values())[j].location += local_osim_2_global(
list(pathPoints.values())[j].body.name,
self.gias_osimmodel)
# find the path point names for the origin and the insertion
sortedKeys = sorted(muscle.path_points.keys())
# the origin will be the first sorted key and the insertion last
orig = sortedKeys[0]
ins = sortedKeys[-1]
# find vector between origins and insertions
v1 = pathPoints[orig].location - pathPointsO[orig].location
v2 = pathPoints[ins].location - pathPointsO[ins].location
# the new points are going to be found by translating the points
# based on a weighting mulitplied by these two vectors
# the weighting will be how far along the muscle the point it
# find the total muscle length
segments = np.zeros([len(pathPointsO) - 1, 3])
lengths = np.zeros(len(pathPointsO) - 1)
for j in range(len(pathPointsO) - 1):
segments[j] = pathPointsO[muscle.name + '-P' + str(
j + 2)].location - pathPointsO[
muscle.name + '-P' + str(j + 1)].location
lengths[j] = np.linalg.norm(segments[j])
Tl = np.sum(lengths)
# Define the weighting function for the points calculate the
# magnitude of the new vector and at what angle
for j in range(len(pathPointsO) - 2):
# the second pathpoint will be the first via point
p = pathPointsO[muscle.name + '-P' + str(j + 2)].location
# find how far along the muscle the point is
dl = np.sum(lengths[:j + 1])
# create the new points by finding adding a weighted vector
pNew = ((dl / Tl) * v2) + ((1 - dl / Tl) * v1) + p
# update the opensim model
muscle.path_points[muscle.name + '-P' + str(
j + 2)].location = pNew
# tranform the pelvis points back to the pelvis region
for j in range(len(pathPoints)):
list(pathPoints.values())[j].location -= local_osim_2_global(
list(pathPoints.values())[j].body.name,
self.gias_osimmodel)
def update_foot_muscles(self):
muscleNames = ['ext_dig_l', 'ext_hal_l', 'flex_dig_l', 'flex_hal_l',
'per_brev_l', 'per_long_l', 'per_tert_l', 'tib_ant_l',
'tib_post_l', 'ext_dig_r', 'ext_hal_r', 'flex_dig_r',
'flex_hal_r', 'per_brev_r', 'per_long_r', 'per_tert_r',
'tib_ant_r', 'tib_post_r']
# load in the original model
mO = osim.Model(TEMPLATE_OSIM_PATH)
mO.init_system()
for i in range(len(muscleNames)):
# get the pathPoints for the old and new muscle
muscleO = mO.muscles[muscleNames[i]]
muscle = self.gias_osimmodel.muscles[muscleNames[i]]
side = muscle.name[-1]
# find the transformation between the two bodies the muscles are
# attached to
transO = mO.joints['ankle_' + side].locationInParent + mO.joints[
'subtalar_' + side].locationInParent
trans = self.gias_osimmodel.joints['ankle_' + side]\
.locationInParent + self.gias_osimmodel.joints[
'subtalar_' + side].locationInParent
pathPointsO = copy.copy(muscleO.path_points)
pathPoints = copy.copy(muscle.path_points)
# ################################################## #
# ###############Transform Points################### #
# ################################################## #
# find the path point names for the origin and the insertion
sortedKeys = sorted(muscle.path_points.keys())
# the origin will be the first sorted key
orig = sortedKeys[0]
ins = None
# find the first point on the calcn
for j in sortedKeys:
if pathPoints[j].body.name == 'calcn_' + side:
ins = j
break
endPP = sortedKeys.index(ins)
for j in range(endPP + 1):
if pathPointsO[sortedKeys[j]].body.name == 'calcn_' + side:
pathPointsO[sortedKeys[j]].location += transO
pathPoints[sortedKeys[j]].location += trans
# find vector between origins and insertions
v1 = pathPoints[orig].location - pathPointsO[orig].location
v2 = pathPoints[ins].location - pathPointsO[ins].location
# the new points are going to be found by translating the points
# based on a weighting mulitplied by these two vectors
# the weighting will be how far along the muscle the point it
# find the total muscle length
segments = np.zeros([endPP, 3])
lengths = np.zeros(endPP)
for j in range(endPP):
segments[j] = pathPointsO[muscle.name + '-P' + str(
j + 2)].location - pathPointsO[
muscle.name + '-P' + str(j + 1)].location
lengths[j] = np.linalg.norm(segments[j])
Tl = np.sum(lengths)
# Define the weighting function for the points calculate the
# magnitude of the new vector and at what angle
for j in range(endPP - 1):
# the second pathpoint will be the first via point
p = pathPointsO[muscle.name + '-P' + str(j + 2)].location
# find how far along the muscle the point is
dl = np.sum(lengths[:j + 1])
# create the new points by finding adding a weighted vector
pNew = ((dl / Tl) * v2) + ((1 - dl / Tl) * v1) + p
# update the opensim model
muscle.path_points[muscle.name + '-P' + str(
j + 2)].location = pNew
for j in range(endPP + 1):
if pathPoints[sortedKeys[j]].body.name == 'calcn_' + side:
pathPoints[sortedKeys[j]].location -= trans
def update_wrap_points(self):
muscleNames = ['psoas_l', 'iliacus_l', 'psoas_r', 'iliacus_r']
wrapNames = ['PS_at_brim_l', 'IL_at_brim_l', 'PS_at_brim_r',
'IL_at_brim_r']
joint = 'hip'
wrapPoints = {'psoas_l': 26, 'psoas_r': 26, 'iliacus_l': 4926,
'iliacus_r': 26}
for i in range(len(muscleNames)):
wrap = self.gias_osimmodel.wrapObjects[wrapNames[i]]
radiiString = wrap.getDimensions()
# increase the radii by a small amount so the via point don't sit
# directly on the wrap object
radii = np.array(str.split(radiiString))[1:].astype(float) + 0.002
theta = np.linspace(0, 2 * pi, 100)
phi = np.linspace(0, pi, 50)
sphere = np.zeros([1, 3])
wrapCentre = wrap.get_translation()
for j in range(len(theta)):
for k in range(len(phi)):
x = wrapCentre[0] + radii[0] * np.cos(theta[j]) * np.sin(
phi[k])
y = wrapCentre[1] + radii[1] * np.sin(theta[j]) * np.sin(
phi[k])
z = wrapCentre[2] + radii[2] * np.cos(phi[k])
if i == 0 and j == 0:
sphere[i, :] = [x, y, z]
else:
sphere = np.vstack([sphere, [x, y, z]])
# with the sphere created get the via point
muscle = self.gias_osimmodel.muscles[muscleNames[i]]
viaPoint = muscle.path_points[muscle.name + '-P2']
# find the closest point on the sphere
newPoint = sphere[wrapPoints[muscle.name]]
# update the path point
viaPoint.location = newPoint
# check if P-3 is inside the wrap surface
checkPoint = muscle.path_points[muscle.name + '-P3']
# tranform to global coordinates
side = muscleNames[i][-2:]
# find the transformation between the two bodies the muscles are
# attached to
trans = self.gias_osimmodel.joints[joint + side].locationInParent
# find the distance between the closest point on the sphere and the
# centre
dists = sphere - (checkPoint.location + trans)
# normalize the distances to each point
normDists = np.linalg.norm(dists, axis=1)
nodeNum = np.argmin(normDists)
np_wrap_centre = np.array(
[wrapCentre[0], wrapCentre[1], wrapCentre[2]])
d1 = np.linalg.norm(np_wrap_centre - sphere[nodeNum])
# find the distance between the point and the centre of the sphere
d2 = np.linalg.norm(np_wrap_centre - (checkPoint.location + trans))
# If the distance d1 is larger than d2 move the point is inside the
# sphere
# and needs to be moved to the closest point on the sphere
if d1 > d2:
checkPoint.location = sphere[nodeNum] - trans
def update_marker_set(self):
# create dictionary linking landmarks to bodies based on the Cleveland
# Marker Set
# Many of these markers are already included in the gait2392 MarkerSet.
# This method should be used to add any additional LowerLimb landmarks
# to the OpenSim model. Make sure the target landmarks are being output
# by the LowerLimbGeneration step.
fieldworkMarkers = {
# 'pelvis': ['RASI', 'LASI', 'RPSI', 'LPSI', 'SACR', 'LHJC',
# 'RHJC'],
# 'femur_l': ['LT1', 'LT2', 'LT3', 'LKNE', 'LKNM', 'LKJC'],
# 'femur_r': ['RT1', 'RT2', 'RT3', 'RKNE', 'RKNM', 'RKJC'],
# 'tibia_l': ['LS1', 'LS2', 'LS3', 'LANK', 'LANM', 'LAJC'],
# 'tibia_r': ['RS1', 'RS2', 'RS3', 'RANK', 'RANM', 'RAJC'],
}
otherMarkers = {
'torso': ['C7', 'T10', 'CLAV', 'STRN', 'BackExtra', 'LSHO', 'LTRI',
'LELB', 'LWRI', 'RSHO', 'RTRI', 'RELB', 'RWRI'],
'calcn_l': ['LHEE'],
'toes_l': ['LTOE'],
'calcn_r': ['RHEE'],
'toes_r': ['RTOE']
}
self.gias_osimmodel.init_system()
# load in the geometric fields and update their coordinate systems to
# align with opensim.
# This may have already been done?
pelvis = self.ll.models['pelvis']
femur_l = self.ll.models['femur-l']
update_femur_opensim_acs(femur_l)
femur_r = self.ll.models['femur-r']
femur_r.side = 'right'
update_femur_opensim_acs(femur_r)
tibia_l = self.ll.models['tibiafibula-l']
update_tibiafibula_opensim_acs(tibia_l)
tibia_r = self.ll.models['tibiafibula-r']
tibia_r.side = 'right'
update_tibiafibula_opensim_acs(tibia_r)
markerSet = osim.opensim.MarkerSet()
# for each body with a fieldwork model, map the markers to its body
data = self.landmarks
# for each marker
for i in data:
body = None
# find what body the marker belongs to
for j in fieldworkMarkers.keys():
for k in range(len(fieldworkMarkers[j])):
if fieldworkMarkers[j][k] == i:
body = self.gias_osimmodel.bodies[j]
full_frame_name = "/bodyset/" + j
newMarker = osim.Marker(
name=i,
frame_name=full_frame_name,
location=eval(j).acs.map_local(np.array([data[
fieldworkMarkers[j][k]]])).flatten() / 1000
)
markerSet.adoptAndAppend(newMarker.get_osim_marker())
break
if body is not None:
break
# if the body has no fieldwork model check if it can be
# found in the extra dictionary
if body is None:
# import pdb
# pdb.set_trace()
for j in otherMarkers.keys():
for k in range(len(otherMarkers[j])):
if otherMarkers[j][k] == i:
body = "/bodyset/" + j
if body == 'torso':
pointOnParent = pelvis.acs.map_local(
np.array([data[i]])).flatten() / 1000
# find the difference in body coordinates
diff = self.gias_osimmodel.joints[
'back'].locationInParent
markerPos = pointOnParent - diff
newMarker = osim.Marker(
name=i,
frame_name=body,
location=markerPos
)
markerSet.adoptAndAppend(
newMarker.get_osim_marker())
elif body == 'calcn_l':
pointOnParent = tibia_l.acs.map_local(
| np.array([data[i]]) | numpy.array |
from __future__ import print_function
"""
Markov based methods for spatial dynamics.
"""
__author__ = "<NAME> <<EMAIL>"
__all__ = ["Markov", "LISA_Markov", "Spatial_Markov", "kullback",
"prais", "shorrock", "homogeneity"]
import numpy as np
from pysal.spatial_dynamics.ergodic import fmpt
from pysal.spatial_dynamics.ergodic import steady_state as STEADY_STATE
from scipy import stats
from operator import gt
import pysal
# TT predefine LISA transitions
# TT[i,j] is the transition type from i to j
# i = quadrant in period 0
# j = quadrant in period 1
# uses one offset so first row and col of TT are ignored
TT = np.zeros((5, 5), int)
c = 1
for i in range(1, 5):
for j in range(1, 5):
TT[i, j] = c
c += 1
# MOVE_TYPES is a dictionary that returns the move type of a LISA transition
# filtered on the significance of the LISA end points
# True indicates significant LISA in a particular period
# e.g. a key of (1, 3, True, False) indicates a significant LISA located in
# quadrant 1 in period 0 moved to quadrant 3 in period 1 but was not
# significant in quadrant 3.
MOVE_TYPES = {}
c = 1
cases = (True, False)
sig_keys = [(i, j) for i in cases for j in cases]
for i, sig_key in enumerate(sig_keys):
c = 1 + i * 16
for i in range(1, 5):
for j in range(1, 5):
key = (i, j, sig_key[0], sig_key[1])
MOVE_TYPES[key] = c
c += 1
class Markov(object):
"""
Classic Markov transition matrices.
Parameters
----------
class_ids : array
(n, t), one row per observation, one column recording the
state of each observation, with as many columns as time
periods.
classes : array
(k, 1), all different classes (bins) of the matrix.
Attributes
----------
p : matrix
(k, k), transition probability matrix.
steady_state : matrix
(k, 1), ergodic distribution.
transitions : matrix
(k, k), count of transitions between each state i and j.
Examples
--------
>>> c = [['b','a','c'],['c','c','a'],['c','b','c']]
>>> c.extend([['a','a','b'], ['a','b','c']])
>>> c = np.array(c)
>>> m = Markov(c)
>>> m.classes.tolist()
['a', 'b', 'c']
>>> m.p
matrix([[ 0.25 , 0.5 , 0.25 ],
[ 0.33333333, 0. , 0.66666667],
[ 0.33333333, 0.33333333, 0.33333333]])
>>> m.steady_state
matrix([[ 0.30769231],
[ 0.28846154],
[ 0.40384615]])
US nominal per capita income 48 states 81 years 1929-2009
>>> import pysal
>>> f = pysal.open(pysal.examples.get_path("usjoin.csv"))
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
set classes to quintiles for each year
>>> q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
>>> m = Markov(q5)
>>> m.transitions
array([[ 729., 71., 1., 0., 0.],
[ 72., 567., 80., 3., 0.],
[ 0., 81., 631., 86., 2.],
[ 0., 3., 86., 573., 56.],
[ 0., 0., 1., 57., 741.]])
>>> m.p
matrix([[ 0.91011236, 0.0886392 , 0.00124844, 0. , 0. ],
[ 0.09972299, 0.78531856, 0.11080332, 0.00415512, 0. ],
[ 0. , 0.10125 , 0.78875 , 0.1075 , 0.0025 ],
[ 0. , 0.00417827, 0.11977716, 0.79805014, 0.07799443],
[ 0. , 0. , 0.00125156, 0.07133917, 0.92740926]])
>>> m.steady_state
matrix([[ 0.20774716],
[ 0.18725774],
[ 0.20740537],
[ 0.18821787],
[ 0.20937187]])
Relative incomes
>>> pci = pci.transpose()
>>> rpci = pci/(pci.mean(axis=0))
>>> rq = pysal.Quantiles(rpci.flatten()).yb
>>> rq.shape = (48,81)
>>> mq = Markov(rq)
>>> mq.transitions
array([[ 707., 58., 7., 1., 0.],
[ 50., 629., 80., 1., 1.],
[ 4., 79., 610., 73., 2.],
[ 0., 7., 72., 650., 37.],
[ 0., 0., 0., 48., 724.]])
>>> mq.steady_state
matrix([[ 0.17957376],
[ 0.21631443],
[ 0.21499942],
[ 0.21134662],
[ 0.17776576]])
"""
def __init__(self, class_ids, classes=None):
if classes is not None:
self.classes = classes
else:
self.classes = np.unique(class_ids)
n, t = class_ids.shape
k = len(self.classes)
js = range(t - 1)
classIds = self.classes.tolist()
transitions = np.zeros((k, k))
for state_0 in js:
state_1 = state_0 + 1
state_0 = class_ids[:, state_0]
state_1 = class_ids[:, state_1]
initial = np.unique(state_0)
for i in initial:
ending = state_1[state_0 == i]
uending = np.unique(ending)
row = classIds.index(i)
for j in uending:
col = classIds.index(j)
transitions[row, col] += sum(ending == j)
self.transitions = transitions
row_sum = transitions.sum(axis=1)
p = np.dot(np.diag(1 / (row_sum + (row_sum == 0))), transitions)
self.p = np.matrix(p)
@property
def steady_state(self):
if not hasattr(self, '_steady_state'):
self._steady_state = STEADY_STATE(self.p)
return self._steady_state
class Spatial_Markov(object):
"""
Markov transitions conditioned on the value of the spatial lag.
Parameters
----------
y : array
(n,t), one row per observation, one column per state of
each observation, with as many columns as time periods.
w : W
spatial weights object.
k : integer
number of classes (quantiles).
permutations : int, optional
number of permutations for use in randomization based
inference (the default is 0).
fixed : bool
If true, quantiles are taken over the entire n*t
pooled series. If false, quantiles are taken each
time period over n.
variable_name : string
name of variable.
Attributes
----------
p : matrix
(k, k), transition probability matrix for a-spatial
Markov.
s : matrix
(k, 1), ergodic distribution for a-spatial Markov.
transitions : matrix
(k, k), counts of transitions between each state i and j
for a-spatial Markov.
T : matrix
(k, k, k), counts of transitions for each conditional
Markov. T[0] is the matrix of transitions for
observations with lags in the 0th quantile; T[k-1] is the
transitions for the observations with lags in the k-1th.
P : matrix
(k, k, k), transition probability matrix for spatial
Markov first dimension is the conditioned on the lag.
S : matrix
(k, k), steady state distributions for spatial Markov.
Each row is a conditional steady_state.
F : matrix
(k, k, k),first mean passage times.
First dimension is conditioned on the lag.
shtest : list
(k elements), each element of the list is a tuple for a
multinomial difference test between the steady state
distribution from a conditional distribution versus the
overall steady state distribution: first element of the
tuple is the chi2 value, second its p-value and the third
the degrees of freedom.
chi2 : list
(k elements), each element of the list is a tuple for a
chi-squared test of the difference between the
conditional transition matrix against the overall
transition matrix: first element of the tuple is the chi2
value, second its p-value and the third the degrees of
freedom.
x2 : float
sum of the chi2 values for each of the conditional tests.
Has an asymptotic chi2 distribution with k(k-1)(k-1)
degrees of freedom. Under the null that transition
probabilities are spatially homogeneous.
(see chi2 above)
x2_dof : int
degrees of freedom for homogeneity test.
x2_pvalue : float
pvalue for homogeneity test based on analytic.
distribution
x2_rpvalue : float
(if permutations>0)
pseudo p-value for x2 based on random spatial
permutations of the rows of the original transitions.
x2_realizations : array
(permutations,1), the values of x2 for the random
permutations.
Q : float
Chi-square test of homogeneity across lag classes based
on Bickenbach and Bode (2003) [Bickenbach2003]_.
Q_p_value : float
p-value for Q.
LR : float
Likelihood ratio statistic for homogeneity across lag
classes based on Bickenback and Bode (2003)
[Bickenbach2003]_.
LR_p_value : float
p-value for LR.
dof_hom : int
degrees of freedom for LR and Q, corrected for 0 cells.
Notes
-----
Based on Rey (2001) [Rey2001]_.
The shtest and chi2 tests should be used with caution as they are based on
classic theory assuming random transitions. The x2 based test is
preferable since it simulates the randomness under the null. It is an
experimental test requiring further analysis.
This is new
Examples
--------
>>> import pysal as ps
>>> f = ps.open(ps.examples.get_path("usjoin.csv"))
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
>>> pci = pci.transpose()
>>> rpci = pci/(pci.mean(axis=0))
>>> w = ps.open(ps.examples.get_path("states48.gal")).read()
>>> w.transform = 'r'
>>> sm = ps.Spatial_Markov(rpci, w, fixed=True, k=5, variable_name='rpci')
>>> for p in sm.P:
... print(p)
...
[[ 0.96341463 0.0304878 0.00609756 0. 0. ]
[ 0.06040268 0.83221477 0.10738255 0. 0. ]
[ 0. 0.14 0.74 0.12 0. ]
[ 0. 0.03571429 0.32142857 0.57142857 0.07142857]
[ 0. 0. 0. 0.16666667 0.83333333]]
[[ 0.79831933 0.16806723 0.03361345 0. 0. ]
[ 0.0754717 0.88207547 0.04245283 0. 0. ]
[ 0.00537634 0.06989247 0.8655914 0.05913978 0. ]
[ 0. 0. 0.06372549 0.90196078 0.03431373]
[ 0. 0. 0. 0.19444444 0.80555556]]
[[ 0.84693878 0.15306122 0. 0. 0. ]
[ 0.08133971 0.78947368 0.1291866 0. 0. ]
[ 0.00518135 0.0984456 0.79274611 0.0984456 0.00518135]
[ 0. 0. 0.09411765 0.87058824 0.03529412]
[ 0. 0. 0. 0.10204082 0.89795918]]
[[ 0.8852459 0.09836066 0. 0.01639344 0. ]
[ 0.03875969 0.81395349 0.13953488 0. 0.00775194]
[ 0.0049505 0.09405941 0.77722772 0.11881188 0.0049505 ]
[ 0. 0.02339181 0.12865497 0.75438596 0.09356725]
[ 0. 0. 0. 0.09661836 0.90338164]]
[[ 0.33333333 0.66666667 0. 0. 0. ]
[ 0.0483871 0.77419355 0.16129032 0.01612903 0. ]
[ 0.01149425 0.16091954 0.74712644 0.08045977 0. ]
[ 0. 0.01036269 0.06217617 0.89637306 0.03108808]
[ 0. 0. 0. 0.02352941 0.97647059]]
The probability of a poor state remaining poor is 0.963 if their
neighbors are in the 1st quintile and 0.798 if their neighbors are
in the 2nd quintile. The probability of a rich economy remaining
rich is 0.976 if their neighbors are in the 5th quintile, but if their
neighbors are in the 4th quintile this drops to 0.903.
The Q and likelihood ratio statistics are both significant indicating
the dynamics are not homogeneous across the lag classes:
>>> "%.3f"%sm.LR
'170.659'
>>> "%.3f"%sm.Q
'200.624'
>>> "%.3f"%sm.LR_p_value
'0.000'
>>> "%.3f"%sm.Q_p_value
'0.000'
>>> sm.dof_hom
60
The long run distribution for states with poor (rich) neighbors has
0.435 (0.018) of the values in the first quintile, 0.263 (0.200) in
the second quintile, 0.204 (0.190) in the third, 0.0684 (0.255) in the
fourth and 0.029 (0.337) in the fifth quintile.
>>> sm.S
array([[ 0.43509425, 0.2635327 , 0.20363044, 0.06841983, 0.02932278],
[ 0.13391287, 0.33993305, 0.25153036, 0.23343016, 0.04119356],
[ 0.12124869, 0.21137444, 0.2635101 , 0.29013417, 0.1137326 ],
[ 0.0776413 , 0.19748806, 0.25352636, 0.22480415, 0.24654013],
[ 0.01776781, 0.19964349, 0.19009833, 0.25524697, 0.3372434 ]])
States with incomes in the first quintile with neighbors in the
first quintile return to the first quartile after 2.298 years, after
leaving the first quintile. They enter the fourth quintile after
80.810 years after leaving the first quintile, on average.
Poor states within neighbors in the fourth quintile return to the
first quintile, on average, after 12.88 years, and would enter the
fourth quintile after 28.473 years.
>>> for f in sm.F:
... print(f)
...
[[ 2.29835259 28.95614035 46.14285714 80.80952381 279.42857143]
[ 33.86549708 3.79459555 22.57142857 57.23809524 255.85714286]
[ 43.60233918 9.73684211 4.91085714 34.66666667 233.28571429]
[ 46.62865497 12.76315789 6.25714286 14.61564626 198.61904762]
[ 52.62865497 18.76315789 12.25714286 6. 34.1031746 ]]
[[ 7.46754205 9.70574606 25.76785714 74.53116883 194.23446197]
[ 27.76691978 2.94175577 24.97142857 73.73474026 193.4380334 ]
[ 53.57477715 28.48447637 3.97566318 48.76331169 168.46660482]
[ 72.03631562 46.94601483 18.46153846 4.28393653 119.70329314]
[ 77.17917276 52.08887197 23.6043956 5.14285714 24.27564033]]
[[ 8.24751154 6.53333333 18.38765432 40.70864198 112.76732026]
[ 47.35040872 4.73094099 11.85432099 34.17530864 106.23398693]
[ 69.42288828 24.76666667 3.794921 22.32098765 94.37966594]
[ 83.72288828 39.06666667 14.3 3.44668119 76.36702977]
[ 93.52288828 48.86666667 24.1 9.8 8.79255406]]
[[ 12.87974382 13.34847151 19.83446328 28.47257282 55.82395142]
[ 99.46114206 5.06359731 10.54545198 23.05133495 49.68944423]
[ 117.76777159 23.03735526 3.94436301 15.0843986 43.57927247]
[ 127.89752089 32.4393006 14.56853107 4.44831643 31.63099455]
[ 138.24752089 42.7893006 24.91853107 10.35 4.05613474]]
[[ 56.2815534 1.5 10.57236842 27.02173913 110.54347826]
[ 82.9223301 5.00892857 9.07236842 25.52173913 109.04347826]
[ 97.17718447 19.53125 5.26043557 21.42391304 104.94565217]
[ 127.1407767 48.74107143 33.29605263 3.91777427 83.52173913]
[ 169.6407767 91.24107143 75.79605263 42.5 2.96521739]]
"""
def __init__(self, y, w, k=4, permutations=0, fixed=False,
variable_name=None):
self.y = y
rows, cols = y.shape
self.k = k
self.cols = cols
npa = np.array
self.fixed = fixed
self.variable_name = variable_name
if fixed:
yf = y.flatten()
yb = pysal.Quantiles(yf, k=k).yb
yb.shape = (rows, cols)
classes = yb
else:
classes = npa([pysal.Quantiles(y[:, i], k=k)
.yb for i in np.arange(cols)]).transpose()
classic = Markov(classes)
self.classes = classes
self.p = classic.p
self.transitions = classic.transitions
T, P = self._calc(y, w, classes, k=k)
self.T = T
self.P = P
if permutations:
nrp = np.random.permutation
counter = 0
x2_realizations = np.zeros((permutations, 1))
for perm in range(permutations):
T, P = self._calc(nrp(y), w, classes, k=k)
x2 = [chi2(T[i], self.transitions)[0] for i in range(k)]
x2s = sum(x2)
x2_realizations[perm] = x2s
if x2s >= self.x2:
counter += 1
self.x2_rpvalue = (counter + 1.0) / (permutations + 1.)
self.x2_realizations = x2_realizations
@property
def s(self):
if not hasattr(self, '_s'):
self._s = STEADY_STATE(self.p)
return self._s
@property
def S(self):
if not hasattr(self, '_S'):
S = | np.zeros_like(self.p) | numpy.zeros_like |
#%% 切换运行路径
import os,sys
cur_path = sys.path[0].split(os.path.sep)
workspace_path = os.path.sep.join(cur_path[:cur_path.index("bestpaycup2020")+1])
base_dir = workspace_path
os.chdir(workspace_path) # 把运行目录强制转移到【工作区】
print(f"把运行目录强制转移到【工作区】{os.getcwd()}")
# %%
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
from sklearn.metrics import roc_auc_score
# %%
base_dir = os.getcwd()
# base_dir = '/Users/jason/bestpaycup2020'
x_df = pd.read_csv(base_dir + '/dataset/dataset1/trainset/train_base.csv')
y_df = pd.read_csv(base_dir + '/dataset/raw_dataset/trainset/train_label.csv')
data_x = np.array(x_df)
# train_x = np.delete(train_x, 0, axis=1)
data_y = np.array(y_df)
# %%
# 将x与y对应,并做预处理
data_x = data_x[data_x[:, 0].argsort()]
data_y = data_y[data_y[:, 0].argsort()]
data_x = data_x[:, 1:].astype(float)
data_y = data_y[:, 1:].astype(float).reshape(1, -1)[0]
# %%
# 归一化
n, l = data_x.shape
for j in range(l):
meanVal = np.mean(data_x[:, j])
stdVal = np.std(data_x[:, j])
data_x[:, j] = (data_x[:, j] - meanVal) / stdVal
# %%
# 打乱数据
state = | np.random.get_state() | numpy.random.get_state |
"""
A billboarded particle layer with texture/shader support
"""
import numpy as np
from abc import ABC
from collections.abc import Iterable
from napari.layers import Surface
from napari.layers.utils.layer_utils import calc_data_range
from vispy.visuals.filters import Filter
from vispy.visuals.shaders import Function, Varying
from vispy.gloo import Texture2D, VertexBuffer
from .utils import generate_billboards_2d
from .filters import ShaderFilter, _shader_functions
class BillboardsFilter(Filter):
""" Billboard geometry filter (transforms vertices to always face camera)
"""
def __init__(self, antialias=0):
vmat_inv = Function("""
mat2 inverse(mat2 m) {
return mat2(m[1][1],-m[0][1],-m[1][0], m[0][0]) / (m[0][0]*m[1][1] - m[0][1]*m[1][0]);
}
""")
vfunc = Function("""
varying float v_z_center;
varying float v_scale_intensity;
varying mat2 covariance_inv;
void apply(){
// original world coordinates of the (constant) particle squad, e.g. [5,5] for size 5
vec4 pos = $transform_inv(gl_Position);
pos.z *= pos.w;
vec2 tex = $texcoords;
mat4 cov = mat4(1.0);
cov[0][0] = sqrt($sigmas[0]);
cov[1][1] = sqrt($sigmas[1]);
cov[2][2] = sqrt($sigmas[2]);
// get new inverse covariance matrix (for rotating a gaussian)
vec4 ex = vec4(1,0,0,0);
vec4 ey = vec4(0,1,0,0);
vec4 ez = vec4(0,0,1,0);
vec3 ex2 = $camera(cov*$camera_inv(ex)).xyz;
vec3 ey2 = $camera(cov*$camera_inv(ey)).xyz;
vec3 ez2 = $camera(cov*$camera_inv(ez)).xyz;
mat3 Rmat = mat3(ex2, ey2, ez2);
covariance_inv = mat2(transpose(Rmat)*mat3(cov)*Rmat);
covariance_inv = $inverse(covariance_inv);
// get first and second column of view (which is the inverse of the camera)
vec3 camera_right = $camera_inv(vec4(1,0,0,0)).xyz;
vec3 camera_up = $camera_inv(vec4(0,1,0,0)).xyz;
// when particles become too small, lock texture size and apply antialiasing (only used when antialias=1)
// decrease this value to increase antialiasing
//float dist_cutoff = .2 * max(abs(pos.x), abs(pos.y));
// increase this value to increase antialiasing
float dist_cutoff = $antialias;
float len = length(camera_right);
//camera_right = normalize(camera_right);
//camera_up = normalize(camera_up);
camera_right = camera_right/len;
camera_up = camera_up/len;
vec4 p1 = $transform(vec4($vertex_center.xyz + camera_right*pos.x + camera_up*pos.y, 1.));
vec4 p2 = $transform(vec4($vertex_center,1));
float dist = length(p1.xy/p1.w-p2.xy/p2.w);
// if antialias and far away zoomed out, keep sprite size constant and shrink texture...
// else adjust sprite size
if (($antialias>0) && (dist<dist_cutoff)) {
float scale = dist_cutoff/dist;
//tex = .5+(tex-.5)*clamp(scale,1,10);
tex = .5+(tex-.5);
camera_right = camera_right*scale;
camera_up = camera_up*scale;
v_scale_intensity = scale;
}
vec3 pos_real = $vertex_center.xyz + camera_right*pos.x + camera_up*pos.y;
gl_Position = $transform(vec4(pos_real, 1.));
vec4 center = $transform(vec4($vertex_center,1));
v_z_center = center.z/center.w;
$v_texcoords = tex;
}
""")
ffunc = Function("""
varying float v_scale_intensity;
varying float v_z_center;
void apply() {
gl_FragDepth = v_z_center;
$texcoords;
}
""")
self._texcoord_varying = Varying('v_texcoord', 'vec2')
vfunc['inverse'] = vmat_inv
vfunc['v_texcoords'] = self._texcoord_varying
ffunc['texcoords'] = self._texcoord_varying
self._texcoords_buffer = VertexBuffer(
np.zeros((0, 2), dtype=np.float32)
)
vfunc['texcoords'] = self._texcoords_buffer
vfunc['antialias'] = float(antialias)
self._centercoords_buffer = VertexBuffer(
np.zeros((0, 3), dtype=np.float32))
self._sigmas_buffer = VertexBuffer(
np.zeros((0, 3), dtype=np.float32))
vfunc['vertex_center'] = self._centercoords_buffer
vfunc['sigmas'] = self._sigmas_buffer
super().__init__(vcode=vfunc, vhook='post',fcode=ffunc, fhook='post')
@property
def centercoords(self):
"""The vertex center coordinates as an (N, 3) array of floats."""
return self._centercoords
@centercoords.setter
def centercoords(self, centercoords):
self._centercoords = centercoords
self._update_coords_buffer(centercoords)
def _update_coords_buffer(self, centercoords):
if self._attached and self._visual is not None:
self._centercoords_buffer.set_data(centercoords[:,::-1], convert=True)
@property
def sigmas(self):
"""The vertex center coordinates as an (N, 3) array of floats."""
return self._sigmas
@centercoords.setter
def sigmas(self, sigmas):
self._sigmas = sigmas
self._update_sigmas_buffer(sigmas)
def _update_sigmas_buffer(self, sigmas):
if self._attached and self._visual is not None:
self._sigmas_buffer.set_data(sigmas[:,::-1], convert=True)
@property
def texcoords(self):
"""The texture coordinates as an (N, 2) array of floats."""
return self._texcoords
@texcoords.setter
def texcoords(self, texcoords):
self._texcoords = texcoords
self._update_texcoords_buffer(texcoords)
def _update_texcoords_buffer(self, texcoords):
if self._attached or self._visual is not None:
self._texcoords_buffer.set_data(texcoords[:,::-1], convert=True)
def _attach(self, visual):
# the full projection model view
self.vshader['transform'] = visual.transforms.get_transform('visual', 'render')
# the inverse of it
self.vshader['transform_inv'] = visual.transforms.get_transform('render', 'visual')
# the modelview
self.vshader['camera_inv'] = visual.transforms.get_transform('document', 'scene')
# inverse of it
self.vshader['camera'] = visual.transforms.get_transform('scene', 'document')
super()._attach(visual)
class Particles(Surface):
""" Billboarded particle layer that renders camera facing quads of given size
Can be combined with other (e.g. texture) filter to create particle systems etc
"""
def __init__(self, coords, size=10, sigmas=(1,1,1), values=1, filter=ShaderFilter('gaussian'), antialias=False, **kwargs):
kwargs.setdefault('shading', 'none')
kwargs.setdefault('blending', 'additive')
coords = np.asarray(coords)
sigmas = np.asarray(sigmas, dtype=np.float32)
if np.isscalar(values):
values = values * np.ones(len(coords))
values = np.broadcast_to(values, len(coords))
size = np.broadcast_to(size, len(coords))
sigmas = np.broadcast_to(sigmas, (len(coords),3))
if not coords.ndim == 2 :
raise ValueError(f'coords should be of shape (M,D)')
if not len(size)==len(coords)==len(sigmas):
raise ValueError()
# add dummy z if 2d coords
if coords.shape[1] == 2:
coords = np.concatenate([np.zeros((len(coords),1)), coords], axis=-1)
assert coords.shape[-1]==sigmas.shape[-1]==3
vertices, faces, texcoords = generate_billboards_2d(coords, size=size)
# repeat values for each 4 vertices
centercoords = np.repeat(coords, 4, axis=0)
sigmas = np.repeat(sigmas, 4, axis=0)
values = np.repeat(values, 4, axis=0)
self._coords = coords
self._centercoords = centercoords
self._sigmas = sigmas
self._size = size
self._texcoords = texcoords
self._billboard_filter = BillboardsFilter(antialias=antialias)
self.filter = filter
self._viewer = None
super().__init__((vertices, faces, values), **kwargs)
def _set_view_slice(self):
"""Sets the view given the indices to slice with."""
super()._set_view_slice()
self._update_billboard_filter()
def _update_billboard_filter(self):
faces = self._view_faces.flatten()
if self._billboard_filter._attached and len(faces)>0:
self._billboard_filter.texcoords = self._texcoords[faces]
self._billboard_filter.centercoords = self._centercoords[faces][:,-3:]
self._billboard_filter.sigmas = self._sigmas[faces][:,-3:]
@property
def filter(self):
"""The filter property."""
return self._filter
@filter.setter
def filter(self, value):
if value is None:
value = ()
elif not isinstance(value, Iterable):
value = (value,)
self._filter = tuple(value)
@property
def _extent_data(self) -> np.ndarray:
"""Extent of layer in data coordinates.
Returns
-------
extent_data : array, shape (2, D)
"""
if len(self._coords) == 0:
extrema = | np.full((2, self.ndim), np.nan) | numpy.full |
"""
Implement the Numpy backend, and collect timing information with different parameters
<NAME>
August 26th, 2021
I have set myself beyond the pale. I am nothing. I am hardly human anymore.
"""
import numpy as np
import pickle
import time
import sys
"""
########################################################################################################################
NETWORK STEP
Update all of the neural states for 1 timestep
"""
def stepAll(inputConnectivity, inputVals, Ulast, timeFactorMembrane, Gm, Ib, thetaLast, timeFactorThreshold, theta0, m, refCtr,
refPeriod, GmaxNon, GmaxSpk, Gspike, timeFactorSynapse, DelE, outputVoltageConnectivity,
outputSpikeConnectivity, R=20):
"""
All components are present
:param inputConnectivity: Matrix describing routing of input currents
:param inputVals: Value of input currents (nA)
:param Ulast: Vector of neural states at the previous timestep (mV)
:param timeFactorMembrane: Vector of constant parameters for each neuron (dt/Cm)
:param Gm: Vector of membrane conductances (uS)
:param Ib: Vector of bias currents (nA)
:param thetaLast: Firing threshold at the previous timestep (mV)
:param timeFactorThreshold: Vector of constant parameters for each neuron (dt/tauTheta)
:param theta0: Vector of initial firing thresholds (mV)
:param m: Vector of threshold adaptation ratios
:param refCtr: Vector to store remaining timesteps in the refractory period
:param refPeriod: Vector of refractory periods
:param GmaxNon: Matrix of maximum nonspiking synaptic conductances (uS)
:param GmaxSpk: Matrix of maximum spiking synaptic conductances (uS)
:param Gspike: Matrix of spiking synaptic conductances (uS)
:param timeFactorSynapse: Matrix of constant parameters for each synapse (dt/tau_syn)
:param DelE: Matrix of synaptic reversal potentials
:param outputVoltageConnectivity: Matrix describing routes to output nodes
:param outputSpikeConnectivity: Matrix describing routes to output nodes
:param R: Neural range (mV)
:return: u, u_last, theta_last, g_spike, refCtr, outputVoltages
"""
start = time.time()
Iapp = np.matmul(inputConnectivity,inputVals) # Apply external current sources to their destinations
Gnon = np.maximum(0, np.minimum(GmaxNon * Ulast/R, GmaxNon))
Gspike = Gspike * (1 - timeFactorSynapse)
Gsyn = Gnon + Gspike
Isyn = np.sum(Gsyn * DelE, axis=1) - Ulast * np.sum(Gsyn, axis=1)
U = Ulast + timeFactorMembrane * (-Gm * Ulast + Ib + Isyn + Iapp) # Update membrane potential
theta = thetaLast + timeFactorThreshold * (-thetaLast + theta0 + m * Ulast) # Update the firing thresholds
spikes = np.sign(np.minimum(0, theta + U * (-1 + refCtr))) # Compute which neurons have spiked
Gspike = np.maximum(Gspike, (-spikes) * GmaxSpk) # Update the conductance of connections which spiked
U = U * (spikes + 1) # Reset the membrane voltages of neurons which spiked
refCtr = np.maximum(0, refCtr - spikes * (refPeriod + 1) - 1) # Update refractory periods
outputVoltages = np.matmul(outputVoltageConnectivity, U) # Copy desired neural quantities to output nodes
outputSpikes = np.matmul(outputSpikeConnectivity, spikes) # Copy desired neural quantities to output nodes
Ulast = np.copy(U) # Copy the current membrane voltage to be the past value
thetaLast = np.copy(theta) # Copy the current threshold value to be the past value
end = time.time()
return U, Ulast, thetaLast, Gspike, refCtr, outputVoltages, outputSpikes, end-start
def stepNoRef(inputConnectivity, inputVals, Ulast, timeFactorMembrane, Gm, Ib, thetaLast, timeFactorThreshold, theta0, m, GmaxNon,
GmaxSpk, Gspike, timeFactorSynapse, DelE, outputVoltageConnectivity, outputSpikeConnectivity, R=20):
"""
There is no refractory period
:param inputConnectivity: Matrix describing routing of input currents
:param inputVals: Value of input currents (nA)
:param Ulast: Vector of neural states at the previous timestep (mV)
:param timeFactorMembrane: Vector of constant parameters for each neuron (dt/Cm)
:param Gm: Vector of membrane conductances (uS)
:param Ib: Vector of bias currents (nA)
:param thetaLast: Firing threshold at the previous timestep (mV)
:param timeFactorThreshold: Vector of constant parameters for each neuron (dt/tauTheta)
:param theta0: Vector of initial firing thresholds (mV)
:param m: Vector of threshold adaptation ratios
:param GmaxNon: Matrix of maximum nonspiking synaptic conductances (uS)
:param GmaxSpk: Matrix of maximum spiking synaptic conductances (uS)
:param Gspike: Matrix of spiking synaptic conductances (uS)
:param timeFactorSynapse: Matrix of constant parameters for each synapse (dt/tau_syn)
:param DelE: Matrix of synaptic reversal potentials
:param outputVoltageConnectivity: Matrix describing routes to output nodes
:param outputSpikeConnectivity: Matrix describing routes to output nodes
:param R: Range of neural activity (mV)
:return: u, u_last, theta_last, g_spike, outputVoltages, outputSpikes
"""
start = time.time()
Iapp = np.matmul(inputConnectivity,inputVals) # Apply external current sources to their destinations
Gnon = np.maximum(0, np.minimum(GmaxNon * Ulast/R, GmaxNon))
Gspike = Gspike * (1 - timeFactorSynapse)
Gsyn = Gnon + Gspike
Isyn = np.sum(Gsyn * DelE, axis=1) - Ulast * np.sum(Gsyn, axis=1)
U = Ulast + timeFactorMembrane * (-Gm * Ulast + Ib + Isyn + Iapp) # Update membrane potential
theta = thetaLast + timeFactorThreshold * (-thetaLast + theta0 + m * Ulast) # Update the firing thresholds
spikes = np.sign(np.minimum(0, theta - U)) # Compute which neurons have spiked
Gspike = np.maximum(Gspike, (-spikes) * GmaxSpk) # Update the conductance of connections which spiked
U = U * (spikes + 1) # Reset the membrane voltages of neurons which spiked
outputVoltages = np.matmul(outputVoltageConnectivity, U) # Copy desired neural quantities to output nodes
outputSpikes = np.matmul(outputSpikeConnectivity, spikes) # Copy desired neural quantities to output nodes
Ulast = np.copy(U) # Copy the current membrane voltage to be the past value
thetaLast = np.copy(theta) # Copy the current threshold value to be the past value
end = time.time()
return U, Ulast, thetaLast, Gspike, outputVoltages, outputSpikes, end - start
def stepNoSpike(inputConnectivity,inputVals,Ulast,timeFactorMembrane,Gm,Ib,GmaxNon,DelE,outputConnectivity,R=20):
"""
No neurons can be spiking
:param inputConnectivity: Matrix describing routing of input currents
:param inputVals: Value of input currents (nA)
:param Ulast: Vector of neural states at the previous timestep (mV)
:param timeFactorMembrane: Vector of constant parameters for each neuron (dt/Cm)
:param Gm: Vector of membrane conductances (uS)
:param Ib: Vector of bias currents (nA)
:param GmaxNon: Matrix of maximum nonspiking synaptic conductances (uS)
:param DelE: Matrix of synaptic reversal potentials
:param outputConnectivity: Matrix describing routes to output nodes
:param R: Range of neural activity (mV)
:return: u, u_last, outputNodes
"""
start = time.time()
Iapp = np.matmul(inputConnectivity,inputVals) # Apply external current sources to their destinations
Gsyn = np.maximum(0, np.minimum(GmaxNon * Ulast/R, GmaxNon))
Isyn = np.sum(Gsyn * DelE, axis=1) - Ulast * np.sum(Gsyn, axis=1)
U = Ulast + timeFactorMembrane * (-Gm * Ulast + Ib + Isyn + Iapp) # Update membrane potential
outputNodes = np.matmul(outputConnectivity,U) # Copy desired neural quantities to output nodes
Ulast = np.copy(U) # Copy the current membrane voltage to be the past value
end = time.time()
return U, Ulast, outputNodes,end-start
"""
########################################################################################################################
NETWORK CONSTRUCTION
Construct testing networks using specifications
"""
def constructAll(dt, numNeurons, probConn, perIn, perOut, perSpike, seed=0):
"""
All elements are present
:param dt: Simulation timestep (ms)
:param numNeurons: Number of neurons in the network
:param probConn: Percent of network which is connected
:param perIn: Percent of input nodes in the network
:param perOut: Percent of output nodes in the network
:param perSpike: Percent of neurons which are spiking
:param seed: Random seed
:return: All of the parameters required to run a network
"""
# Inputs
numInputs = int(perIn*numNeurons)
if numInputs == 0:
numInputs = 1
inputVals = np.zeros(numInputs)+1.0
inputConnectivity = np.zeros([numNeurons,numInputs]) + 1
# Construct neurons
Ulast = np.zeros(numNeurons)
numSpike = int(perSpike*numNeurons)
Cm = np.zeros(numNeurons) + 5.0 # membrane capacitance (nF)
Gm = np.zeros(numNeurons) + 1.0 # membrane conductance (uS)
Ib = np.zeros(numNeurons) + 10.0 # bias current (nA)
timeFactorMembrane = dt/Cm
# Threshold stuff
theta0 = np.zeros(numNeurons)
for i in range(numNeurons):
if i >= numSpike:
theta0[i] = sys.float_info.max
else:
theta0[i] = 1.0
thetaLast = np.copy(theta0)
m = np.zeros(numNeurons)
tauTheta = np.zeros(numNeurons)+1.0
timeFactorThreshold = dt/tauTheta
# Refractory period
refCtr = np.zeros(numNeurons)
refPeriod = np.zeros(numNeurons)+1
# Synapses
GmaxNon = np.zeros([numNeurons,numNeurons])
GmaxSpk = np.zeros([numNeurons,numNeurons])
Gspike = np.zeros([numNeurons,numNeurons])
DelE = np.zeros([numNeurons,numNeurons])
tauSyn = np.zeros([numNeurons, numNeurons])+1
np.random.seed(seed)
for row in range(numNeurons):
for col in range(numNeurons):
rand = np.random.uniform()
if rand < probConn:
DelE[row][col] = 100
if theta0[col] < sys.float_info.max:
GmaxSpk[row][col] = 1
else:
GmaxNon[row][col] = 1
tauSyn[row][col] = 2
timeFactorSynapse = dt/tauSyn
# Outputs
numOutputs = int(perOut*numNeurons)
if numOutputs == 0:
numOutputs = 1
outputVoltageConnectivity = np.zeros([numOutputs,numNeurons])
for i in range(numOutputs):
outputVoltageConnectivity[i][i] = 1
outputSpikeConnectivity = np.copy(outputVoltageConnectivity)
return (inputConnectivity,inputVals,Ulast,timeFactorMembrane,Gm,Ib,thetaLast,timeFactorThreshold,theta0,m,refCtr,
refPeriod,GmaxNon,GmaxSpk,Gspike,timeFactorSynapse,DelE,outputVoltageConnectivity,outputSpikeConnectivity)
def constructNoRef(dt,numNeurons,perConn,perIn,perOut,perSpike,seed=0):
"""
No refractory period
:param dt: Simulation timestep (ms)
:param numNeurons: Number of neurons in the network
:param perConn: Percent of network which is connected
:param perIn: Percent of input nodes in the network
:param perOut: Percent of output nodes in the network
:param perSpike: Percent of neurons which are spiking
:param seed: Random seed
:return: All of the parameters required to run a network
"""
# Inputs
numInputs = int(perIn*numNeurons)
inputVals = np.zeros(numInputs)+1.0
inputConnectivity = np.zeros([numNeurons,numInputs]) + 1
# Construct neurons
Ulast = np.zeros(numNeurons)
numSpike = int(perSpike*numNeurons)
Cm = np.zeros(numNeurons) + 5.0 # membrane capacitance (nF)
Gm = np.zeros(numNeurons) + 1.0 # membrane conductance (uS)
Ib = np.zeros(numNeurons) + 10.0 # bias current (nA)
timeFactorMembrane = dt/Cm
# Threshold stuff
theta0 = np.zeros(numNeurons)
for i in range(numNeurons):
if i >= numSpike:
theta0[i] = sys.float_info.max
else:
theta0[i] = 1.0
thetaLast = np.copy(theta0)
m = np.zeros(numNeurons)
tauTheta = np.zeros(numNeurons)+1.0
timeFactorThreshold = dt/tauTheta
# Synapses
GmaxNon = np.zeros([numNeurons,numNeurons])
GmaxSpk = np.zeros([numNeurons,numNeurons])
Gspike = np.zeros([numNeurons,numNeurons])
DelE = np.zeros([numNeurons,numNeurons])
tauSyn = np.zeros([numNeurons, numNeurons])+1
numSyn = int(perConn*numNeurons*numNeurons)
np.random.seed(seed)
for row in range(numNeurons):
for col in range(numNeurons):
rand = np.random.uniform()
if rand < probConn:
DelE[row][col] = 100
if theta0[col] < sys.float_info.max:
GmaxSpk[row][col] = 1
else:
GmaxNon[row][col] = 1
tauSyn[row][col] = 2
timeFactorSynapse = dt/tauSyn
# Outputs
numOutputs = int(perOut*numNeurons)
outputVoltageConnectivity = np.zeros([numOutputs, numNeurons])
for i in range(numOutputs):
outputVoltageConnectivity[i][i] = 1
outputSpikeConnectivity = np.copy(outputVoltageConnectivity)
return (inputConnectivity, inputVals, Ulast, timeFactorMembrane, Gm, Ib, thetaLast, timeFactorThreshold, theta0, m,
GmaxNon, GmaxSpk, Gspike, timeFactorSynapse, DelE, outputVoltageConnectivity, outputSpikeConnectivity)
def constructNoSpike(dt,numNeurons,perConn,perIn,perOut,seed=0):
"""
No spiking elements
:param dt: Simulation timestep (ms)
:param numNeurons: Number of neurons in the network
:param perConn: Percent of network which is connected
:param perIn: Percent of input nodes in the network
:param perOut: Percent of output nodes in the network
:param seed: Random seed
:return: All of the parameters required to run a network
"""
# Inputs
numInputs = int(perIn*numNeurons)
inputVals = np.zeros(numInputs)+1.0
inputConnectivity = | np.zeros([numNeurons,numInputs]) | numpy.zeros |
import logging
import os
from abc import ABC, abstractmethod
from copy import deepcopy
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union, cast
import numpy as np
from tqdm import tqdm
from alibi.api.defaults import DEFAULT_DATA_CFRL, DEFAULT_META_CFRL
from alibi.api.interfaces import Explainer, Explanation, FitMixin
from alibi.explainers.backends.cfrl_base import (generate_empty_condition,
get_classification_reward,
get_hard_distribution,
identity_function)
from alibi.utils.frameworks import Framework, has_pytorch, has_tensorflow
if TYPE_CHECKING:
import tensorflow
import torch
if has_pytorch:
# import pytorch backend
from alibi.explainers.backends.pytorch import cfrl_base as pytorch_base_backend
if has_tensorflow:
# import tensorflow backend
from alibi.explainers.backends.tensorflow import cfrl_base as tensorflow_base_backend
# define logger
logger = logging.getLogger(__name__)
class NormalActionNoise:
""" Normal noise generator. """
def __init__(self, mu: float, sigma: float) -> None:
"""
Constructor.
Parameters
----------
mu
Mean of the normal noise.
sigma
Standard deviation of the noise.
"""
self.mu = mu
self.sigma = sigma
def __call__(self, shape: Tuple[int, ...]) -> np.ndarray:
"""
Generates normal noise with the appropriate mean and standard deviation.
Parameters
----------
shape
Shape of the array to be generated
Returns
-------
Normal noise with the appropriate mean, standard deviation and shape.
"""
return self.mu + self.sigma * np.random.randn(*shape)
def __repr__(self) -> str:
return 'NormalActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma)
class ReplayBuffer:
"""
Circular experience replay buffer for `CounterfactualRL` (DDPG). When the buffer is filled, then the oldest
experience is replaced by the new one (FIFO). The experience batch size is kept constant and inferred when
the first batch of data is stored. Allowing flexible batch size can generate `tensorflow` warning due to
the `tf.function` retracing, which can lead to a drop in performance.
"""
X: np.ndarray #: Inputs buffer.
Y_m: np.ndarray #: Model's prediction buffer.
Y_t: np.ndarray #: Counterfactual targets buffer.
Z: np.ndarray #: Input embedding buffer.
Z_cf_tilde: np.ndarray #: Noised counterfactual embedding buffer.
R_tilde: np.ndarray #: Noise counterfactual rewards buffer.
def __init__(self, size: int = 1000) -> None:
"""
Constructor.
Parameters
----------
size
Dimension of the buffer in batch size. This that the total memory allocated is proportional with the
`size x batch_size`, where `batch_size` is inferred from the first array to be stored.
"""
self.idx = 0 # cursor for the buffer
self.len = 0 # current length of the buffer
self.size = size # buffer's maximum capacity
self.batch_size = 0 # batch size (inferred during `append`)
self.C: Optional[np.ndarray] = None # buffer for the conditional tensor
def append(self,
X: np.ndarray,
Y_m: np.ndarray,
Y_t: np.ndarray,
Z: np.ndarray,
Z_cf_tilde: np.ndarray,
C: Optional[np.ndarray],
R_tilde: np.ndarray,
**kwargs) -> None:
"""
Adds experience to the replay buffer. When the buffer is filled, then the oldest experience is replaced
by the new one (FIFO).
Parameters
----------
X
Input array.
Y_m
Model's prediction class of `X`.
Y_t
Counterfactual target class.
Z
Input's embedding.
Z_cf_tilde
Noised counterfactual embedding.
C
Conditional array.
R_tilde
Noised counterfactual reward array.
**kwargs
Other arguments. Not used.
"""
# Initialize the buffers.
if not hasattr(self, 'X'):
self.batch_size = X.shape[0]
# Allocate memory.
self.X = np.zeros((self.size * self.batch_size, *X.shape[1:]), dtype=np.float32)
self.Y_m = np.zeros((self.size * self.batch_size, *Y_m.shape[1:]), dtype=np.float32)
self.Y_t = np.zeros((self.size * self.batch_size, *Y_t.shape[1:]), dtype=np.float32)
self.Z = np.zeros((self.size * self.batch_size, *Z.shape[1:]), dtype=np.float32)
self.Z_cf_tilde = np.zeros((self.size * self.batch_size, *Z_cf_tilde.shape[1:]), dtype=np.float32)
self.R_tilde = np.zeros((self.size * self.batch_size, *R_tilde.shape[1:]), dtype=np.float32)
# Conditional tensor can be `None` when no condition is included. If it is not `None`, allocate memory.
if C is not None:
self.C = np.zeros((self.size * self.batch_size, *C.shape[1:]), dtype=np.float32)
# Increase the length of the buffer if not full.
if self.len < self.size:
self.len += 1
# Compute the first position where to add most recent experience.
start = self.batch_size * self.idx
# Add new data / replace old experience (note that a full batch is added at once).
self.X[start:start + self.batch_size] = X
self.Y_m[start:start + self.batch_size] = Y_m
self.Y_t[start:start + self.batch_size] = Y_t
self.Z[start:start + self.batch_size] = Z
self.Z_cf_tilde[start:start + self.batch_size] = Z_cf_tilde
self.R_tilde[start:start + self.batch_size] = R_tilde
if C is not None:
self.C = cast(np.ndarray, self.C) # helping mypy out as self.C cannot be None at this point
self.C[start:start + self.batch_size] = C
# Compute the next index. Not that if the buffer reached its maximum capacity, for the next iteration
# we start replacing old batches.
self.idx = (self.idx + 1) % self.size
def sample(self) -> Dict[str, Optional[np.ndarray]]:
"""
Sample a batch of experience form the replay buffer.
Returns
-------
A batch experience. For a description of the keys and values returned, see parameter descriptions \
in :py:meth:`alibi.explainers.cfrl_base.ReplayBuffer.append` method. The batch size returned is the same \
as the one passed in the :py:meth:`alibi.explainers.cfrl_base.ReplayBuffer.append`.
"""
# Generate random indices to be sampled.
rand_idx = np.random.randint(low=0, high=self.len * self.batch_size, size=(self.batch_size,))
# Extract data form buffers.
X = self.X[rand_idx] # input array
Y_m = self.Y_m[rand_idx] # model's prediction
Y_t = self.Y_t[rand_idx] # counterfactual target
Z = self.Z[rand_idx] # input embedding
Z_cf_tilde = self.Z_cf_tilde[rand_idx] # noised counterfactual embedding
C = self.C[rand_idx] if (self.C is not None) else None # conditional array if exists
R_tilde = self.R_tilde[rand_idx] # noised counterfactual reward
return {
"X": X,
"Y_m": Y_m,
"Y_t": Y_t,
"Z": Z,
"Z_cf_tilde": Z_cf_tilde,
"C": C,
"R_tilde": R_tilde
}
DEFAULT_BASE_PARAMS = {
"act_noise": 0.1,
"act_low": -1.0,
"act_high": 1.0,
"replay_buffer_size": 1000,
"batch_size": 100,
"num_workers": 4,
"shuffle": True,
"exploration_steps": 100,
"update_every": 1,
"update_after": 10,
"train_steps": 100000,
"backend": "tensorflow",
"encoder_preprocessor": identity_function,
"decoder_inv_preprocessor": identity_function,
"reward_func": get_classification_reward,
"postprocessing_funcs": [],
"conditional_func": generate_empty_condition,
"callbacks": [],
"actor": None,
"critic": None,
"optimizer_actor": None,
"optimizer_critic": None,
"lr_actor": 1e-3,
"lr_critic": 1e-3,
"actor_hidden_dim": 256,
"critic_hidden_dim": 256,
}
"""
Default Counterfactual with Reinforcement Learning parameters.
- ``'act_noise'`` : ``float`` - standard deviation for the normal noise added to the actor for exploration.
- ``'act_low'`` : ``float`` - minimum action value. Each action component takes values between \
`[act_low, act_high]`.
- ``'act_high'`` : ``float`` - maximum action value. Each action component takes values between \
`[act_low, act_high]`.
- ``'replay_buffer_size'`` : ``int`` - dimension of the replay buffer in `batch_size` units. The total memory \
allocated is proportional with the `size x batch_size`.
- ``'batch_size'`` : ``int`` - training batch size.
- ``'num_workers'`` : ``int`` - number of workers used by the data loader if ``'pytorch'`` backend is selected.
- ``'shuffle'`` : ``bool`` - whether to shuffle the datasets every epoch.
- ``'exploration_steps'`` : ``int`` - number of exploration steps. For the first `exploration_steps`, the \
counterfactual embedding coordinates are sampled uniformly at random from the interval `[act_low, act_high]`.
- ``'update_every'`` : ``int`` - number of steps that should elapse between gradient updates. Regardless of the \
waiting steps, the ratio of waiting steps to gradient steps is locked to 1.
- ``'update_after'`` : ``int`` - number of steps to wait before start updating the actor and critic. This ensures \
that the replay buffers is full enough for useful updates.
- ``'backend'`` : ``str`` - backend to be used: ``'tensorflow'`` | ``'pytorch'``. Default ``'tensorflow'``.
- ``'train_steps'`` : ``int`` - number of train steps.
- ``'encoder_preprocessor'`` : ``Callable`` - encoder/auto-encoder data preprocessors. Transforms the input data \
into the format expected by the auto-encoder. By default, the identity function.
- ``'decoder_inv_preprocessor'`` : ``Callable`` - decoder/auto-encoder data inverse preprocessor. Transforms data \
from the auto-encoder output format to the original input format. Before calling the prediction function, the \
data is inverse preprocessed to match the original input format. By default, the identity function.
- ``'reward_func'`` : ``Callable`` - element-wise reward function. By default, considers classification task and \
checks if the counterfactual prediction label matches the target label. Note that this is element-wise, so a \
tensor is expected to be returned.
- ``'postprocessing_funcs'`` : ``List[Postprocessing]`` - list of post-processing functions. The function are \
applied in the order, from low to high index. Non-differentiable post-processing can be applied. The function \
expects as arguments `X_cf` - the counterfactual instance, `X` - the original input instance and `C` - the \
conditional vector, and returns the post-processed counterfactual instance `X_cf_pp` which is passed as `X_cf` \
for the following functions. By default, no post-processing is applied (empty list).
- ``'conditional_func'`` : ``Callable`` - generates a conditional vector given a pre-processed input instance. By \
default, the function returns ``None`` which is equivalent to no conditioning.
- ``'callbacks'`` : ``List[Callback]`` - list of callback functions applied at the end of each training step.
- ``'actor'`` : ``Optional[Union[tensorflow.keras.Model, torch.nn.Module]]`` - actor network.
- ``'critic;`` : ``Optional[Union[tensorflow.keras.Model, torch.nn.Module]]`` - critic network.
- ``'optimizer_actor'`` : ``Optional[Union[tensorflow.keras.optimizers.Optimizer, torch.optim.Optimizer]]`` - \
actor optimizer.
- ``'optimizer_critic'`` : ``Optional[Union[tensorflow.keras.optimizer.Optimizer, torch.optim.Optimizer]]`` - \
critic optimizer.
- ``'lr_actor'`` : ``float`` - actor learning rate.
- ``'lr_critic'`` : ``float`` - critic learning rate.
- ``'actor_hidden_dim'`` : ``int`` - actor hidden layer dimension.
- ``'critic_hidden_dim'`` : ``int`` - critic hidden layer dimension.
"""
_PARAM_TYPES = {
"primitives": [
"act_noise", "act_low", "act_high", "replay_buffer_size", "batch_size", "num_workers", "shuffle",
"exploration_steps", "update_every", "update_after", "train_steps", "backend", "actor_hidden_dim",
"critic_hidden_dim",
],
"complex": [
"encoder_preprocessor", "decoder_inv_preprocessor", "reward_func", "postprocessing_funcs", "conditional_func",
"callbacks", "actor", "critic", "optimizer_actor", "optimizer_critic", "encoder", "decoder", "predictor",
"sparsity_loss", "consistency_loss",
]
}
"""
Parameter types for serialization
- ``'primitives'`` : List[str] - list of parameters having primitive data types.
- ``'complex'`` : List[str] - list of parameters having complex data types (e.g., functions, models,\
optimizers etc.).
"""
class CounterfactualRL(Explainer, FitMixin):
""" Counterfactual Reinforcement Learning. """
def __init__(self,
predictor: Callable[[np.ndarray], np.ndarray],
encoder: 'Union[tensorflow.keras.Model, torch.nn.Module]',
decoder: 'Union[tensorflow.keras.Model, torch.nn.Module]',
coeff_sparsity: float,
coeff_consistency: float,
latent_dim: Optional[int] = None,
backend: str = "tensorflow",
seed: int = 0,
**kwargs):
"""
Constructor.
Parameters
----------
predictor
A callable that takes a `numpy` array of `N` data points as inputs and returns `N` outputs. For
classification task, the second dimension of the output should match the number of classes. Thus, the
output can be either a soft label distribution or a hard label distribution (i.e. one-hot encoding)
without affecting the performance since `argmax` is applied to the predictor's output.
encoder
Pretrained encoder network.
decoder
Pretrained decoder network.
coeff_sparsity
Sparsity loss coefficient.
coeff_consistency
Consistency loss coefficient.
latent_dim
Auto-encoder latent dimension. Can be omitted if the actor network is user specified.
backend
Deep learning backend: ``'tensorflow'`` | ``'pytorch'``. Default ``'tensorflow'``.
seed
Seed for reproducibility. The results are not reproducible for ``'tensorflow'`` backend.
**kwargs
Used to replace any default parameter from :py:data:`alibi.explainers.cfrl_base.DEFAULT_BASE_PARAMS`.
"""
super().__init__(meta=deepcopy(DEFAULT_META_CFRL))
# Clean backend flag.
backend = backend.strip().lower()
# Verify backend installed
CounterfactualRL._verify_backend(backend)
# Select backend.
self.backend = self._select_backend(backend, **kwargs)
# Set seed for reproducibility.
self.backend.set_seed(seed)
# Validate arguments.
self.params = self._validate_kwargs(predictor=predictor,
encoder=encoder,
decoder=decoder,
latent_dim=latent_dim,
coeff_sparsity=coeff_sparsity,
coeff_consistency=coeff_consistency,
backend=backend,
seed=seed,
**kwargs)
# If pytorch backend, the if GPU available, send everything to GPU
if self.params["backend"] == Framework.PYTORCH:
from alibi.explainers.backends.pytorch.cfrl_base import get_device
self.params.update({"device": get_device()})
# Send encoder and decoder to device.
self.params["encoder"].to(self.params["device"])
self.params["decoder"].to(self.params["device"])
# Sent actor and critic to device.
self.params["actor"].to(self.params["device"])
self.params["critic"].to(self.params["device"])
# Update meta-data with all parameters passed (correct and incorrect).
self.meta["params"].update(CounterfactualRL._serialize_params(self.params))
@staticmethod
def _serialize_params(params: Dict[str, Any]) -> Dict[str, Any]:
"""
Parameter serialization. The function replaces object by human-readable representation.
Parameters
----------
params
Dictionary of parameters to be serialized.
Returns
-------
Human-readable replacement of data.
"""
meta = dict()
for param, value in params.items():
if param in _PARAM_TYPES["primitives"]:
# primitive types are passed as they are
meta.update({param: value})
elif param in _PARAM_TYPES["complex"]:
if isinstance(value, list):
# each complex element in the list is serialized by replacing it with a name
meta.update({param: [CounterfactualRL._get_name(v) for v in value]})
else:
# complex element is serialized by replacing it with a name
meta.update({param: CounterfactualRL._get_name(value)})
else:
# Unknown parameters are passed as they are. TODO: think of a better way to handle this.
meta.update({param: value})
return meta
@staticmethod
def _get_name(a: Any) -> str:
"""
Constructs a name for the given object. If the object has as built-in name, the name is return.
If the object has a built-in class name, the name of the class is returned. Otherwise ``'unknown'`` is returned.
Parameters
----------
a
Object to give the name for.
Returns
-------
Name of the object.
"""
if hasattr(a, "__name__"):
return a.__name__
if hasattr(a, "__class__"):
return str(a.__class__)
return "unknown"
@staticmethod
def _verify_backend(backend: str):
"""
Verifies if the backend is supported.
Parameters
----------
backend
Backend to be checked.
"""
# Check if pytorch/tensorflow backend supported.
if (backend == Framework.PYTORCH and not has_pytorch) or \
(backend == Framework.TENSORFLOW and not has_tensorflow):
raise ImportError(f'{backend} not installed. Cannot initialize and run the CounterfactualRL'
f' with {backend} backend.')
# Allow only pytorch and tensorflow.
elif backend not in [Framework.PYTORCH, Framework.TENSORFLOW]:
raise NotImplementedError(f'{backend} not implemented. Use `tensorflow` or `pytorch` instead.')
def _select_backend(self, backend: str, **kwargs):
"""
Selects the backend according to the `backend` flag.
Parameters
---------
backend
Deep learning backend: ``'tensorflow'`` | ``'pytorch'``. Default `tensorflow`.
**kwargs
Other arguments. Not used.
"""
return tensorflow_base_backend if backend == "tensorflow" else pytorch_base_backend
def _validate_kwargs(self,
predictor: Callable,
encoder: 'Union[tensorflow.keras.Model, torch.nn.Module]',
decoder: 'Union[tensorflow.keras.Model, torch.nn.Module]',
latent_dim: Optional[int],
coeff_sparsity: float,
coeff_consistency: float,
backend: str,
seed: int,
**kwargs):
"""
Validates arguments.
Parameters
----------
predictor.
A callable that takes a `numpy` array of `N` data points as inputs and returns `N` outputs.
encoder
Pretrained encoder network.
decoder
Pretrained decoder network.
latent_dim
Auto-encoder latent dimension.
coeff_sparsity
Sparsity loss coefficient.
coeff_consistency
Consistency loss coefficient.
backend
Deep learning backend: ``'tensorflow'`` | ``'pytorch'``.
**kwargs
Other arguments.
"""
# Copy default parameters.
params = deepcopy(DEFAULT_BASE_PARAMS)
# Update parameters with mandatory arguments
params.update({
"encoder": encoder,
"decoder": decoder,
"latent_dim": latent_dim,
"predictor": predictor,
"coeff_sparsity": coeff_sparsity,
"coeff_consistency": coeff_consistency,
"backend": backend,
"seed": seed,
})
# Add actor if not user-specified.
not_specified = {"actor": False, "critic": False}
if "actor" not in kwargs:
not_specified["actor"] = True
params["actor"] = self.backend.get_actor(hidden_dim=params["actor_hidden_dim"],
output_dim=params["latent_dim"])
if "critic" not in kwargs:
not_specified["critic"] = True
params["critic"] = self.backend.get_critic(hidden_dim=params["critic_hidden_dim"])
# Add optimizers if not user-specified.
optimizers = ["optimizer_actor", "optimizer_critic"]
for optim in optimizers:
# extract model in question
model_name = optim.split("_")[1]
model = params[model_name]
lr = params["lr_" + model_name]
# If the optimizer is user-specified, just update the params
if optim in kwargs:
params.update({optim: kwargs[optim]})
if self.params["backend"] == Framework.PYTORCH and not_specified[model_name]:
raise ValueError(f"Can not specify {optim} when {model_name} not specified for pytorch backend.")
# If the optimizer is not user-specified, it need to be initialized. The initialization is backend specific.
elif params['backend'] == Framework.TENSORFLOW:
params.update({optim: self.backend.get_optimizer(lr=lr)})
else:
params.update({optim: self.backend.get_optimizer(model=model, lr=lr)})
# Add sparsity loss if not user-specified.
params["sparsity_loss"] = self.backend.sparsity_loss if "sparsity_loss" not in kwargs \
else kwargs["sparsity_loss"]
# Add consistency loss if not user-specified.
params["consistency_loss"] = self.backend.consistency_loss if "consistency_loss" not in kwargs \
else kwargs["consistency_loss"]
# Validate arguments.
allowed_keys = set(params.keys())
provided_keys = set(kwargs.keys())
common_keys = allowed_keys & provided_keys
# Check if some provided keys are incorrect
if len(common_keys) < len(provided_keys):
incorrect_keys = ", ".join(provided_keys - common_keys)
logger.warning("The following keys are incorrect: " + incorrect_keys)
# Update default parameters and all parameters
params.update({key: kwargs[key] for key in common_keys})
return params
@classmethod
def load(cls, path: Union[str, os.PathLike], predictor: Any) -> "Explainer":
return super().load(path, predictor)
def reset_predictor(self, predictor: Any) -> None:
"""
Resets the predictor.
Parameters
----------
predictor
New predictor.
"""
self.params["predictor"] = predictor
self.meta["params"].update(CounterfactualRL._serialize_params(self.params))
def save(self, path: Union[str, os.PathLike]) -> None:
super().save(path)
def fit(self, X: np.ndarray) -> "Explainer":
"""
Fit the model agnostic counterfactual generator.
Parameters
----------
X
Training data array.
Returns
-------
self
The explainer itself.
"""
# Define boolean flag for initializing actor and critic network for Tensorflow backend.
initialize_actor_critic = False
# Define replay buffer (this will deal only with numpy arrays).
replay_buff = ReplayBuffer(size=self.params["replay_buffer_size"])
# Define noise variable.
noise = NormalActionNoise(mu=0, sigma=self.params["act_noise"])
# Define data generator.
data_generator = self.backend.data_generator(X=X, **self.params)
data_iter = iter(data_generator)
for step in tqdm(range(self.params["train_steps"])):
# Sample training data.
try:
data = next(data_iter)
except StopIteration:
if hasattr(data_generator, "on_epoch_end"):
# This is just for tensorflow backend.
data_generator.on_epoch_end()
data_iter = iter(data_generator)
data = next(data_iter)
# Add None condition if condition does not exist.
if "C" not in data:
data["C"] = None
# Compute input embedding.
Z = self.backend.encode(X=data["X"], **self.params)
data.update({"Z": Z})
# Compute counterfactual embedding.
Z_cf = self.backend.generate_cf(**data, **self.params)
data.update({"Z_cf": Z_cf})
# Add noise to the counterfactual embedding.
Z_cf_tilde = self.backend.add_noise(noise=noise, step=step, **data, **self.params)
data.update({"Z_cf_tilde": Z_cf_tilde})
# Decode noised counterfactual and apply postprocessing step to X_cf_tilde.
X_cf_tilde = self.backend.decode(Z=data["Z_cf_tilde"], **self.params)
for pp_func in self.params["postprocessing_funcs"]:
# Post-process noised counterfactual.
X_cf_tilde = pp_func(self.backend.to_numpy(X_cf_tilde),
self.backend.to_numpy(data["X"]),
self.backend.to_numpy(data["C"]))
data.update({"X_cf_tilde": X_cf_tilde})
# Compute model's prediction on the noised counterfactual
X_cf_tilde = self.params["decoder_inv_preprocessor"](self.backend.to_numpy(data["X_cf_tilde"]))
Y_m_cf_tilde = self.params["predictor"](X_cf_tilde)
# Compute reward.
R_tilde = self.params["reward_func"](self.backend.to_numpy(Y_m_cf_tilde),
self.backend.to_numpy(data["Y_t"]))
data.update({"R_tilde": R_tilde, "Y_m_cf_tilde": Y_m_cf_tilde})
# Store experience in the replay buffer.
data = {key: self.backend.to_numpy(data[key]) for key in data.keys()}
replay_buff.append(**data)
if step % self.params['update_every'] == 0 and step > self.params["update_after"]:
for i in range(self.params['update_every']):
# Sample batch of experience form the replay buffer.
sample = replay_buff.sample()
# Initialize actor and critic. This is required for tensorflow in order to reinitialize the
# explainer object and call fit multiple times. If the models are not reinitialized, the
# error: "tf.function-decorated function tried to create variables on non-first call" is raised.
# This is due to @tf.function and building the model for the first time in a compiled function
if not initialize_actor_critic and self.params["backend"] == Framework.TENSORFLOW:
self.backend.initialize_actor_critic(**sample, **self.params)
self.backend.initialize_optimizers(**sample, **self.params)
initialize_actor_critic = True
if "C" not in sample:
sample["C"] = None
# Decode counterfactual. This procedure has to be done here and not in the experience loop
# since the actor is updating but old experience is used. Thus, the decoding of the counterfactual
# will not correspond to the latest actor network. Remember that the counterfactual is used
# for the consistency loss. The counterfactual generation is performed here due to @tf.function
# which does not allow all post-processing functions.
Z_cf = self.backend.generate_cf(Z=self.backend.to_tensor(sample["Z"], **self.params),
Y_m=self.backend.to_tensor(sample["Y_m"], **self.params),
Y_t=self.backend.to_tensor(sample["Y_t"], **self.params),
C=self.backend.to_tensor(sample["C"], **self.params),
**self.params)
X_cf = self.backend.decode(Z=Z_cf, **self.params)
for pp_func in self.params["postprocessing_funcs"]:
# Post-process counterfactual.
X_cf = pp_func(self.backend.to_numpy(X_cf),
self.backend.to_numpy(sample["X"]),
self.backend.to_numpy(sample["C"]))
# Add counterfactual instance to the sample to be used in the update function for consistency loss
sample.update({"Z_cf": self.backend.to_numpy(Z_cf),
"X_cf": self.backend.to_numpy(X_cf)})
# Update critic by one-step gradient descent.
losses = self.backend.update_actor_critic(**sample, **self.params)
# Convert all losses from tensors to numpy arrays.
losses = {key: self.backend.to_numpy(losses[key]).item() for key in losses.keys()}
# Call all callbacks.
for callback in self.params["callbacks"]:
callback(step=step, update=i, model=self, sample=sample, losses=losses)
return self
@staticmethod
def _validate_target(Y_t: Optional[np.ndarray]):
"""
Validate the targets by checking the dimensions.
Parameters
----------
Y_t
Targets to be checked.
"""
if Y_t is None:
raise ValueError("Target can not be `None`.")
if len(Y_t.shape) not in [1, 2]:
raise ValueError(f"Target shape should be at least 1 and at most 2. Found {len(Y_t.shape)} instead.")
@staticmethod
def _validate_condition(C: Optional[np.ndarray]):
"""
Validate condition vector.
Parameters
----------
C
Condition vector.
"""
if (C is not None) and len(C.shape) != 2:
raise ValueError(f"Condition vector shape should be 2. Found {len(C.shape)} instead.")
@staticmethod
def _is_classification(pred: np.ndarray) -> bool:
"""
Check if the prediction task is classification by looking at the model's prediction shape.
Parameters
----------
pred
Model's prediction.
Returns
-------
``True`` if the prediction has shape of 2 and the second dimension bigger grater than 1. ``False`` otherwise.
"""
return len(pred.shape) == 2 and pred.shape[1] > 1
def explain(self, # type: ignore[override]
X: np.ndarray,
Y_t: np.ndarray,
C: Optional[np.ndarray] = None,
batch_size: int = 100) -> Explanation:
"""
Explains an input instance
Parameters
----------
X
Instances to be explained.
Y_t
Counterfactual targets.
C
Conditional vectors. If ``None``, it means that no conditioning was used during training (i.e. the
`conditional_func` returns ``None``).
batch_size
Batch size to be used when generating counterfactuals.
Returns
-------
explanation
`Explanation` object containing the counterfactual with additional metadata as attributes. \
See usage at `CFRL examples`_ for details.
.. _CFRL examples:
https://docs.seldon.io/projects/alibi/en/latest/methods/CFRL.html
"""
# General validation.
self._validate_target(Y_t)
self._validate_condition(C)
# Check the number of target labels.
if Y_t.shape[0] != 1 and Y_t.shape[0] != X.shape[0]:
raise ValueError("The number target labels should be 1 or equals the number of samples in X.")
# Check the number of conditional vectors
if (C is not None) and C.shape[0] != 1 and C.shape[0] != X.shape[0]:
raise ValueError("The number of conditional vectors should be 1 or equals the number if samples in X.")
# Transform target into a 2D array.
Y_t = Y_t.reshape(Y_t.shape[0], -1)
# Repeat the same label to match the number of input instances.
if Y_t.shape[0] == 1:
Y_t = | np.tile(Y_t, (X.shape[0], 1)) | numpy.tile |
"""LQR, iLQR and MPC."""
import numpy as np
import scipy #.linalg.solve_continuous_are as func
from ipdb import set_trace as debug
def prRed(prt): print("\033[91m {}\033[00m" .format(prt))
def prGreen(prt): print("\033[92m {}\033[00m" .format(prt))
def prYellow(prt): print("\033[93m {}\033[00m" .format(prt))
def prLightPurple(prt): print("\033[94m {}\033[00m" .format(prt))
def prPurple(prt): print("\033[95m {}\033[00m" .format(prt))
def prCyan(prt): print("\033[96m {}\033[00m" .format(prt))
def prLightGray(prt): print("\033[97m {}\033[00m" .format(prt))
def prBlack(prt): print("\033[98m {}\033[00m" .format(prt))
def simulate_dynamics(env, x, u, dt=1e-5):
"""Step simulator to see how state changes.
Parameters
----------
env: gym.core.Env
The environment you are try to control. In this homework the 2
link arm.
x: np.array
The state to test. When approximating A you will need to perturb
this.
u: np.array
The command to test. When approximating B you will need to
perturb this.
dt: float, optional
The time step to simulate. In general the smaller the time step
the more accurate the gradient approximation.
Returns
-------
xdot: np.array
This is the **CHANGE** in x. i.e. (x[1] - x[0]) / dt
If you return x you will need to solve a different equation in
your LQR controller.
"""
env.dt = dt
env.state = x.copy()
x1, _, _, _ = env.step(u)
xdot = (x1-x) / dt
return xdot
def approximate_A(env, x, u, delta=1e-5, dt=1e-5):
"""Approximate A matrix using finite differences.
Parameters
----------
env: gym.core.Env
The environment you are try to control. In this homework the 2
link arm.
x: np.array
The state to test. You will need to perturb this.
u: np.array
The command to test.
delta: float
How much to perturb the state by.
dt: float, optional
The time step to simulate. In general the smaller the time step
the more accurate the gradient approximation.
Returns
-------
A: np.array
The A matrix for the dynamics at state x and command u.
"""
state_dim = x.shape[0]
action_dim = u.shape[0]
A = np.zeros((state_dim, state_dim))
xs_inc = np.tile(x,(state_dim,1)) + delta * np.eye(state_dim)
xs_dec = np.tile(x,(state_dim,1)) - delta * np.eye(state_dim)
for idx, (x_inc, x_dec) in enumerate(zip(xs_inc, xs_dec)):
# calculate partial differential w.r.t. x
state_inc = simulate_dynamics(env, x_inc, u.copy(), dt)
state_dec = simulate_dynamics(env, x_dec, u.copy(), dt)
A[:, idx] = (state_inc - state_dec) / (2 * delta)
return A
def approximate_B(env, x, u, delta=1e-5, dt=1e-5):
"""Approximate B matrix using finite differences.
Parameters
----------
env: gym.core.Env
The environment you are try to control. In this homework the 2
link arm.
x: np.array
The state to test.
u: np.array
The command to test. You will ned to perturb this.
delta: float
How much to perturb the state by.
dt: float, optional
The time step to simulate. In general the smaller the time step
the more accurate the gradient approximation.
Returns
-------
B: np.array
The B matrix for the dynamics at state x and command u.
"""
state_dim = x.shape[0]
action_dim = u.shape[0]
B = np.zeros((state_dim, action_dim))
us_inc = np.tile(u,(action_dim,1)) + delta * np.eye(action_dim)
us_dec = np.tile(u,(action_dim,1)) - delta * np.eye(action_dim)
# print(us_dec, us_inc)
for idx, (u_inc, u_dec) in enumerate(zip(us_inc, us_dec)):
# calculate partial differential w.r.t. u
state_inc = simulate_dynamics(env, x.copy(), u_inc, dt)
state_dec = simulate_dynamics(env, x.copy(), u_dec, dt)
B[:, idx] = (state_inc - state_dec) / (2 * delta)
return B
u = None
def calc_lqr_input(env, sim_env, debug_flag=False):
"""Calculate the optimal control input for the given state.
If you are following the API and simulate dynamics is returning
xdot, then you should use the scipy.linalg.solve_continuous_are
function to solve the Ricatti equations.
Parameters
----------
env: gym.core.Env
This is the true environment you will execute the computed
commands on. Use this environment to get the Q and R values as
well as the state.
sim_env: gym.core.Env
A copy of the env class. Use this to simulate the dynamics when
doing finite differences.
Returns
-------
u: np.array
The command to execute at this point.
"""
# prepare whatever need later
global u
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
x = env.state.copy()
goal_q = env.goal_q.copy()
goal_dq = env.goal_dq.copy()
Q = env.Q.copy()
R = env.R.copy()
if u is None:
u = np.zeros(action_dim)
# calcuate A and B matrix
A = approximate_A(sim_env, x.copy(), u.copy())
if debug_flag : prGreen('A={}'.format(A))
assert(A.shape == (state_dim, state_dim))
B = approximate_B(sim_env, x.copy(), u.copy())
if debug_flag : prYellow('B={}'.format(B))
assert(B.shape == (state_dim, action_dim))
# solve CARE, return zero if raise error
try:
X = scipy.linalg.solve_continuous_are(A, B, Q, R)
except:
return np.zeros(action_dim)
# calculate K gain
K = np.dot(np.linalg.pinv(R), np.dot(B.T, X))
if debug_flag : prRed('K={}'.format(K))
# calcuate action
x_target = x[:2]-goal_q
u = np.hstack((x_target, x[2:]))
u = - | np.dot(K, u) | numpy.dot |
# Copyright 2021 The Distla Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""
Tests for the distributed eigh solver.
"""
import pytest
import random
from jax import lax
import jax.numpy as jnp
import numpy as np
from distla_core.linalg.eigh import eigh
from distla_core.utils import misc
from distla_core.utils import pops
from distla_core.linalg.utils import testutils
Ns = [24, 48]
# TODO: Test fat SVD
m_factors = [1, 2]
p_szs = [256, ]
seeds = [1, ]
precisions = [lax.Precision.HIGHEST, ]
bools = [False, True]
padding = [None, 4]
minimum_ranks = [4, 48]
def _subspace_angle(subspace_1, subspace_2, orth1=True, orth2=True):
if orth1:
subspace_1, _ = np.linalg.qr(subspace_1)
if orth2:
subspace_2, _ = np.linalg.qr(subspace_2)
product = np.dot(subspace_1.conj().T, subspace_2)
return np.arccos(np.linalg.norm(product, ord=-2))
@pytest.mark.parametrize("N", Ns)
@pytest.mark.parametrize("m_factor", m_factors)
@pytest.mark.parametrize("p_sz", p_szs)
@pytest.mark.parametrize("precision", precisions)
def test_similarity_transform(N, m_factor, p_sz, precision):
"""
Tests that eigh._similarity_transform indeed computes B^H @ A @ B, by
comparing up against jnp.dot at the given precision up to
eps * |B|_F^2 |A|_F.
Here A is (N * m_factor, N * m_factor) and B is (N * m_factor, N).
"""
np.random.seed(10)
A = np.random.randn(N * m_factor, N * m_factor).astype(np.float32)
B = np.random.randn(N * m_factor, N).astype(np.float32)
normA = np.linalg.norm(A)
normB = np.linalg.norm(B)
C = jnp.dot(A, B, precision=precision)
C = jnp.dot(B.conj().T, C, precision=precision)
A = pops.distribute(A)
B = pops.distribute(B)
@pops.pmap
def test_f(A, V):
return eigh._similarity_transform(A, V, p_sz, precision=precision)
result = test_f(A, B)
result = pops.undistribute(result)
atol = normB * normA * normB * testutils.eps(precision)
np.testing.assert_allclose(C, result, atol=atol)
@pytest.mark.parametrize("N", Ns)
@pytest.mark.parametrize("p_sz", p_szs)
@pytest.mark.parametrize("precision", precisions)
@pytest.mark.parametrize("canonical", bools)
@pytest.mark.parametrize("seed", seeds)
def test_split_spectrum(N, p_sz, precision, canonical, seed):
""" Tests that split spectrum correctly divides a Hermitian matrix into blocks.
"""
np.random.seed(seed)
H = np.random.randn(N, N).astype(np.float32)
H = jnp.array(0.5 * (H + H.conj().T))
ev_exp, eV_exp = jnp.linalg.eigh(H)
Hd = pops.distribute(H)
@pops.pmap
def median_ev_func(H):
return pops.trace(H) / N
if canonical:
sigma = N // 2
else:
sigma = median_ev_func(Hd)[0]
split_1, split_2 = eigh.split_spectrum(
Hd, N, sigma, prior_isometry=None, p_sz=p_sz, precision=precision,
canonical=canonical)
H1d, V1d, k1, _ = split_1
H2d, V2d, k2, _ = split_2
H1 = pops.undistribute(H1d)
V1 = pops.undistribute(V1d)
H2 = pops.undistribute(H2d)
V2 = pops.undistribute(V2d)
H1 = H1[:k1, :k1]
H2 = H2[:k2, :k2]
V1 = V1[:, :k1]
V2 = V2[:, :k2]
ev_Hm, _ = np.linalg.eigh(H1)
ev_Hp, _ = np.linalg.eigh(H2)
proj_1 = np.dot(np.dot(V1.conj().T, H), V1)
ev_p1, _ = np.linalg.eigh(proj_1)
proj_2 = np.dot(np.dot(V2.conj().T, H), V2)
ev_p2, _ = np.linalg.eigh(proj_2)
eps = testutils.eps(precision)
np.testing.assert_allclose(jnp.sort(ev_p1),
jnp.sort(ev_Hm),
atol=10 * eps * jnp.linalg.norm(ev_Hm))
np.testing.assert_allclose(jnp.sort(ev_p2),
jnp.sort(ev_Hp),
atol=10 * eps * jnp.linalg.norm(ev_Hp))
np.testing.assert_allclose(ev_exp[:k1], ev_Hm,
atol=10 * eps * jnp.linalg.norm(H1))
np.testing.assert_allclose(ev_exp[k1:], ev_Hp,
atol=10 * eps * jnp.linalg.norm(H2))
@pytest.mark.parametrize("N", Ns)
@pytest.mark.parametrize("p_sz", p_szs)
@pytest.mark.parametrize("precision", precisions)
@pytest.mark.parametrize("seed", seeds)
def test_project_H(N, p_sz, precision, seed):
np.random.seed(seed)
H = np.random.randn(N, N).astype(np.float32)
H = 0.5 * (H + H.conj().T)
ev, eV = np.linalg.eigh(H)
k_target = N // 2
P = np.dot(eV[:, :k_target], eV[:, :k_target].conj().T)
P_bar = np.dot(eV[:, k_target:], eV[:, k_target:].conj().T)
rank_1, dim_1, rank_2, dim_2 = eigh._padded_ranks(N, k_target)
out = eigh._project_H(
pops.distribute(P), pops.distribute(H), rank_1, dim_1, rank_2, dim_2, None,
p_sz, precision)
H1, Vk1, info1, H2, Vk2, info2 = out
Vk1 = pops.undistribute(Vk1)
Vk2 = pops.undistribute(Vk2)
ev1 = np.linalg.eigvalsh(pops.undistribute(H1))
ev2 = np.linalg.eigvalsh(pops.undistribute(H2))
eps = testutils.eps(precision)
P_recon = np.dot(Vk1, Vk1.conj().T)
Pbar_recon = np.dot(Vk2, Vk2.conj().T)
Pscale = 10 * eps * jnp.linalg.norm(P)
Hscale = 10 * eps * jnp.linalg.norm(H)
np.testing.assert_allclose(P_recon, P, atol=Pscale)
np.testing.assert_allclose(Pbar_recon, P_bar, atol=Pscale)
angle_1 = _subspace_angle(eV[:, :k_target], Vk1)
angle_2 = _subspace_angle(eV[:, k_target:], Vk2)
assert angle_1 < 1E-3
assert angle_2 < 1E-3
np.testing.assert_allclose(ev1, ev[:k_target], atol=Hscale)
np.testing.assert_allclose(ev2, ev[k_target:], atol=Hscale)
@pytest.mark.parametrize("N", Ns)
@pytest.mark.parametrize("p_sz", p_szs)
@pytest.mark.parametrize("precision", precisions)
@pytest.mark.parametrize("seed", seeds)
@pytest.mark.parametrize("canonical", bools)
@pytest.mark.parametrize("padding", padding)
@pytest.mark.parametrize("minimum_rank", minimum_ranks)
@pytest.mark.parametrize("dtype", [np.float32, ])
def test_eigh_full(
N, p_sz, precision, seed, canonical, padding, minimum_rank, dtype):
""" Tests that the results of eigh satisfy the eigenvalue equation.
"""
if padding is not None:
unpadded_dim = N - padding
else:
unpadded_dim = N
np.random.seed(seed)
H = np.random.randn(N, N).astype(dtype)
H[unpadded_dim:, :] = 0.
H[:, unpadded_dim:] = 0.
H = jnp.array(0.5 * (H + H.conj().T))
ev_exp, eV_exp = jnp.linalg.eigh(H)
Hp = pops.distribute(H)
evs, V = eigh.eigh(
Hp, p_sz=p_sz, precision=precision, canonical=canonical,
unpadded_dim=unpadded_dim, minimum_rank=minimum_rank)
V = pops.undistribute(V)
testutils.test_unitarity(
V[:unpadded_dim, :unpadded_dim], eps_coef=jnp.linalg.norm(H) * 10)
HV = jnp.dot(H, V, precision=lax.Precision.HIGHEST)
vV = evs * V
angle = _subspace_angle(eV_exp, V)
assert angle < 1E-3
eps = testutils.eps(precision)
atol = jnp.linalg.norm(H) * 10 * eps
np.testing.assert_allclose(ev_exp, jnp.sort(evs), atol=10 * atol)
np.testing.assert_allclose(HV, vV, atol=10 * atol)
# TODO: Support padding in SVD.
@pytest.mark.parametrize("N", Ns)
@pytest.mark.parametrize("m_factor", m_factors)
@pytest.mark.parametrize("p_sz", p_szs)
@pytest.mark.parametrize("precision", precisions)
@pytest.mark.parametrize("seed", seeds)
@pytest.mark.parametrize("canonical", bools)
@pytest.mark.parametrize("minimum_rank", minimum_ranks)
def test_svd(N, m_factor, p_sz, precision, seed, canonical,
minimum_rank):
"""
Tests that svd produces a valid SVD.
"""
np.random.seed(seed)
matrix = np.random.randn(N * m_factor, N).astype(np.float32)
Unp, S_svd, Vnp = np.linalg.svd(matrix)
Vnp = Vnp.conj().T
eps = 100 * testutils.eps(precision, dtype=matrix.dtype)
U, S, V = eigh.svd(
pops.distribute(matrix), p_sz=p_sz, precision=precision,
canonical=canonical, minimum_rank=minimum_rank)
U = pops.undistribute(U)
V = pops.undistribute(V)
angle_U = _subspace_angle(U, Unp)
angle_V = _subspace_angle(V, Vnp)
assert angle_U < 1E-3 # Note: I pulled this number out of a hat.
assert angle_V < 1E-3
# The singular values agree with the numpy results.
S_sorted = np.sort(S)[::-1]
np.testing.assert_allclose(
S_svd, S_sorted, atol=eps * np.sum(np.abs(S_sorted)))
# Vectors are unitary.
testutils.test_unitarity(U, eps_coef=10 * jnp.linalg.norm(U)**2)
testutils.test_unitarity(V, eps_coef=10 * jnp.linalg.norm(V)**2)
# U @ S @ V^H recovers the result.
recon = np.dot((U * S), V.conj().T)
np.testing.assert_allclose(
matrix, recon, atol=2 * eps * jnp.linalg.norm(matrix))
def _initialize_finalize(N, p_sz):
"""
Initializes dummy results from eigh._eigh_list for eigh.finalize to act upon.
"""
k_counter = 0
klist = []
while k_counter < (N - p_sz):
k = random.randrange(p_sz) + 1
k_counter += k
klist.append(k)
klist.append(N - k_counter)
Hlist = []
Vlist = []
evs = []
eVs = np.zeros((N, N), dtype=np.float32)
k_counter = 0
for i, k in enumerate(klist):
H = np.random.randn(k, k).astype(np.float32)
H = 0.5 * (H + H.conj().T)
evs_i, eVs_i = np.linalg.eigh(H)
evs.extend(evs_i)
Hbig = np.zeros((p_sz, p_sz), dtype=np.float32)
Hbig[:k, :k] = H
Hbig = pops.distribute(Hbig)
V = np.random.randn(N, k).astype(np.float32)
V, _ = np.linalg.qr(V, mode="reduced")
eVs_i = np.dot(V, eVs_i)
eVs[:, k_counter:k_counter + k] = eVs_i
k_counter += k
Vbig = np.zeros((N, p_sz), dtype=np.float32)
Vbig[:N, :k] = V
Vbig = pops.distribute(Vbig)
Hlist.append(Hbig)
Vlist.append(Vbig)
return Hlist, Vlist, klist, evs, eVs
@pytest.mark.parametrize("N", Ns)
@pytest.mark.parametrize("p_sz", p_szs)
@pytest.mark.parametrize("precision", precisions)
def test_finalize(N, p_sz, precision):
"""
Tests eigh.finalize (which converts the output from eigh._eigh_list into the
final eigh results).
"""
largest_dimension = max(pops.NROWS, pops.NCOLS)
if p_sz % largest_dimension != 0:
p_sz += misc.distance_to_next_divisor(p_sz, largest_dimension)
Hlist, Vlist, klist, evs, Vs = _initialize_finalize(N, p_sz)
evs_out, Vs_out = eigh._finalize(Hlist, Vlist, klist, N, precision)
evs_out = np.array(evs_out)
Vs_out = pops.undistribute(Vs_out)
eps = testutils.eps(precision)
atol = 10 * N * eps
np.testing.assert_allclose(evs, evs_out, atol=atol)
np.testing.assert_allclose(np.abs(Vs), np.abs(Vs_out), atol=atol)
@pytest.mark.parametrize("N", Ns)
@pytest.mark.parametrize("p_sz", p_szs)
@pytest.mark.parametrize("precision", precisions)
@pytest.mark.parametrize("seed", seeds)
@pytest.mark.parametrize("canonical", bools)
@pytest.mark.parametrize("dtype", [np.float32, ])
@pytest.mark.parametrize("padding", padding)
@pytest.mark.parametrize("minimum_rank", minimum_ranks)
def test_matrix_function(
N, p_sz, precision, seed, canonical, dtype, padding, minimum_rank
):
""" Tests that matrix_function properly compules a * A ** 2.
"""
a = 3.0
np.random.seed(seed)
if padding is None:
unpadded_dim = N
else:
unpadded_dim = N - padding
H = | np.random.randn(N, N) | numpy.random.randn |
import numpy as np
import high_dimensional_sampling.functions as func
import pytest
def test_testfunction_rastrigin():
function = func.Rastrigin()
minima = [[0, 0]]
value_minima = 0
# Validate the default configuration
assert function.get_dimensionality() == 2
assert function.a == 10
# Validate function properties
assert function.is_bounded() is True
assert function.is_differentiable() is True
# Validate minima
y = function(np.array(minima))
assert np.sum(1.0*(np.around(y, 8) == value_minima)) == len(y)
# Validate that these minima are indeed minima
x = np.random.rand(10000, function.get_dimensionality())
x *= function.ranges[:, 1] - function.ranges[:, 0]
x += function.ranges[:, 0]
y = function(x)
assert np.sum(1.0*(np.around(y, 8) == value_minima)) <= len(y)
# Validate output shape
assert y.shape == (10000, 1)
assert function(x, True).shape == (10000, function.get_dimensionality())
def test_testfunction_rosenbrock():
function = func.Rosenbrock()
minima = [[1]*function.get_dimensionality()]
value_minima = 0
# Validate the default configuration
assert function.get_dimensionality() == 2
# Validate function properties
assert function.is_bounded() is False
assert function.is_differentiable() is False
# Validate minima
y = function(np.array(minima))
assert np.sum(1.0*(np.around(y, 8) == value_minima)) == len(y)
# Validate error is raised when dimensionality < 2
with pytest.raises(Exception):
function = func.Rosenbrock(dimensionality=1)
# Validate that these minima are indeed minima
x = np.random.rand(10000, function.get_dimensionality())
y = function(x)
assert np.sum(1.0*(np.around(y, 8) == value_minima)) <= len(y)
# Validate output shape
assert y.shape == (10000, 1)
with pytest.raises(func.NoDerivativeError):
function(x, True)
def test_testfunction_beale():
function = func.Beale()
minima = [[3.0, 0.5]]
value_minima = 0
# Validate the default configuration
assert function.get_dimensionality() == 2
# Validate function properties
assert function.is_bounded() is True
assert function.is_differentiable() is False
# Validate minima
y = function(np.array(minima))
assert np.sum(1.0*(np.around(y, 8) == value_minima)) == len(y)
# Validate that these minima are indeed minima
x = np.random.rand(10000, function.get_dimensionality())
x *= function.ranges[:, 1] - function.ranges[:, 0]
x += function.ranges[:, 0]
y = function(x)
assert np.sum(1.0*( | np.around(y, 8) | numpy.around |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(196, 'F 2 3', transformations)
space_groups[196] = sg
space_groups['F 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(197, 'I 2 3', transformations)
space_groups[197] = sg
space_groups['I 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(198, 'P 21 3', transformations)
space_groups[198] = sg
space_groups['P 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(199, 'I 21 3', transformations)
space_groups[199] = sg
space_groups['I 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(200, 'P m -3', transformations)
space_groups[200] = sg
space_groups['P m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(201, 'P n -3 :2', transformations)
space_groups[201] = sg
space_groups['P n -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = | N.array([0,1,0,0,0,1,1,0,0]) | numpy.array |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import re
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
import resnet18_input
FLAGS = tf.app.flags.FLAGS
# Basic model parameters.
tf.app.flags.DEFINE_integer('batch_size', 128,"""Number of images to process in a batch.""")
tf.app.flags.DEFINE_string('data_dir_train', '/home/oran/ILSVRC2012/ILSVRC2012_img_train/',"""Path to the ILSVRC2012 data directory.""")
tf.app.flags.DEFINE_string('data_dir_eval', '/home/oran/ILSVRC2012/ILSVRC2012_img_val/',"""Path to the ILSVRC2012 data directory.""")
tf.app.flags.DEFINE_string('weights_dir', '/home/oran/workdir/resnet/full_precision/weights/',"""Path to the Pre-trained weights.""")
tf.app.flags.DEFINE_boolean('use_fp16', False,"""Train the model using fp16.""")
tf.app.flags.DEFINE_float('wd', 1e-12,"""Number of images to process in a batch.""")
tf.app.flags.DEFINE_float('wd_weights', 0.00001,"""Number of images to process in a batch.""")
tf.app.flags.DEFINE_float('dropout', 1.0,"""Dropout rate.""")
tf.app.flags.DEFINE_boolean('projection', True,"""Projection layer or zero padding.""")
tf.app.flags.DEFINE_boolean('use_pretrained', False,"""Whether to use the pre-trained weights or not.""")
tf.app.flags.DEFINE_boolean('hot_start', True,"""Whether this is a new run or not.""")
tf.app.flags.DEFINE_string('hot_start_dir', '/home/oran/logdir/resnet18_3/weights',"")
tf.app.flags.DEFINE_float('learning_rate', 0.01,"""Whether this is a new run or not.""")
tf.app.flags.DEFINE_float('lr_decay_epochs', 30,"""Whether this is a new run or not.""")
# Global constants describing the CIFAR-10 data set.
IMAGE_SIZE = resnet18_input.IMAGE_SIZE
NUM_CLASSES = resnet18_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = resnet18_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = resnet18_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
delta = 0.15
# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor.
# If a model is trained with multiple GPUs, prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
TOWER_NAME = 'tower'
def draw_ternary_weight(a, b):
var = (2*(np.random.binomial(1,p=a/(a+b)) - 0.5))*np.random.binomial(1,p=a+b)
return var
def init_probs(prob):
init_val = np.array(prob, dtype=np.float32)
init_val[init_val<1e-4] = 1e-4
init_val[init_val>0.9999] = 0.9999
init_val = np.log(init_val/(1-init_val))
return init_val
def init_values_hs(W):
W = np.array(W)
c_init = 0.55*np.float32(W==0)+0.15 # Was 0.7 , 0.1
a_nz_init = np.float32(W==1) + 0.5*np.float32(W==0)
c_init = init_probs(c_init)
a_nz_init = init_probs(a_nz_init)
return c_init, a_nz_init
def init_values_hs_ver2(W):
W = np.array(W)
W[W>1] = 1
W[W<-1] = -1
c_init = 0.95 - 0.9*np.abs(W)
a_nz_init = 0.5*(1+W/(1-c_init))
a_nz_init[a_nz_init>0.95] = 0.95
a_nz_init[a_nz_init<0.05] = 0.05
# a_nz_init = np.float32(W>=0.33) + 0.5*((W<0.33) & (W>-0.33))
c_init = init_probs(c_init)
a_nz_init = init_probs(a_nz_init)
return c_init, a_nz_init
def initializer(scope, shape, prob):
if FLAGS.hot_start:
c_init, a_nz_init = init_values_hs_ver2(np.load(FLAGS.hot_start_dir+'/W_'+scope.name.replace('/','_')+'.npy'))
else:
c_init = init_probs(np.random.uniform(0.45, 0.55, shape))
a_nz_init = init_probs(np.random.binomial(1,p=0.5*np.ones(shape)))
if prob=='c':
return c_init
else:
return a_nz_init
def reparametrization(prev_layer, shape, scope, kernel, stride, conv=True, train=True, relu=True):
c_ = tf.get_variable('c', initializer=initializer(scope, shape, 'c'), dtype=tf.float32)
a_nz_ = tf.get_variable('a_nz', initializer=initializer(scope, shape, 'a_nz'), dtype=tf.float32)
wd_c_ = tf.multiply(tf.nn.l2_loss(c_), FLAGS.wd, name='weight_loss_c')
tf.add_to_collection('losses', wd_c_)
wd_a_nz_ = tf.multiply(tf.nn.l2_loss(a_nz_), FLAGS.wd, name='weight_loss_a_nz')
tf.add_to_collection('losses', wd_a_nz_)
c = tf.nn.sigmoid(c_)
a_nz = tf.nn.sigmoid(a_nz_)
a = a_nz*(1-c)
b = (1-a_nz)*(1-c)
if train:
mu = a - b
var = a + b - tf.square(mu)
normal_dist = tf.contrib.distributions.Normal(loc=0., scale=1.)
if conv:
mu_bar = tf.nn.conv2d(prev_layer, mu, [1, stride, stride, 1], padding='SAME')
sigma_bar = tf.sqrt(tf.nn.conv2d(tf.square(prev_layer), var, [1, stride, stride, 1], padding='SAME')+0.001)
# n = shape[0]*shape[1]*shape[2]
else:
mu_bar = tf.matmul(prev_layer, mu)
sigma_bar = tf.sqrt(tf.matmul(tf.square(prev_layer), var)+0.001)
# n = shape[0]
# res = normal_dist.sample(tf.shape(mu_bar))*sigma_bar/np.sqrt(n) + mu_bar
res = normal_dist.sample(tf.shape(mu_bar))*sigma_bar + mu_bar
tf.summary.histogram('a',a)
tf.summary.histogram('b',b)
tf.summary.histogram('c',c)
else:
if conv:
res = tf.nn.conv2d(prev_layer, kernel, [1, stride, stride, 1], padding='SAME')
else:
res = tf.matmul(prev_layer, kernel)
res_normed = tf.contrib.layers.batch_norm(res, center=True, scale=True, is_training=train, scope=scope)
if relu: output = tf.nn.relu(res_normed)
else: output = res_normed
return output
def get_probs():
c_ = tf.get_variable('c')
a_nz_ = tf.get_variable('a_nz')
c = tf.nn.sigmoid(c_)
a_nz = tf.nn.sigmoid(a_nz_)
a = a_nz*(1-c)
b = (1-a_nz)*(1-c)
return a, b
def conv_relu(scope, layer_name, prev_layer, conv_shape, stride, train):
kernel = _variable_with_weight_decay('weights', shape=conv_shape, wd=FLAGS.wd, layer_name=layer_name)
conv = tf.nn.conv2d(prev_layer, kernel, [1, stride, stride, 1], padding='SAME')
conv_normed = tf.contrib.layers.batch_norm(conv, center=True, scale=True, is_training=train, scope=scope)
output = tf.nn.relu(conv_normed)
return output
def res_block(scope, prev_layer, conv_shapes, stride, train, W1, W2a, W2b):
# branch2a
with tf.variable_scope('branch2a') as scope_inner:
branch2a = reparametrization(prev_layer, conv_shapes[0], scope_inner, W2a, stride, train=train)
# branch2b
with tf.variable_scope('branch2b') as scope_inner:
branch2b = reparametrization(branch2a, conv_shapes[1], scope_inner, W2b, 1, train=train, relu=False)
# Input projection and output
input_depth = prev_layer.get_shape().as_list()[3]
output_depth = conv_shapes[1][3]
if (input_depth != output_depth) & (FLAGS.projection==True):
with tf.variable_scope('branch1') as scope_inner:
branch1 = reparametrization(prev_layer, [1, 1, input_depth, output_depth], scope_inner, W1, stride, train=train, relu=False)
elif (input_depth != output_depth) & (FLAGS.projection==False):
with tf.variable_scope('branch1') as scope_inner:
prev_layer = tf.nn.max_pool(prev_layer, ksize=[1, 1, 1, 1], strides=[1, stride, stride, 1], padding='SAME')
branch1 = tf.pad(prev_layer, [[0,0], [0,0], [0,0], [0, output_depth - input_depth]])
else:
branch1 = prev_layer
output = tf.nn.relu(tf.add(branch2b, branch1))
return output
def _activation_summary(x):
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.summary.histogram(tensor_name + '/activations', x)
tf.summary.scalar(tensor_name + '/sparsity',
tf.nn.zero_fraction(x))
def _variable_on_cpu(name, shape, initializer, layer_name):
with tf.device('/cpu:0'):
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
if (FLAGS.use_pretrained) & (layer_name != 'new'):
init = np.load(FLAGS.weights_dir+layer_name+'.npy')
var = tf.get_variable(name, initializer=init, dtype=dtype)
else:
init = initializer
var = tf.get_variable(name, shape, initializer=init, dtype=dtype)
return var
def _variable_with_weight_decay(name, shape, wd, layer_name):
var = _variable_on_cpu(
name,
shape,
tf.contrib.layers.xavier_initializer(uniform=False),
layer_name)
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def distorted_inputs():
if not FLAGS.data_dir_train:
raise ValueError('Please supply a data_dir')
images, labels = resnet18_input.distorted_inputs(data_dir=FLAGS.data_dir_train,
batch_size=FLAGS.batch_size)
if FLAGS.use_fp16:
images = tf.cast(images, tf.float16)
labels = tf.cast(labels, tf.float16)
return images, labels
def inputs(eval_data):
if not FLAGS.data_dir_eval:
raise ValueError('Please supply a data_dir')
if eval_data: data_dir = FLAGS.data_dir_eval
else: data_dir = FLAGS.data_dir_train
images, labels = resnet18_input.inputs(eval_data=eval_data,
data_dir=data_dir,
batch_size=FLAGS.batch_size)
if FLAGS.use_fp16:
images = tf.cast(images, tf.float16)
labels = tf.cast(labels, tf.float16)
return images, labels
def inference(images, W1, W2_1_b2a, W2_1_b2b, W2_2_b2a, W2_2_b2b,
W3_1_b1, W3_1_b2a, W3_1_b2b, W3_2_b2a, W3_2_b2b,
W4_1_b1, W4_1_b2a, W4_1_b2b, W4_2_b2a, W4_2_b2b,
W5_1_b1, W5_1_b2a, W5_1_b2b, W5_2_b2a, W5_2_b2b, train=False):
tf.summary.image('images', images, max_outputs=1)
## conv1
with tf.variable_scope('conv1') as scope:
conv1 = reparametrization(images, [7, 7, 3, 64], scope, W1, 2, train=train)
_activation_summary(conv1)
# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1')
## conv2
# conv2_1
with tf.variable_scope('conv2_1') as scope:
conv2_1 = res_block(scope, pool1, [[3,3,64,64],[3,3,64,64]], 1, train, None, W2_1_b2a, W2_1_b2b)
_activation_summary(conv2_1)
# conv2_2
with tf.variable_scope('conv2_2') as scope:
conv2_2 = res_block(scope, conv2_1, [[3,3,64,64],[3,3,64,64]], 1, train, None, W2_2_b2a, W2_2_b2b)
_activation_summary(conv2_2)
## conv3
# conv3_1
with tf.variable_scope('conv3_1') as scope:
conv3_1 = res_block(scope, conv2_2, [[3,3,64,128],[3,3,128,128]], 2, train, W3_1_b1, W3_1_b2a, W3_1_b2b)
_activation_summary(conv3_1)
# conv3_2
with tf.variable_scope('conv3_2') as scope:
conv3_2 = res_block(scope, conv3_1, [[3,3,128,128],[3,3,128,128]], 1, train, None, W3_2_b2a, W3_2_b2b)
_activation_summary(conv3_2)
## conv4
# conv4_1
with tf.variable_scope('conv4_1') as scope:
conv4_1 = res_block(scope, conv3_2, [[3,3,128,256],[3,3,256,256]], 2, train, W4_1_b1, W4_1_b2a, W4_1_b2b)
_activation_summary(conv4_1)
# conv4_2
with tf.variable_scope('conv4_2') as scope:
conv4_2 = res_block(scope, conv4_1, [[3,3,256,256],[3,3,256,256]], 1, train, None, W4_2_b2a, W4_2_b2b)
_activation_summary(conv4_2)
##conv5
# conv5_1
with tf.variable_scope('conv5_1') as scope:
conv5_1 = res_block(scope, conv4_2, [[3,3,256,512],[3,3,512,512]], 2, train, W5_1_b1, W5_1_b2a, W5_1_b2b)
_activation_summary(conv5_1)
# conv5_2
with tf.variable_scope('conv5_2') as scope:
conv5_2 = res_block(scope, conv5_1, [[3,3,512,512],[3,3,512,512]], 1, train, None, W5_2_b2a, W5_2_b2b)
_activation_summary(conv5_2)
# pool5
pool5 = tf.nn.avg_pool(conv5_2, ksize=[1, 7, 7, 1], strides=[1, 7, 7, 1], padding='SAME', name='pool5')
# linear layer(WX + b),
with tf.variable_scope('softmax_linear') as scope:
pool5 = tf.reshape(pool5, [FLAGS.batch_size, -1])
weights = _variable_with_weight_decay('weights', [512, NUM_CLASSES], wd=FLAGS.wd_weights, layer_name=scope.name+'_w')
biases = _variable_on_cpu('biases', [NUM_CLASSES], tf.constant_initializer(0.0), layer_name=scope.name+'_b')
softmax_linear = tf.add(tf.matmul(pool5, weights), biases, name=scope.name)
_activation_summary(softmax_linear)
return softmax_linear
def loss(logits, labels):
# Calculate the average cross entropy loss across the batch.
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
# The total loss is defined as the cross entropy loss plus all of the weight
# decay terms (L2 loss).
return tf.add_n(tf.get_collection('losses'), name='total_loss')
def _add_loss_summaries(total_loss):
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.summary.scalar(l.op.name + ' (raw)', l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
return loss_averages_op
def draw_weights(sess):
with tf.variable_scope('conv1', reuse=True):
a, b = get_probs()
a_, b_ = sess.run([a, b])
W = draw_ternary_weight(a_, b_)
np.save(FLAGS.train_dir+'/weights/W_conv1.npy',W)
with tf.variable_scope('conv2_1', reuse=True) as scope:
with tf.variable_scope('branch2a', reuse=True):
a, b = get_probs()
a_, b_ = sess.run([a, b])
W = draw_ternary_weight(a_, b_)
| np.save(FLAGS.train_dir+'/weights/W_'+scope.name+'_branch2a.npy',W) | numpy.save |
"""
Code for figure 2A.
Visualize a 3 block SBM with
fixed background fields.
<NAME>, Dec 2019.
"""
import numpy as np
import networkx as nx
import random
import matplotlib.pyplot as plt
import three_block_sbm_class as ThreeBlock
def plot_three_block(sbm_graph,three_block,fname="three_block_plot",color_on='background_field',label=None) :
N1 = N2 = N3 = 400
pos_block_1 = [ [ np.random.uniform(0,1) , np.random.uniform(0,1.0)] for k in range(N1)]
pos_block_2 = [ [ np.random.uniform(1.5,3.0) , np.random.uniform(0,1.0)] for k in range(N2)]
pos_block_3 = [ [ | np.random.uniform(4.0,5.0) | numpy.random.uniform |
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 2 12:09:14 2021
@author: vohuynhq
"""
import numpy as np
import pandas as pd
from sympy import symbols, init_printing, pi, sqrt, diff, sin, cos, exp
def example(A):
A_true = np.array([[3, 4, 5], [3, 4, 5]])
np.testing.assert_equal(A, A_true)
return None
def derivative(eval_1,eval_2,eval_3,eval_4,*args):
init_printing(use_unicode= True)
x = symbols('x')
f_1 = x **(3/2) + pi * x ** 2 + sqrt(2)
diff_1 = diff(f_1,x)
eval_1_true = diff_1.subs(x,2)
f_2 = sin(x)*exp(cos(x))
diff_2 = diff(f_2,x)
eval_2_true= diff_2.subs(x,pi)
f_3 = exp((x + 1) ** 2)
diff_3 = diff(f_3,x)
eval_3_true = diff_3.subs(x,1)
f_4 = x ** 2 * (cos(x) ** 3)
diff_4 = diff(f_4,x)
eval_4_true = diff_4.subs(x,pi)
assert eval_1 == eval_1_true, "Wrong answer!"
assert eval_2 == eval_2_true, "Wrong answer!"
assert eval_3 == eval_3_true, "Wrong answer!"
assert eval_4 == eval_4_true, "Wrong answer!"
return None
def jacobians_hessians(eval_1,eval_2,eval_3,eval_4):
init_printing(use_unicode= True)
x, y, z = symbols('x y z')
f_1 = x ** 2 * cos(y) + exp(z)*sin(y)
J_1 = [diff(f_1,x), diff(f_1,y), diff(f_1,z)]
eval_1_true = [J_1[0].subs([(x,pi), (y,pi),(z,1)]),
J_1[1].subs([(x,pi), (y,pi),(z,1)]),
J_1[2].subs([(x,pi), (y,pi),(z,1)])]
u = x ** 2 *y - cos(x) * sin(y)
v = exp(x + y)
J_u = [diff(u,x), diff(u,y)]
J_v = [diff(v,x), diff(v,y)]
eval_u = [J_u[0].subs([(x,0),(y,pi)]),
J_u[1].subs([(x,0),(y,pi)])]
eval_v = [J_v[0].subs([(x,0),(y,pi)]),
J_v[1].subs([(x,0),(y,pi)])]
eval_2_true = [eval_u,eval_v]
f_3 = x ** 3 * cos(y) - x * sin(y)
H_3 = [[diff(diff(f_3,x),x), diff(diff(f_3,x),y)],
[diff(diff(f_3,y),x), diff(diff(f_3,y),y)]]
eval_3_true = [[H_3[0][0].subs([(x,pi), (y,pi)]), H_3[0][1].subs([(x,pi),(y,pi)])],
[H_3[1][0].subs([(x,pi), (y,pi)]), H_3[1][1].subs([(x,pi),(y,pi)])]]
f_4 = x * y * cos(z) - sin(x) * exp(y) * z**3
H_4 = [[diff(diff(f_4,x),x), diff(diff(f_4,x),y), diff(diff(f_4,x),z)],
[diff(diff(f_4,y),x), diff(diff(f_4,y),y), diff(diff(f_4,y),z)],
[diff(diff(f_4,z),x), diff(diff(f_4,z),y), diff(diff(f_4,z),z)]]
eval_4_true = [
[H_4[0][0].subs([(x,pi),(y,pi),(z,pi)]), H_4[0][1].subs([(x,pi),(y,pi),(z,pi)]), H_4[0][2].subs([(x,pi),(y,pi),(z,pi)])],
[H_4[1][0].subs([(x,pi),(y,pi),(z,pi)]), H_4[1][1].subs([(x,pi),(y,pi),(z,pi)]), H_4[1][2].subs([(x,pi),(y,pi),(z,pi)])],
[H_4[2][0].subs([(x,pi),(y,pi),(z,pi)]), H_4[2][1].subs([(x,pi),(y,pi),(z,pi)]), H_4[2][2].subs([(x,pi),(y,pi),(z,pi)])]
]
assert set(eval_1) == set(eval_1_true), 'Wrong answer!'
assert set(eval_2) == set(eval_2_true), 'Wrong answer!'
assert set(eval_3) == set(eval_3_true), 'Wrong answer!'
assert set(eval_4) == set(eval_4_true), 'Wrong answer!'
return None
def question1(m,b,X,y,*args):
##
# Load dataset:
#
data = pd.read_csv("./dataset/Xy_dataset.csv")
X = np.array(data['X'])
y = np.array(data['y'])
X = X.reshape(X.shape[0],1)
y = y.reshape(y.shape[0],1)
##
# Step 1: Initialize m and b:
#
m_true = 0
b_true = 0
for i in range(50):
##
# Step 2: Find y_pred = mx + b:
#
y_pred = m*X + b
##
# Step 3: Update m and b using the Gradient Descent algorithm:
#
dm = np.mean((y_pred - y) * X)
db = np.mean(y_pred - y)
m_true = m_true - 0.1*dm
b_true = b_true - 0.1*db
np.testing.assert_equal(m,m_true)
np.testing.assert_equal(b,b_true)
return None
def question2(m,b,X,y,*args):
##
# Step 1: Initialize m and b:
#
m_true = 0
b_true = 0
for i in range(50):
##
# Step 2: Find y_pred = mx + b:
#
y_pred = m*X + b
##
# Step 3: Update m and b using the Gradient Descent algorithm:
#
dm = np.mean((y_pred - y) * X)
db = np.mean(y_pred - y)
m_true = m_true - 0.1*dm
b_true = b_true - 0.1*db
np.testing.assert_equal(m,m_true)
np.testing.assert_equal(b,b_true)
return None
def question3(m,b,X,y,*args):
##
# Step 1: Initialize m and b:
#
m_true = 0
b_true = 0
for i in range(50):
##
# Step 2: Find y_pred = mx + b:
#
y_pred = m*X + b
##
# Step 3: Update m and b using the Gradient Descent algorithm:
#
dm = np.mean((y_pred - y) * X)
db = np.mean(y_pred - y)
m_true = m_true - 0.2*dm
b_true = b_true - 0.2*db
np.testing.assert_equal(m,m_true)
np.testing.assert_equal(b,b_true)
return None
def question4(m,b,X,y,*args):
##
# Step 1: Initialize m and b:
#
m_true = 0
b_true = 0
for i in range(100):
##
# Step 2: Find y_pred = mx + b:
#
y_pred = m*X + b
##
# Step 3: Update m and b using the Gradient Descent algorithm:
#
dm = np.mean((y_pred - y) * X)
db = np.mean(y_pred - y)
m_true = m_true - 0.1*dm
b_true = b_true - 0.1*db
np.testing.assert_equal(m,m_true)
| np.testing.assert_equal(b,b_true) | numpy.testing.assert_equal |
from abc import abstractmethod
from collections import OrderedDict
import os
import pickle
import re
from typing import Tuple, Union
import pandas as pd
import numpy as np
import gym
from gridworld.log import logger
from gridworld import ComponentEnv
from gridworld.utils import to_scaled, to_raw, maybe_rescale_box_space
from gridworld.agents.buildings.obs_space import make_obs_space
from gridworld.agents.buildings import defaults
from gridworld.agents.buildings import five_zone_rom_dynamics as dyn
# Below are control variables' boundary.
MAX_FLOW_RATE = [2.2, 2.2, 2.2, 2.2, 3.2] # Max flow rate for each individual zone
MIN_FLOW_RATE = [.22, .22, .22, .22, .32] # Max flow rate for each individual zone
MAX_TOTAL_FLOW_RATE = 10.0 # Total flow rate for all zones should be lower than 10 kg/sec.
MAX_DISCHARGE_TEMP = 16.0 # Max temp of air leaving chiller
MIN_DISCHARGE_TEMP = 10.0 # Min temp of air leaving chiller
DEFAULT_COMFORT_BOUNDS = (22., 28.) # Temps between these values are considered "comfortable"
def load_data(start_time: str = None, end_time: str = None) -> Tuple[pd.DataFrame, dict]:
"""Returns exogenous data dataframe, and state space model (per-zone) dict."""
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
df = pd.read_csv(os.path.join(THIS_DIR, "data/exogenous_data.csv"), index_col=0)
df.index = pd.DatetimeIndex(df.index)
start_time = pd.Timestamp(start_time) if start_time else df.index[0]
end_time = pd.Timestamp(end_time) if end_time else df.index[-1]
_df = df.loc[start_time:end_time]
if _df is None or len(_df) == 0:
raise ValueError(
f"start and/or end times ({start_time}, {end_time}) " +
"resulted in empty dataframe. First and last indices are " +
f"({df.index[0]}, {df.index[-1]}), choose values in this range.")
with open(os.path.join(THIS_DIR, "data/state_space_model.p"), "rb") as f:
models = pickle.load(f)
return _df, models
def get_col(df, pattern, index=None):
"""Returns a dataframe with columns matching regex pattern."""
return df[[c for c in df.columns if re.match(pattern, c)]].values
class FiveZoneROMEnv(ComponentEnv):
time: pd.Timestamp = None
time_index: int = None
raw_action: np.ndarray = None
state: OrderedDict = None
def __init__(
self,
name: str = None,
obs_config: dict = None,
start_time: Union[str, pd.Timestamp] = None,
end_time: Union[str, pd.Timestamp] = None,
comfort_bounds: Union[tuple, np.ndarray, pd.DataFrame] = None,
zone_temp_init: np.ndarray = None,
max_episode_steps: int = None,
rescale_spaces: bool = True,
**kwargs
):
super().__init__(name=name)
self.rescale_spaces = rescale_spaces
self.num_zones = 5
self.obs_config = obs_config if obs_config is not None else defaults.obs_config
# Set the initial zone temperature profile.
if zone_temp_init is not None:
self.zone_temp_init = zone_temp_init.copy()
else:
self.zone_temp_init = 27. * np.ones(self.num_zones, dtype=np.float64)
# Load exogenous and model data.
self.df, self.models = load_data(start_time, end_time)
# Configure max episode steps.
max_steps = self.df.shape[0] - 3 # due to filter update
if max_episode_steps is None:
self.max_episode_steps = max_steps
else:
self.max_episode_steps = min(max_episode_steps, max_steps)
# The default range on comfort bounds are (lowest of low, highest of high)
self.comfort_bounds = comfort_bounds if comfort_bounds is not None \
else DEFAULT_COMFORT_BOUNDS
# Action space: [zone_flows] + [discharge temp]
self.act_low = np.array(MIN_FLOW_RATE + [MIN_DISCHARGE_TEMP])
self.act_high = np.array(MAX_FLOW_RATE + [MAX_DISCHARGE_TEMP])
self._action_space = gym.spaces.Box(
low=self.act_low,
high=self.act_high,
dtype=np.float64
)
self.action_space = maybe_rescale_box_space(
self._action_space, rescale=self.rescale_spaces)
# State space is configured via obs_config.
self.comfort_bounds_df = self.make_comfort_bounds_df()
self._observation_space, self._obs_labels = make_obs_space(
self.num_zones, self.obs_config)
self.observation_space = maybe_rescale_box_space(
self._observation_space, rescale=self.rescale_spaces)
def make_comfort_bounds_df(self) -> pd.DataFrame:
"""Returns a dataframe containing upper and lower comfort bounds on the
zone temperatures."""
data = np.zeros((self.df.shape[0], 2))
if isinstance(self.comfort_bounds, tuple):
data[:, 0], data[:, 1] = self.comfort_bounds[0], self.comfort_bounds[1]
else:
data[:, 0] = self.comfort_bounds[:data.shape[0], 0]
data[:, 1] = self.comfort_bounds[:data.shape[0], 1]
return pd.DataFrame(data, columns=["temp_lb", "temp_ub"], index=self.df.index)
def _set_exogenous(self):
self.temp_oa = get_col(self.df, "T_oa")[self.time_index][0]
self.q_solar = get_col(self.df, "Q_solar")[self.time_index]
self.q_cool = get_col(self.df, "Q_cool_", )[self.time_index, :]
self.q_int = get_col(self.df, "Q_int")[self.time_index]
def reset(self, **obs_kwargs) -> np.ndarray:
"""Resets the environment to the initial state and returns this state."""
self.time_index = 0
self.time = self.df.index[self.time_index]
self.state = None
# Set initial state values and exogenous data.
self.zone_temp = self.zone_temp_init.copy()
self._set_exogenous()
self.p_consumed = 0.
# Build the u-vector given current state and exogenous data.
self.u = dyn.build_u_vector(
self.models,
zone_temp=self.zone_temp,
action=None,
temp_oa=self.temp_oa,
q_solar=self.q_solar,
q_int=self.q_int,
q_cool=self.q_cool
)
# Filter update x2.
for _ in range(2):
self.models = dyn.filter_update(
self.models, self.zone_temp, self.u)
# Update the zone temperatures based on the filter update.
self.zone_temp = dyn.temp_dynamics(self.models)
obs, _ = self.get_obs(**obs_kwargs)
return obs
def step(self, action: np.ndarray, **obs_kwargs) -> Tuple[np.ndarray, float, bool, dict]:
if self.rescale_spaces:
action = to_raw(action, self._action_space.low, self._action_space.high)
return self.step_(action, **obs_kwargs)
def step_(
self,
action: np.ndarray,
**obs_kwargs
) -> Tuple[np.ndarray, float, bool, dict]:
"""Applies the action to the system and takes a time step. Returns
the new state, stage reward, boolean to indicate whether state is terminal,
and dictionary of any desired metadata. In some settings, the p setpoint
will be updated exogenously."""
action = np.array(action).squeeze()
self.raw_action = action
# Advance the dynamics and update the model and state variables.
self.model, self.zone_temp = dyn.dynamics(
self.models,
self.zone_temp,
action,
self.temp_oa,
self.q_solar,
self.q_int
)
self.p_consumed = dyn.get_p_consumed(action, self.temp_oa)
# Get the reward
rew, _ = self.step_reward()
# Step in time and update the exogenous
self.time_index += 1
self.time = self.df.index[self.time_index]
self._set_exogenous()
# Call get_obs before returning so state dict is updated.
obs, state = self.get_obs(**obs_kwargs)
return np.array(obs), rew, self.is_terminal(), state
def get_obs(
self,
**obs_kwargs
) -> Tuple[np.ndarray, dict]:
"""Returns the current state, clipping the values as specified by the
gym observation space box constraints. Calling this method also updates
the state dict attribute for convenience."""
# Call the ROM model to get the new zone temps
# Compute the temperature violation per zone
temp_lb = self.comfort_bounds_df["temp_lb"][self.time].copy()
temp_ub = self.comfort_bounds_df["temp_ub"][self.time].copy()
zone_upper_temp_viol = np.zeros(self.num_zones, dtype=np.float64)
zone_lower_temp_viol = np.zeros(self.num_zones, dtype=np.float64)
for i, temp in enumerate(self.zone_temp):
# zone_temp_viol[i] = max(max(0, temp_lb - temp), max(0, temp - temp_ub))
# Positive violation is true violation while negative violation means margin.
zone_upper_temp_viol[i] = temp - temp_ub
zone_lower_temp_viol[i] = temp_lb - temp
# Add nominal values for bus_voltage and p_setpoint if not provided in kwargs
bus_voltage = obs_kwargs.get("bus_voltage")
p_setpoint = obs_kwargs.get("p_setpoint")
# Create a dict to record all possible state values. We can then filter
# them out using the obs_config when creating the obs array.
# TODO: Automate making sure state keys have same order as DEFAULT_OBS_CONFIG.
self.state = OrderedDict({"zone_temp_{}".format(k): v for k, v in enumerate(self.zone_temp)})
self.state.update({"zone_upper_viol_{}".format(k): v for k, v in enumerate(zone_upper_temp_viol)})
self.state.update({"zone_lower_viol_{}".format(k): v for k, v in enumerate(zone_lower_temp_viol)})
self.state.update({
"comfort_lower": temp_lb, # current comfort lower bound
"comfort_upper": temp_ub, # current comfort upper bound
"outdoor_temp": self.temp_oa, # current outdoor temp
"p_consumed": self.p_consumed, # current p consumed
"time_of_day": 1. * self.time_index / self.max_episode_steps, # time,
"bus_voltage": bus_voltage if bus_voltage is not None else 1.0,
"min_voltage": bus_voltage if bus_voltage is not None else 1.0,
"max_voltage": bus_voltage if bus_voltage is not None else 1.0,
"p_setpoint": p_setpoint if p_setpoint is not None else np.inf
})
self.state.update(obs_kwargs)
# Create the filtered observation array and clip values to low/high
obs = np.array(
[v for k, v in self.state.items() if k in self.obs_labels],
dtype=object # otherwise a warning is raised about ragged seq
).astype(np.float64)
obs = np.clip(obs, self._observation_space.low, self._observation_space.high).squeeze()
if self.rescale_spaces:
obs = to_scaled(obs, self._observation_space.low, self._observation_space.high)
return obs.copy(), self.state.copy()
def step_reward(self) -> Tuple[float, dict]:
"""Default reward is soft constraint on comfort bounds."""
viol_lower = [v for k,v in self.state.items() if k.startswith("zone_upper_viol_")]
viol_upper = [v for k,v in self.state.items() if k.startswith("zone_upper_viol_")]
rew = np.array(viol_lower)**2 + | np.array(viol_upper) | numpy.array |
"""
Varibles and functions used by the "flux" code.
"""
import numpy as np
from datetime import datetime, timedelta
import zfun # path provided by calling code
import pandas as pd
import Lfun
import pickle
from warnings import filterwarnings
filterwarnings('ignore') # skip some warning messages
# associated with lines like QQp[QQ<=0] = np.nan
def get_fluxes(indir, sect_name, in_sign=1):
# form time series of net 2-layer transports into (+) and out of (-) the volume
bulk = pickle.load(open(indir + 'bulk/' + sect_name + '.p', 'rb'))
QQ = bulk['QQ']
SS = bulk['SS']
ot = bulk['ot']
dt2 = []
for tt in ot:
dt2.append(Lfun.modtime_to_datetime(tt))
# separate inflowing and outflowing transports
QQp = QQ.copy()
QQp[QQ<=0] = np.nan
QQm = QQ.copy()
QQm[QQ>=0] = np.nan
# form two-layer versions of Q and S
if in_sign == 1:
Qin = np.nansum(QQp, axis=1)
QSin = np.nansum(QQp*SS, axis=1)
Qout = np.nansum(QQm, axis=1)
QSout = np.nansum(QQm*SS, axis=1)
elif in_sign == -1:
Qin = -np.nansum(QQm, axis=1)
QSin = -np.nansum(QQm*SS, axis=1)
Qout = -np.nansum(QQp, axis=1)
QSout = -np.nansum(QQp*SS, axis=1)
Sin = QSin/Qin
Sout = QSout/Qout
fnet = bulk['fnet_lp'] # net tidal energy flux
qabs = bulk['qabs_lp'] # low pass of absolute value of net transport
tef_df = pd.DataFrame(index=dt2)
tef_df['Qin']=Qin
tef_df['Qout']=Qout
tef_df['QSin']=QSin
tef_df['QSout']=QSout
tef_df['Sin']=Sin
tef_df['Sout']=Sout
tef_df['Ftide'] = fnet * in_sign
tef_df['Qtide'] = qabs
return tef_df
def get_budgets(sv_lp_df, v_lp_df, riv_df, tef_df_dict, seg_list):
# volume budget
vol_df = pd.DataFrame(0, index=sv_lp_df.index, columns=['Qin','-Qout', 'Qtide'])
for sect_name in tef_df_dict.keys():
df = tef_df_dict[sect_name]
vol_df['Qin'] = vol_df['Qin'] + df['Qin']
vol_df['-Qout'] = vol_df['-Qout'] - df['Qout']
vol_df['Qtide'] = vol_df['Qtide'] + df['Qtide']
vol_df['Qr'] = riv_df.sum(axis=1)
v = v_lp_df.sum(axis=1).to_numpy()
vol_df.loc[:,'V'] = v
vol_df.loc[1:-1, 'dV_dt'] = (v[2:] - v[:-2]) / (2*86400)
vol_df['Error'] = vol_df['dV_dt'] - vol_df.loc[:,'Qin'] + vol_df.loc[:,'-Qout'] - vol_df.loc[:,'Qr']
vol_rel_err = vol_df['Error'].mean()/vol_df['Qr'].mean()
# salt budget
salt_df = pd.DataFrame(0, index=sv_lp_df.index, columns=['QSin','-QSout','Ftide'])
for sect_name in tef_df_dict.keys():
df = tef_df_dict[sect_name]
salt_df['QSin'] = salt_df['QSin'] + df['QSin']
salt_df['-QSout'] = salt_df['-QSout'] - df['QSout']
salt_df['Ftide'] = salt_df['Ftide'] + df['Ftide']
sn = sv_lp_df[seg_list].sum(axis=1).values
salt_df.loc[1:-1, 'dSnet_dt'] = (sn[2:] - sn[:-2]) / (2*86400)
salt_df['Smean'] = sv_lp_df.sum(axis=1)/vol_df['V']
salt_df['Error'] = salt_df['dSnet_dt'] - salt_df['QSin'] + salt_df['-QSout']
salt_rel_err = salt_df['Error'].mean()/salt_df['QSin'].mean()
# add a few more columns to plot in a different way
salt_df['Qe'] = (vol_df['Qin'] + vol_df['-Qout'])/2
salt_df['Qnet'] = (vol_df['-Qout'] - vol_df['Qin'])
salt_df['Sin'] = salt_df['QSin']/vol_df['Qin']
salt_df['Sout'] = salt_df['-QSout']/vol_df['-Qout']
salt_df['DS'] = salt_df['Sin'] - salt_df['Sout']
salt_df['Sbar'] = (salt_df['QSin']/vol_df['Qin'] + salt_df['-QSout']/vol_df['-Qout'])/2
salt_df['QeDS'] = salt_df['Qe'] * salt_df['DS']
salt_df['-QrSbar'] = -salt_df['Qnet'] * salt_df['Sbar']
salt_rel_err_qe = salt_df['Error'].mean()/salt_df['QeDS'].mean()
# make sure everything is numeric
for cn in vol_df.columns:
vol_df[cn] = pd.to_numeric(vol_df[cn])
for cn in salt_df.columns:
salt_df[cn] = pd.to_numeric(salt_df[cn])
return vol_df, salt_df, vol_rel_err, salt_rel_err, salt_rel_err_qe
# desired time ranges, the "seasons"
def get_dtr(year):
dtr = {}
dtr['full'] = (datetime(year,1,1,12,0,0), datetime(year,12,31,12,0,0))
dtr['winter'] = (datetime(year,1,1,12,0,0), datetime(year,3,31,12,0,0)) # JFM
dtr['spring'] = (datetime(year,4,1,12,0,0), datetime(year,6,30,12,0,0)) # AMJ
dtr['summer'] = (datetime(year,7,1,12,0,0), datetime(year,9,30,12,0,0)) # JAS
dtr['fall'] = (datetime(year,10,1,12,0,0), datetime(year,12,31,12,0,0)) # OMD
return dtr
# Lists of 2-layer segments to use for "initial condition" experiments in the flux_engine.
# The keys should match up with "src" values in flux_engine.py.
def get_seg_list(X,N):
sl = [X+str(n)+'_s' for n in range(1,N+1)]+[X+str(n)+'_f' for n in range(1,N+1)]
return sl
# make a segment list
ic_seg2_dict = {'IC_HoodCanalInner': ['H'+str(n)+'_s' for n in range(3,9)],
'IC_HoodCanal': get_seg_list('H',8),
'IC_SouthSound': get_seg_list('S',4),
'IC_Whidbey': get_seg_list('W',4),
'IC_PS': get_seg_list('A',3) + get_seg_list('M',6)
+ get_seg_list('T',2) + get_seg_list('S',4)
+ get_seg_list('H',8) + get_seg_list('W',4),
'IC_SoG': get_seg_list('G',6),
'IC_Salish': get_seg_list('A',3) + get_seg_list('M',6)
+ get_seg_list('T',2) + get_seg_list('S',4)
+ get_seg_list('H',8) + get_seg_list('W',4)
+ get_seg_list('G',6) + get_seg_list('J',4)
}
season_list = list(get_dtr(2017).keys())
# create Series of two-layer volumes
# this is the one place to specify the ratio volume in the "salty" and "fresh" layers
def get_V(v_df):
V = pd.Series()
for seg_name in v_df.index:
V[seg_name+'_s'] = 0.8 * v_df.loc[seg_name,'volume m3']
V[seg_name+'_f'] = 0.2 * v_df.loc[seg_name,'volume m3']
return V
# segment definitions, assembled by looking at the figures
# created by plot_thalweg_mean.py
segs = {
'J1':{'S':[], 'N':[], 'W':['jdf1'], 'E':['jdf2'], 'R':['sanjuan', 'hoko']},
'J2':{'S':[], 'N':[], 'W':['jdf2'], 'E':['jdf3'], 'R':[]},
'J3':{'S':[], 'N':[], 'W':['jdf3'], 'E':['jdf4'], 'R':['elwha']},
'J4':{'S':[], 'N':['sji1'], 'W':['jdf4'], 'E':['ai1','dp'], 'R':['dungeness']},
'G1':{'S':['sji1'], 'N':['sji2'], 'W':[], 'E':[], 'R':['samish']},
'G2':{'S':['sji2'], 'N':['sog1'], 'W':[], 'E':[], 'R':['nooksack', 'cowichan']},
'G3':{'S':['sog1'], 'N':['sog2'], 'W':[], 'E':[], 'R':['nanaimo', 'fraser']},
'G4':{'S':['sog2'], 'N':[], 'W':['sog3'], 'E':[], 'R':['clowhom', 'squamish']},
'G5':{'S':[], 'N':['sog4'], 'W':[], 'E':['sog3'], 'R':['englishman', 'tsolum', 'oyster']},
'G6':{'S':['sog4'], 'N':['sog5'], 'W':[], 'E':[], 'R':[]},
'A1':{'S':['ai2'], 'N':[], 'W':['ai1'], 'E':[], 'R':[]},
'A2':{'S':['ai3'], 'N':['ai2'], 'W':[], 'E':[], 'R':[]},
'A3':{'S':['hc1'], 'N':['ai3'], 'W':[], 'E':['ai4'], 'R':[]},
'M1':{'S':['mb1'], 'N':['wb1'], 'W':['ai4'], 'E':[], 'R':[]},
'M2':{'S':['mb2'], 'N':['mb1'], 'W':[], 'E':[], 'R':[]},
'M3':{'S':['mb3'], 'N':['mb2'], 'W':[], 'E':[], 'R':['green', 'cedar']},
'M4':{'S':['mb4'], 'N':['mb3'], 'W':[], 'E':[], 'R':[]},
'M5':{'S':['mb5'], 'N':['mb4'], 'W':[], 'E':[], 'R':[]},
'M6':{'S':['tn1'], 'N':['mb5'], 'W':[], 'E':[], 'R':['puyallup']},
'T1':{'S':['tn2'], 'N':['tn1'], 'W':[], 'E':[], 'R':[]},
'T2':{'S':['tn3'], 'N':['tn2'], 'W':[], 'E':[], 'R':[]},
'S1':{'S':[], 'N':['tn3'], 'W':['ss1'], 'E':[], 'R':[]},
'S2':{'S':[], 'N':[], 'W':['ss2'], 'E':['ss1'], 'R':['nisqually']},
'S3':{'S':[], 'N':[], 'W':['ss3'], 'E':['ss2'], 'R':[]},
'S4':{'S':[], 'N':[], 'W':[], 'E':['ss3'], 'R':['deschutes']},
'W1':{'S':['wb1'], 'N':['wb2'], 'W':[], 'E':[], 'R':['snohomish']},
'W2':{'S':['wb2'], 'N':['wb3'], 'W':[], 'E':[], 'R':['stillaguamish']},
'W3':{'S':['wb3'], 'N':[], 'W':[], 'E':['wb4'], 'R':[]},
'W4':{'S':[], 'N':[], 'W':['wb4', 'dp'], 'E':[], 'R':['skagit']},
'H1':{'S':['hc2'], 'N':['hc1'], 'W':[], 'E':[], 'R':[]},
'H2':{'S':[], 'N':['hc2'], 'W':['hc3'], 'E':[], 'R':[]},
'H3':{'S':['hc4'], 'N':[], 'W':[], 'E':['hc3'], 'R':['duckabush', 'dosewallips']},
'H4':{'S':['hc5'], 'N':['hc4'], 'W':[], 'E':[], 'R':['hamma']},
'H5':{'S':['hc6'], 'N':['hc5'], 'W':[], 'E':[], 'R':[]},
'H6':{'S':[], 'N':['hc6'], 'W':[], 'E':['hc7'], 'R':['skokomish']},
'H7':{'S':[], 'N':[], 'W':['hc7'], 'E':['hc8'], 'R':[]},
'H8':{'S':[], 'N':[], 'W':['hc8'], 'E':[], 'R':[]},
#'##':{'S':[], 'N':[], 'W':[], 'E':[], 'R':[]},
}
# make lists of the various segment sequences (used below)
ssJ = ['J'+str(s) for s in range(1,5)]
ssM = ['M'+str(s) for s in range(1,7)]
ssA = ['A'+str(s) for s in range(1,4)]
ssT = ['T'+str(s) for s in range(1,3)]
ssS = ['S'+str(s) for s in range(1,5)]
ssG = ['G'+str(s) for s in range(1,7)]
ssW = ['W'+str(s) for s in range(1,5)]
ssH = ['H'+str(s) for s in range(1,9)]
# This list is the same as the keys for all the dicts below.
# we make it to have a fixed order for processing things, since
# the order of the keys of a dict may not be fixed.
channel_list = ['Juan de Fuca to Strait of Georgia',
'Admiralty Inlet to South Sound',
'Hood Canal',
'Whidbey Basin']
# also cue up a line for the target salinities from the TEF sections
channel_dict = {'Juan de Fuca to Strait of Georgia':['jdf1','jdf2','jdf3','jdf4',
'sji1', 'sji2', 'sog1','sog2','sog3','sog4','sog5'],
'Admiralty Inlet to South Sound': ['ai1', 'ai2', 'ai3','ai4',
'mb1','mb2','mb3','mb4','mb5',
'tn1','tn2','tn3',
'ss1','ss2','ss3'],
'Hood Canal':['hc1','hc2','hc3','hc4','hc5','hc6','hc7','hc8'],
'Whidbey Basin':['wb1','wb2','wb3','wb4','dp']}
long_channel_dict = {'Juan de Fuca to Strait of Georgia':['jdf1','jdf2','jdf3','jdf4',
'sji1', 'sji2', 'sog1','sog2','sog3','sog4','sog5'],
'Admiralty Inlet to South Sound': ['jdf4', 'ai1', 'ai2', 'ai3','ai4',
'mb1','mb2','mb3','mb4','mb5',
'tn1','tn2','tn3',
'ss1','ss2','ss3'],
'Hood Canal':['ai3', 'hc1','hc2','hc3','hc4','hc5','hc6','hc7','hc8'],
'Whidbey Basin':['ai4', 'wb1','wb2','wb3','wb4','dp']}
seg_dict = {'Juan de Fuca to Strait of Georgia': ssJ + ssG,
'Admiralty Inlet to South Sound': ['J4'] + ssA + ssM + ssT + ssS,
'Hood Canal': ['A3'] + ssH,
'Whidbey Basin': ['M1'] + ssW}
# same as seg_dict, but without the connections to adjoining channels
short_seg_dict = {'Juan de Fuca to Strait of Georgia': ssJ + ssG,
'Admiralty Inlet to South Sound': ssA + ssM + ssT + ssS,
'Hood Canal': ssH,
'Whidbey Basin': ssW}
# colors to associate with each channel (the keys in channel_ and seg_dict)
clist = ['blue', 'red', 'olive', 'orange']
c_dict = dict(zip(channel_list, clist))
def make_dist(x,y):
NS = len(x)
xs = np.zeros(NS)
ys = | np.zeros(NS) | numpy.zeros |
##########################################################
# lane_detector.py
#
# SPDX-FileCopyrightText: Copyright 2021 <NAME>
#
# SPDX-License-Identifier: MIT
#
# Lane detection techniques
#
# ########################################################
#
# Import libraries
import cv2
import numpy as np
import math
from collections import deque
class LaneDetector:
def __init__(self, is_video=False, width=1280, height=720, draw_area = True, queue_len=10):
# Roi
self.vertices = None
# Video pipline
self.is_video = is_video
# Frame dimension
self.width = width
self.height = height
# Draw
self.draw_area_err = True
self.draw_area = draw_area
self.road_color = (204, 255, 153)
self.l_lane_color = (0, 0, 255)
self.r_lane_color = (255, 0, 0)
self.lane_thickness = 30
# Lane search
self.n_windows = 9
self.margin = 100
self.nb_margin = 100
self.px_threshold = 50
self.radii_threshold = 10
self.min_lane_dis = 600
# Current lanes and radii
self.l_curr_fit = None
self.r_curr_fit = None
self.l_diff_fit = 0
self.r_diff_fit = 0
self.l_curr_cr = 0
self.r_curr_cr = 0
self.lost_track = 0
self.lost_radii = 0
self.poly_thr_a = 0.001
self.poly_thr_b = 0.4
self.poly_thr_c = 150
# Convert px to meter
self.px_to_m_y = 30/720 # meters per pixel in y dimension
self.px_to_m_x = 3.7/700 # meters per pixel in x dimension
# Averaging
self.queue_len = queue_len
self.l_fit_que = deque(maxlen=self.queue_len)
self.r_fit_que = deque(maxlen=self.queue_len)
self.l_rad_que = deque(maxlen=self.queue_len)
self.r_rad_que = deque(maxlen=self.queue_len)
self.weights = np.arange(1, self.queue_len + 1) / self.queue_len
# No Text on frame
self.no_text = False
""" General methods for setting files and getting information """
def set_vertices(self, vertices):
self.vertices = vertices
def reset_detector(self):
self.empty_queue()
self.vertices = None
self.l_curr_fit = None
self.r_curr_fit = None
self.l_diff_fit = 0
self.r_diff_fit = 0
self.l_curr_cr = 0
self.r_curr_cr = 0
self.lost_track = 0
self.lost_radii = 0
def empty_queue(self):
self.l_fit_que = deque(maxlen=self.queue_len)
self.r_fit_que = deque(maxlen=self.queue_len)
self.l_rad_que = deque(maxlen=self.queue_len)
self.r_rad_que = deque(maxlen=self.queue_len)
""" Find lanes """
def calculate_histogram(self, frame):
return np.sum(frame, axis=0)
def get_hist_peaks(self, histogram):
center = np.int(histogram.shape[0]//2)
left_peak = np.argmax(histogram[:center])
right_peak = np.argmax(histogram[center:]) + center
return left_peak, right_peak
def cr_to_degree(self, cr, arc_length):
dc = (180 * arc_length) / (math.pi * cr)
return dc/2
def find_lanes(self, frame):
self.check_track()
if self.l_curr_fit is None or self.r_curr_fit is None:
self.empty_queue()
histogram = self.calculate_histogram(frame)
left_peak, right_peak = self.get_hist_peaks(histogram)
leftx, lefty, rightx, righty = self.sliding_window(frame, left_peak, right_peak)
left_fit, right_fit = self.fit_polynomial(leftx, lefty, rightx, righty)
left_fit_cr, right_fit_cr = self.fit_polynomial(
leftx * self.px_to_m_x, lefty * self.px_to_m_y,
rightx * self.px_to_m_x, righty * self.px_to_m_y)
# Get radii of lane curvature
left_rad, right_rad = self.calculate_poly_radii(frame, left_fit_cr, right_fit_cr)
self.r_curr_cr = left_rad
self.l_curr_cr = right_rad
self.r_curr_fit = right_fit
self.l_curr_fit = left_fit
self.l_fit_que.append(left_fit)
self.r_fit_que.append(right_fit)
self.l_rad_que.append(left_rad)
self.r_rad_que.append(right_rad)
else:
left_fit, right_fit, left_fit_cr, right_fit_cr, _ = self.nearby_search(
frame,
np.average(self.l_fit_que, 0, self.weights[-len(self.l_fit_que):]),
np.average(self.r_fit_que, 0, self.weights[-len(self.r_fit_que):]))
self.l_fit_que.append(left_fit)
self.r_fit_que.append(right_fit)
avg_rad = round(np.mean([np.average(self.r_rad_que, 0, self.weights[-len(self.r_rad_que):]),
np.average(self.l_rad_que, 0, self.weights[-len(self.l_rad_que):])]),0)
try:
return (self.draw_lanes(frame,
np.average(self.l_fit_que, 0, self.weights[-len(self.l_fit_que):]),
np.average(self.r_fit_que, 0, self.weights[-len(self.r_fit_que):])),
avg_rad)
except:
return (np.zeros_like(cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)), None)
def sliding_window(self, frame, left_peak, right_peak):
# Set window height
window_height = np.int(frame.shape[0]//self.n_windows)
# Find non-zero values
nonzero = frame.nonzero()
nonzero_y = np.array(nonzero[0])
nonzero_x = np.array(nonzero[1])
# Current positions to be updated later for each window in n_windows
leftx_current = left_peak
rightx_current = right_peak
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(self.n_windows):
# Identify window boundaries in x and y (and right and left)
win_y_low = frame.shape[0] - (window + 1) * window_height
win_y_high = frame.shape[0] - window * window_height
# Find the four below boundaries of the window
win_xleft_low = leftx_current - self.margin
win_xleft_high = leftx_current + self.margin
win_xright_low = rightx_current - self.margin
win_xright_high = rightx_current + self.margin
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzero_y >= win_y_low ) & (nonzero_y < win_y_high) &\
(nonzero_x >= win_xleft_low) & (nonzero_x < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzero_y >= win_y_low ) & (nonzero_y < win_y_high) &\
(nonzero_x >= win_xright_low) & (nonzero_x < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > px_threshold pixels, recenter next window
# (`right` or `leftx_current`) on their mean position
if len(good_left_inds) > self.px_threshold:
leftx_current = np.int(np.mean(nonzero_x[good_left_inds]))
if len(good_right_inds) > self.px_threshold:
rightx_current = np.int(np.mean(nonzero_x[good_right_inds]))
# Concatenate the arrays of indices (previously was a list of lists of pixels)
try:
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
except ValueError:
# Avoids an error if the above is not implemented fully
pass
# Extract left and right line pixel positions
leftx = nonzero_x[left_lane_inds]
lefty = nonzero_y[left_lane_inds]
rightx = nonzero_x[right_lane_inds]
righty = nonzero_y[right_lane_inds]
return leftx, lefty, rightx, righty
def calculate_poly_radii(self, frame, left_fit, right_fit):
frame_height = np.linspace(0, frame.shape[0] - 1, frame.shape[0])
max_px_window = np.max(frame_height)
try:
left_rad = ((1 + (2 * left_fit[0] * max_px_window * self.px_to_m_y + left_fit[1])**2)**1.5) / np.absolute(2 * left_fit[0])
right_rad = ((1 + (2 * right_fit[0] * max_px_window * self.px_to_m_y + right_fit[1])**2)**1.5) / np.absolute(2 * right_fit[0])
if math.isinf(left_rad) or math.isinf(right_rad):
return self.l_curr_cr, self.r_curr_cr
except:
return self.l_curr_cr, self.r_curr_cr
return int(left_rad), int(right_rad)
def check_radii(self, left_rad, right_rad):
avg_l = np.average(self.l_rad_que, 0, self.weights[-len(self.l_rad_que):])
avg_r = np.average(self.r_rad_que, 0, self.weights[-len(self.r_rad_que):])
abs_l__diff = np.absolute(avg_l - left_rad)
abs_r__diff = np.absolute(avg_r - right_rad)
if abs_l__diff > (avg_l / self.radii_threshold) and self.lost_radii < 5 and abs_r__diff > (avg_r / self.radii_threshold):
self.lost_radii += 1
return False
else:
self.lost_radii = 0
return True
def fit_polynomial(self, leftx, lefty, rightx, righty):
try:
left_fit = | np.polyfit(lefty, leftx, 2) | numpy.polyfit |
import torch
from model import NPT
import numpy as np
import pymesh
net_G=NPT()
net_G.cuda()
net_G.load_state_dict(torch.load('original_169.model'))
def face_reverse(faces):
identity_faces=faces
face_dict={}
for i in range(len(random_sample)):
face_dict[random_sample[i]]=i
new_f=[]
for i in range(len(identity_faces)):
new_f.append([face_dict[identity_faces[i][0]],face_dict[identity_faces[i][1]],face_dict[identity_faces[i][2]]])
new_face= | np.array(new_f) | numpy.array |