|
--- |
|
language: |
|
- en |
|
license: |
|
- mit |
|
--- |
|
|
|
# ADT Dataset |
|
|
|
## Dataset Description |
|
This dataset contains Aria Digital Twin (ADT) sequences with various sensor data and annotations, including 2D/3D bounding boxes, trajectories, eye gaze data, and VRS recordings. |
|
|
|
## Quick Start |
|
```python |
|
from adt_dataset_loader import ADTDatasetLoader |
|
|
|
# Load entire dataset |
|
loader = ADTDatasetLoader("ariakang/ADT-test") |
|
|
|
# Load specific sequence |
|
loader = ADTDatasetLoader("ariakang/ADT-test", sequence_name="Apartment_release_clean_seq131_M1292") |
|
``` |
|
|
|
## Installation |
|
```bash |
|
# Install required packages |
|
pip install datasets pandas |
|
``` |
|
|
|
## Dataset Structure |
|
Each sequence contains: |
|
- VRS Files: |
|
- video.vrs |
|
- synthetic_video.vrs |
|
- segmentations.vrs |
|
- depth_images.vrs |
|
- CSV Data: |
|
- 2D/3D bounding boxes |
|
- Aria device trajectories |
|
- Eye gaze data |
|
- Scene objects |
|
- JSON Data: |
|
- Instance annotations |
|
- Metadata |
|
- MPS Data: |
|
- Eye gaze processing |
|
- SLAM results |
|
|
|
## Flexible Loading Options |
|
|
|
### 1. Load Entire Dataset |
|
```python |
|
# Initialize loader with all sequences |
|
loader = ADTDatasetLoader("ariakang/ADT-test") |
|
|
|
# See available sequences and data types |
|
available_files = loader.get_available_files() |
|
print("Available files:", available_files) |
|
|
|
# Load all data types |
|
bbox_2d = loader.load_2d_bounding_boxes() |
|
bbox_3d = loader.load_3d_bounding_boxes() |
|
trajectory = loader.load_aria_trajectory() |
|
eyegaze = loader.load_eyegaze() |
|
metadata = loader.load_metadata() |
|
slam_data = loader.load_mps_slam() |
|
``` |
|
|
|
### 2. Load Specific Sequences |
|
```python |
|
# Load a specific sequence |
|
loader = ADTDatasetLoader( |
|
"ariakang/ADT-test", |
|
sequence_name="Apartment_release_clean_seq131_M1292" |
|
) |
|
|
|
# Load data from this sequence |
|
bbox_2d = loader.load_2d_bounding_boxes() |
|
trajectory = loader.load_aria_trajectory() |
|
``` |
|
|
|
### 3. Load Selected Data Types |
|
```python |
|
# Initialize loader for specific sequence |
|
loader = ADTDatasetLoader("ariakang/ADT-test", "Apartment_release_clean_seq131_M1292") |
|
|
|
# Load only 2D bounding boxes and VRS info |
|
bbox_2d = loader.load_2d_bounding_boxes() |
|
vrs_info = loader.get_vrs_files_info() |
|
|
|
# Get paths to specific VRS files |
|
video_vrs = [f for f in vrs_info if f['filename'] == 'video.vrs'][0] |
|
print(f"Video VRS path: {video_vrs['path']}") |
|
|
|
# Load only SLAM data |
|
slam_data = loader.load_mps_slam() |
|
closed_loop = slam_data['closed_loop'] # Get specific SLAM component |
|
``` |
|
|
|
## Available Data Types and Methods |
|
|
|
### Main Data Types |
|
```python |
|
# Bounding Boxes and Trajectories |
|
bbox_2d = loader.load_2d_bounding_boxes() |
|
bbox_3d = loader.load_3d_bounding_boxes() |
|
trajectory = loader.load_aria_trajectory() |
|
|
|
# Eye Gaze and Scene Data |
|
eyegaze = loader.load_eyegaze() |
|
scene_objects = loader.load_scene_objects() |
|
|
|
# Metadata and Instances |
|
metadata = loader.load_metadata() |
|
instances = loader.load_instances() |
|
|
|
# MPS Data |
|
eye_gaze_data = loader.load_mps_eye_gaze() # Returns dict with 'general' and 'summary' |
|
slam_data = loader.load_mps_slam() # Returns dict with various SLAM components |
|
``` |
|
|
|
### VRS Files |
|
```python |
|
# Get VRS file information |
|
vrs_info = loader.get_vrs_files_info() |
|
|
|
# Example: Access specific VRS file info |
|
for vrs_file in vrs_info: |
|
print(f"File: {vrs_file['filename']}") |
|
print(f"Path: {vrs_file['path']}") |
|
print(f"Size: {vrs_file['size_bytes'] / 1024 / 1024:.2f} MB") |
|
``` |
|
|
|
### Custom Loading |
|
```python |
|
# Load any file by name |
|
data = loader.load_file_by_name("your_file_name.csv") |
|
``` |
|
|
|
## Data Format Examples |
|
|
|
### 2D Bounding Boxes |
|
```python |
|
bbox_2d = loader.load_2d_bounding_boxes() |
|
print(bbox_2d.columns) |
|
# Columns: ['object_uid', 'timestamp[ns]', 'x_min[pixel]', 'x_max[pixel]', 'y_min[pixel]', 'y_max[pixel]'] |
|
``` |
|
|
|
### Aria Trajectory |
|
```python |
|
trajectory = loader.load_aria_trajectory() |
|
print(trajectory.columns) |
|
# Columns: ['timestamp[ns]', 'x', 'y', 'z', 'qx', 'qy', 'qz', 'qw'] |
|
``` |
|
|
|
### MPS SLAM Data |
|
```python |
|
slam_data = loader.load_mps_slam() |
|
# Components: |
|
# - closed_loop: DataFrame with closed-loop trajectory |
|
# - open_loop: DataFrame with open-loop trajectory |
|
# - calibration: Calibration parameters |
|
``` |
|
|
|
## Error Handling |
|
```python |
|
try: |
|
data = loader.load_file_by_name("non_existent_file.csv") |
|
except ValueError as e: |
|
print(f"Error: {e}") |
|
``` |
|
|
|
## Notes |
|
- All CSV files are loaded as pandas DataFrames |
|
- JSON/JSONL files are loaded as Python dictionaries/lists |
|
- VRS files are not loaded into memory, only their metadata and paths are provided |
|
- Use `get_available_files()` to see all available data in your sequence |
|
|
|
## Repository Structure |
|
VRS files are stored in sequence-specific folders: |
|
`sequences/{sequence_name}/vrs_files/` |
|
|