code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCAmelCase__ : """simple docstring""" lowerCAmelCase__ : Optional[Union[str, Path]] = None lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : Optional[Dict] = None lowerCAmelCase__ : Optional[str] = None lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = True lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : int = 1 lowerCAmelCase__ : Optional[Union[str, bool]] = None lowerCAmelCase__ : bool = False lowerCAmelCase__ : Optional[Dict] = None lowerCAmelCase__ : Optional[str] = None def _UpperCAmelCase ( self: Any ) -> "DownloadConfig": '''simple docstring''' return self.__class__(**{k: copy.deepcopy(__lowerCAmelCase ) for k, v in self.__dict__.items()} )
221
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a_ = 250004 a_ = 250020 @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = MBartaaTokenizer lowerCAmelCase__ : List[Any] = MBartaaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[Any] = True def _UpperCAmelCase ( self: int ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = MBartaaTokenizer(__lowerCAmelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self: Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = "<s>" __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def _UpperCAmelCase ( self: List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCAmelCase ) , 1_054 ) def _UpperCAmelCase ( self: Any ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def _UpperCAmelCase ( self: Optional[Any] ) -> Any: '''simple docstring''' __UpperCAmelCase = MBartaaTokenizer(__lowerCAmelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCAmelCase ) __UpperCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def _UpperCAmelCase ( self: List[str] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = {"input_ids": [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Dict = 'facebook/mbart-large-50-one-to-many-mmt' lowerCAmelCase__ : Optional[int] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCAmelCase__ : Union[str, Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCAmelCase__ : Optional[int] = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def _UpperCAmelCase ( cls: Any ) -> Tuple: '''simple docstring''' __UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) __UpperCAmelCase = 1 return cls def _UpperCAmelCase ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 250_038 ) def _UpperCAmelCase ( self: Any ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase ) def _UpperCAmelCase ( self: str ) -> Any: '''simple docstring''' self.assertIn(__lowerCAmelCase , self.tokenizer.all_special_ids ) __UpperCAmelCase = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] __UpperCAmelCase = self.tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCAmelCase ) def _UpperCAmelCase ( self: Union[str, Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , __lowerCAmelCase ) __UpperCAmelCase = 10 __UpperCAmelCase = self.tokenizer(__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase ).input_ids[0] self.assertEqual(ids[0] , __lowerCAmelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) def _UpperCAmelCase ( self: int ) -> Dict: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250_053, 250_001] ) def _UpperCAmelCase ( self: str ) -> Tuple: '''simple docstring''' __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCAmelCase ) __UpperCAmelCase = MBartaaTokenizer.from_pretrained(__lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCAmelCase ) @require_torch def _UpperCAmelCase ( self: Any ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCAmelCase , return_tensors="pt" ) __UpperCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _UpperCAmelCase ( self: Union[str, Any] ) -> Tuple: '''simple docstring''' __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __UpperCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.tokenizer(self.src_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=3 , return_tensors="pt" ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=10 , return_tensors="pt" ) __UpperCAmelCase = targets["input_ids"] __UpperCAmelCase = shift_tokens_right(__lowerCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _UpperCAmelCase ( self: str ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , { # en_XX, A, test, EOS "input_ids": [[250_004, 62, 3_034, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250_001, } , )
221
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase__ ='src/diffusers' lowercase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. lowercase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase__ =spec.loader.load_module() def UpperCamelCase_ ( A__ , A__ ): return line.startswith(A__ ) or len(A__ ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , A__ ) is not None def UpperCamelCase_ ( A__ ): a_ = object_name.split(""".""" ) a_ = 0 # First let's find the module where our object lives. a_ = parts[i] while i < len(A__ ) and not os.path.isfile(os.path.join(A__ , F'''{module}.py''' ) ): i += 1 if i < len(A__ ): a_ = os.path.join(A__ , parts[i] ) if i >= len(A__ ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(A__ , F'''{module}.py''' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: a_ = f.readlines() # Now let's find the class / func in the code! a_ = """""" a_ = 0 for name in parts[i + 1 :]: while ( line_index < len(A__ ) and re.search(rF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(A__ ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a_ = line_index while line_index < len(A__ ) and _should_continue(lines[line_index] , A__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] return "".join(A__ ) lowercase__ =re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') lowercase__ =re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') lowercase__ =re.compile(r'<FILL\s+[^>]*>') def UpperCamelCase_ ( A__ ): a_ = code.split("""\n""" ) a_ = 0 while idx < len(A__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(A__ ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def UpperCamelCase_ ( A__ ): a_ = len(get_indent(A__ ) ) > 0 if has_indent: a_ = F'''class Bla:\n{code}''' a_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=A__ ) a_ = black.format_str(A__ , mode=A__ ) a_ , a_ = style_docstrings_in_code(A__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def UpperCamelCase_ ( A__ , A__=False ): with open(A__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: a_ = f.readlines() a_ = [] a_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(A__ ): a_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a_ , a_ , a_ = search.groups() a_ = find_code_in_diffusers(A__ ) a_ = get_indent(A__ ) a_ = line_index + 1 if indent == theoretical_indent else line_index + 2 a_ = theoretical_indent a_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a_ = True while line_index < len(A__ ) and should_continue: line_index += 1 if line_index >= len(A__ ): break a_ = lines[line_index] a_ = _should_continue(A__ , A__ ) and re.search(F'''^{indent}# End copy''' , A__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] a_ = """""".join(A__ ) # Remove any nested `Copied from` comments to avoid circular copies a_ = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(A__ ) is None] a_ = """\n""".join(A__ ) # Before comparing, use the `replace_pattern` on the original code. if len(A__ ) > 0: a_ = replace_pattern.replace("""with""" , """""" ).split(""",""" ) a_ = [_re_replace_pattern.search(A__ ) for p in patterns] for pattern in patterns: if pattern is None: continue a_ , a_ , a_ = pattern.groups() a_ = re.sub(A__ , A__ , A__ ) if option.strip() == "all-casing": a_ = re.sub(obja.lower() , obja.lower() , A__ ) a_ = re.sub(obja.upper() , obja.upper() , A__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a_ = blackify(lines[start_index - 1] + theoretical_code ) a_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a_ = lines[:start_index] + [theoretical_code] + lines[line_index:] a_ = start_index + 1 if overwrite and len(A__ ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(A__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(A__ ) return diffs def UpperCamelCase_ ( A__ = False ): a_ = glob.glob(os.path.join(A__ , """**/*.py""" ) , recursive=A__ ) a_ = [] for filename in all_files: a_ = is_copy_consistent(A__ , A__ ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(A__ ) > 0: a_ = """\n""".join(A__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
511
'''simple docstring''' def UpperCamelCase_ ( A__ ): if n_term == "": return [] a_ = [] for temp in range(int(A__ ) ): series.append(F'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": lowercase__ =input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
511
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a__ : Any = logging.get_logger(__name__) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self , lowercase = True , lowercase = None , lowercase = 0.9 , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = None , lowercase = 1 / 2_5_5 , lowercase = True , lowercase = True , lowercase = None , lowercase = None , **lowercase , ) -> None: super().__init__(**lowercase ) __UpperCamelCase = size if size is not None else {"""shortest_edge""": 2_2_4} __UpperCamelCase = get_size_dict(lowercase , default_to_square=lowercase ) __UpperCamelCase = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} __UpperCamelCase = get_size_dict(lowercase , param_name="""crop_size""" ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCamelCase ( self , lowercase , lowercase , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: __UpperCamelCase = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size["""height"""] / crop_pct ) else: __UpperCamelCase = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase ) ) __UpperCamelCase = get_resize_output_image_size(lowercase , size=lowercase , default_to_square=lowercase ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(lowercase , size=size["""shortest_edge"""] , default_to_square=lowercase ) elif "height" in size and "width" in size: __UpperCamelCase = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase ) ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: __UpperCamelCase = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(lowercase , size=(size["""height"""], size["""width"""]) , data_format=lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> str: return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(lowercase , default_to_square=lowercase ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(lowercase , param_name="""crop_size""" ) __UpperCamelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(lowercase ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=lowercase , size=lowercase , crop_pct=lowercase , resample=lowercase ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] __UpperCamelCase = {"""pixel_values""": images} return BatchFeature(data=lowercase , tensor_type=lowercase )
601
'''simple docstring''' def _lowercase ( ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = 1 while len(__A ) < 1E6: constant.append(str(__A ) ) i += 1 __UpperCamelCase = """""".join(__A ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9_999] ) * int(constant[99_999] ) * int(constant[999_999] ) ) if __name__ == "__main__": print(solution())
601
1
import sys from collections import defaultdict class A : '''simple docstring''' def __init__( self : Dict ) -> Any: """simple docstring""" A__ = [] def a_ ( self : int , __lowerCAmelCase : List[Any] ) -> int: """simple docstring""" return self.node_position[vertex] def a_ ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" A__ = pos def a_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ) -> Optional[int]: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A__ = 2 * start + 1 else: A__ = 2 * start + 2 if heap[smallest_child] < heap[start]: A__ , A__ = heap[smallest_child], positions[smallest_child] A__ , A__ = ( heap[start], positions[start], ) A__ , A__ = temp, tempa A__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __lowerCAmelCase ) self.top_to_bottom(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int ) -> List[Any]: """simple docstring""" A__ = position[index] while index != 0: A__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A__ = heap[parent] A__ = position[parent] self.set_position(position[parent] , __lowerCAmelCase ) else: A__ = val A__ = temp self.set_position(__lowerCAmelCase , __lowerCAmelCase ) break A__ = parent else: A__ = val A__ = temp self.set_position(__lowerCAmelCase , 0 ) def a_ ( self : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" A__ = len(__lowerCAmelCase ) // 2 - 1 for i in range(__lowerCAmelCase , -1 , -1 ): self.top_to_bottom(__lowerCAmelCase , __lowerCAmelCase , len(__lowerCAmelCase ) , __lowerCAmelCase ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" A__ = positions[0] A__ = sys.maxsize self.top_to_bottom(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) , __lowerCAmelCase ) return temp def __lowerCamelCase ( __a :Any ) -> Dict: """simple docstring""" A__ = Heap() A__ = [0] * len(__a ) A__ = [-1] * len(__a ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A__ = [] # Heap of Distance of vertices from their neighboring vertex A__ = [] for vertex in range(len(__a ) ): distance_tv.append(sys.maxsize ) positions.append(__a ) heap.node_position.append(__a ) A__ = [] A__ = 1 A__ = sys.maxsize for neighbor, distance in adjacency_list[0]: A__ = 0 A__ = distance heap.heapify(__a , __a ) for _ in range(1 , len(__a ) ): A__ = heap.delete_minimum(__a , __a ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__a )] ): A__ = distance heap.bottom_to_top( __a , heap.get_position(__a ) , __a , __a ) A__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A : Any = int(input('''Enter number of edges: ''').strip()) A : Any = defaultdict(list) for _ in range(edges_number): A : int = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
714
from __future__ import annotations A : Optional[int] = 8.988e9 # units = N * m^s * C^-2 def __lowerCamelCase ( __a :float , __a :float , __a :float , __a :float ) -> dict[str, float]: """simple docstring""" A__ = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if distance < 0: raise ValueError("""Distance cannot be negative""" ) if force == 0: A__ = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: A__ = abs(__a ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: A__ = abs(__a ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: A__ = (COULOMBS_CONSTANT * charge_product / abs(__a )) ** 0.5 return {"distance": distance} raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
247
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
146
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """poolformer""" def __init__(self , __a=3 , __a=16 , __a=16 , __a=3 , __a=4.0 , __a=[2, 2, 6, 2] , __a=[64, 128, 320, 512] , __a=[7, 3, 3, 3] , __a=[4, 2, 2, 2] , __a=[2, 1, 1, 1] , __a=4 , __a=0.0 , __a="gelu" , __a=True , __a=1E-5 , __a=0.02 , **__a , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = num_channels UpperCAmelCase__ = patch_size UpperCAmelCase__ = stride UpperCAmelCase__ = padding UpperCAmelCase__ = pool_size UpperCAmelCase__ = hidden_sizes UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = depths UpperCAmelCase__ = patch_sizes UpperCAmelCase__ = strides UpperCAmelCase__ = num_encoder_blocks UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_layer_scale UpperCAmelCase__ = layer_scale_init_value UpperCAmelCase__ = initializer_range super().__init__(**__a ) class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ (self ) -> float: """simple docstring""" return 2E-3
146
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Optional[Any] = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
'''simple docstring''' from manim import * class UpperCamelCase__ (a ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 ) lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""CPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(1 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""GPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""Model""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,) lowerCamelCase__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) lowerCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for i, rect in enumerate(_lowerCAmelCase ): lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 ) cpu_target.move_to(_lowerCAmelCase ) cpu_target.generate_target() lowerCamelCase__ = 0.46 / 4 lowerCamelCase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 ) cpu_targs.append(_lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) ) second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
9
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> np.array: _UpperCAmelCase = f"""{sampling_rate}""" _UpperCAmelCase = "1" _UpperCAmelCase = "f32le" _UpperCAmelCase = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__snake_case , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _UpperCAmelCase = ffmpeg_process.communicate(__snake_case ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error _UpperCAmelCase = output_stream[0] _UpperCAmelCase = np.frombuffer(__snake_case , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case = "f32le" , ) -> int: _UpperCAmelCase = f"""{sampling_rate}""" _UpperCAmelCase = "1" if format_for_conversion == "s16le": _UpperCAmelCase = 2 elif format_for_conversion == "f32le": _UpperCAmelCase = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _UpperCAmelCase = platform.system() if system == "Linux": _UpperCAmelCase = "alsa" _UpperCAmelCase = "default" elif system == "Darwin": _UpperCAmelCase = "avfoundation" _UpperCAmelCase = ":0" elif system == "Windows": _UpperCAmelCase = "dshow" _UpperCAmelCase = "default" _UpperCAmelCase = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] _UpperCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _UpperCAmelCase = _ffmpeg_stream(__snake_case , __snake_case ) for item in iterator: yield item def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case = None , __snake_case = None , __snake_case = "f32le" , ) -> List[str]: if stream_chunk_s is not None: _UpperCAmelCase = stream_chunk_s else: _UpperCAmelCase = chunk_length_s _UpperCAmelCase = ffmpeg_microphone(__snake_case , __snake_case , format_for_conversion=__snake_case ) if format_for_conversion == "s16le": _UpperCAmelCase = np.intaa _UpperCAmelCase = 2 elif format_for_conversion == "f32le": _UpperCAmelCase = np.floataa _UpperCAmelCase = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _UpperCAmelCase = chunk_length_s / 6 _UpperCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__snake_case , (int, float) ): _UpperCAmelCase = [stride_length_s, stride_length_s] _UpperCAmelCase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _UpperCAmelCase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _UpperCAmelCase = datetime.datetime.now() _UpperCAmelCase = datetime.timedelta(seconds=__snake_case ) for item in chunk_bytes_iter(__snake_case , __snake_case , stride=(stride_left, stride_right) , stream=__snake_case ): # Put everything back in numpy scale _UpperCAmelCase = np.frombuffer(item["""raw"""] , dtype=__snake_case ) _UpperCAmelCase = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) _UpperCAmelCase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> str: _UpperCAmelCase = B"" _UpperCAmelCase = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _UpperCAmelCase = 0 for raw in iterator: acc += raw if stream and len(__snake_case ) < chunk_len: _UpperCAmelCase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__snake_case ) >= chunk_len: # We are flushing the accumulator _UpperCAmelCase = (_stride_left, stride_right) _UpperCAmelCase = {"raw": acc[:chunk_len], "stride": stride} if stream: _UpperCAmelCase = False yield item _UpperCAmelCase = stride_left _UpperCAmelCase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__snake_case ) > stride_left: _UpperCAmelCase = {"raw": acc, "stride": (_stride_left, 0)} if stream: _UpperCAmelCase = False yield item def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Tuple: _UpperCAmelCase = 2**2_4 # 16Mo try: with subprocess.Popen(__snake_case , stdout=subprocess.PIPE , bufsize=__snake_case ) as ffmpeg_process: while True: _UpperCAmelCase = ffmpeg_process.stdout.read(__snake_case ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
108
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _lowerCamelCase ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): """simple docstring""" def __init__( self , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__(features=UpperCAmelCase ) __snake_case : Optional[int] = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' import torch if isinstance(UpperCAmelCase , UpperCAmelCase ) and column: if all( isinstance(UpperCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCAmelCase ) return column def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' import torch if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __snake_case : Optional[Any] = {} if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __snake_case : List[Any] = {"dtype": torch.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __snake_case : Union[str, Any] = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image ): __snake_case : Optional[int] = np.asarray(UpperCAmelCase ) return torch.tensor(UpperCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(UpperCAmelCase , "__array__" ) and not isinstance(UpperCAmelCase , torch.Tensor ): __snake_case : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Mapping: '''simple docstring''' __snake_case : Any = self.numpy_arrow_extractor().extract_row(UpperCAmelCase ) __snake_case : Dict = self.python_features_decoder.decode_row(UpperCAmelCase ) return self.recursive_tensorize(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> "torch.Tensor": '''simple docstring''' __snake_case : Optional[Any] = self.numpy_arrow_extractor().extract_column(UpperCAmelCase ) __snake_case : List[str] = self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] ) __snake_case : Union[str, Any] = self.recursive_tensorize(UpperCAmelCase ) __snake_case : Union[str, Any] = self._consolidate(UpperCAmelCase ) return column def UpperCAmelCase ( self , UpperCAmelCase ) -> Mapping: '''simple docstring''' __snake_case : str = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase ) __snake_case : List[str] = self.python_features_decoder.decode_batch(UpperCAmelCase ) __snake_case : Union[str, Any] = self.recursive_tensorize(UpperCAmelCase ) for column_name in batch: __snake_case : Dict = self._consolidate(batch[column_name] ) return batch
243
0
def lowerCamelCase_ ( A : int ): """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) lowerCAmelCase_ = [True] * (num + 1) lowerCAmelCase_ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , A ): lowerCAmelCase_ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
413
_snake_case = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
413
1
def A_ ( ) -> List[Any]: a__ : Any = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] a__ : Optional[Any] = 6 a__ : Any = 1 a__ : Union[str, Any] = 1901 a__ : Dict = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 a__ : List[str] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 a__ : int = day - 29 else: if day > days_per_month[month - 1]: month += 1 a__ : Optional[int] = day - days_per_month[month - 2] if month > 12: year += 1 a__ : Any = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
302
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class A__ : """simple docstring""" __A : Optional[int] = None __A : Optional[jnp.ndarray] = None __A : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def __lowercase ( cls) -> Union[str, Any]: '''simple docstring''' return cls() @dataclass class A__ ( __UpperCAmelCase ): """simple docstring""" __A : jnp.ndarray __A : jnp.ndarray __A : KarrasVeSchedulerState class A__ ( __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" @property def __lowercase ( self) -> str: '''simple docstring''' return True @register_to_config def __init__( self , lowercase = 0.02 , lowercase = 100 , lowercase = 1.0_07 , lowercase = 80 , lowercase = 0.05 , lowercase = 50 , ) -> List[Any]: '''simple docstring''' pass def __lowercase ( self) -> str: '''simple docstring''' return KarrasVeSchedulerState.create() def __lowercase ( self , lowercase , lowercase , lowercase = ()) -> KarrasVeSchedulerState: '''simple docstring''' a__ : Any = jnp.arange(0 , lowercase)[::-1].copy() a__ : Any = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowercase , schedule=jnp.array(lowercase , dtype=jnp.floataa) , timesteps=lowercase , ) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , ) -> Tuple[jnp.ndarray, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: a__ : List[str] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1) else: a__ : str = 0 # sample eps ~ N(0, S_noise^2 * I) a__ : Optional[Any] = random.split(lowercase , num=1) a__ : Optional[Any] = self.config.s_noise * random.normal(key=lowercase , shape=sample.shape) a__ : str = sigma + gamma * sigma a__ : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' a__ : Union[str, Any] = sample_hat + sigma_hat * model_output a__ : Tuple = (sample_hat - pred_original_sample) / sigma_hat a__ : Dict = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowercase , derivative=lowercase , state=lowercase) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' a__ : Optional[int] = sample_prev + sigma_prev * model_output a__ : Union[str, Any] = (sample_prev - pred_original_sample) / sigma_prev a__ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowercase , derivative=lowercase , state=lowercase) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase) -> int: '''simple docstring''' raise NotImplementedError()
302
1
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __a ): __SCREAMING_SNAKE_CASE : Tuple = ['audio_values', 'audio_mask'] def __init__(self , lowercase=2048 , lowercase=1 , lowercase=[16, 16] , lowercase=128 , lowercase=44100 , lowercase=86 , lowercase=2048 , lowercase=0.0 , **lowercase , ): super().__init__( feature_size=a_ , sampling_rate=a_ , padding_value=a_ , **a_ , ) A_ : Optional[int] = spectrogram_length A_ : Dict = num_channels A_ : int = patch_size A_ : Any = feature_size // self.patch_size[1] A_ : List[Any] = n_fft A_ : List[str] = sampling_rate // hop_length_to_sampling_rate A_ : int = sampling_rate A_ : Dict = padding_value A_ : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a_ , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=a_ , norm="""slaney""" , mel_scale="""slaney""" , ).T def _a (self , lowercase ): A_ : List[Any] = spectrogram( a_ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) A_ : Dict = log_spec[:, :-1] A_ : Union[str, Any] = log_spec - 20.0 A_ : int = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowercase , lowercase = None , lowercase = True , lowercase = None , lowercase = False , lowercase = False , **lowercase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A_ : str = isinstance(a_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(a_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a_ , np.ndarray ): A_ : int = np.asarray(a_ , dtype=np.floataa ) elif isinstance(a_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : List[str] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis A_ : Dict = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , a_ ): A_ : str = [np.asarray(a_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask A_ : Any = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: A_ : Any = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] A_ : Optional[int] = np.array(a_ ).astype(np.floataa ) # convert into correct format for padding A_ : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch A_ : Optional[Any] = np.ones([len(a_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) A_ : Any = padded_audio_features * self.padding_value for i in range(len(a_ ) ): A_ : Optional[Any] = audio_features[i] A_ : Optional[int] = feature # return as BatchFeature if return_attention_mask: A_ : Dict = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: A_ : Optional[Any] = {"""audio_values""": padded_audio_features} A_ : int = BatchFeature(data=a_ , tensor_type=a_ ) return encoded_inputs
706
'''simple docstring''' import os import sys import unittest lowerCamelCase :Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Tuple = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = {"""BertModelTest""": """BertModelTester"""} A_ : Union[str, Any] = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : Optional[Any] = get_model_to_test_mapping(lowercase ) A_ : List[str] = get_model_to_test_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } A_ : Any = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : List[Any] = get_model_to_tester_mapping(lowercase ) A_ : Optional[int] = get_model_to_tester_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } A_ : Dict = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase )
686
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = '''ylacombe/bark-small''' UpperCAmelCase__ : int = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = '''en_speaker_1''' UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Any = '''speaker_embeddings_path.json''' UpperCAmelCase__ : Dict = '''speaker_embeddings''' def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCamelCase_ ) def lowercase_ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Optional[int] = BarkProcessor(tokenizer=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase__ : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase__ : int = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase__ : List[Any] = 35 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : List[Any] = 8 UpperCAmelCase__ : Union[str, Any] = { '''semantic_prompt''': np.ones(UpperCamelCase_ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase__ : int = processor(text=self.input_string , voice_preset=UpperCamelCase_ ) UpperCAmelCase__ : int = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase__ : List[str] = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(UpperCamelCase_ , **UpperCamelCase_ ) UpperCAmelCase__ : List[str] = processor(text=self.input_string , voice_preset=UpperCamelCase_ ) UpperCAmelCase__ : str = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.get_tokenizer() UpperCAmelCase__ : int = BarkProcessor(tokenizer=UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = processor(text=self.input_string ) UpperCAmelCase__ : List[str] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
75
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ) ->List[str]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' snake_case__ = nn.Parameter(UpperCAmelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' snake_case__ = nn.Parameter(UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # set torch weights for 1-to-1 comparison snake_case__ = np.asarray(weights[0] ) snake_case__ = np.asarray(weights[1] ) snake_case__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCAmelCase_ ).view(-1 , UpperCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # set torch weights for 1-to-1 comparison snake_case__ = np.asarray(weights[0] ) snake_case__ = np.asarray(weights[1] ) snake_case__ = np.asarray(weights[2] ) snake_case__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCAmelCase_ ).view(-1 , UpperCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Dict: # layernorm 1 snake_case__ = weights[0][0][0] snake_case__ = np.asarray(layer_norm_a[0] ) snake_case__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # lsh weights + output snake_case__ = weights[0][1] if len(UpperCAmelCase_ ) < 4: set_layer_weights_in_torch_lsh(UpperCAmelCase_ , torch_block.attention , UpperCAmelCase_ ) else: set_layer_weights_in_torch_local(UpperCAmelCase_ , torch_block.attention , UpperCAmelCase_ ) # intermediate weighs snake_case__ = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCAmelCase_ ) == 4: snake_case__ = intermediate_weights[2] # layernorm 2 snake_case__ = np.asarray(intermediate_weights[0][0] ) snake_case__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # intermediate dense snake_case__ = np.asarray(intermediate_weights[1][0] ) snake_case__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) # intermediate out snake_case__ = np.asarray(intermediate_weights[4][0] ) snake_case__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Union[str, Any]: # reformer model snake_case__ = torch_model.reformer # word embeds snake_case__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCAmelCase_ ) , ) if isinstance(weights[3] , UpperCAmelCase_ ): snake_case__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' snake_case__ = nn.Parameter(torch.tensor(UpperCAmelCase_ ) ) snake_case__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCAmelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # output layer norm snake_case__ = np.asarray(weights[7][0] ) snake_case__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # output embeddings snake_case__ = np.asarray(weights[9][0] ) snake_case__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # Initialise PyTorch model snake_case__ = ReformerConfig.from_json_file(UpperCAmelCase_ ) print(f'''Building PyTorch model from configuration: {config}''' ) snake_case__ = ReformerModelWithLMHead(UpperCAmelCase_ ) with open(UpperCAmelCase_ , 'rb' ) as f: snake_case__ = pickle.load(UpperCAmelCase_ )['weights'] set_model_weights_in_torch(UpperCAmelCase_ , UpperCAmelCase_ , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a__ : Dict = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
368
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase : List[str] = logging.get_logger(__name__) lowercase : List[Any] = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class A__ ( __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __A : str = '''convnextv2''' def __init__( self , lowercase=3 , lowercase=4 , lowercase=4 , lowercase=None , lowercase=None , lowercase="gelu" , lowercase=0.02 , lowercase=1e-12 , lowercase=0.0 , lowercase=224 , lowercase=None , lowercase=None , **lowercase , ) -> Tuple: '''simple docstring''' super().__init__(**lowercase) a__ : Tuple = num_channels a__ : Optional[int] = patch_size a__ : List[Any] = num_stages a__ : Optional[Any] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes a__ : Tuple = [3, 3, 9, 3] if depths is None else depths a__ : Union[str, Any] = hidden_act a__ : List[Any] = initializer_range a__ : int = layer_norm_eps a__ : List[Any] = drop_path_rate a__ : Tuple = image_size a__ : int = ['stem'] + [F'stage{idx}' for idx in range(1 , len(self.depths) + 1)] a__ : Dict = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names)
717
from collections import namedtuple lowercase : List[str] = namedtuple("""from_to""", """from_ to""") lowercase : Tuple = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1_0_0_0), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00_454, 264.172), """cubicyard""": from_to(0.76_455, 1.30_795), """cubicfoot""": from_to(0.028, 35.3_147), """cup""": from_to(0.000_236_588, 4_226.75), } def A_ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
392
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel SCREAMING_SNAKE_CASE_:Optional[Any] = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _lowerCAmelCase ( cls ): A : Any = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def _lowerCAmelCase ( cls ): try: delete_repo(token=cls._token, repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def _lowerCAmelCase ( self ): A : Any = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) A : List[Any] = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""test-model-flax""", use_auth_token=self._token ) A : List[str] = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) A : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) A : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__, 1e-3, msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token, repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__, repo_id="""test-model-flax""", push_to_hub=lowerCamelCase__, use_auth_token=self._token ) A : int = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) A : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) A : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__, 1e-3, msg=f'''{key} not identical''' ) def _lowerCAmelCase ( self ): A : Optional[Any] = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) A : Dict = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""valid_org/test-model-flax-org""", use_auth_token=self._token ) A : int = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) A : List[Any] = flatten_dict(unfreeze(model.params ) ) A : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__, 1e-3, msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token, repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCamelCase__, repo_id="""valid_org/test-model-flax-org""", push_to_hub=lowerCamelCase__, use_auth_token=self._token ) A : Tuple = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) A : str = flatten_dict(unfreeze(model.params ) ) A : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__, 1e-3, msg=f'''{key} not identical''' ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" A : Optional[int] = True A : Optional[Any] = flatten_dict(modela.params ) A : Union[str, Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: A : str = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : Any = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A : int = FlaxBertModel(lowerCamelCase__ ) A : str = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__, lowerCamelCase__ ) ) with self.assertRaises(lowerCamelCase__ ): A : str = FlaxBertModel.from_pretrained(lowerCamelCase__ ) A : Optional[Any] = FlaxBertModel.from_pretrained(lowerCamelCase__, subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__, lowerCamelCase__ ) ) def _lowerCAmelCase ( self ): A : Optional[int] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A : Dict = FlaxBertModel(lowerCamelCase__ ) A : Tuple = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__, lowerCamelCase__ ), max_shard_size="""10KB""" ) with self.assertRaises(lowerCamelCase__ ): A : int = FlaxBertModel.from_pretrained(lowerCamelCase__ ) A : str = FlaxBertModel.from_pretrained(lowerCamelCase__, subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__, lowerCamelCase__ ) ) def _lowerCAmelCase ( self ): A : Union[str, Any] = 'bert' A : List[str] = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(lowerCamelCase__ ): A : Union[str, Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) A : Tuple = FlaxBertModel.from_pretrained(lowerCamelCase__, subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Optional[Any] = 'bert' A : Optional[int] = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(lowerCamelCase__ ): A : Tuple = FlaxBertModel.from_pretrained(lowerCamelCase__ ) A : Dict = FlaxBertModel.from_pretrained(lowerCamelCase__, subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
662
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowercase : '''simple docstring''' def __init__( self : List[Any] , snake_case : Optional[Any] , snake_case : int=13 , snake_case : int=7 , snake_case : Dict=True , snake_case : Union[str, Any]=True , snake_case : Union[str, Any]=True , snake_case : List[Any]=True , snake_case : Tuple=99 , snake_case : Any=[1, 1, 2] , snake_case : Dict=1 , snake_case : Optional[int]=32 , snake_case : Union[str, Any]=4 , snake_case : Optional[Any]=8 , snake_case : Dict=37 , snake_case : int="gelu_new" , snake_case : Optional[Any]=0.1 , snake_case : List[str]=0.1 , snake_case : Any=0.0 , snake_case : Dict=512 , snake_case : List[str]=3 , snake_case : Any=0.02 , snake_case : List[str]=3 , snake_case : Optional[Any]=4 , snake_case : Dict=None , snake_case : Any=False , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Any = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Dict = block_sizes SCREAMING_SNAKE_CASE : Dict = num_decoder_layers SCREAMING_SNAKE_CASE : int = d_model SCREAMING_SNAKE_CASE : Union[str, Any] = n_head SCREAMING_SNAKE_CASE : Optional[int] = d_head SCREAMING_SNAKE_CASE : int = d_inner SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : Optional[Any] = activation_dropout SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : str = scope SCREAMING_SNAKE_CASE : int = initializer_std # Used in the tests to check the size of the first attention layer SCREAMING_SNAKE_CASE : int = n_head # Used in the tests to check the size of the first hidden state SCREAMING_SNAKE_CASE : List[str] = self.d_model # Used in the tests to check the number of output hidden states/attentions SCREAMING_SNAKE_CASE : List[str] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: SCREAMING_SNAKE_CASE : Dict = self.num_hidden_layers + 2 def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Dict = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Dict = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase_ ( self : Dict , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = TFFunnelModel(config=snake_case ) SCREAMING_SNAKE_CASE : Dict = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Optional[Any] = model(snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(snake_case ) SCREAMING_SNAKE_CASE : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = TFFunnelModel(config=snake_case ) SCREAMING_SNAKE_CASE : Dict = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : int = TFFunnelModel(config=snake_case ) SCREAMING_SNAKE_CASE : List[Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase_ ( self : str , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Optional[Any] , snake_case : Tuple , snake_case : Dict , snake_case : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = TFFunnelBaseModel(config=snake_case ) SCREAMING_SNAKE_CASE : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = [input_ids, input_mask] SCREAMING_SNAKE_CASE : Tuple = model(snake_case ) SCREAMING_SNAKE_CASE : Any = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : int = TFFunnelBaseModel(config=snake_case ) SCREAMING_SNAKE_CASE : Any = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Optional[Any] = TFFunnelBaseModel(config=snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCamelCase_ ( self : Optional[int] , snake_case : Any , snake_case : str , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFFunnelForPreTraining(config=snake_case ) SCREAMING_SNAKE_CASE : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : List[str] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : List[str] , snake_case : Any , snake_case : int , snake_case : List[str] , snake_case : Tuple , snake_case : int , snake_case : str , snake_case : List[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = TFFunnelForMaskedLM(config=snake_case ) SCREAMING_SNAKE_CASE : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Any , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Dict , snake_case : Optional[Any] , snake_case : Dict , snake_case : Tuple , snake_case : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.num_labels SCREAMING_SNAKE_CASE : Any = TFFunnelForSequenceClassification(config=snake_case ) SCREAMING_SNAKE_CASE : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Optional[Any] , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Dict , snake_case : Dict , snake_case : int , snake_case : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFFunnelForMultipleChoice(config=snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Tuple = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Tuple = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : List[str] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Any , snake_case : Optional[Any] , snake_case : Dict , snake_case : Any , snake_case : int , snake_case : Union[str, Any] , snake_case : Any , snake_case : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFFunnelForTokenClassification(config=snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : str , snake_case : Optional[Any] , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TFFunnelForQuestionAnswering(config=snake_case ) SCREAMING_SNAKE_CASE : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : Dict = model(snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Any = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase : Optional[Any] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Tuple = False def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFFunnelModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=snake_case ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @require_tf class lowercase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCAmelCase : List[str] = False UpperCAmelCase : Tuple = False def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TFFunnelModelTester(self , base=snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=snake_case ) def lowerCamelCase_ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*snake_case ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case )
352
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
275
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a ( unittest.TestCase ): def __init__( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=7 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : List[Any]=18 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Any=400 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[Any]=True , ): _UpperCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = apply_ocr def lowerCAmelCase_ ( self : int ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """apply_ocr""" ) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : List[str] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __lowerCAmelCase ) self.assertIsInstance(encoding.boxes , __lowerCAmelCase ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Any ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # with apply_OCR = True _UpperCAmelCase = LayoutLMvaImageProcessor() from datasets import load_dataset _UpperCAmelCase = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) _UpperCAmelCase = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _UpperCAmelCase = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 _UpperCAmelCase = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __lowerCAmelCase ) self.assertListEqual(encoding.boxes , __lowerCAmelCase ) # with apply_OCR = False _UpperCAmelCase = LayoutLMvaImageProcessor(apply_ocr=__lowerCAmelCase ) _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
275
1
def A__ ( SCREAMING_SNAKE_CASE_ : list ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _UpperCAmelCase = grid[0] for row_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): _UpperCAmelCase = grid[row_n] _UpperCAmelCase = fill_row(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = grid[row_n] return grid[-1][-1] def A__ ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
32
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" if not postfix_notation: return 0 _SCREAMING_SNAKE_CASE = {'+', '-', '*', '/'} _SCREAMING_SNAKE_CASE = [] for token in postfix_notation: if token in operations: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
605
0

Dataset Card for "python_codestyles-mixed1-1k"

This dataset contains negative and positive examples with python code of compliance with a code style. A positive example represents compliance with the code style (label is 1). Each example is composed of two components, the first component consists of a code that either conforms to the code style or violates it and the second component corresponding to an example code that already conforms to a code style. The dataset combines both datasets infinityofspace/python_codestyles-random-1k and infinityofspace/python_codestyles-single-1k by randomly selecting half of the examples from each of the two datasets. The code styles in the combined dataset differ in at least one and exactly one codestyle rule, which is called a mixed codestyle dataset variant. The dataset consists of a training and test group, with none of the code styles overlapping between groups. In addition, both groups contain completely different underlying codes.

The examples contain source code from the following repositories:

repository tag or commit
TheAlgorithms/Python f614ed72170011d2d439f7901e1c8daa7deac8c4
huggingface/transformers v4.31.0
huggingface/datasets 2.13.1
huggingface/diffusers v0.18.2
huggingface/accelerate v0.21.0
Downloads last month
35