code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class UpperCAmelCase ( snake_case__ ):
_lowercase: str = DistilBertTokenizer
_lowercase: Optional[int] = DistilBertTokenizerFast
_lowercase: Optional[int] = True
@slow
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
_lowerCAmelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
_lowerCAmelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCamelCase_ )
_lowerCAmelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCamelCase_ )
_lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ )
_lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 207 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class a ( snake_case__ ):
'''simple docstring'''
__lowerCAmelCase : Optional[int] = """ClapFeatureExtractor"""
__lowerCAmelCase : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]:
super().__init__(lowerCamelCase_ , lowerCamelCase_ )
def __call__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ) -> List[Any]:
_a : Any = kwargs.pop('sampling_rate' , lowerCamelCase_ )
if text is None and audios is None:
raise ValueError('You have to specify either text or audios. Both cannot be none.' )
if text is not None:
_a : Union[str, Any] = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )
if audios is not None:
_a : List[str] = self.feature_extractor(
lowerCamelCase_ , sampling_rate=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )
if text is not None and audios is not None:
_a : List[Any] = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ )
def __UpperCamelCase ( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> Tuple:
return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ )
def __UpperCamelCase ( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> List[str]:
return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ )
@property
def __UpperCamelCase ( self ) -> Tuple:
_a : Dict = self.tokenizer.model_input_names
_a : Tuple = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 120 | 0 |
'''simple docstring'''
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("""0.8.3"""):
raise Exception("""requires gluonnlp == 0.8.3""")
if version.parse(mx.__version__) != version.parse("""1.5.0"""):
raise Exception("""requires mxnet == 1.5.0""")
logging.set_verbosity_info()
_snake_case : List[str] = logging.get_logger(__name__)
_snake_case : Any = """The Nymphenburg Palace is a beautiful palace in Munich!"""
def _a ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ):
_SCREAMING_SNAKE_CASE = {
"attention_cell": "multi_head",
"num_layers": 4,
"units": 1024,
"hidden_size": 768,
"max_length": 512,
"num_heads": 8,
"scaled": True,
"dropout": 0.1,
"use_residual": True,
"embed_size": 1024,
"embed_dropout": 0.1,
"word_embed": None,
"layer_norm_eps": 1e-5,
"token_type_vocab_size": 2,
}
_SCREAMING_SNAKE_CASE = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
_SCREAMING_SNAKE_CASE = BERTEncoder(
attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=_SCREAMING_SNAKE_CASE , output_all_encodings=_SCREAMING_SNAKE_CASE , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , _SCREAMING_SNAKE_CASE ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
_SCREAMING_SNAKE_CASE = "openwebtext_ccnews_stories_books_cased"
# Specify download folder to Gluonnlp's vocab
_SCREAMING_SNAKE_CASE = os.path.join(get_home_dir() , "models" )
_SCREAMING_SNAKE_CASE = _load_vocab(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cls=_SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE = nlp.model.BERTModel(
_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=_SCREAMING_SNAKE_CASE , use_token_type_embed=_SCREAMING_SNAKE_CASE , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=_SCREAMING_SNAKE_CASE , use_decoder=_SCREAMING_SNAKE_CASE , )
original_bort.load_parameters(_SCREAMING_SNAKE_CASE , cast_dtype=_SCREAMING_SNAKE_CASE , ignore_extra=_SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE = original_bort._collect_params_with_prefix()
# Build our config 🤗
_SCREAMING_SNAKE_CASE = {
"architectures": ["BertForMaskedLM"],
"attention_probs_dropout_prob": predefined_args["dropout"],
"hidden_act": "gelu",
"hidden_dropout_prob": predefined_args["dropout"],
"hidden_size": predefined_args["embed_size"],
"initializer_range": 0.02,
"intermediate_size": predefined_args["hidden_size"],
"layer_norm_eps": predefined_args["layer_norm_eps"],
"max_position_embeddings": predefined_args["max_length"],
"model_type": "bort",
"num_attention_heads": predefined_args["num_heads"],
"num_hidden_layers": predefined_args["num_layers"],
"pad_token_id": 1, # 2 = BERT, 1 = RoBERTa
"type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa
"vocab_size": len(_SCREAMING_SNAKE_CASE ),
}
_SCREAMING_SNAKE_CASE = BertConfig.from_dict(_SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE = BertForMaskedLM(_SCREAMING_SNAKE_CASE )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(_SCREAMING_SNAKE_CASE : int ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple ):
_SCREAMING_SNAKE_CASE = hf_param.shape
_SCREAMING_SNAKE_CASE = to_torch(params[gluon_param] )
_SCREAMING_SNAKE_CASE = gluon_param.shape
assert (
shape_hf == shape_gluon
), F'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'
return gluon_param
_SCREAMING_SNAKE_CASE = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" )
_SCREAMING_SNAKE_CASE = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" )
_SCREAMING_SNAKE_CASE = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" )
_SCREAMING_SNAKE_CASE = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
_SCREAMING_SNAKE_CASE = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
_SCREAMING_SNAKE_CASE = hf_bort_model.bert.encoder.layer[i]
# self attention
_SCREAMING_SNAKE_CASE = layer.attention.self
_SCREAMING_SNAKE_CASE = check_and_map_params(
self_attn.key.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
self_attn.key.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
self_attn.query.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
self_attn.query.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
self_attn.value.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
self_attn.value.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' )
# self attention output
_SCREAMING_SNAKE_CASE = layer.attention.output
_SCREAMING_SNAKE_CASE = check_and_map_params(
self_output.dense.bias , F'encoder.transformer_cells.{i}.proj.bias' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
self_output.dense.weight , F'encoder.transformer_cells.{i}.proj.weight' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
self_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.layer_norm.beta' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
self_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.layer_norm.gamma' )
# intermediate
_SCREAMING_SNAKE_CASE = layer.intermediate
_SCREAMING_SNAKE_CASE = check_and_map_params(
intermediate.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_1.bias' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
intermediate.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_1.weight' )
# output
_SCREAMING_SNAKE_CASE = layer.output
_SCREAMING_SNAKE_CASE = check_and_map_params(
bert_output.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_2.bias' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
bert_output.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_2.weight' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
bert_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.ffn.layer_norm.beta' )
_SCREAMING_SNAKE_CASE = check_and_map_params(
bert_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
_SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained("roberta-base" )
_SCREAMING_SNAKE_CASE = tokenizer.encode_plus(_SCREAMING_SNAKE_CASE )["input_ids"]
# Get gluon output
_SCREAMING_SNAKE_CASE = mx.nd.array([input_ids] )
_SCREAMING_SNAKE_CASE = original_bort(inputs=_SCREAMING_SNAKE_CASE , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(_SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE = BertModel.from_pretrained(_SCREAMING_SNAKE_CASE )
hf_bort_model.eval()
_SCREAMING_SNAKE_CASE = tokenizer.encode_plus(_SCREAMING_SNAKE_CASE , return_tensors="pt" )
_SCREAMING_SNAKE_CASE = hf_bort_model(**_SCREAMING_SNAKE_CASE )[0]
_SCREAMING_SNAKE_CASE = output_gluon[0].asnumpy()
_SCREAMING_SNAKE_CASE = output_hf[0].detach().numpy()
_SCREAMING_SNAKE_CASE = np.max(np.abs(hf_layer - gluon_layer ) ).item()
_SCREAMING_SNAKE_CASE = np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 )
if success:
print("✔️ Both model do output the same tensors" )
else:
print("❌ Both model do **NOT** output the same tensors" )
print("Absolute difference is:" , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
_snake_case : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
_snake_case : str = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path) | 493 |
'''simple docstring'''
def _a ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] ):
# Check if the input is valid
if not len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == 3:
raise ValueError("Please enter a valid equation." )
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError("Both a & b of two equations can't be zero." )
# Extract the coefficients
_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = equationa
_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = equationa
# Calculate the determinants of the matrices
_SCREAMING_SNAKE_CASE = aa * ba - aa * ba
_SCREAMING_SNAKE_CASE = ca * ba - ca * ba
_SCREAMING_SNAKE_CASE = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError("Infinite solutions. (Consistent system)" )
else:
raise ValueError("No solution. (Inconsistent system)" )
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
_SCREAMING_SNAKE_CASE = determinant_x / determinant
_SCREAMING_SNAKE_CASE = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y) | 493 | 1 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''):
raise Exception('''requires fairseq >= 1.0.0a''')
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''Hello world! cécé herlolip'''
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : bool ):
__a : Union[str, Any] = FairseqRobertaModel.from_pretrained(lowerCamelCase_ )
roberta.eval() # disable dropout
__a : Optional[int] = roberta.model.encoder.sentence_encoder
__a : Any = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , )
if classification_head:
__a : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our RoBERTa config:' , lowerCamelCase_ )
__a : Dict = XLMRobertaXLForSequenceClassification(lowerCamelCase_ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCamelCase_ )
model.eval()
# Now let's copy all the weights.
# Embeddings
__a : Optional[int] = roberta_sent_encoder.embed_tokens.weight
__a : Union[str, Any] = roberta_sent_encoder.embed_positions.weight
__a : List[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
__a : int = roberta_sent_encoder.layer_norm.weight
__a : Union[str, Any] = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__a : BertLayer = model.roberta.encoder.layer[i]
__a : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
__a : RobertaAttention = layer.attention
__a : Any = roberta_layer.self_attn_layer_norm.weight
__a : Any = roberta_layer.self_attn_layer_norm.bias
# self attention
__a : BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
__a : int = roberta_layer.self_attn.q_proj.weight
__a : Dict = roberta_layer.self_attn.q_proj.bias
__a : List[Any] = roberta_layer.self_attn.k_proj.weight
__a : Any = roberta_layer.self_attn.k_proj.bias
__a : List[str] = roberta_layer.self_attn.v_proj.weight
__a : Union[str, Any] = roberta_layer.self_attn.v_proj.bias
# self-attention output
__a : BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
__a : int = roberta_layer.self_attn.out_proj.weight
__a : Union[str, Any] = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
__a : Tuple = roberta_layer.final_layer_norm.weight
__a : Dict = roberta_layer.final_layer_norm.bias
# intermediate
__a : BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
__a : Union[str, Any] = roberta_layer.fca.weight
__a : Tuple = roberta_layer.fca.bias
# output
__a : BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
__a : int = roberta_layer.fca.weight
__a : Optional[Any] = roberta_layer.fca.bias
# end of layer
if classification_head:
__a : Union[str, Any] = roberta.model.classification_heads['mnli'].dense.weight
__a : Dict = roberta.model.classification_heads['mnli'].dense.bias
__a : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.weight
__a : Tuple = roberta.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__a : Optional[Any] = roberta.model.encoder.lm_head.dense.weight
__a : Tuple = roberta.model.encoder.lm_head.dense.bias
__a : Dict = roberta.model.encoder.lm_head.layer_norm.weight
__a : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.bias
__a : Union[str, Any] = roberta.model.encoder.lm_head.weight
__a : Optional[Any] = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
__a : torch.Tensor = roberta.encode(lowerCamelCase_ ).unsqueeze(0 ) # batch of size 1
__a : Tuple = model(lowerCamelCase_ )[0]
if classification_head:
__a : Union[str, Any] = roberta.model.classification_heads['mnli'](roberta.extract_features(lowerCamelCase_ ) )
else:
__a : int = roberta.model(lowerCamelCase_ )[0]
print(our_output.shape , their_output.shape )
__a : Any = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
__a : Union[str, Any] = torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
pathlib.Path(lowerCamelCase_ ).mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_ )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 47 |
import logging
from transformers import PretrainedConfig
_snake_case = logging.getLogger(__name__)
_snake_case = {
'''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''',
}
class _lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int ="bertabs"
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : List[Any]=6 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : List[Any]=0.2 , SCREAMING_SNAKE_CASE__ : Tuple=6 , SCREAMING_SNAKE_CASE__ : Any=7_68 , SCREAMING_SNAKE_CASE__ : str=8 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.2 , **SCREAMING_SNAKE_CASE__ : List[str] , ):
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE__ )
UpperCamelCase = vocab_size
UpperCamelCase = max_pos
UpperCamelCase = enc_layers
UpperCamelCase = enc_hidden_size
UpperCamelCase = enc_heads
UpperCamelCase = enc_ff_size
UpperCamelCase = enc_dropout
UpperCamelCase = dec_layers
UpperCamelCase = dec_hidden_size
UpperCamelCase = dec_heads
UpperCamelCase = dec_ff_size
UpperCamelCase = dec_dropout
| 282 | 0 |
'''simple docstring'''
def a ( ) -> int:
'''simple docstring'''
return [
a * b * (1000 - a - b)
for a in range(1 , 999 )
for b in range(__a , 999 )
if (a * a + b * b == (1000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(F"""{solution() = }""") | 280 |
'''simple docstring'''
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class lowercase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Tuple = '''hf-internal-testing/tiny-random-t5'''
UpperCamelCase__ :int = AutoTokenizer.from_pretrained(UpperCamelCase_ )
UpperCamelCase__ :int = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ )
UpperCamelCase__ :int = tokenizer('''This is me''' , return_tensors='''pt''' )
UpperCamelCase__ :Optional[int] = model.to_bettertransformer()
self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
UpperCamelCase__ :int = model.generate(**UpperCamelCase_ )
UpperCamelCase__ :Optional[Any] = model.reverse_bettertransformer()
self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCamelCase_ )
UpperCamelCase__ :Tuple = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ )
self.assertFalse(
any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
UpperCamelCase__ :Tuple = model_reloaded.generate(**UpperCamelCase_ )
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ ) )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :List[Any] = '''hf-internal-testing/tiny-random-t5'''
UpperCamelCase__ :Dict = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ )
UpperCamelCase__ :Union[str, Any] = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(UpperCamelCase_ ):
model.save_pretrained(UpperCamelCase_ )
UpperCamelCase__ :Tuple = model.reverse_bettertransformer()
model.save_pretrained(UpperCamelCase_ ) | 280 | 1 |
import doctest
from collections import deque
import numpy as np
class A__ :
def __init__( self ) -> None:
"""simple docstring"""
__magic_name__ : List[str] = [2, 1, 2, -1]
__magic_name__ : List[Any] = [1, 2, 3, 4]
def lowercase ( self ) -> list[float]:
"""simple docstring"""
__magic_name__ : Optional[Any] = len(self.first_signal )
__magic_name__ : Any = len(self.second_signal )
__magic_name__ : Optional[Any] = max(lowerCamelCase , lowerCamelCase )
# create a zero matrix of max_length x max_length
__magic_name__ : int = [[0] * max_length for i in range(lowerCamelCase )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowerCamelCase ):
__magic_name__ : str = deque(self.second_signal )
rotated_signal.rotate(lowerCamelCase )
for j, item in enumerate(lowerCamelCase ):
matrix[i][j] += item
# multiply the matrix with the first signal
__magic_name__ : Tuple = np.matmul(np.transpose(lowerCamelCase ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowerCamelCase , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 154 |
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
require_torch_neuroncore,
)
from transformers.training_args import ParallelMode
from transformers.utils import logging
lowercase_ = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class A__ ( __SCREAMING_SNAKE_CASE ):
def __init__( self , lowerCamelCase = 101 ) -> Any:
"""simple docstring"""
__magic_name__ : List[str] = length
def __len__( self ) -> Union[str, Any]:
"""simple docstring"""
return self.length
def __getitem__( self , lowerCamelCase ) -> int:
"""simple docstring"""
return i
class A__ :
def __call__( self , lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
return {"input_ids": torch.tensor(lowerCamelCase ), "labels": torch.tensor(lowerCamelCase )}
class A__ ( nn.Module ):
def __init__( self ) -> Tuple:
"""simple docstring"""
super().__init__()
# Add some (unused) params otherwise DDP will complain.
__magic_name__ : Tuple = nn.Linear(120 , 80 )
def lowercase ( self , lowerCamelCase , lowerCamelCase=None ) -> List[str]:
"""simple docstring"""
if labels is not None:
return torch.tensor(0.0 , device=input_ids.device ), input_ids
else:
return input_ids
class A__ ( __SCREAMING_SNAKE_CASE ):
@require_torch_neuroncore
def lowercase ( self ) -> List[Any]:
"""simple docstring"""
__magic_name__ : Union[str, Any] = F'''--nproc_per_node=2
--master_port={get_torch_dist_unique_port()}
{self.test_file_dir}/test_trainer_distributed.py
'''.split()
__magic_name__ : Dict = self.get_auto_remove_tmp_dir()
__magic_name__ : str = F'''--output_dir {output_dir}'''.split()
__magic_name__ : Optional[Any] = ['''torchrun'''] + distributed_args + args
execute_subprocess_async(lowerCamelCase , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
class A__ ( __SCREAMING_SNAKE_CASE ):
@require_torch_multi_gpu
def lowercase ( self ) -> str:
"""simple docstring"""
__magic_name__ : Optional[Any] = F'''--nproc_per_node={torch.cuda.device_count()}
--master_port={get_torch_dist_unique_port()}
{self.test_file_dir}/test_trainer_distributed.py
'''.split()
__magic_name__ : str = self.get_auto_remove_tmp_dir()
__magic_name__ : List[str] = F'''--output_dir {output_dir}'''.split()
__magic_name__ : Tuple = ['''torchrun'''] + distributed_args + args
execute_subprocess_async(lowerCamelCase , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
#
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
lowercase_ = HfArgumentParser((TrainingArguments,))
lowercase_ = parser.parse_args_into_dataclasses()[0]
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}"
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [101, 40, 7]:
lowercase_ = DummyDataset(dataset_length)
def lowerCAmelCase ( UpperCAmelCase ) ->Dict:
"""simple docstring"""
__magic_name__ : str = list(range(len(UpperCAmelCase ) ) )
__magic_name__ : List[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
'''Predictions and/or labels do not match expected results:\n - predictions: '''
F'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' )
return {"success": success}
lowercase_ = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
lowercase_ = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
lowercase_ = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
lowercase_ = 2
lowercase_ = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
lowercase_ = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
lowercase_ = None
| 154 | 1 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def UpperCAmelCase_ ( lowercase__ ):
'''simple docstring'''
a_ =[
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"_float_tensor",
"decoder.output_projection.weight",
]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( lowercase__ ):
'''simple docstring'''
a_ , a_ =emb.weight.shape
a_ =nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ )
a_ =emb.weight.data
return lin_layer
def UpperCAmelCase_ ( lowercase__ , lowercase__="facebook/mbart-large-en-ro" , lowercase__=False , lowercase__=False ):
'''simple docstring'''
a_ =torch.load(lowercase__ , map_location="cpu" )["model"]
remove_ignore_keys_(lowercase__ )
a_ =state_dict["encoder.embed_tokens.weight"].shape[0]
a_ =MBartConfig.from_pretrained(lowercase__ , vocab_size=lowercase__ )
if mbart_aa and finetuned:
a_ ="relu"
a_ =state_dict["decoder.embed_tokens.weight"]
a_ =MBartForConditionalGeneration(lowercase__ )
model.model.load_state_dict(lowercase__ )
if finetuned:
a_ =make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'''
)
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--hf_config''',
default='''facebook/mbart-large-cc25''',
type=str,
help='''Which huggingface architecture to use: mbart-large''',
)
parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''')
parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''')
lowercase = parser.parse_args()
lowercase = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 41 |
'''simple docstring'''
from __future__ import annotations
def UpperCAmelCase_ ( lowercase__ , lowercase__ ):
'''simple docstring'''
print(F"""Vertex\tShortest Distance from vertex {src}""" )
for i, d in enumerate(lowercase__ ):
print(F"""{i}\t\t{d}""" )
def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
for j in range(lowercase__ ):
a_ , a_ , a_ =(graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf" ) and distance[u] + w < distance[v]:
return True
return False
def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
a_ =[float("inf" )] * vertex_count
a_ =0.0
for _ in range(vertex_count - 1 ):
for j in range(lowercase__ ):
a_ , a_ , a_ =(graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf" ) and distance[u] + w < distance[v]:
a_ =distance[u] + w
a_ =check_negative_cycle(lowercase__ , lowercase__ , lowercase__ )
if negative_cycle_exists:
raise Exception("Negative cycle found" )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase = int(input('''Enter number of vertices: ''').strip())
lowercase = int(input('''Enter number of edges: ''').strip())
lowercase = [{} for _ in range(E)]
for i in range(E):
print('''Edge ''', i + 1)
lowercase , lowercase , lowercase = (
int(x)
for x in input('''Enter source, destination, weight: ''').strip().split(''' ''')
)
lowercase = {'''src''': src, '''dst''': dest, '''weight''': weight}
lowercase = int(input('''\nEnter shortest path source:''').strip())
lowercase = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 41 | 1 |
"""simple docstring"""
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class lowerCAmelCase ( snake_case__ , unittest.TestCase ):
'''simple docstring'''
A = BertTokenizer
A = BertTokenizerFast
A = True
A = True
A = filter_non_english
def lowerCamelCase__ ( self :Tuple ) -> List[str]:
"""simple docstring"""
super().setUp()
UpperCamelCase__ = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def lowerCamelCase__ ( self :str , lowerCamelCase_ :Optional[Any] ) -> Any:
"""simple docstring"""
UpperCamelCase__ = "UNwant\u00E9d,running"
UpperCamelCase__ = "unwanted, running"
return input_text, output_text
def lowerCamelCase__ ( self :Dict ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ = self.tokenizer_class(self.vocab_file )
UpperCamelCase__ = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(lowerCamelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [9, 6, 7, 1_2, 1_0, 1_1] )
def lowerCamelCase__ ( self :List[str] ) -> Optional[int]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = self.get_rust_tokenizer()
UpperCamelCase__ = "UNwant\u00E9d,running"
UpperCamelCase__ = tokenizer.tokenize(lowerCamelCase_ )
UpperCamelCase__ = rust_tokenizer.tokenize(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
UpperCamelCase__ = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase__ = self.get_rust_tokenizer()
UpperCamelCase__ = tokenizer.encode(lowerCamelCase_ )
UpperCamelCase__ = rust_tokenizer.encode(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
# With lower casing
UpperCamelCase__ = self.get_tokenizer(do_lower_case=lowerCamelCase_ )
UpperCamelCase__ = self.get_rust_tokenizer(do_lower_case=lowerCamelCase_ )
UpperCamelCase__ = "UNwant\u00E9d,running"
UpperCamelCase__ = tokenizer.tokenize(lowerCamelCase_ )
UpperCamelCase__ = rust_tokenizer.tokenize(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
UpperCamelCase__ = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase__ = self.get_rust_tokenizer()
UpperCamelCase__ = tokenizer.encode(lowerCamelCase_ )
UpperCamelCase__ = rust_tokenizer.encode(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
def lowerCamelCase__ ( self :str ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] )
def lowerCamelCase__ ( self :Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def lowerCamelCase__ ( self :str ) -> int:
"""simple docstring"""
UpperCamelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] )
def lowerCamelCase__ ( self :int ) -> Any:
"""simple docstring"""
UpperCamelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def lowerCamelCase__ ( self :Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def lowerCamelCase__ ( self :List[str] ) -> Any:
"""simple docstring"""
UpperCamelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def lowerCamelCase__ ( self :List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] )
def lowerCamelCase__ ( self :Optional[Any] ) -> Any:
"""simple docstring"""
UpperCamelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] )
def lowerCamelCase__ ( self :int ) -> int:
"""simple docstring"""
UpperCamelCase__ = BasicTokenizer(do_lower_case=lowerCamelCase_ , never_split=["[UNK]"] )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] )
def lowerCamelCase__ ( self :Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ = BasicTokenizer()
UpperCamelCase__ = "a\n'll !!to?'d of, can't."
UpperCamelCase__ = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."]
self.assertListEqual(tokenizer.tokenize(lowerCamelCase_ ) , lowerCamelCase_ )
def lowerCamelCase__ ( self :Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
UpperCamelCase__ = {}
for i, token in enumerate(lowerCamelCase_ ):
UpperCamelCase__ = i
UpperCamelCase__ = WordpieceTokenizer(vocab=lowerCamelCase_ , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] )
self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] )
def lowerCamelCase__ ( self :Tuple ) -> List[Any]:
"""simple docstring"""
self.assertTrue(_is_whitespace(" " ) )
self.assertTrue(_is_whitespace("\t" ) )
self.assertTrue(_is_whitespace("\r" ) )
self.assertTrue(_is_whitespace("\n" ) )
self.assertTrue(_is_whitespace("\u00A0" ) )
self.assertFalse(_is_whitespace("A" ) )
self.assertFalse(_is_whitespace("-" ) )
def lowerCamelCase__ ( self :List[str] ) -> List[Any]:
"""simple docstring"""
self.assertTrue(_is_control("\u0005" ) )
self.assertFalse(_is_control("A" ) )
self.assertFalse(_is_control(" " ) )
self.assertFalse(_is_control("\t" ) )
self.assertFalse(_is_control("\r" ) )
def lowerCamelCase__ ( self :Optional[int] ) -> List[str]:
"""simple docstring"""
self.assertTrue(_is_punctuation("-" ) )
self.assertTrue(_is_punctuation("$" ) )
self.assertTrue(_is_punctuation("`" ) )
self.assertTrue(_is_punctuation("." ) )
self.assertFalse(_is_punctuation("A" ) )
self.assertFalse(_is_punctuation(" " ) )
def lowerCamelCase__ ( self :Tuple ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(lowerCamelCase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
self.assertListEqual(
[rust_tokenizer.tokenize(lowerCamelCase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
@slow
def lowerCamelCase__ ( self :List[Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = self.tokenizer_class.from_pretrained("bert-base-uncased" )
UpperCamelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=lowerCamelCase_ )
UpperCamelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCamelCase_ )
UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ )
UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ )
assert encoded_sentence == [1_0_1] + text + [1_0_2]
assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2]
def lowerCamelCase__ ( self :Tuple ) -> int:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ )
UpperCamelCase__ = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
UpperCamelCase__ = tokenizer_r.encode_plus(
lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , )
UpperCamelCase__ = tokenizer_r.do_lower_case if hasattr(lowerCamelCase_ , "do_lower_case" ) else False
UpperCamelCase__ = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), "Allen"),
((2_1, 2_3), "##NL"),
((2_3, 2_4), "##P"),
((2_5, 3_3), "sentence"),
((3_3, 3_4), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), "allen"),
((2_1, 2_3), "##nl"),
((2_3, 2_4), "##p"),
((2_5, 3_3), "sentence"),
((3_3, 3_4), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] )
def lowerCamelCase__ ( self :List[Any] ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = ["的", "人", "有"]
UpperCamelCase__ = "".join(lowerCamelCase_ )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
UpperCamelCase__ = True
UpperCamelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ )
UpperCamelCase__ = tokenizer_p.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
UpperCamelCase__ = tokenizer_r.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(lowerCamelCase_ )
UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(lowerCamelCase_ )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase__ = False
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ )
UpperCamelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ )
UpperCamelCase__ = tokenizer_r.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
UpperCamelCase__ = tokenizer_p.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ )
UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(lowerCamelCase_ )
UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(lowerCamelCase_ )
# it is expected that only the first Chinese character is not preceded by "##".
UpperCamelCase__ = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(lowerCamelCase_ )
]
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) | 516 | """simple docstring"""
from __future__ import annotations
import time
A : List[str] = list[tuple[int, int]]
A : Tuple = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
A : Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class lowerCAmelCase :
'''simple docstring'''
def __init__( self :Any , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Node | None ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ = pos_x
UpperCamelCase__ = pos_y
UpperCamelCase__ = (pos_y, pos_x)
UpperCamelCase__ = goal_x
UpperCamelCase__ = goal_y
UpperCamelCase__ = parent
class lowerCAmelCase :
'''simple docstring'''
def __init__( self :int , lowerCamelCase_ :tuple[int, int] , lowerCamelCase_ :tuple[int, int] ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCamelCase_ )
UpperCamelCase__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCamelCase_ )
UpperCamelCase__ = [self.start]
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Any ) -> Path | None:
"""simple docstring"""
while self.node_queue:
UpperCamelCase__ = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
UpperCamelCase__ = True
return self.retrace_path(lowerCamelCase_ )
UpperCamelCase__ = self.get_successors(lowerCamelCase_ )
for node in successors:
self.node_queue.append(lowerCamelCase_ )
if not self.reached:
return [self.start.pos]
return None
def lowerCamelCase__ ( self :str , lowerCamelCase_ :Node ) -> list[Node]:
"""simple docstring"""
UpperCamelCase__ = []
for action in delta:
UpperCamelCase__ = parent.pos_x + action[1]
UpperCamelCase__ = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , lowerCamelCase_ ) )
return successors
def lowerCamelCase__ ( self :Any , lowerCamelCase_ :Node | None ) -> Path:
"""simple docstring"""
UpperCamelCase__ = node
UpperCamelCase__ = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCamelCase__ = current_node.parent
path.reverse()
return path
class lowerCAmelCase :
'''simple docstring'''
def __init__( self :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Union[str, Any] ) -> int:
"""simple docstring"""
UpperCamelCase__ = BreadthFirstSearch(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase__ = BreadthFirstSearch(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase__ = False
def lowerCamelCase__ ( self :int ) -> Path | None:
"""simple docstring"""
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
UpperCamelCase__ = self.fwd_bfs.node_queue.pop(0 )
UpperCamelCase__ = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
UpperCamelCase__ = True
return self.retrace_bidirectional_path(
lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase__ = current_bwd_node
UpperCamelCase__ = current_fwd_node
UpperCamelCase__ = {
self.fwd_bfs: self.fwd_bfs.get_successors(lowerCamelCase_ ),
self.bwd_bfs: self.bwd_bfs.get_successors(lowerCamelCase_ ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(lowerCamelCase_ )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Node , lowerCamelCase_ :Node ) -> Path:
"""simple docstring"""
UpperCamelCase__ = self.fwd_bfs.retrace_path(lowerCamelCase_ )
UpperCamelCase__ = self.bwd_bfs.retrace_path(lowerCamelCase_ )
bwd_path.pop()
bwd_path.reverse()
UpperCamelCase__ = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
A : str = (0, 0)
A : Any = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
A : Any = time.time()
A : Optional[int] = BreadthFirstSearch(init, goal)
A : List[str] = bfs.search()
A : Dict = time.time() - start_bfs_time
print('Unidirectional BFS computation time : ', bfs_time)
A : Optional[int] = time.time()
A : Any = BidirectionalBreadthFirstSearch(init, goal)
A : List[Any] = bd_bfs.search()
A : Dict = time.time() - start_bd_bfs_time
print('Bidirectional BFS computation time : ', bd_bfs_time) | 516 | 1 |
'''simple docstring'''
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def snake_case_ (_a : str , _a : int ):
assert isinstance(_a , _a )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def snake_case_ (_a : List[str] , _a : Tuple , _a : Optional[Any] ):
UpperCAmelCase = tmp_path / '''cache'''
UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase = ParquetDatasetReader(_a , cache_dir=_a , keep_in_memory=_a ).read()
_check_parquet_dataset(_a , _a )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def snake_case_ (_a : Tuple , _a : int , _a : Dict ):
UpperCAmelCase = tmp_path / '''cache'''
UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase = features.copy() if features else default_expected_features
UpperCAmelCase = (
Features({feature: Value(_a ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase = ParquetDatasetReader(_a , features=_a , cache_dir=_a ).read()
_check_parquet_dataset(_a , _a )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def snake_case_ (_a : Any , _a : int , _a : Dict ):
UpperCAmelCase = tmp_path / '''cache'''
UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase = ParquetDatasetReader(_a , cache_dir=_a , split=_a ).read()
_check_parquet_dataset(_a , _a )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def snake_case_ (_a : Dict , _a : Optional[Any] , _a : str ):
if issubclass(_a , _a ):
UpperCAmelCase = parquet_path
elif issubclass(_a , _a ):
UpperCAmelCase = [parquet_path]
UpperCAmelCase = tmp_path / '''cache'''
UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase = ParquetDatasetReader(_a , cache_dir=_a ).read()
_check_parquet_dataset(_a , _a )
def snake_case_ (_a : Any , _a : Union[str, Any] , _a : Tuple=("train",) ):
assert isinstance(_a , _a )
for split in splits:
UpperCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def snake_case_ (_a : Optional[Any] , _a : Optional[int] , _a : Dict ):
UpperCAmelCase = tmp_path / '''cache'''
UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase = ParquetDatasetReader(
{'''train''': parquet_path} , cache_dir=_a , keep_in_memory=_a ).read()
_check_parquet_datasetdict(_a , _a )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def snake_case_ (_a : Tuple , _a : List[str] , _a : Dict ):
UpperCAmelCase = tmp_path / '''cache'''
UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase = features.copy() if features else default_expected_features
UpperCAmelCase = (
Features({feature: Value(_a ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase = ParquetDatasetReader({'''train''': parquet_path} , features=_a , cache_dir=_a ).read()
_check_parquet_datasetdict(_a , _a )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def snake_case_ (_a : List[Any] , _a : Dict , _a : List[str] ):
if split:
UpperCAmelCase = {split: parquet_path}
else:
UpperCAmelCase = '''train'''
UpperCAmelCase = {'''train''': parquet_path, '''test''': parquet_path}
UpperCAmelCase = tmp_path / '''cache'''
UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase = ParquetDatasetReader(_a , cache_dir=_a ).read()
_check_parquet_datasetdict(_a , _a , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def snake_case_ (_a : Union[str, Any] , _a : int ):
UpperCAmelCase = ParquetDatasetWriter(_a , tmp_path / '''foo.parquet''' )
assert writer.write() > 0
UpperCAmelCase = pq.ParquetFile(tmp_path / '''foo.parquet''' )
UpperCAmelCase = pf.read()
assert dataset.data.table == output_table
def snake_case_ (_a : Any , _a : Optional[Any] ):
UpperCAmelCase = str(shared_datadir / '''test_image_rgb.jpg''' )
UpperCAmelCase = {'''image''': [image_path]}
UpperCAmelCase = Features({'''image''': Image()} )
UpperCAmelCase = Dataset.from_dict(_a , features=_a )
UpperCAmelCase = ParquetDatasetWriter(_a , tmp_path / '''foo.parquet''' )
assert writer.write() > 0
UpperCAmelCase = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) )
assert dataset.features == reloaded_dataset.features
UpperCAmelCase = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=_a ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'''feature, expected''' , [
(Features({'''foo''': Value('''int32''' )} ), None),
(Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def snake_case_ (_a : str , _a : Optional[int] ):
assert get_writer_batch_size(_a ) == expected
| 358 |
'''simple docstring'''
import unittest
from transformers import MobileBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertModel,
)
class _a :
def __init__( self : List[str] , lowercase : Dict , lowercase : List[Any]=13 , lowercase : Optional[Any]=7 , lowercase : Any=True , lowercase : str=True , lowercase : List[Any]=True , lowercase : str=True , lowercase : List[str]=99 , lowercase : int=64 , lowercase : List[Any]=32 , lowercase : str=5 , lowercase : Optional[int]=4 , lowercase : int=37 , lowercase : str="gelu" , lowercase : Any=0.1 , lowercase : Optional[Any]=0.1 , lowercase : Optional[int]=512 , lowercase : Union[str, Any]=16 , lowercase : List[str]=2 , lowercase : Tuple=0.02 , lowercase : List[Any]=3 , lowercase : int=4 , lowercase : Optional[Any]=None , ):
'''simple docstring'''
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = embedding_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = scope
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
if self.use_token_type_ids:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : Optional[Any] ):
'''simple docstring'''
return MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , )
def A ( self : Tuple , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : str , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = MobileBertModel(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase )
UpperCAmelCase = model(lowercase , token_type_ids=lowercase )
UpperCAmelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def A ( self : Dict , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : List[str] , lowercase : Dict , lowercase : List[str] , lowercase : Optional[int] , lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = MobileBertForMaskedLM(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self : Dict , lowercase : Any , lowercase : Dict , lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : List[Any] , lowercase : List[str] ):
'''simple docstring'''
UpperCAmelCase = MobileBertForNextSentencePrediction(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def A ( self : Optional[int] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Tuple ):
'''simple docstring'''
UpperCAmelCase = MobileBertForPreTraining(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , next_sentence_label=lowercase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def A ( self : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : str , lowercase : Optional[Any] , lowercase : List[str] , lowercase : int , lowercase : Any ):
'''simple docstring'''
UpperCAmelCase = MobileBertForQuestionAnswering(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self : Optional[Any] , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : List[str] , lowercase : List[str] , lowercase : str , lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = MobileBertForSequenceClassification(lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : List[Any] , lowercase : int , lowercase : List[Any] , lowercase : Tuple , lowercase : Optional[int] , lowercase : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.num_labels
UpperCAmelCase = MobileBertForTokenClassification(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self : int , lowercase : Optional[int] , lowercase : Tuple , lowercase : List[Any] , lowercase : Tuple , lowercase : str , lowercase : Tuple , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = self.num_choices
UpperCAmelCase = MobileBertForMultipleChoice(config=lowercase )
model.to(lowercase )
model.eval()
UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) = config_and_inputs
UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _a ( __a , __a , unittest.TestCase ):
__a : Dict = (
(
MobileBertModel,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
)
if is_torch_available()
else ()
)
__a : List[str] = (
{
"""feature-extraction""": MobileBertModel,
"""fill-mask""": MobileBertForMaskedLM,
"""question-answering""": MobileBertForQuestionAnswering,
"""text-classification""": MobileBertForSequenceClassification,
"""token-classification""": MobileBertForTokenClassification,
"""zero-shot""": MobileBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Any = True
def A ( self : List[Any] , lowercase : int , lowercase : Any , lowercase : Optional[Any]=False ):
'''simple docstring'''
UpperCAmelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase )
if return_labels:
if model_class in get_values(lowercase ):
UpperCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase )
UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase )
return inputs_dict
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = MobileBertModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 )
def A ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A ( self : Any ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase )
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase )
def A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase )
def A ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase )
def A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase )
def snake_case_ (_a : List[Any] ):
return torch.tensor(
_a , dtype=torch.long , device=_a , )
A =1E-3
@require_torch
@require_sentencepiece
@require_tokenizers
class _a ( unittest.TestCase ):
@slow
def A ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(lowercase )
UpperCAmelCase = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] )
with torch.no_grad():
UpperCAmelCase = model(lowercase )[0]
UpperCAmelCase = torch.Size((1, 9, 512) )
self.assertEqual(output.shape , lowercase )
UpperCAmelCase = torch.tensor(
[
[
[-2.4_736_526E07, 8.2_691_656E04, 1.6_521_838E05],
[-5.7_541_704E-01, 3.9_056_022E00, 4.4_011_507E00],
[2.6_047_359E00, 1.5_677_652E00, -1.7_324_188E-01],
]
] , device=lowercase , )
# MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
# ~1 difference, it's therefore not a good idea to measure using addition.
# Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
# result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
UpperCAmelCase = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE )
UpperCAmelCase = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE )
self.assertTrue(lower_bound and upper_bound )
| 358 | 1 |
'''simple docstring'''
import numpy as np
from PIL import Image
def __UpperCAmelCase ( a_: Union[str, Any], a_: List[Any], a_: str ):
_UpperCAmelCase : int = np.array(_lowercase )
if arr.shape[0] != arr.shape[1]:
raise ValueError("The input array is not a square matrix" )
_UpperCAmelCase : List[str] = 0
_UpperCAmelCase : Dict = 0
_UpperCAmelCase : Union[str, Any] = 0
_UpperCAmelCase : Any = 0
# compute the shape of the output matrix
_UpperCAmelCase : Optional[int] = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
_UpperCAmelCase : Any = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
_UpperCAmelCase : Optional[Any] = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
_UpperCAmelCase : Union[str, Any] = 0
_UpperCAmelCase : int = 0
return updated_arr
def __UpperCAmelCase ( a_: Union[str, Any], a_: Dict, a_: List[Any] ):
_UpperCAmelCase : int = np.array(_lowercase )
if arr.shape[0] != arr.shape[1]:
raise ValueError("The input array is not a square matrix" )
_UpperCAmelCase : Union[str, Any] = 0
_UpperCAmelCase : Any = 0
_UpperCAmelCase : int = 0
_UpperCAmelCase : Any = 0
# compute the shape of the output matrix
_UpperCAmelCase : Union[str, Any] = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
_UpperCAmelCase : Optional[Any] = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
_UpperCAmelCase : int = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
_UpperCAmelCase : Union[str, Any] = 0
_UpperCAmelCase : str = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='avgpooling', verbose=True)
# Loading the image
__a = Image.open('path_to_image')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show() | 494 | import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__UpperCamelCase : List[Any] = logging.get_logger(__name__)
def A ( _lowercase , _lowercase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = nn.functional.normalize(_lowercase )
SCREAMING_SNAKE_CASE : List[str] = nn.functional.normalize(_lowercase )
return torch.mm(_lowercase , normalized_text_embeds.t() )
class lowercase__ ( UpperCamelCase_):
UpperCamelCase_ = CLIPConfig
UpperCamelCase_ = ["""CLIPEncoderLayer"""]
def __init__( self : str , UpperCamelCase__ : CLIPConfig ):
'''simple docstring'''
super().__init__(UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModel(config.vision_config )
SCREAMING_SNAKE_CASE : Tuple = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.ones(17 ) , requires_grad=UpperCamelCase__ )
SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.ones(3 ) , requires_grad=UpperCamelCase__ )
@torch.no_grad()
def __A ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.vision_model(UpperCamelCase__ )[1] # pooled_output
SCREAMING_SNAKE_CASE : Any = self.visual_projection(UpperCamelCase__ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
SCREAMING_SNAKE_CASE : str = cosine_distance(UpperCamelCase__ , self.special_care_embeds ).cpu().float().numpy()
SCREAMING_SNAKE_CASE : Optional[int] = cosine_distance(UpperCamelCase__ , self.concept_embeds ).cpu().float().numpy()
SCREAMING_SNAKE_CASE : Union[str, Any] = []
SCREAMING_SNAKE_CASE : str = image_embeds.shape[0]
for i in range(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE : Dict = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
SCREAMING_SNAKE_CASE : Optional[Any] = 0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
SCREAMING_SNAKE_CASE : Dict = special_cos_dist[i][concept_idx]
SCREAMING_SNAKE_CASE : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item()
SCREAMING_SNAKE_CASE : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} )
SCREAMING_SNAKE_CASE : Optional[Any] = 0.01
for concept_idx in range(len(cos_dist[0] ) ):
SCREAMING_SNAKE_CASE : Optional[int] = cos_dist[i][concept_idx]
SCREAMING_SNAKE_CASE : List[str] = self.concept_embeds_weights[concept_idx].item()
SCREAMING_SNAKE_CASE : Dict = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(UpperCamelCase__ )
result.append(UpperCamelCase__ )
SCREAMING_SNAKE_CASE : List[Any] = [len(res['''bad_concepts'''] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def __A ( self : int , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : torch.FloatTensor ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.vision_model(UpperCamelCase__ )[1] # pooled_output
SCREAMING_SNAKE_CASE : Union[str, Any] = self.visual_projection(UpperCamelCase__ )
SCREAMING_SNAKE_CASE : str = cosine_distance(UpperCamelCase__ , self.special_care_embeds )
SCREAMING_SNAKE_CASE : Any = cosine_distance(UpperCamelCase__ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
SCREAMING_SNAKE_CASE : int = 0.0
SCREAMING_SNAKE_CASE : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
SCREAMING_SNAKE_CASE : Any = torch.any(special_scores > 0 , dim=1 )
SCREAMING_SNAKE_CASE : Any = special_care * 0.01
SCREAMING_SNAKE_CASE : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
SCREAMING_SNAKE_CASE : List[str] = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
SCREAMING_SNAKE_CASE : Tuple = torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 248 | 0 |
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowercase_ = logging.get_logger(__name__)
class __UpperCamelCase ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *_A : str , **_A : List[str] ):
"""simple docstring"""
warnings.warn(
'''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use DPTImageProcessor instead.''' , __a , )
super().__init__(*__a , **__a )
| 717 |
from __future__ import annotations
def a__ ( snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = str(snake_case )
return n == n[::-1]
def a__ ( snake_case = 1_000_000 ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = 0
for i in range(1 , snake_case ):
if is_palindrome(snake_case ) and is_palindrome(bin(snake_case ).split('''b''' )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 131 | 0 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def lowerCamelCase__ ( a__ , a__ = "cpu" , a__ = None) -> Dict:
"""simple docstring"""
_snake_case : Optional[int] = torch.load(UpperCAmelCase_ , map_location=UpperCAmelCase_)
for k, v in tqdm(state_dict.items()):
if not isinstance(UpperCAmelCase_ , torch.Tensor):
raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin')
_snake_case : str = v.half()
if save_path is None: # overwrite src_path
_snake_case : str = src_path
torch.save(UpperCAmelCase_ , UpperCAmelCase_)
if __name__ == "__main__":
fire.Fire(convert)
| 517 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowercase_: Optional[Any] = {
'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'],
'tokenization_canine': ['CanineTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_: str = [
'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST',
'CanineForMultipleChoice',
'CanineForQuestionAnswering',
'CanineForSequenceClassification',
'CanineForTokenClassification',
'CanineLayer',
'CanineModel',
'CaninePreTrainedModel',
'load_tf_weights_in_canine',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
lowercase_: int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 648 | 0 |
'''simple docstring'''
import os
from collections import deque
import torch
from torch.utils.data import Dataset
class _UpperCAmelCase ( lowerCAmelCase__ ):
"""simple docstring"""
def __init__( self , lowerCAmelCase_="" , lowerCAmelCase_="train" ):
'''simple docstring'''
assert os.path.isdir(lowerCAmelCase_ )
a_ : int = []
a_ : Optional[Any] = os.listdir(lowerCAmelCase_ )
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
a_ : Dict = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
if not os.path.isfile(lowerCAmelCase_ ):
continue
self.documents.append(lowerCAmelCase_ )
def __len__( self ):
'''simple docstring'''
return len(self.documents )
def __getitem__( self , lowerCAmelCase_ ):
'''simple docstring'''
a_ : Optional[int] = self.documents[idx]
a_ : Optional[Any] = document_path.split("""/""" )[-1]
with open(lowerCAmelCase_ , encoding="""utf-8""" ) as source:
a_ : Optional[Any] = source.read()
a_ , a_ : List[Any] = process_story(lowerCAmelCase_ )
return document_name, story_lines, summary_lines
def _snake_case ( A_ : Union[str, Any] ):
"""simple docstring"""
a_ : List[Any] = list(filter(lambda A_ : len(A_ ) != 0 , [line.strip() for line in raw_story.split("""\n""" )] ) )
# for some unknown reason some lines miss a period, add it
a_ : int = [_add_missing_period(A_ ) for line in nonempty_lines]
# gather article lines
a_ : Optional[Any] = []
a_ : List[Any] = deque(A_ )
while True:
try:
a_ : List[Any] = lines.popleft()
if element.startswith("""@highlight""" ):
break
story_lines.append(A_ )
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
a_ : Union[str, Any] = list(filter(lambda A_ : not t.startswith("""@highlight""" ) , A_ ) )
return story_lines, summary_lines
def _snake_case ( A_ : str ):
"""simple docstring"""
a_ : Union[str, Any] = [""".""", """!""", """?""", """...""", """'""", """`""", """\"""", """\u2019""", """\u2019""", """)"""]
if line.startswith("""@highlight""" ):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
def _snake_case ( A_ : Any , A_ : List[Any] , A_ : List[str] ):
"""simple docstring"""
if len(A_ ) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(A_ )) )
return sequence
def _snake_case ( A_ : Union[str, Any] , A_ : Optional[int] ):
"""simple docstring"""
a_ : Optional[int] = torch.ones_like(A_ )
a_ : Optional[int] = sequence == pad_token_id
a_ : List[Any] = 0
return mask
def _snake_case ( A_ : Union[str, Any] , A_ : Optional[Any] , A_ : Tuple ):
"""simple docstring"""
a_ : Optional[Any] = [tokenizer.encode(A_ ) for line in story_lines]
a_ : Union[str, Any] = [token for sentence in story_lines_token_ids for token in sentence]
a_ : Any = [tokenizer.encode(A_ ) for line in summary_lines]
a_ : Optional[Any] = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def _snake_case ( A_ : int , A_ : Tuple ):
"""simple docstring"""
a_ : Dict = []
for sequence in batch:
a_ : List[str] = -1
a_ : Any = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2 )
batch_embeddings.append(A_ )
return torch.tensor(A_ )
| 460 |
'''simple docstring'''
from __future__ import annotations
def _snake_case ( A_ : int ):
"""simple docstring"""
a_ : Optional[Any] = 2
a_ : int = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(A_ )
if n > 1:
factors.append(A_ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 460 | 1 |
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class snake_case :
def __init__( self : int , a_ : int , a_ : Union[str, Any]=13 , a_ : List[str]=7 , a_ : int=True , a_ : List[str]=True , a_ : List[Any]=False , a_ : Optional[Any]=True , a_ : Optional[Any]=99 , a_ : List[Any]=64 , a_ : Optional[int]=5 , a_ : str=4 , a_ : List[Any]=64 , a_ : int="gelu" , a_ : List[str]=0.1 , a_ : List[Any]=0.1 , a_ : Optional[Any]=512 , a_ : Union[str, Any]=16 , a_ : int=2 , a_ : Dict=0.02 , a_ : Optional[Any]=3 , a_ : List[Any]=4 , a_ : Optional[int]=None , )-> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = parent
SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = seq_length
SCREAMING_SNAKE_CASE__ : int = is_training
SCREAMING_SNAKE_CASE__ : int = use_input_mask
SCREAMING_SNAKE_CASE__ : str = use_token_type_ids
SCREAMING_SNAKE_CASE__ : int = use_labels
SCREAMING_SNAKE_CASE__ : Tuple = vocab_size
SCREAMING_SNAKE_CASE__ : Any = hidden_size
SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads
SCREAMING_SNAKE_CASE__ : Union[str, Any] = intermediate_size
SCREAMING_SNAKE_CASE__ : Tuple = hidden_act
SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Tuple = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Dict = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Any = type_vocab_size
SCREAMING_SNAKE_CASE__ : Dict = type_sequence_label_size
SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_labels
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_choices
SCREAMING_SNAKE_CASE__ : List[Any] = scope
def __lowercase( self : Dict )-> List[str]:
"""simple docstring"""
return MPNetConfig.from_pretrained('microsoft/mpnet-base' )
def __lowercase( self : Any )-> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Dict = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ : Dict = None
SCREAMING_SNAKE_CASE__ : List[Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE__ : Any = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowercase( self : Optional[int] )-> Dict:
"""simple docstring"""
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def __lowercase( self : int , a_ : Any , a_ : Dict , a_ : Dict , a_ : Optional[Any] , a_ : List[Any] , a_ : Optional[int] )-> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = MPNetModel(config=a_ )
model.to(a_ )
model.eval()
SCREAMING_SNAKE_CASE__ : Tuple = model(a_ , a_ )
SCREAMING_SNAKE_CASE__ : Dict = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __lowercase( self : Tuple , a_ : int , a_ : Union[str, Any] , a_ : List[str] , a_ : Optional[Any] , a_ : Tuple , a_ : int )-> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = MPNetForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(
a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowercase( self : str , a_ : Union[str, Any] , a_ : Optional[int] , a_ : Dict , a_ : int , a_ : List[Any] , a_ : List[str] )-> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.num_labels
SCREAMING_SNAKE_CASE__ : int = MPNetForSequenceClassification(a_ )
model.to(a_ )
model.eval()
SCREAMING_SNAKE_CASE__ : Any = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowercase( self : Optional[Any] , a_ : Union[str, Any] , a_ : Optional[Any] , a_ : Dict , a_ : Optional[int] , a_ : Union[str, Any] , a_ : int )-> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self.num_choices
SCREAMING_SNAKE_CASE__ : Any = MPNetForMultipleChoice(config=a_ )
model.to(a_ )
model.eval()
SCREAMING_SNAKE_CASE__ : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ : Tuple = model(
a_ , attention_mask=a_ , labels=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowercase( self : int , a_ : Optional[int] , a_ : Union[str, Any] , a_ : Any , a_ : int , a_ : List[str] , a_ : Any )-> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels
SCREAMING_SNAKE_CASE__ : Any = MPNetForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
SCREAMING_SNAKE_CASE__ : int = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowercase( self : str )-> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Dict = config_and_inputs
SCREAMING_SNAKE_CASE__ : str = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class snake_case ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
lowercase_ = (
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
lowercase_ = (
{
'feature-extraction': MPNetModel,
'fill-mask': MPNetForMaskedLM,
'question-answering': MPNetForQuestionAnswering,
'text-classification': MPNetForSequenceClassification,
'token-classification': MPNetForTokenClassification,
'zero-shot': MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase_ = False
lowercase_ = True
def __lowercase( self : Optional[Any] )-> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = MPNetModelTester(self )
SCREAMING_SNAKE_CASE__ : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 )
def __lowercase( self : Optional[int] )-> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowercase( self : int )-> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*a_ )
def __lowercase( self : Dict )-> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*a_ )
def __lowercase( self : str )-> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*a_ )
def __lowercase( self : List[str] )-> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*a_ )
def __lowercase( self : Any )-> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*a_ )
@require_torch
class snake_case ( unittest.TestCase ):
@slow
def __lowercase( self : str )-> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = MPNetModel.from_pretrained('microsoft/mpnet-base' )
SCREAMING_SNAKE_CASE__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
SCREAMING_SNAKE_CASE__ : Tuple = model(a_ )[0]
SCREAMING_SNAKE_CASE__ : int = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , a_ )
SCREAMING_SNAKE_CASE__ : Dict = torch.tensor(
[[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) )
| 85 |
def a ( A__ : int ) -> bool:
"""simple docstring"""
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('Program to check whether a number is a Perfect number or not...')
lowercase_ = int(input('Enter number: ').strip())
print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
| 291 | 0 |
'''simple docstring'''
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class __lowerCAmelCase :
snake_case : CommonSchedulerState
# setable values
snake_case : jnp.ndarray
snake_case : jnp.ndarray
snake_case : Optional[int] = None
@classmethod
def snake_case_ (cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
return cls(common=lowerCAmelCase__ , init_noise_sigma=lowerCAmelCase__ , timesteps=lowerCAmelCase__ )
@dataclass
class __lowerCAmelCase ( __a ):
snake_case : DDPMSchedulerState
class __lowerCAmelCase ( __a , __a ):
snake_case : int = [e.name for e in FlaxKarrasDiffusionSchedulers]
snake_case : jnp.dtype
@property
def snake_case_ (self ):
return True
@register_to_config
def __init__(self , lowerCAmelCase__ = 1_0_0_0 , lowerCAmelCase__ = 0.0_0_0_1 , lowerCAmelCase__ = 0.0_2 , lowerCAmelCase__ = "linear" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fixed_small" , lowerCAmelCase__ = True , lowerCAmelCase__ = "epsilon" , lowerCAmelCase__ = jnp.floataa , ):
_UpperCAmelCase : Tuple = dtype
def snake_case_ (self , lowerCAmelCase__ = None ):
if common is None:
_UpperCAmelCase : Union[str, Any] = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
_UpperCAmelCase : Optional[int] = jnp.array(1.0 , dtype=self.dtype )
_UpperCAmelCase : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=lowerCAmelCase__ , init_noise_sigma=lowerCAmelCase__ , timesteps=lowerCAmelCase__ , )
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None ):
return sample
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = () ):
_UpperCAmelCase : List[str] = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_UpperCAmelCase : List[Any] = (jnp.arange(0 , lowerCAmelCase__ ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=lowerCAmelCase__ , timesteps=lowerCAmelCase__ , )
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ):
_UpperCAmelCase : Optional[int] = state.common.alphas_cumprod[t]
_UpperCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_UpperCAmelCase : Optional[Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
_UpperCAmelCase : Any = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
_UpperCAmelCase : str = jnp.clip(lowerCAmelCase__ , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
_UpperCAmelCase : Tuple = jnp.log(jnp.clip(lowerCAmelCase__ , a_min=1e-20 ) )
elif variance_type == "fixed_large":
_UpperCAmelCase : str = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
_UpperCAmelCase : List[Any] = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
_UpperCAmelCase : Optional[int] = variance
_UpperCAmelCase : Optional[Any] = state.common.betas[t]
_UpperCAmelCase : Optional[Any] = (predicted_variance + 1) / 2
_UpperCAmelCase : Optional[int] = frac * max_log + (1 - frac) * min_log
return variance
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True , ):
_UpperCAmelCase : Union[str, Any] = timestep
if key is None:
_UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
_UpperCAmelCase , _UpperCAmelCase : Dict = jnp.split(lowerCAmelCase__ , sample.shape[1] , axis=1 )
else:
_UpperCAmelCase : Optional[int] = None
# 1. compute alphas, betas
_UpperCAmelCase : Optional[Any] = state.common.alphas_cumprod[t]
_UpperCAmelCase : Union[str, Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
_UpperCAmelCase : str = 1 - alpha_prod_t
_UpperCAmelCase : Tuple = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_UpperCAmelCase : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_UpperCAmelCase : Optional[Any] = model_output
elif self.config.prediction_type == "v_prediction":
_UpperCAmelCase : Optional[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` "
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_UpperCAmelCase : List[Any] = jnp.clip(lowerCAmelCase__ , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_UpperCAmelCase : Any = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
_UpperCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_UpperCAmelCase : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
_UpperCAmelCase : List[Any] = jax.random.split(lowerCAmelCase__ , num=1 )
_UpperCAmelCase : Any = jax.random.normal(lowerCAmelCase__ , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(lowerCAmelCase__ , lowerCAmelCase__ , predicted_variance=lowerCAmelCase__ ) ** 0.5) * noise
_UpperCAmelCase : Any = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
_UpperCAmelCase : int = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=lowerCAmelCase__ , state=lowerCAmelCase__ )
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
return add_noise_common(state.common , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
return get_velocity_common(state.common , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __len__(self ):
return self.config.num_train_timesteps
| 156 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __lowerCAmelCase ( metaclass=__a ):
snake_case : str = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : List[Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Union[str, Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Optional[int] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Optional[Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Any = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Tuple = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : List[Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Optional[Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : str = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : List[Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Dict = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Optional[int] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Optional[Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : str = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Optional[int] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Tuple = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : List[str] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Optional[Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Dict = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Tuple = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : int = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Union[str, Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Optional[int] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : str = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Any = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Union[str, Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : List[Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Optional[int] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : List[Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
class __lowerCAmelCase ( metaclass=__a ):
snake_case : Union[str, Any] = ["""sentencepiece"""]
def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ):
requires_backends(self , ["""sentencepiece"""] )
| 156 | 1 |
from math import ceil
def _a ( SCREAMING_SNAKE_CASE = 10_01 ):
"""simple docstring"""
lowercase__ = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowercase__ = 2 * i + 1
lowercase__ = 2 * i
lowercase__ = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
lowerCAmelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 43 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
class _lowerCamelCase :
'''simple docstring'''
def __init__( self : Tuple , _A : list[str] ) -> Optional[Any]:
__magic_name__ : list[dict] = []
self.adlist.append(
{'value': '', 'next_states': [], 'fail_state': 0, 'output': []} )
for keyword in keywords:
self.add_keyword(_A )
self.set_fail_transitions()
def __lowerCAmelCase ( self : Any , _A : int , _A : str ) -> int | None:
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def __lowerCAmelCase ( self : Dict , _A : str ) -> None:
__magic_name__ : Any = 0
for character in keyword:
__magic_name__ : Tuple = self.find_next_state(_A , _A )
if next_state is None:
self.adlist.append(
{
'value': character,
'next_states': [],
'fail_state': 0,
'output': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
__magic_name__ : Optional[int] = len(self.adlist ) - 1
else:
__magic_name__ : int = next_state
self.adlist[current_state]["output"].append(_A )
def __lowerCAmelCase ( self : str ) -> None:
__magic_name__ : deque = deque()
for node in self.adlist[0]["next_states"]:
q.append(_A )
__magic_name__ : str = 0
while q:
__magic_name__ : int = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(_A )
__magic_name__ : int = self.adlist[r]['fail_state']
while (
self.find_next_state(_A , self.adlist[child]['value'] ) is None
and state != 0
):
__magic_name__ : str = self.adlist[state]['fail_state']
__magic_name__ : Tuple = self.find_next_state(
_A , self.adlist[child]['value'] )
if self.adlist[child]["fail_state"] is None:
__magic_name__ : Union[str, Any] = 0
__magic_name__ : List[str] = (
self.adlist[child]['output']
+ self.adlist[self.adlist[child]['fail_state']]['output']
)
def __lowerCAmelCase ( self : Optional[Any] , _A : str ) -> dict[str, list[int]]:
__magic_name__ : dict = {} # returns a dict with keywords and list of its occurrences
__magic_name__ : Dict = 0
for i in range(len(_A ) ):
while (
self.find_next_state(_A , string[i] ) is None
and current_state != 0
):
__magic_name__ : Union[str, Any] = self.adlist[current_state]['fail_state']
__magic_name__ : Optional[Any] = self.find_next_state(_A , string[i] )
if next_state is None:
__magic_name__ : List[Any] = 0
else:
__magic_name__ : Dict = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
__magic_name__ : Dict = []
result[key].append(i - len(_A ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod() | 561 | 0 |
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int]=13 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=99 , UpperCAmelCase__ : Union[str, Any]=[1, 1, 2] , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : int=32 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=8 , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : str="gelu_new" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : str=512 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Dict=False , ) ->Optional[int]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_input_mask
A__ = use_token_type_ids
A__ = use_labels
A__ = vocab_size
A__ = block_sizes
A__ = num_decoder_layers
A__ = d_model
A__ = n_head
A__ = d_head
A__ = d_inner
A__ = hidden_act
A__ = hidden_dropout
A__ = attention_dropout
A__ = activation_dropout
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = 2
A__ = num_labels
A__ = num_choices
A__ = scope
A__ = initializer_std
# Used in the tests to check the size of the first attention layer
A__ = n_head
# Used in the tests to check the size of the first hidden state
A__ = self.d_model
# Used in the tests to check the number of output hidden states/attentions
A__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
A__ = self.num_hidden_layers + 2
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
A__ = None
if self.use_input_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length])
A__ = None
if self.use_token_type_ids:
A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
A__ = None
A__ = None
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
A__ = ids_tensor([self.batch_size] , self.num_choices)
A__ = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , ) ->Optional[Any]:
'''simple docstring'''
A__ = TFFunnelModel(config=UpperCamelCase__)
A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A__ = model(UpperCamelCase__)
A__ = [input_ids, input_mask]
A__ = model(UpperCamelCase__)
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
A__ = False
A__ = TFFunnelModel(config=UpperCamelCase__)
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
A__ = False
A__ = TFFunnelModel(config=UpperCamelCase__)
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model))
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , ) ->Dict:
'''simple docstring'''
A__ = TFFunnelBaseModel(config=UpperCamelCase__)
A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A__ = model(UpperCamelCase__)
A__ = [input_ids, input_mask]
A__ = model(UpperCamelCase__)
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
A__ = False
A__ = TFFunnelBaseModel(config=UpperCamelCase__)
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model))
A__ = False
A__ = TFFunnelBaseModel(config=UpperCamelCase__)
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , ) ->List[Any]:
'''simple docstring'''
A__ = TFFunnelForPreTraining(config=UpperCamelCase__)
A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , ) ->Optional[Any]:
'''simple docstring'''
A__ = TFFunnelForMaskedLM(config=UpperCamelCase__)
A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , ) ->List[str]:
'''simple docstring'''
A__ = self.num_labels
A__ = TFFunnelForSequenceClassification(config=UpperCamelCase__)
A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , ) ->Optional[int]:
'''simple docstring'''
A__ = self.num_choices
A__ = TFFunnelForMultipleChoice(config=UpperCamelCase__)
A__ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1) , (1, self.num_choices, 1))
A__ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1) , (1, self.num_choices, 1))
A__ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1) , (1, self.num_choices, 1))
A__ = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , ) ->Optional[int]:
'''simple docstring'''
A__ = self.num_labels
A__ = TFFunnelForTokenClassification(config=UpperCamelCase__)
A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , ) ->str:
'''simple docstring'''
A__ = TFFunnelForQuestionAnswering(config=UpperCamelCase__)
A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A__ = model(UpperCamelCase__)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) = config_and_inputs
A__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( _A , _A , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel),
'''fill-mask''': TFFunnelForMaskedLM,
'''question-answering''': TFFunnelForQuestionAnswering,
'''text-classification''': TFFunnelForSequenceClassification,
'''token-classification''': TFFunnelForTokenClassification,
'''zero-shot''': TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
'''simple docstring'''
A__ = TFFunnelModelTester(self)
A__ = ConfigTester(self , config_class=UpperCamelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__)
@require_tf
class UpperCamelCase_ ( _A , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple:
'''simple docstring'''
A__ = TFFunnelModelTester(self , base=UpperCamelCase__)
A__ = ConfigTester(self , config_class=UpperCamelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*UpperCamelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__)
def SCREAMING_SNAKE_CASE ( self : int) ->Dict:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__)
| 710 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str=13 , UpperCAmelCase__ : Union[str, Any]=30 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Any=37 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Union[str, Any]=10 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : List[Any]=None , ) ->Dict:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
A__ = (image_size // patch_size) ** 2
A__ = num_patches + 1
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str) ->Tuple:
'''simple docstring'''
A__ = TFViTModel(config=UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(UpperCAmelCase__ , interpolate_pos_encoding=UpperCAmelCase__ , training=UpperCAmelCase__)
A__ = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]) ->List[str]:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFViTForImageClassification(UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# Test with an image with different size than the one specified in config.
A__ = self.image_size // 2
A__ = pixel_values[:, :, :image_size, :image_size]
A__ = model(UpperCAmelCase__ , interpolate_pos_encoding=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
A__ = 1
A__ = TFViTForImageClassification(UpperCAmelCase__)
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
A__ = model(UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
UpperCAmelCase__ = (
{'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = TFViTModelTester(self)
A__ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : str) ->List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='''ViT does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer))
A__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase__ , tf.keras.layers.Layer))
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]:
'''simple docstring'''
A__ = TFViTModel.from_pretrained('''google/vit-base-patch16-224''')
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( ) -> int:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''') if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE ( self : Any) ->int:
'''simple docstring'''
A__ = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.2744, 0.8215, -0.0836])
tf.debugging.assert_near(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)
| 177 | 0 |
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
__a : List[str] = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""")
@require_sentencepiece
@require_tokenizers
class __UpperCAmelCase ( snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowercase = GPTSwaTokenizer
lowercase = False
lowercase = True
lowercase = False
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
UpperCamelCase = GPTSwaTokenizer(SCREAMING_SNAKE_CASE , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase = "This is a test"
UpperCamelCase = "This is a test"
return input_text, output_text
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = "<s>"
UpperCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<unk>" )
self.assertEqual(vocab_keys[1] , "<s>" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2000 )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 2000 )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = GPTSwaTokenizer(SCREAMING_SNAKE_CASE )
UpperCamelCase = tokenizer.tokenize("This is a test" )
self.assertListEqual(SCREAMING_SNAKE_CASE , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , [465, 287, 265, 631, 842] )
UpperCamelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." )
# fmt: off
self.assertListEqual(
SCREAMING_SNAKE_CASE , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] , )
# fmt: on
UpperCamelCase = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE )
self.assertListEqual(
SCREAMING_SNAKE_CASE , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , )
UpperCamelCase = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE )
# fmt: off
self.assertListEqual(
SCREAMING_SNAKE_CASE , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] )
# fmt: on
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = GPTSwaTokenizer(SCREAMING_SNAKE_CASE )
UpperCamelCase = ["This is a test", "I was born in 92000, and this is falsé."]
UpperCamelCase = [
[465, 287, 265, 631, 842],
[262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assertListEqual(tokenizer.encode_fast(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
# Test that decode_fast returns the input text
for text, token_ids in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assertEqual(tokenizer.decode_fast(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = [
"<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')",
"Hey there, how are you doing this fine day?",
"This is a text with a trailing spaces followed by a dot .",
"Häj sväjs lillebrör! =)",
"Det är inget fel på Mr. Cool",
]
# fmt: off
UpperCamelCase = {"input_ids": [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE , model_name="AI-Sweden/gpt-sw3-126m" , sequences=SCREAMING_SNAKE_CASE , )
| 606 |
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
__a : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class __UpperCAmelCase ( snake_case__ ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1:
UpperCamelCase = (
f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'''
f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '''
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1" , "1.0.0" , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE )
UpperCamelCase = dict(scheduler.config )
UpperCamelCase = 1
UpperCamelCase = FrozenDict(SCREAMING_SNAKE_CASE )
if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False:
UpperCamelCase = (
f'''The configuration file of this scheduler: {scheduler} has not set the configuration'''
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
" Hub, it would be very nice if you could open a Pull request for the"
" `scheduler/scheduler_config.json` file"
)
deprecate("skip_prk_steps not set" , "1.0.0" , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE )
UpperCamelCase = dict(scheduler.config )
UpperCamelCase = True
UpperCamelCase = FrozenDict(SCREAMING_SNAKE_CASE )
if safety_checker is None:
logger.warning(
f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
self.register_modules(
segmentation_model=SCREAMING_SNAKE_CASE , segmentation_processor=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCamelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
self.enable_attention_slicing(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
UpperCamelCase = torch.device("cuda" )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(SCREAMING_SNAKE_CASE , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = 7.5 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , **SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
UpperCamelCase = self.segmentation_processor(
text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device )
UpperCamelCase = self.segmentation_model(**SCREAMING_SNAKE_CASE )
UpperCamelCase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
UpperCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
UpperCamelCase = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , mask_image=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , )
| 606 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase__ ( UpperCAmelCase ):
"""simple docstring"""
snake_case__ : str = 0.0_0
snake_case__ : int = 0
for resistor in resistors:
if resistor <= 0:
snake_case__ : str = f"""Resistor at index {index} has a negative or zero value!"""
raise ValueError(lowercase_ )
first_sum += 1 / float(lowercase_ )
index += 1
return 1 / first_sum
def lowerCAmelCase__ ( UpperCAmelCase ):
"""simple docstring"""
snake_case__ : str = 0.0_0
snake_case__ : Union[str, Any] = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
snake_case__ : int = f"""Resistor at index {index} has a negative value!"""
raise ValueError(lowercase_ )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 707 |
'''simple docstring'''
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
lowerCAmelCase__ = 2
class _A :
'''simple docstring'''
def __init__( self : List[Any] , *, # begin keyword-only arguments
lowerCamelCase : Optional[int]="<s>" , lowerCamelCase : str="<pad>" , lowerCamelCase : str="</s>" , lowerCamelCase : int="<unk>" , lowerCamelCase : Tuple=None , )-> str:
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = bos, unk, pad, eos
snake_case__ : Dict = []
snake_case__ : int = []
snake_case__ : Optional[int] = {}
snake_case__ : int = self.add_symbol(lowerCamelCase )
snake_case__ : Optional[int] = self.add_symbol(lowerCamelCase )
snake_case__ : List[str] = self.add_symbol(lowerCamelCase )
snake_case__ : int = self.add_symbol(lowerCamelCase )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(lowerCamelCase )
snake_case__ : int = len(self.symbols )
def __eq__( self : str , lowerCamelCase : Tuple )-> Optional[Any]:
return self.indices == other.indices
def __getitem__( self : Optional[int] , lowerCamelCase : Any )-> Tuple:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : Any )-> Union[str, Any]:
return len(self.symbols )
def __contains__( self : Tuple , lowerCamelCase : int )-> int:
return sym in self.indices
@classmethod
def __lowerCAmelCase ( cls : Dict , lowerCamelCase : Union[str, Any] )-> str:
snake_case__ : List[str] = cls()
d.add_from_file(lowerCamelCase )
return d
def __lowerCAmelCase ( self : int , lowerCamelCase : int , lowerCamelCase : List[Any]=1 , lowerCamelCase : Union[str, Any]=False )-> Any:
if word in self.indices and not overwrite:
snake_case__ : Union[str, Any] = self.indices[word]
snake_case__ : str = self.count[idx] + n
return idx
else:
snake_case__ : Any = len(self.symbols )
snake_case__ : Optional[int] = idx
self.symbols.append(lowerCamelCase )
self.count.append(lowerCamelCase )
return idx
def __lowerCAmelCase ( self : Any , lowerCamelCase : List[Any] )-> Dict:
return 0
def __lowerCAmelCase ( self : int , lowerCamelCase : str )-> Optional[int]:
if isinstance(lowerCamelCase , lowerCamelCase ):
try:
with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(lowerCamelCase )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(lowerCamelCase ) )
return
snake_case__ : Union[str, Any] = f.readlines()
snake_case__ : Optional[Any] = self._load_meta(lowerCamelCase )
for line in lines[indices_start_line:]:
try:
snake_case__ , snake_case__ : Optional[int] = line.rstrip().rsplit(""" """ , 1 )
if field == "#fairseq:overwrite":
snake_case__ : str = True
snake_case__ , snake_case__ : Any = line.rsplit(""" """ , 1 )
else:
snake_case__ : Dict = False
snake_case__ : Optional[int] = int(lowerCamelCase )
snake_case__ : List[str] = line
if word in self and not overwrite:
raise RuntimeError(
"""Duplicate word found when loading Dictionary: '{}'. """
"""Duplicate words can overwrite earlier ones by adding the """
"""#fairseq:overwrite flag at the end of the corresponding row """
"""in the dictionary file. If using the Camembert model, please """
"""download an updated copy of the model file.""".format(lowerCamelCase ) )
self.add_symbol(lowerCamelCase , n=lowerCamelCase , overwrite=lowerCamelCase )
except ValueError:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" )
def lowerCAmelCase__ ( UpperCAmelCase ):
"""simple docstring"""
snake_case__ : List[str] = dict((re.sub(R"""@@$""" , """""" , UpperCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , UpperCAmelCase ), v) for k, v in d.items() )
snake_case__ : str = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[f"""{k}</w>"""]
snake_case__ : Optional[Any] = d[k] # restore
return da
def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ):
"""simple docstring"""
if not os.path.exists(UpperCAmelCase ):
raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" )
os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase )
print(f"""Writing results to {pytorch_dump_folder_path}""" )
# handle various types of models
snake_case__ : Tuple = os.path.join(UpperCAmelCase , """checkpoint.pt""" )
if not os.path.isfile(UpperCAmelCase ):
raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" )
snake_case__ : str = torch.load(UpperCAmelCase , map_location="""cpu""" )
snake_case__ : List[Any] = chkpt["""cfg"""]["""model"""]
# dicts
snake_case__ : Optional[Any] = os.path.join(UpperCAmelCase , """dict.txt""" )
if not os.path.isfile(UpperCAmelCase ):
raise ValueError(f"""path to the file {dict_file} does not exist!""" )
snake_case__ : List[str] = Dictionary.load(UpperCAmelCase )
snake_case__ : Optional[int] = rewrite_dict_keys(src_dict.indices )
snake_case__ : Tuple = len(UpperCAmelCase )
snake_case__ : Optional[Any] = os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES["""vocab_file"""] )
print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" )
with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) )
# merges_file (bpecodes)
snake_case__ : Union[str, Any] = os.path.join(UpperCAmelCase , """bpecodes""" )
if not os.path.isfile(UpperCAmelCase ):
raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" )
snake_case__ : Tuple = os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] )
shutil.copyfile(UpperCAmelCase , UpperCAmelCase )
# model config
snake_case__ : str = os.path.join(UpperCAmelCase , """config.json""" )
snake_case__ : Dict = {
"""activation_dropout""": args["""activation_dropout"""],
"""architectures""": ["""BioGptForCausalLM"""],
"""attention_probs_dropout_prob""": args["""attention_dropout"""],
"""bos_token_id""": 0,
"""eos_token_id""": 2,
"""hidden_act""": args["""activation_fn"""],
"""hidden_dropout_prob""": args["""dropout"""],
"""hidden_size""": args["""decoder_embed_dim"""],
"""initializer_range""": 0.0_2,
"""intermediate_size""": args["""decoder_ffn_embed_dim"""],
"""layer_norm_eps""": 1E-1_2,
"""layerdrop""": args["""decoder_layerdrop"""],
"""max_position_embeddings""": args["""max_target_positions"""],
"""model_type""": """biogpt""",
"""num_attention_heads""": args["""decoder_attention_heads"""],
"""num_hidden_layers""": args["""decoder_layers"""],
"""pad_token_id""": 1,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_decoder_input_output_embed"""],
"""vocab_size""": src_vocab_size,
}
# good hparam defaults to start with
print(f"""Generating {biogpt_model_config_file}""" )
with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) )
# tokenizer config
snake_case__ : int = os.path.join(UpperCAmelCase , UpperCAmelCase )
snake_case__ : List[str] = {
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
"""model_max_length""": 1024,
"""pad_token""": """<pad>""",
"""special_tokens_map_file""": None,
"""tokenizer_class""": """BioGptTokenizer""",
"""unk_token""": """<unk>""",
}
print(f"""Generating {biogpt_tokenizer_config_file}""" )
with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) )
# model
snake_case__ : int = chkpt["""model"""]
# remove unneeded keys
snake_case__ : List[Any] = [
"""decoder.version""",
]
for k in ignore_keys:
model_state_dict.pop(UpperCAmelCase , UpperCAmelCase )
snake_case__ : List[Any] = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith("""output_projection.weight""" ):
snake_case__ : str = model_state_dict.pop(UpperCAmelCase )
else:
snake_case__ : Optional[int] = model_state_dict.pop(UpperCAmelCase )
snake_case__ : Tuple = BioGptConfig.from_pretrained(UpperCAmelCase )
snake_case__ : Optional[int] = BioGptForCausalLM(UpperCAmelCase )
# check that it loads ok
model_new.load_state_dict(UpperCAmelCase )
# save
snake_case__ : Dict = os.path.join(UpperCAmelCase , UpperCAmelCase )
print(f"""Generating {pytorch_weights_dump_path}""" )
torch.save(UpperCAmelCase , UpperCAmelCase )
print("""Conversion is done!""" )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
lowerCAmelCase__ = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 172 | 0 |
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_lowerCamelCase = (DDIMParallelScheduler,)
_lowerCamelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50))
def UpperCAmelCase__ ( self , **_lowercase ) -> int:
'''simple docstring'''
snake_case_ : Optional[int] = {
"""num_train_timesteps""": 1_0_0_0,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""clip_sample""": True,
}
config.update(**_lowercase )
return config
def UpperCAmelCase__ ( self , **_lowercase ) -> int:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.scheduler_classes[0]
snake_case_ : Dict = self.get_scheduler_config(**_lowercase )
snake_case_ : Optional[Any] = scheduler_class(**_lowercase )
snake_case_ , snake_case_ : int = 1_0, 0.0
snake_case_ : Any = self.dummy_model()
snake_case_ : List[str] = self.dummy_sample_deter
scheduler.set_timesteps(_lowercase )
for t in scheduler.timesteps:
snake_case_ : Dict = model(_lowercase , _lowercase )
snake_case_ : Any = scheduler.step(_lowercase , _lowercase , _lowercase , _lowercase ).prev_sample
return sample
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
for timesteps in [1_0_0, 5_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=_lowercase )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_lowercase )
snake_case_ : str = self.scheduler_classes[0]
snake_case_ : Optional[int] = self.get_scheduler_config(steps_offset=1 )
snake_case_ : Any = scheduler_class(**_lowercase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowercase )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowercase )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=_lowercase )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=_lowercase )
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
self.check_over_configs(thresholding=_lowercase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , )
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
for t in [1, 1_0, 4_9]:
self.check_over_forward(time_step=_lowercase )
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ):
self.check_over_forward(time_step=_lowercase , num_inference_steps=_lowercase )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=_lowercase , eta=_lowercase )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
snake_case_ : List[Any] = self.scheduler_classes[0]
snake_case_ : List[str] = self.get_scheduler_config()
snake_case_ : str = scheduler_class(**_lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.1_4771 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.3_2460 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.0_0979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1E-5
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
snake_case_ : List[Any] = self.scheduler_classes[0]
snake_case_ : str = self.get_scheduler_config()
snake_case_ : Any = scheduler_class(**_lowercase )
snake_case_ , snake_case_ : List[str] = 1_0, 0.0
scheduler.set_timesteps(_lowercase )
snake_case_ : Tuple = self.dummy_model()
snake_case_ : List[str] = self.dummy_sample_deter
snake_case_ : List[str] = self.dummy_sample_deter + 0.1
snake_case_ : List[Any] = self.dummy_sample_deter - 0.1
snake_case_ : Tuple = samplea.shape[0]
snake_case_ : List[str] = torch.stack([samplea, samplea, samplea] , dim=0 )
snake_case_ : int = torch.arange(_lowercase )[0:3, None].repeat(1 , _lowercase )
snake_case_ : Any = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
snake_case_ : Optional[Any] = scheduler.batch_step_no_noise(_lowercase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowercase )
snake_case_ : Dict = torch.sum(torch.abs(_lowercase ) )
snake_case_ : List[str] = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 1147.7904 ) < 1E-2
assert abs(result_mean.item() - 0.4982 ) < 1E-3
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
snake_case_ : List[Any] = self.full_loop()
snake_case_ : Tuple = torch.sum(torch.abs(_lowercase ) )
snake_case_ : Optional[Any] = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 172.0067 ) < 1E-2
assert abs(result_mean.item() - 0.22_3967 ) < 1E-3
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
snake_case_ : List[Any] = self.full_loop(prediction_type="""v_prediction""" )
snake_case_ : Tuple = torch.sum(torch.abs(_lowercase ) )
snake_case_ : Dict = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 52.5302 ) < 1E-2
assert abs(result_mean.item() - 0.0684 ) < 1E-3
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
snake_case_ : Optional[Any] = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 )
snake_case_ : Any = torch.sum(torch.abs(_lowercase ) )
snake_case_ : List[str] = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 149.8295 ) < 1E-2
assert abs(result_mean.item() - 0.1951 ) < 1E-3
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Dict = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 )
snake_case_ : Optional[Any] = torch.sum(torch.abs(_lowercase ) )
snake_case_ : Dict = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 149.0784 ) < 1E-2
assert abs(result_mean.item() - 0.1941 ) < 1E-3
| 58 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class _lowercase ( unittest.TestCase ):
def __init__( self : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : int = 3_2 , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCamelCase__ : bool = True , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , lowerCamelCase__ : Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , lowerCamelCase__ : bool = True , lowerCamelCase__ : List[str]=7 , lowerCamelCase__ : int=3_0 , lowerCamelCase__ : List[Any]=4_0_0 , lowerCamelCase__ : int=3 , ) -> Optional[Any]:
"""simple docstring"""
A_ = parent
A_ = do_resize
A_ = size if size is not None else {'''shortest_edge''': 2_8_8}
A_ = size_divisor
A_ = do_rescale
A_ = rescale_factor
A_ = do_normalize
A_ = do_center_crop
A_ = image_mean
A_ = image_std
A_ = do_pad
A_ = batch_size
A_ = num_channels
A_ = min_resolution
A_ = max_resolution
def UpperCamelCase ( self : str ) -> int:
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def UpperCamelCase ( self : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int=False ) -> Dict:
"""simple docstring"""
if not batched:
A_ = self.size['''shortest_edge''']
A_ = image_inputs[0]
if isinstance(lowerCamelCase__ , Image.Image ):
A_ ,A_ = image.size
else:
A_ ,A_ = image.shape[1], image.shape[2]
A_ = size / min(lowerCamelCase__ , lowerCamelCase__ )
if h < w:
A_ ,A_ = size, scale * w
else:
A_ ,A_ = scale * h, size
A_ = int((1_3_3_3 / 8_0_0) * size )
if max(lowerCamelCase__ , lowerCamelCase__ ) > max_size:
A_ = max_size / max(lowerCamelCase__ , lowerCamelCase__ )
A_ = newh * scale
A_ = neww * scale
A_ ,A_ = int(newh + 0.5 ), int(neww + 0.5 )
A_ ,A_ = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
A_ = []
for image in image_inputs:
A_ ,A_ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A_ = max(lowerCamelCase__ , key=lambda lowerCamelCase__ : item[0] )[0]
A_ = max(lowerCamelCase__ , key=lambda lowerCamelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _lowercase ( __lowerCamelCase,unittest.TestCase ):
_lowercase : List[str] = BridgeTowerImageProcessor if is_vision_available() else None
def UpperCamelCase ( self : int ) -> Tuple:
"""simple docstring"""
A_ = BridgeTowerImageProcessingTester(self )
@property
def UpperCamelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
A_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''size_divisor''' ) )
def UpperCamelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
pass
def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , Image.Image )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
A_ ,A_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values
A_ ,A_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCamelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
A_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , np.ndarray )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
A_ ,A_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values
A_ ,A_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCamelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , torch.Tensor )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
A_ ,A_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values
A_ ,A_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 203 | 0 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax.numpy as jnp
from jax import random
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils_flax import FlaxSchedulerMixin
@flax.struct.dataclass
class _A :
# setable values
__a = None
__a = None
__a = None # sigma(t_i)
@classmethod
def _lowerCamelCase ( cls ) -> Any:
return cls()
@dataclass
class _A ( __a ):
__a = 42
__a = 42
__a = 42
class _A ( __a , __a ):
@property
def _lowerCamelCase ( self ) -> Optional[Any]:
return True
@register_to_config
def __init__( self , SCREAMING_SNAKE_CASE__ = 0.02 , SCREAMING_SNAKE_CASE__ = 100 , SCREAMING_SNAKE_CASE__ = 1.0_07 , SCREAMING_SNAKE_CASE__ = 80 , SCREAMING_SNAKE_CASE__ = 0.05 , SCREAMING_SNAKE_CASE__ = 50 , ) -> Dict:
pass
def _lowerCamelCase ( self ) -> Dict:
return KarrasVeSchedulerState.create()
def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = () ) -> KarrasVeSchedulerState:
lowerCamelCase__ = jnp.arange(0 , SCREAMING_SNAKE_CASE__ )[::-1].copy()
lowerCamelCase__ = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=SCREAMING_SNAKE_CASE__ , schedule=jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) , timesteps=SCREAMING_SNAKE_CASE__ , )
def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Tuple[jnp.ndarray, float]:
if self.config.s_min <= sigma <= self.config.s_max:
lowerCamelCase__ = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 )
else:
lowerCamelCase__ = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCamelCase__ = random.split(SCREAMING_SNAKE_CASE__ , num=1 )
lowerCamelCase__ = self.config.s_noise * random.normal(key=SCREAMING_SNAKE_CASE__ , shape=sample.shape )
lowerCamelCase__ = sigma + gamma * sigma
lowerCamelCase__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , ) -> Union[FlaxKarrasVeOutput, Tuple]:
lowerCamelCase__ = sample_hat + sigma_hat * model_output
lowerCamelCase__ = (sample_hat - pred_original_sample) / sigma_hat
lowerCamelCase__ = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=SCREAMING_SNAKE_CASE__ , derivative=SCREAMING_SNAKE_CASE__ , state=SCREAMING_SNAKE_CASE__ )
def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , ) -> Union[FlaxKarrasVeOutput, Tuple]:
lowerCamelCase__ = sample_prev + sigma_prev * model_output
lowerCamelCase__ = (sample_prev - pred_original_sample) / sigma_prev
lowerCamelCase__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=SCREAMING_SNAKE_CASE__ , derivative=SCREAMING_SNAKE_CASE__ , state=SCREAMING_SNAKE_CASE__ )
def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str:
raise NotImplementedError()
| 707 |
"""simple docstring"""
# Algorithm for the pigeonhole sorting
def UpperCAmelCase__ ( A__ ) -> Dict:
"""simple docstring"""
lowerCamelCase__ = min(A__ ) # min() finds the minimum value
lowerCamelCase__ = max(A__ ) # max() finds the maximum value
lowerCamelCase__ = max_val - min_val + 1 # size is difference of max and min values plus one
# list of pigeonholes of size equal to the variable size
lowerCamelCase__ = [0] * size
# Populate the pigeonholes.
for x in a:
assert isinstance(A__ , A__ ), "integers only please"
holes[x - min_val] += 1
# Putting the elements back into the array in an order.
lowerCamelCase__ = 0
for count in range(A__ ):
while holes[count] > 0:
holes[count] -= 1
lowerCamelCase__ = count + min_val
i += 1
def UpperCAmelCase__ ( ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__ = [8, 3, 2, 7, 4, 6, 8]
pigeonhole_sort(A__ )
print("Sorted order is:" , " ".join(A__ ) )
if __name__ == "__main__":
main()
| 274 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_a: List[Any] = logging.get_logger(__name__)
class __UpperCamelCase ( lowercase ):
SCREAMING_SNAKE_CASE__ = ['pixel_values']
def __init__( self : Optional[int] , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = PIL.Image.BICUBIC , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : Union[int, float] = 1 / 255 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , **lowerCAmelCase : Tuple , ):
'''simple docstring'''
super().__init__(**lowerCAmelCase )
UpperCAmelCase_ = size if size is not None else {"height": 256, "width": 256}
UpperCAmelCase_ = get_size_dict(lowerCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_center_crop
UpperCAmelCase_ = crop_size
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self : List[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PIL.Image.BICUBIC , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Optional[Any] , ):
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" )
return resize(
lowerCAmelCase , size=(size["height"], size["width"]) , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase )
def __A ( self : Optional[int] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Tuple , ):
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" )
return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase )
def __A ( self : Dict , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[int, float] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : str , ):
'''simple docstring'''
return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase )
def __A ( self : Union[str, Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : str , ):
'''simple docstring'''
return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase )
def __A ( self : Union[str, Any] , lowerCAmelCase : ImageInput , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : Tuple=None , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = None , lowerCAmelCase : float = None , lowerCAmelCase : bool = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : Dict , ):
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(lowerCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" )
UpperCAmelCase_ = make_list_of_images(lowerCAmelCase )
if not valid_images(lowerCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(lowerCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ = [self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) for image in images]
if do_center_crop:
UpperCAmelCase_ = [self.center_crop(image=lowerCAmelCase , size=lowerCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) for image in images]
UpperCAmelCase_ = {"pixel_values": images}
return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) | 162 |
import json
import os
import unittest
from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast
from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __UpperCamelCase ( lowercase , unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = GPTaTokenizer
SCREAMING_SNAKE_CASE__ = GPTaTokenizerFast
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = {'add_prefix_space': True}
SCREAMING_SNAKE_CASE__ = False
def __A ( self : Dict ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase_ = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
"<|endoftext|>",
]
UpperCAmelCase_ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) )
UpperCAmelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase_ = {"unk_token": "<unk>"}
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase ) )
def __A ( self : Optional[int] , **lowerCAmelCase : List[str] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase )
def __A ( self : Union[str, Any] , **lowerCAmelCase : Tuple ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase )
def __A ( self : Optional[Any] , lowerCAmelCase : int ):
'''simple docstring'''
UpperCAmelCase_ = "lower newer"
UpperCAmelCase_ = "lower newer"
return input_text, output_text
def __A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase_ = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ = "lower newer"
UpperCAmelCase_ = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase , add_prefix_space=lowerCAmelCase )
self.assertListEqual(lowerCAmelCase , lowerCAmelCase )
UpperCAmelCase_ = tokens + [tokenizer.unk_token]
UpperCAmelCase_ = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase )
def __A ( self : str ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase )
UpperCAmelCase_ = "lower newer"
# Testing tokenization
UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase , add_prefix_space=lowerCAmelCase )
UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase )
self.assertListEqual(lowerCAmelCase , lowerCAmelCase )
# Testing conversion to ids without special tokens
UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase )
UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase )
self.assertListEqual(lowerCAmelCase , lowerCAmelCase )
# Testing conversion to ids with special tokens
UpperCAmelCase_ = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase )
UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_prefix_space=lowerCAmelCase )
UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase )
self.assertListEqual(lowerCAmelCase , lowerCAmelCase )
# Testing the unknown token
UpperCAmelCase_ = tokens + [rust_tokenizer.unk_token]
UpperCAmelCase_ = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase )
def __A ( self : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : int ):
'''simple docstring'''
pass
def __A ( self : str , lowerCAmelCase : List[str]=15 ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase )
# Simple input
UpperCAmelCase_ = "This is a simple input"
UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"]
UpperCAmelCase_ = ("This is a simple input", "This is a pair")
UpperCAmelCase_ = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" )
# Simple input
self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" )
# Simple input
self.assertRaises(
lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , )
# Pair input
self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" )
# Pair input
self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" )
# Pair input
self.assertRaises(
lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , )
def __A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" )
# Simple input
UpperCAmelCase_ = "This is a simple input"
UpperCAmelCase_ = ["This is a simple input looooooooong", "This is a simple input"]
UpperCAmelCase_ = ("This is a simple input", "This is a pair")
UpperCAmelCase_ = [
("This is a simple input loooooong", "This is a simple input"),
("This is a simple pair loooooong", "This is a simple pair"),
]
UpperCAmelCase_ = tokenizer.pad_token_id
UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding="max_length" , max_length=30 , return_tensors="np" )
UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , truncate=lowerCAmelCase , return_tensors="np" )
UpperCAmelCase_ = tokenizer(*lowerCAmelCase , padding="max_length" , max_length=60 , return_tensors="np" )
UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , truncate=lowerCAmelCase , return_tensors="np" )
# s
# test single string max_length padding
self.assertEqual(out_s["input_ids"].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s["input_ids"] )
self.assertTrue(0 in out_s["attention_mask"] )
# s2
# test automatic padding
self.assertEqual(out_sa["input_ids"].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["input_ids"][0] )
self.assertFalse(0 in out_sa["attention_mask"][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["input_ids"][1] )
self.assertTrue(0 in out_sa["attention_mask"][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["input_ids"].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p["input_ids"] )
self.assertTrue(0 in out_p["attention_mask"] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["input_ids"].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["input_ids"][0] )
self.assertFalse(0 in out_pa["attention_mask"][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["input_ids"][1] )
self.assertTrue(0 in out_pa["attention_mask"][1] )
def __A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase_ = "$$$"
UpperCAmelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCAmelCase , add_bos_token=lowerCAmelCase )
UpperCAmelCase_ = "This is a simple input"
UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"]
UpperCAmelCase_ = tokenizer.bos_token_id
UpperCAmelCase_ = tokenizer(lowerCAmelCase )
UpperCAmelCase_ = tokenizer(lowerCAmelCase )
self.assertEqual(out_s.input_ids[0] , lowerCAmelCase )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
UpperCAmelCase_ = tokenizer.decode(out_s.input_ids )
UpperCAmelCase_ = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , lowerCAmelCase )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
def __A ( self : int ):
'''simple docstring'''
pass
def __A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase_ = [self.get_tokenizer(do_lower_case=lowerCAmelCase , add_bos_token=lowerCAmelCase )]
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
UpperCAmelCase_ = "Encode this."
UpperCAmelCase_ = "This one too please."
UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase )
encoded_sequence += tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase )
UpperCAmelCase_ = tokenizer.encode_plus(
lowerCAmelCase , lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , )
UpperCAmelCase_ = encoded_sequence_dict["input_ids"]
UpperCAmelCase_ = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) )
UpperCAmelCase_ = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(lowerCAmelCase )
]
UpperCAmelCase_ = [x for x in filtered_sequence if x is not None]
self.assertEqual(lowerCAmelCase , lowerCAmelCase )
@require_tokenizers
class __UpperCamelCase ( unittest.TestCase ):
def __A ( self : int ):
'''simple docstring'''
UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowerCAmelCase )
UpperCAmelCase_ = "A photo of a cat"
UpperCAmelCase_ = tokenizer.encode(
lowerCAmelCase , )
self.assertEqual(lowerCAmelCase , [2, 250, 1_345, 9, 10, 4_758] )
tokenizer.save_pretrained("test_opt" )
UpperCAmelCase_ = AutoTokenizer.from_pretrained("./test_opt" )
UpperCAmelCase_ = tokenizer.encode(
lowerCAmelCase , )
self.assertEqual(lowerCAmelCase , [2, 250, 1_345, 9, 10, 4_758] )
def __A ( self : int ):
'''simple docstring'''
UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=lowerCAmelCase )
UpperCAmelCase_ = "A photo of a cat"
UpperCAmelCase_ = tokenizer.encode(
lowerCAmelCase , )
# Same as above
self.assertEqual(lowerCAmelCase , [2, 250, 1_345, 9, 10, 4_758] )
@unittest.skip("This test is failing because of a bug in the fast tokenizer" )
def __A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowerCAmelCase )
UpperCAmelCase_ = "bos"
UpperCAmelCase_ = tokenizer.get_vocab()["bos"]
UpperCAmelCase_ = "A photo of a cat"
UpperCAmelCase_ = tokenizer.encode(
lowerCAmelCase , )
# We changed the bos token
self.assertEqual(lowerCAmelCase , [31_957, 250, 1_345, 9, 10, 4_758] )
tokenizer.save_pretrained("./tok" )
UpperCAmelCase_ = AutoTokenizer.from_pretrained("./tok" )
self.assertTrue(tokenizer.is_fast )
UpperCAmelCase_ = tokenizer.encode(
lowerCAmelCase , )
self.assertEqual(lowerCAmelCase , [31_957, 250, 1_345, 9, 10, 4_758] ) | 162 | 1 |
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : List[str] ):
UpperCAmelCase = torch.nn.Linear(10 , 10 )
UpperCAmelCase = torch.optim.SGD(model.parameters() , 0.1 )
UpperCAmelCase = Accelerator()
UpperCAmelCase = accelerator.prepare(a__ )
try:
pickle.loads(pickle.dumps(a__ ) )
except Exception as e:
self.fail(f"Accelerated optimizer pickling failed with {e}" )
AcceleratorState._reset_state()
| 705 |
'''simple docstring'''
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
a__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
a__ : List[str] = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str]=8 ) -> str:
"""simple docstring"""
UpperCAmelCase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
UpperCAmelCase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Tuple , a__ : UNetaDConditionModel , a__ : DDPMScheduler , a__ : VQModel , ):
super().__init__()
self.register_modules(
unet=a__ , scheduler=a__ , movq=a__ , )
UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def __snake_case ( self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : int , a__ : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] ):
if latents is None:
UpperCAmelCase = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ )
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" )
UpperCAmelCase = latents.to(a__ )
UpperCAmelCase = latents * scheduler.init_noise_sigma
return latents
def __snake_case ( self : Optional[Any] , a__ : Union[str, Any]=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
UpperCAmelCase = torch.device(f"cuda:{gpu_id}" )
UpperCAmelCase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(a__ , a__ )
def __snake_case ( self : Union[str, Any] , a__ : List[str]=0 ):
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' )
UpperCAmelCase = torch.device(f"cuda:{gpu_id}" )
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=a__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
UpperCAmelCase = None
for cpu_offloaded_model in [self.unet, self.movq]:
UpperCAmelCase, UpperCAmelCase = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ )
# We'll offload the last model manually.
UpperCAmelCase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __snake_case ( self : List[Any] ):
if not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(a__ , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(a__ )
def __call__( self : Union[str, Any] , a__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , a__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , a__ : torch.FloatTensor , a__ : int = 512 , a__ : int = 512 , a__ : int = 100 , a__ : float = 4.0 , a__ : int = 1 , a__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[str] = "pil" , a__ : bool = True , ):
UpperCAmelCase = self._execution_device
UpperCAmelCase = guidance_scale > 1.0
if isinstance(a__ , a__ ):
UpperCAmelCase = torch.cat(a__ , dim=0 )
if isinstance(a__ , a__ ):
UpperCAmelCase = torch.cat(a__ , dim=0 )
if isinstance(a__ , a__ ):
UpperCAmelCase = torch.cat(a__ , dim=0 )
UpperCAmelCase = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
UpperCAmelCase = image_embeds.repeat_interleave(a__ , dim=0 )
UpperCAmelCase = negative_image_embeds.repeat_interleave(a__ , dim=0 )
UpperCAmelCase = hint.repeat_interleave(a__ , dim=0 )
UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ )
UpperCAmelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=a__ )
self.scheduler.set_timesteps(a__ , device=a__ )
UpperCAmelCase = self.scheduler.timesteps
UpperCAmelCase = self.movq.config.latent_channels
UpperCAmelCase, UpperCAmelCase = downscale_height_and_width(a__ , a__ , self.movq_scale_factor )
# create initial latent
UpperCAmelCase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , a__ , a__ , a__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(a__ ) ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase = {'''image_embeds''': image_embeds, '''hint''': hint}
UpperCAmelCase = self.unet(
sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0]
if do_classifier_free_guidance:
UpperCAmelCase, UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 )
UpperCAmelCase, UpperCAmelCase = noise_pred.chunk(2 )
UpperCAmelCase, UpperCAmelCase = variance_pred.chunk(2 )
UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , '''variance_type''' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
UpperCAmelCase, UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase = self.scheduler.step(
a__ , a__ , a__ , generator=a__ , )[0]
# post-processing
UpperCAmelCase = self.movq.decode(a__ , force_not_quantize=a__ )['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" )
if output_type in ["np", "pil"]:
UpperCAmelCase = image * 0.5 + 0.5
UpperCAmelCase = image.clamp(0 , 1 )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCAmelCase = self.numpy_to_pil(a__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=a__ )
| 570 | 0 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=2 ,_lowerCAmelCase=24 ,_lowerCAmelCase=16 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=5 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=None ,_lowerCAmelCase=2 ,_lowerCAmelCase=2 ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = max_length
lowerCamelCase__ = num_mel_bins
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scope
lowerCamelCase__ = frequency_stride
lowerCamelCase__ = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
lowerCamelCase__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
lowerCamelCase__ = (self.max_length - self.patch_size) // self.time_stride + 1
lowerCamelCase__ = frequency_out_dimension * time_out_dimension
lowerCamelCase__ = num_patches + 2
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, input_values, labels
def UpperCamelCase_ ( self ):
return ASTConfig(
patch_size=self.patch_size ,max_length=self.max_length ,num_mel_bins=self.num_mel_bins ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,frequency_stride=self.frequency_stride ,time_stride=self.time_stride ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = ASTModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) = config_and_inputs
lowerCamelCase__ = {"""input_values""": input_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
_UpperCamelCase = (
{'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel}
if is_torch_available()
else {}
)
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ASTModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""AST does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase ,nn.Linear ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""input_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = ASTModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" )
lowerCamelCase__ , lowerCamelCase__ = torchaudio.load(__lowerCAmelCase )
return audio, sampling_rate
@require_torch
@require_torchaudio
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return (
ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" )
if is_torchaudio_available()
else None
)
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.default_feature_extractor
lowerCamelCase__ = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(_lowerCAmelCase )
lowerCamelCase__ = self.default_feature_extractor
lowerCamelCase__ , lowerCamelCase__ = prepare_audio()
lowerCamelCase__ = audio.squeeze().numpy()
lowerCamelCase__ = feature_extractor(_lowerCAmelCase ,sampling_rate=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = torch.Size((1, 5_27) )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
| 50 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCamelCase : Any = logging.get_logger(__name__)
__lowerCamelCase : List[str] = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class UpperCAmelCase ( lowercase_):
"""simple docstring"""
lowerCAmelCase_ = """deformable_detr"""
lowerCAmelCase_ = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : List[Any]=300 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Optional[int]=6 , UpperCamelCase__ : Union[str, Any]=1024 , UpperCamelCase__ : List[Any]=8 , UpperCamelCase__ : List[Any]=6 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Optional[int]=8 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]="relu" , UpperCamelCase__ : str=256 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : List[str]=1.0 , UpperCamelCase__ : int=True , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Tuple="sine" , UpperCamelCase__ : Optional[Any]="resnet50" , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Any=False , UpperCamelCase__ : List[Any]=300 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Tuple=1 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : str=5 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=0.25 , UpperCamelCase__ : Optional[int]=False , **UpperCamelCase__ : Union[str, Any] , ) -> Tuple:
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase =CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ):
_UpperCamelCase =backbone_config.get('''model_type''' )
_UpperCamelCase =CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase =config_class.from_dict(UpperCamelCase__ )
_UpperCamelCase =use_timm_backbone
_UpperCamelCase =backbone_config
_UpperCamelCase =num_channels
_UpperCamelCase =num_queries
_UpperCamelCase =max_position_embeddings
_UpperCamelCase =d_model
_UpperCamelCase =encoder_ffn_dim
_UpperCamelCase =encoder_layers
_UpperCamelCase =encoder_attention_heads
_UpperCamelCase =decoder_ffn_dim
_UpperCamelCase =decoder_layers
_UpperCamelCase =decoder_attention_heads
_UpperCamelCase =dropout
_UpperCamelCase =attention_dropout
_UpperCamelCase =activation_dropout
_UpperCamelCase =activation_function
_UpperCamelCase =init_std
_UpperCamelCase =init_xavier_std
_UpperCamelCase =encoder_layerdrop
_UpperCamelCase =auxiliary_loss
_UpperCamelCase =position_embedding_type
_UpperCamelCase =backbone
_UpperCamelCase =use_pretrained_backbone
_UpperCamelCase =dilation
# deformable attributes
_UpperCamelCase =num_feature_levels
_UpperCamelCase =encoder_n_points
_UpperCamelCase =decoder_n_points
_UpperCamelCase =two_stage
_UpperCamelCase =two_stage_num_proposals
_UpperCamelCase =with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_UpperCamelCase =class_cost
_UpperCamelCase =bbox_cost
_UpperCamelCase =giou_cost
# Loss coefficients
_UpperCamelCase =mask_loss_coefficient
_UpperCamelCase =dice_loss_coefficient
_UpperCamelCase =bbox_loss_coefficient
_UpperCamelCase =giou_loss_coefficient
_UpperCamelCase =eos_coefficient
_UpperCamelCase =focal_alpha
_UpperCamelCase =disable_custom_kernels
super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ )
@property
def UpperCamelCase__ ( self : Tuple ) -> int:
return self.encoder_attention_heads
@property
def UpperCamelCase__ ( self : Tuple ) -> int:
return self.d_model
def UpperCamelCase__ ( self : Union[str, Any] ) -> List[Any]:
_UpperCamelCase =copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_UpperCamelCase =self.backbone_config.to_dict()
_UpperCamelCase =self.__class__.model_type
return output
| 404 | 0 |
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
__a : Tuple = (
"""https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py"""
)
__a : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
def UpperCAmelCase ( ):
"""simple docstring"""
__lowercase = '''https://pypi.org/pypi/diffusers/json'''
__lowercase = json.loads(request.urlopen(lowercase ).read() )['''releases'''].keys()
return sorted(lowercase , key=lambda lowercase : version.Version(lowercase ) )
def UpperCAmelCase ( ):
"""simple docstring"""
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(lowercase )
os.makedirs(lowercase , exist_ok=lowercase )
__lowercase = Path(lowercase ) / '''__init__.py'''
if not init_path.exists():
init_path.touch()
def UpperCAmelCase ( lowercase ):
"""simple docstring"""
init_hf_modules()
__lowercase = Path(lowercase ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(lowercase , exist_ok=lowercase )
__lowercase = dynamic_module_path / '''__init__.py'''
if not init_path.exists():
init_path.touch()
def UpperCAmelCase ( lowercase ):
"""simple docstring"""
with open(lowercase , '''r''' , encoding='''utf-8''' ) as f:
__lowercase = f.read()
# Imports of the form `import .xxx`
__lowercase = re.findall('''^\s*import\s+\.(\S+)\s*$''' , lowercase , flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , lowercase , flags=re.MULTILINE )
# Unique-ify
return list(set(lowercase ) )
def UpperCAmelCase ( lowercase ):
"""simple docstring"""
__lowercase = False
__lowercase = [module_file]
__lowercase = []
# Let's recurse through all relative imports
while not no_change:
__lowercase = []
for f in files_to_check:
new_imports.extend(get_relative_imports(lowercase ) )
__lowercase = Path(lowercase ).parent
__lowercase = [str(module_path / m ) for m in new_imports]
__lowercase = [f for f in new_import_files if f not in all_relative_imports]
__lowercase = [F"{f}.py" for f in new_import_files]
__lowercase = len(lowercase ) == 0
all_relative_imports.extend(lowercase )
return all_relative_imports
def UpperCAmelCase ( lowercase ):
"""simple docstring"""
with open(lowercase , '''r''' , encoding='''utf-8''' ) as f:
__lowercase = f.read()
# Imports of the form `import xxx`
__lowercase = re.findall('''^\s*import\s+(\S+)\s*$''' , lowercase , flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall('''^\s*from\s+(\S+)\s+import''' , lowercase , flags=re.MULTILINE )
# Only keep the top-level module
__lowercase = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )]
# Unique-ify and test we got them all
__lowercase = list(set(lowercase ) )
__lowercase = []
for imp in imports:
try:
importlib.import_module(lowercase )
except ImportError:
missing_packages.append(lowercase )
if len(lowercase ) > 0:
raise ImportError(
'''This modeling file requires the following packages that were not found in your environment: '''
F"{', '.join(lowercase )}. Run `pip install {' '.join(lowercase )}`" )
return get_relative_imports(lowercase )
def UpperCAmelCase ( lowercase , lowercase ):
"""simple docstring"""
__lowercase = module_path.replace(os.path.sep , '''.''' )
__lowercase = importlib.import_module(lowercase )
if class_name is None:
return find_pipeline_class(lowercase )
return getattr(lowercase , lowercase )
def UpperCAmelCase ( lowercase ):
"""simple docstring"""
from ..pipelines import DiffusionPipeline
__lowercase = dict(inspect.getmembers(lowercase , inspect.isclass ) )
__lowercase = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls , lowercase )
and cls.__module__.split('''.''' )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:"
F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in"
F" {loaded_module}." )
__lowercase = cls
return pipeline_class
def UpperCAmelCase ( lowercase , lowercase , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = False , ):
"""simple docstring"""
__lowercase = str(lowercase )
__lowercase = os.path.join(lowercase , lowercase )
if os.path.isfile(lowercase ):
__lowercase = module_file_or_url
__lowercase = '''local'''
elif pretrained_model_name_or_path.count('''/''' ) == 0:
__lowercase = get_diffusers_versions()
# cut ".dev0"
__lowercase = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] )
# retrieve github version that matches
if revision is None:
__lowercase = latest_version if latest_version[1:] in available_versions else '''main'''
logger.info(F"Defaulting to latest_version: {revision}." )
elif revision in available_versions:
__lowercase = F"v{revision}"
elif revision == "main":
__lowercase = revision
else:
raise ValueError(
F"`custom_revision`: {revision} does not exist. Please make sure to choose one of"
F" {', '.join(available_versions + ['main'] )}." )
# community pipeline on GitHub
__lowercase = COMMUNITY_PIPELINES_URL.format(revision=lowercase , pipeline=lowercase )
try:
__lowercase = cached_download(
lowercase , cache_dir=lowercase , force_download=lowercase , proxies=lowercase , resume_download=lowercase , local_files_only=lowercase , use_auth_token=lowercase , )
__lowercase = '''git'''
__lowercase = pretrained_model_name_or_path + '''.py'''
except EnvironmentError:
logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." )
raise
else:
try:
# Load from URL or cache if already cached
__lowercase = hf_hub_download(
lowercase , lowercase , cache_dir=lowercase , force_download=lowercase , proxies=lowercase , resume_download=lowercase , local_files_only=lowercase , use_auth_token=lowercase , )
__lowercase = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) )
except EnvironmentError:
logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." )
raise
# Check we have all the requirements in our environment
__lowercase = check_imports(lowercase )
# Now we move the module inside our cached dynamic modules.
__lowercase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(lowercase )
__lowercase = Path(lowercase ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(lowercase , submodule_path / module_file )
for module_needed in modules_needed:
__lowercase = F"{module_needed}.py"
shutil.copy(os.path.join(lowercase , lowercase ) , submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(lowercase , lowercase ):
__lowercase = use_auth_token
elif use_auth_token is True:
__lowercase = HfFolder.get_token()
else:
__lowercase = None
__lowercase = model_info(lowercase , revision=lowercase , token=lowercase ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
__lowercase = submodule_path / commit_hash
__lowercase = full_submodule + os.path.sep + commit_hash
create_dynamic_module(lowercase )
if not (submodule_path / module_file).exists():
shutil.copy(lowercase , submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
lowercase , F"{module_needed}.py" , cache_dir=lowercase , force_download=lowercase , resume_download=lowercase , proxies=lowercase , use_auth_token=lowercase , revision=lowercase , local_files_only=lowercase , )
return os.path.join(lowercase , lowercase )
def UpperCAmelCase ( lowercase , lowercase , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = False , **lowercase , ):
"""simple docstring"""
__lowercase = get_cached_module_file(
lowercase , lowercase , cache_dir=lowercase , force_download=lowercase , resume_download=lowercase , proxies=lowercase , use_auth_token=lowercase , revision=lowercase , local_files_only=lowercase , )
return get_class_in_module(lowercase , final_module.replace('''.py''' , '''''' ) ) | 522 | from __future__ import annotations
def UpperCAmelCase ( lowercase , lowercase ):
"""simple docstring"""
if b == 0:
return (1, 0)
((__lowercase) , (__lowercase)) = extended_euclid(lowercase , a % b )
__lowercase = a // b
return (y, x - k * y)
def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ):
"""simple docstring"""
((__lowercase) , (__lowercase)) = extended_euclid(lowercase , lowercase )
__lowercase = na * na
__lowercase = ra * x * na + ra * y * na
return (n % m + m) % m
def UpperCAmelCase ( lowercase , lowercase ):
"""simple docstring"""
((__lowercase) , (__lowercase)) = extended_euclid(lowercase , lowercase )
if b < 0:
__lowercase = (b % n + n) % n
return b
def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ):
"""simple docstring"""
__lowercase , __lowercase = invert_modulo(lowercase , lowercase ), invert_modulo(lowercase , lowercase )
__lowercase = na * na
__lowercase = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="""chinese_remainder_theorem""", verbose=True)
testmod(name="""chinese_remainder_theorem2""", verbose=True)
testmod(name="""invert_modulo""", verbose=True)
testmod(name="""extended_euclid""", verbose=True) | 522 | 1 |
'''simple docstring'''
import cmath
import math
def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
_UpperCamelCase =math.radians(__SCREAMING_SNAKE_CASE )
_UpperCamelCase =math.radians(__SCREAMING_SNAKE_CASE )
# Convert voltage and current to rectangular form
_UpperCamelCase =cmath.rect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
_UpperCamelCase =cmath.rect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod()
| 404 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__lowerCamelCase : Tuple = logging.get_logger(__name__)
__lowerCamelCase : Optional[Any] = {'vocab_file': 'vocab.json'}
__lowerCamelCase : Optional[Any] = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
__lowerCamelCase : List[Any] = {'mgp-str': 27}
class UpperCAmelCase ( lowercase_):
"""simple docstring"""
lowerCAmelCase_ = VOCAB_FILES_NAMES
lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : List[str]="[GO]" , UpperCamelCase__ : Optional[Any]="[GO]" , UpperCamelCase__ : int="[s]" , UpperCamelCase__ : Dict="[GO]" , **UpperCamelCase__ : List[Any] ) -> List[str]:
super().__init__(
unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , **UpperCamelCase__ , )
with open(UpperCamelCase__ , encoding='''utf-8''' ) as vocab_handle:
_UpperCamelCase =json.load(UpperCamelCase__ )
_UpperCamelCase ={v: k for k, v in self.vocab.items()}
@property
def UpperCamelCase__ ( self : Union[str, Any] ) -> Tuple:
return len(self.vocab )
def UpperCamelCase__ ( self : int ) -> Union[str, Any]:
return dict(self.vocab , **self.added_tokens_encoder )
def UpperCamelCase__ ( self : Optional[int] , UpperCamelCase__ : str ) -> List[str]:
_UpperCamelCase =[]
for s in text:
char_tokens.extend(UpperCamelCase__ )
return char_tokens
def UpperCamelCase__ ( self : List[Any] , UpperCamelCase__ : Optional[int] ) -> Dict:
return self.vocab.get(UpperCamelCase__ , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] ) -> Any:
return self.decoder.get(UpperCamelCase__ )
def UpperCamelCase__ ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(UpperCamelCase__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(UpperCamelCase__ ) )
return
_UpperCamelCase =os.path.join(
UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '''\n''' )
return (vocab_file,)
| 404 | 1 |
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
_lowerCamelCase = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :str , *__A :Any , **__A :Dict ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" , __A , )
super().__init__(*__A , **__A ) | 715 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['LayoutLMv3FeatureExtractor']
_lowerCamelCase = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
_lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 59 | 0 |
"""simple docstring"""
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger()
@dataclass
class lowerCamelCase_:
'''simple docstring'''
lowercase__ : nn.Module
lowercase__ : List[nn.Module] = field(default_factory=A__ )
lowercase__ : list = field(default_factory=A__ )
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
_lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase__ , nn.Convad ) or isinstance(lowerCamelCase__ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(lowerCamelCase__ )
def __call__( self , lowerCamelCase__ ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(lowerCamelCase__ )
[x.remove() for x in self.handles]
return self
@property
def snake_case__ ( self ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda lowerCamelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class lowerCamelCase_:
'''simple docstring'''
lowercase__ : nn.Module
lowercase__ : nn.Module
lowercase__ : int = 0
lowercase__ : List = field(default_factory=A__ )
lowercase__ : List = field(default_factory=A__ )
def __call__( self , lowerCamelCase__ ):
_lowerCamelCase = Tracker(self.dest )(lowerCamelCase__ ).parametrized
_lowerCamelCase = Tracker(self.src )(lowerCamelCase__ ).parametrized
_lowerCamelCase = list(filter(lambda lowerCamelCase__ : type(lowerCamelCase__ ) not in self.src_skip , lowerCamelCase__ ) )
_lowerCamelCase = list(filter(lambda lowerCamelCase__ : type(lowerCamelCase__ ) not in self.dest_skip , lowerCamelCase__ ) )
if len(lowerCamelCase__ ) != len(lowerCamelCase__ ):
raise Exception(
F"""Numbers of operations are different. Source module has {len(lowerCamelCase__ )} operations while"""
F""" destination module has {len(lowerCamelCase__ )}.""" )
for dest_m, src_m in zip(lowerCamelCase__ , lowerCamelCase__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F"""Transfered from={src_m} to={dest_m}""" )
def lowerCAmelCase_( lowercase_ : str , lowercase_ : ResNetConfig , lowercase_ : Path , lowercase_ : bool = True ) -> Tuple:
print(F"""Converting {name}...""" )
with torch.no_grad():
_lowerCamelCase = timm.create_model(lowercase_ , pretrained=lowercase_ ).eval()
_lowerCamelCase = ResNetForImageClassification(lowercase_ ).eval()
_lowerCamelCase = ModuleTransfer(src=lowercase_ , dest=lowercase_ )
_lowerCamelCase = torch.randn((1, 3, 2_24, 2_24) )
module_transfer(lowercase_ )
assert torch.allclose(from_model(lowercase_ ) , our_model(lowercase_ ).logits ), "The model logits don't match the original one."
_lowerCamelCase = F"""resnet{"-".join(name.split("resnet" ) )}"""
print(lowercase_ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=lowercase_ , )
# we can use the convnext one
_lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=lowercase_ , )
print(F"""Pushed {checkpoint_name}""" )
def lowerCAmelCase_( lowercase_ : Path , lowercase_ : str = None , lowercase_ : bool = True ) -> Any:
_lowerCamelCase = '''imagenet-1k-id2label.json'''
_lowerCamelCase = 10_00
_lowerCamelCase = (1, num_labels)
_lowerCamelCase = '''huggingface/label-files'''
_lowerCamelCase = num_labels
_lowerCamelCase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) )
_lowerCamelCase = {int(lowercase_ ): v for k, v in idalabel.items()}
_lowerCamelCase = idalabel
_lowerCamelCase = {v: k for k, v in idalabel.items()}
_lowerCamelCase = partial(lowercase_ , num_labels=lowercase_ , idalabel=lowercase_ , labelaid=lowercase_ )
_lowerCamelCase = {
'''resnet18''': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='''basic''' ),
'''resnet26''': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ),
'''resnet34''': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='''basic''' ),
'''resnet50''': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ),
'''resnet101''': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ),
'''resnet152''': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ),
}
if model_name:
convert_weight_and_push(lowercase_ , names_to_config[model_name] , lowercase_ , lowercase_ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return config, expected_shape
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help=(
'''The name of the model you wish to convert, it must be one of the supported resnet* architecture,'''
''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=Path,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
default=True,
type=bool,
required=False,
help='''If True, push model and image processor to the hub.''',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
__SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 661 |
"""simple docstring"""
from __future__ import annotations
import os
from collections.abc import Mapping
__SCREAMING_SNAKE_CASE : str = tuple[int, int]
class lowerCamelCase_:
'''simple docstring'''
def __init__( self , lowerCamelCase__ , lowerCamelCase__ ):
_lowerCamelCase = vertices
_lowerCamelCase = {
(min(lowerCamelCase__ ), max(lowerCamelCase__ )): weight for edge, weight in edges.items()
}
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ):
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
_lowerCamelCase = weight
def snake_case__ ( self ):
_lowerCamelCase = Graph({min(self.vertices )} , {} )
_lowerCamelCase = 42
_lowerCamelCase = 42
_lowerCamelCase = 42
_lowerCamelCase = 42
while len(subgraph.vertices ) < len(self.vertices ):
_lowerCamelCase = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
_lowerCamelCase = edge
_lowerCamelCase = weight
subgraph.add_edge(lowerCamelCase__ , lowerCamelCase__ )
return subgraph
def lowerCAmelCase_( lowercase_ : str = "p107_network.txt" ) -> int:
_lowerCamelCase = os.path.abspath(os.path.dirname(lowercase_ ) )
_lowerCamelCase = os.path.join(lowercase_ , lowercase_ )
_lowerCamelCase = {}
_lowerCamelCase = 42
_lowerCamelCase = 42
_lowerCamelCase = 42
with open(lowercase_ ) as f:
_lowerCamelCase = f.read().strip().split('''\n''' )
_lowerCamelCase = [line.split(''',''' ) for line in data]
for edgea in range(1 , len(lowercase_ ) ):
for edgea in range(lowercase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
_lowerCamelCase = int(adjaceny_matrix[edgea][edgea] )
_lowerCamelCase = Graph(set(range(len(lowercase_ ) ) ) , lowercase_ )
_lowerCamelCase = graph.prims_algorithm()
_lowerCamelCase = sum(graph.edges.values() )
_lowerCamelCase = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"""{solution() = }""")
| 661 | 1 |
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase : Optional[int] = inspect.getfile(accelerate.test_utils )
lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] )
lowerCAmelCase : Dict = ['accelerate', 'launch']
lowerCAmelCase : int = Path.home() / '.cache/huggingface/accelerate'
lowerCAmelCase : str = 'default_config.yaml'
lowerCAmelCase : Dict = config_folder / config_file
lowerCAmelCase : Tuple = config_folder / '_default_config.yaml'
lowerCAmelCase : Dict = Path('''tests/test_configs''' )
@classmethod
def lowerCAmelCase ( cls : List[Any] ):
"""simple docstring"""
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def lowerCAmelCase ( cls : List[str] ):
"""simple docstring"""
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def lowerCAmelCase ( self : List[str] ):
"""simple docstring"""
_UpperCamelCase: Union[str, Any] = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def lowerCAmelCase ( self : Optional[int] ):
"""simple docstring"""
for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ):
with self.subTest(config_file=_lowercase ):
execute_subprocess_async(
self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() )
def lowerCAmelCase ( self : List[Any] ):
"""simple docstring"""
execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() )
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase : Any = 'test-tpu'
lowerCAmelCase : List[Any] = 'us-central1-a'
lowerCAmelCase : int = 'ls'
lowerCAmelCase : Optional[int] = ['accelerate', 'tpu-config']
lowerCAmelCase : str = 'cd /usr/share'
lowerCAmelCase : Optional[int] = 'tests/test_samples/test_command_file.sh'
lowerCAmelCase : List[str] = 'Running gcloud compute tpus tpu-vm ssh'
def lowerCAmelCase ( self : List[str] ):
"""simple docstring"""
_UpperCamelCase: str = run_command(
self.cmd
+ ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , )
self.assertIn(
f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , )
def lowerCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
_UpperCamelCase: int = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command''',
self.command,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=_lowercase , )
self.assertIn(
f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , )
def lowerCAmelCase ( self : Any ):
"""simple docstring"""
_UpperCamelCase: Optional[Any] = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase )
self.assertIn(
f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
def lowerCAmelCase ( self : Tuple ):
"""simple docstring"""
_UpperCamelCase: Optional[Any] = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , )
self.assertIn(
f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , )
def lowerCAmelCase ( self : Tuple ):
"""simple docstring"""
_UpperCamelCase: str = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--command''',
self.command,
'''--command''',
'''echo \"Hello World\"''',
'''--debug''',
] , return_stdout=_lowercase , )
self.assertIn(
f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , )
def lowerCAmelCase ( self : Optional[Any] ):
"""simple docstring"""
_UpperCamelCase: int = run_command(
self.cmd
+ ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , )
self.assertIn(
f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
def lowerCAmelCase ( self : Dict ):
"""simple docstring"""
_UpperCamelCase: Optional[int] = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command_file''',
self.command_file,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=_lowercase , )
self.assertIn(
f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
def lowerCAmelCase ( self : int ):
"""simple docstring"""
_UpperCamelCase: List[str] = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , )
self.assertIn(
f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
def lowerCAmelCase ( self : Any ):
"""simple docstring"""
_UpperCamelCase: str = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--install_accelerate''',
'''--accelerate_version''',
'''12.0.0''',
'''--debug''',
] , return_stdout=_lowercase , )
self.assertIn(
f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) | 701 | import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class __magic_name__ ( __a ):
"""simple docstring"""
def __init__( self : str , *_lowercase : str , **_lowercase : int ):
"""simple docstring"""
warnings.warn(
'''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PerceiverImageProcessor instead.''' , _lowercase , )
super().__init__(*_lowercase , **_lowercase ) | 264 | 0 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __UpperCAmelCase ( __a ):
__A : str = ['image_processor', 'tokenizer']
__A : Optional[int] = 'ChineseCLIPImageProcessor'
__A : Optional[int] = ('BertTokenizer', 'BertTokenizerFast')
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ):
lowerCAmelCase_ = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _lowerCamelCase , )
lowerCAmelCase_ = kwargs.pop('''feature_extractor''' )
lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_lowerCamelCase , _lowerCamelCase )
lowerCAmelCase_ = self.image_processor
def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
lowerCAmelCase_ = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )
if images is not None:
lowerCAmelCase_ = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )
if text is not None and images is not None:
lowerCAmelCase_ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase )
def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ):
return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase )
def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ):
return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase )
@property
def UpperCAmelCase_ ( self ):
lowerCAmelCase_ = self.tokenizer.model_input_names
lowerCAmelCase_ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase_ ( self ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowerCamelCase , )
return self.image_processor_class
| 274 | '''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
A_ : List[Any] =logging.get_logger(__name__)
A_ : Optional[int] ={
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''ctc_proj''',
'''mask_emb''': '''masked_spec_embed''',
}
A_ : Tuple =[
'''ctc_proj''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def snake_case_ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Dict) -> Optional[Any]:
for attribute in key.split('''.'''):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
lowerCAmelCase_ = '''lm_head'''
lowerCAmelCase_ = getattr(__snake_case , __snake_case)
if weight_type is not None:
lowerCAmelCase_ = getattr(__snake_case , __snake_case).shape
else:
lowerCAmelCase_ = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
lowerCAmelCase_ = value
elif weight_type == "weight_g":
lowerCAmelCase_ = value
elif weight_type == "weight_v":
lowerCAmelCase_ = value
elif weight_type == "bias":
lowerCAmelCase_ = value
else:
lowerCAmelCase_ = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''')
def snake_case_ ( __snake_case : Tuple , __snake_case : Any , __snake_case : Any) -> Tuple:
lowerCAmelCase_ = []
lowerCAmelCase_ = fairseq_model.state_dict()
lowerCAmelCase_ = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
lowerCAmelCase_ = False
if "conv_layers" in name:
load_conv_layer(
__snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , )
lowerCAmelCase_ = True
else:
for key, mapped_key in MAPPING.items():
lowerCAmelCase_ = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''')[-1] == name.split('''.''')[0]:
lowerCAmelCase_ = True
if "*" in mapped_key:
lowerCAmelCase_ = name.split(__snake_case)[0].split('''.''')[-2]
lowerCAmelCase_ = mapped_key.replace('''*''' , __snake_case)
if "weight_g" in name:
lowerCAmelCase_ = '''weight_g'''
elif "weight_v" in name:
lowerCAmelCase_ = '''weight_v'''
elif "bias" in name:
lowerCAmelCase_ = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCAmelCase_ = '''weight'''
else:
lowerCAmelCase_ = None
set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case)
continue
if not is_used:
unused_weights.append(__snake_case)
logger.warning(F'''Unused weights: {unused_weights}''')
def snake_case_ ( __snake_case : Optional[int] , __snake_case : int , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Dict) -> str:
lowerCAmelCase_ = full_name.split('''conv_layers.''')[-1]
lowerCAmelCase_ = name.split('''.''')
lowerCAmelCase_ = int(items[0])
lowerCAmelCase_ = int(items[1])
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
lowerCAmelCase_ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
lowerCAmelCase_ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
lowerCAmelCase_ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
lowerCAmelCase_ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
else:
unused_weights.append(__snake_case)
@torch.no_grad()
def snake_case_ ( __snake_case : Tuple , __snake_case : Tuple , __snake_case : str=None , __snake_case : Union[str, Any]=None , __snake_case : Union[str, Any]=True) -> Any:
if config_path is not None:
lowerCAmelCase_ = UniSpeechConfig.from_pretrained(__snake_case)
else:
lowerCAmelCase_ = UniSpeechConfig()
if is_finetuned:
if dict_path:
lowerCAmelCase_ = Dictionary.load_from_json(__snake_case)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCAmelCase_ = target_dict.pad_index
lowerCAmelCase_ = target_dict.bos_index
lowerCAmelCase_ = target_dict.eos_index
lowerCAmelCase_ = len(target_dict.symbols)
lowerCAmelCase_ = os.path.join(__snake_case , '''vocab.json''')
if not os.path.isdir(__snake_case):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__snake_case))
return
os.makedirs(__snake_case , exist_ok=__snake_case)
lowerCAmelCase_ = target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCAmelCase_ = 42
lowerCAmelCase_ = 43
with open(__snake_case , '''w''' , encoding='''utf-8''') as vocab_handle:
json.dump(__snake_case , __snake_case)
lowerCAmelCase_ = WavaVecaPhonemeCTCTokenizer(
__snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__snake_case , )
lowerCAmelCase_ = True if config.feat_extract_norm == '''layer''' else False
lowerCAmelCase_ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , )
lowerCAmelCase_ = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case)
processor.save_pretrained(__snake_case)
lowerCAmelCase_ = UniSpeechForCTC(__snake_case)
else:
lowerCAmelCase_ = UniSpeechForPreTraining(__snake_case)
if is_finetuned:
lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''')[:-1]), '''w2v_path''': checkpoint_path})
else:
lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path])
lowerCAmelCase_ = model[0].eval()
recursively_load_weights(__snake_case , __snake_case , __snake_case)
hf_unispeech.save_pretrained(__snake_case)
if __name__ == "__main__":
A_ : List[Any] =argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
A_ : Optional[Any] =parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 274 | 1 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
_lowercase : List[Any] =logging.get_logger(__name__)
_lowercase : int =["""model.decoder.embed_positions.weights"""]
def UpperCAmelCase ( lowercase__ : List[str] ):
'''simple docstring'''
if "emb" in name:
a__ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
a__ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
a__ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
a__ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
a__ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
a__ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
a__ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
a__ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
a__ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
a__ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
a__ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def UpperCAmelCase ( lowercase__ : OrderedDict , lowercase__ : int ):
'''simple docstring'''
a__ = list(state_dict.keys() )
a__ = {}
for key in keys:
a__ = state_dict.pop(lowercase__ )
a__ = rename_keys(lowercase__ )
if "in_proj_weight" in key:
# split fused qkv proj
a__ = val[:hidden_size, :]
a__ = val[hidden_size : 2 * hidden_size, :]
a__ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
a__ = val
else:
a__ = val
return state_dict, enc_dec_proj_state_dict
def UpperCAmelCase ( lowercase__ : str ):
'''simple docstring'''
if checkpoint == "small":
# default config values
a__ = 1024
a__ = 24
a__ = 16
elif checkpoint == "medium":
a__ = 1536
a__ = 48
a__ = 24
elif checkpoint == "large":
a__ = 2048
a__ = 48
a__ = 32
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
a__ = MusicgenDecoderConfig(
hidden_size=lowercase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase__ , num_attention_heads=lowercase__ , )
return config
@torch.no_grad()
def UpperCAmelCase ( lowercase__ : Optional[int] , lowercase__ : Optional[Any]=None , lowercase__ : Tuple=None , lowercase__ : Dict="cpu" ):
'''simple docstring'''
a__ = MusicGen.get_pretrained(lowercase__ , device=lowercase__ )
a__ = decoder_config_from_checkpoint(lowercase__ )
a__ = fairseq_model.lm.state_dict()
a__ , a__ = rename_state_dict(
lowercase__ , hidden_size=decoder_config.hidden_size )
a__ = TaEncoderModel.from_pretrained("""t5-base""" )
a__ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
a__ = MusicgenForCausalLM(lowercase__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
a__ , a__ = decoder.load_state_dict(lowercase__ , strict=lowercase__ )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase__ )
if len(lowercase__ ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(lowercase__ ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
a__ = MusicgenForConditionalGeneration(text_encoder=lowercase__ , audio_encoder=lowercase__ , decoder=lowercase__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase__ )
# check we can do a forward pass
a__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
a__ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
a__ = model(input_ids=lowercase__ , decoder_input_ids=lowercase__ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
a__ = AutoTokenizer.from_pretrained("""t5-base""" )
a__ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
a__ = MusicgenProcessor(feature_extractor=lowercase__ , tokenizer=lowercase__ )
# set the appropriate bos/pad token ids
a__ = 2048
a__ = 2048
# set other default generation config params
a__ = int(30 * audio_encoder.config.frame_rate )
a__ = True
a__ = 3.0
if pytorch_dump_folder is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(lowercase__ )
processor.push_to_hub(lowercase__ )
if __name__ == "__main__":
_lowercase : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
_lowercase : Union[str, Any] =parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 412 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowercase : int =logging.get_logger(__name__)
_lowercase : List[str] ={
"""microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""",
}
class lowerCAmelCase_ ( A_ ,A_ ):
'''simple docstring'''
A_ : Optional[Any] = 'resnet'
A_ : Any = ['basic', 'bottleneck']
def __init__( self , lowerCamelCase=3 , lowerCamelCase=64 , lowerCamelCase=[256, 512, 1024, 2048] , lowerCamelCase=[3, 4, 6, 3] , lowerCamelCase="bottleneck" , lowerCamelCase="relu" , lowerCamelCase=False , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase , ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' )
a__ = num_channels
a__ = embedding_size
a__ = hidden_sizes
a__ = depths
a__ = layer_type
a__ = hidden_act
a__ = downsample_in_first_stage
a__ = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(lowerCamelCase ) + 1 )]
a__ , a__ = get_aligned_output_features_output_indices(
out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
class lowerCAmelCase_ ( A_ ):
'''simple docstring'''
A_ : int = version.parse('1.11' )
@property
def _A ( self ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _A ( self ):
'''simple docstring'''
return 1e-3
| 412 | 1 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : dict ):
A__ = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" )
A__ = soup.find("div" , attrs={"class": "gs_ri"} )
A__ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" )
return anchors[2].get_text()
if __name__ == "__main__":
__lowerCAmelCase : Any ={
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 440 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class _UpperCAmelCase ( __lowercase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = '''facebook/bart-large-mnli'''
SCREAMING_SNAKE_CASE : Union[str, Any] = (
'''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '''
'''should be the text to classify, and `labels`, which should be the list of labels to use for classification. '''
'''It returns the most likely label in the list of provided `labels` for the input text.'''
)
SCREAMING_SNAKE_CASE : Any = '''text_classifier'''
SCREAMING_SNAKE_CASE : Any = AutoTokenizer
SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification
SCREAMING_SNAKE_CASE : List[Any] = ['''text''', ['''text''']]
SCREAMING_SNAKE_CASE : Dict = ['''text''']
def UpperCamelCase ( self : List[str] ):
super().setup()
A = self.model.config
A = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('entail' ):
A = int(UpperCamelCase__ )
if self.entailment_id == -1:
raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' )
def UpperCamelCase ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ):
A = labels
return self.pre_processor(
[text] * len(UpperCamelCase__ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , )
def UpperCamelCase ( self : int , UpperCamelCase__ : List[str] ):
A = outputs.logits
A = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 699 | 0 |
"""simple docstring"""
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
return 1.0 / (1.0 + np.exp(-_outputs ))
def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
_lowercase : Dict = np.max(_outputs , axis=-1 , keepdims=__UpperCAmelCase )
_lowercase : Tuple = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__UpperCAmelCase )
class UpperCamelCase ( snake_case ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = "sigmoid"
SCREAMING_SNAKE_CASE_ : List[str] = "softmax"
SCREAMING_SNAKE_CASE_ : int = "none"
@add_end_docstrings(
snake_case , r"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , )
class UpperCamelCase ( snake_case ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = False
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ClassificationFunction.NONE
def __init__( self ,**UpperCAmelCase_ ):
super().__init__(**UpperCAmelCase_ )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def lowerCamelCase__ ( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_="" ,**UpperCAmelCase_ ):
# Using "" as default argument because we're going to use `top_k=None` in user code to declare
# "No top_k"
_lowercase : Union[str, Any] = tokenizer_kwargs
_lowercase : str = {}
if hasattr(self.model.config ,"""return_all_scores""" ) and return_all_scores is None:
_lowercase : str = self.model.config.return_all_scores
if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or top_k is None:
_lowercase : str = top_k
_lowercase : str = False
elif return_all_scores is not None:
warnings.warn(
"""`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of"""
""" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" ,UpperCAmelCase_ ,)
if return_all_scores:
_lowercase : str = None
else:
_lowercase : Any = 1
if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ):
_lowercase : Any = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
_lowercase : Union[str, Any] = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ):
_lowercase : Union[str, Any] = super().__call__(*UpperCAmelCase_ ,**UpperCAmelCase_ )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
_lowercase : List[Any] = """top_k""" not in kwargs
if isinstance(args[0] ,UpperCAmelCase_ ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ):
_lowercase : List[Any] = self.framework
if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ):
return self.tokenizer(**UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ )
elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) and len(UpperCAmelCase_ ) == 1 and isinstance(inputs[0] ,UpperCAmelCase_ ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ )
elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
"""The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a"""
""" dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" )
return self.tokenizer(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ )
def lowerCamelCase__ ( self ,UpperCAmelCase_ ):
return self.model(**UpperCAmelCase_ )
def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ):
# `_legacy` is used to determine if we're running the naked pipeline and in backward
# compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running
# the more natural result containing the list.
# Default value before `set_parameters`
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
_lowercase : Union[str, Any] = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
_lowercase : List[str] = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config ,"""function_to_apply""" ) and function_to_apply is None:
_lowercase : Optional[int] = self.model.config.function_to_apply
else:
_lowercase : List[Any] = ClassificationFunction.NONE
_lowercase : Dict = model_outputs["""logits"""][0]
_lowercase : Tuple = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
_lowercase : Tuple = sigmoid(UpperCAmelCase_ )
elif function_to_apply == ClassificationFunction.SOFTMAX:
_lowercase : int = softmax(UpperCAmelCase_ )
elif function_to_apply == ClassificationFunction.NONE:
_lowercase : str = outputs
else:
raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
_lowercase : Union[str, Any] = [
{"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(UpperCAmelCase_ )
]
if not _legacy:
dict_scores.sort(key=lambda UpperCAmelCase_ : x["score"] ,reverse=UpperCAmelCase_ )
if top_k is not None:
_lowercase : Dict = dict_scores[:top_k]
return dict_scores
| 600 |
"""simple docstring"""
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
# Initialise PyTorch model
_lowercase : int = AlbertConfig.from_json_file(__UpperCAmelCase )
print(F"""Building PyTorch model from configuration: {config}""" )
_lowercase : Tuple = AlbertForPreTraining(__UpperCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_albert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , __UpperCAmelCase )
if __name__ == "__main__":
UpperCAmelCase: int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--albert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained ALBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
UpperCAmelCase: Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 600 | 1 |
from __future__ import annotations
from typing import Any
def a ( lowerCamelCase_ ):
'''simple docstring'''
if not postfix_notation:
return 0
lowercase__ = {'''+''', '''-''', '''*''', '''/'''}
lowercase__ = []
for token in postfix_notation:
if token in operations:
lowercase__ , lowercase__ = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(lowerCamelCase_ ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 183 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class _UpperCAmelCase ( A__ ):
"""simple docstring"""
lowercase__ = (IPNDMScheduler,)
lowercase__ = (("""num_inference_steps""", 50),)
def lowercase__ ( self : Union[str, Any], **lowerCamelCase : Tuple ):
'''simple docstring'''
lowercase__ = {'''num_train_timesteps''': 1_000}
config.update(**lowerCamelCase )
return config
def lowercase__ ( self : Any, lowerCamelCase : Any=0, **lowerCamelCase : List[str] ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config(**lowerCamelCase )
lowercase__ = scheduler_class(**lowerCamelCase )
scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase )
lowercase__ = scheduler_class.from_pretrained(lowerCamelCase )
new_scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowercase__ ( self : str ):
'''simple docstring'''
pass
def lowercase__ ( self : Dict, lowerCamelCase : Optional[int]=0, **lowerCamelCase : Dict ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCamelCase )
scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase )
lowercase__ = scheduler_class.from_pretrained(lowerCamelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowercase__ ( self : int, **lowerCamelCase : List[str] ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**lowerCamelCase )
lowercase__ = scheduler_class(**lowerCamelCase )
lowercase__ = 10
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(lowerCamelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(lowerCamelCase, lowerCamelCase )
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(lowerCamelCase, lowerCamelCase )
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample
return sample
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase )
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**lowerCamelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(lowerCamelCase, '''set_timesteps''' ):
scheduler.set_timesteps(lowerCamelCase )
elif num_inference_steps is not None and not hasattr(lowerCamelCase, '''set_timesteps''' ):
lowercase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.timesteps[5]
lowercase__ = scheduler.timesteps[6]
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def lowercase__ ( self : Dict ):
'''simple docstring'''
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=lowerCamelCase, time_step=lowerCamelCase )
def lowercase__ ( self : str ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=lowerCamelCase, time_step=lowerCamelCase )
def lowercase__ ( self : List[str] ):
'''simple docstring'''
lowercase__ = self.full_loop()
lowercase__ = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 183 | 1 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
snake_case_ : Optional[Any] = logging.get_logger(__name__)
def lowerCamelCase( a__ ,a__=False):
_SCREAMING_SNAKE_CASE =[]
for i in range(config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight"))
rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias"))
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight"))
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias"))
rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight"))
rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias"))
# projection layer + position embeddings
rename_keys.extend(
[
('''cls_token''', '''deit.embeddings.cls_token'''),
('''dist_token''', '''deit.embeddings.distillation_token'''),
('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''),
('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''),
('''pos_embed''', '''deit.embeddings.position_embeddings'''),
])
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
])
# if just the base model, we should remove "deit" from all keys that start with "deit"
_SCREAMING_SNAKE_CASE =[(pair[0], pair[1][4:]) if pair[1].startswith('''deit''') else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
('''norm.weight''', '''deit.layernorm.weight'''),
('''norm.bias''', '''deit.layernorm.bias'''),
('''head.weight''', '''cls_classifier.weight'''),
('''head.bias''', '''cls_classifier.bias'''),
('''head_dist.weight''', '''distillation_classifier.weight'''),
('''head_dist.bias''', '''distillation_classifier.bias'''),
])
return rename_keys
def lowerCamelCase( a__ ,a__ ,a__=False):
for i in range(config.num_hidden_layers):
if base_model:
_SCREAMING_SNAKE_CASE =''''''
else:
_SCREAMING_SNAKE_CASE ='''deit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_SCREAMING_SNAKE_CASE =state_dict.pop(f"blocks.{i}.attn.qkv.weight")
_SCREAMING_SNAKE_CASE =state_dict.pop(f"blocks.{i}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
_SCREAMING_SNAKE_CASE =in_proj_weight[
: config.hidden_size, :
]
_SCREAMING_SNAKE_CASE =in_proj_bias[: config.hidden_size]
_SCREAMING_SNAKE_CASE =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_SCREAMING_SNAKE_CASE =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_SCREAMING_SNAKE_CASE =in_proj_weight[
-config.hidden_size :, :
]
_SCREAMING_SNAKE_CASE =in_proj_bias[-config.hidden_size :]
def lowerCamelCase( a__ ,a__ ,a__):
_SCREAMING_SNAKE_CASE =dct.pop(a__)
_SCREAMING_SNAKE_CASE =val
def lowerCamelCase( ):
_SCREAMING_SNAKE_CASE ='''http://images.cocodataset.org/val2017/000000039769.jpg'''
_SCREAMING_SNAKE_CASE =Image.open(requests.get(a__ ,stream=a__).raw)
return im
@torch.no_grad()
def lowerCamelCase( a__ ,a__):
_SCREAMING_SNAKE_CASE =DeiTConfig()
# all deit models have fine-tuned heads
_SCREAMING_SNAKE_CASE =False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
_SCREAMING_SNAKE_CASE =1000
_SCREAMING_SNAKE_CASE ='''huggingface/label-files'''
_SCREAMING_SNAKE_CASE ='''imagenet-1k-id2label.json'''
_SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(a__ ,a__ ,repo_type='''dataset''') ,'''r'''))
_SCREAMING_SNAKE_CASE ={int(a__): v for k, v in idalabel.items()}
_SCREAMING_SNAKE_CASE =idalabel
_SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()}
_SCREAMING_SNAKE_CASE =int(deit_name[-6:-4])
_SCREAMING_SNAKE_CASE =int(deit_name[-3:])
# size of the architecture
if deit_name[9:].startswith('''tiny'''):
_SCREAMING_SNAKE_CASE =192
_SCREAMING_SNAKE_CASE =768
_SCREAMING_SNAKE_CASE =12
_SCREAMING_SNAKE_CASE =3
elif deit_name[9:].startswith('''small'''):
_SCREAMING_SNAKE_CASE =384
_SCREAMING_SNAKE_CASE =1536
_SCREAMING_SNAKE_CASE =12
_SCREAMING_SNAKE_CASE =6
if deit_name[9:].startswith('''base'''):
pass
elif deit_name[4:].startswith('''large'''):
_SCREAMING_SNAKE_CASE =1024
_SCREAMING_SNAKE_CASE =4096
_SCREAMING_SNAKE_CASE =24
_SCREAMING_SNAKE_CASE =16
# load original model from timm
_SCREAMING_SNAKE_CASE =timm.create_model(a__ ,pretrained=a__)
timm_model.eval()
# load state_dict of original model, remove and rename some keys
_SCREAMING_SNAKE_CASE =timm_model.state_dict()
_SCREAMING_SNAKE_CASE =create_rename_keys(a__ ,a__)
for src, dest in rename_keys:
rename_key(a__ ,a__ ,a__)
read_in_q_k_v(a__ ,a__ ,a__)
# load HuggingFace model
_SCREAMING_SNAKE_CASE =DeiTForImageClassificationWithTeacher(a__).eval()
model.load_state_dict(a__)
# Check outputs on an image, prepared by DeiTImageProcessor
_SCREAMING_SNAKE_CASE =int(
(256 / 224) * config.image_size) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
_SCREAMING_SNAKE_CASE =DeiTImageProcessor(size=a__ ,crop_size=config.image_size)
_SCREAMING_SNAKE_CASE =image_processor(images=prepare_img() ,return_tensors='''pt''')
_SCREAMING_SNAKE_CASE =encoding['''pixel_values''']
_SCREAMING_SNAKE_CASE =model(a__)
_SCREAMING_SNAKE_CASE =timm_model(a__)
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(a__ ,outputs.logits ,atol=1e-3)
Path(a__).mkdir(exist_ok=a__)
print(f"Saving model {deit_name} to {pytorch_dump_folder_path}")
model.save_pretrained(a__)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(a__)
if __name__ == "__main__":
snake_case_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--deit_name''',
default='''vit_deit_base_distilled_patch16_224''',
type=str,
help='''Name of the DeiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
snake_case_ : int = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path) | 191 |
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
snake_case_ : Any = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : Tuple , _a : str , _a : List[str]=7 , _a : Union[str, Any]=3 , _a : List[str]=18 , _a : List[Any]=30 , _a : Optional[Any]=400 , _a : Dict=None , _a : Union[str, Any]=True , _a : List[str]=True , _a : Optional[Any]=None , ) -> Dict:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =size if size is not None else {'''height''': 20, '''width''': 20}
_SCREAMING_SNAKE_CASE =parent
_SCREAMING_SNAKE_CASE =batch_size
_SCREAMING_SNAKE_CASE =num_channels
_SCREAMING_SNAKE_CASE =image_size
_SCREAMING_SNAKE_CASE =min_resolution
_SCREAMING_SNAKE_CASE =max_resolution
_SCREAMING_SNAKE_CASE =size
_SCREAMING_SNAKE_CASE =do_normalize
_SCREAMING_SNAKE_CASE =do_convert_rgb
_SCREAMING_SNAKE_CASE =[512, 1024, 2048, 4096]
_SCREAMING_SNAKE_CASE =patch_size if patch_size is not None else {'''height''': 16, '''width''': 16}
def __UpperCamelCase ( self : int ) -> Any:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def __UpperCamelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE ='''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'''
_SCREAMING_SNAKE_CASE =Image.open(requests.get(_a , stream=_a ).raw ).convert('''RGB''' )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class A__ ( UpperCamelCase__ , unittest.TestCase ):
UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self : int ) -> Dict:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =PixaStructImageProcessingTester(self )
@property
def __UpperCamelCase ( self : int ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self : str ) -> Dict:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , '''do_normalize''' ) )
self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) )
def __UpperCamelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_dummy_image()
_SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict )
_SCREAMING_SNAKE_CASE =2048
_SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''pt''' , max_patches=_a )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1E-3 , rtol=1E-3 ) )
def __UpperCamelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_SCREAMING_SNAKE_CASE =(
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_SCREAMING_SNAKE_CASE =image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_SCREAMING_SNAKE_CASE =image_processor(
_a , return_tensors='''pt''' , max_patches=_a ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __UpperCamelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_SCREAMING_SNAKE_CASE =(
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
_SCREAMING_SNAKE_CASE =True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(_a ):
_SCREAMING_SNAKE_CASE =image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches
_SCREAMING_SNAKE_CASE ='''Hello'''
_SCREAMING_SNAKE_CASE =image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_a , header_text=_a ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_SCREAMING_SNAKE_CASE =image_processor(
_a , return_tensors='''pt''' , max_patches=_a , header_text=_a ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __UpperCamelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
_SCREAMING_SNAKE_CASE =(
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_SCREAMING_SNAKE_CASE =image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_SCREAMING_SNAKE_CASE =image_processor(
_a , return_tensors='''pt''' , max_patches=_a ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
_SCREAMING_SNAKE_CASE =(
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_SCREAMING_SNAKE_CASE =image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_SCREAMING_SNAKE_CASE =image_processor(
_a , return_tensors='''pt''' , max_patches=_a ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class A__ ( UpperCamelCase__ , unittest.TestCase ):
UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =PixaStructImageProcessingTester(self , num_channels=4 )
_SCREAMING_SNAKE_CASE =3
@property
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , '''do_normalize''' ) )
self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) )
def __UpperCamelCase ( self : Dict ) -> Dict:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_SCREAMING_SNAKE_CASE =(
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_SCREAMING_SNAKE_CASE =image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_SCREAMING_SNAKE_CASE =image_processor(
_a , return_tensors='''pt''' , max_patches=_a ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 191 | 1 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase_ = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase_ = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase_ = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase_ = {
"facebook/dpr-ctx_encoder-single-nq-base": 5_12,
"facebook/dpr-ctx_encoder-multiset-base": 5_12,
}
UpperCAmelCase_ = {
"facebook/dpr-question_encoder-single-nq-base": 5_12,
"facebook/dpr-question_encoder-multiset-base": 5_12,
}
UpperCAmelCase_ = {
"facebook/dpr-reader-single-nq-base": 5_12,
"facebook/dpr-reader-multiset-base": 5_12,
}
UpperCAmelCase_ = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
UpperCAmelCase_ = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
UpperCAmelCase_ = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class __UpperCamelCase ( A__ ):
__A : Optional[int] = VOCAB_FILES_NAMES
__A : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
__A : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class __UpperCamelCase ( A__ ):
__A : Dict = VOCAB_FILES_NAMES
__A : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
__A : Any = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : str = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase_ = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
UpperCAmelCase_ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
UpperCAmelCase_ = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(A__ )
class __UpperCamelCase :
def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ):
if titles is None and texts is None:
return super().__call__(
_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , )
elif titles is None or texts is None:
_UpperCAmelCase = titles if texts is None else texts
return super().__call__(
_UpperCamelCase , _UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , )
_UpperCAmelCase = titles if not isinstance(_UpperCamelCase , _UpperCamelCase ) else [titles]
_UpperCAmelCase = texts if not isinstance(_UpperCamelCase , _UpperCamelCase ) else [texts]
_UpperCAmelCase = len(_UpperCamelCase )
_UpperCAmelCase = questions if not isinstance(_UpperCamelCase , _UpperCamelCase ) else [questions] * n_passages
if len(_UpperCamelCase ) != len(_UpperCamelCase ):
raise ValueError(
f'''There should be as many titles than texts but got {len(_UpperCamelCase )} titles and {len(_UpperCamelCase )} texts.''' )
_UpperCAmelCase = super().__call__(_UpperCamelCase , _UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase )['''input_ids''']
_UpperCAmelCase = super().__call__(_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase )['''input_ids''']
_UpperCAmelCase = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_UpperCamelCase , _UpperCamelCase )
]
}
if return_attention_mask is not False:
_UpperCAmelCase = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_UpperCAmelCase = attention_mask
return self.pad(_UpperCamelCase , padding=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 16 , _UpperCamelCase = 64 , _UpperCamelCase = 4 , ):
_UpperCAmelCase = reader_input['''input_ids''']
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reader_output[:3]
_UpperCAmelCase = len(_UpperCamelCase )
_UpperCAmelCase = sorted(range(_UpperCamelCase ) , reverse=_UpperCamelCase , key=relevance_logits.__getitem__ )
_UpperCAmelCase = []
for doc_id in sorted_docs:
_UpperCAmelCase = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_UpperCAmelCase = sequence_ids.index(self.pad_token_id )
else:
_UpperCAmelCase = len(_UpperCamelCase )
_UpperCAmelCase = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCamelCase , top_spans=_UpperCamelCase , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCamelCase , start_index=_UpperCamelCase , end_index=_UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_UpperCamelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = []
for start_index, start_score in enumerate(_UpperCamelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_UpperCAmelCase = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : x[1] , reverse=_UpperCamelCase )
_UpperCAmelCase = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' )
_UpperCAmelCase = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_UpperCamelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(A__ )
class __UpperCamelCase ( A__ , A__ ):
__A : Dict = VOCAB_FILES_NAMES
__A : Dict = READER_PRETRAINED_VOCAB_FILES_MAP
__A : int = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : Optional[Any] = READER_PRETRAINED_INIT_CONFIGURATION
__A : Tuple = ["""input_ids""", """attention_mask"""] | 32 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += [key]
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : Any ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += keys
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
class __UpperCamelCase ( A__ ):
def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
if not hasattr(_UpperCamelCase , '''key_handler''' ):
setattr(_UpperCamelCase , '''key_handler''' , {} )
setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] )
for key in handled_keys:
_UpperCAmelCase = value
return new_cls
@staticmethod
def UpperCamelCase( cls ):
_UpperCAmelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCAmelCase = ord(_UpperCamelCase )
_UpperCAmelCase = cls.key_handler.get(_UpperCamelCase )
if handler:
_UpperCAmelCase = char
return handler(cls )
else:
return None
def A__ ( cls : Union[str, Any] ) -> Any:
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() ) | 32 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
__lowerCamelCase : str = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""")
@dataclass
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
a_ = field(
default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} )
a_ = field(
default=UpperCamelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
a_ = field(
default=UpperCamelCase_ , metadata={"help": "The column name of the images in the files."} )
a_ = field(default=UpperCamelCase_ , metadata={"help": "A folder containing the training data."} )
a_ = field(default=UpperCamelCase_ , metadata={"help": "A folder containing the validation data."} )
a_ = field(
default=0.15 , metadata={"help": "Percent to split off of train for validation."} )
a_ = field(
default=UpperCamelCase_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
a_ = field(
default=UpperCamelCase_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def _lowercase ( self : List[Any] ):
snake_case__ : int = {}
if self.train_dir is not None:
snake_case__ : Tuple = self.train_dir
if self.validation_dir is not None:
snake_case__ : Dict = self.validation_dir
snake_case__ : str = data_files if data_files else None
@dataclass
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
a_ = field(
default=UpperCamelCase_ , metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
} , )
a_ = field(
default=UpperCamelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} )
a_ = field(
default=UpperCamelCase_ , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
a_ = field(
default=UpperCamelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} )
a_ = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
a_ = field(default=UpperCamelCase_ , metadata={"help": "Name or path of preprocessor config."} )
a_ = field(
default=UpperCamelCase_ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
a_ = field(
default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} )
a_ = field(
default=UpperCamelCase_ , metadata={"help": "Whether or not to train with normalized pixel values as target."} )
@dataclass
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = field(
default=1E-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} )
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
snake_case__ : Union[str, Any] = torch.stack([example["pixel_values"] for example in examples] )
return {"pixel_values": pixel_values}
def SCREAMING_SNAKE_CASE ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case__, snake_case__, snake_case__ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case__, snake_case__, snake_case__ : Optional[Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_mae" , snake_case_ , snake_case_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
snake_case__ : int = training_args.get_process_log_level()
logger.setLevel(snake_case_ )
transformers.utils.logging.set_verbosity(snake_case_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
snake_case__ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
snake_case__ : Optional[int] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Initialize our dataset.
snake_case__ : List[Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
snake_case__ : Dict = None if "validation" in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , snake_case_ ) and data_args.train_val_split > 0.0:
snake_case__ : Optional[Any] = ds["train"].train_test_split(data_args.train_val_split )
snake_case__ : List[Any] = split["train"]
snake_case__ : List[str] = split["test"]
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case__ : Tuple = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
snake_case__ : Optional[int] = ViTMAEConfig.from_pretrained(model_args.config_name , **snake_case_ )
elif model_args.model_name_or_path:
snake_case__ : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ )
else:
snake_case__ : List[Any] = ViTMAEConfig()
logger.warning("You are instantiating a new config instance from scratch." )
if model_args.config_overrides is not None:
logger.info(F'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(F'''New config: {config}''' )
# adapt config
config.update(
{
"mask_ratio": model_args.mask_ratio,
"norm_pix_loss": model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
snake_case__ : Optional[int] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case_ )
elif model_args.model_name_or_path:
snake_case__ : List[Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case_ )
else:
snake_case__ : Optional[int] = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
snake_case__ : Optional[Any] = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("Training new model from scratch" )
snake_case__ : Tuple = ViTMAEForPreTraining(snake_case_ )
if training_args.do_train:
snake_case__ : Union[str, Any] = ds["train"].column_names
else:
snake_case__ : Any = ds["validation"].column_names
if data_args.image_column_name is not None:
snake_case__ : List[Any] = data_args.image_column_name
elif "image" in column_names:
snake_case__ : Tuple = "image"
elif "img" in column_names:
snake_case__ : List[str] = "img"
else:
snake_case__ : Any = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
snake_case__ : int = image_processor.size["shortest_edge"]
else:
snake_case__ : List[Any] = (image_processor.size["height"], image_processor.size["width"])
snake_case__ : Optional[Any] = Compose(
[
Lambda(lambda snake_case_ : img.convert("RGB" ) if img.mode != "RGB" else img ),
RandomResizedCrop(snake_case_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(snake_case_ : Dict ):
snake_case__ : Optional[Any] = [transforms(snake_case_ ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError("--do_train requires a train dataset" )
if data_args.max_train_samples is not None:
snake_case__ : Any = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(snake_case_ )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError("--do_eval requires a validation dataset" )
if data_args.max_eval_samples is not None:
snake_case__ : Tuple = (
ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(snake_case_ )
# Compute absolute learning rate
snake_case__ : int = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
snake_case__ : Optional[Any] = training_args.base_learning_rate * total_train_batch_size / 256
# Initialize our trainer
snake_case__ : Optional[Any] = Trainer(
model=snake_case_ , args=snake_case_ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , )
# Training
if training_args.do_train:
snake_case__ : Tuple = None
if training_args.resume_from_checkpoint is not None:
snake_case__ : Any = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
snake_case__ : Optional[int] = last_checkpoint
snake_case__ : List[Any] = trainer.train(resume_from_checkpoint=snake_case_ )
trainer.save_model()
trainer.log_metrics("train" , train_result.metrics )
trainer.save_metrics("train" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
snake_case__ : int = trainer.evaluate()
trainer.log_metrics("eval" , snake_case_ )
trainer.save_metrics("eval" , snake_case_ )
# Write model card and (optionally) push to hub
snake_case__ : Union[str, Any] = {
"tasks": "masked-auto-encoding",
"dataset": data_args.dataset_name,
"tags": ["masked-auto-encoding"],
}
if training_args.push_to_hub:
trainer.push_to_hub(**snake_case_ )
else:
trainer.create_model_card(**snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 25 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
__lowerCamelCase : Optional[int] = """\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
"""
__lowerCamelCase : str = """\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
"""
__lowerCamelCase : str = """
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: \"c\" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric('mauve')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[
"https://arxiv.org/abs/2102.01454",
"https://github.com/krishnap25/mauve",
] , )
def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ):
snake_case__ : List[Any] = compute_mauve(
p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , )
return out
| 25 | 1 |
"""simple docstring"""
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
A_ = True
except ImportError:
A_ = False
try:
from torch.hub import _get_torch_home
A_ = _get_torch_home()
except ImportError:
A_ = os.path.expanduser(
os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch"""))
)
A_ = os.path.join(torch_cache_home, """transformers""")
A_ = """https://cdn.huggingface.co"""
A_ = """https://s3.amazonaws.com/models.huggingface.co/bert"""
A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1])
A_ = os.path.join(PATH, """config.yaml""")
A_ = os.path.join(PATH, """attributes.txt""")
A_ = os.path.join(PATH, """objects.txt""")
A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path)
A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE)
A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE)
A_ = """pytorch_model.bin"""
A_ = """config.yaml"""
def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ):
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
lowerCamelCase_ = []
with open(lowerCAmelCase__ ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = OrderedDict()
with open(lowerCAmelCase__ ,'''rb''' ) as f:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
lowerCamelCase_ = ckp.pop(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,np.ndarray ):
lowerCamelCase_ = torch.tensor(lowerCAmelCase__ )
else:
assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ )
lowerCamelCase_ = v
return r
class __lowerCamelCase :
a__: Union[str, Any] = {}
def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ):
lowerCamelCase_ = name
lowerCamelCase_ = level
lowerCamelCase_ = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
lowerCamelCase_ = copy.deepcopy(UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 )
lowerCamelCase_ = v
setattr(self , UpperCAmelCase , UpperCAmelCase )
lowerCamelCase_ = d
def __repr__( self ):
return str(list((self._pointer.keys()) ) )
def __setattr__( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = val
lowerCamelCase_ = val
lowerCamelCase_ = key.split('''.''' )
lowerCamelCase_ = len(UpperCAmelCase ) - 1
lowerCamelCase_ = self._pointer
if len(UpperCAmelCase ) > 1:
for i, l in enumerate(UpperCAmelCase ):
if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ):
setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase )
if l == last_level:
lowerCamelCase_ = val
else:
lowerCamelCase_ = pointer[l]
def UpperCAmelCase__ ( self ):
return self._pointer
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
with open(f"{file_name}" , '''w''' ) as stream:
json.dump(UpperCAmelCase , UpperCAmelCase )
@staticmethod
def UpperCAmelCase__ ( UpperCAmelCase ):
with open(UpperCAmelCase ) as stream:
lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase )
return data
def __str__( self ):
lowerCamelCase_ = ''' '''
if self._name != "root":
lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n"
else:
lowerCamelCase_ = ''''''
lowerCamelCase_ = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(UpperCAmelCase , UpperCAmelCase ):
r += f"{t * (self._level)}{v}\n"
self._level += 1
else:
r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n"
lowerCamelCase_ = level
return r[:-1]
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase )
return cls(UpperCAmelCase )
@classmethod
def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ):
lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase )
lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase )
if os.path.isdir(UpperCAmelCase ):
lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase )
elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ):
lowerCamelCase_ = pretrained_model_name_or_path
else:
lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase )
try:
# Load from URL or cache if already cached
lowerCamelCase_ = cached_path(
UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
lowerCamelCase_ = Config.load_yaml(UpperCAmelCase )
except EnvironmentError:
lowerCamelCase_ = '''Can\'t load config for'''
raise EnvironmentError(UpperCAmelCase )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(UpperCAmelCase ), kwargs
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device )
lowerCamelCase_ = in_tensor.numpy()
lowerCamelCase_ = out_tensor.numpy()[0]
print(na.shape ,na[0, 0, :5] )
print(na.shape ,na[0, 0, :5] )
assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), (
f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %"
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = urlparse(lowerCAmelCase__ )
return parsed.scheme in ("http", "https")
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ):
lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
lowerCamelCase_ = '''/''' not in model_id
if legacy_format:
return f"{endpoint}/{model_id}-{filename}"
else:
return f"{endpoint}/{model_id}/{filename}"
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,):
lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() )
elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
ua += "; " + user_agent
lowerCamelCase_ = {'''user-agent''': ua}
if resume_size > 0:
lowerCamelCase_ = '''bytes=%d-''' % (resume_size,)
lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ )
if response.status_code == 416: # Range not satisfiable
return
lowerCamelCase_ = response.headers.get('''Content-Length''' )
lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None
lowerCamelCase_ = tqdm(
unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,)
for chunk in response.iter_content(chunk_size=1_024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(lowerCAmelCase__ ) )
temp_file.write(lowerCAmelCase__ )
progress.close()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ )
lowerCamelCase_ = None
if not local_files_only:
try:
lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ )
if response.status_code == 200:
lowerCamelCase_ = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ )
# get cache path to put the file
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(lowerCAmelCase__ ):
return cache_path
else:
lowerCamelCase_ = [
file
for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(lowerCAmelCase__ ) > 0:
return os.path.join(lowerCAmelCase__ ,matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lowerCamelCase_ = cache_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
# If the download just completed while the lock was activated.
if os.path.exists(lowerCAmelCase__ ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
lowerCamelCase_ = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(lowerCAmelCase__ ,'''a+b''' ) as f:
yield f
lowerCamelCase_ = _resumable_file_manager
if os.path.exists(lowerCAmelCase__ ):
lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size
else:
lowerCamelCase_ = 0
else:
lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ )
lowerCamelCase_ = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,)
http_get(
lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,)
os.replace(temp_file.name ,lowerCAmelCase__ )
lowerCamelCase_ = {'''url''': url, '''etag''': etag}
lowerCamelCase_ = cache_path + '''.json'''
with open(lowerCAmelCase__ ,'''w''' ) as meta_file:
json.dump(lowerCAmelCase__ ,lowerCAmelCase__ )
return cache_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ):
lowerCamelCase_ = url.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
lowerCamelCase_ = url_hash.hexdigest()
if etag:
lowerCamelCase_ = etag.encode('''utf-8''' )
lowerCamelCase_ = shaaaa(lowerCAmelCase__ )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,):
if cache_dir is None:
lowerCamelCase_ = TRANSFORMERS_CACHE
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCamelCase_ = str(lowerCAmelCase__ )
if is_remote_url(lowerCAmelCase__ ):
# URL, so get it from the cache (downloading if necessary)
lowerCamelCase_ = get_from_cache(
lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,)
elif os.path.exists(lowerCAmelCase__ ):
# File, and it exists.
lowerCamelCase_ = url_or_filename
elif urlparse(lowerCAmelCase__ ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) )
if extract_compressed_file:
if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ )
lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted'''
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lowerCamelCase_ = output_path + '''.lock'''
with FileLock(lowerCAmelCase__ ):
shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ )
if is_zipfile(lowerCAmelCase__ ):
with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file:
zip_file.extractall(lowerCAmelCase__ )
zip_file.close()
elif tarfile.is_tarfile(lowerCAmelCase__ ):
lowerCamelCase_ = tarfile.open(lowerCAmelCase__ )
tar_file.extractall(lowerCAmelCase__ )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) )
return output_path_extracted
return output_path
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
with open(lowerCAmelCase__ ) as f:
lowerCamelCase_ = eval(f.read() )
else:
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
try:
lowerCamelCase_ = requests.json()
except Exception:
lowerCamelCase_ = req.content.decode()
assert data is not None, "could not connect"
try:
lowerCamelCase_ = eval(lowerCAmelCase__ )
except Exception:
lowerCamelCase_ = data.split('''\n''' )
req.close()
return data
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = requests.get(lowerCAmelCase__ )
lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) )
return img
def lowercase ( lowerCAmelCase__ ):
lowerCamelCase_ = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(lowerCAmelCase__ )
with open(lowerCAmelCase__ ,'''rb''' ) as stream:
lowerCamelCase_ = pkl.load(lowerCAmelCase__ )
lowerCamelCase_ = weights.pop('''model''' )
lowerCamelCase_ = {}
for k, v in model.items():
lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ )
if "running_var" in k:
lowerCamelCase_ = torch.tensor([0] )
lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' )
lowerCamelCase_ = zero
return new
def lowercase ( ):
print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ):
assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
lowerCamelCase_ = cva.imread(lowerCAmelCase__ )
else:
lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ )
assert img is not None, f"could not connect to: {im}"
lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB )
if input_format == "RGB":
lowerCamelCase_ = img[:, :, ::-1]
return img
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ):
return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
| 29 |
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCamelCase ( lowerCAmelCase ):
a__: Any = (DDPMScheduler,)
def UpperCAmelCase__ ( self , **UpperCAmelCase ):
lowerCamelCase_ = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCAmelCase )
return config
def UpperCAmelCase__ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
self.check_over_configs(thresholding=UpperCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , )
def UpperCAmelCase__ ( self ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = len(UpperCAmelCase )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter
lowerCamelCase_ = torch.manual_seed(0 )
for t in reversed(range(UpperCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ = pred_prev_sample
lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) )
lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase )
lowerCamelCase_ = scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase ):
if i == len(UpperCAmelCase ) - 1:
lowerCamelCase_ = -1
else:
lowerCamelCase_ = timesteps[i + 1]
lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase )
lowerCamelCase_ = prev_t.item()
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [100, 87, 50, 1, 0]
lowerCamelCase_ = len(UpperCAmelCase )
with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**UpperCAmelCase )
lowerCamelCase_ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase )
| 29 | 1 |
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __a :
def __init__( self , a__ , a__=13 , a__=32 , a__=3 , a__=4 , a__=[10, 20, 30, 40] , a__=[2, 2, 3, 2] , a__=True , a__=True , a__=37 , a__="gelu" , a__=10 , a__=0.02 , a__=["stage2", "stage3", "stage4"] , a__=3 , a__=None , ):
_lowerCamelCase = parent
_lowerCamelCase = batch_size
_lowerCamelCase = image_size
_lowerCamelCase = num_channels
_lowerCamelCase = num_stages
_lowerCamelCase = hidden_sizes
_lowerCamelCase = depths
_lowerCamelCase = is_training
_lowerCamelCase = use_labels
_lowerCamelCase = intermediate_size
_lowerCamelCase = hidden_act
_lowerCamelCase = type_sequence_label_size
_lowerCamelCase = initializer_range
_lowerCamelCase = out_features
_lowerCamelCase = num_labels
_lowerCamelCase = scope
_lowerCamelCase = num_stages
def snake_case_ ( self ):
_lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase = None
if self.use_labels:
_lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCamelCase = self.get_config()
return config, pixel_values, labels
def snake_case_ ( self ):
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def snake_case_ ( self ):
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCamelCase__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCamelCase__ , loss_ignore_index=2_55 , num_labels=self.num_labels , )
def snake_case_ ( self , a__ , a__ , a__ ):
_lowerCamelCase = UperNetForSemanticSegmentation(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_lowerCamelCase = model(lowerCamelCase__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def snake_case_ ( self ):
_lowerCamelCase = self.prepare_config_and_inputs()
(
_lowerCamelCase
) = config_and_inputs
_lowerCamelCase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class __a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE__ : str = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE__ : Dict = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
SCREAMING_SNAKE_CASE__ : Optional[Any] = False
SCREAMING_SNAKE_CASE__ : List[Any] = False
SCREAMING_SNAKE_CASE__ : Optional[int] = False
SCREAMING_SNAKE_CASE__ : Optional[int] = False
SCREAMING_SNAKE_CASE__ : Any = False
SCREAMING_SNAKE_CASE__ : Optional[int] = False
def snake_case_ ( self ):
_lowerCamelCase = UperNetModelTester(self )
_lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 )
def snake_case_ ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def snake_case_ ( self ):
return
def snake_case_ ( self ):
_lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase = model_class(lowerCamelCase__ )
_lowerCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase = [*signature.parameters.keys()]
_lowerCamelCase = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
def snake_case_ ( self ):
_lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ )
@unittest.skip(reason='UperNet does not use inputs_embeds' )
def snake_case_ ( self ):
pass
@unittest.skip(reason='UperNet does not support input and output embeddings' )
def snake_case_ ( self ):
pass
@unittest.skip(reason='UperNet does not have a base model' )
def snake_case_ ( self ):
pass
@unittest.skip(reason='UperNet does not have a base model' )
def snake_case_ ( self ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def snake_case_ ( self ):
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def snake_case_ ( self ):
pass
def snake_case_ ( self ):
def check_hidden_states_output(a__ , a__ , a__ ):
_lowerCamelCase = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
with torch.no_grad():
_lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) )
_lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowerCamelCase = self.model_tester.num_stages
self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase = True
check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase = True
check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def snake_case_ ( self ):
_lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase = _config_zero_init(lowerCamelCase__ )
_lowerCamelCase = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_lowerCamelCase = model_class(config=lowerCamelCase__ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@unittest.skip(reason='UperNet does not have tied weights' )
def snake_case_ ( self ):
pass
@slow
def snake_case_ ( self ):
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE_ ( )-> int:
_lowerCamelCase = hf_hub_download(
repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' )
_lowerCamelCase = Image.open(__lowerCAmelCase ).convert('RGB' )
return image
@require_torch
@require_vision
@slow
class __a ( unittest.TestCase ):
def snake_case_ ( self ):
_lowerCamelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' )
_lowerCamelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCamelCase__ )
_lowerCamelCase = prepare_img()
_lowerCamelCase = processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
with torch.no_grad():
_lowerCamelCase = model(**lowerCamelCase__ )
_lowerCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12) )
self.assertEqual(outputs.logits.shape , lowerCamelCase__ )
_lowerCamelCase = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
def snake_case_ ( self ):
_lowerCamelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' )
_lowerCamelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCamelCase__ )
_lowerCamelCase = prepare_img()
_lowerCamelCase = processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
with torch.no_grad():
_lowerCamelCase = model(**lowerCamelCase__ )
_lowerCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12) )
self.assertEqual(outputs.logits.shape , lowerCamelCase__ )
_lowerCamelCase = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
| 718 |
"""simple docstring"""
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def SCREAMING_SNAKE_CASE_ ( )-> int:
_lowerCamelCase = {
'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'],
'path': ['test_1.py', 'test_2.py', 'unit_test.py'],
'content': ['a ' * 20, 'a ' * 30, 'b ' * 7],
}
_lowerCamelCase = Dataset.from_dict(snake_case )
return dataset
class __a ( lowerCAmelCase__ ):
def snake_case_ ( self ):
_lowerCamelCase = get_dataset()
_lowerCamelCase = make_duplicate_clusters(a__ , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def snake_case_ ( self ):
_lowerCamelCase = get_dataset()
_lowerCamelCase , _lowerCamelCase = deduplicate_dataset(a__ )
self.assertEqual(len(a__ ) , 2 )
print(a__ )
self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 )
self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , a__ )
| 222 | 0 |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
lowercase_ = re.compile("""[^A-Za-z_0-9]""")
# parameters used in DuplicationIndex
lowercase_ = 10
lowercase_ = 256
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ):
if len(_lowercase ) < MIN_NUM_TOKENS:
return None
lowercase__ = MinHash(num_perm=_lowercase )
for token in set(_lowercase ):
min_hash.update(token.encode() )
return min_hash
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ):
return {t for t in NON_ALPHA.split(_lowercase ) if len(t.strip() ) > 0}
class _snake_case :
def __init__( self : Optional[int], *,
__lowercase : float = 0.85, ):
lowercase__ = duplication_jaccard_threshold
lowercase__ = NUM_PERM
lowercase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold, num_perm=self._num_perm )
lowercase__ = defaultdict(a__ )
def A__ ( self : Any, __lowercase : Tuple, __lowercase : MinHash ):
lowercase__ = self._index.query(a__ )
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''' )
return
self._index.insert(a__, a__ )
if len(a__ ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(a__ )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(a__ )
def A__ ( self : str ):
lowercase__ = []
for base, duplicates in self._duplicate_clusters.items():
lowercase__ = [base] + list(a__ )
# reformat the cluster to be a list of dict
lowercase__ = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster]
duplicate_clusters.append(a__ )
return duplicate_clusters
def A__ ( self : List[str], __lowercase : Any ):
lowercase__ = self.get_duplicate_clusters()
with open(a__, "w" ) as f:
json.dump(a__, a__ )
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ):
lowercase__ , lowercase__ = element
lowercase__ = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ):
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(_lowercase , max_queue_size=1_0000 ) , chunksize=100 , ):
if data is not None:
yield data
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowercase__ = DuplicationIndex(duplication_jaccard_threshold=_lowercase )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowercase ) ) , max_queue_size=100 ) ):
di.add(_lowercase , _lowercase )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowercase__ = get_tokens(_lowercase )
lowercase__ = get_tokens(_lowercase )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
lowercase_ = None
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowercase__ = []
for elementa in cluster:
lowercase__ = _shared_dataset[elementa["base_index"]]["content"]
for elementa in extremes:
lowercase__ = _shared_dataset[elementa["base_index"]]["content"]
if jaccard_similarity(_lowercase , _lowercase ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
lowercase__ = 1
extremes.append(_lowercase )
return extremes
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
global _shared_dataset
lowercase__ = dataset
lowercase__ = []
lowercase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=_lowercase )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
_lowercase , _lowercase , ) , total=len(_lowercase ) , ):
extremes_list.append(_lowercase )
return extremes_list
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0.85 ):
lowercase__ = make_duplicate_clusters(_lowercase , _lowercase )
lowercase__ = {x["base_index"] for cluster in duplicate_clusters for x in cluster}
lowercase__ = {}
lowercase__ = find_extremes(_lowercase , _lowercase , _lowercase )
for extremes in extremes_clusters:
for element in extremes:
lowercase__ = element
lowercase__ = duplicate_indices - set(extreme_dict.keys() )
lowercase__ = dataset.filter(lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : idx not in remove_indices , with_indices=_lowercase )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
lowercase__ = element["base_index"] in extreme_dict
if element["is_extreme"]:
lowercase__ = extreme_dict[element["base_index"]]["copies"]
print(f'''Original dataset size: {len(_lowercase )}''' )
print(f'''Number of duplicate clusters: {len(_lowercase )}''' )
print(f'''Files in duplicate cluster: {len(_lowercase )}''' )
print(f'''Unique files in duplicate cluster: {len(_lowercase )}''' )
print(f'''Filtered dataset size: {len(_lowercase )}''' )
return ds_filter, duplicate_clusters
| 413 |
'''simple docstring'''
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def _lowerCAmelCase (_lowercase ):
"""simple docstring"""
return x + 2
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase_ ( self : Union[str, Any] ):
a__ = "x = 3"
a__ = {}
a__ = evaluate(a__ ,{} ,state=a__ )
assert result == 3
self.assertDictEqual(a__ ,{"x": 3} )
a__ = "x = y"
a__ = {"y": 5}
a__ = evaluate(a__ ,{} ,state=a__ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(a__ ,{"x": 5, "y": 5} )
def lowerCAmelCase_ ( self : str ):
a__ = "y = add_two(x)"
a__ = {"x": 3}
a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ )
assert result == 5
self.assertDictEqual(a__ ,{"x": 3, "y": 5} )
# Won't work without the tool
with CaptureStdout() as out:
a__ = evaluate(a__ ,{} ,state=a__ )
assert result is None
assert "tried to execute add_two" in out.out
def lowerCAmelCase_ ( self : Any ):
a__ = "x = 3"
a__ = {}
a__ = evaluate(a__ ,{} ,state=a__ )
assert result == 3
self.assertDictEqual(a__ ,{"x": 3} )
def lowerCAmelCase_ ( self : Dict ):
a__ = "test_dict = {'x': x, 'y': add_two(x)}"
a__ = {"x": 3}
a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ )
self.assertDictEqual(a__ ,{"x": 3, "y": 5} )
self.assertDictEqual(a__ ,{"x": 3, "test_dict": {"x": 3, "y": 5}} )
def lowerCAmelCase_ ( self : Dict ):
a__ = "x = 3\ny = 5"
a__ = {}
a__ = evaluate(a__ ,{} ,state=a__ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(a__ ,{"x": 3, "y": 5} )
def lowerCAmelCase_ ( self : str ):
a__ = "text = f'This is x: {x}.'"
a__ = {"x": 3}
a__ = evaluate(a__ ,{} ,state=a__ )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(a__ ,{"x": 3, "text": "This is x: 3."} )
def lowerCAmelCase_ ( self : Union[str, Any] ):
a__ = "if x <= 3:\n y = 2\nelse:\n y = 5"
a__ = {"x": 3}
a__ = evaluate(a__ ,{} ,state=a__ )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(a__ ,{"x": 3, "y": 2} )
a__ = {"x": 8}
a__ = evaluate(a__ ,{} ,state=a__ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(a__ ,{"x": 8, "y": 5} )
def lowerCAmelCase_ ( self : List[Any] ):
a__ = "test_list = [x, add_two(x)]"
a__ = {"x": 3}
a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ )
self.assertListEqual(a__ ,[3, 5] )
self.assertDictEqual(a__ ,{"x": 3, "test_list": [3, 5]} )
def lowerCAmelCase_ ( self : Any ):
a__ = "y = x"
a__ = {"x": 3}
a__ = evaluate(a__ ,{} ,state=a__ )
assert result == 3
self.assertDictEqual(a__ ,{"x": 3, "y": 3} )
def lowerCAmelCase_ ( self : Tuple ):
a__ = "test_list = [x, add_two(x)]\ntest_list[1]"
a__ = {"x": 3}
a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ )
assert result == 5
self.assertDictEqual(a__ ,{"x": 3, "test_list": [3, 5]} )
a__ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']"
a__ = {"x": 3}
a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ )
assert result == 5
self.assertDictEqual(a__ ,{"x": 3, "test_dict": {"x": 3, "y": 5}} )
def lowerCAmelCase_ ( self : List[Any] ):
a__ = "x = 0\nfor i in range(3):\n x = i"
a__ = {}
a__ = evaluate(a__ ,{"range": range} ,state=a__ )
assert result == 2
self.assertDictEqual(a__ ,{"x": 2, "i": 2} )
| 331 | 0 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_snake_case : List[Any] = logging.get_logger(__name__)
_snake_case : int = {
'post_extract_proj': 'feature_projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.upsample.0': 'encoder.upsample.projection',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'layer_norm',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ):
for attribute in key.split("." ):
A = getattr(UpperCamelCase , UpperCamelCase )
if weight_type is not None:
A = getattr(UpperCamelCase , UpperCamelCase ).shape
else:
A = hf_pointer.shape
assert hf_shape == value.shape, (
F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
F" {value.shape} for {full_name}"
)
if weight_type == "weight":
A = value
elif weight_type == "weight_g":
A = value
elif weight_type == "weight_v":
A = value
elif weight_type == "bias":
A = value
else:
A = value
logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ):
A = []
A = fairseq_model.state_dict()
A = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
A = False
if "conv_layers" in name:
load_conv_layer(
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == "group" , )
A = True
else:
for key, mapped_key in MAPPING.items():
A = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
A = True
if "*" in mapped_key:
A = name.split(UpperCamelCase )[0].split("." )[-2]
A = mapped_key.replace("*" , UpperCamelCase )
if "weight_g" in name:
A = "weight_g"
elif "weight_v" in name:
A = "weight_v"
elif "weight" in name:
A = "weight"
elif "bias" in name:
A = "bias"
else:
A = None
set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
continue
if not is_used:
unused_weights.append(UpperCamelCase )
logger.warning(F"Unused weights: {unused_weights}" )
def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ):
A = full_name.split("conv_layers." )[-1]
A = name.split("." )
A = int(items[0] )
A = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
A = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
A = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"
" found."
)
A = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"{full_name} has size {value.shape}, but"
F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
)
A = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(UpperCamelCase )
def A__ ( UpperCamelCase , UpperCamelCase ):
A = SEWConfig()
if is_finetuned:
A = model.wav_encoder.wav_model.cfg
else:
A = model.cfg
A = fs_config.conv_bias
A = eval(fs_config.conv_feature_layers )
A = [x[0] for x in conv_layers]
A = [x[1] for x in conv_layers]
A = [x[2] for x in conv_layers]
A = "gelu"
A = "layer" if fs_config.extractor_mode == "layer_norm" else "group"
A = 0.0
A = fs_config.activation_fn.name
A = fs_config.encoder_embed_dim
A = 0.02
A = fs_config.encoder_ffn_embed_dim
A = 1E-5
A = fs_config.encoder_layerdrop
A = fs_config.encoder_attention_heads
A = fs_config.conv_pos_groups
A = fs_config.conv_pos
A = len(UpperCamelCase )
A = fs_config.encoder_layers
A = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
A = model.cfg
A = fs_config.final_dropout
A = fs_config.layerdrop
A = fs_config.activation_dropout
A = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
A = fs_config.attention_dropout
A = fs_config.dropout_input
A = fs_config.dropout
A = fs_config.mask_channel_length
A = fs_config.mask_channel_prob
A = fs_config.mask_length
A = fs_config.mask_prob
A = "Wav2Vec2FeatureExtractor"
A = "Wav2Vec2CTCTokenizer"
return config
@torch.no_grad()
def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True ):
if is_finetuned:
A, A, A = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
A, A, A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
A = SEWConfig.from_pretrained(UpperCamelCase )
else:
A = convert_config(model[0] , UpperCamelCase )
A = model[0].eval()
A = True if config.feat_extract_norm == "layer" else False
A = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCamelCase , return_attention_mask=UpperCamelCase , )
if is_finetuned:
if dict_path:
A = Dictionary.load(UpperCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
A = target_dict.pad_index
A = target_dict.bos_index
A = target_dict.pad_index
A = target_dict.bos_index
A = target_dict.eos_index
A = len(target_dict.symbols )
A = os.path.join(UpperCamelCase , "vocab.json" )
if not os.path.isdir(UpperCamelCase ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCamelCase ) )
return
os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase )
with open(UpperCamelCase , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(target_dict.indices , UpperCamelCase )
A = WavaVecaCTCTokenizer(
UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCamelCase , )
A = WavaVecaProcessor(feature_extractor=UpperCamelCase , tokenizer=UpperCamelCase )
processor.save_pretrained(UpperCamelCase )
A = SEWForCTC(UpperCamelCase )
else:
A = SEWModel(UpperCamelCase )
feature_extractor.save_pretrained(UpperCamelCase )
recursively_load_weights(UpperCamelCase , UpperCamelCase , UpperCamelCase )
hf_model.save_pretrained(UpperCamelCase )
if __name__ == "__main__":
_snake_case : int = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
_snake_case : str = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 720 |
"""simple docstring"""
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _UpperCAmelCase ( lowercase_ , lowercase_ ):
@register_to_config
def __init__( self :Union[str, Any] , *,
__UpperCamelCase :int = 4 , __UpperCamelCase :int = 7_68 , __UpperCamelCase :int , __UpperCamelCase :int , ):
super().__init__()
A = nn.Parameter(torch.zeros(__UpperCamelCase ) )
# parameters for additional clip time embeddings
A = nn.Linear(__UpperCamelCase , __UpperCamelCase )
A = nn.Linear(__UpperCamelCase , __UpperCamelCase )
# parameters for encoder hidden states
A = clip_extra_context_tokens
A = nn.Linear(
__UpperCamelCase , self.clip_extra_context_tokens * cross_attention_dim )
A = nn.Linear(__UpperCamelCase , __UpperCamelCase )
A = nn.LayerNorm(__UpperCamelCase )
def lowerCamelCase ( self :List[Any] , *, __UpperCamelCase :Tuple , __UpperCamelCase :Any , __UpperCamelCase :int , __UpperCamelCase :int ):
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
A = image_embeddings.shape[0]
A = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
A = classifier_free_guidance_embeddings.expand(
__UpperCamelCase , -1 )
A = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
A = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
A = self.embedding_proj(__UpperCamelCase )
A = self.clip_image_embeddings_project_to_time_embeddings(__UpperCamelCase )
A = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
A = self.clip_extra_context_tokens_proj(__UpperCamelCase )
A = clip_extra_context_tokens.reshape(__UpperCamelCase , -1 , self.clip_extra_context_tokens )
A = clip_extra_context_tokens.permute(0 , 2 , 1 )
A = self.encoder_hidden_states_proj(__UpperCamelCase )
A = self.text_encoder_hidden_states_norm(__UpperCamelCase )
A = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 524 | 0 |
"""simple docstring"""
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
snake_case = logging.getLogger(__name__)
def snake_case ( lowerCAmelCase_ ) -> List[str]:
_snake_case = git.Repo(search_parent_directories=lowerCAmelCase_ )
_snake_case = {
'''repo_id''': str(lowerCAmelCase_ ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
}
with open(os.path.join(lowerCAmelCase_ , '''git_log.json''' ) , '''w''' ) as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_ , indent=4 )
def snake_case ( lowerCAmelCase_ ) -> int:
if params.n_gpu <= 0:
_snake_case = 0
_snake_case = -1
_snake_case = True
_snake_case = False
return
assert torch.cuda.is_available()
logger.info('''Initializing GPUs''' )
if params.n_gpu > 1:
assert params.local_rank != -1
_snake_case = int(os.environ['''WORLD_SIZE'''] )
_snake_case = int(os.environ['''N_GPU_NODE'''] )
_snake_case = int(os.environ['''RANK'''] )
# number of nodes / node ID
_snake_case = params.world_size // params.n_gpu_per_node
_snake_case = params.global_rank // params.n_gpu_per_node
_snake_case = True
assert params.n_nodes == int(os.environ['''N_NODES'''] )
assert params.node_id == int(os.environ['''NODE_RANK'''] )
# local job (single GPU)
else:
assert params.local_rank == -1
_snake_case = 1
_snake_case = 0
_snake_case = 0
_snake_case = 0
_snake_case = 1
_snake_case = 1
_snake_case = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
_snake_case = params.node_id == 0 and params.local_rank == 0
_snake_case = params.n_nodes > 1
# summary
_snake_case = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes )
logger.info(PREFIX + '''Node ID : %i''' % params.node_id )
logger.info(PREFIX + '''Local rank : %i''' % params.local_rank )
logger.info(PREFIX + '''World size : %i''' % params.world_size )
logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node )
logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) )
logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) )
logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) )
logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('''Initializing PyTorch distributed''' )
torch.distributed.init_process_group(
init_method='''env://''' , backend='''nccl''' , )
def snake_case ( lowerCAmelCase_ ) -> Dict:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 103 |
from __future__ import annotations
from math import pi, sqrt
def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> tuple:
'''simple docstring'''
if inductance <= 0:
raise ValueError("""Inductance cannot be 0 or negative""" )
elif capacitance <= 0:
raise ValueError("""Capacitance cannot be 0 or negative""" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 306 | 0 |
"""simple docstring"""
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float:
"""simple docstring"""
lowerCAmelCase__ :Optional[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def __A () ->str:
"""simple docstring"""
print(sum_of_series(1 , 1 , 10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 708 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class _lowerCAmelCase ( a ):
"""simple docstring"""
__magic_name__ :int = (UnCLIPScheduler,)
def snake_case ( self , **__UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :Dict = {
'num_train_timesteps': 1_0_0_0,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**__UpperCAmelCase )
return config
def snake_case ( self ):
'''simple docstring'''
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=__UpperCAmelCase )
def snake_case ( self ):
'''simple docstring'''
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=__UpperCAmelCase )
def snake_case ( self ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__UpperCAmelCase )
def snake_case ( self ):
'''simple docstring'''
for clip_sample_range in [1, 5, 1_0, 2_0]:
self.check_over_configs(clip_sample_range=__UpperCAmelCase )
def snake_case ( self ):
'''simple docstring'''
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=__UpperCAmelCase )
def snake_case ( self ):
'''simple docstring'''
for time_step in [0, 5_0_0, 9_9_9]:
for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=__UpperCAmelCase , prev_timestep=__UpperCAmelCase )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[Any] = self.scheduler_classes[0]
lowerCAmelCase__ :Tuple = self.get_scheduler_config(variance_type='fixed_small_log' )
lowerCAmelCase__ :int = scheduler_class(**__UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_54_96_25 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_99_49_87 ) ) < 1E-5
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Dict = self.scheduler_classes[0]
lowerCAmelCase__ :List[Any] = self.get_scheduler_config(variance_type='learned_range' )
lowerCAmelCase__ :Any = scheduler_class(**__UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = 0.5
assert scheduler._get_variance(1 , predicted_variance=__UpperCAmelCase ) - -10.1_71_27_90 < 1E-5
assert scheduler._get_variance(4_8_7 , predicted_variance=__UpperCAmelCase ) - -5.7_99_80_52 < 1E-5
assert scheduler._get_variance(9_9_9 , predicted_variance=__UpperCAmelCase ) - -0.0_01_00_11 < 1E-5
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :List[Any] = self.scheduler_classes[0]
lowerCAmelCase__ :Any = self.get_scheduler_config()
lowerCAmelCase__ :Any = scheduler_class(**__UpperCAmelCase )
lowerCAmelCase__ :str = scheduler.timesteps
lowerCAmelCase__ :Dict = self.dummy_model()
lowerCAmelCase__ :Optional[Any] = self.dummy_sample_deter
lowerCAmelCase__ :Optional[Any] = torch.manual_seed(0 )
for i, t in enumerate(__UpperCAmelCase ):
# 1. predict noise residual
lowerCAmelCase__ :Any = model(__UpperCAmelCase , __UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase__ :Any = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample
lowerCAmelCase__ :Dict = pred_prev_sample
lowerCAmelCase__ :Tuple = torch.sum(torch.abs(__UpperCAmelCase ) )
lowerCAmelCase__ :List[str] = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2
assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[int] = self.scheduler_classes[0]
lowerCAmelCase__ :Tuple = self.get_scheduler_config()
lowerCAmelCase__ :str = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(2_5 )
lowerCAmelCase__ :List[Any] = scheduler.timesteps
lowerCAmelCase__ :Union[str, Any] = self.dummy_model()
lowerCAmelCase__ :List[Any] = self.dummy_sample_deter
lowerCAmelCase__ :int = torch.manual_seed(0 )
for i, t in enumerate(__UpperCAmelCase ):
# 1. predict noise residual
lowerCAmelCase__ :Optional[int] = model(__UpperCAmelCase , __UpperCAmelCase )
if i + 1 == timesteps.shape[0]:
lowerCAmelCase__ :Optional[Any] = None
else:
lowerCAmelCase__ :int = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
lowerCAmelCase__ :Any = scheduler.step(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , prev_timestep=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample
lowerCAmelCase__ :Dict = pred_prev_sample
lowerCAmelCase__ :int = torch.sum(torch.abs(__UpperCAmelCase ) )
lowerCAmelCase__ :Optional[Any] = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2
assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3
def snake_case ( self ):
'''simple docstring'''
pass
def snake_case ( self ):
'''simple docstring'''
pass
| 560 | 0 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
snake_case__ = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int:
snake_case__ = 1
snake_case__ = 2
for i in range(2 , max_n + 1 ):
snake_case__ = pre_numerator
snake_case__ = 2 * i // 3 if i % 3 == 0 else 1
snake_case__ = cur_numerator
snake_case__ = e_cont * pre_numerator + temp
return sum_digits(__lowerCAmelCase )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 33 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 51 | 0 |
"""simple docstring"""
import sys
def UpperCAmelCase__ ( _UpperCAmelCase ):
"""simple docstring"""
A_ : Dict = len(_UpperCAmelCase )
A_ : int = [[0 for x in range(_UpperCAmelCase )] for x in range(_UpperCAmelCase )]
A_ : Tuple = [[0 for x in range(_UpperCAmelCase )] for x in range(_UpperCAmelCase )]
for chain_length in range(2 , _UpperCAmelCase ):
for a in range(1 , n - chain_length + 1 ):
A_ : Optional[Any] = a + chain_length - 1
A_ : List[str] = sys.maxsize
for c in range(_UpperCAmelCase , _UpperCAmelCase ):
A_ : Any = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
A_ : Optional[Any] = cost
A_ : Optional[int] = c
return matrix, sol
def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
if i == j:
print('A' + str(_UpperCAmelCase ) , end=' ' )
else:
print('(' , end=' ' )
print_optiomal_solution(_UpperCAmelCase , _UpperCAmelCase , optimal_solution[i][j] )
print_optiomal_solution(_UpperCAmelCase , optimal_solution[i][j] + 1 , _UpperCAmelCase )
print(')' , end=' ' )
def UpperCAmelCase__ ( ):
"""simple docstring"""
A_ : Optional[Any] = [30, 35, 15, 5, 10, 20, 25]
A_ : Optional[Any] = len(_UpperCAmelCase )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
A_ , A_ : int = matrix_chain_order(_UpperCAmelCase )
print('No. of Operation required: ' + str(matrix[1][n - 1] ) )
print_optiomal_solution(_UpperCAmelCase , 1 , n - 1 )
if __name__ == "__main__":
main() | 302 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase_ : Optional[Any] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ : Union[str, Any] = ['BeitFeatureExtractor']
lowerCamelCase_ : Optional[Any] = ['BeitImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ : Optional[int] = [
'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BeitForImageClassification',
'BeitForMaskedImageModeling',
'BeitForSemanticSegmentation',
'BeitModel',
'BeitPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ : Union[str, Any] = [
'FlaxBeitForImageClassification',
'FlaxBeitForMaskedImageModeling',
'FlaxBeitModel',
'FlaxBeitPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 302 | 1 |
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
_UpperCAmelCase : int = Mapping[str, np.ndarray]
_UpperCAmelCase : Optional[Any] = Mapping[str, Any] # Is a nested dict.
_UpperCAmelCase : Optional[Any] = 0.01
@dataclasses.dataclass(frozen=snake_case__ )
class lowerCAmelCase_ :
UpperCamelCase_ :np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
UpperCamelCase_ :np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
UpperCamelCase_ :np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
UpperCamelCase_ :np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
UpperCamelCase_ :np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
UpperCamelCase_ :Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
UpperCamelCase_ :Optional[str] = None
# Templates used to generate this protein (prediction-only)
UpperCamelCase_ :Optional[Sequence[str]] = None
# Chain corresponding to each parent
UpperCamelCase_ :Optional[Sequence[int]] = None
def lowerCAmelCase_ (lowercase__ : str ) -> Protein:
'''simple docstring'''
lowerCAmelCase__ = r'''(\[[A-Z]+\]\n)'''
lowerCAmelCase__ = [tag.strip() for tag in re.split(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0]
lowerCAmelCase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] )
lowerCAmelCase__ = ["N", "CA", "C"]
lowerCAmelCase__ = None
lowerCAmelCase__ = None
lowerCAmelCase__ = None
for g in groups:
if "[PRIMARY]" == g[0]:
lowerCAmelCase__ = g[1][0].strip()
for i in range(len(lowercase__ ) ):
if seq[i] not in residue_constants.restypes:
lowerCAmelCase__ = '''X''' # FIXME: strings are immutable
lowerCAmelCase__ = np.array(
[residue_constants.restype_order.get(lowercase__ , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
lowerCAmelCase__ = []
for axis in range(3 ):
tertiary.append(list(map(lowercase__ , g[1][axis].split() ) ) )
lowerCAmelCase__ = np.array(lowercase__ )
lowerCAmelCase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(lowercase__ ):
lowerCAmelCase__ = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
lowerCAmelCase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) )
lowerCAmelCase__ = np.zeros(
(
len(lowercase__ ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(lowercase__ ):
lowerCAmelCase__ = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=lowercase__ , atom_mask=lowercase__ , aatype=lowercase__ , residue_index=np.arange(len(lowercase__ ) ) , b_factors=lowercase__ , )
def lowerCAmelCase_ (lowercase__ : Protein , lowercase__ : int = 0 ) -> List[str]:
'''simple docstring'''
lowerCAmelCase__ = []
lowerCAmelCase__ = prot.remark
if remark is not None:
pdb_headers.append(f'REMARK {remark}' )
lowerCAmelCase__ = prot.parents
lowerCAmelCase__ = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
lowerCAmelCase__ = [p for i, p in zip(lowercase__ , lowercase__ ) if i == chain_id]
if parents is None or len(lowercase__ ) == 0:
lowerCAmelCase__ = ['''N/A''']
pdb_headers.append(f'PARENT {" ".join(lowercase__ )}' )
return pdb_headers
def lowerCAmelCase_ (lowercase__ : Protein , lowercase__ : str ) -> str:
'''simple docstring'''
lowerCAmelCase__ = []
lowerCAmelCase__ = pdb_str.split('''\n''' )
lowerCAmelCase__ = prot.remark
if remark is not None:
out_pdb_lines.append(f'REMARK {remark}' )
lowerCAmelCase__ = 42
if prot.parents is not None and len(prot.parents ) > 0:
lowerCAmelCase__ = []
if prot.parents_chain_index is not None:
lowerCAmelCase__ = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(lowercase__ ) , [] )
parent_dict[str(lowercase__ )].append(lowercase__ )
lowerCAmelCase__ = max([int(lowercase__ ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
lowerCAmelCase__ = parent_dict.get(str(lowercase__ ) , ['''N/A'''] )
parents_per_chain.append(lowercase__ )
else:
parents_per_chain.append(list(prot.parents ) )
else:
lowerCAmelCase__ = [['''N/A''']]
def make_parent_line(lowercase__ : Sequence[str] ) -> str:
return f'PARENT {" ".join(lowercase__ )}'
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
lowerCAmelCase__ = 0
for i, l in enumerate(lowercase__ ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(lowercase__ )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(lowercase__ ):
lowerCAmelCase__ = parents_per_chain[chain_counter]
else:
lowerCAmelCase__ = ['''N/A''']
out_pdb_lines.append(make_parent_line(lowercase__ ) )
return "\n".join(lowercase__ )
def lowerCAmelCase_ (lowercase__ : Protein ) -> str:
'''simple docstring'''
lowerCAmelCase__ = residue_constants.restypes + ['''X''']
def res_atoa(lowercase__ : int ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' )
lowerCAmelCase__ = residue_constants.atom_types
lowerCAmelCase__ = []
lowerCAmelCase__ = prot.atom_mask
lowerCAmelCase__ = prot.aatype
lowerCAmelCase__ = prot.atom_positions
lowerCAmelCase__ = prot.residue_index.astype(np.intaa )
lowerCAmelCase__ = prot.b_factors
lowerCAmelCase__ = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('''Invalid aatypes.''' )
lowerCAmelCase__ = get_pdb_headers(lowercase__ )
if len(lowercase__ ) > 0:
pdb_lines.extend(lowercase__ )
lowerCAmelCase__ = aatype.shape[0]
lowerCAmelCase__ = 1
lowerCAmelCase__ = 0
lowerCAmelCase__ = string.ascii_uppercase
lowerCAmelCase__ = None
# Add all atom sites.
for i in range(lowercase__ ):
lowerCAmelCase__ = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(lowercase__ , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
lowerCAmelCase__ = '''ATOM'''
lowerCAmelCase__ = atom_name if len(lowercase__ ) == 4 else f' {atom_name}'
lowerCAmelCase__ = ''''''
lowerCAmelCase__ = ''''''
lowerCAmelCase__ = 1.00
lowerCAmelCase__ = atom_name[0] # Protein supports only C, N, O, S, this works.
lowerCAmelCase__ = ''''''
lowerCAmelCase__ = '''A'''
if chain_index is not None:
lowerCAmelCase__ = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
lowerCAmelCase__ = (
f'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}'
f'{res_name_a:>3} {chain_tag:>1}'
f'{residue_index[i]:>4}{insertion_code:>1} '
f'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}'
f'{occupancy:>6.2f}{b_factor:>6.2f} '
f'{element:>2}{charge:>2}'
)
pdb_lines.append(lowercase__ )
atom_index += 1
lowerCAmelCase__ = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
lowerCAmelCase__ = True
lowerCAmelCase__ = chain_index[i + 1]
if should_terminate:
# Close the chain.
lowerCAmelCase__ = '''TER'''
lowerCAmelCase__ = (
f'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}'
)
pdb_lines.append(lowercase__ )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(lowercase__ , lowercase__ ) )
pdb_lines.append('''END''' )
pdb_lines.append('''''' )
return "\n".join(lowercase__ )
def lowerCAmelCase_ (lowercase__ : Protein ) -> np.ndarray:
'''simple docstring'''
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def lowerCAmelCase_ (lowercase__ : FeatureDict , lowercase__ : ModelOutput , lowercase__ : Optional[np.ndarray] = None , lowercase__ : Optional[np.ndarray] = None , lowercase__ : Optional[str] = None , lowercase__ : Optional[Sequence[str]] = None , lowercase__ : Optional[Sequence[int]] = None , ) -> Protein:
'''simple docstring'''
return Protein(
aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=lowercase__ , remark=lowercase__ , parents=lowercase__ , parents_chain_index=lowercase__ , )
| 668 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCAmelCase : Union[str, Any] = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : List[Any] = [
"MRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MraForMaskedLM",
"MraForMultipleChoice",
"MraForQuestionAnswering",
"MraForSequenceClassification",
"MraForTokenClassification",
"MraLayer",
"MraModel",
"MraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 668 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__: List[Any] = logging.get_logger(__name__)
a__: str = {
'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json',
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ):
__SCREAMING_SNAKE_CASE = '''data2vec-text'''
def __init__( self,__lowerCamelCase=3_0522,__lowerCamelCase=768,__lowerCamelCase=12,__lowerCamelCase=12,__lowerCamelCase=3072,__lowerCamelCase="gelu",__lowerCamelCase=0.1,__lowerCamelCase=0.1,__lowerCamelCase=512,__lowerCamelCase=2,__lowerCamelCase=0.02,__lowerCamelCase=1E-12,__lowerCamelCase=1,__lowerCamelCase=0,__lowerCamelCase=2,__lowerCamelCase="absolute",__lowerCamelCase=True,__lowerCamelCase=None,**__lowerCamelCase,):
super().__init__(pad_token_id=__lowerCamelCase,bos_token_id=__lowerCamelCase,eos_token_id=__lowerCamelCase,**__lowerCamelCase )
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = classifier_dropout
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ):
@property
def UpperCamelCase ( self ):
if self.task == "multiple-choice":
A__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A__ = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 721 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
a__: Any = random.Random()
def UpperCamelCase__( UpperCamelCase__ : Dict , UpperCamelCase__ : str=1.0 , UpperCamelCase__ : str=None , UpperCamelCase__ : Tuple=None )->Any:
if rng is None:
A__ = global_rng
A__ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __init__( self,__lowerCamelCase,__lowerCamelCase=7,__lowerCamelCase=400,__lowerCamelCase=2000,__lowerCamelCase=2048,__lowerCamelCase=128,__lowerCamelCase=1,__lowerCamelCase=512,__lowerCamelCase=30,__lowerCamelCase=4_4100,):
A__ = parent
A__ = batch_size
A__ = min_seq_length
A__ = max_seq_length
A__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
A__ = spectrogram_length
A__ = feature_size
A__ = num_audio_channels
A__ = hop_length
A__ = chunk_length
A__ = sampling_rate
def UpperCamelCase ( self ):
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def UpperCamelCase ( self,__lowerCamelCase=False,__lowerCamelCase=False ):
def _flatten(__lowerCamelCase ):
return list(itertools.chain(*__lowerCamelCase ) )
if equal_length:
A__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
A__ = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff )
]
if numpify:
A__ = [np.asarray(__lowerCamelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ):
__SCREAMING_SNAKE_CASE = TvltFeatureExtractor
def UpperCamelCase ( self ):
A__ = TvltFeatureExtractionTester(self )
def UpperCamelCase ( self ):
A__ = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(__lowerCamelCase,'''spectrogram_length''' ) )
self.assertTrue(hasattr(__lowerCamelCase,'''feature_size''' ) )
self.assertTrue(hasattr(__lowerCamelCase,'''num_audio_channels''' ) )
self.assertTrue(hasattr(__lowerCamelCase,'''hop_length''' ) )
self.assertTrue(hasattr(__lowerCamelCase,'''chunk_length''' ) )
self.assertTrue(hasattr(__lowerCamelCase,'''sampling_rate''' ) )
def UpperCamelCase ( self ):
A__ = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ = feat_extract_first.save_pretrained(__lowerCamelCase )[0]
check_json_file_has_correct_format(__lowerCamelCase )
A__ = self.feature_extraction_class.from_pretrained(__lowerCamelCase )
A__ = feat_extract_first.to_dict()
A__ = feat_extract_second.to_dict()
A__ = dict_first.pop('''mel_filters''' )
A__ = dict_second.pop('''mel_filters''' )
self.assertTrue(np.allclose(__lowerCamelCase,__lowerCamelCase ) )
self.assertEqual(__lowerCamelCase,__lowerCamelCase )
def UpperCamelCase ( self ):
A__ = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ = os.path.join(__lowerCamelCase,'''feat_extract.json''' )
feat_extract_first.to_json_file(__lowerCamelCase )
A__ = self.feature_extraction_class.from_json_file(__lowerCamelCase )
A__ = feat_extract_first.to_dict()
A__ = feat_extract_second.to_dict()
A__ = dict_first.pop('''mel_filters''' )
A__ = dict_second.pop('''mel_filters''' )
self.assertTrue(np.allclose(__lowerCamelCase,__lowerCamelCase ) )
self.assertEqual(__lowerCamelCase,__lowerCamelCase )
def UpperCamelCase ( self ):
# Initialize feature_extractor
A__ = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
A__ = [floats_list((1, x) )[0] for x in range(800,1400,200 )]
A__ = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs]
# Test not batched input
A__ = feature_extractor(np_speech_inputs[0],return_tensors='''np''',sampling_rate=4_4100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
A__ = feature_extractor(__lowerCamelCase,return_tensors='''np''',sampling_rate=4_4100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
A__ = feature_extractor(
__lowerCamelCase,return_tensors='''np''',sampling_rate=4_4100,mask_audio=__lowerCamelCase ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
A__ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
A__ = np.asarray(__lowerCamelCase )
A__ = feature_extractor(__lowerCamelCase,return_tensors='''np''',sampling_rate=4_4100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def UpperCamelCase ( self,__lowerCamelCase ):
A__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''','''clean''',split='''validation''' )
# automatic decoding with librispeech
A__ = ds.sort('''id''' ).select(range(__lowerCamelCase ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def UpperCamelCase ( self ):
A__ = self._load_datasamples(1 )
A__ = TvltFeatureExtractor()
A__ = feature_extractor(__lowerCamelCase,return_tensors='''pt''' ).audio_values
self.assertEquals(audio_values.shape,(1, 1, 192, 128) )
A__ = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2],__lowerCamelCase,atol=1E-4 ) )
| 212 | 0 |
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class __SCREAMING_SNAKE_CASE ( nn.Module ):
A : int
A : int
A : float = 0.0
A : int = 1
A : int = 1
A : bool = True
A : bool = False
A : bool = False
A : bool = False
A : jnp.dtype = jnp.floataa
def __lowerCamelCase ( self ):
lowercase : List[str] = []
lowercase : str = []
for i in range(self.num_layers ):
lowercase : List[Any] = self.in_channels if i == 0 else self.out_channels
lowercase : Union[str, Any] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
lowercase : str = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE__ )
lowercase : str = resnets
lowercase : List[Any] = attentions
if self.add_downsample:
lowercase : Any = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True ):
lowercase : Union[str, Any] = ()
for resnet, attn in zip(self.resnets , self.attentions ):
lowercase : Union[str, Any] = resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
lowercase : Optional[int] = attn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
if self.add_downsample:
lowercase : Optional[int] = self.downsamplers_a(SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
return hidden_states, output_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
A : int
A : int
A : float = 0.0
A : int = 1
A : bool = True
A : jnp.dtype = jnp.floataa
def __lowerCamelCase ( self ):
lowercase : Union[str, Any] = []
for i in range(self.num_layers ):
lowercase : Optional[int] = self.in_channels if i == 0 else self.out_channels
lowercase : Optional[Any] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
lowercase : int = resnets
if self.add_downsample:
lowercase : str = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True ):
lowercase : Tuple = ()
for resnet in self.resnets:
lowercase : int = resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
if self.add_downsample:
lowercase : List[str] = self.downsamplers_a(SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
return hidden_states, output_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
A : int
A : int
A : int
A : float = 0.0
A : int = 1
A : int = 1
A : bool = True
A : bool = False
A : bool = False
A : bool = False
A : jnp.dtype = jnp.floataa
def __lowerCamelCase ( self ):
lowercase : Dict = []
lowercase : List[str] = []
for i in range(self.num_layers ):
lowercase : List[str] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
lowercase : str = self.prev_output_channel if i == 0 else self.out_channels
lowercase : Optional[Any] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
lowercase : int = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE__ )
lowercase : Any = resnets
lowercase : Optional[Any] = attentions
if self.add_upsample:
lowercase : Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True ):
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
lowercase : Optional[int] = res_hidden_states_tuple[-1]
lowercase : Optional[Any] = res_hidden_states_tuple[:-1]
lowercase : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
lowercase : int = resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
lowercase : Union[str, Any] = attn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
if self.add_upsample:
lowercase : List[str] = self.upsamplers_a(SCREAMING_SNAKE_CASE__ )
return hidden_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
A : int
A : int
A : int
A : float = 0.0
A : int = 1
A : bool = True
A : jnp.dtype = jnp.floataa
def __lowerCamelCase ( self ):
lowercase : List[str] = []
for i in range(self.num_layers ):
lowercase : List[str] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
lowercase : Tuple = self.prev_output_channel if i == 0 else self.out_channels
lowercase : Optional[int] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
lowercase : Optional[int] = resnets
if self.add_upsample:
lowercase : Dict = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True ):
for resnet in self.resnets:
# pop res hidden states
lowercase : Union[str, Any] = res_hidden_states_tuple[-1]
lowercase : List[str] = res_hidden_states_tuple[:-1]
lowercase : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
lowercase : Tuple = resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
if self.add_upsample:
lowercase : Optional[Any] = self.upsamplers_a(SCREAMING_SNAKE_CASE__ )
return hidden_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
A : int
A : float = 0.0
A : int = 1
A : int = 1
A : bool = False
A : bool = False
A : jnp.dtype = jnp.floataa
def __lowerCamelCase ( self ):
# there is always at least one resnet
lowercase : Tuple = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
lowercase : Union[str, Any] = []
for _ in range(self.num_layers ):
lowercase : Dict = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE__ )
lowercase : Tuple = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
lowercase : List[str] = resnets
lowercase : str = attentions
def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True ):
lowercase : List[str] = self.resnets[0](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
lowercase : Optional[int] = attn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
lowercase : Dict = resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
return hidden_states
| 319 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''}
class __SCREAMING_SNAKE_CASE ( A__ ):
A : int = 'openai-gpt'
A : str = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , SCREAMING_SNAKE_CASE__=40478 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__="cls_index" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ):
lowercase : Dict = vocab_size
lowercase : List[Any] = n_positions
lowercase : List[Any] = n_embd
lowercase : str = n_layer
lowercase : str = n_head
lowercase : List[Any] = afn
lowercase : Union[str, Any] = resid_pdrop
lowercase : Optional[Any] = embd_pdrop
lowercase : Optional[int] = attn_pdrop
lowercase : Optional[Any] = layer_norm_epsilon
lowercase : int = initializer_range
lowercase : Tuple = summary_type
lowercase : Union[str, Any] = summary_use_proj
lowercase : List[str] = summary_activation
lowercase : List[str] = summary_first_dropout
lowercase : Any = summary_proj_to_labels
super().__init__(**SCREAMING_SNAKE_CASE__ )
| 319 | 1 |
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a : str = logging.get_logger(__name__)
_a : List[Any] = '▁'
_a : int = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
_a : Dict = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
_a : Any = {
'facebook/s2t-small-librispeech-asr': 10_24,
}
_a : Dict = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
_a : Any = {'mustc': MUSTC_LANGS}
class UpperCamelCase_ ( __UpperCamelCase ):
"""simple docstring"""
A = VOCAB_FILES_NAMES
A = PRETRAINED_VOCAB_FILES_MAP
A = MAX_MODEL_INPUT_SIZES
A = ['''input_ids''', '''attention_mask''']
A = []
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<unk>" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = None , **UpperCAmelCase , ):
__lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , do_upper_case=UpperCAmelCase , do_lower_case=UpperCAmelCase , tgt_lang=UpperCAmelCase , lang_codes=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__lowerCamelCase = do_upper_case
__lowerCamelCase = do_lower_case
__lowerCamelCase = load_json(UpperCAmelCase )
__lowerCamelCase = {v: k for k, v in self.encoder.items()}
__lowerCamelCase = spm_file
__lowerCamelCase = load_spm(UpperCAmelCase , self.sp_model_kwargs )
if lang_codes is not None:
__lowerCamelCase = lang_codes
__lowerCamelCase = LANGUAGES[lang_codes]
__lowerCamelCase = [f'''<lang:{lang}>''' for lang in self.langs]
__lowerCamelCase = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs}
__lowerCamelCase = self.lang_tokens
__lowerCamelCase = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
__lowerCamelCase = {}
@property
def lowerCamelCase_ ( self ):
return len(self.encoder )
@property
def lowerCamelCase_ ( self ):
return self._tgt_lang
@tgt_lang.setter
def lowerCamelCase_ ( self , UpperCAmelCase ):
__lowerCamelCase = new_tgt_lang
self.set_tgt_lang_special_tokens(UpperCAmelCase )
def lowerCamelCase_ ( self , UpperCAmelCase ):
__lowerCamelCase = self.lang_code_to_id[tgt_lang]
__lowerCamelCase = [lang_code_id]
def lowerCamelCase_ ( self , UpperCAmelCase ):
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def lowerCamelCase_ ( self , UpperCAmelCase ):
return self.encoder.get(UpperCAmelCase , self.encoder[self.unk_token] )
def lowerCamelCase_ ( self , UpperCAmelCase ):
return self.decoder.get(UpperCAmelCase , self.unk_token )
def lowerCamelCase_ ( self , UpperCAmelCase ):
__lowerCamelCase = []
__lowerCamelCase = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
__lowerCamelCase = self.sp_model.decode(UpperCAmelCase )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
__lowerCamelCase = []
else:
current_sub_tokens.append(UpperCAmelCase )
__lowerCamelCase = self.sp_model.decode(UpperCAmelCase )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
__lowerCamelCase = [1] * len(self.prefix_tokens )
__lowerCamelCase = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(UpperCAmelCase )) + ([0] * len(UpperCAmelCase )) + suffix_ones
def lowerCamelCase_ ( self ):
__lowerCamelCase = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
__lowerCamelCase = self.__dict__.copy()
__lowerCamelCase = None
return state
def __setstate__( self , UpperCAmelCase ):
__lowerCamelCase = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__lowerCamelCase = {}
__lowerCamelCase = load_spm(self.spm_file , self.sp_model_kwargs )
def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ):
__lowerCamelCase = Path(UpperCAmelCase )
assert save_dir.is_dir(), f'''{save_directory} should be a directory'''
__lowerCamelCase = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""]
)
__lowerCamelCase = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""]
)
save_json(self.encoder , UpperCAmelCase )
if os.path.abspath(self.spm_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , UpperCAmelCase )
elif not os.path.isfile(self.spm_file ):
with open(UpperCAmelCase , """wb""" ) as fi:
__lowerCamelCase = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (str(UpperCAmelCase ), str(UpperCAmelCase ))
def UpperCamelCase__ ( _A: str , _A: Dict[str, Any] ):
'''simple docstring'''
__lowerCamelCase = sentencepiece.SentencePieceProcessor(**_A )
spm.Load(str(_A ) )
return spm
def UpperCamelCase__ ( _A: str ):
'''simple docstring'''
with open(_A , """r""" ) as f:
return json.load(_A )
def UpperCamelCase__ ( _A: List[Any] , _A: str ):
'''simple docstring'''
with open(_A , """w""" ) as f:
json.dump(_A , _A , indent=2 )
| 571 |
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
_a : str = logging.getLogger(__name__)
_a : Optional[int] = 'Hello world! cécé herlolip'
_a : List[str] = namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def UpperCamelCase__ ( _A: int , _A: List[str] ):
'''simple docstring'''
__lowerCamelCase = BertAbsConfig(
temp_dir=""".""" , finetune_bert=_A , large=_A , share_emb=_A , use_bert_emb=_A , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , )
__lowerCamelCase = torch.load(_A , lambda _A , _A : storage )
__lowerCamelCase = AbsSummarizer(_A , torch.device("""cpu""" ) , _A )
original.eval()
__lowerCamelCase = BertAbsSummarizer(_A , torch.device("""cpu""" ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("""convert the model""" )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("""Make sure that the models' outputs are identical""" )
__lowerCamelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" )
# prepare the model inputs
__lowerCamelCase = tokenizer.encode("""This is sample éàalj'-.""" )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) )
__lowerCamelCase = torch.tensor(_A ).unsqueeze(0 )
__lowerCamelCase = tokenizer.encode("""This is sample 3 éàalj'-.""" )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) )
__lowerCamelCase = torch.tensor(_A ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
__lowerCamelCase = encoder_input_ids
__lowerCamelCase = decoder_input_ids
__lowerCamelCase = __lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = __lowerCamelCase = None
__lowerCamelCase = __lowerCamelCase = None
__lowerCamelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
__lowerCamelCase = original(_A , _A , _A , _A , _A , _A , _A )[0]
__lowerCamelCase = original.generator(_A )
__lowerCamelCase = new_model(
_A , _A , _A , _A , _A )[0]
__lowerCamelCase = new_model.generator(_A )
__lowerCamelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) )
__lowerCamelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) )
__lowerCamelCase = torch.allclose(_A , _A , atol=1e-3 )
if are_identical:
logging.info("""all weights are equal up to 1e-3""" )
else:
raise ValueError("""the weights are different. The new model is likely different from the original one.""" )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("""saving the model's state dictionary""" )
torch.save(
new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" )
if __name__ == "__main__":
_a : Any = argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
_a : Any = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 571 | 1 |
"""simple docstring"""
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_lowerCamelCase = (EulerDiscreteScheduler,)
_lowerCamelCase = 10
def UpperCAmelCase__ ( self , **_lowercase ) -> List[Any]:
'''simple docstring'''
snake_case_ : Any = {
"""num_train_timesteps""": 1_1_0_0,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_lowercase )
return config
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=_lowercase )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_lowercase )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
snake_case_ : str = self.scheduler_classes[0]
snake_case_ : Any = self.get_scheduler_config()
snake_case_ : int = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps )
snake_case_ : Dict = torch.manual_seed(0 )
snake_case_ : int = self.dummy_model()
snake_case_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma
snake_case_ : Optional[Any] = sample.to(_lowercase )
for i, t in enumerate(scheduler.timesteps ):
snake_case_ : Union[str, Any] = scheduler.scale_model_input(_lowercase , _lowercase )
snake_case_ : Tuple = model(_lowercase , _lowercase )
snake_case_ : Union[str, Any] = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
snake_case_ : List[Any] = output.prev_sample
snake_case_ : List[Any] = torch.sum(torch.abs(_lowercase ) )
snake_case_ : str = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 10.0807 ) < 1E-2
assert abs(result_mean.item() - 0.0131 ) < 1E-3
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Optional[Any] = self.scheduler_classes[0]
snake_case_ : Union[str, Any] = self.get_scheduler_config(prediction_type="""v_prediction""" )
snake_case_ : Optional[Any] = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps )
snake_case_ : Optional[int] = torch.manual_seed(0 )
snake_case_ : Union[str, Any] = self.dummy_model()
snake_case_ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
snake_case_ : Union[str, Any] = sample.to(_lowercase )
for i, t in enumerate(scheduler.timesteps ):
snake_case_ : Dict = scheduler.scale_model_input(_lowercase , _lowercase )
snake_case_ : Any = model(_lowercase , _lowercase )
snake_case_ : Union[str, Any] = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
snake_case_ : Optional[Any] = output.prev_sample
snake_case_ : int = torch.sum(torch.abs(_lowercase ) )
snake_case_ : Tuple = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 0.0002 ) < 1E-2
assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
snake_case_ : List[Any] = self.scheduler_classes[0]
snake_case_ : Optional[int] = self.get_scheduler_config()
snake_case_ : str = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps , device=_lowercase )
snake_case_ : List[str] = torch.manual_seed(0 )
snake_case_ : Tuple = self.dummy_model()
snake_case_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
snake_case_ : int = sample.to(_lowercase )
for t in scheduler.timesteps:
snake_case_ : Union[str, Any] = scheduler.scale_model_input(_lowercase , _lowercase )
snake_case_ : Dict = model(_lowercase , _lowercase )
snake_case_ : Union[str, Any] = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
snake_case_ : Union[str, Any] = output.prev_sample
snake_case_ : Any = torch.sum(torch.abs(_lowercase ) )
snake_case_ : Tuple = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 10.0807 ) < 1E-2
assert abs(result_mean.item() - 0.0131 ) < 1E-3
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
snake_case_ : Optional[int] = self.scheduler_classes[0]
snake_case_ : List[Any] = self.get_scheduler_config()
snake_case_ : Tuple = scheduler_class(**_lowercase , use_karras_sigmas=_lowercase )
scheduler.set_timesteps(self.num_inference_steps , device=_lowercase )
snake_case_ : List[str] = torch.manual_seed(0 )
snake_case_ : Union[str, Any] = self.dummy_model()
snake_case_ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
snake_case_ : List[str] = sample.to(_lowercase )
for t in scheduler.timesteps:
snake_case_ : Dict = scheduler.scale_model_input(_lowercase , _lowercase )
snake_case_ : str = model(_lowercase , _lowercase )
snake_case_ : int = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
snake_case_ : Any = output.prev_sample
snake_case_ : Dict = torch.sum(torch.abs(_lowercase ) )
snake_case_ : Union[str, Any] = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
| 58 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class __magic_name__ :
def __init__( self : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str=1_3 ,__SCREAMING_SNAKE_CASE : Optional[Any]=7 ,__SCREAMING_SNAKE_CASE : Optional[Any]=True ,__SCREAMING_SNAKE_CASE : List[str]=True ,__SCREAMING_SNAKE_CASE : int=True ,__SCREAMING_SNAKE_CASE : int=True ,__SCREAMING_SNAKE_CASE : Tuple=9_9 ,__SCREAMING_SNAKE_CASE : str=3_2 ,__SCREAMING_SNAKE_CASE : Any=2 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=4 ,__SCREAMING_SNAKE_CASE : Tuple=3_7 ,__SCREAMING_SNAKE_CASE : List[str]="gelu" ,__SCREAMING_SNAKE_CASE : List[Any]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.1 ,__SCREAMING_SNAKE_CASE : Tuple=5_1_2 ,__SCREAMING_SNAKE_CASE : Dict=1_6 ,__SCREAMING_SNAKE_CASE : Tuple=2 ,__SCREAMING_SNAKE_CASE : List[str]=0.02 ,__SCREAMING_SNAKE_CASE : Optional[Any]=3 ,__SCREAMING_SNAKE_CASE : Dict=4 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=None ,__SCREAMING_SNAKE_CASE : Dict=1_0_0_0 ,):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = scope
UpperCAmelCase = range_bbox
def _UpperCAmelCase ( self : Dict ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase = bbox[i, j, 3]
UpperCAmelCase = bbox[i, j, 1]
UpperCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase = bbox[i, j, 2]
UpperCAmelCase = bbox[i, j, 0]
UpperCAmelCase = t
UpperCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
if self.use_token_type_ids:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices )
UpperCAmelCase = LayoutLMConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : str ):
UpperCAmelCase = TFLayoutLMModel(config=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : List[Any] ):
UpperCAmelCase = TFLayoutLMForMaskedLM(config=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ):
UpperCAmelCase = self.num_labels
UpperCAmelCase = TFLayoutLMForSequenceClassification(config=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ):
UpperCAmelCase = self.num_labels
UpperCAmelCase = TFLayoutLMForTokenClassification(config=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : str ):
UpperCAmelCase = TFLayoutLMForQuestionAnswering(config=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _UpperCAmelCase ( self : List[Any] ):
UpperCAmelCase = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) = config_and_inputs
UpperCAmelCase = {
"input_ids": input_ids,
"bbox": bbox,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_tf
class __magic_name__ ( _a , _a , unittest.TestCase):
_UpperCAmelCase : Optional[int] = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
_UpperCAmelCase : str = (
{
'feature-extraction': TFLayoutLMModel,
'fill-mask': TFLayoutLMForMaskedLM,
'text-classification': TFLayoutLMForSequenceClassification,
'token-classification': TFLayoutLMForTokenClassification,
'zero-shot': TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCAmelCase : Tuple = False
_UpperCAmelCase : int = True
_UpperCAmelCase : Union[str, Any] = 10
def _UpperCAmelCase ( self : Tuple ):
UpperCAmelCase = TFLayoutLMModelTester(self )
UpperCAmelCase = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,hidden_size=3_7 )
def _UpperCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : List[str] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _UpperCAmelCase ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE )
def _UpperCAmelCase ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE )
def _UpperCAmelCase ( self : Any ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE )
def _UpperCAmelCase ( self : List[str] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE )
@slow
def _UpperCAmelCase ( self : List[str] ):
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = TFLayoutLMModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
@unittest.skip("Onnx compliancy broke with TF 2.10" )
def _UpperCAmelCase ( self : List[str] ):
pass
def __UpperCamelCase ( ):
"""simple docstring"""
UpperCAmelCase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231
UpperCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
UpperCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231
UpperCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
UpperCAmelCase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class __magic_name__ ( unittest.TestCase):
@slow
def _UpperCAmelCase ( self : Any ):
UpperCAmelCase = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
UpperCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
# test the sequence output on [0, :3, :3]
UpperCAmelCase = tf.convert_to_tensor(
[[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] ,)
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) )
# test the pooled output on [1, :3]
UpperCAmelCase = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) )
@slow
def _UpperCAmelCase ( self : Union[str, Any] ):
# initialize model with randomly initialized sequence classification head
UpperCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" ,num_labels=2 )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
UpperCAmelCase = model(
input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=tf.convert_to_tensor([1, 1] ) ,)
# test whether we get a loss as a scalar
UpperCAmelCase = outputs.loss
UpperCAmelCase = (2,)
self.assertEqual(loss.shape ,__SCREAMING_SNAKE_CASE )
# test the shape of the logits
UpperCAmelCase = outputs.logits
UpperCAmelCase = (2, 2)
self.assertEqual(logits.shape ,__SCREAMING_SNAKE_CASE )
@slow
def _UpperCAmelCase ( self : Tuple ):
# initialize model with randomly initialized token classification head
UpperCAmelCase = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" ,num_labels=1_3 )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
UpperCAmelCase = model(
input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE )
# test the shape of the logits
UpperCAmelCase = outputs.logits
UpperCAmelCase = tf.convert_to_tensor((2, 2_5, 1_3) )
self.assertEqual(logits.shape ,__SCREAMING_SNAKE_CASE )
@slow
def _UpperCAmelCase ( self : List[Any] ):
# initialize model with randomly initialized token classification head
UpperCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
UpperCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
# test the shape of the logits
UpperCAmelCase = tf.convert_to_tensor((2, 2_5) )
self.assertEqual(outputs.start_logits.shape ,__SCREAMING_SNAKE_CASE )
self.assertEqual(outputs.end_logits.shape ,__SCREAMING_SNAKE_CASE )
| 333 | 0 |
from numpy import exp, pi, sqrt
def lowercase ( a , a = 0.0 , a = 1.0 ):
'''simple docstring'''
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 140 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _UpperCAmelCase ( lowercase ):
lowerCamelCase_ : Union[str, Any] = """xmod"""
def __init__( self : Tuple , UpperCAmelCase : Tuple=3_05_22 , UpperCAmelCase : Any=7_68 , UpperCAmelCase : Any=12 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : List[str]=30_72 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Tuple=5_12 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Dict=1E-12 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Tuple="absolute" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=False , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=("en_XX",) , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Union[str, Any] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase)
SCREAMING_SNAKE_CASE_ :List[Any] = vocab_size
SCREAMING_SNAKE_CASE_ :Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE_ :Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE_ :Tuple = num_attention_heads
SCREAMING_SNAKE_CASE_ :Any = hidden_act
SCREAMING_SNAKE_CASE_ :Dict = intermediate_size
SCREAMING_SNAKE_CASE_ :Optional[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ :List[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ :List[str] = max_position_embeddings
SCREAMING_SNAKE_CASE_ :Tuple = type_vocab_size
SCREAMING_SNAKE_CASE_ :List[str] = initializer_range
SCREAMING_SNAKE_CASE_ :Any = layer_norm_eps
SCREAMING_SNAKE_CASE_ :str = position_embedding_type
SCREAMING_SNAKE_CASE_ :Any = use_cache
SCREAMING_SNAKE_CASE_ :str = classifier_dropout
SCREAMING_SNAKE_CASE_ :List[str] = pre_norm
SCREAMING_SNAKE_CASE_ :List[str] = adapter_reduction_factor
SCREAMING_SNAKE_CASE_ :int = adapter_layer_norm
SCREAMING_SNAKE_CASE_ :Dict = adapter_reuse_layer_norm
SCREAMING_SNAKE_CASE_ :Optional[Any] = ln_before_adapter
SCREAMING_SNAKE_CASE_ :List[Any] = list(UpperCAmelCase)
SCREAMING_SNAKE_CASE_ :List[Any] = default_language
class _UpperCAmelCase ( lowercase ):
@property
def _snake_case ( self : Any):
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE_ :Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
SCREAMING_SNAKE_CASE_ :Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
])
| 140 | 1 |
'''simple docstring'''
from __future__ import annotations
def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> Optional[Any]: # noqa: E741
'''simple docstring'''
while r - l > 1:
snake_case__ : Optional[Any] = (l + r) // 2
if v[m] >= key:
snake_case__ : List[str] = m
else:
snake_case__ : List[Any] = m # noqa: E741
return r
def UpperCamelCase__ ( __magic_name__ : list[int] ) -> int:
'''simple docstring'''
if len(__magic_name__ ) == 0:
return 0
snake_case__ : str = [0] * len(__magic_name__ )
snake_case__ : Any = 1
snake_case__ : Union[str, Any] = v[0]
for i in range(1 , len(__magic_name__ ) ):
if v[i] < tail[0]:
snake_case__ : List[str] = v[i]
elif v[i] > tail[length - 1]:
snake_case__ : str = v[i]
length += 1
else:
snake_case__ : List[Any] = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 38 |
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
__UpperCAmelCase : str = get_logger(__name__)
__UpperCAmelCase : Optional[Any] = Path(__file__).parent / 'model_card_template.md'
__UpperCAmelCase : Tuple = uuida().hex
__UpperCAmelCase : Optional[int] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES
__UpperCAmelCase : List[str] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES
__UpperCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/'
def lowerCamelCase_ ( UpperCamelCase_ = None ):
_a : str = f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"""
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f"""; torch/{_torch_version}"""
if is_flax_available():
ua += f"""; jax/{_jax_version}"""
ua += f"""; flax/{_flax_version}"""
if is_onnx_available():
ua += f"""; onnxruntime/{_onnxruntime_version}"""
# CI will set this value to True
if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() )
elif isinstance(UpperCamelCase_ , UpperCamelCase_ ):
ua += "; " + user_agent
return ua
def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None ):
if token is None:
_a : Optional[Any] = HfFolder.get_token()
if organization is None:
_a : Tuple = whoami(UpperCamelCase_ )['''name''']
return f"""{username}/{model_id}"""
else:
return f"""{organization}/{model_id}"""
def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ):
if not is_jinja_available():
raise ValueError(
'''Modelcard rendering is based on Jinja templates.'''
''' Please make sure to have `jinja` installed before using `create_model_card`.'''
''' To install it, please run `pip install Jinja2`.''' )
if hasattr(UpperCamelCase_ , '''local_rank''' ) and args.local_rank not in [-1, 0]:
return
_a : List[str] = args.hub_token if hasattr(UpperCamelCase_ , '''hub_token''' ) else None
_a : int = get_full_repo_name(UpperCamelCase_ , token=UpperCamelCase_ )
_a : Optional[int] = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=UpperCamelCase_ , model_name=UpperCamelCase_ , repo_name=UpperCamelCase_ , dataset_name=args.dataset_name if hasattr(UpperCamelCase_ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(UpperCamelCase_ , '''gradient_accumulation_steps''' ) else None
) , adam_betaa=args.adam_betaa if hasattr(UpperCamelCase_ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(UpperCamelCase_ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(UpperCamelCase_ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(UpperCamelCase_ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(UpperCamelCase_ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(UpperCamelCase_ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(UpperCamelCase_ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(UpperCamelCase_ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(UpperCamelCase_ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , )
_a : Dict = os.path.join(args.output_dir , '''README.md''' )
model_card.save(UpperCamelCase_ )
def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ = None ):
if resolved_file is None or commit_hash is not None:
return commit_hash
_a : Union[str, Any] = str(Path(UpperCamelCase_ ).as_posix() )
_a : str = re.search(R'''snapshots/([^/]+)/''' , UpperCamelCase_ )
if search is None:
return None
_a : str = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(UpperCamelCase_ ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
__UpperCAmelCase : Dict = os.path.expanduser(
os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface'))
)
__UpperCAmelCase : Optional[Any] = os.path.join(hf_cache_home, 'diffusers')
def lowerCamelCase_ ( UpperCamelCase_ = None , UpperCamelCase_ = None ):
if new_cache_dir is None:
_a : Optional[Any] = DIFFUSERS_CACHE
if old_cache_dir is None:
_a : List[str] = old_diffusers_cache
_a : Dict = Path(UpperCamelCase_ ).expanduser()
_a : Union[str, Any] = Path(UpperCamelCase_ ).expanduser()
for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
_a : str = new_cache_dir / old_blob_path.relative_to(UpperCamelCase_ )
new_blob_path.parent.mkdir(parents=UpperCamelCase_ , exist_ok=UpperCamelCase_ )
os.replace(UpperCamelCase_ , UpperCamelCase_ )
try:
os.symlink(UpperCamelCase_ , UpperCamelCase_ )
except OSError:
logger.warning(
'''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
__UpperCAmelCase : Any = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt')
if not os.path.isfile(cache_version_file):
__UpperCAmelCase : int = 0
else:
with open(cache_version_file) as f:
try:
__UpperCAmelCase : Union[str, Any] = int(f.read())
except ValueError:
__UpperCAmelCase : Optional[Any] = 0
if cache_version < 1:
__UpperCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your '
'existing cached models. This is a one-time operation, you can interrupt it or run it '
'later by calling `diffusers.utils.hub_utils.move_cache()`.'
)
try:
move_cache()
except Exception as e:
__UpperCAmelCase : Optional[int] = '\n'.join(traceback.format_tb(e.__traceback__))
logger.error(
f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease '''
'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole '
'message and we will do our best to help.'
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, 'w') as f:
f.write('1')
except Exception:
logger.warning(
f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure '''
'the directory exists and can be written to.'
)
def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ = None ):
if variant is not None:
_a : Dict = weights_name.split('''.''' )
_a : List[str] = splits[:-1] + [variant] + splits[-1:]
_a : int = '''.'''.join(UpperCamelCase_ )
return weights_name
def lowerCamelCase_ ( UpperCamelCase_ , *,
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , ):
_a : int = str(UpperCamelCase_ )
if os.path.isfile(UpperCamelCase_ ):
return pretrained_model_name_or_path
elif os.path.isdir(UpperCamelCase_ ):
if os.path.isfile(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ):
# Load from a PyTorch checkpoint
_a : Tuple = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ):
_a : Tuple = os.path.join(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
return model_file
else:
raise EnvironmentError(
f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(UpperCamelCase_ ).base_version ) >= version.parse('''0.20.0''' )
):
try:
_a : Optional[int] = hf_hub_download(
UpperCamelCase_ , filename=_add_variant(UpperCamelCase_ , UpperCamelCase_ ) , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , user_agent=UpperCamelCase_ , subfolder=UpperCamelCase_ , revision=revision or commit_hash , )
warnings.warn(
f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , UpperCamelCase_ , )
return model_file
except: # noqa: E722
warnings.warn(
f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(UpperCamelCase_ , UpperCamelCase_ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(UpperCamelCase_ , UpperCamelCase_ )}' so that the correct variant file can be added.""" , UpperCamelCase_ , )
try:
# 2. Load model file as usual
_a : str = hf_hub_download(
UpperCamelCase_ , filename=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , user_agent=UpperCamelCase_ , subfolder=UpperCamelCase_ , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """
'''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a '''
'''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli '''
'''login`.''' )
except RevisionNotFoundError:
raise EnvironmentError(
f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """
'''this model name. Check the model page at '''
f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" )
except EntryNotFoundError:
raise EnvironmentError(
f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" )
except HTTPError as err:
raise EnvironmentError(
f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" )
except ValueError:
raise EnvironmentError(
f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"""
f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"""
f""" directory containing a file named {weights_name} or"""
''' \nCheckout your internet connection or see how to run the library in'''
''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' )
except EnvironmentError:
raise EnvironmentError(
f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """
'''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. '''
f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """
f"""containing a file named {weights_name}""" )
| 471 | 0 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
__A = logging.get_logger(__name__)
__A = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
__A = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
__A = {
"""allenai/led-base-16384""": 1_6384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def __A () ->Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ :Union[str, Any] = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
lowerCAmelCase__ :List[str] = bs[:]
lowerCAmelCase__ :str = 0
for b in range(2**8 ):
if b not in bs:
bs.append(lowercase_ )
cs.append(2**8 + n )
n += 1
lowerCAmelCase__ :str = [chr(lowercase_ ) for n in cs]
return dict(zip(lowercase_ , lowercase_ ) )
def __A (_SCREAMING_SNAKE_CASE ) ->str:
"""simple docstring"""
lowerCAmelCase__ :Dict = set()
lowerCAmelCase__ :Optional[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCAmelCase__ :Dict = char
return pairs
class _lowerCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
__magic_name__ :Optional[int] = VOCAB_FILES_NAMES
__magic_name__ :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , **__UpperCAmelCase , ):
'''simple docstring'''
lowerCAmelCase__ :Tuple = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token
lowerCAmelCase__ :List[str] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token
lowerCAmelCase__ :Tuple = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token
lowerCAmelCase__ :str = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token
lowerCAmelCase__ :Any = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token
lowerCAmelCase__ :List[Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase__ :int = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token
super().__init__(
errors=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , **__a , )
with open(__a , encoding='utf-8' ) as vocab_handle:
lowerCAmelCase__ :int = json.load(__a )
lowerCAmelCase__ :str = {v: k for k, v in self.encoder.items()}
lowerCAmelCase__ :int = errors # how to handle errors in decoding
lowerCAmelCase__ :str = bytes_to_unicode()
lowerCAmelCase__ :Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__a , encoding='utf-8' ) as merges_handle:
lowerCAmelCase__ :List[Any] = merges_handle.read().split('\n' )[1:-1]
lowerCAmelCase__ :Optional[int] = [tuple(merge.split() ) for merge in bpe_merges]
lowerCAmelCase__ :List[Any] = dict(zip(__a , range(len(__a ) ) ) )
lowerCAmelCase__ :Any = {}
lowerCAmelCase__ :List[Any] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCAmelCase__ :Optional[Any] = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def snake_case ( self ):
'''simple docstring'''
return len(self.encoder )
def snake_case ( self ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def snake_case ( self , __UpperCAmelCase ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCAmelCase__ :Optional[int] = tuple(__a )
lowerCAmelCase__ :List[Any] = get_pairs(__a )
if not pairs:
return token
while True:
lowerCAmelCase__ :List[str] = min(__a , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__a , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
lowerCAmelCase__ :Union[str, Any] = bigram
lowerCAmelCase__ :Dict = []
lowerCAmelCase__ :Optional[Any] = 0
while i < len(__a ):
try:
lowerCAmelCase__ :Dict = word.index(__a , __a )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCAmelCase__ :str = j
if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCAmelCase__ :str = tuple(__a )
lowerCAmelCase__ :Optional[int] = new_word
if len(__a ) == 1:
break
else:
lowerCAmelCase__ :Any = get_pairs(__a )
lowerCAmelCase__ :str = " ".join(__a )
lowerCAmelCase__ :Dict = word
return word
def snake_case ( self , __UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :str = []
for token in re.findall(self.pat , __a ):
lowerCAmelCase__ :List[str] = "".join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__a ).split(' ' ) )
return bpe_tokens
def snake_case ( self , __UpperCAmelCase ):
'''simple docstring'''
return self.encoder.get(__a , self.encoder.get(self.unk_token ) )
def snake_case ( self , __UpperCAmelCase ):
'''simple docstring'''
return self.decoder.get(__a )
def snake_case ( self , __UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :Tuple = "".join(__a )
lowerCAmelCase__ :List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
if not os.path.isdir(__a ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCAmelCase__ :Tuple = os.path.join(
__a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
lowerCAmelCase__ :Dict = os.path.join(
__a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(__a , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + '\n' )
lowerCAmelCase__ :str = 0
with open(__a , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
' Please check that the tokenizer is not corrupted!' )
lowerCAmelCase__ :Union[str, Any] = token_index
writer.write(' '.join(__a ) + '\n' )
index += 1
return vocab_file, merge_file
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase__ :Tuple = [self.cls_token_id]
lowerCAmelCase__ :List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a )
if token_ids_a is None:
return [1] + ([0] * len(__a )) + [1]
return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1]
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
lowerCAmelCase__ :Optional[int] = [self.sep_token_id]
lowerCAmelCase__ :List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :Optional[Any] = kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__a ) > 0 and not text[0].isspace()):
lowerCAmelCase__ :List[Any] = " " + text
return (text, kwargs)
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , __UpperCAmelCase = None , __UpperCAmelCase = None , ):
'''simple docstring'''
lowerCAmelCase__ :Any = super()._pad(
encoded_inputs=__a , max_length=__a , padding_strategy=__a , pad_to_multiple_of=__a , return_attention_mask=__a , )
# Load from model defaults
if return_attention_mask is None:
lowerCAmelCase__ :str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCAmelCase__ :Dict = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCAmelCase__ :str = len(encoded_inputs['global_attention_mask'] ) != len(__a )
if needs_to_be_padded:
lowerCAmelCase__ :List[str] = len(__a ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCAmelCase__ :str = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCAmelCase__ :List[Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 707 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _lowerCAmelCase ( a , unittest.TestCase ):
"""simple docstring"""
__magic_name__ :List[Any] = AudioLDMPipeline
__magic_name__ :Union[str, Any] = TEXT_TO_AUDIO_PARAMS
__magic_name__ :Tuple = TEXT_TO_AUDIO_BATCH_PARAMS
__magic_name__ :Dict = frozenset(
[
"""num_inference_steps""",
"""num_waveforms_per_prompt""",
"""generator""",
"""latents""",
"""output_type""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def snake_case ( self ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ :Union[str, Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=__UpperCAmelCase , )
lowerCAmelCase__ :Tuple = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
lowerCAmelCase__ :Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCAmelCase__ :Dict = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , )
lowerCAmelCase__ :int = ClapTextModelWithProjection(__UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 )
lowerCAmelCase__ :Dict = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__UpperCAmelCase , )
lowerCAmelCase__ :str = SpeechTaHifiGan(__UpperCAmelCase )
lowerCAmelCase__ :str = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'vocoder': vocoder,
}
return components
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ):
'''simple docstring'''
if str(__UpperCAmelCase ).startswith('mps' ):
lowerCAmelCase__ :Tuple = torch.manual_seed(__UpperCAmelCase )
else:
lowerCAmelCase__ :Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
lowerCAmelCase__ :Optional[Any] = {
'prompt': 'A hammer hitting a wooden surface',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
}
return inputs
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ :Optional[int] = self.get_dummy_components()
lowerCAmelCase__ :List[str] = AudioLDMPipeline(**__UpperCAmelCase )
lowerCAmelCase__ :Any = audioldm_pipe.to(__UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ :int = self.get_dummy_inputs(__UpperCAmelCase )
lowerCAmelCase__ :int = audioldm_pipe(**__UpperCAmelCase )
lowerCAmelCase__ :List[Any] = output.audios[0]
assert audio.ndim == 1
assert len(__UpperCAmelCase ) == 2_5_6
lowerCAmelCase__ :int = audio[:1_0]
lowerCAmelCase__ :Optional[Any] = np.array(
[-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] )
assert np.abs(audio_slice - expected_slice ).max() < 1E-2
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Union[str, Any] = self.get_dummy_components()
lowerCAmelCase__ :int = AudioLDMPipeline(**__UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = audioldm_pipe.to(__UpperCAmelCase )
lowerCAmelCase__ :List[str] = audioldm_pipe.to(__UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = self.get_dummy_inputs(__UpperCAmelCase )
lowerCAmelCase__ :List[Any] = 3 * [inputs['prompt']]
# forward
lowerCAmelCase__ :Dict = audioldm_pipe(**__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = output.audios[0]
lowerCAmelCase__ :str = self.get_dummy_inputs(__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = 3 * [inputs.pop('prompt' )]
lowerCAmelCase__ :Union[str, Any] = audioldm_pipe.tokenizer(
__UpperCAmelCase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors='pt' , )
lowerCAmelCase__ :Union[str, Any] = text_inputs['input_ids'].to(__UpperCAmelCase )
lowerCAmelCase__ :Dict = audioldm_pipe.text_encoder(
__UpperCAmelCase , )
lowerCAmelCase__ :Any = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
lowerCAmelCase__ :List[Any] = F.normalize(__UpperCAmelCase , dim=-1 )
lowerCAmelCase__ :int = prompt_embeds
# forward
lowerCAmelCase__ :str = audioldm_pipe(**__UpperCAmelCase )
lowerCAmelCase__ :Optional[Any] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1E-2
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[int] = self.get_dummy_components()
lowerCAmelCase__ :str = AudioLDMPipeline(**__UpperCAmelCase )
lowerCAmelCase__ :List[Any] = audioldm_pipe.to(__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = audioldm_pipe.to(__UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ :List[Any] = self.get_dummy_inputs(__UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = 3 * ['this is a negative prompt']
lowerCAmelCase__ :str = negative_prompt
lowerCAmelCase__ :List[Any] = 3 * [inputs['prompt']]
# forward
lowerCAmelCase__ :Any = audioldm_pipe(**__UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = output.audios[0]
lowerCAmelCase__ :List[str] = self.get_dummy_inputs(__UpperCAmelCase )
lowerCAmelCase__ :Optional[Any] = 3 * [inputs.pop('prompt' )]
lowerCAmelCase__ :str = []
for p in [prompt, negative_prompt]:
lowerCAmelCase__ :Optional[Any] = audioldm_pipe.tokenizer(
__UpperCAmelCase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors='pt' , )
lowerCAmelCase__ :List[Any] = text_inputs['input_ids'].to(__UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = audioldm_pipe.text_encoder(
__UpperCAmelCase , )
lowerCAmelCase__ :Tuple = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
lowerCAmelCase__ :Dict = F.normalize(__UpperCAmelCase , dim=-1 )
embeds.append(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ :Tuple = embeds
# forward
lowerCAmelCase__ :Dict = audioldm_pipe(**__UpperCAmelCase )
lowerCAmelCase__ :Optional[Any] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1E-2
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Any = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ :Union[str, Any] = self.get_dummy_components()
lowerCAmelCase__ :Tuple = PNDMScheduler(skip_prk_steps=__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = AudioLDMPipeline(**__UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = audioldm_pipe.to(__UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ :str = self.get_dummy_inputs(__UpperCAmelCase )
lowerCAmelCase__ :str = 'egg cracking'
lowerCAmelCase__ :Optional[int] = audioldm_pipe(**__UpperCAmelCase , negative_prompt=__UpperCAmelCase )
lowerCAmelCase__ :List[Any] = output.audios[0]
assert audio.ndim == 1
assert len(__UpperCAmelCase ) == 2_5_6
lowerCAmelCase__ :List[Any] = audio[:1_0]
lowerCAmelCase__ :Any = np.array(
[-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] )
assert np.abs(audio_slice - expected_slice ).max() < 1E-2
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Any = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ :Tuple = self.get_dummy_components()
lowerCAmelCase__ :Optional[int] = PNDMScheduler(skip_prk_steps=__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = AudioLDMPipeline(**__UpperCAmelCase )
lowerCAmelCase__ :Tuple = audioldm_pipe.to(__UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ :Optional[Any] = 'A hammer hitting a wooden surface'
# test num_waveforms_per_prompt=1 (default)
lowerCAmelCase__ :Tuple = audioldm_pipe(__UpperCAmelCase , num_inference_steps=2 ).audios
assert audios.shape == (1, 2_5_6)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
lowerCAmelCase__ :str = 2
lowerCAmelCase__ :Dict = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 2_5_6)
# test num_waveforms_per_prompt for single prompt
lowerCAmelCase__ :Any = 2
lowerCAmelCase__ :Union[str, Any] = audioldm_pipe(__UpperCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=__UpperCAmelCase ).audios
assert audios.shape == (num_waveforms_per_prompt, 2_5_6)
# test num_waveforms_per_prompt for batch of prompts
lowerCAmelCase__ :List[str] = 2
lowerCAmelCase__ :List[str] = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__UpperCAmelCase ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6)
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ :Dict = self.get_dummy_components()
lowerCAmelCase__ :Dict = AudioLDMPipeline(**__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = audioldm_pipe.to(__UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ :str = audioldm_pipe.vocoder.config.sampling_rate
lowerCAmelCase__ :Tuple = self.get_dummy_inputs(__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = audioldm_pipe(audio_length_in_s=0.0_16 , **__UpperCAmelCase )
lowerCAmelCase__ :int = output.audios[0]
assert audio.ndim == 1
assert len(__UpperCAmelCase ) / vocoder_sampling_rate == 0.0_16
lowerCAmelCase__ :List[Any] = audioldm_pipe(audio_length_in_s=0.0_32 , **__UpperCAmelCase )
lowerCAmelCase__ :str = output.audios[0]
assert audio.ndim == 1
assert len(__UpperCAmelCase ) / vocoder_sampling_rate == 0.0_32
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Union[str, Any] = self.get_dummy_components()
lowerCAmelCase__ :Optional[int] = AudioLDMPipeline(**__UpperCAmelCase )
lowerCAmelCase__ :str = audioldm_pipe.to(__UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ :Optional[Any] = ['hey']
lowerCAmelCase__ :Any = audioldm_pipe(__UpperCAmelCase , num_inference_steps=1 )
lowerCAmelCase__ :List[Any] = output.audios.shape
assert audio_shape == (1, 2_5_6)
lowerCAmelCase__ :List[Any] = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
lowerCAmelCase__ :Tuple = SpeechTaHifiGan(__UpperCAmelCase ).to(__UpperCAmelCase )
lowerCAmelCase__ :Any = audioldm_pipe(__UpperCAmelCase , num_inference_steps=1 )
lowerCAmelCase__ :Any = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 2_5_6)
def snake_case ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__UpperCAmelCase )
def snake_case ( self ):
'''simple docstring'''
self._test_inference_batch_single_identical(test_mean_pixel_difference=__UpperCAmelCase )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def snake_case ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCAmelCase )
@slow
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ):
'''simple docstring'''
lowerCAmelCase__ :str = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
lowerCAmelCase__ :List[str] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 8, 1_2_8, 1_6) )
lowerCAmelCase__ :Any = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
lowerCAmelCase__ :List[str] = {
'prompt': 'A hammer hitting a wooden surface',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 2.5,
}
return inputs
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :List[str] = AudioLDMPipeline.from_pretrained('cvssp/audioldm' )
lowerCAmelCase__ :Optional[Any] = audioldm_pipe.to(__UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = self.get_inputs(__UpperCAmelCase )
lowerCAmelCase__ :Dict = 2_5
lowerCAmelCase__ :List[Any] = audioldm_pipe(**__UpperCAmelCase ).audios[0]
assert audio.ndim == 1
assert len(__UpperCAmelCase ) == 8_1_9_2_0
lowerCAmelCase__ :Optional[Any] = audio[7_7_2_3_0:7_7_2_4_0]
lowerCAmelCase__ :Dict = np.array(
[-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] )
lowerCAmelCase__ :int = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1E-2
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Any = AudioLDMPipeline.from_pretrained('cvssp/audioldm' )
lowerCAmelCase__ :int = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
lowerCAmelCase__ :Union[str, Any] = audioldm_pipe.to(__UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ :List[Any] = self.get_inputs(__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = audioldm_pipe(**__UpperCAmelCase ).audios[0]
assert audio.ndim == 1
assert len(__UpperCAmelCase ) == 8_1_9_2_0
lowerCAmelCase__ :Tuple = audio[2_7_7_8_0:2_7_7_9_0]
lowerCAmelCase__ :Union[str, Any] = np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] )
lowerCAmelCase__ :Any = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3E-2
| 560 | 0 |
import math
from collections.abc import Callable
def UpperCamelCase ( __magic_name__ : Callable[[float], float] , __magic_name__ : float , __magic_name__ : float ) -> float:
"""simple docstring"""
lowercase__ = xa
lowercase__ = xa
while True:
if x_n == x_na or function(__magic_name__ ) == function(__magic_name__ ):
raise ZeroDivisionError("""float division by zero, could not find root""" )
lowercase__ = x_na - (
function(__magic_name__ ) / ((function(__magic_name__ ) - function(__magic_name__ )) / (x_na - x_n))
)
if abs(x_na - x_na ) < 10**-5:
return x_na
lowercase__ = x_na
lowercase__ = x_na
def UpperCamelCase ( __magic_name__ : float ) -> float:
"""simple docstring"""
return math.pow(__magic_name__ , 3 ) - (2 * x) - 5
if __name__ == "__main__":
print(intersection(f, 3, 3.5))
| 15 |
'''simple docstring'''
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , unittest.TestCase ):
__a : Tuple = IFPipeline
__a : List[Any] = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
__a : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
__a : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''}
def _snake_case ( self ) -> List[str]:
'''simple docstring'''
return self._get_dummy_components()
def _snake_case ( self , lowercase , lowercase=0 ) -> int:
'''simple docstring'''
if str(lowercase ).startswith('''mps''' ):
__SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(lowercase )
else:
__SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowercase ).manual_seed(lowercase )
__SCREAMING_SNAKE_CASE : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def _snake_case ( self ) -> int:
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def _snake_case ( self ) -> Tuple:
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1e-1 )
def _snake_case ( self ) -> Dict:
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def _snake_case ( self ) -> Any:
'''simple docstring'''
self._test_save_load_local()
def _snake_case ( self ) -> Optional[int]:
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def _snake_case ( self ) -> Optional[Any]:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def _snake_case ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ) -> Tuple:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : List[str] = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa )
__SCREAMING_SNAKE_CASE : Dict = IFSuperResolutionPipeline.from_pretrained(
'''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=lowercase , tokenizer=lowercase )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('''cuda''' )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
__SCREAMING_SNAKE_CASE : str = None
__SCREAMING_SNAKE_CASE : Tuple = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(lowercase , lowercase , lowercase , lowercase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
__SCREAMING_SNAKE_CASE : List[str] = IFImgaImgPipeline(**pipe_a.components )
__SCREAMING_SNAKE_CASE : str = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(lowercase , lowercase , lowercase , lowercase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
__SCREAMING_SNAKE_CASE : str = IFInpaintingPipeline(**pipe_a.components )
__SCREAMING_SNAKE_CASE : Any = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(lowercase , lowercase , lowercase , lowercase )
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> Any:
'''simple docstring'''
_start_torch_memory_measurement()
__SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 )
__SCREAMING_SNAKE_CASE : List[Any] = pipe_a(
prompt_embeds=lowercase , negative_prompt_embeds=lowercase , num_inference_steps=2 , generator=lowercase , output_type='''np''' , )
__SCREAMING_SNAKE_CASE : List[str] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
__SCREAMING_SNAKE_CASE : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_3 * 1_0**9
__SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' )
assert_mean_pixel_difference(lowercase , lowercase )
# pipeline 2
_start_torch_memory_measurement()
__SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 )
__SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(lowercase )
__SCREAMING_SNAKE_CASE : Dict = pipe_a(
prompt_embeds=lowercase , negative_prompt_embeds=lowercase , image=lowercase , generator=lowercase , num_inference_steps=2 , output_type='''np''' , )
__SCREAMING_SNAKE_CASE : Dict = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
__SCREAMING_SNAKE_CASE : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
__SCREAMING_SNAKE_CASE : Any = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(lowercase , lowercase )
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
_start_torch_memory_measurement()
__SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(lowercase )
__SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 )
__SCREAMING_SNAKE_CASE : Any = pipe_a(
prompt_embeds=lowercase , negative_prompt_embeds=lowercase , image=lowercase , num_inference_steps=2 , generator=lowercase , output_type='''np''' , )
__SCREAMING_SNAKE_CASE : Union[str, Any] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
__SCREAMING_SNAKE_CASE : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
__SCREAMING_SNAKE_CASE : Union[str, Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' )
assert_mean_pixel_difference(lowercase , lowercase )
# pipeline 2
_start_torch_memory_measurement()
__SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 )
__SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(lowercase )
__SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(lowercase )
__SCREAMING_SNAKE_CASE : Tuple = pipe_a(
prompt_embeds=lowercase , negative_prompt_embeds=lowercase , image=lowercase , original_image=lowercase , generator=lowercase , num_inference_steps=2 , output_type='''np''' , )
__SCREAMING_SNAKE_CASE : Tuple = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
__SCREAMING_SNAKE_CASE : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
__SCREAMING_SNAKE_CASE : List[Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(lowercase , lowercase )
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
_start_torch_memory_measurement()
__SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(lowercase )
__SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(lowercase )
__SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 )
__SCREAMING_SNAKE_CASE : Any = pipe_a(
prompt_embeds=lowercase , negative_prompt_embeds=lowercase , image=lowercase , mask_image=lowercase , num_inference_steps=2 , generator=lowercase , output_type='''np''' , )
__SCREAMING_SNAKE_CASE : Optional[Any] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
__SCREAMING_SNAKE_CASE : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
__SCREAMING_SNAKE_CASE : Any = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' )
assert_mean_pixel_difference(lowercase , lowercase )
# pipeline 2
_start_torch_memory_measurement()
__SCREAMING_SNAKE_CASE : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 )
__SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(lowercase )
__SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(lowercase )
__SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(lowercase )
__SCREAMING_SNAKE_CASE : Dict = pipe_a(
prompt_embeds=lowercase , negative_prompt_embeds=lowercase , image=lowercase , mask_image=lowercase , original_image=lowercase , generator=lowercase , num_inference_steps=2 , output_type='''np''' , )
__SCREAMING_SNAKE_CASE : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
__SCREAMING_SNAKE_CASE : Optional[int] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
__SCREAMING_SNAKE_CASE : Dict = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(lowercase , lowercase )
def A_ ( ) -> List[str]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 158 | 0 |
def UpperCamelCase_ ( lowerCAmelCase__ ):
"""simple docstring"""
_lowerCAmelCase : Optional[Any] = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def UpperCamelCase_ ( lowerCAmelCase__ = 1_00 ):
"""simple docstring"""
_lowerCAmelCase : Optional[Any] = 1
_lowerCAmelCase : Any = 2
for i in range(2 , max_n + 1 ):
_lowerCAmelCase : Union[str, Any] = pre_numerator
_lowerCAmelCase : List[str] = 2 * i // 3 if i % 3 == 0 else 1
_lowerCAmelCase : int = cur_numerator
_lowerCAmelCase : int = e_cont * pre_numerator + temp
return sum_digits(lowerCAmelCase__ )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 587 | import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
snake_case = logging.get_logger(__name__)
class __A ( snake_case__ ):
'''simple docstring'''
def __init__( self , *_snake_case , **_snake_case ):
warnings.warn(
"The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use SegformerImageProcessor instead." , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 587 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : List[str] = logging.get_logger(__name__)
_lowercase : Tuple = {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""",
"""google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""",
"""google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""",
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class UpperCamelCase__( _lowerCAmelCase ):
__magic_name__ : List[Any] = 'big_bird'
def __init__( self : str , lowerCAmelCase : Any=50358 , lowerCAmelCase : Optional[int]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : Optional[Any]=3072 , lowerCAmelCase : List[str]="gelu_new" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Optional[int]=4096 , lowerCAmelCase : Any=2 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : List[Any]=1E-12 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Union[str, Any]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Dict=2 , lowerCAmelCase : Optional[int]=66 , lowerCAmelCase : Dict="block_sparse" , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : str=False , lowerCAmelCase : str=64 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : List[Any] , )-> Union[str, Any]:
"""simple docstring"""
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , sep_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
UpperCAmelCase = vocab_size
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = initializer_range
UpperCAmelCase = type_vocab_size
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = use_cache
UpperCAmelCase = rescale_embeddings
UpperCAmelCase = attention_type
UpperCAmelCase = use_bias
UpperCAmelCase = block_size
UpperCAmelCase = num_random_blocks
UpperCAmelCase = classifier_dropout
class UpperCamelCase__( _lowerCAmelCase ):
@property
def a__( self : List[str] )-> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 210 |
import os
from collections.abc import Iterator
def snake_case ( lowerCamelCase = "." ):
'''simple docstring'''
for dir_path, dir_names, filenames in os.walk(lowerCamelCase ):
__lowercase = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(lowerCamelCase )[1] in (".py", ".ipynb"):
yield os.path.join(lowerCamelCase , lowerCamelCase ).lstrip("""./""" )
def snake_case ( lowerCamelCase ):
'''simple docstring'''
return F'{i * " "}*' if i else "\n##"
def snake_case ( lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
__lowercase = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(lowerCamelCase ) or old_parts[i] != new_part) and new_part:
print(F'{md_prefix(lowerCamelCase )} {new_part.replace("_" , " " ).title()}' )
return new_path
def snake_case ( lowerCamelCase = "." ):
'''simple docstring'''
__lowercase = """"""
for filepath in sorted(good_file_paths(lowerCamelCase ) ):
__lowercase , __lowercase = os.path.split(lowerCamelCase )
if filepath != old_path:
__lowercase = print_path(lowerCamelCase , lowerCamelCase )
__lowercase = (filepath.count(os.sep ) + 1) if filepath else 0
__lowercase = F'{filepath}/{filename}'.replace(""" """ , """%20""" )
__lowercase = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0]
print(F'{md_prefix(lowerCamelCase )} [{filename}]({url})' )
if __name__ == "__main__":
print_directory_md(""".""")
| 80 | 0 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : dict ) -> tuple:
return (data["data"], data["target"])
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : np.ndarray ,_UpperCAmelCase : np.ndarray ,_UpperCAmelCase : np.ndarray ) -> np.ndarray:
_a : int =XGBRegressor(verbosity=0 ,random_state=42 )
xgb.fit(_UpperCAmelCase ,_UpperCAmelCase )
# Predict target for test data
_a : Any =xgb.predict(_UpperCAmelCase )
_a : Dict =predictions.reshape(len(_UpperCAmelCase ) ,1 )
return predictions
def SCREAMING_SNAKE_CASE_ ( ) -> None:
_a : Dict =fetch_california_housing()
_a , _a : List[str] =data_handling(_UpperCAmelCase )
_a , _a , _a , _a : Union[str, Any] =train_test_split(
_UpperCAmelCase ,_UpperCAmelCase ,test_size=0.2_5 ,random_state=1 )
_a : Dict =xgboost(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# Error printing
print(F"Mean Absolute Error : {mean_absolute_error(_UpperCAmelCase ,_UpperCAmelCase )}" )
print(F"Mean Square Error : {mean_squared_error(_UpperCAmelCase ,_UpperCAmelCase )}" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 506 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ) -> float:
_a : Union[str, Any] =0
while len(_UpperCAmelCase ) > 1:
_a : Any =0
# Consider two files with minimum cost to be merged
for _ in range(2 ):
_a : Optional[int] =files.index(min(_UpperCAmelCase ) )
temp += files[min_index]
files.pop(_UpperCAmelCase )
files.append(_UpperCAmelCase )
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 506 | 1 |
"""simple docstring"""
from collections.abc import Sequence
from queue import Queue
class lowerCAmelCase__ :
def __init__( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : int=None , snake_case__ : str=None ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = start
UpperCAmelCase__ : str = end
UpperCAmelCase__ : Optional[int] = val
UpperCAmelCase__ : List[str] = (start + end) // 2
UpperCAmelCase__ : Tuple = left
UpperCAmelCase__ : List[str] = right
def __repr__( self : Tuple ):
'''simple docstring'''
return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'
class lowerCAmelCase__ :
def __init__( self : List[Any] , snake_case__ : Sequence , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = collection
UpperCAmelCase__ : Optional[int] = function
if self.collection:
UpperCAmelCase__ : Optional[int] = self._build_tree(0 , len(snake_case__ ) - 1 )
def __a ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
self._update_tree(self.root , snake_case__ , snake_case__ )
def __a ( self : Dict , snake_case__ : Tuple , snake_case__ : Optional[Any] ):
'''simple docstring'''
return self._query_range(self.root , snake_case__ , snake_case__ )
def __a ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[str] ):
'''simple docstring'''
if start == end:
return SegmentTreeNode(snake_case__ , snake_case__ , self.collection[start] )
UpperCAmelCase__ : List[str] = (start + end) // 2
UpperCAmelCase__ : Optional[Any] = self._build_tree(snake_case__ , snake_case__ )
UpperCAmelCase__ : str = self._build_tree(mid + 1 , snake_case__ )
return SegmentTreeNode(snake_case__ , snake_case__ , self.fn(left.val , right.val ) , snake_case__ , snake_case__ )
def __a ( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ):
'''simple docstring'''
if node.start == i and node.end == i:
UpperCAmelCase__ : int = val
return
if i <= node.mid:
self._update_tree(node.left , snake_case__ , snake_case__ )
else:
self._update_tree(node.right , snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[int] = self.fn(node.left.val , node.right.val )
def __a ( self : Tuple , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Optional[int] ):
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , snake_case__ , snake_case__ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , snake_case__ , node.mid ) , self._query_range(node.right , node.mid + 1 , snake_case__ ) , )
else:
# range in right child tree
return self._query_range(node.right , snake_case__ , snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
if self.root is not None:
UpperCAmelCase__ : Optional[int] = Queue()
queue.put(self.root )
while not queue.empty():
UpperCAmelCase__ : str = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print("""*""" * 50)
_lowerCAmelCase : Dict = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 438 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : Optional[int] ):
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
UpperCAmelCase__ : Any = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
UpperCAmelCase__ : str = "xvjiarui/stable-diffusion-2-inpainting"
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(snake_case__ , safety_checker=snake_case__ )
UpperCAmelCase__ : List[str] = "Face of a yellow cat, high resolution, sitting on a park bench"
UpperCAmelCase__ : List[str] = jax.random.PRNGKey(0 )
UpperCAmelCase__ : Optional[int] = 5_0
UpperCAmelCase__ : List[Any] = jax.device_count()
UpperCAmelCase__ : int = num_samples * [prompt]
UpperCAmelCase__ : str = num_samples * [init_image]
UpperCAmelCase__ : Optional[Any] = num_samples * [mask_image]
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = pipeline.prepare_inputs(snake_case__ , snake_case__ , snake_case__ )
# shard inputs and rng
UpperCAmelCase__ : Dict = replicate(snake_case__ )
UpperCAmelCase__ : Dict = jax.random.split(snake_case__ , jax.device_count() )
UpperCAmelCase__ : List[str] = shard(snake_case__ )
UpperCAmelCase__ : str = shard(snake_case__ )
UpperCAmelCase__ : Optional[int] = shard(snake_case__ )
UpperCAmelCase__ : Dict = pipeline(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , jit=snake_case__ )
UpperCAmelCase__ : List[str] = output.images.reshape(snake_case__ , 5_1_2 , 5_1_2 , 3 )
UpperCAmelCase__ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1]
UpperCAmelCase__ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) )
UpperCAmelCase__ : int = jnp.array(
[0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 438 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase_ = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 596 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class _A :
def __init__( self : int ) -> Any:
"""simple docstring"""
lowercase : List[Any] = ''''''
lowercase : Optional[int] = ''''''
lowercase : str = []
lowercase : List[Any] = 0
lowercase : str = 256
lowercase : Dict = 0
lowercase : Optional[int] = 0
lowercase : List[str] = 0
lowercase : str = 0
def __a ( self : List[str] , _A : int ) -> int:
"""simple docstring"""
lowercase : List[Any] = cva.imread(_A , 0 )
lowercase : List[Any] = copy.deepcopy(self.img )
lowercase , lowercase , lowercase : int = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' )
lowercase : Optional[int] = np.sum(_A )
for i in range(len(_A ) ):
lowercase : Optional[int] = x[i] / self.k
self.sk += prk
lowercase : Tuple = (self.L - 1) * self.sk
if self.rem != 0:
lowercase : Tuple = int(last % last )
lowercase : Optional[Any] = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(_A )
lowercase : Dict = int(np.ma.count(self.img ) / self.img[1].size )
lowercase : Optional[Any] = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowercase : Any = self.img[j][i]
if num != self.last_list[num]:
lowercase : Dict = self.last_list[num]
cva.imwrite('''output_data/output.jpg''' , self.img )
def __a ( self : Dict ) -> Any:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def __a ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
cva.imshow('''Output-Image''' , self.img )
cva.imshow('''Input-Image''' , self.original_image )
cva.waitKey(5_000 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase_ = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
lowerCAmelCase_ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image() | 596 | 1 |
'''simple docstring'''
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def a__ ( ) -> Union[str, Any]:
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(lowercase ):
requests.request('''GET''', '''https://huggingface.co''' )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request('''GET''', '''https://huggingface.co''', timeout=1.0 )
@pytest.mark.integration
def a__ ( ) -> int:
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request('''GET''', '''https://huggingface.co''' )
def a__ ( ) -> int:
"""simple docstring"""
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(lowercase ):
http_head('''https://huggingface.co''' )
| 98 |
"""simple docstring"""
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__SCREAMING_SNAKE_CASE = datasets.utils.logging.get_logger(__name__)
@dataclass
class a__ ( datasets.BuilderConfig ):
UpperCAmelCase__ = None
UpperCAmelCase__ = "utf-8"
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = True # deprecated
UpperCAmelCase__ = None # deprecated
UpperCAmelCase__ = 10 << 20 # 10MB
UpperCAmelCase__ = None
class a__ ( datasets.ArrowBasedBuilder ):
UpperCAmelCase__ = JsonConfig
def lowerCamelCase_ ( self :List[str] ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' )
UpperCamelCase_ : List[Any] =self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' )
if self.config.newlines_in_values is not None:
raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :List[str] ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
UpperCamelCase_ : int =dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCamelCase , (str, list, tuple) ):
UpperCamelCase_ : Tuple =data_files
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_ : Union[str, Any] =[files]
UpperCamelCase_ : List[str] =[dl_manager.iter_files(_lowerCamelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
UpperCamelCase_ : Optional[Any] =[]
for split_name, files in data_files.items():
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_ : Tuple =[files]
UpperCamelCase_ : Optional[Any] =[dl_manager.iter_files(_lowerCamelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) )
return splits
def lowerCamelCase_ ( self :int , _lowerCamelCase :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
UpperCamelCase_ : Dict =self.config.features.arrow_schema.field(_lowerCamelCase ).type
UpperCamelCase_ : Optional[Any] =pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
UpperCamelCase_ : int =table_cast(_lowerCamelCase , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase_ ( self :Dict , _lowerCamelCase :Optional[int] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
UpperCamelCase_ : List[str] =json.load(_lowerCamelCase )
# We keep only the field we are interested in
UpperCamelCase_ : Tuple =dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(_lowerCamelCase , (list, tuple) ):
UpperCamelCase_ : Tuple =set().union(*[row.keys() for row in dataset] )
UpperCamelCase_ : str ={col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys}
else:
UpperCamelCase_ : Any =dataset
UpperCamelCase_ : List[Any] =pa.Table.from_pydict(_lowerCamelCase )
yield file_idx, self._cast_table(_lowerCamelCase )
# If the file has one json object per line
else:
with open(_lowerCamelCase , 'rb' ) as f:
UpperCamelCase_ : Any =0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
UpperCamelCase_ : List[str] =max(self.config.chunksize // 32 , 16 << 10 )
UpperCamelCase_ : Dict =(
self.config.encoding_errors if self.config.encoding_errors is not None else 'strict'
)
while True:
UpperCamelCase_ : Optional[Any] =f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(_lowerCamelCase )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
UpperCamelCase_ : List[Any] =batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('utf-8' )
try:
while True:
try:
UpperCamelCase_ : str =paj.read_json(
io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(_lowerCamelCase , pa.ArrowInvalid )
and "straddling" not in str(_lowerCamelCase )
or block_size > len(_lowerCamelCase )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f'''Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
UpperCamelCase_ : List[Any] =json.load(_lowerCamelCase )
except json.JSONDecodeError:
logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON
try:
UpperCamelCase_ : str =set().union(*[row.keys() for row in dataset] )
UpperCamelCase_ : List[Any] ={col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys}
UpperCamelCase_ : Optional[Any] =pa.Table.from_pydict(_lowerCamelCase )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' )
raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None
yield file_idx, self._cast_table(_lowerCamelCase )
break
else:
logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' )
raise ValueError(
f'''Not able to read records in the JSON file at {file}. '''
f'''You should probably indicate the field of the JSON file containing your records. '''
f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '''
f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase )
batch_idx += 1
| 357 | 0 |
'''simple docstring'''
from __future__ import annotations
def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ):
"""simple docstring"""
a__ = len(_lowercase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_lowercase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowercase , _lowercase , )
def _lowerCAmelCase (_lowercase ):
"""simple docstring"""
a__ = []
depth_first_search([] , [] , [] , _lowercase , _lowercase )
# Print all the boards
for board in boards:
for column in board:
print(_lowercase )
print("" )
print(len(_lowercase ) , "solutions were found." )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 394 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase_ : Any = {
"""configuration_trajectory_transformer""": [
"""TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""TrajectoryTransformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ : Optional[int] = [
"""TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TrajectoryTransformerModel""",
"""TrajectoryTransformerPreTrainedModel""",
"""load_tf_weights_in_trajectory_transformer""",
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
UpperCamelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 394 | 1 |
import qiskit
def lowerCamelCase ( a_ , a_ ) -> qiskit.result.counts.Counts:
lowerCAmelCase_ = qiskit.Aer.get_backend('aer_simulator' )
# Create a Quantum Circuit acting on the q register
lowerCAmelCase_ = qiskit.QuantumCircuit(__a , __a )
# Map the quantum measurement to the classical bits
circuit.measure([0] , [0] )
# Execute the circuit on the simulator
lowerCAmelCase_ = qiskit.execute(__a , __a , shots=1_000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(__a )
if __name__ == "__main__":
print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
| 318 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
__A = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : List[Any] , **UpperCAmelCase_ : Any) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
requires_backends(self , "vision")
requires_backends(self , "torch")
if self.framework != "pt":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""")
self.check_model_type(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple , **UpperCAmelCase_ : List[Any]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] ={}
lowerCamelCase__: Tuple ={}
lowerCamelCase__: str ={}
# preprocess args
if "points_per_batch" in kwargs:
lowerCamelCase__: Optional[Any] =kwargs["points_per_batch"]
if "points_per_crop" in kwargs:
lowerCamelCase__: int =kwargs["points_per_crop"]
if "crops_n_layers" in kwargs:
lowerCamelCase__: Any =kwargs["crops_n_layers"]
if "crop_overlap_ratio" in kwargs:
lowerCamelCase__: Tuple =kwargs["crop_overlap_ratio"]
if "crop_n_points_downscale_factor" in kwargs:
lowerCamelCase__: List[Any] =kwargs["crop_n_points_downscale_factor"]
# postprocess args
if "pred_iou_thresh" in kwargs:
lowerCamelCase__: List[str] =kwargs["pred_iou_thresh"]
if "stability_score_offset" in kwargs:
lowerCamelCase__: int =kwargs["stability_score_offset"]
if "mask_threshold" in kwargs:
lowerCamelCase__: Optional[int] =kwargs["mask_threshold"]
if "stability_score_thresh" in kwargs:
lowerCamelCase__: str =kwargs["stability_score_thresh"]
if "crops_nms_thresh" in kwargs:
lowerCamelCase__: Any =kwargs["crops_nms_thresh"]
if "output_rle_mask" in kwargs:
lowerCamelCase__: List[Any] =kwargs["output_rle_mask"]
if "output_bboxes_mask" in kwargs:
lowerCamelCase__: List[str] =kwargs["output_bboxes_mask"]
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self : int , UpperCAmelCase_ : Dict , *UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Dict) ->Optional[Any]:
'''simple docstring'''
return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : float = 512 / 1_500 , UpperCAmelCase_ : Optional[int] = 32 , UpperCAmelCase_ : Optional[int] = 1 , ) ->Dict:
'''simple docstring'''
lowerCamelCase__: Dict =load_image(UpperCAmelCase_)
lowerCamelCase__: List[str] =self.image_processor.size["longest_edge"]
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.image_processor.generate_crop_boxes(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: str =self.image_processor(images=UpperCAmelCase_ , return_tensors="pt")
with self.device_placement():
if self.framework == "pt":
lowerCamelCase__: str =self.get_inference_context()
with inference_context():
lowerCamelCase__: Union[str, Any] =self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device)
lowerCamelCase__: Optional[Any] =self.model.get_image_embeddings(model_inputs.pop("pixel_values"))
lowerCamelCase__: str =image_embeddings
lowerCamelCase__: int =grid_points.shape[1]
lowerCamelCase__: int =points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
"Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. "
"To return all points at once, set points_per_batch to None")
for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: int =grid_points[:, i : i + points_per_batch, :, :]
lowerCamelCase__: Optional[Any] =input_labels[:, i : i + points_per_batch]
lowerCamelCase__: Dict =i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=0.88 , UpperCAmelCase_ : Optional[Any]=0.95 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : Any=1 , ) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =model_inputs.pop("input_boxes")
lowerCamelCase__: Dict =model_inputs.pop("is_last")
lowerCamelCase__: int =model_inputs.pop("original_sizes").tolist()
lowerCamelCase__: Union[str, Any] =model_inputs.pop("reshaped_input_sizes").tolist()
lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_)
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
lowerCamelCase__: Optional[int] =model_outputs["pred_masks"]
lowerCamelCase__: Union[str, Any] =self.image_processor.post_process_masks(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =model_outputs["iou_scores"]
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Optional[int]=0.7 , ) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Any =[]
lowerCamelCase__: Optional[int] =[]
lowerCamelCase__: List[str] =[]
for model_output in model_outputs:
all_scores.append(model_output.pop("iou_scores"))
all_masks.extend(model_output.pop("masks"))
all_boxes.append(model_output.pop("boxes"))
lowerCamelCase__: str =torch.cat(UpperCAmelCase_)
lowerCamelCase__: List[str] =torch.cat(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Dict =self.image_processor.post_process_for_mask_generation(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: List[str] =defaultdict(UpperCAmelCase_)
for output in model_outputs:
for k, v in output.items():
extra[k].append(UpperCAmelCase_)
lowerCamelCase__: Any ={}
if output_rle_mask:
lowerCamelCase__: Union[str, Any] =rle_mask
if output_bboxes_mask:
lowerCamelCase__: int =bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 59 | 0 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 704 |
import unittest
from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class _UpperCamelCase( __lowerCamelCase , unittest.TestCase ):
__SCREAMING_SNAKE_CASE : List[str] = XLNetTokenizer
__SCREAMING_SNAKE_CASE : str = XLNetTokenizerFast
__SCREAMING_SNAKE_CASE : Tuple = True
__SCREAMING_SNAKE_CASE : Tuple = True
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__a : str = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.sanitize_special_tokens()
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
__a : Tuple = '<s>'
__a : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
__a : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<unk>' )
self.assertEqual(vocab_keys[1] , '<s>' )
self.assertEqual(vocab_keys[-1] , '<eod>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 1_0_0_6 )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : Any = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
__a : Dict = tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] )
__a : Optional[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
__a : Optional[Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] )
__a : str = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
__a : Union[str, Any] = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ )
__a : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + '',
'i',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
'se',
'.',
] , )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : Any = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ )
__a : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
'se',
'.',
] , )
@slow
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
__a : str = XLNetTokenizer.from_pretrained('xlnet-base-cased' )
__a : List[str] = tokenizer.encode('sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__a : int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert encoded_sentence == text + [4, 3]
assert encoded_pair == text + [4] + text_a + [4, 3]
@slow
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
__a : str = {'input_ids': [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
| 577 | 0 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
a__ : Any = datasets.utils.logging.get_logger(__name__)
a__ : str = ['names', 'prefix']
a__ : Any = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
a__ : Dict = ['encoding_errors', 'on_bad_lines']
a__ : Optional[Any] = ['date_format']
@dataclass
class lowerCAmelCase__ ( datasets.BuilderConfig ):
'''simple docstring'''
_lowerCamelCase =","
_lowerCamelCase =None
_lowerCamelCase ="infer"
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =True
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =False
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =True
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =True
_lowerCamelCase =None
_lowerCamelCase ="."
_lowerCamelCase =None
_lowerCamelCase ='"'
_lowerCamelCase =0
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =True
_lowerCamelCase =True
_lowerCamelCase =0
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =None
_lowerCamelCase =1_00_00
_lowerCamelCase =None
_lowerCamelCase ="strict"
_lowerCamelCase ="error"
_lowerCamelCase =None
def __snake_case ( self : Any ):
if self.delimiter is not None:
UpperCAmelCase = self.delimiter
if self.column_names is not None:
UpperCAmelCase = self.column_names
@property
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , a__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
_lowerCamelCase =CsvConfig
def __snake_case ( self : Optional[int] ):
return datasets.DatasetInfo(features=self.config.features )
def __snake_case ( self : int , a__ : List[str] ):
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" )
UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(a__ , (str, list, tuple) ):
UpperCAmelCase = data_files
if isinstance(a__ , a__ ):
UpperCAmelCase = [files]
UpperCAmelCase = [dl_manager.iter_files(a__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
UpperCAmelCase = []
for split_name, files in data_files.items():
if isinstance(a__ , a__ ):
UpperCAmelCase = [files]
UpperCAmelCase = [dl_manager.iter_files(a__ ) for file in files]
splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={'''files''': files} ) )
return splits
def __snake_case ( self : Any , a__ : pa.Table ):
if self.config.features is not None:
UpperCAmelCase = self.config.features.arrow_schema
if all(not require_storage_cast(a__ ) for feature in self.config.features.values() ):
# cheaper cast
UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=a__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCAmelCase = table_cast(a__ , a__ )
return pa_table
def __snake_case ( self : Any , a__ : Tuple ):
UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCAmelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(a__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ):
UpperCAmelCase = pd.read_csv(a__ , iterator=a__ , dtype=a__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(a__ ):
UpperCAmelCase = pa.Table.from_pandas(a__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(a__ )
except ValueError as e:
logger.error(f"Failed to read file '{file}' with error {type(a__ )}: {e}" )
raise
| 51 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE_ ):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}" )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["pixel_values"]
def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ):
super().__init__(**a__ )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = offset
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ):
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ )
elif "height" in size and "width" in size:
UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
UpperCAmelCase = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ )
def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ):
UpperCAmelCase = image.astype(np.floataa )
if offset:
UpperCAmelCase = image - (scale / 2)
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = to_numpy_array(a__ )
if do_resize:
UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ )
if do_center_crop:
UpperCAmelCase = self.center_crop(a__ , size=a__ )
if do_rescale:
UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ )
if do_normalize:
UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ )
UpperCAmelCase = to_channel_dimension_format(a__ , a__ )
return image
def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ):
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = offset if offset is not None else self.offset
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
if not valid_images(a__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase = make_batched(a__ )
UpperCAmelCase = [
[
self._preprocess_image(
image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , )
for img in video
]
for video in videos
]
UpperCAmelCase = {'''pixel_values''': videos}
return BatchFeature(data=a__ , tensor_type=a__ )
| 51 | 1 |
'''simple docstring'''
import unittest
from knapsack import knapsack as k
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self ):
'''simple docstring'''
UpperCamelCase = 0
UpperCamelCase = [0]
UpperCamelCase = [0]
UpperCamelCase = len(lowerCamelCase__ )
self.assertEqual(k.knapsack(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , 0 )
UpperCamelCase = [6_0]
UpperCamelCase = [1_0]
UpperCamelCase = len(lowerCamelCase__ )
self.assertEqual(k.knapsack(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , 0 )
def UpperCAmelCase ( self ):
'''simple docstring'''
UpperCamelCase = 3
UpperCamelCase = [1, 2, 3]
UpperCamelCase = [3, 2, 1]
UpperCamelCase = len(lowerCamelCase__ )
self.assertEqual(k.knapsack(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , 5 )
def UpperCAmelCase ( self ):
'''simple docstring'''
UpperCamelCase = 5_0
UpperCamelCase = [6_0, 1_0_0, 1_2_0]
UpperCamelCase = [1_0, 2_0, 3_0]
UpperCamelCase = len(lowerCamelCase__ )
self.assertEqual(k.knapsack(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , 2_2_0 )
if __name__ == "__main__":
unittest.main()
| 711 |
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def __snake_case ( _UpperCAmelCase : Optional[int], _UpperCAmelCase : Tuple, _UpperCAmelCase : Any):
UpperCamelCase = 0
if start < end:
UpperCamelCase = randint(_UpperCAmelCase, _UpperCAmelCase)
UpperCamelCase = a[end]
UpperCamelCase = a[pivot]
UpperCamelCase = temp
UpperCamelCase , UpperCamelCase = _in_place_partition(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase)
count += _in_place_quick_sort(_UpperCAmelCase, _UpperCAmelCase, p - 1)
count += _in_place_quick_sort(_UpperCAmelCase, p + 1, _UpperCAmelCase)
return count
def __snake_case ( _UpperCAmelCase : Dict, _UpperCAmelCase : Tuple, _UpperCAmelCase : Any):
UpperCamelCase = 0
UpperCamelCase = randint(_UpperCAmelCase, _UpperCAmelCase)
UpperCamelCase = a[end]
UpperCamelCase = a[pivot]
UpperCamelCase = temp
UpperCamelCase = start - 1
for index in range(_UpperCAmelCase, _UpperCAmelCase):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
UpperCamelCase = new_pivot_index + 1
UpperCamelCase = a[new_pivot_index]
UpperCamelCase = a[index]
UpperCamelCase = temp
UpperCamelCase = a[new_pivot_index + 1]
UpperCamelCase = a[end]
UpperCamelCase = temp
return new_pivot_index + 1, count
snake_case_ : List[Any] = TemporaryFile()
snake_case_ : Optional[Any] = 100 # 1000 elements are to be sorted
snake_case_ , snake_case_ : List[str] = 0, 1 # mean and standard deviation
snake_case_ : Any = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('The array is')
print(X)
outfile.seek(0) # using the same array
snake_case_ : Optional[int] = np.load(outfile)
snake_case_ : Optional[int] = len(M) - 1
snake_case_ : List[str] = _in_place_quick_sort(M, 0, r)
print(
'No of Comparisons for 100 elements selected from a standard normal distribution'
'is :'
)
print(z)
| 350 | 0 |
"""simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ = 10 , lowerCamelCase__ = 22 ):
"""simple docstring"""
lowerCAmelCase__ = range(1 , lowerCamelCase__ )
lowerCAmelCase__ = range(1 , lowerCamelCase__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(F"{solution(10, 22) = }")
| 644 | """simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
__lowerCAmelCase : Dict = "CompVis/stable-diffusion-v1-1"
__lowerCAmelCase : int = "CompVis/stable-diffusion-v1-2"
__lowerCAmelCase : int = "CompVis/stable-diffusion-v1-3"
__lowerCAmelCase : Union[str, Any] = "CompVis/stable-diffusion-v1-4"
class a_ ( __UpperCamelCase ):
def __init__( self : List[Any] , snake_case__ : AutoencoderKL , snake_case__ : CLIPTextModel , snake_case__ : CLIPTokenizer , snake_case__ : UNetaDConditionModel , snake_case__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case__ : StableDiffusionSafetyChecker , snake_case__ : CLIPImageProcessor , snake_case__ : bool = True , ):
super()._init_()
lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(snake_case__ )
lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(snake_case__ )
lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(snake_case__ )
lowerCAmelCase__ = StableDiffusionPipeline(
vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , requires_safety_checker=snake_case__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
return {k: getattr(self , snake_case__ ) for k in self.config.keys() if not k.startswith("""_""" )}
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowerCAmelCase__ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : int ):
self.enable_attention_slicing(snake_case__ )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Union[str, List[str]] , snake_case__ : int = 512 , snake_case__ : int = 512 , snake_case__ : int = 50 , snake_case__ : float = 7.5 , snake_case__ : Optional[Union[str, List[str]]] = None , snake_case__ : Optional[int] = 1 , snake_case__ : float = 0.0 , snake_case__ : Optional[torch.Generator] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , snake_case__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case__ : int = 1 , **snake_case__ : List[Any] , ):
return self.pipea(
prompt=snake_case__ , height=snake_case__ , width=snake_case__ , num_inference_steps=snake_case__ , guidance_scale=snake_case__ , negative_prompt=snake_case__ , num_images_per_prompt=snake_case__ , eta=snake_case__ , generator=snake_case__ , latents=snake_case__ , output_type=snake_case__ , return_dict=snake_case__ , callback=snake_case__ , callback_steps=snake_case__ , **snake_case__ , )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Union[str, List[str]] , snake_case__ : int = 512 , snake_case__ : int = 512 , snake_case__ : int = 50 , snake_case__ : float = 7.5 , snake_case__ : Optional[Union[str, List[str]]] = None , snake_case__ : Optional[int] = 1 , snake_case__ : float = 0.0 , snake_case__ : Optional[torch.Generator] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , snake_case__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case__ : int = 1 , **snake_case__ : Tuple , ):
return self.pipea(
prompt=snake_case__ , height=snake_case__ , width=snake_case__ , num_inference_steps=snake_case__ , guidance_scale=snake_case__ , negative_prompt=snake_case__ , num_images_per_prompt=snake_case__ , eta=snake_case__ , generator=snake_case__ , latents=snake_case__ , output_type=snake_case__ , return_dict=snake_case__ , callback=snake_case__ , callback_steps=snake_case__ , **snake_case__ , )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Union[str, List[str]] , snake_case__ : int = 512 , snake_case__ : int = 512 , snake_case__ : int = 50 , snake_case__ : float = 7.5 , snake_case__ : Optional[Union[str, List[str]]] = None , snake_case__ : Optional[int] = 1 , snake_case__ : float = 0.0 , snake_case__ : Optional[torch.Generator] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , snake_case__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case__ : int = 1 , **snake_case__ : Optional[Any] , ):
return self.pipea(
prompt=snake_case__ , height=snake_case__ , width=snake_case__ , num_inference_steps=snake_case__ , guidance_scale=snake_case__ , negative_prompt=snake_case__ , num_images_per_prompt=snake_case__ , eta=snake_case__ , generator=snake_case__ , latents=snake_case__ , output_type=snake_case__ , return_dict=snake_case__ , callback=snake_case__ , callback_steps=snake_case__ , **snake_case__ , )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Union[str, List[str]] , snake_case__ : int = 512 , snake_case__ : int = 512 , snake_case__ : int = 50 , snake_case__ : float = 7.5 , snake_case__ : Optional[Union[str, List[str]]] = None , snake_case__ : Optional[int] = 1 , snake_case__ : float = 0.0 , snake_case__ : Optional[torch.Generator] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , snake_case__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case__ : int = 1 , **snake_case__ : str , ):
return self.pipea(
prompt=snake_case__ , height=snake_case__ , width=snake_case__ , num_inference_steps=snake_case__ , guidance_scale=snake_case__ , negative_prompt=snake_case__ , num_images_per_prompt=snake_case__ , eta=snake_case__ , generator=snake_case__ , latents=snake_case__ , output_type=snake_case__ , return_dict=snake_case__ , callback=snake_case__ , callback_steps=snake_case__ , **snake_case__ , )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, List[str]] , snake_case__ : int = 512 , snake_case__ : int = 512 , snake_case__ : int = 50 , snake_case__ : float = 7.5 , snake_case__ : Optional[Union[str, List[str]]] = None , snake_case__ : Optional[int] = 1 , snake_case__ : float = 0.0 , snake_case__ : Optional[torch.Generator] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , snake_case__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case__ : int = 1 , **snake_case__ : Optional[Any] , ):
lowerCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu"""
self.to(snake_case__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
lowerCAmelCase__ = self.textaimg_sda_a(
prompt=snake_case__ , height=snake_case__ , width=snake_case__ , num_inference_steps=snake_case__ , guidance_scale=snake_case__ , negative_prompt=snake_case__ , num_images_per_prompt=snake_case__ , eta=snake_case__ , generator=snake_case__ , latents=snake_case__ , output_type=snake_case__ , return_dict=snake_case__ , callback=snake_case__ , callback_steps=snake_case__ , **snake_case__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
lowerCAmelCase__ = self.textaimg_sda_a(
prompt=snake_case__ , height=snake_case__ , width=snake_case__ , num_inference_steps=snake_case__ , guidance_scale=snake_case__ , negative_prompt=snake_case__ , num_images_per_prompt=snake_case__ , eta=snake_case__ , generator=snake_case__ , latents=snake_case__ , output_type=snake_case__ , return_dict=snake_case__ , callback=snake_case__ , callback_steps=snake_case__ , **snake_case__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
lowerCAmelCase__ = self.textaimg_sda_a(
prompt=snake_case__ , height=snake_case__ , width=snake_case__ , num_inference_steps=snake_case__ , guidance_scale=snake_case__ , negative_prompt=snake_case__ , num_images_per_prompt=snake_case__ , eta=snake_case__ , generator=snake_case__ , latents=snake_case__ , output_type=snake_case__ , return_dict=snake_case__ , callback=snake_case__ , callback_steps=snake_case__ , **snake_case__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
lowerCAmelCase__ = self.textaimg_sda_a(
prompt=snake_case__ , height=snake_case__ , width=snake_case__ , num_inference_steps=snake_case__ , guidance_scale=snake_case__ , negative_prompt=snake_case__ , num_images_per_prompt=snake_case__ , eta=snake_case__ , generator=snake_case__ , latents=snake_case__ , output_type=snake_case__ , return_dict=snake_case__ , callback=snake_case__ , callback_steps=snake_case__ , **snake_case__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 704 | from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase_ = logging.get_logger(__name__)
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(__SCREAMING_SNAKE_CASE ):
return [[videos]]
raise ValueError(F'''Could not make batched video from {videos}''' )
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Any = ["pixel_values"]
def __init__( self : Optional[int] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_55 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , **_lowerCAmelCase : Union[str, Any] , ):
super().__init__(**_lowerCAmelCase )
__snake_case : Tuple = size if size is not None else {"""shortest_edge""": 2_24}
__snake_case : List[Any] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
__snake_case : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
__snake_case : List[Any] = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" )
__snake_case : Union[str, Any] = do_resize
__snake_case : Optional[Any] = size
__snake_case : int = do_center_crop
__snake_case : Dict = crop_size
__snake_case : Dict = resample
__snake_case : Tuple = do_rescale
__snake_case : Optional[int] = rescale_factor
__snake_case : str = do_normalize
__snake_case : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__snake_case : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Optional[Any] , ):
__snake_case : List[str] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
if "shortest_edge" in size:
__snake_case : Tuple = get_resize_output_image_size(_lowerCAmelCase , size["""shortest_edge"""] , default_to_square=_lowerCAmelCase )
elif "height" in size and "width" in size:
__snake_case : List[Any] = (size["""height"""], size["""width"""])
else:
raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' )
return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Optional[Any] , ):
__snake_case : List[str] = get_size_dict(_lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' )
return center_crop(_lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Tuple , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Optional[Any] , ):
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Dict , ):
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def snake_case__ ( self : Tuple , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
__snake_case : Tuple = to_numpy_array(_lowerCAmelCase )
if do_resize:
__snake_case : List[Any] = self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase )
if do_center_crop:
__snake_case : Dict = self.center_crop(_lowerCAmelCase , size=_lowerCAmelCase )
if do_rescale:
__snake_case : int = self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase )
if do_normalize:
__snake_case : List[Any] = self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase )
__snake_case : Optional[Any] = to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase )
return image
def snake_case__ ( self : List[str] , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase : Union[str, Any] , ):
__snake_case : Optional[int] = do_resize if do_resize is not None else self.do_resize
__snake_case : Any = resample if resample is not None else self.resample
__snake_case : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop
__snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : List[str] = image_mean if image_mean is not None else self.image_mean
__snake_case : List[str] = image_std if image_std is not None else self.image_std
__snake_case : Optional[Any] = size if size is not None else self.size
__snake_case : int = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
__snake_case : Any = crop_size if crop_size is not None else self.crop_size
__snake_case : List[Any] = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__snake_case : Optional[Any] = make_batched(_lowerCAmelCase )
__snake_case : int = [
[
self._preprocess_image(
image=_lowerCAmelCase , do_resize=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , do_center_crop=_lowerCAmelCase , crop_size=_lowerCAmelCase , do_rescale=_lowerCAmelCase , rescale_factor=_lowerCAmelCase , do_normalize=_lowerCAmelCase , image_mean=_lowerCAmelCase , image_std=_lowerCAmelCase , data_format=_lowerCAmelCase , )
for img in video
]
for video in videos
]
__snake_case : Optional[int] = {"""pixel_values""": videos}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
| 390 | 0 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_lowerCAmelCase : str = 16
_lowerCAmelCase : Dict = 32
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = 16 ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" )
_lowerCamelCase : List[Any] = load_dataset("glue" , "mrpc" )
def tokenize_function(_lowerCamelCase ):
# max_length=None => use the model max length (it's actually the default)
_lowerCamelCase : Dict = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_lowerCamelCase : Any = datasets.map(
_lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_lowerCamelCase : List[Any] = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(_lowerCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_lowerCamelCase : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_lowerCamelCase : str = 16
elif accelerator.mixed_precision != "no":
_lowerCamelCase : Union[str, Any] = 8
else:
_lowerCamelCase : Optional[int] = None
return tokenizer.pad(
_lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , )
# Instantiate dataloaders.
_lowerCamelCase : Any = DataLoader(
tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase )
_lowerCamelCase : List[str] = DataLoader(
tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_lowerCAmelCase : Dict = mocked_dataloaders # noqa: F811
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1":
_lowerCamelCase : List[str] = 2
# New Code #
_lowerCamelCase : Any = int(args.gradient_accumulation_steps )
# Initialize accelerator
_lowerCamelCase : Dict = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCamelCase )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_lowerCamelCase : Tuple = config["lr"]
_lowerCamelCase : int = int(config["num_epochs"] )
_lowerCamelCase : Any = int(config["seed"] )
_lowerCamelCase : Optional[int] = int(config["batch_size"] )
_lowerCamelCase : Optional[int] = evaluate.load("glue" , "mrpc" )
set_seed(_lowerCamelCase )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_dataloaders(_lowerCamelCase , _lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_lowerCamelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_lowerCamelCase : List[str] = model.to(accelerator.device )
# Instantiate optimizer
_lowerCamelCase : Any = AdamW(params=model.parameters() , lr=_lowerCamelCase )
# Instantiate scheduler
_lowerCamelCase : List[Any] = get_linear_schedule_with_warmup(
optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = accelerator.prepare(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Now we train the model
for epoch in range(_lowerCamelCase ):
model.train()
for step, batch in enumerate(_lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(_lowerCamelCase ):
_lowerCamelCase : List[str] = model(**_lowerCamelCase )
_lowerCamelCase : Dict = output.loss
accelerator.backward(_lowerCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_lowerCamelCase : str = model(**_lowerCamelCase )
_lowerCamelCase : Any = outputs.logits.argmax(dim=-1 )
_lowerCamelCase, _lowerCamelCase : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=_lowerCamelCase , references=_lowerCamelCase , )
_lowerCamelCase : int = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , _lowerCamelCase )
def lowerCamelCase_( ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : List[str] = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
# New Code #
parser.add_argument(
"--gradient_accumulation_steps" , type=_lowerCamelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
_lowerCamelCase : Any = parser.parse_args()
_lowerCamelCase : Dict = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(_lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
main() | 46 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( snake_case , unittest.TestCase ):
UpperCamelCase_ :List[Any] = LayoutLMTokenizer
UpperCamelCase_ :Dict = LayoutLMTokenizerFast
UpperCamelCase_ :List[str] = True
UpperCamelCase_ :Dict = True
def UpperCAmelCase_ ( self )-> str:
super().setUp()
UpperCamelCase_ = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCAmelCase_ ( self , **_lowercase )-> List[str]:
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase )
def UpperCAmelCase_ ( self , _lowercase )-> Union[str, Any]:
UpperCamelCase_ = "UNwant\u00E9d,running"
UpperCamelCase_ = "unwanted, running"
return input_text, output_text
def UpperCAmelCase_ ( self )-> Tuple:
UpperCamelCase_ = self.tokenizer_class(self.vocab_file )
UpperCamelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(_lowercase , ["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] )
def UpperCAmelCase_ ( self )-> Dict:
pass
| 628 | 0 |
'''simple docstring'''
import os
from pathlib import Path
def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A_ = {
'''en''': '''Machine learning is great, isn\'t it?''',
'''ru''': '''Машинное обучение - это здорово, не так ли?''',
'''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
A_ = {
'''wmt16-en-de-dist-12-1''': [28.3, 27.52],
'''wmt16-en-de-dist-6-1''': [27.4, 27.11],
'''wmt16-en-de-12-1''': [26.9, 25.75],
}
A_ = f"{src_lang}-{tgt_lang}"
A_ = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n"
model_card_dir.mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase )
A_ = os.path.join(_UpperCamelCase , '''README.md''' )
print(f"Generating {path}" )
with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(_UpperCamelCase )
# make sure we are under the root of the project
__lowercase = Path(__file__).resolve().parent.parent.parent
__lowercase = repo_dir / """model_cards"""
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
__lowercase = model_cards_dir / """allenai""" / model_name
write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
| 716 |
import datasets
from .evaluate import evaluate
__lowercase = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
__lowercase = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
__lowercase = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION )
class _lowercase ( datasets.Metric ):
def UpperCamelCase ( self : List[Any] ) -> Tuple:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , )
def UpperCamelCase ( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
A_ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
A_ = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
A_ = evaluate(dataset=lowerCamelCase__ , predictions=lowerCamelCase__ )
return score
| 563 | 0 |
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
_lowerCamelCase = """docs/source/en/_toctree.yml"""
def a__ ( _SCREAMING_SNAKE_CASE : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = defaultdict(_SCREAMING_SNAKE_CASE )
for doc in model_doc:
counts[doc["local"]] += 1
UpperCAmelCase_ : Optional[Any] = [key for key, value in counts.items() if value > 1]
UpperCAmelCase_ : List[str] = []
for duplicate_key in duplicates:
UpperCAmelCase_ : List[str] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} )
if len(_SCREAMING_SNAKE_CASE ) > 1:
raise ValueError(
F'''{duplicate_key} is present several times in the documentation table of content at '''
"`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the "
"others." )
# Only add this once
new_doc.append({"local": duplicate_key, "title": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] )
# Sort
return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : s["title"].lower() )
def a__ ( _SCREAMING_SNAKE_CASE : Tuple=False ) -> List[Any]:
"""simple docstring"""
with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f:
UpperCAmelCase_ : int = yaml.safe_load(f.read() )
# Get to the API doc
UpperCAmelCase_ : Optional[Any] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
UpperCAmelCase_ : Tuple = content[api_idx]["sections"]
# Then to the model doc
UpperCAmelCase_ : List[Any] = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
UpperCAmelCase_ : List[str] = api_doc[model_idx]["sections"]
UpperCAmelCase_ : List[str] = [(idx, section) for idx, section in enumerate(_SCREAMING_SNAKE_CASE ) if "sections" in section]
UpperCAmelCase_ : Optional[Any] = False
for idx, modality_doc in modalities_docs:
UpperCAmelCase_ : Dict = modality_doc["sections"]
UpperCAmelCase_ : Optional[int] = clean_model_doc_toc(_SCREAMING_SNAKE_CASE )
if old_modality_doc != new_modality_doc:
UpperCAmelCase_ : Union[str, Any] = True
if overwrite:
UpperCAmelCase_ : Dict = new_modality_doc
if diff:
if overwrite:
UpperCAmelCase_ : List[str] = model_doc
UpperCAmelCase_ : List[str] = api_doc
with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f:
f.write(yaml.dump(_SCREAMING_SNAKE_CASE , allow_unicode=_SCREAMING_SNAKE_CASE ) )
else:
raise ValueError(
"The model doc part of the table of content is not properly sorted, run `make style` to fix this." )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
_lowerCamelCase = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 71 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
_lowerCamelCase = logging.getLogger(__name__)
@dataclass
class _snake_case :
__A : str =field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"})
__A : Optional[str] =field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"})
__A : Optional[str] =field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
__A : Optional[str] =field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether tp freeze the encoder."})
__A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to freeze the embeddings."})
@dataclass
class _snake_case :
__A : str =field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."})
__A : Optional[str] =field(
default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , )
__A : Optional[int] =field(
default=10_24 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__A : Optional[int] =field(
default=1_28 , metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__A : Optional[int] =field(
default=1_42 , metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
} , )
__A : Optional[int] =field(
default=1_42 , metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__A : Optional[int] =field(default=-1 , metadata={"help": "# training examples. -1 means use all."})
__A : Optional[int] =field(default=-1 , metadata={"help": "# validation examples. -1 means use all."})
__A : Optional[int] =field(default=-1 , metadata={"help": "# test examples. -1 means use all."})
__A : Optional[str] =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Source language id for translation."})
__A : Optional[str] =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Target language id for translation."})
__A : Optional[int] =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "# num_beams to use for evaluation."})
__A : bool =field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , )
def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]:
"""simple docstring"""
logger.info(F'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(F''' {key} = {metrics[key]}''' )
save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , F'''{split}_results.json''' ) )
def a__ ( ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = parser.parse_args_into_dataclasses()
check_output_dir(_SCREAMING_SNAKE_CASE )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s" , _SCREAMING_SNAKE_CASE )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
UpperCAmelCase_ : List[Any] = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
UpperCAmelCase_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(_SCREAMING_SNAKE_CASE , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
UpperCAmelCase_ : Dict = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(_SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCAmelCase_ : Dict = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
UpperCAmelCase_ : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(_SCREAMING_SNAKE_CASE )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
UpperCAmelCase_ : Dict = SeqaSeqDataset
# Get datasets
UpperCAmelCase_ : Tuple = (
dataset_class(
_SCREAMING_SNAKE_CASE , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_train
else None
)
UpperCAmelCase_ : Dict = (
dataset_class(
_SCREAMING_SNAKE_CASE , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
UpperCAmelCase_ : int = (
dataset_class(
_SCREAMING_SNAKE_CASE , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_predict
else None
)
# Initialize our Trainer
UpperCAmelCase_ : Optional[Any] = (
build_compute_metrics_fn(data_args.task , _SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None
)
UpperCAmelCase_ : List[str] = SeqaSeqTrainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , )
UpperCAmelCase_ : List[Any] = {}
# Training
if training_args.do_train:
logger.info("*** Train ***" )
UpperCAmelCase_ : Any = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
UpperCAmelCase_ : int = train_result.metrics
UpperCAmelCase_ : Dict = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("train" , _SCREAMING_SNAKE_CASE , training_args.output_dir )
all_metrics.update(_SCREAMING_SNAKE_CASE )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
UpperCAmelCase_ : Union[str, Any] = trainer.evaluate(metric_key_prefix="val" )
UpperCAmelCase_ : Optional[Any] = data_args.n_val
UpperCAmelCase_ : Union[str, Any] = round(metrics["val_loss"] , 4 )
if trainer.is_world_process_zero():
handle_metrics("val" , _SCREAMING_SNAKE_CASE , training_args.output_dir )
all_metrics.update(_SCREAMING_SNAKE_CASE )
if training_args.do_predict:
logger.info("*** Predict ***" )
UpperCAmelCase_ : List[Any] = trainer.predict(test_dataset=_SCREAMING_SNAKE_CASE , metric_key_prefix="test" )
UpperCAmelCase_ : List[str] = test_output.metrics
UpperCAmelCase_ : int = data_args.n_test
if trainer.is_world_process_zero():
UpperCAmelCase_ : Optional[Any] = round(metrics["test_loss"] , 4 )
handle_metrics("test" , _SCREAMING_SNAKE_CASE , training_args.output_dir )
all_metrics.update(_SCREAMING_SNAKE_CASE )
if training_args.predict_with_generate:
UpperCAmelCase_ : Optional[int] = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[int] = lmap(str.strip , _SCREAMING_SNAKE_CASE )
write_txt_file(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , "test_generations.txt" ) )
if trainer.is_world_process_zero():
save_json(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , "all_results.json" ) )
return all_metrics
def a__ ( _SCREAMING_SNAKE_CASE : str ) -> Optional[int]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 71 | 1 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class a_ ( _UpperCAmelCase ):
a : jnp.ndarray
@flax_register_to_config
class a_ ( nn.Module , _UpperCAmelCase , _UpperCAmelCase ):
a : int = 32
a : int = 4
a : int = 4
a : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
a : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
a : Union[bool, Tuple[bool]] = False
a : Tuple[int] = (320, 640, 1280, 1280)
a : int = 2
a : Union[int, Tuple[int]] = 8
a : Optional[Union[int, Tuple[int]]] = None
a : int = 1280
a : float = 0.0
a : bool = False
a : jnp.dtype = jnp.floataa
a : bool = True
a : int = 0
a : bool = False
def _snake_case ( self : Tuple , __UpperCamelCase : jax.random.KeyArray ) ->FrozenDict:
'''simple docstring'''
_UpperCAmelCase = (1, self.in_channels, self.sample_size, self.sample_size)
_UpperCAmelCase = jnp.zeros(__UpperCamelCase , dtype=jnp.floataa )
_UpperCAmelCase = jnp.ones((1,) , dtype=jnp.intaa )
_UpperCAmelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_UpperCAmelCase ,_UpperCAmelCase = jax.random.split(__UpperCamelCase )
_UpperCAmelCase = {"""params""": params_rng, """dropout""": dropout_rng}
return self.init(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )["params"]
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = self.block_out_channels
_UpperCAmelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
"""At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_UpperCAmelCase = self.num_attention_heads or self.attention_head_dim
# input
_UpperCAmelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_UpperCAmelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_UpperCAmelCase = FlaxTimestepEmbedding(__UpperCamelCase , dtype=self.dtype )
_UpperCAmelCase = self.only_cross_attention
if isinstance(__UpperCamelCase , __UpperCamelCase ):
_UpperCAmelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(__UpperCamelCase , __UpperCamelCase ):
_UpperCAmelCase = (num_attention_heads,) * len(self.down_block_types )
# down
_UpperCAmelCase = []
_UpperCAmelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
_UpperCAmelCase = output_channel
_UpperCAmelCase = block_out_channels[i]
_UpperCAmelCase = i == len(__UpperCamelCase ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_UpperCAmelCase = FlaxCrossAttnDownBlockaD(
in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCAmelCase = FlaxDownBlockaD(
in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(__UpperCamelCase )
_UpperCAmelCase = down_blocks
# mid
_UpperCAmelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
_UpperCAmelCase = []
_UpperCAmelCase = list(reversed(__UpperCamelCase ) )
_UpperCAmelCase = list(reversed(__UpperCamelCase ) )
_UpperCAmelCase = list(reversed(__UpperCamelCase ) )
_UpperCAmelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
_UpperCAmelCase = output_channel
_UpperCAmelCase = reversed_block_out_channels[i]
_UpperCAmelCase = reversed_block_out_channels[min(i + 1 , len(__UpperCamelCase ) - 1 )]
_UpperCAmelCase = i == len(__UpperCamelCase ) - 1
if up_block_type == "CrossAttnUpBlock2D":
_UpperCAmelCase = FlaxCrossAttnUpBlockaD(
in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , prev_output_channel=__UpperCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCAmelCase = FlaxUpBlockaD(
in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , prev_output_channel=__UpperCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(__UpperCamelCase )
_UpperCAmelCase = output_channel
_UpperCAmelCase = up_blocks
# out
_UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCAmelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=None , __UpperCamelCase : Any=None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = False , ) ->Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(__UpperCamelCase , jnp.ndarray ):
_UpperCAmelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(__UpperCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0:
_UpperCAmelCase = timesteps.astype(dtype=jnp.floataa )
_UpperCAmelCase = jnp.expand_dims(__UpperCamelCase , 0 )
_UpperCAmelCase = self.time_proj(__UpperCamelCase )
_UpperCAmelCase = self.time_embedding(__UpperCamelCase )
# 2. pre-process
_UpperCAmelCase = jnp.transpose(__UpperCamelCase , (0, 2, 3, 1) )
_UpperCAmelCase = self.conv_in(__UpperCamelCase )
# 3. down
_UpperCAmelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(__UpperCamelCase , __UpperCamelCase ):
_UpperCAmelCase ,_UpperCAmelCase = down_block(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , deterministic=not train )
else:
_UpperCAmelCase ,_UpperCAmelCase = down_block(__UpperCamelCase , __UpperCamelCase , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
_UpperCAmelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
__UpperCamelCase , __UpperCamelCase ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
_UpperCAmelCase = new_down_block_res_samples
# 4. mid
_UpperCAmelCase = self.mid_block(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
_UpperCAmelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
_UpperCAmelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(__UpperCamelCase , __UpperCamelCase ):
_UpperCAmelCase = up_block(
__UpperCamelCase , temb=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , res_hidden_states_tuple=__UpperCamelCase , deterministic=not train , )
else:
_UpperCAmelCase = up_block(__UpperCamelCase , temb=__UpperCamelCase , res_hidden_states_tuple=__UpperCamelCase , deterministic=not train )
# 6. post-process
_UpperCAmelCase = self.conv_norm_out(__UpperCamelCase )
_UpperCAmelCase = nn.silu(__UpperCamelCase )
_UpperCAmelCase = self.conv_out(__UpperCamelCase )
_UpperCAmelCase = jnp.transpose(__UpperCamelCase , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=__UpperCamelCase ) | 706 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
a : str = '''examples/'''
a : List[str] = {
'''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''),
'''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
a : Tuple = {
'''init''': '''src/diffusers/__init__.py''',
'''setup''': '''setup.py''',
}
a : List[str] = '''README.md'''
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase ,_UpperCAmelCase = REPLACE_PATTERNS[pattern]
_UpperCAmelCase = replace.replace("""VERSION""" , _A )
_UpperCAmelCase = re_pattern.sub(_A , _A )
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(_A )
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
for folder, directories, fnames in os.walk(_A ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(_A , _A ) , _A , pattern="""examples""" )
def _UpperCamelCase ( _A , _A=False ) -> int:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_A , _A , _A )
if not patch:
update_version_in_examples(_A )
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
_UpperCAmelCase = """🤗 Transformers currently provides the following architectures"""
_UpperCAmelCase = """1. Want to contribute a new model?"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.readlines()
# Find the start of the list.
_UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
_UpperCAmelCase = lines[index].replace(
"""https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , )
index += 1
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_A )
def _UpperCamelCase ( ) -> Optional[int]:
"""simple docstring"""
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase = REPLACE_PATTERNS["""init"""][0].search(_A ).groups()[0]
return packaging.version.parse(_A )
def _UpperCamelCase ( _A=False ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
_UpperCAmelCase = default_version.base_version
elif patch:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
_UpperCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = default_version
print(F"""Updating version to {version}.""" )
global_version_update(_A , patch=_A )
def _UpperCamelCase ( ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
_UpperCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
_UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
_UpperCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(_A )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
a : Tuple = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work() | 19 | 0 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..utils import cached_file
# docstyle-ignore
A = """
Human: <<task>>
Assistant: """
A = """huggingface-tools/default-prompts"""
A = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""}
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase="run" ) -> List[str]:
"""simple docstring"""
if prompt_or_repo_id is None:
__UpperCAmelCase : Optional[int] = DEFAULT_PROMPTS_REPO
# prompt is considered a repo ID when it does not contain any kind of space
if re.search("\\s" , UpperCamelCase ) is not None:
return prompt_or_repo_id
__UpperCAmelCase : str = cached_file(
UpperCamelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} )
with open(UpperCamelCase , "r" , encoding="utf-8" ) as f:
return f.read()
| 77 |
'''simple docstring'''
def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" )
for i in range(SCREAMING_SNAKE_CASE__ ):
for j in range(SCREAMING_SNAKE_CASE__ ):
if dist[i][j] != float("""inf""" ):
print(int(dist[i][j] ) , end="""\t""" )
else:
print("""INF""" , end="""\t""" )
print()
def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Any = [[float("""inf""" ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )]
for i in range(SCREAMING_SNAKE_CASE__ ):
for j in range(SCREAMING_SNAKE_CASE__ ):
_SCREAMING_SNAKE_CASE : List[str] = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(SCREAMING_SNAKE_CASE__ ):
# looping through rows of graph array
for i in range(SCREAMING_SNAKE_CASE__ ):
# looping through columns of graph array
for j in range(SCREAMING_SNAKE_CASE__ ):
if (
dist[i][k] != float("""inf""" )
and dist[k][j] != float("""inf""" )
and dist[i][k] + dist[k][j] < dist[i][j]
):
_SCREAMING_SNAKE_CASE : int = dist[i][k] + dist[k][j]
_print_dist(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return dist, v
if __name__ == "__main__":
UpperCAmelCase_ : str = int(input('Enter number of vertices: '))
UpperCAmelCase_ : Union[str, Any] = int(input('Enter number of edges: '))
UpperCAmelCase_ : Dict = [[float('inf') for i in range(v)] for j in range(v)]
for i in range(v):
UpperCAmelCase_ : Union[str, Any] = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print('\nEdge ', i + 1)
UpperCAmelCase_ : int = int(input('Enter source:'))
UpperCAmelCase_ : List[str] = int(input('Enter destination:'))
UpperCAmelCase_ : List[str] = float(input('Enter weight:'))
UpperCAmelCase_ : int = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 533 | 0 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__lowerCAmelCase : str = abspath(join(dirname(__file__), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def _UpperCamelCase ( A : Optional[int] ):
'''simple docstring'''
config.addinivalue_line(
"markers", "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" )
config.addinivalue_line(
"markers", "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" )
config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipelines are tested" )
config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment" )
config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate" )
config.addinivalue_line("markers", "tool_tests: mark the tool tests that are run on their specific schedule" )
def _UpperCamelCase ( A : Optional[int] ):
'''simple docstring'''
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(A__ )
def _UpperCamelCase ( A : List[str] ):
'''simple docstring'''
from transformers.testing_utils import pytest_terminal_summary_main
a = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(A__, id=A__ )
def _UpperCamelCase ( A : str, A : Tuple ):
'''simple docstring'''
if exitstatus == 5:
a = 0
# Doctest custom flag to ignore output.
__lowerCAmelCase : int = doctest.register_optionflag('IGNORE_RESULT')
__lowerCAmelCase : Optional[Any] = doctest.OutputChecker
class snake_case__ (__lowerCamelCase ):
"""simple docstring"""
def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any ) -> List[str]:
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__lowerCAmelCase : Union[str, Any] = CustomOutputChecker
__lowerCAmelCase : str = HfDoctestModule
__lowerCAmelCase : List[Any] = HfDocTestParser
| 714 |
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
__lowerCAmelCase : Union[str, Any] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif']
class snake_case__ (_UpperCamelCase ):
"""simple docstring"""
def __init__( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=1 ) -> Union[str, Any]:
a = tokenizer
a = dataset
a = len(__lowerCamelCase ) if n_tasks is None else n_tasks
a = n_copies
def __iter__( self : Tuple ) -> str:
a = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() )
a = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class snake_case__ (_UpperCamelCase ):
"""simple docstring"""
def __init__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ) -> Optional[Any]:
a = start_length
a = eof_strings
a = tokenizer
def __call__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , **__lowerCamelCase : Optional[int] ) -> Optional[Any]:
a = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
a = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(__lowerCamelCase )
def __magic_name__ ( A : List[Any] ):
'''simple docstring'''
a = re.split("(%s)" % "|".join(A ), A )
# last string should be ""
return "".join(string_list[:-2] )
def __magic_name__ ( A : Union[str, Any], A : Optional[Any], A : List[Any], A : Optional[Any], A : List[str], A : List[Any]=20, **A : Union[str, Any] ):
'''simple docstring'''
a = defaultdict(A ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(A ) ):
with torch.no_grad():
a = batch["ids"].shape[-1]
a = accelerator.unwrap_model(A ).generate(
input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=A, **A )
# each task is generated batch_size times
a = batch["task_id"].repeat(A )
a = accelerator.pad_across_processes(
A, dim=1, pad_index=tokenizer.pad_token_id )
a , a = accelerator.gather((generated_tokens, generated_tasks) )
a = generated_tokens.cpu().numpy()
a = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(A, A ):
gen_token_dict[task].append(A )
a = [[] for _ in range(A )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
a = tokenizer.decode(A, skip_special_tokens=A, clean_up_tokenization_spaces=A )
code_gens[task].append(remove_last_block(A ) )
return code_gens
def __magic_name__ ( ):
'''simple docstring'''
a = HfArgumentParser(A )
a = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
a = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
a = "false"
if args.num_workers is None:
a = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
a = Accelerator()
set_seed(args.seed, device_specific=A )
# Load model and tokenizer
a = AutoTokenizer.from_pretrained(args.model_ckpt )
a = tokenizer.eos_token
a = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
a = {
"do_sample": args.do_sample,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"top_p": args.top_p,
"top_k": args.top_k,
"stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0, A, A )] ),
}
# Load evaluation dataset and metric
a = load_dataset("openai_humaneval" )
a = load_metric("code_eval" )
a = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] )
a = args.n_samples // args.batch_size
a = TokenizedDataset(A, human_eval["test"], n_copies=A, n_tasks=A )
# do not confuse args.batch_size, which is actually the num_return_sequences
a = DataLoader(A, batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
a = code_eval_metric.compute(references=[""], predictions=[[""]] )
except ValueError as exception:
print(
"Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"
" flag to enable code evaluation." )
raise exception
a , a = accelerator.prepare(A, A )
a = complete_code(
A, A, A, A, n_tasks=A, batch_size=args.batch_size, **A, )
if accelerator.is_main_process:
a = []
for task in tqdm(range(A ) ):
a = human_eval["test"][task]["test"]
a = F"""check({human_eval["test"][task]["entry_point"]})"""
references.append("\n" + test_func + "\n" + entry_point )
# Evaluate completions with "code_eval" metric
a , a = code_eval_metric.compute(
references=A, predictions=A, num_workers=args.num_workers )
print(F"""Results: {pass_at_k}""" )
# Save results to json file
with open(args.output_file, "w" ) as fp:
json.dump(A, A )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 662 | 0 |
'''simple docstring'''
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class A ( unittest.TestCase ):
def __init__( self , snake_case_ , snake_case_=2 , snake_case_=5_6 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=2 , snake_case_=2 , snake_case_=7 , snake_case_="gelu_new" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=4 , snake_case_="block_sparse" , snake_case_=True , snake_case_=False , snake_case_=2 , snake_case_=3 , ) -> str:
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_attention_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = num_choices
_a = rescale_embeddings
_a = attention_type
_a = use_bias
_a = block_size
_a = num_random_blocks
def __lowerCAmelCase ( self ) -> int:
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = None
if self.use_attention_mask:
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def __lowerCAmelCase ( self ) -> Union[str, Any]:
_a = self.prepare_config_and_inputs()
_a , _a , _a , _a = config_and_inputs
_a = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class A ( a_ , unittest.TestCase ):
__UpperCAmelCase : Optional[int] = (
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : Optional[Any] = False
def __lowerCAmelCase ( self ) -> Union[str, Any]:
_a = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __lowerCAmelCase ( self ) -> Optional[Any]:
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __lowerCAmelCase ( self ) -> Any:
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __lowerCAmelCase ( self ) -> List[str]:
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __lowerCAmelCase ( self ) -> Tuple:
super().test_hidden_states_output()
@slow
def __lowerCAmelCase ( self ) -> Any:
for model_class_name in self.all_model_classes:
_a = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(snake_case_ )
def __lowerCAmelCase ( self ) -> int:
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __lowerCAmelCase ( self ) -> List[str]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a = self._prepare_for_class(snake_case_ , snake_case_ )
_a = model_class(snake_case_ )
@jax.jit
def model_jitted(snake_case_ , snake_case_=None , **snake_case_ ):
return model(input_ids=snake_case_ , attention_mask=snake_case_ , **snake_case_ )
with self.subTest("JIT Enabled" ):
_a = model_jitted(**snake_case_ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_a = model_jitted(**snake_case_ ).to_tuple()
self.assertEqual(len(snake_case_ ) , len(snake_case_ ) )
for jitted_output, output in zip(snake_case_ , snake_case_ ):
self.assertEqual(jitted_output.shape , output.shape )
def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=1E-5 , snake_case_="outputs" , snake_case_=None ) -> List[str]:
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
| 131 |
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
UpperCAmelCase : Any = random.Random()
def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any]=1.0 , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : int=None ):
'''simple docstring'''
if rng is None:
lowerCamelCase = global_rng
lowerCamelCase = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , A , A=7 , A=4_00 , A=20_00 , A=24 , A=24 , A=0.0 , A=1_60_00 , A=True , A=True , ) -> str:
'''simple docstring'''
lowerCamelCase = parent
lowerCamelCase = batch_size
lowerCamelCase = min_seq_length
lowerCamelCase = max_seq_length
lowerCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
lowerCamelCase = feature_size
lowerCamelCase = num_mel_bins
lowerCamelCase = padding_value
lowerCamelCase = sampling_rate
lowerCamelCase = return_attention_mask
lowerCamelCase = do_normalize
def __A ( self ) -> List[str]:
'''simple docstring'''
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def __A ( self , A=False , A=False ) -> Tuple:
'''simple docstring'''
def _flatten(A ):
return list(itertools.chain(*A ) )
if equal_length:
lowerCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
lowerCamelCase = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
lowerCamelCase = [np.asarray(A ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class __lowercase ( a_ , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase : str = SpeechaTextFeatureExtractor if is_speech_available() else None
def __A ( self ) -> int:
'''simple docstring'''
lowerCamelCase = SpeechaTextFeatureExtractionTester(self )
def __A ( self , A ) -> List[Any]:
'''simple docstring'''
self.assertTrue(np.all(np.mean(A , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(A , axis=0 ) - 1 ) < 1e-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase = [np.asarray(A ) for speech_input in speech_inputs]
# Test feature size
lowerCamelCase = feature_extractor(A , padding=A , return_tensors="""np""" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
lowerCamelCase = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features
lowerCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features
self.assertTrue(np.allclose(A , A , atol=1e-3 ) )
# Test batched
lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features
lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(A , A ):
self.assertTrue(np.allclose(A , A , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
lowerCamelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
lowerCamelCase = np.asarray(A )
lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features
lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(A , A ):
self.assertTrue(np.allclose(A , A , atol=1e-3 ) )
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase = ["""longest""", """max_length""", """do_not_pad"""]
lowerCamelCase = [None, 16, None]
for max_length, padding in zip(A , A ):
lowerCamelCase = feature_extractor(
A , padding=A , max_length=A , return_attention_mask=A )
lowerCamelCase = inputs.input_features
lowerCamelCase = inputs.attention_mask
lowerCamelCase = [np.sum(A ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def __A ( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase = ["""longest""", """max_length""", """do_not_pad"""]
lowerCamelCase = [None, 16, None]
for max_length, padding in zip(A , A ):
lowerCamelCase = feature_extractor(
A , max_length=A , padding=A , return_tensors="""np""" , return_attention_mask=A )
lowerCamelCase = inputs.input_features
lowerCamelCase = inputs.attention_mask
lowerCamelCase = [np.sum(A ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def __A ( self ) -> int:
'''simple docstring'''
lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase = feature_extractor(
A , padding="""max_length""" , max_length=4 , truncation=A , return_tensors="""np""" , return_attention_mask=A , )
lowerCamelCase = inputs.input_features
lowerCamelCase = inputs.attention_mask
lowerCamelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def __A ( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase = feature_extractor(
A , padding="""longest""" , max_length=4 , truncation=A , return_tensors="""np""" , return_attention_mask=A , )
lowerCamelCase = inputs.input_features
lowerCamelCase = inputs.attention_mask
lowerCamelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCamelCase = feature_extractor(
A , padding="""longest""" , max_length=16 , truncation=A , return_tensors="""np""" , return_attention_mask=A , )
lowerCamelCase = inputs.input_features
lowerCamelCase = inputs.attention_mask
lowerCamelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
import torch
lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase = np.random.rand(1_00 , 32 ).astype(np.floataa )
lowerCamelCase = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
lowerCamelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
lowerCamelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def __A ( self , A ) -> Any:
'''simple docstring'''
from datasets import load_dataset
lowerCamelCase = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
lowerCamelCase = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def __A ( self ) -> Any:
'''simple docstring'''
lowerCamelCase = np.array([
-1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241,
-1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128,
-1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625,
] )
# fmt: on
lowerCamelCase = self._load_datasamples(1 )
lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCamelCase = feature_extractor(A , return_tensors="""pt""" ).input_features
self.assertEquals(input_features.shape , (1, 5_84, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , A , atol=1e-4 ) )
| 457 | 0 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __snake_case ( _SCREAMING_SNAKE_CASE):
"""simple docstring"""
def __init__( self : Tuple , *lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int]=None , lowerCamelCase : str=None , **lowerCamelCase : List[str] ) -> List[Any]:
super().__init__(*lowerCamelCase , **lowerCamelCase )
lowerCAmelCase_ : int = eval_examples
lowerCAmelCase_ : int = post_process_function
def __lowercase ( self : str , lowerCamelCase : Optional[Dataset] = None , lowerCamelCase : Any=None , lowerCamelCase : Optional[List[str]] = None , lowerCamelCase : str = "eval" , **lowerCamelCase : Optional[int] , ) -> Dict[str, float]:
lowerCAmelCase_ : List[Any] = gen_kwargs.copy()
lowerCAmelCase_ : Optional[int] = (
gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length
)
lowerCAmelCase_ : Dict = (
gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams
)
lowerCAmelCase_ : int = gen_kwargs
lowerCAmelCase_ : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset
lowerCAmelCase_ : Optional[int] = self.get_eval_dataloader(lowerCamelCase )
lowerCAmelCase_ : List[Any] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
lowerCAmelCase_ : Dict = self.compute_metrics
lowerCAmelCase_ : List[Any] = None
lowerCAmelCase_ : Dict = time.time()
lowerCAmelCase_ : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCAmelCase_ : Dict = eval_loop(
lowerCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase , metric_key_prefix=lowerCamelCase , )
finally:
lowerCAmelCase_ : int = compute_metrics
lowerCAmelCase_ : List[str] = self.args.eval_batch_size * self.args.world_size
if F'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
lowerCamelCase , lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
lowerCAmelCase_ : int = self.post_process_function(lowerCamelCase , lowerCamelCase , lowerCamelCase )
lowerCAmelCase_ : List[Any] = self.compute_metrics(lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
lowerCAmelCase_ : Any = metrics.pop(lowerCamelCase )
metrics.update(output.metrics )
else:
lowerCAmelCase_ : Dict = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowerCamelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
lowerCAmelCase_ : Optional[int] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCamelCase )
return metrics
def __lowercase ( self : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : str=None , lowerCamelCase : str = "test" , **lowerCamelCase : Optional[int] ) -> List[Any]:
lowerCAmelCase_ : Tuple = gen_kwargs.copy()
lowerCAmelCase_ : str = self.get_test_dataloader(lowerCamelCase )
# Temporarily disable metric computation, we will do it in the loop here.
lowerCAmelCase_ : Any = self.compute_metrics
lowerCAmelCase_ : Tuple = None
lowerCAmelCase_ : Optional[Any] = time.time()
lowerCAmelCase_ : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCAmelCase_ : str = eval_loop(
lowerCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase , metric_key_prefix=lowerCamelCase , )
finally:
lowerCAmelCase_ : Dict = compute_metrics
lowerCAmelCase_ : Dict = self.args.eval_batch_size * self.args.world_size
if F'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
lowerCamelCase , lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
lowerCAmelCase_ : str = self.post_process_function(lowerCamelCase , lowerCamelCase , lowerCamelCase , """predict""" )
lowerCAmelCase_ : Optional[Any] = self.compute_metrics(lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
lowerCAmelCase_ : List[str] = metrics.pop(lowerCamelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCamelCase )
| 707 |
'''simple docstring'''
def UpperCamelCase_ ( A__ : int ):
'''simple docstring'''
if not isinstance(A__ , A__ ) or number < 0:
raise ValueError("""Input must be a non-negative integer""" )
lowerCAmelCase_ : List[str] = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 398 | 0 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase :
def __init__( self : Dict , __snake_case : str , __snake_case : str=13 , __snake_case : Tuple=32 , __snake_case : int=2 , __snake_case : Any=3 , __snake_case : Any=16 , __snake_case : Optional[Any]=[1, 2, 1] , __snake_case : Union[str, Any]=[2, 2, 4] , __snake_case : Union[str, Any]=2 , __snake_case : Any=2.0 , __snake_case : int=True , __snake_case : int=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Dict=0.1 , __snake_case : Union[str, Any]="gelu" , __snake_case : List[str]=False , __snake_case : int=True , __snake_case : str=0.02 , __snake_case : Dict=1E-5 , __snake_case : List[str]=True , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : int=10 , __snake_case : Any=8 , __snake_case : List[str]=["stage1", "stage2", "stage3"] , __snake_case : Tuple=[1, 2, 3] , ) -> Optional[int]:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = patch_norm
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = is_training
_lowerCAmelCase = scope
_lowerCAmelCase = use_labels
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = encoder_stride
_lowerCAmelCase = out_features
_lowerCAmelCase = out_indices
def lowercase__ ( self : List[str] ) -> Any:
_lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Union[str, Any] ) -> Any:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase__ ( self : int , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : List[str] ) -> Any:
_lowerCAmelCase = MaskFormerSwinModel(config=__snake_case )
model.to(__snake_case )
model.eval()
_lowerCAmelCase = model(__snake_case )
_lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase__ ( self : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] ) -> Tuple:
_lowerCAmelCase = MaskFormerSwinBackbone(config=__snake_case )
model.to(__snake_case )
model.eval()
_lowerCAmelCase = model(__snake_case )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(__snake_case ):
_lowerCAmelCase = ["""stem"""]
_lowerCAmelCase = MaskFormerSwinBackbone(config=__snake_case )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
_lowerCAmelCase = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs
_lowerCAmelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ):
_lowercase: Any = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
_lowercase: List[str] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {}
_lowercase: Optional[Any] = False
_lowercase: Optional[int] = False
_lowercase: List[Any] = False
_lowercase: Union[str, Any] = False
_lowercase: int = False
def lowercase__ ( self : Dict ) -> Optional[int]:
_lowerCAmelCase = MaskFormerSwinModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=__snake_case , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"""`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"""
""" `nn.DataParallel`"""
) )
def lowercase__ ( self : Union[str, Any] ) -> Any:
pass
def lowercase__ ( self : int ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
return
def lowercase__ ( self : Dict ) -> str:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def lowercase__ ( self : Dict ) -> List[Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__snake_case )
@unittest.skip("""Swin does not use inputs_embeds""" )
def lowercase__ ( self : List[Any] ) -> Union[str, Any]:
pass
@unittest.skip("""Swin does not support feedforward chunking""" )
def lowercase__ ( self : Any ) -> Dict:
pass
def lowercase__ ( self : Any ) -> int:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(__snake_case )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) )
def lowercase__ ( self : Union[str, Any] ) -> str:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(__snake_case )
_lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase = [*signature.parameters.keys()]
_lowerCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __snake_case )
@unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" )
def lowercase__ ( self : str ) -> Optional[Any]:
pass
@unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" )
def lowercase__ ( self : Tuple ) -> List[str]:
pass
def lowercase__ ( self : Any , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : str ) -> Tuple:
_lowerCAmelCase = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
_lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) )
_lowerCAmelCase = outputs.hidden_states
_lowerCAmelCase = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__snake_case ) , __snake_case )
# Swin has a different seq_length
_lowerCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase__ ( self : int ) -> Dict:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_lowerCAmelCase = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case )
def lowercase__ ( self : str ) -> Dict:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = 3
_lowerCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_lowerCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_lowerCAmelCase = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) )
@unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" )
def lowercase__ ( self : str ) -> Union[str, Any]:
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def lowercase__ ( self : str ) -> Union[str, Any]:
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def lowercase__ ( self : Any ) -> Union[str, Any]:
pass
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(__snake_case : Tuple ):
_lowerCAmelCase = 0
return t
def check_equivalence(__snake_case : str , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[Any]={} ):
with torch.no_grad():
_lowerCAmelCase = model(**__snake_case , return_dict=__snake_case , **__snake_case )
_lowerCAmelCase = model(**__snake_case , return_dict=__snake_case , **__snake_case ).to_tuple()
def recursive_check(__snake_case : Optional[Any] , __snake_case : Tuple ):
if isinstance(__snake_case , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__snake_case , __snake_case ):
recursive_check(__snake_case , __snake_case )
elif isinstance(__snake_case , __snake_case ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(__snake_case , __snake_case )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(__snake_case ) , set_nan_tensor_to_zero(__snake_case ) , atol=1E-5 ) , msg=(
"""Tuple and dict output are not equal. Difference:"""
f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:"
f" {torch.isnan(__snake_case ).any()} and `inf`: {torch.isinf(__snake_case )}. Dict has"
f" `nan`: {torch.isnan(__snake_case ).any()} and `inf`: {torch.isinf(__snake_case )}."
) , )
recursive_check(__snake_case , __snake_case )
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(__snake_case )
model.to(__snake_case )
model.eval()
_lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case )
_lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case )
check_equivalence(__snake_case , __snake_case , __snake_case )
_lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
_lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
check_equivalence(__snake_case , __snake_case , __snake_case )
_lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case )
_lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case )
check_equivalence(__snake_case , __snake_case , __snake_case , {"""output_hidden_states""": True} )
_lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
_lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
check_equivalence(__snake_case , __snake_case , __snake_case , {"""output_hidden_states""": True} )
@require_torch
class UpperCAmelCase ( unittest.TestCase , snake_case_ ):
_lowercase: str = (MaskFormerSwinBackbone,) if is_torch_available() else ()
_lowercase: Optional[Any] = MaskFormerSwinConfig
def lowercase__ ( self : List[Any] ) -> int:
_lowerCAmelCase = MaskFormerSwinModelTester(self )
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = inputs_dict["""pixel_values"""].shape[0]
for backbone_class in self.all_model_classes:
_lowerCAmelCase = backbone_class(__snake_case )
backbone.to(__snake_case )
backbone.eval()
_lowerCAmelCase = backbone(**__snake_case )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , __snake_case )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
_lowerCAmelCase = backbone(**__snake_case , output_hidden_states=__snake_case )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
_lowerCAmelCase = backbone(**__snake_case , output_attentions=__snake_case )
self.assertIsNotNone(outputs.attentions )
| 207 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
A__ : Tuple =logging.get_logger(__name__)
A__ : Any ={
'''openai/imagegpt-small''': '''''',
'''openai/imagegpt-medium''': '''''',
'''openai/imagegpt-large''': '''''',
}
class UpperCAmelCase ( snake_case_ ):
_lowercase: Tuple = '''imagegpt'''
_lowercase: Optional[int] = ['''past_key_values''']
_lowercase: str = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Optional[int] , __snake_case : Optional[Any]=5_12 + 1 , __snake_case : Union[str, Any]=32 * 32 , __snake_case : List[Any]=5_12 , __snake_case : Any=24 , __snake_case : Optional[Any]=8 , __snake_case : List[Any]=None , __snake_case : str="quick_gelu" , __snake_case : List[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=1E-5 , __snake_case : Optional[int]=0.02 , __snake_case : str=True , __snake_case : Dict=True , __snake_case : Union[str, Any]=False , __snake_case : Dict=False , __snake_case : Union[str, Any]=False , **__snake_case : Union[str, Any] , ) -> List[Any]:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_positions
_lowerCAmelCase = n_embd
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
_lowerCAmelCase = n_inner
_lowerCAmelCase = activation_function
_lowerCAmelCase = resid_pdrop
_lowerCAmelCase = embd_pdrop
_lowerCAmelCase = attn_pdrop
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scale_attn_weights
_lowerCAmelCase = use_cache
_lowerCAmelCase = scale_attn_by_inverse_layer_idx
_lowerCAmelCase = reorder_and_upcast_attn
_lowerCAmelCase = tie_word_embeddings
super().__init__(tie_word_embeddings=__snake_case , **__snake_case )
class UpperCAmelCase ( snake_case_ ):
@property
def lowercase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
] )
def lowercase__ ( self : Union[str, Any] , __snake_case : "FeatureExtractionMixin" , __snake_case : int = 1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional["TensorType"] = None , __snake_case : int = 3 , __snake_case : int = 32 , __snake_case : int = 32 , ) -> Mapping[str, Any]:
_lowerCAmelCase = self._generate_dummy_images(__snake_case , __snake_case , __snake_case , __snake_case )
_lowerCAmelCase = dict(preprocessor(images=__snake_case , return_tensors=__snake_case ) )
return inputs
| 207 | 1 |
"""simple docstring"""
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class _UpperCAmelCase( nn.Module ):
lowercase__ = 42
lowercase__ = 42
lowercase__ = 0.0
lowercase__ = 1
lowercase__ = 1
lowercase__ = True
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = jnp.floataa
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = []
for i in range(self.num_layers):
_UpperCamelCase = self.in_channels if i == 0 else self.out_channels
_UpperCamelCase = FlaxResnetBlockaD(
in_channels=__a , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__a)
_UpperCamelCase = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__a)
_UpperCamelCase = resnets
_UpperCamelCase = attentions
if self.add_downsample:
_UpperCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype)
def __call__( self , __a , __a , __a , __a=True) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = ()
for resnet, attn in zip(self.resnets , self.attentions):
_UpperCamelCase = resnet(__a , __a , deterministic=__a)
_UpperCamelCase = attn(__a , __a , deterministic=__a)
output_states += (hidden_states,)
if self.add_downsample:
_UpperCamelCase = self.downsamplers_a(__a)
output_states += (hidden_states,)
return hidden_states, output_states
class _UpperCAmelCase( nn.Module ):
lowercase__ = 42
lowercase__ = 42
lowercase__ = 0.0
lowercase__ = 1
lowercase__ = True
lowercase__ = jnp.floataa
def UpperCAmelCase ( self) -> Dict:
'''simple docstring'''
_UpperCamelCase = []
for i in range(self.num_layers):
_UpperCamelCase = self.in_channels if i == 0 else self.out_channels
_UpperCamelCase = FlaxResnetBlockaD(
in_channels=__a , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__a)
_UpperCamelCase = resnets
if self.add_downsample:
_UpperCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype)
def __call__( self , __a , __a , __a=True) -> str:
'''simple docstring'''
_UpperCamelCase = ()
for resnet in self.resnets:
_UpperCamelCase = resnet(__a , __a , deterministic=__a)
output_states += (hidden_states,)
if self.add_downsample:
_UpperCamelCase = self.downsamplers_a(__a)
output_states += (hidden_states,)
return hidden_states, output_states
class _UpperCAmelCase( nn.Module ):
lowercase__ = 42
lowercase__ = 42
lowercase__ = 42
lowercase__ = 0.0
lowercase__ = 1
lowercase__ = 1
lowercase__ = True
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = jnp.floataa
def UpperCAmelCase ( self) -> str:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = []
for i in range(self.num_layers):
_UpperCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_UpperCamelCase = self.prev_output_channel if i == 0 else self.out_channels
_UpperCamelCase = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__a)
_UpperCamelCase = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__a)
_UpperCamelCase = resnets
_UpperCamelCase = attentions
if self.add_upsample:
_UpperCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype)
def __call__( self , __a , __a , __a , __a , __a=True) -> Dict:
'''simple docstring'''
for resnet, attn in zip(self.resnets , self.attentions):
# pop res hidden states
_UpperCamelCase = res_hidden_states_tuple[-1]
_UpperCamelCase = res_hidden_states_tuple[:-1]
_UpperCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1)
_UpperCamelCase = resnet(__a , __a , deterministic=__a)
_UpperCamelCase = attn(__a , __a , deterministic=__a)
if self.add_upsample:
_UpperCamelCase = self.upsamplers_a(__a)
return hidden_states
class _UpperCAmelCase( nn.Module ):
lowercase__ = 42
lowercase__ = 42
lowercase__ = 42
lowercase__ = 0.0
lowercase__ = 1
lowercase__ = True
lowercase__ = jnp.floataa
def UpperCAmelCase ( self) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = []
for i in range(self.num_layers):
_UpperCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_UpperCamelCase = self.prev_output_channel if i == 0 else self.out_channels
_UpperCamelCase = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__a)
_UpperCamelCase = resnets
if self.add_upsample:
_UpperCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype)
def __call__( self , __a , __a , __a , __a=True) -> Any:
'''simple docstring'''
for resnet in self.resnets:
# pop res hidden states
_UpperCamelCase = res_hidden_states_tuple[-1]
_UpperCamelCase = res_hidden_states_tuple[:-1]
_UpperCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1)
_UpperCamelCase = resnet(__a , __a , deterministic=__a)
if self.add_upsample:
_UpperCamelCase = self.upsamplers_a(__a)
return hidden_states
class _UpperCAmelCase( nn.Module ):
lowercase__ = 42
lowercase__ = 0.0
lowercase__ = 1
lowercase__ = 1
lowercase__ = False
lowercase__ = False
lowercase__ = jnp.floataa
def UpperCAmelCase ( self) -> Dict:
'''simple docstring'''
# there is always at least one resnet
_UpperCamelCase = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
_UpperCamelCase = []
for _ in range(self.num_layers):
_UpperCamelCase = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__a)
_UpperCamelCase = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__a)
_UpperCamelCase = resnets
_UpperCamelCase = attentions
def __call__( self , __a , __a , __a , __a=True) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.resnets[0](__a , __a)
for attn, resnet in zip(self.attentions , self.resnets[1:]):
_UpperCamelCase = attn(__a , __a , deterministic=__a)
_UpperCamelCase = resnet(__a , __a , deterministic=__a)
return hidden_states
| 78 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class _UpperCAmelCase:
lowercase__ = MBartConfig
lowercase__ = {}
lowercase__ = 'gelu'
def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> Any:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = eos_token_id
_UpperCamelCase = pad_token_id
_UpperCamelCase = bos_token_id
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size)
_UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1)
_UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1)
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_UpperCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_UpperCamelCase = prepare_mbart_inputs_dict(__a , __a , __a)
return config, inputs_dict
def UpperCAmelCase ( self , __a , __a) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = TFMBartModel(config=__a).get_decoder()
_UpperCamelCase = inputs_dict['''input_ids''']
_UpperCamelCase = input_ids[:1, :]
_UpperCamelCase = inputs_dict['''attention_mask'''][:1, :]
_UpperCamelCase = inputs_dict['''head_mask''']
_UpperCamelCase = 1
# first forward pass
_UpperCamelCase = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a)
_UpperCamelCase , _UpperCamelCase = outputs.to_tuple()
_UpperCamelCase = past_key_values[1]
def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, __snake_case=None, __snake_case=None, __snake_case=None, ) -> Optional[int]:
"""simple docstring"""
if attention_mask is None:
_UpperCamelCase = tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta )
if decoder_attention_mask is None:
_UpperCamelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ),
], axis=-1, )
if head_mask is None:
_UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
lowercase__ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowercase__ = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowercase__ = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase__ = True
lowercase__ = False
lowercase__ = False
def UpperCAmelCase ( self , __a , __a , __a , __a , __a) -> Dict:
'''simple docstring'''
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def UpperCAmelCase ( self) -> Tuple:
'''simple docstring'''
_UpperCamelCase = TFMBartModelTester(self)
_UpperCamelCase = ConfigTester(self , config_class=__a)
def UpperCAmelCase ( self) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__a)
@require_sentencepiece
@require_tokenizers
@require_tf
class _UpperCAmelCase( unittest.TestCase ):
lowercase__ = [
' UN Chief Says There Is No Military Solution in Syria',
]
lowercase__ = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
lowercase__ = 'facebook/mbart-large-en-ro'
@cached_property
def UpperCAmelCase ( self) -> List[Any]:
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.model_name)
@cached_property
def UpperCAmelCase ( self) -> str:
'''simple docstring'''
_UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name)
return model
def UpperCAmelCase ( self , **__a) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.translate_src_text(**__a)
self.assertListEqual(self.expected_text , __a)
def UpperCAmelCase ( self , **__a) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , **__a , return_tensors='''tf''')
_UpperCamelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2)
_UpperCamelCase = self.tokenizer.batch_decode(__a , skip_special_tokens=__a)
return generated_words
@slow
def UpperCAmelCase ( self) -> Any:
'''simple docstring'''
self._assert_generated_batch_equal_expected()
| 78 | 1 |
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ) -> list[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any =[0 for i in range(len(lowerCAmelCase_ ) )]
# initialize interval's left pointer and right pointer
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple =0, 0
for i in range(1 ,len(lowerCAmelCase_ ) ):
# case when current index is inside the interval
if i <= right_pointer:
SCREAMING_SNAKE_CASE_ : Tuple =min(right_pointer - i + 1 ,z_result[i - left_pointer] )
SCREAMING_SNAKE_CASE_ : Tuple =min_edge
while go_next(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =i, i + z_result[i] - 1
return z_result
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : int ,lowerCAmelCase_ : list[int] ,lowerCAmelCase_ : str ) -> bool:
"""simple docstring"""
return i + z_result[i] < len(lowerCAmelCase_ ) and s[z_result[i]] == s[i + z_result[i]]
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ,lowerCAmelCase_ : str ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str =0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
SCREAMING_SNAKE_CASE_ : Union[str, Any] =z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(lowerCAmelCase_ ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 220 |
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class lowerCAmelCase_ ( __A ):
'''simple docstring'''
_lowercase = 'Speech2TextFeatureExtractor'
_lowercase = 'Speech2TextTokenizer'
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ):
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : List[Any] =self.feature_extractor
SCREAMING_SNAKE_CASE_ : Optional[int] =False
def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase )
if "raw_speech" in kwargs:
warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' )
SCREAMING_SNAKE_CASE_ : Any =kwargs.pop('raw_speech' )
else:
SCREAMING_SNAKE_CASE_ : str =kwargs.pop('audio' , __UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : int =kwargs.pop('sampling_rate' , __UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Tuple =kwargs.pop('text' , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
SCREAMING_SNAKE_CASE_ : Dict =args[0]
SCREAMING_SNAKE_CASE_ : Optional[Any] =args[1:]
if audio is None and text is None:
raise ValueError('You need to specify either an `audio` or `text` input to process.' )
if audio is not None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
SCREAMING_SNAKE_CASE_ : str =self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
SCREAMING_SNAKE_CASE_ : str =encodings['input_ids']
return inputs
def __lowerCamelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def __lowerCamelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@contextmanager
def __lowerCamelCase ( self ):
warnings.warn(
'`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '
'labels by using the argument `text` of the regular `__call__` method (either in the same call as '
'your audio inputs, or in a separate call.' )
SCREAMING_SNAKE_CASE_ : Optional[Any] =True
SCREAMING_SNAKE_CASE_ : int =self.tokenizer
yield
SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.feature_extractor
SCREAMING_SNAKE_CASE_ : Tuple =False
| 220 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {
'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json',
}
class _lowerCamelCase (__lowerCamelCase ):
_snake_case = "efficientnet"
def __init__( self : str , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 6_0_0 , lowerCamelCase_ : float = 2.0 , lowerCamelCase_ : float = 3.1 , lowerCamelCase_ : int = 8 , lowerCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , lowerCamelCase_ : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , lowerCamelCase_ : List[int] = [] , lowerCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ : float = 0.25 , lowerCamelCase_ : str = "swish" , lowerCamelCase_ : int = 2_5_6_0 , lowerCamelCase_ : str = "mean" , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : float = 0.001 , lowerCamelCase_ : float = 0.99 , lowerCamelCase_ : float = 0.5 , lowerCamelCase_ : float = 0.2 , **lowerCamelCase_ : Dict , ):
"""simple docstring"""
super().__init__(**lowerCamelCase_ )
_lowercase : Union[str, Any] = num_channels
_lowercase : List[Any] = image_size
_lowercase : str = width_coefficient
_lowercase : Optional[Any] = depth_coefficient
_lowercase : Union[str, Any] = depth_divisor
_lowercase : Optional[int] = kernel_sizes
_lowercase : Union[str, Any] = in_channels
_lowercase : int = out_channels
_lowercase : Optional[Any] = depthwise_padding
_lowercase : Union[str, Any] = strides
_lowercase : str = num_block_repeats
_lowercase : List[Any] = expand_ratios
_lowercase : str = squeeze_expansion_ratio
_lowercase : int = hidden_act
_lowercase : List[str] = hidden_dim
_lowercase : int = pooling_type
_lowercase : Optional[Any] = initializer_range
_lowercase : Optional[int] = batch_norm_eps
_lowercase : Tuple = batch_norm_momentum
_lowercase : Dict = dropout_rate
_lowercase : int = drop_connect_rate
_lowercase : Dict = sum(lowerCamelCase_ ) * 4
class _lowerCamelCase (__lowerCamelCase ):
_snake_case = version.parse("1.11" )
@property
def __UpperCAmelCase ( self : List[str] ):
"""simple docstring"""
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def __UpperCAmelCase ( self : Dict ):
"""simple docstring"""
return 1E-5
| 283 | """simple docstring"""
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
SCREAMING_SNAKE_CASE = pytest.mark.integration
SCREAMING_SNAKE_CASE = {'comet'}
SCREAMING_SNAKE_CASE = importlib.util.find_spec('fairseq') is not None
SCREAMING_SNAKE_CASE = {'code_eval'}
SCREAMING_SNAKE_CASE = os.name == 'nt'
SCREAMING_SNAKE_CASE = {'bertscore', 'frugalscore', 'perplexity'}
SCREAMING_SNAKE_CASE = importlib.util.find_spec('transformers') is not None
def __lowerCAmelCase( __UpperCAmelCase ):
"""simple docstring"""
@wraps(__UpperCAmelCase )
def wrapper(self ,__UpperCAmelCase ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('"test requires Fairseq"' )
else:
test_case(self ,__UpperCAmelCase )
return wrapper
def __lowerCAmelCase( __UpperCAmelCase ):
"""simple docstring"""
@wraps(__UpperCAmelCase )
def wrapper(self ,__UpperCAmelCase ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('"test requires transformers"' )
else:
test_case(self ,__UpperCAmelCase )
return wrapper
def __lowerCAmelCase( __UpperCAmelCase ):
"""simple docstring"""
@wraps(__UpperCAmelCase )
def wrapper(self ,__UpperCAmelCase ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('"test not supported on Windows"' )
else:
test_case(self ,__UpperCAmelCase )
return wrapper
def __lowerCAmelCase( ):
"""simple docstring"""
_lowercase : int = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@local
class _lowerCamelCase (parameterized.TestCase ):
_snake_case = {}
_snake_case = None
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' )
def __UpperCAmelCase ( self : str , lowerCamelCase_ : List[str] ):
"""simple docstring"""
_lowercase : Optional[Any] = '[...]'
_lowercase : str = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' , lowerCamelCase_ ) ).module_path )
_lowercase : Dict = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCamelCase_ )
# check parameters
_lowercase : Optional[int] = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(lowerCamelCase_ , metric_module.__name__ ):
with self.use_local_metrics():
try:
_lowercase : Optional[Any] = doctest.testmod(lowerCamelCase_ , verbose=lowerCamelCase_ , raise_on_error=lowerCamelCase_ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Dict ):
"""simple docstring"""
_lowercase : Optional[Any] = '[...]'
_lowercase : Dict = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' , lowerCamelCase_ ) ).module_path )
# run doctest
with self.use_local_metrics():
_lowercase : str = doctest.testmod(lowerCamelCase_ , verbose=lowerCamelCase_ , raise_on_error=lowerCamelCase_ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str ):
"""simple docstring"""
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCamelCase_ ):
yield
else:
yield
@contextmanager
def __UpperCAmelCase ( self : Dict ):
"""simple docstring"""
def load_local_metric(lowerCamelCase_ : Optional[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[int] ):
return load_metric(os.path.join('metrics' , lowerCamelCase_ ) , *lowerCamelCase_ , **lowerCamelCase_ )
with patch('datasets.load_metric' ) as mock_load_metric:
_lowercase : str = load_local_metric
yield
@classmethod
def __UpperCAmelCase ( cls : Tuple , lowerCamelCase_ : Tuple ):
"""simple docstring"""
def wrapper(lowerCamelCase_ : int ):
_lowercase : Any = contextmanager(lowerCamelCase_ )
_lowercase : Any = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('bleurt' )
def __lowerCAmelCase( __UpperCAmelCase ):
"""simple docstring"""
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('sv' ,'' ,'' ) # handle pytest cli flags
class _lowerCamelCase (__lowerCamelCase ):
def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ):
"""simple docstring"""
assert len(input_dict['input_ids'] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('bleurt.score._create_predictor' ) as mock_create_predictor:
_lowercase : Dict = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('bertscore' )
def __lowerCAmelCase( __UpperCAmelCase ):
"""simple docstring"""
import torch
def bert_cos_score_idf(__UpperCAmelCase ,__UpperCAmelCase ,*__UpperCAmelCase ,**__UpperCAmelCase ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(__UpperCAmelCase ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('bert_score.scorer.get_model' ), patch(
'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf:
_lowercase : Tuple = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('comet' )
def __lowerCAmelCase( __UpperCAmelCase ):
"""simple docstring"""
def load_from_checkpoint(__UpperCAmelCase ):
class _lowerCamelCase :
def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[str] ):
"""simple docstring"""
assert len(lowerCamelCase_ ) == 2
_lowercase : Union[str, Any] = [0.19, 0.92]
return scores, sum(lowerCamelCase_ ) / len(lowerCamelCase_ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('comet.download_model' ) as mock_download_model:
_lowercase : Dict = None
with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint:
_lowercase : str = load_from_checkpoint
yield
def __lowerCAmelCase( ):
"""simple docstring"""
_lowercase : Tuple = load_metric(os.path.join('metrics' ,'seqeval' ) )
_lowercase : int = 'ERROR'
_lowercase : Union[str, Any] = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(__UpperCAmelCase ,match=re.escape(__UpperCAmelCase ) ):
metric.compute(predictions=[] ,references=[] ,scheme=__UpperCAmelCase )
| 283 | 1 |
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : str = OrderedDict(
[
# Base model mapping
('''albert''', '''FlaxAlbertModel'''),
('''bart''', '''FlaxBartModel'''),
('''beit''', '''FlaxBeitModel'''),
('''bert''', '''FlaxBertModel'''),
('''big_bird''', '''FlaxBigBirdModel'''),
('''blenderbot''', '''FlaxBlenderbotModel'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''),
('''clip''', '''FlaxCLIPModel'''),
('''distilbert''', '''FlaxDistilBertModel'''),
('''electra''', '''FlaxElectraModel'''),
('''gpt-sw3''', '''FlaxGPT2Model'''),
('''gpt2''', '''FlaxGPT2Model'''),
('''gpt_neo''', '''FlaxGPTNeoModel'''),
('''gptj''', '''FlaxGPTJModel'''),
('''longt5''', '''FlaxLongT5Model'''),
('''marian''', '''FlaxMarianModel'''),
('''mbart''', '''FlaxMBartModel'''),
('''mt5''', '''FlaxMT5Model'''),
('''opt''', '''FlaxOPTModel'''),
('''pegasus''', '''FlaxPegasusModel'''),
('''regnet''', '''FlaxRegNetModel'''),
('''resnet''', '''FlaxResNetModel'''),
('''roberta''', '''FlaxRobertaModel'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''),
('''roformer''', '''FlaxRoFormerModel'''),
('''t5''', '''FlaxT5Model'''),
('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''),
('''vit''', '''FlaxViTModel'''),
('''wav2vec2''', '''FlaxWav2Vec2Model'''),
('''whisper''', '''FlaxWhisperModel'''),
('''xglm''', '''FlaxXGLMModel'''),
('''xlm-roberta''', '''FlaxXLMRobertaModel'''),
]
)
lowercase__ : Tuple = OrderedDict(
[
# Model for pre-training mapping
('''albert''', '''FlaxAlbertForPreTraining'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForPreTraining'''),
('''big_bird''', '''FlaxBigBirdForPreTraining'''),
('''electra''', '''FlaxElectraForPreTraining'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
lowercase__ : Any = OrderedDict(
[
# Model for Masked LM mapping
('''albert''', '''FlaxAlbertForMaskedLM'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForMaskedLM'''),
('''big_bird''', '''FlaxBigBirdForMaskedLM'''),
('''distilbert''', '''FlaxDistilBertForMaskedLM'''),
('''electra''', '''FlaxElectraForMaskedLM'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
lowercase__ : Optional[Any] = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''),
('''encoder-decoder''', '''FlaxEncoderDecoderModel'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''marian''', '''FlaxMarianMTModel'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''pegasus''', '''FlaxPegasusForConditionalGeneration'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
]
)
lowercase__ : Optional[int] = OrderedDict(
[
# Model for Image-classsification
('''beit''', '''FlaxBeitForImageClassification'''),
('''regnet''', '''FlaxRegNetForImageClassification'''),
('''resnet''', '''FlaxResNetForImageClassification'''),
('''vit''', '''FlaxViTForImageClassification'''),
]
)
lowercase__ : Dict = OrderedDict(
[
('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''),
]
)
lowercase__ : List[Any] = OrderedDict(
[
# Model for Causal LM mapping
('''bart''', '''FlaxBartForCausalLM'''),
('''bert''', '''FlaxBertForCausalLM'''),
('''big_bird''', '''FlaxBigBirdForCausalLM'''),
('''electra''', '''FlaxElectraForCausalLM'''),
('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''),
('''gpt2''', '''FlaxGPT2LMHeadModel'''),
('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''),
('''gptj''', '''FlaxGPTJForCausalLM'''),
('''opt''', '''FlaxOPTForCausalLM'''),
('''roberta''', '''FlaxRobertaForCausalLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''),
('''xglm''', '''FlaxXGLMForCausalLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''),
]
)
lowercase__ : List[str] = OrderedDict(
[
# Model for Sequence Classification mapping
('''albert''', '''FlaxAlbertForSequenceClassification'''),
('''bart''', '''FlaxBartForSequenceClassification'''),
('''bert''', '''FlaxBertForSequenceClassification'''),
('''big_bird''', '''FlaxBigBirdForSequenceClassification'''),
('''distilbert''', '''FlaxDistilBertForSequenceClassification'''),
('''electra''', '''FlaxElectraForSequenceClassification'''),
('''mbart''', '''FlaxMBartForSequenceClassification'''),
('''roberta''', '''FlaxRobertaForSequenceClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''),
('''roformer''', '''FlaxRoFormerForSequenceClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''),
]
)
lowercase__ : List[Any] = OrderedDict(
[
# Model for Question Answering mapping
('''albert''', '''FlaxAlbertForQuestionAnswering'''),
('''bart''', '''FlaxBartForQuestionAnswering'''),
('''bert''', '''FlaxBertForQuestionAnswering'''),
('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''),
('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''),
('''electra''', '''FlaxElectraForQuestionAnswering'''),
('''mbart''', '''FlaxMBartForQuestionAnswering'''),
('''roberta''', '''FlaxRobertaForQuestionAnswering'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''),
('''roformer''', '''FlaxRoFormerForQuestionAnswering'''),
('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''),
]
)
lowercase__ : Union[str, Any] = OrderedDict(
[
# Model for Token Classification mapping
('''albert''', '''FlaxAlbertForTokenClassification'''),
('''bert''', '''FlaxBertForTokenClassification'''),
('''big_bird''', '''FlaxBigBirdForTokenClassification'''),
('''distilbert''', '''FlaxDistilBertForTokenClassification'''),
('''electra''', '''FlaxElectraForTokenClassification'''),
('''roberta''', '''FlaxRobertaForTokenClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''),
('''roformer''', '''FlaxRoFormerForTokenClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''),
]
)
lowercase__ : int = OrderedDict(
[
# Model for Multiple Choice mapping
('''albert''', '''FlaxAlbertForMultipleChoice'''),
('''bert''', '''FlaxBertForMultipleChoice'''),
('''big_bird''', '''FlaxBigBirdForMultipleChoice'''),
('''distilbert''', '''FlaxDistilBertForMultipleChoice'''),
('''electra''', '''FlaxElectraForMultipleChoice'''),
('''roberta''', '''FlaxRobertaForMultipleChoice'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''),
('''roformer''', '''FlaxRoFormerForMultipleChoice'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''),
]
)
lowercase__ : str = OrderedDict(
[
('''bert''', '''FlaxBertForNextSentencePrediction'''),
]
)
lowercase__ : Union[str, Any] = OrderedDict(
[
('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
]
)
lowercase__ : Optional[int] = OrderedDict(
[
('''whisper''', '''FlaxWhisperForAudioClassification'''),
]
)
lowercase__ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
lowercase__ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
lowercase__ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
lowercase__ : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
lowercase__ : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
lowercase__ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
lowercase__ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
lowercase__ : Dict = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
lowercase__ : Dict = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
lowercase__ : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
lowercase__ : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
lowercase__ : str = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
lowercase__ : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
lowercase__ : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : Any = FLAX_MODEL_MAPPING
lowercase__ : Optional[Any] = auto_class_update(FlaxAutoModel)
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING
lowercase__ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''')
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : int = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
lowercase__ : Optional[int] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''')
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : int = FLAX_MODEL_FOR_MASKED_LM_MAPPING
lowercase__ : Dict = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''')
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : Optional[int] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowercase__ : Tuple = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base'''
)
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : Optional[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
lowercase__ : List[Any] = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='''sequence classification'''
)
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
lowercase__ : str = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''')
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : List[str] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
lowercase__ : Dict = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='''token classification'''
)
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : Optional[int] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
lowercase__ : Dict = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''')
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : Union[str, Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
lowercase__ : Dict = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction'''
)
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : Tuple = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowercase__ : Optional[int] = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='''image classification'''
)
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : int = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
lowercase__ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''')
class _UpperCAmelCase ( _BaseAutoModelClass):
_lowerCAmelCase : Tuple = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
lowercase__ : Union[str, Any] = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling'''
)
| 123 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class _UpperCAmelCase ( lowerCAmelCase__):
def _snake_case ( self : int , lowercase_ : Optional[Any]=None , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=None , **lowercase_ : Any ):
if tokenize_kwargs is None:
snake_case_ : str = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
snake_case_ : int = truncation
snake_case_ : Union[str, Any] = tokenize_kwargs
snake_case_ : int = {}
if return_tensors is not None:
snake_case_ : str = return_tensors
return preprocess_params, {}, postprocess_params
def _snake_case ( self : List[Any] , lowercase_ : Optional[int] , **lowercase_ : int ):
snake_case_ : Union[str, Any] = self.framework
snake_case_ : List[Any] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ )
return model_inputs
def _snake_case ( self : Union[str, Any] , lowercase_ : Tuple ):
snake_case_ : Union[str, Any] = self.model(**lowercase_ )
return model_outputs
def _snake_case ( self : str , lowercase_ : str , lowercase_ : List[str]=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[str] , *lowercase_ : int , **lowercase_ : Dict ):
return super().__call__(*lowercase_ , **lowercase_ )
| 123 | 1 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from packaging import version
from .. import __version__
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from .doc import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
copy_func,
replace_return_docstrings,
)
from .generic import (
ContextManagers,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
TensorType,
add_model_info_to_auto_map,
cached_property,
can_return_loss,
expand_dims,
find_labels,
flatten_dict,
infer_framework,
is_jax_tensor,
is_numpy_array,
is_tensor,
is_tf_symbolic_tensor,
is_tf_tensor,
is_torch_device,
is_torch_dtype,
is_torch_tensor,
reshape,
squeeze,
strtobool,
tensor_size,
to_numpy,
to_py_obj,
transpose,
working_or_temp_dir,
)
from .hub import (
CLOUDFRONT_DISTRIB_PREFIX,
DISABLE_TELEMETRY,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
EntryNotFoundError,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_file,
default_cache_path,
define_sagemaker_information,
download_url,
extract_commit_hash,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
has_file,
http_user_agent,
is_offline_mode,
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
USE_JAX,
USE_TF,
USE_TORCH,
DummyObject,
OptionalDependencyNotAvailable,
_LazyModule,
ccl_version,
direct_transformers_import,
get_torch_version,
is_accelerate_available,
is_apex_available,
is_bitsandbytes_available,
is_bsa_available,
is_coloredlogs_available,
is_cython_available,
is_datasets_available,
is_decord_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_jieba_available,
is_jumanpp_available,
is_kenlm_available,
is_keras_nlp_available,
is_librosa_available,
is_natten_available,
is_ninja_available,
is_onnx_available,
is_openai_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytest_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sacremoses_available,
is_safetensors_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_sudachi_available,
is_tensorflow_probability_available,
is_tensorflow_text_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_bfaa_cpu_available,
is_torch_bfaa_gpu_available,
is_torch_compile_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_neuroncore_available,
is_torch_tensorrt_fx_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_torchvision_available,
is_training_run_on_sagemaker,
is_vision_available,
requires_backends,
torch_only_method,
)
A__ : Tuple = 'pytorch_model.bin'
A__ : str = 'pytorch_model.bin.index.json'
A__ : Optional[int] = 'adapter_config.json'
A__ : Any = 'adapter_model.bin'
A__ : List[str] = 'adapter_model.safetensors'
A__ : str = 'tf_model.h5'
A__ : Dict = 'tf_model.h5.index.json'
A__ : List[Any] = 'model.ckpt'
A__ : str = 'flax_model.msgpack'
A__ : Any = 'flax_model.msgpack.index.json'
A__ : Tuple = 'model.safetensors'
A__ : List[Any] = 'model.safetensors.index.json'
A__ : List[Any] = 'config.json'
A__ : List[Any] = 'preprocessor_config.json'
A__ : Optional[int] = FEATURE_EXTRACTOR_NAME
A__ : Tuple = 'generation_config.json'
A__ : List[str] = 'modelcard.json'
A__ : str = '▁'
A__ : Optional[int] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility
A__ : int = [
[[0, 1, 0, 1], [1, 0, 0, 1]]
] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too.
A__ : Tuple = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
A__ : Tuple = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]]
def _snake_case ( lowerCamelCase__ : int ) -> Any:
if version.parse(snake_case__ ) < version.parse(snake_case__ ):
if "dev" in min_version:
lowerCamelCase_ : List[Any] =(
"This example requires a source install from HuggingFace Transformers (see "
"`https://huggingface.co/docs/transformers/installation#install-from-source`),"
)
else:
lowerCamelCase_ : Optional[int] =F"""This example requires a minimum version of {min_version},"""
error_message += F""" but the version found is {__version__}.\n"""
raise ImportError(
error_message
+ "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other "
"versions of HuggingFace Transformers." )
| 717 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool:
if len(lowerCamelCase__ ) == 0:
return False
lowerCamelCase_ : Dict =len(lowerCamelCase__ ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , lowerCamelCase__ )
else:
return binary_search(a_list[midpoint + 1 :] , lowerCamelCase__ )
if __name__ == "__main__":
A__ : Tuple = input('Enter numbers separated by comma:\n').strip()
A__ : Union[str, Any] = [int(item.strip()) for item in user_input.split(',')]
A__ : Optional[Any] = int(input('Enter the number to be found in the list:\n').strip())
A__ : str = '' if binary_search(sequence, target) else 'not '
print(f'{target} was {not_str}found in {sequence}')
| 244 | 0 |
"""simple docstring"""
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ):
if index == number_of_items:
return 0
lowerCAmelCase__ : Any = 0
lowerCAmelCase__ : List[str] = 0
lowerCAmelCase__ : List[str] = knapsack(_A , _A , _A , _A , index + 1 )
if weights[index] <= max_weight:
lowerCAmelCase__ : Optional[int] = values[index] + knapsack(
_A , _A , _A , max_weight - weights[index] , index + 1 )
return max(_A , _A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 450 |
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def UpperCAmelCase_ ( _A , _A , _A , _A , _A = None , _A = None , _A = None , ):
'''simple docstring'''
if config_name_or_path is None:
SCREAMING_SNAKE_CASE__ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base'''
if generator_tokenizer_name_or_path is None:
SCREAMING_SNAKE_CASE__ = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
SCREAMING_SNAKE_CASE__ = question_encoder_name_or_path
SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration
# Save model.
SCREAMING_SNAKE_CASE__ = RagConfig.from_pretrained(_A )
SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(_A )
SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(_A )
SCREAMING_SNAKE_CASE__ = gen_config
SCREAMING_SNAKE_CASE__ = question_encoder_config
SCREAMING_SNAKE_CASE__ = model_class.from_pretrained_question_encoder_generator(
_A , _A , config=_A )
rag_model.save_pretrained(_A )
# Sanity check.
model_class.from_pretrained(_A )
# Save tokenizers.
SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_A )
gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' )
SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_A )
question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser()
parser.add_argument(
'''--model_type''',
choices=['''rag_sequence''', '''rag_token'''],
required=True,
type=str,
help='''RAG model type: rag_sequence, rag_token''',
)
parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''')
parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''')
parser.add_argument(
'''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier'''
)
parser.add_argument(
'''--generator_tokenizer_name_or_path''',
type=str,
help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''',
)
parser.add_argument(
'''--question_encoder_tokenizer_name_or_path''',
type=str,
help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''',
)
parser.add_argument(
'''--config_name_or_path''',
type=str,
help=(
'''Identifier of the model config to use, if not provided, resolves to a base config for a given'''
''' ``model_type``'''
),
)
_SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args()
_SCREAMING_SNAKE_CASE : str = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 493 | 0 |
'''simple docstring'''
from __future__ import annotations
from math import pi
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ):
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 720 |
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
_UpperCAmelCase : List[Any] = logging.get_logger(__name__)
def UpperCAmelCase__ ( lowerCamelCase ):
lowercase :int = r"\w+[.]\d+"
lowercase :Tuple = re.findall(lowerCamelCase, lowerCamelCase )
for pat in pats:
lowercase :List[str] = key.replace(lowerCamelCase, "_".join(pat.split("." ) ) )
return key
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ):
lowercase :List[str] = pt_tuple_key[:-1] + ("scale",)
if (
any("norm" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
lowercase :Optional[int] = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
lowercase :int = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
lowercase :List[str] = pt_tuple_key[:-1] + ("embedding",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowercase :Union[str, Any] = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
lowercase :List[Any] = pt_tensor.transpose(2, 3, 1, 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowercase :Optional[Any] = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight":
lowercase :Tuple = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowercase :Tuple = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowercase :int = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase=42 ):
# Step 1: Convert pytorch tensor to numpy
lowercase :Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
lowercase :str = flax_model.init_weights(PRNGKey(lowerCamelCase ) )
lowercase :Tuple = flatten_dict(lowerCamelCase )
lowercase :Optional[Any] = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase :List[Any] = rename_key(lowerCamelCase )
lowercase :List[Any] = tuple(renamed_pt_key.split("." ) )
# Correctly rename weight parameters
lowercase , lowercase :List[str] = rename_key_and_reshape_tensor(lowerCamelCase, lowerCamelCase, lowerCamelCase )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." )
# also add unexpected weight so that warning is thrown
lowercase :List[str] = jnp.asarray(lowerCamelCase )
return unflatten_dict(lowerCamelCase )
| 453 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {
'tanreinama/GPTSAN-2.8B-spout_is_uniform': (
'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json'
),
}
class a ( __lowerCAmelCase ):
"""simple docstring"""
__lowerCAmelCase = """gptsan-japanese"""
__lowerCAmelCase = [
"""past_key_values""",
]
__lowerCAmelCase = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self , snake_case_=3_6000 , snake_case_=1280 , snake_case_=1024 , snake_case_=8192 , snake_case_=4096 , snake_case_=128 , snake_case_=10 , snake_case_=0 , snake_case_=16 , snake_case_=16 , snake_case_=128 , snake_case_=0.0 , snake_case_=1e-5 , snake_case_=False , snake_case_=0.0 , snake_case_="float32" , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=0.0_0_2 , snake_case_=False , snake_case_=True , snake_case_=3_5998 , snake_case_=3_5995 , snake_case_=3_5999 , **snake_case_ , ):
'''simple docstring'''
__UpperCAmelCase: Optional[Any] = vocab_size
__UpperCAmelCase: List[str] = max_position_embeddings
__UpperCAmelCase: List[Any] = d_model
__UpperCAmelCase: List[str] = d_ff
__UpperCAmelCase: Union[str, Any] = d_ext
__UpperCAmelCase: List[Any] = d_spout
__UpperCAmelCase: Dict = num_switch_layers
__UpperCAmelCase: List[str] = num_ext_layers
__UpperCAmelCase: Tuple = num_switch_layers + num_ext_layers
__UpperCAmelCase: Any = num_heads
__UpperCAmelCase: Optional[Any] = num_experts
__UpperCAmelCase: Tuple = expert_capacity
__UpperCAmelCase: Tuple = dropout_rate
__UpperCAmelCase: Optional[int] = layer_norm_epsilon
__UpperCAmelCase: Union[str, Any] = router_bias
__UpperCAmelCase: Optional[Any] = router_jitter_noise
__UpperCAmelCase: str = router_dtype
__UpperCAmelCase: Union[str, Any] = router_ignore_padding_tokens
__UpperCAmelCase: Optional[int] = output_hidden_states
__UpperCAmelCase: Optional[Any] = output_attentions
__UpperCAmelCase: Any = initializer_factor
__UpperCAmelCase: Tuple = output_router_logits
__UpperCAmelCase: Tuple = use_cache
super().__init__(
separator_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) | 523 | '''simple docstring'''
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__)
def UpperCamelCase__ ( _lowercase : Any=2 , _lowercase : str=3 , _lowercase : List[str]=1_6 , _lowercase : int = 1_0 , _lowercase : int = 2 ) -> str:
def get_dataset(_lowercase : Optional[Any] ):
__UpperCAmelCase: List[str] = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(_lowercase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
__UpperCAmelCase: Tuple = get_dataset(_lowercase )
__UpperCAmelCase: Dict = get_dataset(_lowercase )
__UpperCAmelCase: Dict = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 )
__UpperCAmelCase: Tuple = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 )
return (train_dataloader, valid_dataloader)
def UpperCamelCase__ ( _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : int=None ) -> Optional[int]:
__UpperCAmelCase: Optional[int] = []
for epoch in range(_lowercase ):
# Train quickly
model.train()
for batch in dataloader:
__UpperCAmelCase, __UpperCAmelCase: Tuple = batch
__UpperCAmelCase: List[str] = model(_lowercase )
__UpperCAmelCase: List[Any] = torch.nn.functional.mse_loss(_lowercase , _lowercase )
accelerator.backward(_lowercase )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class a ( nn.Module ):
"""simple docstring"""
def __init__( self ):
'''simple docstring'''
super().__init__()
__UpperCAmelCase: List[Any] = nn.Parameter(torch.randn(1 ) )
__UpperCAmelCase: List[Any] = nn.Parameter(torch.randn(1 ) )
def lowercase_ ( self , snake_case_ ):
'''simple docstring'''
return x * self.a + self.b
class a ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCAmelCase: List[Any] = DummyModel()
__UpperCAmelCase: List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__UpperCAmelCase, __UpperCAmelCase: Union[str, Any] = dummy_dataloaders()
__UpperCAmelCase: Dict = ProjectConfiguration(total_limit=1 , project_dir=snake_case_ , automatic_checkpoint_naming=snake_case_ )
# Train baseline
__UpperCAmelCase: Union[str, Any] = Accelerator(project_config=snake_case_ )
__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: Tuple = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 )
def lowercase_ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCAmelCase: Optional[int] = DummyModel()
__UpperCAmelCase: List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__UpperCAmelCase, __UpperCAmelCase: int = dummy_dataloaders()
# Train baseline
__UpperCAmelCase: Union[str, Any] = Accelerator()
__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: Dict = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# Save initial
__UpperCAmelCase: int = os.path.join(snake_case_ , """initial""" )
accelerator.save_state(snake_case_ )
((__UpperCAmelCase), (__UpperCAmelCase)): List[Any] = model.a.item(), model.b.item()
__UpperCAmelCase: int = optimizer.state_dict()
__UpperCAmelCase: Union[str, Any] = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
((__UpperCAmelCase), (__UpperCAmelCase)): Tuple = model.a.item(), model.b.item()
__UpperCAmelCase: int = optimizer.state_dict()
# Train partially
set_seed(42 )
__UpperCAmelCase: str = DummyModel()
__UpperCAmelCase: str = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__UpperCAmelCase, __UpperCAmelCase: Union[str, Any] = dummy_dataloaders()
__UpperCAmelCase: Optional[Any] = Accelerator()
__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: Optional[Any] = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ )
accelerator.load_state(snake_case_ )
((__UpperCAmelCase), (__UpperCAmelCase)): Any = model.a.item(), model.b.item()
__UpperCAmelCase: int = optimizer.state_dict()
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
__UpperCAmelCase: Union[str, Any] = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# Save everything
__UpperCAmelCase: Optional[int] = os.path.join(snake_case_ , """checkpoint""" )
accelerator.save_state(snake_case_ )
# Load everything back in and make sure all states work
accelerator.load_state(snake_case_ )
test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
((__UpperCAmelCase), (__UpperCAmelCase)): str = model.a.item(), model.b.item()
__UpperCAmelCase: int = optimizer.state_dict()
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
def lowercase_ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCAmelCase: List[Any] = DummyModel()
__UpperCAmelCase: List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__UpperCAmelCase, __UpperCAmelCase: Tuple = dummy_dataloaders()
__UpperCAmelCase: Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ )
# Train baseline
__UpperCAmelCase: Any = Accelerator(project_dir=snake_case_ , project_config=snake_case_ )
__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: Union[str, Any] = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# Save initial
accelerator.save_state()
((__UpperCAmelCase), (__UpperCAmelCase)): Optional[int] = model.a.item(), model.b.item()
__UpperCAmelCase: int = optimizer.state_dict()
__UpperCAmelCase: List[Any] = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
((__UpperCAmelCase), (__UpperCAmelCase)): List[Any] = model.a.item(), model.b.item()
__UpperCAmelCase: str = optimizer.state_dict()
# Train partially
set_seed(42 )
__UpperCAmelCase: List[str] = DummyModel()
__UpperCAmelCase: Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__UpperCAmelCase, __UpperCAmelCase: Dict = dummy_dataloaders()
__UpperCAmelCase: Optional[int] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=snake_case_ )
__UpperCAmelCase: Any = Accelerator(project_dir=snake_case_ , project_config=snake_case_ )
__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: List[Any] = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ )
accelerator.load_state(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_0""" ) )
((__UpperCAmelCase), (__UpperCAmelCase)): Union[str, Any] = model.a.item(), model.b.item()
__UpperCAmelCase: Optional[Any] = optimizer.state_dict()
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
__UpperCAmelCase: List[str] = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_1""" ) )
test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
((__UpperCAmelCase), (__UpperCAmelCase)): str = model.a.item(), model.b.item()
__UpperCAmelCase: Tuple = optimizer.state_dict()
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
self.assertEqual(snake_case_ , snake_case_ )
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Dict = torch.tensor([1, 2, 3] )
__UpperCAmelCase: Tuple = torch.tensor([2, 3, 4] )
__UpperCAmelCase: List[str] = DummyModel()
__UpperCAmelCase: int = torch.optim.Adam(net.parameters() )
__UpperCAmelCase: str = Accelerator()
with self.assertRaises(snake_case_ ) as ve:
accelerator.register_for_checkpointing(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase: Tuple = str(ve.exception )
self.assertTrue("""Item at index 0""" in message )
self.assertTrue("""Item at index 1""" in message )
self.assertFalse("""Item at index 2""" in message )
self.assertFalse("""Item at index 3""" in message )
def lowercase_ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCAmelCase: List[str] = DummyModel()
__UpperCAmelCase: int = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
__UpperCAmelCase: Optional[int] = torch.optim.lr_scheduler.StepLR(snake_case_ , step_size=1 , gamma=0.9_9 )
__UpperCAmelCase, __UpperCAmelCase: Any = dummy_dataloaders()
__UpperCAmelCase: Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ )
# Train baseline
__UpperCAmelCase: List[Any] = Accelerator(project_dir=snake_case_ , project_config=snake_case_ )
__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: List[Any] = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# Save initial
accelerator.save_state()
__UpperCAmelCase: Union[str, Any] = scheduler.state_dict()
train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
self.assertNotEqual(snake_case_ , scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_0""" ) )
self.assertEqual(snake_case_ , scheduler.state_dict() )
def lowercase_ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCAmelCase: Optional[int] = DummyModel()
__UpperCAmelCase: Tuple = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ , total_limit=2 )
# Train baseline
__UpperCAmelCase: Any = Accelerator(project_dir=snake_case_ , project_config=snake_case_ )
__UpperCAmelCase: List[Any] = accelerator.prepare(snake_case_ )
# Save 3 states:
for _ in range(11 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_9""" ) ) )
self.assertTrue(os.path.exists(os.path.join(snake_case_ , """checkpoints""" , """checkpoint_10""" ) ) )
@require_cuda
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Union[str, Any] = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(snake_case_ , env=os.environ.copy() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = '/tmp/accelerate/state_checkpointing'
SCREAMING_SNAKE_CASE_ = DummyModel()
SCREAMING_SNAKE_CASE_ = torch.optim.Adam(params=model.parameters(), lr=1E-3)
SCREAMING_SNAKE_CASE_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = dummy_dataloaders()
SCREAMING_SNAKE_CASE_ = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
SCREAMING_SNAKE_CASE_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no')
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
SCREAMING_SNAKE_CASE_ = group['params'][0].device
break
assert param_device.type == accelerator.device.type
SCREAMING_SNAKE_CASE_ = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu')
for group in optimizer.param_groups:
SCREAMING_SNAKE_CASE_ = group['params'][0].device
break
assert (
param_device.type == torch.device('cpu').type
), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device')
for group in optimizer.param_groups:
SCREAMING_SNAKE_CASE_ = group['params'][0].device
break
assert (
param_device.type == accelerator.device.type
), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match='Unsupported optimizer map location passed'):
accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid')
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone() | 523 | 1 |
'''simple docstring'''
def lowerCAmelCase_ ( a : str , a : str = " " ):
a__ = []
a__ = 0
for index, char in enumerate(a ):
if char == separator:
split_words.append(string[last_index:index] )
a__ = index + 1
elif index + 1 == len(a ):
split_words.append(string[last_index : index + 1] )
return split_words
if __name__ == "__main__":
from doctest import testmod
testmod()
| 126 |
'''simple docstring'''
import qiskit
def lowerCAmelCase_ ( a : int , a : int ):
a__ = qiskit.Aer.get_backend('aer_simulator' )
a__ = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
a__ = qiskit.execute(a , a , shots=1000 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(a )
if __name__ == "__main__":
__A : Union[str, Any] = half_adder(1, 1)
print(F"""Half Adder Output Qubit Counts: {counts}""")
| 126 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
lowercase_ = False
@skip_mps
class UpperCAmelCase_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = StableDiffusionAttendAndExcitePipeline
UpperCamelCase_ : Dict = False
UpperCamelCase_ : Dict = TEXT_TO_IMAGE_PARAMS
UpperCamelCase_ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} )
UpperCamelCase_ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCamelCase_ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def a ( cls : str )-> Optional[int]:
"""simple docstring"""
super().setUpClass()
torch.use_deterministic_algorithms(a_ )
@classmethod
def a ( cls : Any )-> List[Any]:
"""simple docstring"""
super().tearDownClass()
torch.use_deterministic_algorithms(a_ )
def a ( self : List[str] )-> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a_ , )
UpperCAmelCase_ : Tuple = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=a_ , set_alpha_to_one=a_ , )
torch.manual_seed(0 )
UpperCAmelCase_ : Tuple = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
UpperCAmelCase_ : str = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
UpperCAmelCase_ : str = CLIPTextModel(a_ )
UpperCAmelCase_ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
UpperCAmelCase_ : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def a ( self : Any , a_ : Any , a_ : Dict=0 )-> Any:
"""simple docstring"""
if str(a_ ).startswith("""mps""" ):
UpperCAmelCase_ : Tuple = torch.manual_seed(a_ )
else:
UpperCAmelCase_ : str = torch.Generator(device=a_ ).manual_seed(a_ )
UpperCAmelCase_ : Optional[Any] = {
"""prompt""": """a cat and a frog""",
"""token_indices""": [2, 5],
"""generator""": generator,
"""num_inference_steps""": 1,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
"""max_iter_to_alter""": 2,
"""thresholds""": {0: 0.7},
}
return inputs
def a ( self : Any )-> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = """cpu"""
UpperCAmelCase_ : Optional[Any] = self.get_dummy_components()
UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**a_ )
pipe.to(a_ )
pipe.set_progress_bar_config(disable=a_ )
UpperCAmelCase_ : List[str] = self.get_dummy_inputs(a_ )
UpperCAmelCase_ : Optional[Any] = pipe(**a_ ).images
UpperCAmelCase_ : str = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 64, 64, 3) )
UpperCAmelCase_ : Union[str, Any] = np.array(
[0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] )
UpperCAmelCase_ : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(a_ , 1E-3 )
def a ( self : Any )-> List[Any]:
"""simple docstring"""
super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 )
def a ( self : List[str] )-> Tuple:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def a ( self : List[str] )-> Any:
"""simple docstring"""
self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 )
def a ( self : Optional[int] )-> int:
"""simple docstring"""
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def a ( self : List[str] )-> Any:
"""simple docstring"""
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 )
def a ( self : int )-> str:
"""simple docstring"""
super().test_save_load_local(expected_max_difference=5E-4 )
def a ( self : Dict )-> str:
"""simple docstring"""
super().test_save_load_optional_components(expected_max_difference=4E-4 )
@require_torch_gpu
@slow
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@classmethod
def a ( cls : Optional[Any] )-> Union[str, Any]:
"""simple docstring"""
super().setUpClass()
torch.use_deterministic_algorithms(a_ )
@classmethod
def a ( cls : Any )-> List[Any]:
"""simple docstring"""
super().tearDownClass()
torch.use_deterministic_algorithms(a_ )
def a ( self : int )-> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : Optional[int] )-> Dict:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = torch.manual_seed(51 )
UpperCAmelCase_ : Union[str, Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , safety_checker=a_ , torch_dtype=torch.floataa )
pipe.to("""cuda""" )
UpperCAmelCase_ : Optional[Any] = """a painting of an elephant with glasses"""
UpperCAmelCase_ : Any = [5, 7]
UpperCAmelCase_ : Dict = pipe(
prompt=a_ , token_indices=a_ , guidance_scale=7.5 , generator=a_ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0]
UpperCAmelCase_ : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" )
assert np.abs((expected_image - image).max() ) < 5E-1
| 470 |
"""simple docstring"""
lowercase_ = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowercase_ = [{"type": "code", "content": INSTALL_CONTENT}]
lowercase_ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 470 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase = logging.get_logger(__name__)
__lowercase = {
'''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class a__( lowerCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase_ : Dict = '''cvt'''
def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=[7, 3, 3] , __lowerCAmelCase=[4, 2, 2] , __lowerCAmelCase=[2, 1, 1] , __lowerCAmelCase=[64, 192, 384] , __lowerCAmelCase=[1, 3, 6] , __lowerCAmelCase=[1, 2, 10] , __lowerCAmelCase=[4.0, 4.0, 4.0] , __lowerCAmelCase=[0.0, 0.0, 0.0] , __lowerCAmelCase=[0.0, 0.0, 0.0] , __lowerCAmelCase=[0.0, 0.0, 0.1] , __lowerCAmelCase=[True, True, True] , __lowerCAmelCase=[False, False, True] , __lowerCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __lowerCAmelCase=[3, 3, 3] , __lowerCAmelCase=[1, 1, 1] , __lowerCAmelCase=[2, 2, 2] , __lowerCAmelCase=[1, 1, 1] , __lowerCAmelCase=[1, 1, 1] , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-1_2 , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(**__lowerCAmelCase)
lowerCAmelCase = num_channels
lowerCAmelCase = patch_sizes
lowerCAmelCase = patch_stride
lowerCAmelCase = patch_padding
lowerCAmelCase = embed_dim
lowerCAmelCase = num_heads
lowerCAmelCase = depth
lowerCAmelCase = mlp_ratio
lowerCAmelCase = attention_drop_rate
lowerCAmelCase = drop_rate
lowerCAmelCase = drop_path_rate
lowerCAmelCase = qkv_bias
lowerCAmelCase = cls_token
lowerCAmelCase = qkv_projection_method
lowerCAmelCase = kernel_qkv
lowerCAmelCase = padding_kv
lowerCAmelCase = stride_kv
lowerCAmelCase = padding_q
lowerCAmelCase = stride_q
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
| 605 | '''simple docstring'''
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
__lowercase = threading.Lock()
__lowercase = None
__lowercase = {
'''debug''': logging.DEBUG,
'''info''': logging.INFO,
'''warning''': logging.WARNING,
'''error''': logging.ERROR,
'''critical''': logging.CRITICAL,
}
__lowercase = logging.WARNING
__lowercase = True
def snake_case__ ( ) -> int:
'''simple docstring'''
lowerCAmelCase = os.getenv("""TRANSFORMERS_VERBOSITY""" , _A )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, "
f"has to be one of: { ', '.join(log_levels.keys() ) }" )
return _default_log_level
def snake_case__ ( ) -> str:
'''simple docstring'''
return __name__.split(""".""" )[0]
def snake_case__ ( ) -> logging.Logger:
'''simple docstring'''
return logging.getLogger(_get_library_name() )
def snake_case__ ( ) -> None:
'''simple docstring'''
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
lowerCAmelCase = logging.StreamHandler() # Set sys.stderr as stream.
lowerCAmelCase = sys.stderr.flush
# Apply our default configuration to the library root logger.
lowerCAmelCase = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
lowerCAmelCase = False
def snake_case__ ( ) -> None:
'''simple docstring'''
global _default_handler
with _lock:
if not _default_handler:
return
lowerCAmelCase = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
lowerCAmelCase = None
def snake_case__ ( ) -> Dict:
'''simple docstring'''
return log_levels
def snake_case__ ( _A: Optional[str] = None ) -> logging.Logger:
'''simple docstring'''
if name is None:
lowerCAmelCase = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(_A )
def snake_case__ ( ) -> int:
'''simple docstring'''
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def snake_case__ ( _A: int ) -> None:
'''simple docstring'''
_configure_library_root_logger()
_get_library_root_logger().setLevel(_A )
def snake_case__ ( ) -> int:
'''simple docstring'''
return set_verbosity(_A )
def snake_case__ ( ) -> List[str]:
'''simple docstring'''
return set_verbosity(_A )
def snake_case__ ( ) -> Optional[int]:
'''simple docstring'''
return set_verbosity(_A )
def snake_case__ ( ) -> List[str]:
'''simple docstring'''
return set_verbosity(_A )
def snake_case__ ( ) -> None:
'''simple docstring'''
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def snake_case__ ( ) -> None:
'''simple docstring'''
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def snake_case__ ( _A: logging.Handler ) -> None:
'''simple docstring'''
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(_A )
def snake_case__ ( _A: logging.Handler ) -> None:
'''simple docstring'''
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(_A )
def snake_case__ ( ) -> None:
'''simple docstring'''
_configure_library_root_logger()
lowerCAmelCase = False
def snake_case__ ( ) -> None:
'''simple docstring'''
_configure_library_root_logger()
lowerCAmelCase = True
def snake_case__ ( ) -> None:
'''simple docstring'''
lowerCAmelCase = _get_library_root_logger().handlers
for handler in handlers:
lowerCAmelCase = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" )
handler.setFormatter(_A )
def snake_case__ ( ) -> None:
'''simple docstring'''
lowerCAmelCase = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(_A )
def snake_case__ ( self: str , *_A: Optional[int] , **_A: Dict ) -> str:
'''simple docstring'''
lowerCAmelCase = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , _A )
if no_advisory_warnings:
return
self.warning(*_A , **_A )
__lowercase = warning_advice
@functools.lru_cache(_A )
def snake_case__ ( self: List[str] , *_A: List[Any] , **_A: str ) -> List[str]:
'''simple docstring'''
self.warning(*_A , **_A )
__lowercase = warning_once
class a__:
'''simple docstring'''
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase): # pylint: disable=unused-argument
"""simple docstring"""
lowerCAmelCase = args[0] if args else None
def __iter__( self):
"""simple docstring"""
return iter(self._iterator)
def __getattr__( self , __lowerCAmelCase):
"""simple docstring"""
def empty_fn(*__lowerCAmelCase , **__lowerCAmelCase): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self):
"""simple docstring"""
return self
def __exit__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
return
class a__:
'''simple docstring'''
def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase):
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm(*__lowerCAmelCase , **__lowerCAmelCase)
else:
return EmptyTqdm(*__lowerCAmelCase , **__lowerCAmelCase)
def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*__lowerCAmelCase , **__lowerCAmelCase)
def a_ ( self):
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
__lowercase = _tqdm_cls()
def snake_case__ ( ) -> bool:
'''simple docstring'''
global _tqdm_active
return bool(_tqdm_active )
def snake_case__ ( ) -> Dict:
'''simple docstring'''
global _tqdm_active
lowerCAmelCase = True
hf_hub_utils.enable_progress_bars()
def snake_case__ ( ) -> Any:
'''simple docstring'''
global _tqdm_active
lowerCAmelCase = False
hf_hub_utils.disable_progress_bars()
| 605 | 1 |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
snake_case = logging.getLogger()
snake_case = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class SCREAMING_SNAKE_CASE ( lowerCAmelCase ):
'''simple docstring'''
def _A ( self : List[str] , UpperCAmelCase_ : int ):
os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : Tuple = {"source": "What is love ?", "target": "life"}
SCREAMING_SNAKE_CASE : Tuple = {"train": 12, "val": 2, "test": 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
SCREAMING_SNAKE_CASE : Dict = "\n".join([contents[field]] * n_lines[split] )
with open(os.path.join(UpperCAmelCase_ , f'''{split}.{field}''' ) , "w" ) as f:
f.write(UpperCAmelCase_ )
def _A ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : str = "pytorch" ):
SCREAMING_SNAKE_CASE : List[str] = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE : Any = os.path.join(UpperCAmelCase_ , "output" )
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(UpperCAmelCase_ , "data" )
self._create_dummy_data(data_dir=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : List[str] = f'''
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
'''.split()
if gpus > 0:
testargs.append(f'''--gpus={gpus}''' )
if is_apex_available():
testargs.append("--fp16" )
else:
testargs.append("--gpus=0" )
testargs.append("--distributed_backend=ddp_cpu" )
testargs.append("--num_processes=2" )
SCREAMING_SNAKE_CASE : Any = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
SCREAMING_SNAKE_CASE : List[str] = os.path.join(UpperCAmelCase_ , "metrics.json" )
with open(UpperCAmelCase_ ) as f:
SCREAMING_SNAKE_CASE : Dict = json.load(UpperCAmelCase_ )
return result
@require_torch_gpu
def _A ( self : int ):
SCREAMING_SNAKE_CASE : Union[str, Any] = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
@require_torch_multi_gpu
def _A ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE : Dict = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
@require_torch_gpu
@require_ray
def _A ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE : List[str] = self._run_finetune(gpus=1 , distributed_retriever="ray" )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
@require_torch_multi_gpu
@require_ray
def _A ( self : int ):
SCREAMING_SNAKE_CASE : int = self._run_finetune(gpus=1 , distributed_retriever="ray" )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
| 62 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase__ ( snake_case__, unittest.TestCase ):
_UpperCAmelCase :Dict = DDIMPipeline
_UpperCAmelCase :List[str] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
_UpperCAmelCase :List[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
_UpperCAmelCase :Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
_UpperCAmelCase :Tuple = False
def UpperCAmelCase__ ( self : Optional[Any] ):
torch.manual_seed(0 )
lowerCamelCase_ : Tuple =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , )
lowerCamelCase_ : Union[str, Any] =DDIMScheduler()
lowerCamelCase_ : int ={"unet": unet, "scheduler": scheduler}
return components
def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : Any=0 ):
if str(snake_case__ ).startswith("mps" ):
lowerCamelCase_ : Any =torch.manual_seed(snake_case__ )
else:
lowerCamelCase_ : List[Any] =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
lowerCamelCase_ : List[Any] ={
"batch_size": 1,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def UpperCAmelCase__ ( self : Dict ):
lowerCamelCase_ : List[Any] ="cpu"
lowerCamelCase_ : List[Any] =self.get_dummy_components()
lowerCamelCase_ : Union[str, Any] =self.pipeline_class(**snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
lowerCamelCase_ : Any =self.get_dummy_inputs(snake_case__ )
lowerCamelCase_ : List[str] =pipe(**snake_case__ ).images
lowerCamelCase_ : Tuple =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
lowerCamelCase_ : Optional[Any] =np.array(
[1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] )
lowerCamelCase_ : Dict =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(snake_case__ , 1E-3 )
def UpperCAmelCase__ ( self : List[Any] ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def UpperCAmelCase__ ( self : Dict ):
super().test_save_load_local(expected_max_difference=3E-3 )
def UpperCAmelCase__ ( self : str ):
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def UpperCAmelCase__ ( self : str ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ):
lowerCamelCase_ : Any ="google/ddpm-cifar10-32"
lowerCamelCase_ : List[Any] =UNetaDModel.from_pretrained(snake_case__ )
lowerCamelCase_ : str =DDIMScheduler()
lowerCamelCase_ : Optional[int] =DDIMPipeline(unet=snake_case__ , scheduler=snake_case__ )
ddim.to(snake_case__ )
ddim.set_progress_bar_config(disable=snake_case__ )
lowerCamelCase_ : Optional[int] =torch.manual_seed(0 )
lowerCamelCase_ : str =ddim(generator=snake_case__ , eta=0.0 , output_type="numpy" ).images
lowerCamelCase_ : int =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCamelCase_ : int =np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ ( self : List[str] ):
lowerCamelCase_ : str ="google/ddpm-ema-bedroom-256"
lowerCamelCase_ : Tuple =UNetaDModel.from_pretrained(snake_case__ )
lowerCamelCase_ : Dict =DDIMScheduler.from_pretrained(snake_case__ )
lowerCamelCase_ : str =DDIMPipeline(unet=snake_case__ , scheduler=snake_case__ )
ddpm.to(snake_case__ )
ddpm.set_progress_bar_config(disable=snake_case__ )
lowerCamelCase_ : int =torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] =ddpm(generator=snake_case__ , output_type="numpy" ).images
lowerCamelCase_ : Optional[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
lowerCamelCase_ : Tuple =np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 153 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_a : Optional[int] = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Any = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
_a : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | '''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _lowercase ( ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0]
__UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ )
try:
__UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
__UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead."
__UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] )
__UpperCAmelCase : Any = ""
__UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] )
__UpperCAmelCase : Optional[int] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
__UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ )
raise ValueError(lowerCamelCase__ )
benchmark.run()
if __name__ == "__main__":
main()
| 10 | 1 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ,unittest.TestCase ):
_UpperCAmelCase : Tuple = CanineTokenizer
_UpperCAmelCase : str = False
def __lowerCamelCase ( self : List[Any] ) ->Optional[int]:
super().setUp()
lowerCamelCase__ : str = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __lowerCamelCase ( self : Union[str, Any] ) ->List[str]:
return CanineTokenizer.from_pretrained('''google/canine-s''' )
def __lowerCamelCase ( self : Optional[Any] , **A : List[Any] ) ->CanineTokenizer:
lowerCamelCase__ : int = self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ )
lowerCamelCase__ : Optional[Any] = 1_0_2_4
return tokenizer
@require_torch
def __lowerCamelCase ( self : str ) ->Any:
lowerCamelCase__ : int = self.canine_tokenizer
lowerCamelCase__ : str = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.''']
# fmt: off
lowerCamelCase__ : str = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0]
# fmt: on
lowerCamelCase__ : Any = tokenizer(A_ , padding=A_ , return_tensors='''pt''' )
self.assertIsInstance(A_ , A_ )
lowerCamelCase__ : List[Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(A_ , A_ )
self.assertEqual((2, 3_9) , batch.input_ids.shape )
self.assertEqual((2, 3_9) , batch.attention_mask.shape )
@require_torch
def __lowerCamelCase ( self : str ) ->str:
lowerCamelCase__ : int = self.canine_tokenizer
lowerCamelCase__ : Optional[int] = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.''']
lowerCamelCase__ : List[str] = tokenizer(A_ , padding=A_ , return_tensors='''pt''' )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn('''input_ids''' , A_ )
self.assertIn('''attention_mask''' , A_ )
self.assertIn('''token_type_ids''' , A_ )
@require_torch
def __lowerCamelCase ( self : List[Any] ) ->int:
lowerCamelCase__ : Optional[int] = self.canine_tokenizer
lowerCamelCase__ : int = [
'''What\'s the weater?''',
'''It\'s about 25 degrees.''',
]
lowerCamelCase__ : Tuple = tokenizer(
text_target=A_ , max_length=3_2 , padding='''max_length''' , truncation=A_ , return_tensors='''pt''' )
self.assertEqual(3_2 , targets['''input_ids'''].shape[1] )
def __lowerCamelCase ( self : List[Any] ) ->Tuple:
# safety check on max_len default value so we are sure the test works
lowerCamelCase__ : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length , 4_2 )
# Now let's start the test
lowerCamelCase__ : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
lowerCamelCase__ : List[Any] = tempfile.mkdtemp()
lowerCamelCase__ : str = ''' He is very happy, UNwant\u00E9d,running'''
lowerCamelCase__ : List[Any] = tokenizer.encode(A_ , add_special_tokens=A_ )
tokenizer.save_pretrained(A_ )
lowerCamelCase__ : Union[str, Any] = tokenizer.__class__.from_pretrained(A_ )
lowerCamelCase__ : int = after_tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertListEqual(A_ , A_ )
shutil.rmtree(A_ )
lowerCamelCase__ : Tuple = self.get_tokenizers(model_max_length=4_2 )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
lowerCamelCase__ : List[str] = tempfile.mkdtemp()
lowerCamelCase__ : Union[str, Any] = ''' He is very happy, UNwant\u00E9d,running'''
lowerCamelCase__ : Union[str, Any] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
lowerCamelCase__ : str = chr(0xE_0_0_7 )
additional_special_tokens.append(A_ )
tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} )
lowerCamelCase__ : Any = tokenizer.encode(A_ , add_special_tokens=A_ )
tokenizer.save_pretrained(A_ )
lowerCamelCase__ : Optional[int] = tokenizer.__class__.from_pretrained(A_ )
lowerCamelCase__ : int = after_tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertListEqual(A_ , A_ )
self.assertIn(A_ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 4_2 )
lowerCamelCase__ : Union[str, Any] = tokenizer.__class__.from_pretrained(A_ , model_max_length=4_3 )
self.assertEqual(tokenizer.model_max_length , 4_3 )
shutil.rmtree(A_ )
def __lowerCamelCase ( self : Dict ) ->Optional[int]:
lowerCamelCase__ : Optional[Any] = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.get_clean_sequence(A_ )
# a special token for Canine can be defined as follows:
lowerCamelCase__ : List[Any] = 0xE_0_0_5
lowerCamelCase__ : Tuple = chr(A_ )
tokenizer.add_special_tokens({'''cls_token''': special_token} )
lowerCamelCase__ : Optional[int] = tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertEqual(len(A_ ) , 1 )
lowerCamelCase__ : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=A_ )
lowerCamelCase__ : Any = tokenizer.encode(A_ , add_special_tokens=A_ )
lowerCamelCase__ : str = tokenizer.encode(A_ , add_special_tokens=A_ )
lowerCamelCase__ : List[Any] = tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertEqual(A_ , input_encoded + special_token_id )
lowerCamelCase__ : List[str] = tokenizer.decode(A_ , skip_special_tokens=A_ )
self.assertTrue(special_token not in decoded )
def __lowerCamelCase ( self : str ) ->Union[str, Any]:
lowerCamelCase__ : List[str] = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
lowerCamelCase__ : Optional[int] = chr(0xE_0_0_5 )
lowerCamelCase__ : int = chr(0xE_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=A_ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} )
lowerCamelCase__ : List[str] = tokenizer.tokenize(A_ )
lowerCamelCase__ : Dict = tokenizer.tokenize(A_ )
self.assertEqual(len(A_ ) , 1 )
self.assertEqual(len(A_ ) , 1 )
self.assertEqual(token_a[0] , A_ )
self.assertEqual(token_a[0] , A_ )
@require_tokenizers
def __lowerCamelCase ( self : Optional[Any] ) ->Union[str, Any]:
lowerCamelCase__ : Dict = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
# a special token for Canine can be defined as follows:
lowerCamelCase__ : Dict = 0xE_0_0_6
lowerCamelCase__ : Dict = chr(A_ )
lowerCamelCase__ : List[Any] = AddedToken(A_ , lstrip=A_ )
tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(A_ )
tokenizer.from_pretrained(A_ )
def __lowerCamelCase ( self : List[Any] ) ->int:
lowerCamelCase__ : List[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(A_ )
with open(os.path.join(A_ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file:
lowerCamelCase__ : Dict = json.load(A_ )
with open(os.path.join(A_ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file:
lowerCamelCase__ : List[Any] = json.load(A_ )
# a special token for Canine can be defined as follows:
lowerCamelCase__ : Optional[Any] = 0xE_0_0_6
lowerCamelCase__ : str = chr(A_ )
lowerCamelCase__ : Optional[int] = [new_token_a]
lowerCamelCase__ : Optional[int] = [new_token_a]
with open(os.path.join(A_ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(A_ , A_ )
with open(os.path.join(A_ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(A_ , A_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
lowerCamelCase__ : Optional[int] = tokenizer_class.from_pretrained(A_ , extra_ids=0 )
self.assertIn(A_ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
lowerCamelCase__ : Dict = 0xE_0_0_7
lowerCamelCase__ : Any = chr(A_ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
lowerCamelCase__ : int = [AddedToken(A_ , lstrip=A_ )]
lowerCamelCase__ : Tuple = tokenizer_class.from_pretrained(
A_ , additional_special_tokens=A_ , extra_ids=0 )
self.assertIn(A_ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def __lowerCamelCase ( self : List[Any] ) ->int:
lowerCamelCase__ : Optional[Any] = self.get_tokenizers(do_lower_case=A_ )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
lowerCamelCase__ : Any = '''hello world'''
if self.space_between_special_tokens:
lowerCamelCase__ : Optional[Any] = '''[CLS] hello world [SEP]'''
else:
lowerCamelCase__ : List[str] = input
lowerCamelCase__ : Union[str, Any] = tokenizer.encode(A_ , add_special_tokens=A_ )
lowerCamelCase__ : Optional[Any] = tokenizer.decode(A_ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(A_ , [output, output.lower()] )
def __lowerCamelCase ( self : int ) ->Any:
lowerCamelCase__ : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
lowerCamelCase__ : List[Any] = [
'''bos_token''',
'''eos_token''',
'''unk_token''',
'''sep_token''',
'''pad_token''',
'''cls_token''',
'''mask_token''',
]
lowerCamelCase__ : List[str] = '''a'''
lowerCamelCase__ : List[str] = ord(A_ )
for attr in attributes_list:
setattr(A_ , attr + '''_id''' , A_ )
self.assertEqual(getattr(A_ , A_ ) , A_ )
self.assertEqual(getattr(A_ , attr + '''_id''' ) , A_ )
setattr(A_ , attr + '''_id''' , A_ )
self.assertEqual(getattr(A_ , A_ ) , A_ )
self.assertEqual(getattr(A_ , attr + '''_id''' ) , A_ )
setattr(A_ , '''additional_special_tokens_ids''' , [] )
self.assertListEqual(getattr(A_ , '''additional_special_tokens''' ) , [] )
self.assertListEqual(getattr(A_ , '''additional_special_tokens_ids''' ) , [] )
lowerCamelCase__ : List[str] = 0xE_0_0_6
lowerCamelCase__ : Tuple = chr(A_ )
setattr(A_ , '''additional_special_tokens_ids''' , [additional_special_token_id] )
self.assertListEqual(getattr(A_ , '''additional_special_tokens''' ) , [additional_special_token] )
self.assertListEqual(getattr(A_ , '''additional_special_tokens_ids''' ) , [additional_special_token_id] )
def __lowerCamelCase ( self : str ) ->Tuple:
pass
def __lowerCamelCase ( self : Dict ) ->Any:
pass
def __lowerCamelCase ( self : Tuple ) ->Union[str, Any]:
pass
def __lowerCamelCase ( self : Optional[int] ) ->Optional[int]:
pass
def __lowerCamelCase ( self : List[Any] ) ->Tuple:
pass
def __lowerCamelCase ( self : List[str] ) ->List[Any]:
pass
def __lowerCamelCase ( self : Union[str, Any] ) ->Any:
pass
def __lowerCamelCase ( self : Optional[int] ) ->List[Any]:
pass
| 315 |
'''simple docstring'''
import re
import string
import numpy as np
import datasets
UpperCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n'
UpperCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n'
UpperCAmelCase = '\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case( datasets.Metric ):
'''simple docstring'''
def __snake_case ( self ) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , reference_urls=[] , )
def __snake_case ( self , A_ , A_ , A_=None , A_=False , A_=False , A_=False , ) -> List[Any]:
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
lowerCAmelCase = np.array([re.sub(A_ , """""" , A_ ) for x in predictions] )
lowerCAmelCase = np.array([re.sub(A_ , """""" , A_ ) for x in references] )
else:
lowerCAmelCase = np.asarray(A_ )
lowerCAmelCase = np.asarray(A_ )
if ignore_case:
lowerCAmelCase = np.char.lower(A_ )
lowerCAmelCase = np.char.lower(A_ )
if ignore_punctuation:
lowerCAmelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation )
lowerCAmelCase = np.char.translate(A_ , table=A_ )
lowerCAmelCase = np.char.translate(A_ , table=A_ )
if ignore_numbers:
lowerCAmelCase = string.digits.maketrans("""""" , """""" , string.digits )
lowerCAmelCase = np.char.translate(A_ , table=A_ )
lowerCAmelCase = np.char.translate(A_ , table=A_ )
lowerCAmelCase = predictions == references
return {"exact_match": np.mean(A_ ) * 100} | 433 | 0 |
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class _lowerCamelCase ( UpperCamelCase ):
"""simple docstring"""
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->float:
'''simple docstring'''
return 0.0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A_ : Optional[int] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
A_ : int = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A_ : List[str] = 512
A_ : List[Any] = [1] + [0] * (size - 1)
A_ : str = [filter_type.process(SCREAMING_SNAKE_CASE ) for item in inputs]
A_ : str = [0] * (samplerate - size) # zero-padding
outputs += filler
A_ : Tuple = np.abs(np.fft.fft(SCREAMING_SNAKE_CASE ) )
A_ : Any = 20 * np.logaa(SCREAMING_SNAKE_CASE )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
# Display within reasonable bounds
A_ : Optional[Any] = get_bounds(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel('''Gain (dB)''' )
plt.plot(SCREAMING_SNAKE_CASE )
plt.show()
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A_ : Dict = 512
A_ : Tuple = [1] + [0] * (size - 1)
A_ : Union[str, Any] = [filter_type.process(SCREAMING_SNAKE_CASE ) for item in inputs]
A_ : Optional[int] = [0] * (samplerate - size) # zero-padding
outputs += filler
A_ : Dict = np.angle(np.fft.fft(SCREAMING_SNAKE_CASE ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel('''Phase shift (Radians)''' )
plt.plot(np.unwrap(SCREAMING_SNAKE_CASE , -2 * pi ) )
plt.show()
| 152 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class _lowerCamelCase ( UpperCamelCase ):
"""simple docstring"""
snake_case = 42
snake_case = 42
snake_case = None
class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
snake_case = 2
@register_to_config
def __init__( self , _SCREAMING_SNAKE_CASE = 0.0_2 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 1.0_0_7 , _SCREAMING_SNAKE_CASE = 80 , _SCREAMING_SNAKE_CASE = 0.0_5 , _SCREAMING_SNAKE_CASE = 50 , )->Optional[Any]:
'''simple docstring'''
A_ : Tuple = sigma_max
# setable values
A_ : int = None
A_ : np.IntTensor = None
A_ : torch.FloatTensor = None # sigma(t_i)
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->torch.FloatTensor:
'''simple docstring'''
return sample
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[Any]:
'''simple docstring'''
A_ : int = num_inference_steps
A_ : List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy()
A_ : Optional[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
A_ : Any = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
A_ : Any = torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=_SCREAMING_SNAKE_CASE )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[torch.FloatTensor, float]:
'''simple docstring'''
if self.config.s_min <= sigma <= self.config.s_max:
A_ : int = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
A_ : Tuple = 0
# sample eps ~ N(0, S_noise^2 * I)
A_ : Tuple = self.config.s_noise * randn_tensor(sample.shape , generator=_SCREAMING_SNAKE_CASE ).to(sample.device )
A_ : Any = sigma + gamma * sigma
A_ : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A_ : Dict = sample_hat + sigma_hat * model_output
A_ : Optional[int] = (sample_hat - pred_original_sample) / sigma_hat
A_ : Dict = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A_ : Any = sample_prev + sigma_prev * model_output
A_ : str = (sample_prev - pred_original_sample) / sigma_prev
A_ : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Tuple:
'''simple docstring'''
raise NotImplementedError()
| 152 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Union[str, Any] = {
"""configuration_x_clip""": [
"""XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""XCLIPConfig""",
"""XCLIPTextConfig""",
"""XCLIPVisionConfig""",
],
"""processing_x_clip""": ["""XCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
"""XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XCLIPModel""",
"""XCLIPPreTrainedModel""",
"""XCLIPTextModel""",
"""XCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 671 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase : Dict = logging.get_logger(__name__)
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Optional[int] = b.T
SCREAMING_SNAKE_CASE_: Dict = np.sum(np.square(_UpperCAmelCase ) , axis=1 )
SCREAMING_SNAKE_CASE_: Tuple = np.sum(np.square(_UpperCAmelCase ) , axis=0 )
SCREAMING_SNAKE_CASE_: List[Any] = np.matmul(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Dict = aa[:, None] - 2 * ab + ba[None, :]
return d
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: int = x.reshape(-1 , 3 )
SCREAMING_SNAKE_CASE_: Tuple = squared_euclidean_distance(_UpperCAmelCase , _UpperCAmelCase )
return np.argmin(_UpperCAmelCase , axis=1 )
class __lowercase ( UpperCAmelCase_ ):
"""simple docstring"""
_UpperCAmelCase : int = ['''pixel_values''']
def __init__( self : Tuple , lowerCAmelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ):
super().__init__(**lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Any = size if size is not None else {"height": 256, "width": 256}
SCREAMING_SNAKE_CASE_: Tuple = get_size_dict(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Tuple = np.array(lowerCAmelCase__) if clusters is not None else None
SCREAMING_SNAKE_CASE_: Dict = do_resize
SCREAMING_SNAKE_CASE_: str = size
SCREAMING_SNAKE_CASE_: List[Any] = resample
SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize
SCREAMING_SNAKE_CASE_: Dict = do_color_quantize
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ):
SCREAMING_SNAKE_CASE_: List[str] = get_size_dict(lowerCAmelCase__)
if "height" not in size or "width" not in size:
raise ValueError(F"Size dictionary must contain both height and width keys. Got {size.keys()}")
return resize(
lowerCAmelCase__ , size=(size["height"], size["width"]) , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , ):
SCREAMING_SNAKE_CASE_: str = rescale(image=lowerCAmelCase__ , scale=1 / 127.5 , data_format=lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[int] = image - 1
return image
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **lowerCAmelCase__ : Union[str, Any] , ):
SCREAMING_SNAKE_CASE_: Tuple = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE_: Optional[int] = size if size is not None else self.size
SCREAMING_SNAKE_CASE_: Dict = get_size_dict(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[str] = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE_: int = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE_: List[str] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
SCREAMING_SNAKE_CASE_: Tuple = clusters if clusters is not None else self.clusters
SCREAMING_SNAKE_CASE_: Optional[int] = np.array(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[int] = make_list_of_images(lowerCAmelCase__)
if not valid_images(lowerCAmelCase__):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray.")
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_color_quantize and clusters is None:
raise ValueError("Clusters must be specified if do_color_quantize is True.")
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE_: Union[str, Any] = [to_numpy_array(lowerCAmelCase__) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE_: Optional[Any] = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE_: str = [self.normalize(image=lowerCAmelCase__) for image in images]
if do_color_quantize:
SCREAMING_SNAKE_CASE_: Any = [to_channel_dimension_format(lowerCAmelCase__ , ChannelDimension.LAST) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
SCREAMING_SNAKE_CASE_: List[Any] = np.array(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[str] = color_quantize(lowerCAmelCase__ , lowerCAmelCase__).reshape(images.shape[:-1])
# flatten to (batch_size, height*width)
SCREAMING_SNAKE_CASE_: str = images.shape[0]
SCREAMING_SNAKE_CASE_: Tuple = images.reshape(lowerCAmelCase__ , -1)
# We need to convert back to a list of images to keep consistent behaviour across processors.
SCREAMING_SNAKE_CASE_: str = list(lowerCAmelCase__)
else:
SCREAMING_SNAKE_CASE_: Dict = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images]
SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__)
| 671 | 1 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE : int = {
'''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''',
}
class UpperCAmelCase__ ( A__ ):
"""simple docstring"""
a = "deta"
a = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : str , __lowerCamelCase : int=None , __lowerCamelCase : List[str]=900 , __lowerCamelCase : int=2048 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Optional[int]=2048 , __lowerCamelCase : Optional[int]=8 , __lowerCamelCase : str=6 , __lowerCamelCase : int=1024 , __lowerCamelCase : Any=8 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any="relu" , __lowerCamelCase : int=256 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : int=0.02 , __lowerCamelCase : Union[str, Any]=1.0 , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : List[Any]="sine" , __lowerCamelCase : Union[str, Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : int=4 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=300 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Optional[Any]=5 , __lowerCamelCase : str=2 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Dict=5 , __lowerCamelCase : int=2 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : List[str]=0.25 , **__lowerCamelCase : Any , ) -> List[Any]:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] )
else:
if isinstance(__lowerCamelCase , __lowerCamelCase ):
SCREAMING_SNAKE_CASE__ = backbone_config.pop('''model_type''' )
SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING[backbone_model_type]
SCREAMING_SNAKE_CASE__ = config_class.from_dict(__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = backbone_config
SCREAMING_SNAKE_CASE__ = num_queries
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = d_model
SCREAMING_SNAKE_CASE__ = encoder_ffn_dim
SCREAMING_SNAKE_CASE__ = encoder_layers
SCREAMING_SNAKE_CASE__ = encoder_attention_heads
SCREAMING_SNAKE_CASE__ = decoder_ffn_dim
SCREAMING_SNAKE_CASE__ = decoder_layers
SCREAMING_SNAKE_CASE__ = decoder_attention_heads
SCREAMING_SNAKE_CASE__ = dropout
SCREAMING_SNAKE_CASE__ = attention_dropout
SCREAMING_SNAKE_CASE__ = activation_dropout
SCREAMING_SNAKE_CASE__ = activation_function
SCREAMING_SNAKE_CASE__ = init_std
SCREAMING_SNAKE_CASE__ = init_xavier_std
SCREAMING_SNAKE_CASE__ = encoder_layerdrop
SCREAMING_SNAKE_CASE__ = auxiliary_loss
SCREAMING_SNAKE_CASE__ = position_embedding_type
# deformable attributes
SCREAMING_SNAKE_CASE__ = num_feature_levels
SCREAMING_SNAKE_CASE__ = encoder_n_points
SCREAMING_SNAKE_CASE__ = decoder_n_points
SCREAMING_SNAKE_CASE__ = two_stage
SCREAMING_SNAKE_CASE__ = two_stage_num_proposals
SCREAMING_SNAKE_CASE__ = with_box_refine
SCREAMING_SNAKE_CASE__ = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
SCREAMING_SNAKE_CASE__ = class_cost
SCREAMING_SNAKE_CASE__ = bbox_cost
SCREAMING_SNAKE_CASE__ = giou_cost
# Loss coefficients
SCREAMING_SNAKE_CASE__ = mask_loss_coefficient
SCREAMING_SNAKE_CASE__ = dice_loss_coefficient
SCREAMING_SNAKE_CASE__ = bbox_loss_coefficient
SCREAMING_SNAKE_CASE__ = giou_loss_coefficient
SCREAMING_SNAKE_CASE__ = eos_coefficient
SCREAMING_SNAKE_CASE__ = focal_alpha
super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase )
@property
def lowercase_ ( self : Dict ) -> int:
return self.encoder_attention_heads
@property
def lowercase_ ( self : Optional[int] ) -> int:
return self.d_model
def lowercase_ ( self : Union[str, Any] ) -> Dict:
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE__ = self.backbone_config.to_dict()
SCREAMING_SNAKE_CASE__ = self.__class__.model_type
return output
| 721 |
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = []
for data in source_data:
for i, el in enumerate(_A ):
if len(_A ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(_A ) )
return data_lists
def UpperCAmelCase_ ( _A , _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = []
for dlist, weight in zip(_A , _A ):
SCREAMING_SNAKE_CASE__ = min(_A )
SCREAMING_SNAKE_CASE__ = max(_A )
SCREAMING_SNAKE_CASE__ = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
SCREAMING_SNAKE_CASE__ = F'''Invalid weight of {weight:f} provided'''
raise ValueError(_A )
score_lists.append(_A )
return score_lists
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(_A ):
SCREAMING_SNAKE_CASE__ = final_scores[j] + ele
return final_scores
def UpperCAmelCase_ ( _A , _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = get_data(_A )
SCREAMING_SNAKE_CASE__ = calculate_each_score(_A , _A )
SCREAMING_SNAKE_CASE__ = generate_final_scores(_A )
# append scores to source data
for i, ele in enumerate(_A ):
source_data[i].append(_A )
return source_data
| 472 | 0 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Any = {
'Visual-Attention-Network/van-base': (
'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json'
),
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "van"
def __init__( self : int ,A : str=2_24 ,A : int=3 ,A : Optional[Any]=[7, 3, 3, 3] ,A : Tuple=[4, 2, 2, 2] ,A : Union[str, Any]=[64, 1_28, 3_20, 5_12] ,A : Optional[int]=[3, 3, 12, 3] ,A : Optional[int]=[8, 8, 4, 4] ,A : Any="gelu" ,A : Union[str, Any]=0.02 ,A : Union[str, Any]=1E-6 ,A : Dict=1E-2 ,A : str=0.0 ,A : Optional[int]=0.0 ,**A : List[Any] ,):
super().__init__(**A )
__A = image_size
__A = num_channels
__A = patch_sizes
__A = strides
__A = hidden_sizes
__A = depths
__A = mlp_ratios
__A = hidden_act
__A = initializer_range
__A = layer_norm_eps
__A = layer_scale_init_value
__A = drop_path_rate
__A = dropout_rate
| 55 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
__magic_name__ : Optional[int] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = ['''pixel_values''']
def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ):
super().__init__(**lowerCamelCase )
_snake_case = size if size is not None else {"shortest_edge": 256}
_snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase )
_snake_case = crop_size if crop_size is not None else {"height": 224, "width": 224}
_snake_case = get_size_dict(lowerCamelCase )
_snake_case = do_resize
_snake_case = size
_snake_case = resample
_snake_case = do_center_crop
_snake_case = crop_size
_snake_case = do_rescale
_snake_case = rescale_factor
_snake_case = do_normalize
_snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = None , **lowerCamelCase , ):
_snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
_snake_case = get_resize_output_image_size(lowerCamelCase , size=size["shortest_edge"] , default_to_square=lowerCamelCase )
return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase )
def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ):
_snake_case = get_size_dict(lowerCamelCase )
return center_crop(lowerCamelCase , size=(size["height"], size["width"]) , data_format=lowerCamelCase , **lowerCamelCase )
def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ):
return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase )
def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ):
return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase )
def UpperCamelCase( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ):
_snake_case = do_resize if do_resize is not None else self.do_resize
_snake_case = size if size is not None else self.size
_snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase )
_snake_case = resample if resample is not None else self.resample
_snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop
_snake_case = crop_size if crop_size is not None else self.crop_size
_snake_case = get_size_dict(lowerCamelCase )
_snake_case = do_rescale if do_rescale is not None else self.do_rescale
_snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
_snake_case = do_normalize if do_normalize is not None else self.do_normalize
_snake_case = image_mean if image_mean is not None else self.image_mean
_snake_case = image_std if image_std is not None else self.image_std
_snake_case = make_list_of_images(lowerCamelCase )
if not valid_images(lowerCamelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
_snake_case = [to_numpy_array(lowerCamelCase ) for image in images]
if do_resize:
_snake_case = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images]
if do_center_crop:
_snake_case = [self.center_crop(image=lowerCamelCase , size=lowerCamelCase ) for image in images]
if do_rescale:
_snake_case = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images]
if do_normalize:
_snake_case = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images]
_snake_case = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images]
_snake_case = {"pixel_values": images}
return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
| 672 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCAmelCase : Tuple = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Optional[int] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
_UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 706 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class lowercase :
__SCREAMING_SNAKE_CASE : int
__SCREAMING_SNAKE_CASE : Node | None = None
__SCREAMING_SNAKE_CASE : Node | None = None
def __lowerCamelCase ( ):
'''simple docstring'''
snake_case_ = Node(1 )
snake_case_ = Node(2 )
snake_case_ = Node(3 )
snake_case_ = Node(4 )
snake_case_ = Node(5 )
return tree
def __lowerCamelCase ( UpperCamelCase__ ):
'''simple docstring'''
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def __lowerCamelCase ( UpperCamelCase__ ):
'''simple docstring'''
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def __lowerCamelCase ( UpperCamelCase__ ):
'''simple docstring'''
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def __lowerCamelCase ( UpperCamelCase__ ):
'''simple docstring'''
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def __lowerCamelCase ( UpperCamelCase__ ):
'''simple docstring'''
snake_case_ = []
if root is None:
return output
snake_case_ = deque([root] )
while process_queue:
snake_case_ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
snake_case_ = []
def populate_output(UpperCamelCase__ , UpperCamelCase__ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(UpperCamelCase__ , UpperCamelCase__ )
return output
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
snake_case_ = []
def populate_output(UpperCamelCase__ , UpperCamelCase__ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(UpperCamelCase__ , UpperCamelCase__ )
return output
def __lowerCamelCase ( UpperCamelCase__ ):
'''simple docstring'''
if root is None:
return []
snake_case_ = []
snake_case_ = 0
snake_case_ = height(UpperCamelCase__ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(UpperCamelCase__ , UpperCamelCase__ ) )
snake_case_ = 1
else:
output.append(get_nodes_from_right_to_left(UpperCamelCase__ , UpperCamelCase__ ) )
snake_case_ = 0
return output
def __lowerCamelCase ( ): # Main function for testing.
'''simple docstring'''
snake_case_ = make_tree()
print(F'''In-order Traversal: {inorder(UpperCamelCase__ )}''' )
print(F'''Pre-order Traversal: {preorder(UpperCamelCase__ )}''' )
print(F'''Post-order Traversal: {postorder(UpperCamelCase__ )}''' , '\n' )
print(F'''Height of Tree: {height(UpperCamelCase__ )}''' , '\n' )
print('Complete Level Order Traversal: ' )
print(level_order(UpperCamelCase__ ) , '\n' )
print('Level-wise order Traversal: ' )
for level in range(1 , height(UpperCamelCase__ ) + 1 ):
print(F'''Level {level}:''' , get_nodes_from_left_to_right(UpperCamelCase__ , level=UpperCamelCase__ ) )
print('\nZigZag order Traversal: ' )
print(zigzag(UpperCamelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 108 | 0 |
'''simple docstring'''
def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> list:
"""simple docstring"""
def merge(_UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(_SCREAMING_SNAKE_CASE ) <= 1:
return collection
_SCREAMING_SNAKE_CASE =len(_SCREAMING_SNAKE_CASE ) // 2
return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase : Tuple = input("Enter numbers separated by a comma:\n").strip()
lowerCamelCase : Tuple = [int(item) for item in user_input.split(",")]
print(*merge_sort(unsorted), sep=",")
| 405 |
from collections.abc import Callable
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
_A = a
_A = b
if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function
return a
elif function(_SCREAMING_SNAKE_CASE ) == 0:
return b
elif (
function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
_A = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_SCREAMING_SNAKE_CASE ) == 0:
return mid
elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0:
_A = mid
else:
_A = mid
_A = start + (end - start) / 2.0
return mid
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 27 | 0 |
'''simple docstring'''
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def __lowerCamelCase ( _UpperCamelCase : Tuple ):
'''simple docstring'''
UpperCAmelCase_ = os.path.join(args.tf_model_dir , '''parameters.json''' )
UpperCAmelCase_ = json.loads(open(_UpperCamelCase ).read() )
if not params:
raise ValueError(
F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" )
if not args.output.endswith('''.pt''' ):
UpperCAmelCase_ = args.output + '''.pt'''
UpperCAmelCase_ = OrderedDict()
with tf.device('''/CPU:0''' ):
UpperCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir )
UpperCAmelCase_ = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
UpperCAmelCase_ = reader.get_tensor(_UpperCamelCase ).astype(np.floataa )
if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ):
continue
if key_name.startswith('''pasts/''' ):
if key_name.startswith('''pasts/mlp''' ):
UpperCAmelCase_ = int(key_name[9] )
elif key_name.startswith('''pasts/out''' ):
UpperCAmelCase_ = 8
UpperCAmelCase_ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.startswith('''model/moe''' ):
UpperCAmelCase_ = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/switch_gating/kernel''' ):
UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.endswith('''/softmlp/kernel''' ):
UpperCAmelCase_ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ):
UpperCAmelCase_ = key_name[-9:-7]
for i in range(16 ):
UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer)
UpperCAmelCase_ = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.startswith('''model/mlp''' ):
UpperCAmelCase_ = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/p1/kernel''' ):
UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.endswith('''/p1/bias''' ):
UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.endswith('''/p2/kernel''' ):
UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.endswith('''/p2/bias''' ):
UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.startswith('''model/ln''' ):
UpperCAmelCase_ = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
UpperCAmelCase_ = '''model.blocks.%d.feed_forward.norm.bias''' % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.endswith('''/g''' ):
UpperCAmelCase_ = '''model.blocks.%d.feed_forward.norm.weight''' % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.startswith('''model/att''' ):
UpperCAmelCase_ = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/qkv/kernel''' ):
UpperCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
UpperCAmelCase_ = state[:, 0, :, :]
UpperCAmelCase_ = state[:, 1, :, :]
UpperCAmelCase_ = state[:, 2, :, :]
UpperCAmelCase_ = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
UpperCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
UpperCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.endswith('''/o/kernel''' ):
UpperCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player
UpperCAmelCase_ = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.startswith('''model/an''' ):
UpperCAmelCase_ = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
UpperCAmelCase_ = '''model.blocks.%d.self_attn.norm.bias''' % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.endswith('''/g''' ):
UpperCAmelCase_ = '''model.blocks.%d.self_attn.norm.weight''' % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif (
key_name.startswith('''model/wte''' )
or key_name.startswith('''model/wpe''' )
or key_name.startswith('''model/ete''' )
):
UpperCAmelCase_ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[
key_name[-3:]
]
UpperCAmelCase_ = '''model.%s.weight''' % nlayer
UpperCAmelCase_ = vnp.copy() # same in embedded
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
if key_name.startswith('''model/wte''' ):
UpperCAmelCase_ = '''lm_head.weight'''
UpperCAmelCase_ = vnp.copy() # same in embedded
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name.startswith('''model/wob''' ):
UpperCAmelCase_ = '''final_logits_bias'''
UpperCAmelCase_ = vnp.copy() # same in embedded
UpperCAmelCase_ = state.reshape((1, -1) )
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name == "model/dense/kernel":
UpperCAmelCase_ = '''model.last_project.weight'''
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
elif key_name == "model/dense_1/bias":
UpperCAmelCase_ = '''model.last_project.bias'''
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(_UpperCamelCase )
torch.save(_UpperCamelCase , args.output )
if __name__ == "__main__":
lowercase__ : int = argparse.ArgumentParser(
description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model")
parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model")
lowercase__ : List[str] = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 708 | '''simple docstring'''
import re
def __lowerCamelCase ( _UpperCamelCase : str ):
'''simple docstring'''
return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )]
def __lowerCamelCase ( _UpperCamelCase : str ):
'''simple docstring'''
UpperCAmelCase_ = split_input(str_ )
return "".join(
[''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : bool , _UpperCamelCase : str ):
'''simple docstring'''
try:
UpperCAmelCase_ = split_input(_UpperCamelCase )
if upper:
UpperCAmelCase_ = ''''''.join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
UpperCAmelCase_ = ''''''.join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def __lowerCamelCase ( _UpperCamelCase : str ):
'''simple docstring'''
return to_simple_case(_UpperCamelCase )
def __lowerCamelCase ( _UpperCamelCase : str ):
'''simple docstring'''
try:
UpperCAmelCase_ = to_simple_case(_UpperCamelCase )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : bool ):
'''simple docstring'''
return to_complex_case(_UpperCamelCase , _UpperCamelCase , '''_''' )
def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : bool ):
'''simple docstring'''
return to_complex_case(_UpperCamelCase , _UpperCamelCase , '''-''' )
if __name__ == "__main__":
__import__("doctest").testmod()
| 43 | 0 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class _UpperCamelCase :
def __init__(self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=2 , lowerCamelCase__=9_9 , lowerCamelCase__=0 , lowerCamelCase__=3_2 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=2 , lowerCamelCase__=0.0_2 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__="last" , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=0 , ):
"""simple docstring"""
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_input_lengths
A__ = use_token_type_ids
A__ = use_labels
A__ = gelu_activation
A__ = sinusoidal_embeddings
A__ = causal
A__ = asm
A__ = n_langs
A__ = vocab_size
A__ = n_special
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_sequence_label_size
A__ = initializer_range
A__ = num_labels
A__ = num_choices
A__ = summary_type
A__ = use_proj
A__ = scope
A__ = bos_token_id
def A (self ):
"""simple docstring"""
A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ = random_attention_mask([self.batch_size, self.seq_length] )
A__ = None
if self.use_input_lengths:
A__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
A__ = None
if self.use_token_type_ids:
A__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
A__ = None
A__ = None
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ = ids_tensor([self.batch_size] , 2 ).float()
A__ = ids_tensor([self.batch_size] , self.num_choices )
A__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def A (self ):
"""simple docstring"""
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
A__ = XLMModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
A__ = model(lowerCamelCase__ , lengths=lowerCamelCase__ , langs=lowerCamelCase__ )
A__ = model(lowerCamelCase__ , langs=lowerCamelCase__ )
A__ = model(lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
A__ = XLMWithLMHeadModel(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
A__ = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
A__ = XLMForQuestionAnsweringSimple(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
A__ = model(lowerCamelCase__ )
A__ = model(lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ )
A__ = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
A__ = XLMForQuestionAnswering(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
A__ = model(lowerCamelCase__ )
A__ = model(
lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , cls_index=lowerCamelCase__ , is_impossible=lowerCamelCase__ , p_mask=lowerCamelCase__ , )
A__ = model(
lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , cls_index=lowerCamelCase__ , is_impossible=lowerCamelCase__ , )
((A__) ,) = result_with_labels.to_tuple()
A__ = model(lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ )
((A__) ,) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
A__ = XLMForSequenceClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
A__ = model(lowerCamelCase__ )
A__ = model(lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
A__ = self.num_labels
A__ = XLMForTokenClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
A__ = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
A__ = self.num_choices
A__ = XLMForMultipleChoice(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
A__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ = model(
lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A (self ):
"""simple docstring"""
A__ = self.prepare_config_and_inputs()
(
(
A__
) ,(
A__
) ,(
A__
) ,(
A__
) ,(
A__
) ,(
A__
) ,(
A__
) ,(
A__
) ,(
A__
) ,
) = config_and_inputs
A__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class _UpperCamelCase ( __snake_case , __snake_case , __snake_case , unittest.TestCase):
__lowerCamelCase = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
__lowerCamelCase = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__lowerCamelCase = (
{
"feature-extraction": XLMModel,
"fill-mask": XLMWithLMHeadModel,
"question-answering": XLMForQuestionAnsweringSimple,
"text-classification": XLMForSequenceClassification,
"text-generation": XLMWithLMHeadModel,
"token-classification": XLMForTokenClassification,
"zero-shot": XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ):
"""simple docstring"""
A__ = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
A__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ )
A__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ )
return inputs_dict
def A (self ):
"""simple docstring"""
A__ = XLMModelTester(self )
A__ = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=3_7 )
def A (self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def A (self ):
"""simple docstring"""
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*lowerCamelCase__ )
def A (self ):
"""simple docstring"""
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase__ )
def A (self ):
"""simple docstring"""
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase__ )
def A (self ):
"""simple docstring"""
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*lowerCamelCase__ )
def A (self ):
"""simple docstring"""
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase__ )
def A (self ):
"""simple docstring"""
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase__ )
def A (self ):
"""simple docstring"""
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase__ )
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=1 ):
"""simple docstring"""
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
self.assertListEqual(
[isinstance(lowerCamelCase__ , lowerCamelCase__ ) for iter_attentions in attentions] , [True] * len(lowerCamelCase__ ) )
self.assertEqual(len(lowerCamelCase__ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(lowerCamelCase__ ):
# adds PAD dummy token
A__ = min_length + idx + 1
A__ = min_length + idx + 1
A__ = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCamelCase__ ) )
def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=1 ):
"""simple docstring"""
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
self.assertListEqual(
[isinstance(lowerCamelCase__ , lowerCamelCase__ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCamelCase__ ) , )
self.assertEqual(len(lowerCamelCase__ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(lowerCamelCase__ ):
# adds PAD dummy token
A__ = min_length + idx + 1
A__ = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCamelCase__ ) , )
pass
@slow
def A (self ):
"""simple docstring"""
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = XLMModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
@require_torch
class _UpperCamelCase ( unittest.TestCase):
@slow
def A (self ):
"""simple docstring"""
A__ = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(lowerCamelCase__ )
A__ = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCamelCase__ ) # the president
A__ = [
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
1_4,
4_4_7,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
A__ = model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCamelCase__ )
| 574 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCamelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCamelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCamelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCamelCase__ = "\n{0} = None\n"
lowerCamelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCamelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Tuple ):
A__ = _re_backend.findall(UpperCamelCase )
if len(UpperCamelCase ) == 0:
return None
return "_and_".join(UpperCamelCase )
def _SCREAMING_SNAKE_CASE ( ):
with open(os.path.join(UpperCamelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
A__ = f.readlines()
# Get to the point we do the actual imports for type checking
A__ = 0
A__ = {}
# Go through the end of the file
while line_index < len(UpperCamelCase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
A__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("""else:""" ):
line_index += 1
line_index += 1
A__ = []
# Until we unindent, add backend objects to the list
while line_index < len(UpperCamelCase ) and len(lines[line_index] ) > 1:
A__ = lines[line_index]
A__ = _re_single_line_import.search(UpperCamelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(UpperCamelCase ) > 0:
A__ = objects
else:
line_index += 1
return backend_specific_objects
def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] ):
if name.isupper():
return DUMMY_CONSTANT.format(UpperCamelCase )
elif name.islower():
return DUMMY_FUNCTION.format(UpperCamelCase , UpperCamelCase )
else:
return DUMMY_CLASS.format(UpperCamelCase , UpperCamelCase )
def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Any=None ):
if backend_specific_objects is None:
A__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
A__ = {}
for backend, objects in backend_specific_objects.items():
A__ = """[""" + """, """.join(F"""\"{b}\"""" for b in backend.split("""_and_""" ) ) + """]"""
A__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n"""
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(UpperCamelCase , UpperCamelCase ) for o in objects] )
A__ = dummy_file
return dummy_files
def _SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str]=False ):
A__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
A__ = {"""torch""": """pt"""}
# Locate actual dummy modules and read their content.
A__ = os.path.join(UpperCamelCase , """utils""" )
A__ = {
backend: os.path.join(UpperCamelCase , F"""dummy_{short_names.get(UpperCamelCase , UpperCamelCase )}_objects.py""" )
for backend in dummy_files.keys()
}
A__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(UpperCamelCase ):
with open(UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
A__ = f.read()
else:
A__ = """"""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"""Updating diffusers.utils.dummy_{short_names.get(UpperCamelCase , UpperCamelCase )}_objects.py as the main """
"""__init__ has new objects.""" )
with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"""The main __init__ has objects that are not present in """
F"""diffusers.utils.dummy_{short_names.get(UpperCamelCase , UpperCamelCase )}_objects.py. Run `make fix-copies` """
"""to fix this.""" )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCamelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 574 | 1 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase__ : Optional[int] =logging.get_logger(__name__)
UpperCAmelCase__ : Optional[Any] =[
['''attention''', '''attn'''],
['''encoder_attention''', '''encoder_attn'''],
['''q_lin''', '''q_proj'''],
['''k_lin''', '''k_proj'''],
['''v_lin''', '''v_proj'''],
['''out_lin''', '''out_proj'''],
['''norm_embeddings''', '''layernorm_embedding'''],
['''position_embeddings''', '''embed_positions'''],
['''embeddings''', '''embed_tokens'''],
['''ffn.lin''', '''fc'''],
]
def _lowercase ( _UpperCAmelCase ) -> int:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
lowerCamelCase =k.replace(_UpperCAmelCase , _UpperCAmelCase )
if k.startswith("""encoder""" ):
lowerCamelCase =k.replace(""".attn""" , """.self_attn""" )
lowerCamelCase =k.replace("""norm1""" , """self_attn_layer_norm""" )
lowerCamelCase =k.replace("""norm2""" , """final_layer_norm""" )
elif k.startswith("""decoder""" ):
lowerCamelCase =k.replace("""norm1""" , """self_attn_layer_norm""" )
lowerCamelCase =k.replace("""norm2""" , """encoder_attn_layer_norm""" )
lowerCamelCase =k.replace("""norm3""" , """final_layer_norm""" )
return k
def _lowercase ( _UpperCAmelCase ) -> Optional[Any]:
lowerCamelCase =[
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
lowerCamelCase =sd.pop(_UpperCAmelCase )
lowerCamelCase =k.replace("""layernorm_embedding""" , """layer_norm""" )
assert new_k not in sd
lowerCamelCase =v
UpperCAmelCase__ : int =['''START''']
@torch.no_grad()
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any:
lowerCamelCase =torch.load(_UpperCAmelCase , map_location="""cpu""" )
lowerCamelCase =model["""model"""]
lowerCamelCase =BlenderbotConfig.from_json_file(_UpperCAmelCase )
lowerCamelCase =BlenderbotForConditionalGeneration(_UpperCAmelCase )
lowerCamelCase =m.model.state_dict().keys()
lowerCamelCase =[]
lowerCamelCase ={}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
lowerCamelCase =rename_state_dict_key(_UpperCAmelCase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
lowerCamelCase =v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(_UpperCAmelCase )
m.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
m.half()
m.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''')
parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''')
parser.add_argument(
'''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use'''
)
UpperCAmelCase__ : List[str] =parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 705 |
from math import sqrt
def _lowercase ( _UpperCAmelCase ) -> int:
lowerCamelCase =0
for i in range(1 , int(sqrt(_UpperCAmelCase ) + 1 ) ):
if n % i == 0 and i != sqrt(_UpperCAmelCase ):
total += i + n // i
elif i == sqrt(_UpperCAmelCase ):
total += i
return total - n
def _lowercase ( _UpperCAmelCase = 1_00_00 ) -> int:
lowerCamelCase =sum(
i
for i in range(1 , _UpperCAmelCase )
if sum_of_divisors(sum_of_divisors(_UpperCAmelCase ) ) == i and sum_of_divisors(_UpperCAmelCase ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 269 | 0 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = 2
_lowerCamelCase : List[Any] = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(lowercase__ )
if n > 1:
factors.append(lowercase__ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod() | 630 |
"""simple docstring"""
import re
def _snake_case ( lowercase__ ):
if len(re.findall('[ATCG]' , lowercase__ ) ) != len(lowercase__ ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 630 | 1 |
'''simple docstring'''
def __UpperCamelCase( _A : int , _A : list[int] , _A : int ):
'''simple docstring'''
def count_of_possible_combinations(_A : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(_A )
def __UpperCamelCase( _A : int , _A : list[int] , _A : int ):
'''simple docstring'''
def count_of_possible_combinations_with_dp_array(
_A : int , _A : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
UpperCAmelCase__ : List[Any] = sum(
count_of_possible_combinations_with_dp_array(target - item , _A )
for item in array )
UpperCAmelCase__ : str = answer
return answer
UpperCAmelCase__ : Optional[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(_A , _A )
def __UpperCamelCase( _A : int , _A : list[int] , _A : int ):
'''simple docstring'''
UpperCAmelCase__ : Any = [0] * (target + 1)
UpperCAmelCase__ : Any = 1
for i in range(1 , target + 1 ):
for j in range(_A ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase__ : Optional[Any] = 3
UpperCamelCase__ : Optional[int] = 5
UpperCamelCase__ : Tuple = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 496 | '''simple docstring'''
import re
def __UpperCamelCase( _A : str ):
'''simple docstring'''
if len(re.findall('''[ATCG]''' , _A ) ) != len(_A ):
raise ValueError('''Invalid Strand''' )
return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 496 | 1 |