code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None , **_lowerCAmelCase ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _lowercase : Optional[Any] = model _lowercase : Optional[Any] = kwargs.get('model_save_dir' , _lowerCAmelCase ) _lowercase : Optional[Any] = kwargs.get('latest_model_name' , _lowerCAmelCase ) def __call__( self , **_lowerCAmelCase ): _lowercase : int = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def __a ( _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _lowercase : Any = 'CPUExecutionProvider' return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase ): _lowercase : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME _lowercase : Optional[int] = self.model_save_dir.joinpath(self.latest_model_name ) _lowercase : Union[str, Any] = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _lowercase : Dict = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): _lowercase : str = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def __a ( self , _lowerCAmelCase , **_lowerCAmelCase , ): if os.path.isfile(_lowerCAmelCase ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : Optional[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): _lowercase : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) _lowercase : Optional[int] = Path(_lowerCAmelCase ) # load model from hub else: # download model _lowercase : Any = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) _lowercase : Any = Path(_lowerCAmelCase ).parent _lowercase : str = Path(_lowerCAmelCase ).name _lowercase : Tuple = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : List[str] = None if len(str(_lowerCAmelCase ).split('@' ) ) == 2: _lowercase , _lowercase : List[str] = model_id.split('@' ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
66
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCAmelCase_ ( lowercase_ : Callable , lowercase_ : float , lowercase_ : float , lowercase_ : float , lowercase_ : float ): '''simple docstring''' __SCREAMING_SNAKE_CASE : int = int(np.ceil((x_end - xa) / step_size ) ) __SCREAMING_SNAKE_CASE : Dict = np.zeros((n + 1,) ) __SCREAMING_SNAKE_CASE : List[Any] = ya __SCREAMING_SNAKE_CASE : Dict = xa for k in range(lowercase_ ): __SCREAMING_SNAKE_CASE : str = y[k] + step_size * ode_func(lowercase_ , y[k] ) __SCREAMING_SNAKE_CASE : int = y[k] + ( (step_size / 2) * (ode_func(lowercase_ , y[k] ) + ode_func(x + step_size , lowercase_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
674
0
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]="attention" ): UpperCAmelCase : List[Any] = params[F"{prefix}/layers_{i}/{layer_name}/key/kernel"] UpperCAmelCase : Dict = params[F"{prefix}/layers_{i}/{layer_name}/out/kernel"] UpperCAmelCase : Optional[int] = params[F"{prefix}/layers_{i}/{layer_name}/query/kernel"] UpperCAmelCase : int = params[F"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : Optional[int]=False ): if split_mlp_wi: UpperCAmelCase : str = params[F"{prefix}/layers_{i}/mlp/wi_0/kernel"] UpperCAmelCase : List[str] = params[F"{prefix}/layers_{i}/mlp/wi_1/kernel"] UpperCAmelCase : List[str] = (wi_a, wi_a) else: UpperCAmelCase : Tuple = params[F"{prefix}/layers_{i}/mlp/wi/kernel"] UpperCAmelCase : int = params[F"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : int , UpperCamelCase : Any ): return params[F"{prefix}/layers_{i}/{layer_name}/scale"] def _snake_case ( UpperCamelCase : dict , *, UpperCamelCase : int , UpperCamelCase : bool ): UpperCAmelCase : List[Any] = traverse_util.flatten_dict(variables["""target"""] ) UpperCAmelCase : Union[str, Any] = {"""/""".join(UpperCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase : List[Any] = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , UpperCamelCase ) UpperCAmelCase : List[Any] = collections.OrderedDict() # Shared embeddings. UpperCAmelCase : str = old["""token_embedder/embedding"""] # Encoder. for i in range(UpperCamelCase ): # Block i, layer 0 (Self Attention). UpperCAmelCase : Optional[int] = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , """encoder""" , """pre_attention_layer_norm""" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = tax_attention_lookup(UpperCamelCase , UpperCamelCase , """encoder""" , """attention""" ) UpperCAmelCase : Tuple = layer_norm UpperCAmelCase : List[str] = k.T UpperCAmelCase : Optional[int] = o.T UpperCAmelCase : int = q.T UpperCAmelCase : Optional[int] = v.T # Block i, layer 1 (MLP). UpperCAmelCase : int = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , """encoder""" , """pre_mlp_layer_norm""" ) UpperCAmelCase , UpperCAmelCase : Any = tax_mlp_lookup(UpperCamelCase , UpperCamelCase , """encoder""" , UpperCamelCase ) UpperCAmelCase : Any = layer_norm if split_mlp_wi: UpperCAmelCase : Tuple = wi[0].T UpperCAmelCase : Optional[int] = wi[1].T else: UpperCAmelCase : int = wi.T UpperCAmelCase : Union[str, Any] = wo.T UpperCAmelCase : int = old[ """encoder/relpos_bias/rel_embedding""" ].T UpperCAmelCase : List[str] = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(UpperCamelCase ): # Block i, layer 0 (Self Attention). UpperCAmelCase : str = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , """pre_self_attention_layer_norm""" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = tax_attention_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , """self_attention""" ) UpperCAmelCase : int = layer_norm UpperCAmelCase : List[str] = k.T UpperCAmelCase : str = o.T UpperCAmelCase : Optional[Any] = q.T UpperCAmelCase : Optional[Any] = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase : Any = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , """pre_cross_attention_layer_norm""" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = tax_attention_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , """encoder_decoder_attention""" ) UpperCAmelCase : List[str] = layer_norm UpperCAmelCase : Optional[int] = k.T UpperCAmelCase : List[Any] = o.T UpperCAmelCase : Optional[int] = q.T UpperCAmelCase : Tuple = v.T # Block i, layer 2 (MLP). UpperCAmelCase : str = tax_layer_norm_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , """pre_mlp_layer_norm""" ) UpperCAmelCase , UpperCAmelCase : str = tax_mlp_lookup(UpperCamelCase , UpperCamelCase , """decoder""" , UpperCamelCase ) UpperCAmelCase : Union[str, Any] = layer_norm if split_mlp_wi: UpperCAmelCase : Union[str, Any] = wi[0].T UpperCAmelCase : Union[str, Any] = wi[1].T else: UpperCAmelCase : Tuple = wi.T UpperCAmelCase : List[Any] = wo.T UpperCAmelCase : Union[str, Any] = old["""decoder/decoder_norm/scale"""] UpperCAmelCase : Optional[int] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def _snake_case ( UpperCamelCase : Union[str, Any] , UpperCamelCase : bool ): UpperCAmelCase : Any = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase : Tuple = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase : Optional[Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) UpperCAmelCase : Optional[int] = state_dict["""shared.weight"""] return state_dict def _snake_case ( UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Any ): UpperCAmelCase : int = checkpoints.load_tax_checkpoint(UpperCamelCase ) UpperCAmelCase : Dict = convert_tax_to_pytorch(UpperCamelCase , num_layers=config.num_layers , is_encoder_only=UpperCamelCase ) UpperCAmelCase : Union[str, Any] = make_state_dict(UpperCamelCase , UpperCamelCase ) model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : bool = False ): UpperCAmelCase : str = TaConfig.from_json_file(UpperCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase : List[str] = TaEncoderModel(UpperCamelCase ) else: UpperCAmelCase : str = TaForConditionalGeneration(UpperCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(UpperCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCamelCase ) print("""Done""" ) if __name__ == "__main__": A: Dict = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) A: List[str] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
359
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): UpperCAmelCase : List[str] = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Tuple = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Any = """sgugger/tiny-distilbert-classification""" UpperCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , only_pretrain_model=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : List[str] = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any = """sshleifer/tiny-gpt2""" UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , torchscript=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Dict = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] = """sshleifer/tiny-gpt2""" UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , fpaa=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] = """sshleifer/tiny-gpt2""" UpperCAmelCase : str = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) # set architectures equal to `None` UpperCAmelCase : str = None UpperCAmelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = PyTorchBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) UpperCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple = """sshleifer/tiny-gpt2""" UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Dict = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] = """sshleifer/tiny-gpt2""" UpperCAmelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase : str = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Union[str, Any] = PyTorchBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) UpperCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """sshleifer/tinier_bart""" UpperCAmelCase : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = PyTorchBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) UpperCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any = """sshleifer/tiny-gpt2""" UpperCAmelCase : List[str] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = PyTorchBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) UpperCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] = """sshleifer/tinier_bart""" UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : int = PyTorchBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) UpperCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , save_to_csv=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , """train_time.csv""" ) , env_info_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , """env.csv""" ) , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Union[str, Any] = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) benchmark.run() self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """env.csv""" ) ).exists() ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_SCREAMING_SNAKE_CASE ): self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """sequential""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """cumulative""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """current""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_SCREAMING_SNAKE_CASE , """log.txt""" ) , log_print=_SCREAMING_SNAKE_CASE , trace_memory_line_by_line=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = PyTorchBenchmark(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , """log.txt""" ) ).exists() )
359
1
def A_ ( lowercase_ ) -> Optional[int]: _snake_case : int = 0 for ch in input_str: _snake_case : Tuple = ord(lowercase__ ) _snake_case : Any = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
326
'''simple docstring''' import operator as op def snake_case_ ( lowercase__ ): UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Any = lambda lowercase__ , lowercase__ : int(x / y ) # noqa: E731 integer division operation UpperCAmelCase__ : Any = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(1_2 ) , "Stack" , sep=" | " ) print("-" * (3_0 + len(lowercase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(1_2 ) , ",".join(lowercase__ ) , sep=" | " ) else: UpperCAmelCase__ : str = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(1_2 ) , ",".join(lowercase__ ) , sep=" | " ) UpperCAmelCase__ : List[Any] = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(1_2 ) , ",".join(lowercase__ ) , sep=" | " ) stack.append( str(opr[x](int(lowercase__ ) , int(lowercase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(1_2 ) , ",".join(lowercase__ ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
199
0
from __future__ import annotations import math def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Dict = u for i in range(1 , SCREAMING_SNAKE_CASE_ ): A : Optional[Any] = temp * (u - i) return temp def UpperCAmelCase ( ): A : Union[str, Any] = int(input("enter the numbers of values: " ) ) A : list[list[float]] = [] for _ in range(SCREAMING_SNAKE_CASE_ ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): y[i].append(SCREAMING_SNAKE_CASE_ ) A : Optional[int] = 0 print("enter the values of parameters in a list: " ) A : Optional[int] = list(map(SCREAMING_SNAKE_CASE_ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(SCREAMING_SNAKE_CASE_ ): A : Union[str, Any] = float(input() ) A : List[str] = int(input("enter the value to interpolate: " ) ) A : Any = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE_ ): for j in range(n - i ): A : Optional[Any] = y[j + 1][i - 1] - y[j][i - 1] A : int = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE_ ): summ += (ucal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE_ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
701
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Optional[int]: self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: A : List[Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__lowerCamelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: A : Union[str, Any] = None ops.enable_eager_execution_internal() A : Tuple = tf.config.list_physical_devices("CPU" ) if len(__lowerCamelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) A : Dict = tf.config.list_logical_devices(device_type="CPU" ) A : List[str] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): A : Optional[int] = GradientAccumulator() A : Tuple = tf.Variable([4.0, 3.0] ) A , A : List[Any] = create_optimizer(5e-5 , 10 , 5 ) A : List[str] = tf.Variable([0.0, 0.0] , trainable=__lowerCamelCase ) def accumulate_on_replica(__lowerCamelCase : Tuple ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): with strategy.scope(): A : int = strategy.experimental_local_results(__lowerCamelCase ) local_variables[0].assign(__lowerCamelCase ) local_variables[1].assign(__lowerCamelCase ) strategy.run(__lowerCamelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__lowerCamelCase ) def _check_local_values(__lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): A : Optional[int] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , __lowerCamelCase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , __lowerCamelCase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
17
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __A : Any = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCamelCase_ ( A__ : Any ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A__ ) def UpperCamelCase_ ( A__ : List[Any] ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : Dict = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(A__ , id=A__ )
275
'''simple docstring''' from collections.abc import Callable class __snake_case : """simple docstring""" def __init__( self : Tuple , lowerCamelCase : Callable | None = None ) -> None: # Stores actual heap items. lowerCAmelCase_ : list = [] # Stores indexes of each item for supporting updates and deletion. lowerCAmelCase_ : dict = {} # Stores current size of heap. lowerCAmelCase_ : List[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowerCAmelCase_ : Tuple = key or (lambda lowerCamelCase : x) def __lowercase ( self : Optional[Any] , lowerCamelCase : int ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __lowercase ( self : Union[str, Any] , lowerCamelCase : int ) -> int | None: lowerCAmelCase_ : List[str] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowercase ( self : Optional[Any] , lowerCamelCase : int ) -> int | None: lowerCAmelCase_ : List[Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowercase ( self : List[str] , lowerCamelCase : int , lowerCamelCase : int ) -> None: lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.arr[j], self.arr[i] def __lowercase ( self : Tuple , lowerCamelCase : int , lowerCamelCase : int ) -> bool: return self.arr[i][1] < self.arr[j][1] def __lowercase ( self : int , lowerCamelCase : int ) -> int: lowerCAmelCase_ : List[str] = self._left(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = self._right(lowerCamelCase ) lowerCAmelCase_ : Tuple = i if left is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : int = left if right is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = right return valid_parent def __lowercase ( self : List[Any] , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Tuple = self._parent(lowerCamelCase ) while parent is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): self._swap(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : str = parent, self._parent(lowerCamelCase ) def __lowercase ( self : Tuple , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Optional[Any] = self._get_valid_parent(lowerCamelCase ) while valid_parent != index: self._swap(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : int = valid_parent, self._get_valid_parent(lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : int , lowerCamelCase : int ) -> None: if item not in self.pos_map: return lowerCAmelCase_ : Dict = self.pos_map[item] lowerCAmelCase_ : Dict = [item, self.key(lowerCamelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCamelCase ) self._heapify_down(lowerCamelCase ) def __lowercase ( self : int , lowerCamelCase : int ) -> None: if item not in self.pos_map: return lowerCAmelCase_ : List[str] = self.pos_map[item] del self.pos_map[item] lowerCAmelCase_ : Tuple = self.arr[self.size - 1] lowerCAmelCase_ : List[str] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCamelCase ) self._heapify_down(lowerCamelCase ) def __lowercase ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Any = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowerCamelCase )] ) else: lowerCAmelCase_ : str = [item, self.key(lowerCamelCase )] lowerCAmelCase_ : Optional[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowercase ( self : str ) -> tuple | None: return self.arr[0] if self.size else None def __lowercase ( self : Optional[Any] ) -> tuple | None: lowerCAmelCase_ : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCamelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
275
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = (UniPCMultistepScheduler,) UpperCAmelCase__ : Dict = (('''num_inference_steps''', 25),) def UpperCamelCase( self , **lowerCamelCase ): _snake_case = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**lowerCamelCase ) return config def UpperCamelCase( self , lowerCamelCase=0 , **lowerCamelCase ): _snake_case = dict(self.forward_default_kwargs ) _snake_case = kwargs.pop("num_inference_steps" , lowerCamelCase ) _snake_case = self.dummy_sample _snake_case = 0.1 * sample _snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config(**lowerCamelCase ) _snake_case = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals _snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) _snake_case = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals _snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case , _snake_case = sample, sample for t in range(lowerCamelCase , time_step + scheduler.config.solver_order + 1 ): _snake_case = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample _snake_case = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase( self , lowerCamelCase=0 , **lowerCamelCase ): _snake_case = dict(self.forward_default_kwargs ) _snake_case = kwargs.pop("num_inference_steps" , lowerCamelCase ) _snake_case = self.dummy_sample _snake_case = 0.1 * sample _snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) _snake_case = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) _snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample _snake_case = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase( self , lowerCamelCase=None , **lowerCamelCase ): if scheduler is None: _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(**lowerCamelCase ) _snake_case = scheduler_class(**lowerCamelCase ) _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(**lowerCamelCase ) _snake_case = scheduler_class(**lowerCamelCase ) _snake_case = 10 _snake_case = self.dummy_model() _snake_case = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): _snake_case = model(lowerCamelCase , lowerCamelCase ) _snake_case = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def UpperCamelCase( self ): _snake_case = dict(self.forward_default_kwargs ) _snake_case = kwargs.pop("num_inference_steps" , lowerCamelCase ) for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**lowerCamelCase ) _snake_case = self.dummy_sample _snake_case = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase , "set_timesteps" ): scheduler.set_timesteps(lowerCamelCase ) elif num_inference_steps is not None and not hasattr(lowerCamelCase , "set_timesteps" ): _snake_case = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] _snake_case = dummy_past_residuals[: scheduler.config.solver_order] _snake_case = scheduler.timesteps[5] _snake_case = scheduler.timesteps[6] _snake_case = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample _snake_case = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults _snake_case = UniPCMultistepScheduler(**self.get_scheduler_config() ) _snake_case = self.full_loop(scheduler=lowerCamelCase ) _snake_case = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 _snake_case = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _snake_case = DEISMultistepScheduler.from_config(scheduler.config ) _snake_case = DPMSolverMultistepScheduler.from_config(scheduler.config ) _snake_case = UniPCMultistepScheduler.from_config(scheduler.config ) _snake_case = self.full_loop(scheduler=lowerCamelCase ) _snake_case = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCamelCase( self ): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def UpperCamelCase( self ): self.check_over_configs(thresholding=lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase , prediction_type=lowerCamelCase , sample_max_value=lowerCamelCase , solver_order=lowerCamelCase , solver_type=lowerCamelCase , ) def UpperCamelCase( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def UpperCamelCase( self ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase , solver_type=lowerCamelCase , prediction_type=lowerCamelCase , ) _snake_case = self.full_loop( solver_order=lowerCamelCase , solver_type=lowerCamelCase , prediction_type=lowerCamelCase , ) assert not torch.isnan(lowerCamelCase ).any(), "Samples have nan numbers" def UpperCamelCase( self ): self.check_over_configs(lower_order_final=lowerCamelCase ) self.check_over_configs(lower_order_final=lowerCamelCase ) def UpperCamelCase( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowerCamelCase , time_step=0 ) def UpperCamelCase( self ): _snake_case = self.full_loop() _snake_case = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCamelCase( self ): _snake_case = self.full_loop(prediction_type="v_prediction" ) _snake_case = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def UpperCamelCase( self ): _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(thresholding=lowerCamelCase , dynamic_thresholding_ratio=0 ) _snake_case = scheduler_class(**lowerCamelCase ) _snake_case = 10 _snake_case = self.dummy_model() _snake_case = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): _snake_case = model(lowerCamelCase , lowerCamelCase ) _snake_case = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCamelCase( self , **lowerCamelCase ): for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config(**lowerCamelCase ) _snake_case = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
368
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example __magic_name__ : str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __magic_name__ : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _snake_case = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _snake_case = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE__ ) return next_generation def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = [] for _ in range(SCREAMING_SNAKE_CASE__ ): # Create output image _snake_case = Image.new("RGB" , (len(cells[0] ), len(SCREAMING_SNAKE_CASE__ )) ) _snake_case = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE__ ) ): for y in range(len(cells[0] ) ): _snake_case = 2_55 - cells[y][x] * 2_55 _snake_case = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE__ ) _snake_case = new_generation(SCREAMING_SNAKE_CASE__ ) return images if __name__ == "__main__": __magic_name__ : Optional[Any] = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
368
1
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _UpperCAmelCase ( __A : Any ): a_ : List[str] = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , __A ).groups()[0] class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Any=None ) -> Optional[Any]: a_ : List[str] = file_names a_ : str = image_transform a_ : Optional[Any] = label_to_id def __len__( self : List[str] ) -> Dict: return len(self.file_names ) def __getitem__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: a_ : Union[str, Any] = self.file_names[idx] a_ : Union[str, Any] = PIL.Image.open(__SCREAMING_SNAKE_CASE ) a_ : int = raw_image.convert('''RGB''' ) if self.image_transform is not None: a_ : str = self.image_transform(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = extract_label(__SCREAMING_SNAKE_CASE ) if self.label_to_id is not None: a_ : Any = self.label_to_id[label] return {"image": image, "label": label} def _UpperCAmelCase ( __A : List[Any] , __A : Any ): # Initialize accelerator if args.with_tracking: a_ : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: a_ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a_ : Dict = config['''lr'''] a_ : str = int(config['''num_epochs'''] ) a_ : Any = int(config['''seed'''] ) a_ : Any = int(config['''batch_size'''] ) a_ : Optional[Any] = config['''image_size'''] if not isinstance(__A , (list, tuple) ): a_ : Union[str, Any] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": a_ : List[str] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): a_ : List[str] = int(args.checkpointing_steps ) else: raise ValueError( f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: a_ : str = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: a_ : Dict = os.path.split(__A )[-1].split('''.''' )[0] accelerator.init_trackers(__A , __A ) # Grab all the image filenames a_ : str = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences a_ : Dict = [extract_label(__A ) for fname in file_names] a_ : Optional[Any] = list(set(__A ) ) id_to_label.sort() a_ : Any = {lbl: i for i, lbl in enumerate(__A )} # Set the seed before splitting the data. np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # Split our filenames between train and validation a_ : Optional[Any] = np.random.permutation(len(__A ) ) a_ : Dict = int(0.8 * len(__A ) ) a_ : Optional[Any] = random_perm[:cut] a_ : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop a_ : Optional[int] = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] ) a_ : str = PetsDataset( [file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A ) # For evaluation, we use a deterministic Resize a_ : Any = Compose([Resize(__A ), ToTensor()] ) a_ : Tuple = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A ) # Instantiate dataloaders. a_ : Dict = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) a_ : str = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a_ : Union[str, Any] = create_model('''resnet50d''' , pretrained=__A , num_classes=len(__A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a_ : Tuple = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): a_ : int = False for param in model.get_classifier().parameters(): a_ : Tuple = True # We normalize the batches of images to be a bit faster. a_ : Union[str, Any] = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) a_ : Union[str, Any] = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer a_ : str = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler a_ : Tuple = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a_ , a_ , a_ , a_ , a_ : Tuple = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over a_ : Dict = 0 # We also need to keep track of the starting epoch so files are named properly a_ : Dict = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) a_ : Optional[Any] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint a_ : List[str] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) a_ : Tuple = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` a_ : List[str] = os.path.splitext(__A )[0] if "epoch" in training_difference: a_ : Tuple = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 a_ : str = None else: a_ : List[Any] = int(training_difference.replace('''step_''' , '''''' ) ) a_ : Union[str, Any] = resume_step // len(__A ) resume_step -= starting_epoch * len(__A ) # Now we train the model for epoch in range(__A , __A ): model.train() if args.with_tracking: a_ : List[str] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step a_ : Union[str, Any] = accelerator.skip_first_batches(__A , __A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader a_ : List[Any] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. a_ : str = {k: v.to(accelerator.device ) for k, v in batch.items()} a_ : int = (batch['''image'''] - mean) / std a_ : Any = model(__A ) a_ : List[Any] = torch.nn.functional.cross_entropy(__A , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__A , __A ): a_ : int = f'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: a_ : Union[str, Any] = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) model.eval() a_ : str = 0 a_ : List[Any] = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. a_ : Optional[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} a_ : List[Any] = (batch['''image'''] - mean) / std with torch.no_grad(): a_ : Union[str, Any] = model(__A ) a_ : List[str] = outputs.argmax(dim=-1 ) a_ , a_ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''label''']) ) a_ : Union[str, Any] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() a_ : Any = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}: {1_00 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { '''accuracy''': 1_00 * eval_metric, '''train_loss''': total_loss.item() / len(__A ), '''epoch''': epoch, } , step=__A , ) if checkpointing_steps == "epoch": a_ : Dict = f'epoch_{epoch}' if args.output_dir is not None: a_ : int = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) if args.with_tracking: accelerator.end_training() def _UpperCAmelCase ( ): a_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=__A , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=__A , default=__A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=__A , default=__A , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=__A , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=__A , default=__A , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=__A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) a_ : Union[str, Any] = parser.parse_args() a_ : List[Any] = {'''lr''': 3E-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 2_24} training_function(__A , __A ) if __name__ == "__main__": main()
466
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __UpperCAmelCase = "facebook/wmt19-en-de" __UpperCAmelCase = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __UpperCAmelCase = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __UpperCAmelCase = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test __UpperCAmelCase = tokenizer(["Making tiny model"], return_tensors="pt") __UpperCAmelCase = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save __UpperCAmelCase = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
597
import socket def A__ ( ): SCREAMING_SNAKE_CASE_ = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE_ = socket.gethostname() SCREAMING_SNAKE_CASE_ = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''', '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: SCREAMING_SNAKE_CASE_ = sock.recv(10_24 ) if not data: break out_file.write(__lowerCamelCase ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
597
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCAmelCase = None lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class lowerCamelCase ( _A ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = TaTokenizer snake_case_ = [] def __init__( self , a_=None , a_=None , a_="</s>" , a_="<unk>" , a_="<pad>" , a_=100 , a_=None , **a_ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase : Optional[int] = [F'''<extra_id_{i}>''' for i in range(a_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCAmelCase : Union[str, Any] = len(set(filter(lambda a_ : bool("extra_id_" in str(a_ ) ) , a_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( a_ , tokenizer_file=a_ , eos_token=a_ , unk_token=a_ , pad_token=a_ , extra_ids=a_ , additional_special_tokens=a_ , **a_ , ) lowerCAmelCase : Any = vocab_file lowerCAmelCase : Union[str, Any] = False if not self.vocab_file else True lowerCAmelCase : Optional[Any] = extra_ids @staticmethod def _lowerCamelCase ( a_ , a_ , a_ ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCAmelCase : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , a_ , ) return max_model_length def _lowerCamelCase ( self , a_ , a_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(a_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Union[str, Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self , a_ , a_ = None ): lowerCAmelCase : Optional[int] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCAmelCase : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self , a_ , a_ = None ): lowerCAmelCase : Optional[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self ): return list( set(filter(lambda a_ : bool(re.search(r"<extra_id_\d+>" , a_ ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self ): return [self.convert_tokens_to_ids(a_ ) for token in self.get_sentinel_tokens()]
525
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __A ( a_ : Dict ,a_ : List[Any] ,a_ : List[str]=None ,a_ : Optional[int]=None ,a_ : Any=None ,a_ : Any=None ,a_ : str=None ,a_ : Union[str, Any]=None ,): if attention_mask is None: lowerCAmelCase : List[Any] = np.where(input_ids != config.pad_token_id ,1 ,0 ) if decoder_attention_mask is None: lowerCAmelCase : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id ,1 ,0 ) if head_mask is None: lowerCAmelCase : Dict = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase : def __init__( self , a_ , a_=13 , a_=7 , a_=True , a_=False , a_=99 , a_=16 , a_=2 , a_=4 , a_=4 , a_="gelu" , a_=0.1 , a_=0.1 , a_=32 , a_=2 , a_=1 , a_=0 , a_=0.02 , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : Any = seq_length lowerCAmelCase : int = is_training lowerCAmelCase : int = use_labels lowerCAmelCase : Any = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : int = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Optional[int] = eos_token_id lowerCAmelCase : Union[str, Any] = pad_token_id lowerCAmelCase : Tuple = bos_token_id lowerCAmelCase : Tuple = initializer_range def _lowerCamelCase ( self ): lowerCAmelCase : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase : List[str] = shift_tokens_right(a_ , 1 , 2 ) lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=a_ , ) lowerCAmelCase : Tuple = prepare_blenderbot_inputs_dict(a_ , a_ , a_ ) return config, inputs_dict def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self , a_ , a_ , a_ ): lowerCAmelCase : Any = 20 lowerCAmelCase : int = model_class_name(a_ ) lowerCAmelCase : Tuple = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase , lowerCAmelCase : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , a_ , a_ ) lowerCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCAmelCase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , a_ , decoder_attention_mask=a_ , past_key_values=a_ , decoder_position_ids=a_ , ) lowerCAmelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , a_ , decoder_attention_mask=a_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=a_ , ) lowerCAmelCase : int = model.decode(a_ , a_ ) lowerCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) def _lowerCamelCase ( self , a_ , a_ , a_ ): lowerCAmelCase : Union[str, Any] = 20 lowerCAmelCase : Tuple = model_class_name(a_ ) lowerCAmelCase : Dict = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase , lowerCAmelCase : str = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase : Any = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , a_ , a_ ) lowerCAmelCase : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Any = model.decode( decoder_input_ids[:, :-1] , a_ , decoder_attention_mask=a_ , past_key_values=a_ , decoder_position_ids=a_ , ) lowerCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase : Any = model.decode( decoder_input_ids[:, -1:] , a_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=a_ , decoder_position_ids=a_ , ) lowerCAmelCase : List[str] = model.decode(a_ , a_ , decoder_attention_mask=a_ ) lowerCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) @require_flax class lowerCamelCase ( unittest.TestCase ): snake_case_ = 99 def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase : Union[str, Any] = input_ids.shape[0] lowerCAmelCase : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = self._get_config_and_data() lowerCAmelCase : Tuple = FlaxBlenderbotForConditionalGeneration(a_ ) lowerCAmelCase : str = lm_model(input_ids=a_ ) lowerCAmelCase : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCAmelCase : int = FlaxBlenderbotForConditionalGeneration(a_ ) lowerCAmelCase : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCAmelCase : List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase : List[str] = lm_model(input_ids=a_ , decoder_input_ids=a_ ) lowerCAmelCase : List[str] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCAmelCase : Dict = shift_tokens_right(a_ , 1 , 2 ) lowerCAmelCase : Optional[Any] = np.equal(a_ , 1 ).astype(np.floataa ).sum() lowerCAmelCase : Any = np.equal(a_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(a_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase ( _A , unittest.TestCase , _A ): snake_case_ = True snake_case_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) snake_case_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _lowerCamelCase ( self ): lowerCAmelCase : Optional[Any] = FlaxBlenderbotModelTester(self ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a_ , a_ , a_ ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a_ , a_ , a_ ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : List[str] = self._prepare_for_class(a_ , a_ ) lowerCAmelCase : str = model_class(a_ ) @jax.jit def encode_jitted(a_ , a_=None , **a_ ): return model.encode(input_ids=a_ , attention_mask=a_ ) with self.subTest("JIT Enabled" ): lowerCAmelCase : List[Any] = encode_jitted(**a_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase : Tuple = encode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) ) for jitted_output, output in zip(a_ , a_ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : int = model_class(a_ ) lowerCAmelCase : Optional[int] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) lowerCAmelCase : Optional[Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(a_ , a_ , a_ ): return model.decode( decoder_input_ids=a_ , decoder_attention_mask=a_ , encoder_outputs=a_ , ) with self.subTest("JIT Enabled" ): lowerCAmelCase : str = decode_jitted(**a_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase : Optional[Any] = decode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) ) for jitted_output, output in zip(a_ , a_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: lowerCAmelCase : List[str] = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase : Union[str, Any] = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase : Dict = model(a_ ) self.assertIsNotNone(a_ ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def _lowerCamelCase ( self ): lowerCAmelCase : Dict = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCAmelCase : Any = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCAmelCase : Optional[int] = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=a_ ) lowerCAmelCase : List[str] = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) lowerCAmelCase : Any = ["Sam"] lowerCAmelCase : int = tokenizer(a_ , return_tensors="jax" ) lowerCAmelCase : List[Any] = model.generate(**a_ , **a_ ) lowerCAmelCase : Optional[Any] = "Sam is a great name. It means \"sun\" in Gaelic." lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(a_ , **a_ ) assert generated_txt[0].strip() == tgt_text
525
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowercase : '''simple docstring''' @property def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" return self.get_dummy_input() @property def snake_case_ ( self ) -> List[str]: """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def snake_case_ ( self , _snake_case=True , _snake_case=False , _snake_case=False , _snake_case=False , ) -> Optional[int]: """simple docstring""" UpperCAmelCase = 4 UpperCAmelCase = 32 UpperCAmelCase = (32, 32) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = torch.device(_snake_case ) UpperCAmelCase = (batch_size, num_channels) + sizes UpperCAmelCase = randn_tensor(_snake_case , generator=_snake_case , device=_snake_case ) UpperCAmelCase = {'''hidden_states''': hidden_states} if include_temb: UpperCAmelCase = 128 UpperCAmelCase = randn_tensor((batch_size, temb_channels) , generator=_snake_case , device=_snake_case ) if include_res_hidden_states_tuple: UpperCAmelCase = torch.manual_seed(1 ) UpperCAmelCase = (randn_tensor(_snake_case , generator=_snake_case , device=_snake_case ),) if include_encoder_hidden_states: UpperCAmelCase = floats_tensor((batch_size, 32, 32) ).to(_snake_case ) if include_skip_sample: UpperCAmelCase = randn_tensor(((batch_size, 3) + sizes) , generator=_snake_case , device=_snake_case ) return dummy_input def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = { '''in_channels''': 32, '''out_channels''': 32, '''temb_channels''': 128, } if self.block_type == "up": UpperCAmelCase = 32 if self.block_type == "mid": init_dict.pop('''out_channels''' ) UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase = self.block_class(**_snake_case ) unet_block.to(_snake_case ) unet_block.eval() with torch.no_grad(): UpperCAmelCase = unet_block(**_snake_case ) if isinstance(_snake_case , _snake_case ): UpperCAmelCase = output[0] self.assertEqual(output.shape , self.output_shape ) UpperCAmelCase = output[0, -1, -3:, -3:] UpperCAmelCase = torch.tensor(_snake_case ).to(_snake_case ) assert torch_all_close(output_slice.flatten() , _snake_case , atol=5e-3 ) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' ) def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase = self.block_class(**_snake_case ) model.to(_snake_case ) model.train() UpperCAmelCase = model(**_snake_case ) if isinstance(_snake_case , _snake_case ): UpperCAmelCase = output[0] UpperCAmelCase = torch.device(_snake_case ) UpperCAmelCase = randn_tensor(output.shape , device=_snake_case ) UpperCAmelCase = torch.nn.functional.mse_loss(_snake_case , _snake_case ) loss.backward()
708
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _lowerCAmelCase ( A__: str , A__: str , A__: str , A__: PreTrainedTokenizer , A__: int , A__: Optional[int] = None , ): '''simple docstring''' UpperCAmelCase = {} if train_file is not None: UpperCAmelCase = [train_file] if eval_file is not None: UpperCAmelCase = [eval_file] if test_file is not None: UpperCAmelCase = [test_file] UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=A__ ) UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) UpperCAmelCase = features_name.pop(A__ ) UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCAmelCase = {label: i for i, label in enumerate(A__ )} UpperCAmelCase = tokenizer.model_input_names UpperCAmelCase = {} if len(A__ ) == 1: for k in files.keys(): UpperCAmelCase = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A__ , max_length=A__ , padding='''max_length''' ) , batched=A__ , ) elif len(A__ ) == 2: for k in files.keys(): UpperCAmelCase = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A__ , max_length=A__ , padding='''max_length''' , ) , batched=A__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) UpperCAmelCase = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCAmelCase = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCAmelCase = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __magic_name__ = logging.getLogger(__name__) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field(metadata={"""help""": """Which column contains the label"""} ) __SCREAMING_SNAKE_CASE = field(default=A__ , metadata={"""help""": """The path of the training file"""} ) __SCREAMING_SNAKE_CASE = field(default=A__ , metadata={"""help""": """The path of the development file"""} ) __SCREAMING_SNAKE_CASE = field(default=A__ , metadata={"""help""": """The path of the test file"""} ) __SCREAMING_SNAKE_CASE = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __SCREAMING_SNAKE_CASE = field(default=A__ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) def compute_metrics(A__: EvalPrediction ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCAmelCase = TFTrainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(A__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(A__ ) return results if __name__ == "__main__": main()
391
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ :Optional[int] = logging.get_logger(__name__) a_ :Union[str, Any] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Union[str, Any] = '''marian''' lowerCamelCase : Tuple = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[Any] , _lowercase : str=5_81_01 , _lowercase : Union[str, Any]=None , _lowercase : Tuple=10_24 , _lowercase : List[Any]=12 , _lowercase : int=40_96 , _lowercase : int=16 , _lowercase : str=12 , _lowercase : List[str]=40_96 , _lowercase : Tuple=16 , _lowercase : List[Any]=0.0 , _lowercase : Any=0.0 , _lowercase : List[Any]=True , _lowercase : Dict=True , _lowercase : Union[str, Any]="gelu" , _lowercase : int=10_24 , _lowercase : Optional[Any]=0.1 , _lowercase : List[Any]=0.0 , _lowercase : Optional[int]=0.0 , _lowercase : str=0.02 , _lowercase : Tuple=5_81_00 , _lowercase : int=False , _lowercase : Any=5_81_00 , _lowercase : Tuple=0 , _lowercase : Tuple=0 , _lowercase : List[Any]=True , **_lowercase : int , ): SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Dict = decoder_vocab_size or vocab_size SCREAMING_SNAKE_CASE__ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : int = d_model SCREAMING_SNAKE_CASE__ : Tuple = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : int = encoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Tuple = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : int = dropout SCREAMING_SNAKE_CASE__ : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE__ : List[str] = activation_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE__ : Tuple = init_std SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE__ : List[str] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Tuple = use_cache SCREAMING_SNAKE_CASE__ : str = encoder_layers SCREAMING_SNAKE_CASE__ : Any = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ : str = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class lowercase ( _UpperCAmelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowercase__ ( self : Tuple ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ : Any = {0: '''batch'''} SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.num_layers for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowercase__ ( self : Tuple ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super().outputs else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = super(_lowercase , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_layers for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowercase__ ( self : Optional[Any] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ : str = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs SCREAMING_SNAKE_CASE__ : str = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE__ : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE__ : Optional[int] = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = common_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE__ : str = common_inputs['''decoder_input_ids'''].shape[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : str = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowercase , _lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.num_layers SCREAMING_SNAKE_CASE__ : str = min(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = max(_lowercase , _lowercase ) - min_num_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE__ : List[Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def lowercase__ ( self : int , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ : Any = seqlen + 2 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_layers SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.num_attention_heads SCREAMING_SNAKE_CASE__ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Any = common_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : List[str] = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def lowercase__ ( self : Optional[Any] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : str = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : str = tokenizer.num_special_tokens_to_add(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : List[Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def lowercase__ ( self : List[str] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def lowercase__ ( self : str , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : Optional[int] , _lowercase : Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase ) @property def lowercase__ ( self : Dict ): return 1E-4
35
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __a : def __init__( self : Union[str, Any] , snake_case_ : Dict , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=None , snake_case_ : str="resnet50" , snake_case_ : List[Any]=3 , snake_case_ : Optional[int]=32 , snake_case_ : Union[str, Any]=3 , snake_case_ : Tuple=True , snake_case_ : List[str]=True , )-> Optional[Any]: __lowerCAmelCase =parent __lowerCAmelCase =out_indices if out_indices is not None else [4] __lowerCAmelCase =stage_names __lowerCAmelCase =out_features __lowerCAmelCase =backbone __lowerCAmelCase =batch_size __lowerCAmelCase =image_size __lowerCAmelCase =num_channels __lowerCAmelCase =use_pretrained_backbone __lowerCAmelCase =is_training def UpperCamelCase ( self : int)-> Dict: __lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCAmelCase =self.get_config() return config, pixel_values def UpperCamelCase ( self : Optional[int])-> Optional[int]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def UpperCamelCase ( self : str , snake_case_ : int , snake_case_ : Union[str, Any])-> str: __lowerCAmelCase =TimmBackbone(config=snake_case_) model.to(snake_case_) model.eval() with torch.no_grad(): __lowerCAmelCase =model(snake_case_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def UpperCamelCase ( self : List[str])-> Union[str, Any]: __lowerCAmelCase =self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase =config_and_inputs __lowerCAmelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE = {"feature-extraction": TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self : Union[str, Any])-> str: __lowerCAmelCase =TimmBackboneModelTester(self) __lowerCAmelCase =ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_) def UpperCamelCase ( self : Tuple)-> Optional[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self : Any)-> Dict: __lowerCAmelCase ="""resnet18""" __lowerCAmelCase ="""microsoft/resnet-18""" __lowerCAmelCase =AutoBackbone.from_pretrained(snake_case_ , use_timm_backbone=snake_case_) __lowerCAmelCase =AutoBackbone.from_pretrained(snake_case_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) __lowerCAmelCase =AutoBackbone.from_pretrained(snake_case_ , use_timm_backbone=snake_case_ , out_indices=[1, 2, 3]) __lowerCAmelCase =AutoBackbone.from_pretrained(snake_case_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""") def UpperCamelCase ( self : Dict)-> Any: pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""") def UpperCamelCase ( self : Tuple)-> Dict: pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""") def UpperCamelCase ( self : Union[str, Any])-> List[str]: pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""") def UpperCamelCase ( self : List[str])-> List[str]: pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""") def UpperCamelCase ( self : int)-> int: pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""") def UpperCamelCase ( self : Dict)-> int: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""") def UpperCamelCase ( self : Any)-> Dict: pass @unittest.skip("""model weights aren't tied in TimmBackbone.""") def UpperCamelCase ( self : int)-> Tuple: pass @unittest.skip("""model weights aren't tied in TimmBackbone.""") def UpperCamelCase ( self : Optional[int])-> Union[str, Any]: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""") def UpperCamelCase ( self : Optional[Any])-> Optional[Any]: pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""") def UpperCamelCase ( self : Any)-> List[Any]: pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""") def UpperCamelCase ( self : Any)-> Tuple: pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""") def UpperCamelCase ( self : List[Any])-> str: pass @unittest.skip("""Safetensors is not supported by timm.""") def UpperCamelCase ( self : Dict)-> Optional[int]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def UpperCamelCase ( self : Optional[int])-> Tuple: pass def UpperCamelCase ( self : int)-> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase =model_class(snake_case_) __lowerCAmelCase =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase =[*signature.parameters.keys()] __lowerCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_) def UpperCamelCase ( self : Dict)-> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase =True __lowerCAmelCase =self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase =self.all_model_classes[0] __lowerCAmelCase =model_class(snake_case_) model.to(snake_case_) __lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_) __lowerCAmelCase =model(**snake_case_) __lowerCAmelCase =outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def UpperCamelCase ( self : Tuple)-> List[Any]: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase =model_class(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(**snake_case_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase =copy.deepcopy(snake_case_) __lowerCAmelCase =None __lowerCAmelCase =model_class(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(**snake_case_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights __lowerCAmelCase =copy.deepcopy(snake_case_) __lowerCAmelCase =False __lowerCAmelCase =model_class(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(**snake_case_)
354
0
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( _snake_case : str = "isbn/0140328726" ) -> dict: '''simple docstring''' _A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: _A = F'''{olid} is not a valid Open Library olid''' raise ValueError(_snake_case ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def _snake_case ( _snake_case : dict ) -> dict: '''simple docstring''' _A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } _A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] _A = data['First sentence']['value'] for key, value in data.items(): if isinstance(_snake_case , _snake_case ): _A = ', '.join(_snake_case ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: a = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: a = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print('''\n'''.join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
505
"""simple docstring""" # using dfs for finding eulerian path traversal def _snake_case ( _snake_case : str , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : Optional[Any]=None ) -> int: '''simple docstring''' _A = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _A , _A = True, True _A = dfs(_snake_case , _snake_case , _snake_case , _snake_case ) return path def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any] ) -> List[str]: '''simple docstring''' _A = 0 _A = -1 for i in range(_snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _A = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _snake_case ( _snake_case : Tuple , _snake_case : Any ) -> Tuple: '''simple docstring''' _A = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _A , _A = check_circuit_or_path(_snake_case , _snake_case ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return _A = 1 if check == 2: _A = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) _A = dfs(_snake_case , _snake_case , _snake_case ) print(_snake_case ) def _snake_case ( ) -> str: '''simple docstring''' _A = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _A = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _A = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _A = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _A = { 1: [], 2: [] # all degree is zero } _A = 10 check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) if __name__ == "__main__": main()
505
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a: Union[str, Any] = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Union[str, Any] = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __a: List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
108
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCAmelCase : int = logging.get_logger(__name__) # General docstring UpperCAmelCase : str = """ResNetConfig""" # Base docstring UpperCAmelCase : List[Any] = """microsoft/resnet-50""" UpperCAmelCase : Union[str, Any] = [1, 2048, 7, 7] # Image classification docstring UpperCAmelCase : Tuple = """microsoft/resnet-50""" UpperCAmelCase : Union[str, Any] = """tiger cat""" UpperCAmelCase : Optional[Any] = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self :Dict ,__UpperCAmelCase :Union[str, Any] ,__UpperCAmelCase :List[Any] ,__UpperCAmelCase :Optional[Any] = 3 ,__UpperCAmelCase :Optional[Any] = 1 ,__UpperCAmelCase :Tuple = "relu" ) -> str: """simple docstring""" super().__init__() lowerCamelCase__ : Dict = nn.Convad( __UpperCAmelCase ,__UpperCAmelCase ,kernel_size=__UpperCAmelCase ,stride=__UpperCAmelCase ,padding=kernel_size // 2 ,bias=__UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = nn.BatchNormad(__UpperCAmelCase ) lowerCamelCase__ : Dict = ACTaFN[activation] if activation is not None else nn.Identity() def lowercase_ ( self :Tuple ,__UpperCAmelCase :str ) -> Dict: """simple docstring""" lowerCamelCase__ : Optional[Any] = self.convolution(__UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.normalization(__UpperCAmelCase ) lowerCamelCase__ : Dict = self.activation(__UpperCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self :Union[str, Any] ,__UpperCAmelCase :str ) -> Optional[int]: """simple docstring""" super().__init__() lowerCamelCase__ : Union[str, Any] = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) lowerCamelCase__ : Any = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) lowerCamelCase__ : List[Any] = config.num_channels def lowercase_ ( self :Tuple ,__UpperCAmelCase :Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowerCamelCase__ : int = self.embedder(__UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.pooler(__UpperCAmelCase ) return embedding class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self :Optional[Any] ,__UpperCAmelCase :int ,__UpperCAmelCase :Optional[Any] ,__UpperCAmelCase :Optional[int] = 2 ) -> Optional[Any]: """simple docstring""" super().__init__() lowerCamelCase__ : Tuple = nn.Convad(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,stride=__UpperCAmelCase ,bias=__UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = nn.BatchNormad(__UpperCAmelCase ) def lowercase_ ( self :str ,__UpperCAmelCase :List[Any] ) -> str: """simple docstring""" lowerCamelCase__ : List[Any] = self.convolution(__UpperCAmelCase ) lowerCamelCase__ : List[str] = self.normalization(__UpperCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self :Tuple ,__UpperCAmelCase :List[str] ,__UpperCAmelCase :List[str] ,__UpperCAmelCase :Any = 1 ,__UpperCAmelCase :Dict = "relu" ) -> Union[str, Any]: """simple docstring""" super().__init__() lowerCamelCase__ : Any = in_channels != out_channels or stride != 1 lowerCamelCase__ : Union[str, Any] = ( ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) lowerCamelCase__ : int = nn.Sequential( ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,activation=__UpperCAmelCase ) ,) lowerCamelCase__ : Any = ACTaFN[activation] def lowercase_ ( self :Tuple ,__UpperCAmelCase :List[Any] ) -> Any: """simple docstring""" lowerCamelCase__ : Any = hidden_state lowerCamelCase__ : Optional[int] = self.layer(__UpperCAmelCase ) lowerCamelCase__ : List[str] = self.shortcut(__UpperCAmelCase ) hidden_state += residual lowerCamelCase__ : Tuple = self.activation(__UpperCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self :Union[str, Any] ,__UpperCAmelCase :Any ,__UpperCAmelCase :List[str] ,__UpperCAmelCase :int = 1 ,__UpperCAmelCase :int = "relu" ,__UpperCAmelCase :str = 4 ) -> Optional[int]: """simple docstring""" super().__init__() lowerCamelCase__ : int = in_channels != out_channels or stride != 1 lowerCamelCase__ : Any = out_channels // reduction lowerCamelCase__ : List[str] = ( ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) lowerCamelCase__ : List[Any] = nn.Sequential( ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,activation=__UpperCAmelCase ) ,) lowerCamelCase__ : str = ACTaFN[activation] def lowercase_ ( self :Tuple ,__UpperCAmelCase :List[str] ) -> List[str]: """simple docstring""" lowerCamelCase__ : Dict = hidden_state lowerCamelCase__ : Dict = self.layer(__UpperCAmelCase ) lowerCamelCase__ : int = self.shortcut(__UpperCAmelCase ) hidden_state += residual lowerCamelCase__ : List[str] = self.activation(__UpperCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self :Tuple ,__UpperCAmelCase :int ,__UpperCAmelCase :Optional[Any] ,__UpperCAmelCase :Optional[Any] ,__UpperCAmelCase :Optional[Any] = 2 ,__UpperCAmelCase :Optional[int] = 2 ,) -> Dict: """simple docstring""" super().__init__() lowerCamelCase__ : Any = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer lowerCamelCase__ : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ,activation=config.hidden_act ) ,*[layer(__UpperCAmelCase ,__UpperCAmelCase ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def lowercase_ ( self :Union[str, Any] ,__UpperCAmelCase :List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Tuple = input for layer in self.layers: lowerCamelCase__ : Tuple = layer(__UpperCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self :Union[str, Any] ,__UpperCAmelCase :List[str] ) -> int: """simple docstring""" super().__init__() lowerCamelCase__ : Optional[Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __UpperCAmelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowerCamelCase__ : List[str] = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCAmelCase ,config.depths[1:] ): self.stages.append(ResNetStage(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,depth=__UpperCAmelCase ) ) def lowercase_ ( self :Tuple ,__UpperCAmelCase :Union[str, Any] ,__UpperCAmelCase :Tuple = False ,__UpperCAmelCase :Any = True ) -> Tuple: """simple docstring""" lowerCamelCase__ : Optional[int] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCamelCase__ : Tuple = hidden_states + (hidden_state,) lowerCamelCase__ : Dict = stage_module(__UpperCAmelCase ) if output_hidden_states: lowerCamelCase__ : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__UpperCAmelCase ,hidden_states=__UpperCAmelCase ,) class __SCREAMING_SNAKE_CASE ( snake_case_ ): UpperCAmelCase = ResNetConfig UpperCAmelCase = """resnet""" UpperCAmelCase = """pixel_values""" UpperCAmelCase = True def lowercase_ ( self :Union[str, Any] ,__UpperCAmelCase :Tuple ) -> List[str]: """simple docstring""" if isinstance(__UpperCAmelCase ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(__UpperCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def lowercase_ ( self :Optional[Any] ,__UpperCAmelCase :int ,__UpperCAmelCase :Tuple=False ) -> Union[str, Any]: """simple docstring""" if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCamelCase__ : Dict = value UpperCAmelCase : List[str] = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCAmelCase : Tuple = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , snake_case_ , ) class __SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self :Dict ,__UpperCAmelCase :Dict ) -> Tuple: """simple docstring""" super().__init__(__UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = config lowerCamelCase__ : Optional[int] = ResNetEmbeddings(__UpperCAmelCase ) lowerCamelCase__ : str = ResNetEncoder(__UpperCAmelCase ) lowerCamelCase__ : int = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def lowercase_ ( self :int ,__UpperCAmelCase :Dict ,__UpperCAmelCase :Any = None ,__UpperCAmelCase :List[Any] = None ) -> List[Any]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : Optional[int] = self.embedder(__UpperCAmelCase ) lowerCamelCase__ : int = self.encoder( __UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) lowerCamelCase__ : List[str] = encoder_outputs[0] lowerCamelCase__ : str = self.pooler(__UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase ,pooler_output=__UpperCAmelCase ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , snake_case_ , ) class __SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self :Optional[Any] ,__UpperCAmelCase :str ) -> str: """simple docstring""" super().__init__(__UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = config.num_labels lowerCamelCase__ : Tuple = ResNetModel(__UpperCAmelCase ) # classification head lowerCamelCase__ : Tuple = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def lowercase_ ( self :Optional[int] ,__UpperCAmelCase :List[str] = None ,__UpperCAmelCase :str = None ,__UpperCAmelCase :int = None ,__UpperCAmelCase :List[Any] = None ,) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : List[Any] = self.resnet(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase__ : Tuple = self.classifier(__UpperCAmelCase ) lowerCamelCase__ : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase__ : List[str] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase__ : Tuple = '''single_label_classification''' else: lowerCamelCase__ : Tuple = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCamelCase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowerCamelCase__ : Tuple = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowerCamelCase__ : List[Any] = loss_fct(__UpperCAmelCase ,__UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": lowerCamelCase__ : int = CrossEntropyLoss() lowerCamelCase__ : Union[str, Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase__ : Optional[int] = BCEWithLogitsLoss() lowerCamelCase__ : int = loss_fct(__UpperCAmelCase ,__UpperCAmelCase ) if not return_dict: lowerCamelCase__ : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase ,logits=__UpperCAmelCase ,hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , snake_case_ , ) class __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): def __init__( self :int ,__UpperCAmelCase :Optional[int] ) -> Tuple: """simple docstring""" super().__init__(__UpperCAmelCase ) super()._init_backbone(__UpperCAmelCase ) lowerCamelCase__ : str = [config.embedding_size] + config.hidden_sizes lowerCamelCase__ : List[Any] = ResNetEmbeddings(__UpperCAmelCase ) lowerCamelCase__ : List[str] = ResNetEncoder(__UpperCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @replace_return_docstrings(output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ) def lowercase_ ( self :Optional[int] ,__UpperCAmelCase :int ,__UpperCAmelCase :Dict = None ,__UpperCAmelCase :Optional[Any] = None ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : str = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ : Tuple = self.embedder(__UpperCAmelCase ) lowerCamelCase__ : List[Any] = self.encoder(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) lowerCamelCase__ : Any = outputs.hidden_states lowerCamelCase__ : Dict = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowerCamelCase__ : Dict = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__UpperCAmelCase ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=__UpperCAmelCase ,)
701
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Dict[Optional[str], Type[Formatter]] = {} UpperCAmelCase : Dict[Optional[str], str] = {} UpperCAmelCase : Dict[Optional[str], Exception] = {} def __a ( _lowercase , _lowercase , _lowercase = None , ): """simple docstring""" lowerCamelCase__ : List[Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) lowerCamelCase__ : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) lowerCamelCase__ : Any = format_type def __a ( _lowercase , _lowercase , _lowercase = None ): """simple docstring""" lowerCamelCase__ : List[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowerCamelCase__ : str = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: UpperCAmelCase : Optional[int] = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: UpperCAmelCase : Dict = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: UpperCAmelCase : Union[str, Any] = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def __a ( _lowercase ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __a ( _lowercase , **_lowercase ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = get_format_type_from_alias(_lowercase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_lowercase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
121
0
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar A_ = TypeVar("""_T""") class __lowerCamelCase ( Generic[_T] ): def __init__( self , UpperCAmelCase = None ): lowerCamelCase_ = list(iterable or [] ) lowerCamelCase_ = [] def __len__( self ): return len(self._stacka ) + len(self._stacka ) def __repr__( self ): return f"Queue({tuple(self._stacka[::-1] + self._stacka )})" def UpperCAmelCase__ ( self , UpperCAmelCase ): self._stacka.append(UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self._stacka.pop lowerCamelCase_ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
29
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS A_ = logging.get_logger(__name__) A_ = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class lowercase( __a ): '''simple docstring''' def __init__( self: List[str], a_: Dict=None, a_: int=None, *a_: List[Any], **a_: Union[str, Any] ): '''simple docstring''' super().__init__(*a_, **a_ ) if config is None: assert isinstance(self.model, a_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) _snake_case : Any = self.model.config else: _snake_case : int = config _snake_case : Union[str, Any] = data_args _snake_case : Union[str, Any] = self.config.tgt_vocab_size if isinstance(self.config, a_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" """ padding..""" ) if self.args.label_smoothing == 0: _snake_case : Tuple = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _snake_case : Dict = label_smoothed_nll_loss def UpperCamelCase_ ( self: int, a_: int ): '''simple docstring''' if self.optimizer is None: _snake_case : Optional[Any] = ["""bias""", """LayerNorm.weight"""] _snake_case : Optional[Any] = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _snake_case : int = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _snake_case : str = Adafactor _snake_case : List[Any] = {"""scale_parameter""": False, """relative_step""": False} else: _snake_case : Any = AdamW _snake_case : Tuple = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _snake_case : List[Any] = self.args.learning_rate if self.sharded_ddp: _snake_case : Dict = OSS( params=a_, optim=a_, **a_, ) else: _snake_case : Union[str, Any] = optimizer_cls(a_, **a_ ) if self.lr_scheduler is None: _snake_case : Optional[int] = self._get_lr_scheduler(a_ ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def UpperCamelCase_ ( self: Dict, a_: List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _snake_case : Union[str, Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _snake_case : List[Any] = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps ) else: _snake_case : Tuple = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=a_ ) return scheduler def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' if isinstance(self.train_dataset, torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def UpperCamelCase_ ( self: List[str], a_: int, a_: Optional[int], a_: str ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _snake_case : int = model(**a_, use_cache=a_ )[0] _snake_case : Union[str, Any] = self.loss_fn(logits.view(-1, logits.shape[-1] ), labels.view(-1 ) ) else: # compute usual loss via models _snake_case , _snake_case : Optional[Any] = model(**a_, labels=a_, use_cache=a_ )[:2] else: # compute label smoothed loss _snake_case : Union[str, Any] = model(**a_, use_cache=a_ )[0] _snake_case : Optional[Any] = torch.nn.functional.log_softmax(a_, dim=-1 ) _snake_case , _snake_case : List[Any] = self.loss_fn(a_, a_, self.args.label_smoothing, ignore_index=self.config.pad_token_id ) return loss, logits def UpperCamelCase_ ( self: List[str], a_: List[Any], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Any = inputs.pop("""labels""" ) _snake_case , _snake_case : str = self._compute_loss(a_, a_, a_ ) return loss def UpperCamelCase_ ( self: Optional[int], a_: nn.Module, a_: Dict[str, Union[torch.Tensor, Any]], a_: bool, a_: Optional[List[str]] = None, ): '''simple docstring''' _snake_case : str = self._prepare_inputs(a_ ) _snake_case : List[str] = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _snake_case : List[str] = self.model.generate( inputs["""input_ids"""], attention_mask=inputs["""attention_mask"""], **a_, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _snake_case : Union[str, Any] = self._pad_tensors_to_max_len(a_, gen_kwargs["""max_length"""] ) _snake_case : Tuple = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _snake_case , _snake_case : Dict = self._compute_loss(a_, a_, a_ ) _snake_case : int = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _snake_case : Optional[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _snake_case : Tuple = self._pad_tensors_to_max_len(a_, gen_kwargs["""max_length"""] ) return (loss, logits, labels) def UpperCamelCase_ ( self: Tuple, a_: List[str], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f" padded to `max_length`={max_length}" ) _snake_case : List[str] = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) _snake_case : Tuple = tensor return padded_tensor
609
0
"""simple docstring""" import logging import os from .state import PartialState class A_ ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def lowercase_ ( __UpperCAmelCase ) -> int: a : int = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) a : Tuple = kwargs.pop('main_process_only' , __UpperCAmelCase ) a : int = kwargs.pop('in_order' , __UpperCAmelCase ) if self.isEnabledFor(__UpperCAmelCase ): if self._should_log(__UpperCAmelCase ): a , a : Dict = self.process(__UpperCAmelCase , __UpperCAmelCase ) self.logger.log(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) elif in_order: a : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: a , a : int = self.process(__UpperCAmelCase , __UpperCAmelCase ) self.logger.log(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) state.wait_for_everyone() def A_ ( UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[Any]: if log_level is None: a : str = os.environ.get('ACCELERATE_LOG_LEVEL' , UpperCAmelCase__ ) a : Union[str, Any] = logging.getLogger(UpperCAmelCase__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCAmelCase__ , {} )
509
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Optional[int] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } SCREAMING_SNAKE_CASE__ : Dict = { "camembert-base": 512, } SCREAMING_SNAKE_CASE__ : int = "▁" class A_ ( _UpperCAmelCase ): """simple docstring""" lowercase : Optional[Any] = VOCAB_FILES_NAMES lowercase : int = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ["input_ids", "attention_mask"] lowercase : Union[str, Any] = CamembertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **__UpperCAmelCase , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it a : List[Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) a : Optional[int] = vocab_file a : Union[str, Any] = False if not self.vocab_file else True def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a : Optional[Any] = [self.cls_token_id] a : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: a : Tuple = [self.sep_token_id] a : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a : Optional[Any] = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
509
1
"""simple docstring""" from math import factorial def _snake_case ( snake_case__ : int , snake_case__ : int , snake_case__ : float ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(snake_case__ , snake_case__ ) or not isinstance(snake_case__ , snake_case__ ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) A = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A = float(factorial(snake_case__ ) ) coefficient /= factorial(snake_case__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
91
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase =TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) UpperCamelCase =[] UpperCamelCase =[] UpperCamelCase ={"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} UpperCamelCase =[ { "type": "header", "text": { "type": "plain_text", "text": f"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", "emoji": True, }, } ] UpperCamelCase =0 for log in Path().glob("*.log"): UpperCamelCase =0 with open(log, "r") as f: for line in f: UpperCamelCase =json.loads(line) if line.get("nodeid", "") != "": UpperCamelCase =line["nodeid"] if line.get("duration", None) is not None: UpperCamelCase =f"{line['duration']:.4f}" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase =[] log.unlink() UpperCamelCase ="" UpperCamelCase =[] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase =[] UpperCamelCase ={} for test in failed_tests: UpperCamelCase =test[0].split("::") UpperCamelCase =data[0].split("/")[-1] if data[0] not in filesafailed: UpperCamelCase =[data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase =[test[0] for test in failed_table] UpperCamelCase =list(set(files)) # Count number of instances in failed_tests UpperCamelCase =[] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase =tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: UpperCamelCase ="Too many failed tests, please see the full report in the Action results." UpperCamelCase =len(err) + 10 UpperCamelCase =message[: 3000 - offset] + f"\n...\n```\n{err}" print(f"### {message}") else: UpperCamelCase ="No failed tests! 🤗" print(f"## {message}") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient UpperCamelCase =WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": UpperCamelCase ={ "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) UpperCamelCase ={ "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) UpperCamelCase ={ "type": "context", "elements": [ { "type": "plain_text", "text": f"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) UpperCamelCase =client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) UpperCamelCase =response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase ="" for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase =row[0] else: UpperCamelCase ="" UpperCamelCase ={ "type": "section", "text": { "type": "mrkdwn", "text": f"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
208
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
519
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" @register_to_config def __init__( self , SCREAMING_SNAKE_CASE__ = 7_68 , ): """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE__ ) ) _snake_case : Optional[Any] = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE__ ) ) def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): """simple docstring""" _snake_case : Dict = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) ) _snake_case : List[Any] = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) ) return self def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case : int = (embeds - self.mean) * 1.0 / self.std return embeds def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case : Optional[Any] = (embeds * self.std) + self.mean return embeds
519
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _UpperCAmelCase( unittest.TestCase , lowerCamelCase ): def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = load_tool('''text-classification''') self.tool.setup() _UpperCamelCase = load_tool('''text-classification''' , remote=__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tool('''That\'s quite cool''' , ['''positive''', '''negative''']) self.assertEqual(__a , '''positive''') def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative''']) self.assertEqual(__a , '''positive''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative''']) self.assertEqual(__a , '''positive''') def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative''']) self.assertEqual(__a , '''positive''')
19
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase__ : def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ): return None class lowercase__ : def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ): return None class lowercase__ ( unittest.TestCase ): __UpperCamelCase = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCAmelCase__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_lowercase , """tf""" , 12 , **_lowercase ) @require_torch @slow def UpperCAmelCase__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_lowercase , """pt""" , 12 , **_lowercase ) @require_torch @slow def UpperCAmelCase__ ( self ): from transformers import BertModel lowerCAmelCase_ : Tuple = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(_lowercase ) ) vocab_file.flush() lowerCAmelCase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCAmelCase_ : List[str] = BertModel(BertConfig(vocab_size=len(_lowercase ) ) ) model.save_pretrained(_lowercase ) self._test_export(_lowercase , """pt""" , 12 , _lowercase ) @require_tf @slow def UpperCAmelCase__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase_ : str = self._test_export(_lowercase , """tf""" , 12 , **_lowercase ) lowerCAmelCase_ : List[Any] = quantize(Path(_lowercase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_lowercase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def UpperCAmelCase__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase_ : List[Any] = self._test_export(_lowercase , """pt""" , 12 , **_lowercase ) lowerCAmelCase_ : Optional[int] = quantize(_lowercase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_lowercase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): try: # Compute path with TemporaryDirectory() as tempdir: lowerCAmelCase_ : Optional[int] = Path(_lowercase ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , **_lowercase ) return path except Exception as e: self.fail(_lowercase ) @require_torch @require_tokenizers @slow def UpperCAmelCase__ ( self ): from transformers import BertModel lowerCAmelCase_ : List[Any] = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase_ : str = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(_lowercase , _lowercase , """pt""" ) @require_tf @require_tokenizers @slow def UpperCAmelCase__ ( self ): from transformers import TFBertModel lowerCAmelCase_ : str = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase_ : Any = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(_lowercase , _lowercase , """tf""" ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ): lowerCAmelCase_ : List[Any] = FeatureExtractionPipeline(_lowercase , _lowercase ) lowerCAmelCase_ : Union[str, Any] = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] lowerCAmelCase_ : List[Any] = infer_shapes(_lowercase , _lowercase ) # Assert all variables are present self.assertEqual(len(_lowercase ) , len(_lowercase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _lowercase ) self.assertSequenceEqual(variable_names[3:] , _lowercase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[int] = ["""input_ids""", """attention_mask""", """token_type_ids"""] lowerCAmelCase_ : List[str] = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} lowerCAmelCase_ : Optional[int] = ensure_valid_input(FuncContiguousArgs() , _lowercase , _lowercase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_lowercase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_lowercase ) , set(_lowercase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_lowercase , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCAmelCase_ : str = ensure_valid_input(FuncNonContiguousArgs() , _lowercase , _lowercase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_lowercase ) , 1 ) self.assertEqual(len(_lowercase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
706
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowercase__ ( __A ): __UpperCamelCase = """perceiver""" def __init__( self , _lowercase=256 , _lowercase=1_280 , _lowercase=768 , _lowercase=1 , _lowercase=26 , _lowercase=8 , _lowercase=8 , _lowercase=None , _lowercase=None , _lowercase="kv" , _lowercase=1 , _lowercase=1 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=True , _lowercase=262 , _lowercase=2_048 , _lowercase=56 , _lowercase=[368, 496] , _lowercase=16 , _lowercase=1_920 , _lowercase=16 , _lowercase=[1, 16, 224, 224] , **_lowercase , ): super().__init__(**_lowercase ) lowerCAmelCase_ : Optional[int] = num_latents lowerCAmelCase_ : List[str] = d_latents lowerCAmelCase_ : int = d_model lowerCAmelCase_ : Dict = num_blocks lowerCAmelCase_ : Union[str, Any] = num_self_attends_per_block lowerCAmelCase_ : List[str] = num_self_attention_heads lowerCAmelCase_ : List[str] = num_cross_attention_heads lowerCAmelCase_ : List[Any] = qk_channels lowerCAmelCase_ : Optional[Any] = v_channels lowerCAmelCase_ : Optional[Any] = cross_attention_shape_for_attention lowerCAmelCase_ : Optional[int] = self_attention_widening_factor lowerCAmelCase_ : int = cross_attention_widening_factor lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Optional[Any] = layer_norm_eps lowerCAmelCase_ : Optional[Any] = use_query_residual # masked language modeling attributes lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : List[Any] = max_position_embeddings # image classification attributes lowerCAmelCase_ : List[Any] = image_size # flow attributes lowerCAmelCase_ : Dict = train_size # multimodal autoencoding attributes lowerCAmelCase_ : Optional[Any] = num_frames lowerCAmelCase_ : int = audio_samples_per_frame lowerCAmelCase_ : Any = samples_per_patch lowerCAmelCase_ : Any = output_shape class lowercase__ ( __A ): @property def UpperCAmelCase__ ( self ): if self.task == "multiple-choice": lowerCAmelCase_ : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def UpperCAmelCase__ ( self ): return 1e-4 def UpperCAmelCase__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , _lowercase = 3 , _lowercase = 40 , _lowercase = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowercase , _lowercase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ : Union[str, Any] = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase_ : int = preprocessor.num_special_tokens_to_add(_lowercase ) lowerCAmelCase_ : int = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase_ : Optional[int] = [""" """.join(["""a"""] ) * seq_length] * batch_size lowerCAmelCase_ : Optional[Any] = dict(preprocessor(_lowercase , return_tensors=_lowercase ) ) lowerCAmelCase_ : Optional[Any] = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowercase , _lowercase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ : Any = compute_effective_axis_dimension(_lowercase , fixed_dimension=OnnxConfig.default_fixed_batch ) lowerCAmelCase_ : str = self._generate_dummy_images(_lowercase , _lowercase , _lowercase , _lowercase ) lowerCAmelCase_ : List[str] = dict(preprocessor(images=_lowercase , return_tensors=_lowercase ) ) lowerCAmelCase_ : Tuple = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
440
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : str = CTRLTokenizer _lowercase : Dict = False _lowercase : int = False def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__ = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowercase__ = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__ = {'''unk_token''': '''<unk>'''} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Dict , **UpperCamelCase_: str ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: str ) -> Optional[int]: """simple docstring""" lowercase__ = '''adapt react readapt apt''' lowercase__ = '''adapt react readapt apt''' return input_text, output_text def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ = '''adapt react readapt apt''' lowercase__ = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__ = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ )
43
def __a ( __UpperCAmelCase : int = 100 ) -> int: """simple docstring""" lowerCamelCase_ : Any = set() lowerCamelCase_ : int = 0 lowerCamelCase_ : Tuple = n + 1 # maximum limit for a in range(2 , __UpperCAmelCase ): for b in range(2 , __UpperCAmelCase ): lowerCamelCase_ : List[Any] = a**b # calculates the current power collect_powers.add(__UpperCAmelCase ) # adds the result to the set return len(__UpperCAmelCase ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
488
0
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py snake_case = 'src/transformers' snake_case = 'docs/source/en' snake_case = '.' def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_, 'r', encoding='utf-8', newline='\n' ) as f: SCREAMING_SNAKE_CASE = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE = 0 while not lines[start_index].startswith(SCREAMING_SNAKE_CASE_ ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE = start_index while not lines[end_index].startswith(SCREAMING_SNAKE_CASE_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | snake_case = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. snake_case = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') snake_case = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. snake_case = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. snake_case = direct_transformers_import(TRANSFORMERS_PATH) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', SCREAMING_SNAKE_CASE_ ) return [m.group(0 ) for m in matches] def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = 2 if text == '✅' or text == '❌' else len(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = (width - text_length) // 2 SCREAMING_SNAKE_CASE = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCamelCase_ ( ): SCREAMING_SNAKE_CASE = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } SCREAMING_SNAKE_CASE = {name: config.replace('Config', '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. SCREAMING_SNAKE_CASE = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) # Let's lookup through all transformers object (once). for attr_name in dir(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = None if attr_name.endswith('Tokenizer' ): SCREAMING_SNAKE_CASE = slow_tokenizers SCREAMING_SNAKE_CASE = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): SCREAMING_SNAKE_CASE = fast_tokenizers SCREAMING_SNAKE_CASE = attr_name[:-1_3] elif _re_tf_models.match(SCREAMING_SNAKE_CASE_ ) is not None: SCREAMING_SNAKE_CASE = tf_models SCREAMING_SNAKE_CASE = _re_tf_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] elif _re_flax_models.match(SCREAMING_SNAKE_CASE_ ) is not None: SCREAMING_SNAKE_CASE = flax_models SCREAMING_SNAKE_CASE = _re_flax_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] elif _re_pt_models.match(SCREAMING_SNAKE_CASE_ ) is not None: SCREAMING_SNAKE_CASE = pt_models SCREAMING_SNAKE_CASE = _re_pt_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] if lookup_dict is not None: while len(SCREAMING_SNAKE_CASE_ ) > 0: if attr_name in model_name_to_prefix.values(): SCREAMING_SNAKE_CASE = True break # Try again after removing the last word in the name SCREAMING_SNAKE_CASE = ''.join(camel_case_split(SCREAMING_SNAKE_CASE_ )[:-1] ) # Let's build that table! SCREAMING_SNAKE_CASE = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) SCREAMING_SNAKE_CASE = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). SCREAMING_SNAKE_CASE = [len(SCREAMING_SNAKE_CASE_ ) + 2 for c in columns] SCREAMING_SNAKE_CASE = max([len(SCREAMING_SNAKE_CASE_ ) for name in model_names] ) + 2 # Build the table per se SCREAMING_SNAKE_CASE = '|' + '|'.join([_center_text(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for c, w in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" SCREAMING_SNAKE_CASE = {True: '✅', False: '❌'} for name in model_names: SCREAMING_SNAKE_CASE = model_name_to_prefix[name] SCREAMING_SNAKE_CASE = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for l, w in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )] ) + "|\n" return table def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_=False ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = _find_text_in_file( filename=os.path.join(SCREAMING_SNAKE_CASE_, 'index.md' ), start_prompt='<!--This table is updated automatically from the auto modules', end_prompt='<!-- End table-->', ) SCREAMING_SNAKE_CASE = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(SCREAMING_SNAKE_CASE_, 'index.md' ), 'w', encoding='utf-8', newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') snake_case = parser.parse_args() check_model_table(args.fix_and_overwrite)
702
"""simple docstring""" snake_case = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution snake_case = [None] * 1_0_0_0_0_0_0_0 snake_case = True snake_case = False def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore SCREAMING_SNAKE_CASE = chain(next_number(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = number_chain while number < 1_0_0_0_0_0_0_0: SCREAMING_SNAKE_CASE = number_chain number *= 1_0 return number_chain def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ = 1_0_0_0_0_0_0_0 ): for i in range(1, SCREAMING_SNAKE_CASE_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
406
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCamelCase : Union[str, Any] = logging.getLogger(__name__) class A( __lowercase ): '''simple docstring''' def a__ ( self : int , A_ : Dict , A_ : Any , A_ : Union[str, Any]=None , A_ : Optional[Any]=None ) -> str: """simple docstring""" lowerCamelCase_ = self.layer[current_layer](A_ , A_ , head_mask[current_layer] ) lowerCamelCase_ = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , __lowercase , ) class A( __lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , A_ : str ) -> Dict: """simple docstring""" super().__init__(A_ ) lowerCamelCase_ = BertEncoderWithPabee(A_ ) self.init_weights() lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 def a__ ( self : Union[str, Any] , A_ : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = threshold def a__ ( self : List[str] , A_ : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = patience def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.inference_layers_num / self.inference_instances_num lowerCamelCase_ = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(A_ ) @add_start_docstrings_to_model_forward(A_ ) def a__ ( self : List[Any] , A_ : List[str]=None , A_ : List[Any]=None , A_ : Optional[int]=None , A_ : Optional[Any]=None , A_ : int=None , A_ : Optional[int]=None , A_ : Optional[Any]=None , A_ : Optional[Any]=None , A_ : List[str]=None , A_ : Optional[Any]=None , A_ : Optional[int]=False , ) -> str: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCamelCase_ = input_ids.size() elif inputs_embeds is not None: lowerCamelCase_ = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCamelCase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCamelCase_ = torch.ones(A_ , device=A_ ) if token_type_ids is None: lowerCamelCase_ = torch.zeros(A_ , dtype=torch.long , device=A_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCamelCase_ = self.get_extended_attention_mask(A_ , A_ , A_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCamelCase_ = encoder_hidden_states.size() lowerCamelCase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCamelCase_ = torch.ones(A_ , device=A_ ) lowerCamelCase_ = self.invert_attention_mask(A_ ) else: lowerCamelCase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCamelCase_ = self.get_head_mask(A_ , self.config.num_hidden_layers ) lowerCamelCase_ = self.embeddings( input_ids=A_ , position_ids=A_ , token_type_ids=A_ , inputs_embeds=A_ ) lowerCamelCase_ = embedding_output if self.training: lowerCamelCase_ = [] for i in range(self.config.num_hidden_layers ): lowerCamelCase_ = self.encoder.adaptive_forward( A_ , current_layer=A_ , attention_mask=A_ , head_mask=A_ ) lowerCamelCase_ = self.pooler(A_ ) lowerCamelCase_ = output_layers[i](output_dropout(A_ ) ) res.append(A_ ) elif self.patience == 0: # Use all layers for inference lowerCamelCase_ = self.encoder( A_ , attention_mask=A_ , head_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) lowerCamelCase_ = self.pooler(encoder_outputs[0] ) lowerCamelCase_ = [output_layers[self.config.num_hidden_layers - 1](A_ )] else: lowerCamelCase_ = 0 lowerCamelCase_ = None lowerCamelCase_ = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCamelCase_ = self.encoder.adaptive_forward( A_ , current_layer=A_ , attention_mask=A_ , head_mask=A_ ) lowerCamelCase_ = self.pooler(A_ ) lowerCamelCase_ = output_layers[i](A_ ) if regression: lowerCamelCase_ = logits.detach() if patient_result is not None: lowerCamelCase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCamelCase_ = 0 else: lowerCamelCase_ = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCamelCase_ = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(A_ ) ): patient_counter += 1 else: lowerCamelCase_ = 0 lowerCamelCase_ = logits if patient_counter == self.patience: break lowerCamelCase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''' , __lowercase , ) class A( __lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , A_ : str ) -> Any: """simple docstring""" super().__init__(A_ ) lowerCamelCase_ = config.num_labels lowerCamelCase_ = BertModelWithPabee(A_ ) lowerCamelCase_ = nn.Dropout(config.hidden_dropout_prob ) lowerCamelCase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(A_ ) def a__ ( self : List[str] , A_ : Dict=None , A_ : str=None , A_ : Union[str, Any]=None , A_ : str=None , A_ : Dict=None , A_ : str=None , A_ : Tuple=None , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.bert( input_ids=A_ , attention_mask=A_ , token_type_ids=A_ , position_ids=A_ , head_mask=A_ , inputs_embeds=A_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCamelCase_ = (logits[-1],) if labels is not None: lowerCamelCase_ = None lowerCamelCase_ = 0 for ix, logits_item in enumerate(A_ ): if self.num_labels == 1: # We are doing regression lowerCamelCase_ = MSELoss() lowerCamelCase_ = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCamelCase_ = CrossEntropyLoss() lowerCamelCase_ = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCamelCase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCamelCase_ = (total_loss / total_weights,) + outputs return outputs
70
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
0
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=lowercase__ ): lowerCamelCase : Any = ['''note_seq'''] def __init__( self : Union[str, Any] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : int ) -> int: requires_backends(self , ['note_seq'] ) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Union[str, Any] ) -> Dict: requires_backends(cls , ['note_seq'] ) @classmethod def __UpperCAmelCase ( cls : Tuple , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : str ) -> Union[str, Any]: requires_backends(cls , ['note_seq'] )
705
'''simple docstring''' from __future__ import annotations def a_ ( lowerCamelCase : list , lowerCamelCase : int ): # Checks if the entire collection has been sorted if len(lowerCamelCase ) <= 1 or n <= 1: return insert_next(lowerCamelCase , n - 1 ) rec_insertion_sort(lowerCamelCase , n - 1 ) def a_ ( lowerCamelCase : list , lowerCamelCase : int ): # Checks order between adjacent elements if index >= len(lowerCamelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowerCAmelCase , lowerCAmelCase = ( collection[index], collection[index - 1], ) insert_next(lowerCamelCase , index + 1 ) if __name__ == "__main__": __snake_case =input("""Enter integers separated by spaces: """) __snake_case =[int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
513
0
'''simple docstring''' import sys lowercase =( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : Any =1 for digit in s: product *= int(__lowerCamelCase ) return product def lowerCamelCase__ ( __lowerCamelCase : str = N ): '''simple docstring''' _UpperCAmelCase : Tuple =-sys.maxsize - 1 _UpperCAmelCase : Tuple =n[:1_3] _UpperCAmelCase : List[Any] =1_3 while cur_index < len(__lowerCamelCase ) - 1_3: if int(n[cur_index] ) >= int(substr[0] ): _UpperCAmelCase : Optional[Any] =substr[1:] + n[cur_index] cur_index += 1 else: _UpperCAmelCase : Dict =max(__lowerCamelCase , str_eval(__lowerCamelCase ) ) _UpperCAmelCase : Optional[int] =n[cur_index : cur_index + 1_3] cur_index += 1_3 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
446
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =set() # Replace all the whitespace in our sentence _UpperCAmelCase : Dict =input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowerCamelCase ) == 2_6 def lowerCamelCase__ ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' _UpperCAmelCase : Tuple =[False] * 2_6 for char in input_str: if char.islower(): _UpperCAmelCase : Dict =True elif char.isupper(): _UpperCAmelCase : List[str] =True return all(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def lowerCamelCase__ ( ): '''simple docstring''' from timeit import timeit _UpperCAmelCase : List[Any] ='from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=__lowerCamelCase ) ) print(timeit('is_pangram_faster()' , setup=__lowerCamelCase ) ) print(timeit('is_pangram_fastest()' , setup=__lowerCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
446
1
from __future__ import annotations def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
207
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
207
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class _SCREAMING_SNAKE_CASE : def __init__(self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =data __UpperCAmelCase =[0x67_452_301, 0xEF_CDA_B89, 0x98_BAD_CFE, 0x10_325_476, 0xC3_D2E_1F0] @staticmethod def A__ (UpperCAmelCase , UpperCAmelCase): '''simple docstring''' return ((n << b) | (n >> (3_2 - b))) & 0xFF_FFF_FFF def A__ (self): '''simple docstring''' __UpperCAmelCase =B"""\x80""" + B"""\x00""" * (6_3 - (len(self.data) + 8) % 6_4) __UpperCAmelCase =self.data + padding + struct.pack('''>Q''' , 8 * len(self.data)) return padded_data def A__ (self): '''simple docstring''' return [ self.padded_data[i : i + 6_4] for i in range(0 , len(self.padded_data) , 6_4) ] def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =list(struct.unpack('''>16L''' , _lowerCAmelCase)) + [0] * 6_4 for i in range(1_6 , 8_0): __UpperCAmelCase =self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 1_4] ^ w[i - 1_6]) , 1) return w def A__ (self): '''simple docstring''' __UpperCAmelCase =self.padding() __UpperCAmelCase =self.split_blocks() for block in self.blocks: __UpperCAmelCase =self.expand_block(_lowerCAmelCase) __UpperCAmelCase =self.h for i in range(0 , 8_0): if 0 <= i < 2_0: __UpperCAmelCase =(b & c) | ((~b) & d) __UpperCAmelCase =0x5A_827_999 elif 2_0 <= i < 4_0: __UpperCAmelCase =b ^ c ^ d __UpperCAmelCase =0x6E_D9E_BA1 elif 4_0 <= i < 6_0: __UpperCAmelCase =(b & c) | (b & d) | (c & d) __UpperCAmelCase =0x8F_1BB_CDC elif 6_0 <= i < 8_0: __UpperCAmelCase =b ^ c ^ d __UpperCAmelCase =0xCA_62C_1D6 __UpperCAmelCase =( self.rotate(_lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0xFF_FFF_FFF, a, self.rotate(_lowerCAmelCase , 3_0), c, d, ) __UpperCAmelCase =( self.h[0] + a & 0xFF_FFF_FFF, self.h[1] + b & 0xFF_FFF_FFF, self.h[2] + c & 0xFF_FFF_FFF, self.h[3] + d & 0xFF_FFF_FFF, self.h[4] + e & 0xFF_FFF_FFF, ) return ("{:08x}" * 5).format(*self.h) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: __UpperCAmelCase =B"""Test String""" assert SHAaHash(__lowerCamelCase ).final_hash() == hashlib.shaa(__lowerCamelCase ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE ( ) -> str: __UpperCAmelCase =argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) __UpperCAmelCase =parser.parse_args() __UpperCAmelCase =args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: __UpperCAmelCase =f.read() else: __UpperCAmelCase =bytes(__lowerCamelCase , '''utf-8''' ) print(SHAaHash(__lowerCamelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
132
from importlib import import_module from .logging import get_logger SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_logger(__name__) class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None ): UpperCAmelCase__ : List[str] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase__ : Tuple = module._original_module if isinstance(_lowerCAmelCase , _PatchedModuleObj ) else module class UpperCAmelCase_ : __lowerCamelCase = [] def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): UpperCAmelCase__ : str = obj UpperCAmelCase__ : List[str] = target UpperCAmelCase__ : List[str] = new UpperCAmelCase__ : Any = target.split(""".""" )[0] UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : str = attrs or [] def __enter__( self ): *UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_lowerCAmelCase ) ): try: UpperCAmelCase__ : Optional[int] = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): UpperCAmelCase__ : Any = getattr(self.obj , _lowerCAmelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_lowerCAmelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): UpperCAmelCase__ : List[Any] = obj_attr # patch at top level setattr(self.obj , _lowerCAmelCase , _PatchedModuleObj(_lowerCAmelCase , attrs=self.attrs ) ) UpperCAmelCase__ : Optional[Any] = getattr(self.obj , _lowerCAmelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_lowerCAmelCase , _lowerCAmelCase , _PatchedModuleObj(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , attrs=self.attrs ) ) UpperCAmelCase__ : Union[str, Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) # finally set the target attribute setattr(_lowerCAmelCase , _lowerCAmelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: UpperCAmelCase__ : Union[str, Any] = getattr(import_module(""".""".join(_lowerCAmelCase ) ) , _lowerCAmelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _lowerCAmelCase ) is attr_value: UpperCAmelCase__ : Optional[int] = getattr(self.obj , _lowerCAmelCase ) setattr(self.obj , _lowerCAmelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" UpperCAmelCase__ : Dict = globals()["""__builtins__"""][target_attr] setattr(self.obj , _lowerCAmelCase , self.new ) else: raise RuntimeError(f"Tried to patch attribute {target_attr} instead of a submodule." ) def __exit__( self , *_lowerCAmelCase ): for attr in list(self.original ): setattr(self.obj , _lowerCAmelCase , self.original.pop(_lowerCAmelCase ) ) def __UpperCAmelCase ( self ): self.__enter__() self._active_patches.append(self ) def __UpperCAmelCase ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
79
0
def _lowercase ( a_ : Tuple ) -> int: __magic_name__ = [] __magic_name__ = set({'(', '[', '{'} ) __magic_name__ = set({')', ']', '}'} ) __magic_name__ = {'{': '}', '[': ']', '(': ')'} for i in range(len(a_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a_ ) == 0 or (len(a_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a_ ) == 0 def _lowercase ( ) -> List[Any]: __magic_name__ = input('Enter sequence of brackets: ' ) if is_balanced(a_ ): print(a_ ,'is balanced' ) else: print(a_ ,'is not balanced' ) if __name__ == "__main__": main()
715
import requests from bsa import BeautifulSoup def _lowercase ( a_ : str = "https://www.worldometers.info/coronavirus" ) -> dict: '''simple docstring''' __magic_name__ = BeautifulSoup(requests.get(a_ ).text ,'html.parser' ) __magic_name__ = soup.findAll('h1' ) __magic_name__ = soup.findAll('div' ,{'class': 'maincounter-number'} ) keys += soup.findAll('span' ,{'class': 'panel-title'} ) values += soup.findAll('div' ,{'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(a_ ,a_ )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
184
0
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _SCREAMING_SNAKE_CASE = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ ,'r' ) as f: A_ = f.read().splitlines() return [l.strip() for l in lines] class __UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] , _lowercase : List[str] , _lowercase : List[Any]="<unk>" , _lowercase : str="<cls>" , _lowercase : Dict="<pad>" , _lowercase : Any="<mask>" , _lowercase : Dict="<eos>" , **_lowercase : Dict , ) -> int: super().__init__(**_lowercase) A_ = load_vocab_file(_lowercase) A_ = dict(enumerate(self.all_tokens)) A_ = {tok: ind for ind, tok in enumerate(self.all_tokens)} A_ = unk_token A_ = cls_token A_ = pad_token A_ = mask_token A_ = eos_token A_ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def __snake_case ( self : Union[str, Any] , _lowercase : int) -> str: return self._id_to_token.get(_lowercase , self.unk_token) def __snake_case ( self : Tuple , _lowercase : str) -> int: return self._token_to_id.get(_lowercase , self._token_to_id.get(self.unk_token)) def __snake_case ( self : List[Any] , _lowercase : List[str] , **_lowercase : int) -> Dict: return text.split() def __snake_case ( self : int , _lowercase : int=False) -> List[str]: return len(self._id_to_token) def __snake_case ( self : int) -> Union[str, Any]: return {token: i for i, token in enumerate(self.all_tokens)} def __snake_case ( self : Tuple , _lowercase : str) -> int: return self._token_to_id.get(_lowercase , self._token_to_id.get(self.unk_token)) def __snake_case ( self : Union[str, Any] , _lowercase : int) -> str: return self._id_to_token.get(_lowercase , self.unk_token) def __snake_case ( self : Dict , _lowercase : List[int] , _lowercase : Optional[List[int]] = None) -> List[int]: A_ = [self.cls_token_id] A_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __snake_case ( self : Union[str, Any] , _lowercase : List , _lowercase : Optional[List] = None , _lowercase : bool = False) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] A_ = [1] + ([0] * len(_lowercase)) + [1] if token_ids_a is not None: mask += [0] * len(_lowercase) + [1] return mask def __snake_case ( self : Dict , _lowercase : str , _lowercase : Optional[int]) -> Dict: A_ = os.path.join(_lowercase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(_lowercase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def __snake_case ( self : int) -> int: return self.get_vocab_size(with_added_tokens=_lowercase) def __snake_case ( self : Any , _lowercase : Union[List[str], List[AddedToken]] , _lowercase : bool = False) -> int: return super()._add_tokens(_lowercase , special_tokens=_lowercase)
366
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def __snake_case ( self : str) -> Optional[int]: A_ = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused') A_ = load_dataset('ashraq/esc50') A_ = dataset['train']['audio'][-1]['array'] A_ = audio_classifier(_lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_lowercase) , [{'score': 0.5_01, 'label': 'Sound of a dog'}, {'score': 0.4_99, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF') def __snake_case ( self : Tuple) -> str: pass @slow @require_torch def __snake_case ( self : Optional[Any]) -> Tuple: A_ = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog A_ = load_dataset('ashraq/esc50') A_ = dataset['train']['audio'][-1]['array'] A_ = audio_classifier(_lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_lowercase) , [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ] , ) A_ = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_lowercase) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) A_ = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5) self.assertEqual( nested_simplify(_lowercase) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF') def __snake_case ( self : List[str]) -> str: pass
366
1
import baseaa def lowercase_ ( __UpperCAmelCase ) -> bytes: return baseaa.aaaencode(string.encode("""utf-8""" ) ) def lowercase_ ( __UpperCAmelCase ) -> str: return baseaa.aaadecode(__UpperCAmelCase ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _A = logging.get_logger("""transformers.models.speecht5""") _A = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } _A = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } _A = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } _A = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } _A = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } _A = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } _A = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } _A = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } _A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _A = [] _A = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] _A = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] _A = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] _A = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: for attribute in key.split(""".""" ): lowerCAmelCase__ : Optional[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: lowerCAmelCase__ : Optional[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: lowerCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ : Dict = value elif weight_type == "weight_g": lowerCAmelCase__ : Any = value elif weight_type == "weight_v": lowerCAmelCase__ : int = value elif weight_type == "bias": lowerCAmelCase__ : List[str] = value elif weight_type == "running_mean": lowerCAmelCase__ : int = value elif weight_type == "running_var": lowerCAmelCase__ : Dict = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ : List[str] = value else: lowerCAmelCase__ : List[str] = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : Optional[int] = [] if task == "s2t": lowerCAmelCase__ : int = hf_model.speechta.encoder.prenet.feature_encoder lowerCAmelCase__ : Optional[int] = MAPPING_S2T lowerCAmelCase__ : List[str] = IGNORE_KEYS_S2T elif task == "t2s": lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Tuple = MAPPING_T2S lowerCAmelCase__ : Optional[int] = IGNORE_KEYS_T2S elif task == "s2s": lowerCAmelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder lowerCAmelCase__ : Union[str, Any] = MAPPING_S2S lowerCAmelCase__ : Optional[int] = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(__UpperCAmelCase , __UpperCAmelCase ): logger.info(f"""{name} was ignored""" ) continue lowerCAmelCase__ : Tuple = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase__ : List[str] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowerCAmelCase__ , lowerCAmelCase__ : int = key.split(""".*.""" ) if prefix in name and suffix in name: lowerCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowerCAmelCase__ : Dict = True if "*" in mapped_key: lowerCAmelCase__ : List[Any] = name.split(__UpperCAmelCase )[0].split(""".""" )[-2] lowerCAmelCase__ : Any = mapped_key.replace("""*""" , __UpperCAmelCase ) if "weight_g" in name: lowerCAmelCase__ : Any = """weight_g""" elif "weight_v" in name: lowerCAmelCase__ : Tuple = """weight_v""" elif "bias" in name: lowerCAmelCase__ : Dict = """bias""" elif "weight" in name: lowerCAmelCase__ : Any = """weight""" elif "running_mean" in name: lowerCAmelCase__ : Any = """running_mean""" elif "running_var" in name: lowerCAmelCase__ : List[Any] = """running_var""" elif "num_batches_tracked" in name: lowerCAmelCase__ : Tuple = """num_batches_tracked""" else: lowerCAmelCase__ : str = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : List[Any] = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase__ : int = name.split(""".""" ) lowerCAmelCase__ : Optional[Any] = int(items[0] ) lowerCAmelCase__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[Any]: if config_path is not None: lowerCAmelCase__ : Dict = SpeechTaConfig.from_pretrained(__UpperCAmelCase ) else: lowerCAmelCase__ : str = SpeechTaConfig() if task == "s2t": lowerCAmelCase__ : int = config.max_text_positions lowerCAmelCase__ : Union[str, Any] = SpeechTaForSpeechToText(__UpperCAmelCase ) elif task == "t2s": lowerCAmelCase__ : Any = 1876 lowerCAmelCase__ : Dict = 600 lowerCAmelCase__ : Union[str, Any] = config.max_speech_positions lowerCAmelCase__ : List[Any] = SpeechTaForTextToSpeech(__UpperCAmelCase ) elif task == "s2s": lowerCAmelCase__ : Optional[Any] = 1876 lowerCAmelCase__ : Optional[Any] = config.max_speech_positions lowerCAmelCase__ : Dict = SpeechTaForSpeechToSpeech(__UpperCAmelCase ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: lowerCAmelCase__ : int = SpeechTaTokenizer(__UpperCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowerCAmelCase__ : Optional[int] = AddedToken("""<mask>""" , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) lowerCAmelCase__ : Dict = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) lowerCAmelCase__ : Union[str, Any] = SpeechTaFeatureExtractor() lowerCAmelCase__ : Optional[int] = SpeechTaProcessor(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = torch.load(__UpperCAmelCase ) recursively_load_weights(fairseq_checkpoint["""model"""] , __UpperCAmelCase , __UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(__UpperCAmelCase ) model.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
507
0
from torch import nn def UpperCamelCase( __UpperCamelCase : Optional[Any] ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
171
import random from typing import Any def UpperCamelCase( __UpperCamelCase : list ): for _ in range(len(__UpperCamelCase ) ): lowerCAmelCase_ : Union[str, Any] = random.randint(0 ,len(__UpperCamelCase ) - 1 ) lowerCAmelCase_ : List[Any] = random.randint(0 ,len(__UpperCamelCase ) - 1 ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = data[b], data[a] return data if __name__ == "__main__": A__ : List[Any] = [0, 1, 2, 3, 4, 5, 6, 7] A__ : int = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
171
1
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _lowerCamelCase = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _lowerCamelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a__ ( _SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" if "://" in dataset_path: UpperCAmelCase_ : Any = dataset_path.split("://" )[1] return dataset_path def a__ ( _SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def a__ ( _SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[int] = not is_remote_filesystem(_SCREAMING_SNAKE_CASE ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_SCREAMING_SNAKE_CASE ) , fs._strip_protocol(_SCREAMING_SNAKE_CASE ) ) else: fs.mv(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , recursive=_SCREAMING_SNAKE_CASE ) def a__ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[int] = threading.Lock()
323
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE_ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def lowercase (_lowerCAmelCase=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser("""tpu-config""" , description=_description ) else: __lowerCAmelCase = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments __lowerCAmelCase = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_lowerCAmelCase , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_lowerCAmelCase , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) __lowerCAmelCase = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_lowerCAmelCase , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def lowercase (_lowerCAmelCase ): __lowerCAmelCase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_lowerCAmelCase ): __lowerCAmelCase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __lowerCAmelCase = defaults.command_file if not args.command and defaults.commands is not None: __lowerCAmelCase = defaults.commands if not args.tpu_name: __lowerCAmelCase = defaults.tpu_name if not args.tpu_zone: __lowerCAmelCase = defaults.tpu_zone if args.accelerate_version == "dev": __lowerCAmelCase = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": __lowerCAmelCase = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , _lowerCAmelCase ): __lowerCAmelCase = f"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: __lowerCAmelCase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _lowerCAmelCase ): __lowerCAmelCase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __lowerCAmelCase = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f"""pip install {args.accelerate_version}"""] new_cmd += args.command __lowerCAmelCase = """; """.join(_lowerCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __lowerCAmelCase = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"""Running {" ".join(_lowerCAmelCase )}""" ) return subprocess.run(_lowerCAmelCase ) print("""Successfully setup pod.""" ) def lowercase (): __lowerCAmelCase = tpu_command_parser() __lowerCAmelCase = parser.parse_args() tpu_command_launcher(_lowerCAmelCase )
465
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
465
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['LayoutLMv3FeatureExtractor'] _lowercase = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: int = tempfile.mkdtemp() lowerCamelCase__: Tuple = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] lowerCamelCase__: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase__: Optional[int] = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], """do_convert_rgb""": True, } lowerCamelCase__: List[str] = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__a , __a ) def lowerCamelCase_ ( self : List[Any] , **__a : List[str] ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCamelCase_ ( self : int , **__a : str ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def lowerCamelCase_ ( self : str , **__a : Tuple ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__a ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowerCamelCase__: Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase__: Dict = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Optional[int] = self.get_tokenizer() lowerCamelCase__: List[Any] = self.get_rust_tokenizer() lowerCamelCase__: Dict = self.get_image_processor() lowerCamelCase__: int = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__: Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) lowerCamelCase__: str = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__: Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: str = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__: List[str] = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) lowerCamelCase__: str = self.get_image_processor(do_normalize=__a ) lowerCamelCase__: List[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=__a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: str = self.get_image_processor() lowerCamelCase__: Union[str, Any] = self.get_tokenizer() lowerCamelCase__: List[str] = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) lowerCamelCase__: int = self.prepare_image_inputs() lowerCamelCase__: List[str] = image_processor(__a , return_tensors="""np""" ) lowerCamelCase__: Optional[Any] = processor(images=__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: Tuple = self.get_image_processor() lowerCamelCase__: Dict = self.get_tokenizer() lowerCamelCase__: Optional[int] = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) lowerCamelCase__: List[str] = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__: Optional[Any] = processor(text=__a ) lowerCamelCase__: Tuple = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: int = self.get_image_processor() lowerCamelCase__: Any = self.get_tokenizer() lowerCamelCase__: Tuple = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) lowerCamelCase__: Dict = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__: int = self.prepare_image_inputs() lowerCamelCase__: Union[str, Any] = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Optional[Any] = self.get_image_processor() lowerCamelCase__: List[Any] = self.get_tokenizer() lowerCamelCase__: Optional[int] = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) lowerCamelCase__: Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__: Union[str, Any] = processor.batch_decode(__a ) lowerCamelCase__: Union[str, Any] = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: str = self.get_image_processor() lowerCamelCase__: Tuple = self.get_tokenizer() lowerCamelCase__: Union[str, Any] = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) lowerCamelCase__: Optional[int] = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__: Tuple = self.prepare_image_inputs() lowerCamelCase__: Optional[int] = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
242
0
from math import pow def a__ ( A__, A__, A__, A__, A__, ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count SCREAMING_SNAKE_CASE_ : List[Any] = int(pow(A__, A__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = backtrack( A__, A__, current_number + 1, A__, A__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = backtrack( A__, A__, current_number + 1, A__, A__ ) return current_sum, solutions_count def a__ ( A__, A__ ): if not (1 <= needed_sum <= 1_0_0_0 and 2 <= power <= 1_0): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(A__, A__, 1, 0, 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
101
from statistics import mean, stdev def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 3 ) -> list: lowerCamelCase : Optional[int] = min(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = max(_SCREAMING_SNAKE_CASE ) # normalize data return [round((x - x_min) / (x_max - x_min) ,_SCREAMING_SNAKE_CASE ) for x in data] def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 3 ) -> list: lowerCamelCase : Union[str, Any] = mean(_SCREAMING_SNAKE_CASE ) lowerCamelCase : int = stdev(_SCREAMING_SNAKE_CASE ) # standardize data return [round((x - mu) / (sigma) ,_SCREAMING_SNAKE_CASE ) for x in data]
311
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __snake_case ( lowerCAmelCase__ ): __lowerCAmelCase : List[Any] = CustomTokenizer pass
620
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin UpperCamelCase__ : int = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __snake_case ( unittest.TestCase , lowerCAmelCase__ ): def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = load_tool('text-question-answering') self.tool.setup() SCREAMING_SNAKE_CASE_ = load_tool('text-question-answering' , remote=_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.tool(_A , 'What did Hugging Face do in April 2021?') self.assertEqual(_A , 'launched the BigScience Research Workshop') def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.remote_tool(_A , 'What did Hugging Face do in April 2021?') self.assertEqual(_A , 'launched the BigScience Research Workshop') def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.tool(text=_A , question='What did Hugging Face do in April 2021?') self.assertEqual(_A , 'launched the BigScience Research Workshop') def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.remote_tool(text=_A , question='What did Hugging Face do in April 2021?') self.assertEqual(_A , 'launched the BigScience Research Workshop')
620
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A ( UpperCamelCase_ ): UpperCamelCase__ : List[str] =(PNDMScheduler,) UpperCamelCase__ : Dict =(('num_inference_steps', 50),) def lowerCamelCase ( self : Dict , **lowercase_ : Dict ) -> str: """simple docstring""" _lowerCamelCase : List[Any] ={ 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**lowercase_ ) return config def lowerCamelCase ( self : Any , lowercase_ : str=0 , **lowercase_ : str ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Optional[Any] =dict(self.forward_default_kwargs ) _lowerCamelCase : Optional[Any] =kwargs.pop('num_inference_steps' , lowercase_ ) _lowerCamelCase : Tuple =self.dummy_sample _lowerCamelCase : int =0.1 * sample _lowerCamelCase : int =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCamelCase : str =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : str =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals _lowerCamelCase : Any =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) _lowerCamelCase : Optional[Any] =scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals _lowerCamelCase : Any =dummy_past_residuals[:] _lowerCamelCase : Union[str, Any] =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : List[str] =new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCamelCase : Optional[int] =scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : Optional[Any] =new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any] , lowercase_ : List[str]=0 , **lowercase_ : int ) -> int: """simple docstring""" _lowerCamelCase : Any =dict(self.forward_default_kwargs ) _lowerCamelCase : Dict =kwargs.pop('num_inference_steps' , lowercase_ ) _lowerCamelCase : Union[str, Any] =self.dummy_sample _lowerCamelCase : Optional[int] =0.1 * sample _lowerCamelCase : List[str] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCamelCase : Any =self.get_scheduler_config() _lowerCamelCase : int =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase : Any =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) _lowerCamelCase : Optional[Any] =scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase : Optional[int] =dummy_past_residuals[:] _lowerCamelCase : List[str] =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : str =new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCamelCase : Optional[Any] =scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : List[str] =new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Optional[Any] , **lowercase_ : Any ) -> Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] =self.scheduler_classes[0] _lowerCamelCase : Optional[Any] =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : Any =scheduler_class(**lowercase_ ) _lowerCamelCase : Union[str, Any] =10 _lowerCamelCase : str =self.dummy_model() _lowerCamelCase : Union[str, Any] =self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCamelCase : Union[str, Any] =model(lowercase_ , lowercase_ ) _lowerCamelCase : Any =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCamelCase : List[Any] =model(lowercase_ , lowercase_ ) _lowerCamelCase : int =scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" _lowerCamelCase : Any =dict(self.forward_default_kwargs ) _lowerCamelCase : Optional[int] =kwargs.pop('num_inference_steps' , lowercase_ ) for scheduler_class in self.scheduler_classes: _lowerCamelCase : List[str] =self.get_scheduler_config() _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) _lowerCamelCase : Union[str, Any] =self.dummy_sample _lowerCamelCase : Optional[int] =0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , 'set_timesteps' ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , 'set_timesteps' ): _lowerCamelCase : Tuple =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCamelCase : List[Any] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCamelCase : Union[str, Any] =dummy_past_residuals[:] _lowerCamelCase : List[Any] =scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : str =scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCamelCase : Tuple =scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : Optional[Any] =scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase ( self : Dict ) -> Any: """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def lowerCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) _lowerCamelCase : Optional[int] =self.scheduler_classes[0] _lowerCamelCase : Dict =self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowerCamelCase ( self : List[str] ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def lowerCamelCase ( self : Tuple ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def lowerCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] =27 for scheduler_class in self.scheduler_classes: _lowerCamelCase : Dict =self.dummy_sample _lowerCamelCase : List[Any] =0.1 * sample _lowerCamelCase : List[Any] =self.get_scheduler_config() _lowerCamelCase : List[str] =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCamelCase : Tuple =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowercase_ ): _lowerCamelCase : Dict =self.scheduler_classes[0] _lowerCamelCase : Optional[Any] =self.get_scheduler_config() _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" _lowerCamelCase : Tuple =self.full_loop() _lowerCamelCase : Optional[Any] =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : Union[str, Any] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _lowerCamelCase : int =self.full_loop(prediction_type='v_prediction' ) _lowerCamelCase : Dict =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : str =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def lowerCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple =self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) _lowerCamelCase : Optional[Any] =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : Union[str, Any] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _lowerCamelCase : str =self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) _lowerCamelCase : Union[str, Any] =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : str =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
464
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = '▁' lowerCamelCase = {'vocab_file': 'prophetnet.tokenizer'} lowerCamelCase = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } lowerCamelCase = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } lowerCamelCase = { 'microsoft/xprophetnet-large-wiki100-cased': 5_12, } def a_ ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' _lowerCamelCase : List[str] =collections.OrderedDict() with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as reader: _lowerCamelCase : Dict =reader.readlines() for index, token in enumerate(SCREAMING_SNAKE_CASE__ ): _lowerCamelCase : int =token.rstrip('\n' ) _lowerCamelCase : Tuple =index return vocab class A ( UpperCamelCase_ ): UpperCamelCase__ : str =VOCAB_FILES_NAMES UpperCamelCase__ : int =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : int =['input_ids', 'attention_mask'] def __init__( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str]="[SEP]" , lowercase_ : Any="[SEP]" , lowercase_ : Optional[int]="[SEP]" , lowercase_ : Optional[Any]="[UNK]" , lowercase_ : int="[PAD]" , lowercase_ : Union[str, Any]="[CLS]" , lowercase_ : Optional[int]="[MASK]" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : str , ) -> None: """simple docstring""" _lowerCamelCase : int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise _lowerCamelCase : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) _lowerCamelCase : Dict =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab _lowerCamelCase : int ={'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(10 ): _lowerCamelCase : Dict =F'''[unused{i}]''' _lowerCamelCase : List[str] =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab _lowerCamelCase : Any =12 _lowerCamelCase : Dict ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(lowercase_ ) def __getstate__( self : int ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Dict =self.__dict__.copy() _lowerCamelCase : Dict =None return state def __setstate__( self : str , lowercase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] =d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCamelCase : Any ={} _lowerCamelCase : Optional[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return ([0] * len(lowercase_ )) + [1] return ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] def lowerCamelCase ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _lowerCamelCase : Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _lowerCamelCase : List[Any] ={self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase ( self : List[Any] , lowercase_ : str ) -> str: """simple docstring""" return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def lowerCamelCase ( self : List[str] , lowercase_ : Dict ) -> str: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCamelCase : Optional[int] =self.sp_model.PieceToId(lowercase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase ( self : str , lowercase_ : Dict ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase ( self : Any , lowercase_ : List[str] ) -> Tuple: """simple docstring""" _lowerCamelCase : int =''.join(lowercase_ ).replace(lowercase_ , ' ' ).strip() return out_string def lowerCamelCase ( self : int , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : Dict =os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: _lowerCamelCase : Dict =self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,) def lowerCamelCase ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] _lowerCamelCase : Any =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
464
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 * 8 , _SCREAMING_SNAKE_CASE=32 * 8 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=64 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = is_training _UpperCAmelCase = use_auxiliary_loss _UpperCAmelCase = num_queries _UpperCAmelCase = num_channels _UpperCAmelCase = min_size _UpperCAmelCase = max_size _UpperCAmelCase = num_labels _UpperCAmelCase = hidden_dim _UpperCAmelCase = hidden_dim def UpperCAmelCase ( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) > 0.5 ).float() _UpperCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=_SCREAMING_SNAKE_CASE ) > 0.5).long() _UpperCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase ( self ): _UpperCAmelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _UpperCAmelCase = self.num_queries _UpperCAmelCase = self.num_labels _UpperCAmelCase = [1, 1, 1, 1] _UpperCAmelCase = self.num_channels _UpperCAmelCase = 64 _UpperCAmelCase = 128 _UpperCAmelCase = self.hidden_dim _UpperCAmelCase = self.hidden_dim _UpperCAmelCase = self.hidden_dim return config def UpperCAmelCase ( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = output.encoder_hidden_states _UpperCAmelCase = output.pixel_decoder_hidden_states _UpperCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , config.decoder_layers ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): with torch.no_grad(): _UpperCAmelCase = MaskaFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = MaskaFormerForUniversalSegmentation(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() def comm_check_on_output(_SCREAMING_SNAKE_CASE ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCAmelCase = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model( pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def UpperCAmelCase ( self ): _UpperCAmelCase = MaskaFormerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): self.config_tester.run_common_tests() def UpperCAmelCase ( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def UpperCAmelCase ( self ): pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def UpperCAmelCase ( self ): pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def UpperCAmelCase ( self ): pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCAmelCase ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase ( self ): pass def UpperCAmelCase ( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _UpperCAmelCase = MaskaFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = (self.model_tester.min_size,) * 2 _UpperCAmelCase = { """pixel_values""": torch.randn((2, 3, *size) , device=_SCREAMING_SNAKE_CASE ), """mask_labels""": torch.randn((2, 10, *size) , device=_SCREAMING_SNAKE_CASE ), """class_labels""": torch.zeros(2 , 10 , device=_SCREAMING_SNAKE_CASE ).long(), } _UpperCAmelCase = self.model_tester.get_config() _UpperCAmelCase = MaskaFormerForUniversalSegmentation(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase ( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase ( self ): if not self.model_tester.is_training: return _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ).loss loss.backward() def UpperCAmelCase ( self ): _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) model.train() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a = 1E-4 def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _A ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCAmelCase ( self ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCAmelCase ( self ): _UpperCAmelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 384, 384) ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ): _UpperCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 384, 384) ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _UpperCAmelCase = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ): _UpperCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _UpperCAmelCase = inputs["""pixel_values"""].to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs["""mask_labels"""]] _UpperCAmelCase = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs["""class_labels"""]] with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None )
175
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> int: assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_json_dataset(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() _check_json_dataset(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> int: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Optional[int]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} _UpperCAmelCase = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} _UpperCAmelCase = features.copy() _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> List[Any]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case , split=snake_case ).read() _check_json_dataset(snake_case , snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Any: if issubclass(snake_case , snake_case ): _UpperCAmelCase = jsonl_path elif issubclass(snake_case , snake_case ): _UpperCAmelCase = [jsonl_path] _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case ).read() _check_json_dataset(snake_case , snake_case ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case=("train",) ) -> str: assert isinstance(snake_case , snake_case ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> str: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_json_datasetdict(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Tuple: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader({"""train""": jsonl_path} , features=snake_case , cache_dir=snake_case ).read() _check_json_datasetdict(snake_case , snake_case ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[Any]: if split: _UpperCAmelCase = {split: jsonl_path} else: _UpperCAmelCase = """train""" _UpperCAmelCase = {"""train""": jsonl_path, """test""": jsonl_path} _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case ).read() _check_json_datasetdict(snake_case , snake_case , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> List[Any]: return json.load(snake_case ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> List[Any]: return [json.loads(snake_case ) for line in buffer] class _A : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(exported_content[0] , _SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , orient=_SCREAMING_SNAKE_CASE ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_SCREAMING_SNAKE_CASE , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(exported_content[0] , _SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , orient=_SCREAMING_SNAKE_CASE , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_SCREAMING_SNAKE_CASE , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_SCREAMING_SNAKE_CASE ) == 10 def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): with pytest.raises(_SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / F"test.json.{extension}" _UpperCAmelCase = str(shared_datadir / F"test_file.json.{extension}" ) JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compression=_SCREAMING_SNAKE_CASE ).write() with fsspec.open(_SCREAMING_SNAKE_CASE , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase = f.read() with fsspec.open(_SCREAMING_SNAKE_CASE , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase = f.read() assert exported_content == original_content
175
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _A( snake_case__ ): """simple docstring""" @slow @require_torch def UpperCAmelCase_ ( self ): __A : Any = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) __A : Dict = BertTokenizer.from_pretrained('bert-base-uncased' ) __A : List[str] = bertabert.config.encoder.vocab_size __A : Union[str, Any] = tokenizer.sep_token_id __A : Tuple = tokenizer.cls_token_id __A : Optional[int] = 128 __A : Dict = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) __A : Tuple = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) __A : Optional[int] = train_dataset.select(range(32 ) ) __A : str = val_dataset.select(range(16 ) ) __A : Tuple = 4 def _map_to_encoder_decoder_inputs(_A ): # Tokenizer will automatically set [BOS] <text> [EOS] __A : str = tokenizer(batch['article'] , padding='max_length' , truncation=_A , max_length=512 ) __A : str = tokenizer(batch['highlights'] , padding='max_length' , truncation=_A , max_length=128 ) __A : str = inputs.input_ids __A : Union[str, Any] = inputs.attention_mask __A : Dict = outputs.input_ids __A : Optional[Any] = outputs.input_ids.copy() __A : List[str] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __A : Any = outputs.attention_mask assert all(len(_A ) == 512 for x in inputs.input_ids ) assert all(len(_A ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_A ): __A : str = pred.label_ids __A : List[str] = pred.predictions # all unnecessary tokens are removed __A : Optional[Any] = tokenizer.batch_decode(_A , skip_special_tokens=_A ) __A : Tuple = tokenizer.batch_decode(_A , skip_special_tokens=_A ) __A : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_A ) )] ) / len(_A ) return {"accuracy": accuracy} # map train dataset __A : int = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_A , batch_size=_A , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset __A : int = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_A , batch_size=_A , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) __A : Optional[Any] = self.get_auto_remove_tmp_dir() __A : Dict = SeqaSeqTrainingArguments( output_dir=_A , per_device_train_batch_size=_A , per_device_eval_batch_size=_A , predict_with_generate=_A , evaluation_strategy='steps' , do_train=_A , do_eval=_A , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __A : Union[str, Any] = SeqaSeqTrainer( model=_A , args=_A , compute_metrics=_compute_metrics , train_dataset=_A , eval_dataset=_A , tokenizer=_A , ) # start training trainer.train()
239
import numpy as np def _SCREAMING_SNAKE_CASE ( a , a , a , a , a ) -> Optional[Any]: __A : List[Any] = int(np.ceil((x_end - xa) / h ) ) __A : Tuple = np.zeros((n + 1,) ) __A : Tuple = ya __A : Optional[Any] = xa for k in range(a ): __A : List[Any] = f(a , y[k] ) __A : int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __A : Optional[int] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __A : Dict = f(x + h , y[k] + h * ka ) __A : Union[str, Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
239
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
702
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
0
from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase__: int , UpperCamelCase__: str , UpperCamelCase__: List[str] , ) -> Union[str, Any]: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
641
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
0
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_660_254]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _A ( A__ , A__ ): __lowercase = initial_vectors for _ in range(A__ ): __lowercase = iteration_step(A__ ) return vectors def _A ( A__ ): __lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): __lowercase = vectors[i + 1] new_vectors.append(A__ ) __lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _A ( A__ , A__ ): __lowercase = numpy.radians(A__ ) __lowercase , __lowercase = numpy.cos(A__ ), numpy.sin(A__ ) __lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(A__ , A__ ) def _A ( A__ ): __lowercase = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __lowercase , __lowercase = zip(*A__ ) plt.plot(A__ , A__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
712
'''simple docstring''' def _A ( A__ = 1000000 ): """simple docstring""" __lowercase = set(range(3 , A__ , 2 ) ) primes.add(2 ) for p in range(3 , A__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , A__ , A__ ) ) ) __lowercase = [float(A__ ) for n in range(limit + 1 )] for p in primes: for n in range(A__ , limit + 1 , A__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
624
0
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = StableUnCLIPPipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = 32 lowerCamelCase_ = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCamelCase , num_layers=1 , ) torch.manual_seed(0 ) lowerCamelCase_ = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=UpperCamelCase , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) lowerCamelCase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) lowerCamelCase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL() lowerCamelCase_ = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def snake_case ( self , UpperCamelCase , UpperCamelCase=0 ): """simple docstring""" if str(UpperCamelCase ).startswith("mps" ): lowerCamelCase_ = torch.manual_seed(UpperCamelCase ) else: lowerCamelCase_ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowerCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowerCamelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ = pipe("anime turle" , generator=UpperCamelCase , output_type="np" ) lowerCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def snake_case ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
675
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = ["image_processor", "tokenizer"] _lowerCamelCase = "OwlViTImageProcessor" _lowerCamelCase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , UpperCamelCase=None , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase , ) lowerCamelCase_ = kwargs.pop("feature_extractor" ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="max_length" , UpperCamelCase="np" , **UpperCamelCase ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCamelCase , UpperCamelCase ) or (isinstance(UpperCamelCase , UpperCamelCase ) and not isinstance(text[0] , UpperCamelCase )): lowerCamelCase_ = [self.tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )] elif isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(text[0] , UpperCamelCase ): lowerCamelCase_ = [] # Maximum number of queries across batch lowerCamelCase_ = max([len(UpperCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCamelCase ) != max_num_queries: lowerCamelCase_ = t + [" "] * (max_num_queries - len(UpperCamelCase )) lowerCamelCase_ = self.tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) encodings.append(UpperCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": lowerCamelCase_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCamelCase_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCamelCase_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCamelCase_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCamelCase_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) lowerCamelCase_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCamelCase_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCamelCase_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = input_ids lowerCamelCase_ = attention_mask if query_images is not None: lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = self.image_processor( UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ).pixel_values lowerCamelCase_ = query_pixel_values if images is not None: lowerCamelCase_ = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.image_processor.post_process(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_object_detection(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase , ) return self.image_processor_class @property def snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCamelCase , ) return self.image_processor
675
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Any = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class _UpperCamelCase ( snake_case__ ): '''simple docstring''' __UpperCamelCase : str = """openai-gpt""" __UpperCamelCase : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[int] , snake_case_ : List[str]=4_0478 , snake_case_ : Dict=512 , snake_case_ : Optional[int]=768 , snake_case_ : Optional[Any]=12 , snake_case_ : Optional[Any]=12 , snake_case_ : Tuple="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : int=0.1 , snake_case_ : Dict=0.1 , snake_case_ : List[Any]=1e-5 , snake_case_ : List[str]=0.02 , snake_case_ : Dict="cls_index" , snake_case_ : Optional[Any]=True , snake_case_ : Optional[int]=None , snake_case_ : Any=True , snake_case_ : Dict=0.1 , **snake_case_ : Union[str, Any] , ): UpperCamelCase_: Dict = vocab_size UpperCamelCase_: Optional[int] = n_positions UpperCamelCase_: Dict = n_embd UpperCamelCase_: Any = n_layer UpperCamelCase_: Optional[int] = n_head UpperCamelCase_: Optional[int] = afn UpperCamelCase_: int = resid_pdrop UpperCamelCase_: Tuple = embd_pdrop UpperCamelCase_: Any = attn_pdrop UpperCamelCase_: List[str] = layer_norm_epsilon UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: Optional[Any] = summary_type UpperCamelCase_: Tuple = summary_use_proj UpperCamelCase_: Dict = summary_activation UpperCamelCase_: List[Any] = summary_first_dropout UpperCamelCase_: Dict = summary_proj_to_labels super().__init__(**UpperCAmelCase_ )
702
lowerCamelCase_ : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Optional[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
0
"""simple docstring""" import math def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = 0 while num > 0: _UpperCamelCase = num % 8 _UpperCamelCase = octal + (remainder * math.floor(math.pow(10, snake_case__ ) )) counter += 1 _UpperCamelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(snake_case__ )}''' def lowerCamelCase__ ( ) -> int: """simple docstring""" print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
19
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case__ ( lowercase_): '''simple docstring''' def __init__( self , a__=0.01 , a__=10_00 ) -> List[Any]: '''simple docstring''' __snake_case :int = p_stop __snake_case :List[Any] = max_length def __iter__( self ) -> Optional[int]: '''simple docstring''' __snake_case :str = 0 __snake_case :Optional[Any] = False while not stop and count < self.max_length: yield count count += 1 __snake_case :str = random.random() < self.p_stop class snake_case__ ( unittest.TestCase): '''simple docstring''' def __lowercase ( self , a__ , a__ , a__=False , a__=True ) -> List[Any]: '''simple docstring''' __snake_case :Optional[Any] = [ BatchSamplerShard(a__ , 2 , a__ , split_batches=a__ , even_batches=a__ ) for i in range(2 ) ] __snake_case :Union[str, Any] = [list(a__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(a__ ) for shard in batch_sampler_shards] , [len(a__ ) for e in expected] ) self.assertListEqual(a__ , a__ ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case :List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case :Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case :List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is very small. __snake_case :Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [[], []] self.check_batch_sampler_shards(a__ , a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case :Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case :Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :str = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[Any] = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) def __lowercase ( self ) -> List[Any]: '''simple docstring''' __snake_case :Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case :Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case :int = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case :Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [[], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :int = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case :Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :int = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[str] = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case :List[str] = [BatchSamplerShard(a__ , 2 , a__ , even_batches=a__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __lowercase ( self , a__ , a__ , a__ , a__=False , a__=2 , a__=False ) -> List[str]: '''simple docstring''' random.seed(a__ ) __snake_case :Optional[int] = list(a__ ) __snake_case :Union[str, Any] = [ IterableDatasetShard( a__ , batch_size=a__ , drop_last=a__ , num_processes=a__ , process_index=a__ , split_batches=a__ , ) for i in range(a__ ) ] __snake_case :Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(a__ ) iterable_dataset_lists.append(list(a__ ) ) __snake_case :Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case :str = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(a__ ) , len(a__ ) ) self.assertTrue(len(a__ ) % shard_batch_size == 0 ) __snake_case :int = [] for idx in range(0 , len(a__ ) , a__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(a__ ) < len(a__ ): reference += reference self.assertListEqual(a__ , reference[: len(a__ )] ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :int = 42 __snake_case :Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) # Edge case with a very small dataset __snake_case :Optional[int] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :str = BatchSampler(range(16 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = SkipBatchSampler(a__ , 2 ) self.assertListEqual(list(a__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :str = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Union[str, Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case :Dict = skip_first_batches(a__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Any = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __lowercase ( self ) -> Any: '''simple docstring''' Accelerator() __snake_case :Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
455
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } UpperCAmelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase__ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase__ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer UpperCAmelCase__ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCAmelCase__ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCAmelCase__ = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(A ) class __lowerCAmelCase : def __call__( self : List[str] , A : Any , A : Optional[str] = None , A : Optional[str] = None , A : Union[bool, str] = False , A : Union[bool, str] = False , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , A : Optional[bool] = None , **A : List[Any] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) elif titles is None or texts is None: _UpperCAmelCase = titles if texts is None else texts return super().__call__( A , A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) _UpperCAmelCase = titles if not isinstance(A , A) else [titles] _UpperCAmelCase = texts if not isinstance(A , A) else [texts] _UpperCAmelCase = len(A) _UpperCAmelCase = questions if not isinstance(A , A) else [questions] * n_passages assert len(A) == len( A), F"There should be as many titles than texts but got {len(A)} titles and {len(A)} texts." _UpperCAmelCase = super().__call__(A , A , padding=A , truncation=A)['input_ids'] _UpperCAmelCase = super().__call__(A , add_special_tokens=A , padding=A , truncation=A)['input_ids'] _UpperCAmelCase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(A , A) ] } if return_attention_mask is not False: _UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _UpperCAmelCase = attention_mask return self.pad(A , padding=A , max_length=A , return_tensors=A) def _lowerCamelCase ( self : Dict , A : BatchEncoding , A : DPRReaderOutput , A : int = 16 , A : int = 64 , A : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = reader_input['input_ids'] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reader_output[:3] _UpperCAmelCase = len(A) _UpperCAmelCase = sorted(range(A) , reverse=A , key=relevance_logits.__getitem__) _UpperCAmelCase = [] for doc_id in sorted_docs: _UpperCAmelCase = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _UpperCAmelCase = sequence_ids.index(self.pad_token_id) else: _UpperCAmelCase = len(A) _UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=A , top_spans=A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=A , start_index=A , end_index=A , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(A) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowerCamelCase ( self : Optional[Any] , A : List[int] , A : List[int] , A : int , A : int , ) -> List[DPRSpanPrediction]: """simple docstring""" _UpperCAmelCase = [] for start_index, start_score in enumerate(A): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _UpperCAmelCase = sorted(A , key=lambda A: x[1] , reverse=A) _UpperCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" _UpperCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(A) == top_spans: break return chosen_span_intervals @add_end_docstrings(A ) class __lowerCAmelCase ( A , A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = DPRReaderTokenizer
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() lowercase__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } lowercase__ = os.path.join(self.tmpdirname, UpperCAmelCase__ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) def lowercase__ ( self : int, **lowerCamelCase : Dict ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ) def lowercase__ ( self : Tuple, **lowerCamelCase : Optional[int] ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ) def lowercase__ ( self : Union[str, Any], **lowerCamelCase : Optional[int] ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ) def lowercase__ ( self : Dict ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(UpperCAmelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname, use_fast=UpperCAmelCase__ ) lowercase__ = AlignProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, UpperCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer, UpperCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, UpperCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor, UpperCAmelCase__ ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=UpperCAmelCase__, padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=UpperCAmelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, UpperCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, UpperCAmelCase__ ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(UpperCAmelCase__, return_tensors='''np''' ) lowercase__ = processor(images=UpperCAmelCase__, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) lowercase__ = '''lower newer''' lowercase__ = processor(text=UpperCAmelCase__ ) lowercase__ = tokenizer(UpperCAmelCase__, padding='''max_length''', max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=UpperCAmelCase__, images=UpperCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase__ ): processor() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(UpperCAmelCase__ ) lowercase__ = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=UpperCAmelCase__, images=UpperCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
183
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : Optional[Any] = 1_6 a__ : str = 3_2 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = 16 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("bert-base-cased" ) __SCREAMING_SNAKE_CASE = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __SCREAMING_SNAKE_CASE = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": __SCREAMING_SNAKE_CASE = 8 else: __SCREAMING_SNAKE_CASE = None return tokenizer.pad( lowerCAmelCase_ , padding="longest" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ : List[Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase_ ) == "1": __SCREAMING_SNAKE_CASE = 2 # Initialize accelerator __SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __SCREAMING_SNAKE_CASE = config["lr"] __SCREAMING_SNAKE_CASE = int(config["num_epochs"] ) __SCREAMING_SNAKE_CASE = int(config["seed"] ) __SCREAMING_SNAKE_CASE = int(config["batch_size"] ) __SCREAMING_SNAKE_CASE = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer __SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate scheduler __SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) __SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
682
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__: '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=30 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=10 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=0.6 , __lowerCAmelCase=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = mask_ratio lowerCAmelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase = (image_size // patch_size) ** 2 lowerCAmelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def a_ ( self): """simple docstring""" lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase = self.get_config() return config, pixel_values, labels def a_ ( self): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = ViTMAEModel(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = model(__lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = ViTMAEForPreTraining(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = model(__lowerCAmelCase) lowerCAmelCase = (self.image_size // self.patch_size) ** 2 lowerCAmelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images lowerCAmelCase = 1 lowerCAmelCase = ViTMAEForPreTraining(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowerCAmelCase = model(__lowerCAmelCase) lowerCAmelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def a_ ( self): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () UpperCAmelCase_ : Optional[int] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : int = False UpperCAmelCase_ : Dict = False UpperCAmelCase_ : List[Any] = False def a_ ( self): """simple docstring""" lowerCAmelCase = ViTMAEModelTester(self) lowerCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37) def a_ ( self): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""") def a_ ( self): """simple docstring""" pass def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(__lowerCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear)) def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(__lowerCAmelCase) lowerCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" np.random.seed(2) lowerCAmelCase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) lowerCAmelCase = torch.from_numpy(__lowerCAmelCase) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase = pt_noise super().check_pt_tf_models(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase)) lowerCAmelCase = outputs[0].cpu().numpy() lowerCAmelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase) lowerCAmelCase = model_class.from_pretrained(__lowerCAmelCase) model.to(__lowerCAmelCase) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase)) # Make sure we don't have nans lowerCAmelCase = after_outputs[0].cpu().numpy() lowerCAmelCase = 0 lowerCAmelCase = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__lowerCAmelCase , 1E-5) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""") def a_ ( self): """simple docstring""" pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""") def a_ ( self): """simple docstring""" pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""") def a_ ( self): """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""") def a_ ( self): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def a_ ( self): """simple docstring""" pass @slow def a_ ( self): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = ViTMAEModel.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) def snake_case__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a__( unittest.TestCase ): '''simple docstring''' @cached_property def a_ ( self): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""") if is_vision_available() else None @slow def a_ ( self): """simple docstring""" np.random.seed(2) lowerCAmelCase = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""").to(__lowerCAmelCase) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""").to(__lowerCAmelCase) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase = ViTMAEConfig() lowerCAmelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) lowerCAmelCase = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): lowerCAmelCase = model(**__lowerCAmelCase , noise=torch.from_numpy(__lowerCAmelCase).to(device=__lowerCAmelCase)) # verify the logits lowerCAmelCase = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , __lowerCAmelCase) lowerCAmelCase = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__lowerCAmelCase) , atol=1E-4))
703
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowercase = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowercase = concatenate_datasets __lowercase = DownloadConfig __lowercase = DownloadManager __lowercase = DownloadMode __lowercase = DownloadConfig __lowercase = DownloadMode __lowercase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
605
0
'''simple docstring''' from __future__ import annotations from typing import Any def _UpperCamelCase ( __UpperCamelCase ) -> None: create_state_space_tree(__UpperCamelCase ,[] ,0 ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> None: if index == len(__UpperCamelCase ): print(__UpperCamelCase ) return create_state_space_tree(__UpperCamelCase ,__UpperCamelCase ,index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__UpperCamelCase ,__UpperCamelCase ,index + 1 ) current_subsequence.pop() if __name__ == "__main__": A_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
42
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCAmelCase_ : '''simple docstring''' __A : Optional[int] = None __A : Optional[jnp.ndarray] = None __A : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def _snake_case ( cls ): """simple docstring""" return cls() @dataclass class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : jnp.ndarray __A : jnp.ndarray __A : KarrasVeSchedulerState class UpperCAmelCase_ ( UpperCamelCase , UpperCamelCase ): '''simple docstring''' @property def _snake_case ( self ): """simple docstring""" return True @register_to_config def __init__( self , __A = 0.02 , __A = 100 , __A = 1.007 , __A = 80 , __A = 0.05 , __A = 50 , ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" return KarrasVeSchedulerState.create() def _snake_case ( self , __A , __A , __A = () ): """simple docstring""" lowerCamelCase : List[str] = jnp.arange(0 , __A )[::-1].copy() lowerCamelCase : Tuple = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A , schedule=jnp.array(__A , dtype=jnp.floataa ) , timesteps=__A , ) def _snake_case ( self , __A , __A , __A , __A , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: lowerCamelCase : List[str] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: lowerCamelCase : int = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCamelCase : Any = random.split(__A , num=1 ) lowerCamelCase : List[Any] = self.config.s_noise * random.normal(key=__A , shape=sample.shape ) lowerCamelCase : Dict = sigma + gamma * sigma lowerCamelCase : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self , __A , __A , __A , __A , __A , __A = True , ): """simple docstring""" lowerCamelCase : Dict = sample_hat + sigma_hat * model_output lowerCamelCase : str = (sample_hat - pred_original_sample) / sigma_hat lowerCamelCase : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A , derivative=__A , state=__A ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , __A = True , ): """simple docstring""" lowerCamelCase : List[Any] = sample_prev + sigma_prev * model_output lowerCamelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev lowerCamelCase : List[str] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A , derivative=__A , state=__A ) def _snake_case ( self , __A , __A , __A , __A ): """simple docstring""" raise NotImplementedError()
340
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase : Optional[Any] = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
341
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> np.ndarray: '''simple docstring''' if (ksize % 2) == 0: __A = ksize + 1 __A = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(snake_case ): for x in range(snake_case ): # distance from center __A = x - ksize // 2 __A = y - ksize // 2 # degree to radiant __A = theta / 1_8_0 * np.pi __A = np.cos(_theta ) __A = np.sin(_theta ) # get kernel x __A = cos_theta * px + sin_theta * py # get kernel y __A = -sin_theta * px + cos_theta * py # fill kernel __A = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _UpperCamelCase : int = imread("""../image_data/lena.jpg""") # turn image in gray scale value _UpperCamelCase : str = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _UpperCamelCase : List[Any] = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: _UpperCamelCase : Optional[Any] = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _UpperCamelCase : Any = out / out.max() * 2_5_5 _UpperCamelCase : Optional[Any] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
341
1
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase (_lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : str )-> Any: '''simple docstring''' __snake_case = RemBertConfig.from_json_file(_lowerCamelCase ) print('''Building PyTorch model from configuration: {}'''.format(str(_lowerCamelCase ) ) ) __snake_case = RemBertModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(_lowerCamelCase ) ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
24
def lowerCAmelCase_ (lowercase__ : float , lowercase__ : int ) -> float: '''simple docstring''' if digit_amount > 0: return round(number - int(lowercase__ ) , lowercase__ ) return number - int(lowercase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
668
0
def a__ ( A_ = 1000 ): '''simple docstring''' return sum(e for e in range(3, A_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
76
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __lowerCAmelCase : str = logging.get_logger(__name__) def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = WavaVecaForSequenceClassification.from_pretrained(A_, config=A_ ) __magic_name__ = downstream_dict["""projector.weight"""] __magic_name__ = downstream_dict["""projector.bias"""] __magic_name__ = downstream_dict["""model.post_net.linear.weight"""] __magic_name__ = downstream_dict["""model.post_net.linear.bias"""] return model def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = WavaVecaForAudioFrameClassification.from_pretrained(A_, config=A_ ) __magic_name__ = downstream_dict["""model.linear.weight"""] __magic_name__ = downstream_dict["""model.linear.bias"""] return model def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = WavaVecaForXVector.from_pretrained(A_, config=A_ ) __magic_name__ = downstream_dict["""connector.weight"""] __magic_name__ = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __magic_name__ = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __magic_name__ = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __magic_name__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] __magic_name__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] __magic_name__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] __magic_name__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] __magic_name__ = downstream_dict["""objective.W"""] return model @torch.no_grad() def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = torch.load(A_, map_location="""cpu""" ) __magic_name__ = checkpoint["""Downstream"""] __magic_name__ = WavaVecaConfig.from_pretrained(A_ ) __magic_name__ = WavaVecaFeatureExtractor.from_pretrained( A_, return_attention_mask=A_, do_normalize=A_ ) __magic_name__ = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): __magic_name__ = convert_classification(A_, A_, A_ ) elif arch.endswith("""ForAudioFrameClassification""" ): __magic_name__ = convert_diarization(A_, A_, A_ ) elif arch.endswith("""ForXVector""" ): __magic_name__ = convert_xvector(A_, A_, A_ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __magic_name__ = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') __lowerCAmelCase : str = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
76
1
import os import sys UpperCAmelCase = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCAmelCase = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCAmelCase_ ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return AutoConfig.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCAmelCase_ ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return AutoTokenizer.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCAmelCase_ ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return AutoModel.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCAmelCase_ ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return AutoModelForCausalLM.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCAmelCase_ ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return AutoModelForMaskedLM.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCAmelCase_ ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return AutoModelForSequenceClassification.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCAmelCase_ ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return AutoModelForQuestionAnswering.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
84
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowerCamelCase : Tuple = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' lowerCamelCase : List[str] = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' lowerCamelCase : List[str] = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' lowerCamelCase : Optional[Any] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' lowerCamelCase : Union[str, Any] = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase (datasets.Metric ): def __UpperCAmelCase ( self )-> str: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=[1, 1_0, 1_0_0] , __UpperCamelCase=4 , __UpperCamelCase=3.0 )-> str: if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=__UpperCamelCase ) as executor: __lowerCAmelCase = [] __lowerCAmelCase = Counter() __lowerCAmelCase = 0 __lowerCAmelCase = defaultdict(__UpperCamelCase ) for task_id, (candidates, test_case) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ): for candidate in candidates: __lowerCAmelCase = candidate + "\n" + test_case __lowerCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) __lowerCAmelCase = executor.submit(__UpperCamelCase , *__UpperCamelCase ) futures.append(__UpperCamelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__UpperCamelCase ): __lowerCAmelCase = future.result() results[result["task_id"]].append((result["completion_id"], result) ) __lowerCAmelCase , __lowerCAmelCase = [], [] for result in results.values(): result.sort() __lowerCAmelCase = [r[1]["passed"] for r in result] total.append(len(__UpperCamelCase ) ) correct.append(sum(__UpperCamelCase ) ) __lowerCAmelCase = np.array(__UpperCamelCase ) __lowerCAmelCase = np.array(__UpperCamelCase ) __lowerCAmelCase = k __lowerCAmelCase = {F"""pass@{k}""": estimate_pass_at_k(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): def estimator(__snake_case , __snake_case , __snake_case ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(__snake_case , __snake_case ): __lowerCAmelCase = itertools.repeat(__snake_case , len(__snake_case ) ) else: assert len(__snake_case ) == len(__snake_case ) __lowerCAmelCase = iter(__snake_case ) return np.array([estimator(int(__snake_case ) , int(__snake_case ) , __snake_case ) for n, c in zip(__snake_case , __snake_case )] )
367
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Union[str, Any] = 0 def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Tuple = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ :Optional[Any] = Path(UpperCamelCase_ ) / "preprocessor_config.json" lowerCAmelCase_ :Optional[Any] = Path(UpperCamelCase_ ) / "config.json" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase_ , """w""" ) ) lowerCAmelCase_ :Any = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __lowerCAmelCase ( self ) -> Dict: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ :Optional[int] = Path(UpperCamelCase_ ) / "preprocessor_config.json" lowerCAmelCase_ :Optional[Any] = Path(UpperCamelCase_ ) / "config.json" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase_ , """w""" ) ) lowerCAmelCase_ :Union[str, Any] = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __lowerCAmelCase ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ :str = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase_ :Union[str, Any] = Path(UpperCamelCase_ ) / "preprocessor_config.json" lowerCAmelCase_ :List[Any] = Path(UpperCamelCase_ ) / "config.json" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase_ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase_ :Dict = AutoImageProcessor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase_ :Optional[Any] = CLIPImageProcessor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) lowerCAmelCase_ :str = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved lowerCAmelCase_ :Dict = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ :str = Path(UpperCamelCase_ ) / "preprocessor_config.json" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase_ , """w""" ) , ) lowerCAmelCase_ :Any = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( UpperCamelCase_ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase_ :Any = AutoImageProcessor.from_pretrained("""clip-base""" ) def __lowerCAmelCase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase_ :Dict = AutoImageProcessor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def __lowerCAmelCase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase_ :Optional[int] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __lowerCAmelCase ( self ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase_ :List[str] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase_ :Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase_ ) lowerCAmelCase_ :Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase_ ) lowerCAmelCase_ :int = AutoImageProcessor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def __lowerCAmelCase ( self ) -> Union[str, Any]: try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ :Union[str, Any] = Path(UpperCamelCase_ ) / "preprocessor_config.json" lowerCAmelCase_ :Dict = Path(UpperCamelCase_ ) / "config.json" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase_ , """w""" ) ) lowerCAmelCase_ :Dict = CustomImageProcessor.from_pretrained(UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase_ ) lowerCAmelCase_ :Optional[Any] = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self ) -> Optional[int]: class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Tuple = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase_ :str = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase_ :Dict = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase_ :Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
710
"""simple docstring""" import numpy as np def _snake_case ( lowercase__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def _snake_case ( lowercase__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
256
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ (_a , unittest.TestCase ): lowercase_ : int = PhobertTokenizer lowercase_ : int = False def A__ ( self : Optional[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] lowerCAmelCase__ = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowerCAmelCase__ = ['''#version: 0.2''', '''l à</w>'''] lowerCAmelCase__ = {'''unk_token''': '''<unk>'''} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCamelCase ) ) def A__ ( self : Any , **__lowerCamelCase : Tuple ): """simple docstring""" kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def A__ ( self : Optional[Any] , __lowerCamelCase : Tuple ): """simple docstring""" lowerCAmelCase__ = '''Tôi là VinAI Research''' lowerCAmelCase__ = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def A__ ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase__ = '''Tôi là VinAI Research''' lowerCAmelCase__ = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() lowerCAmelCase__ = tokenizer.tokenize(__lowerCamelCase ) print(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
615
from __future__ import annotations def a_ ( __lowerCAmelCase ): if not nums: return 0 lowerCAmelCase__ = nums[0] lowerCAmelCase__ = 0 for num in nums[1:]: lowerCAmelCase__ , lowerCAmelCase__ = ( max_excluding + num, max(__lowerCAmelCase , __lowerCAmelCase ), ) return max(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
615
1
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
319
'''simple docstring''' def UpperCAmelCase_ (__a : int ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 _a : Optional[Any] = 1 _a : str = 1 while repunit: _a : Union[str, Any] = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_ (__a : int = 1_0_0_0_0_0_0 ): """simple docstring""" _a : int = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__a ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
319
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a: Union[str, Any] = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Optional[int] = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __a: Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __a: Union[str, Any] = logging.get_logger(__name__) __a: str = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __a: Dict = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __a: Union[str, Any] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = BlenderbotSmallTokenizer def __init__( self : List[str] , lowerCamelCase : List[str]=None , lowerCamelCase : str=None , lowerCamelCase : Optional[Any]="<|endoftext|>" , lowerCamelCase : Dict="<|endoftext|>" , lowerCamelCase : str="<|endoftext|>" , lowerCamelCase : str=False , lowerCamelCase : Tuple=True , **lowerCamelCase : List[str] , ) -> List[Any]: """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=lowerCamelCase , merges=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase , ) , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , **lowerCamelCase , ) _UpperCAmelCase = add_prefix_space def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Union[str, Any]=None ) -> str: """simple docstring""" _UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : Any , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
108
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _lowerCamelCase : List[Any] = imread(r'''digital_image_processing/image_data/lena_small.jpg''') _lowerCamelCase : int = cvtColor(img, COLOR_BGR2GRAY) def _a ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE__ ) # assert negative_img array for at least one True assert negative_img.any() def _a ( ) -> Union[str, Any]: '''simple docstring''' with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE__ , 1_10 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def _a ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _a ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() SCREAMING_SNAKE_CASE__ : Optional[int] = canny.canny(SCREAMING_SNAKE_CASE__ ) # assert canny array for at least one True assert canny_array.any() def _a ( ) -> str: '''simple docstring''' assert gg.gaussian_filter(SCREAMING_SNAKE_CASE__ , 5 , sigma=0.9 ).all() def _a ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) SCREAMING_SNAKE_CASE__ : Tuple = conv.img_convolve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).astype(SCREAMING_SNAKE_CASE__ ) assert res.any() def _a ( ) -> Union[str, Any]: '''simple docstring''' assert med.median_filter(SCREAMING_SNAKE_CASE__ , 3 ).any() def _a ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = sob.sobel_filter(SCREAMING_SNAKE_CASE__ ) assert grad.any() and theta.any() def _a ( ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = sp.make_sepia(SCREAMING_SNAKE_CASE__ , 20 ) assert sepia.all() def _a ( SCREAMING_SNAKE_CASE__ : str = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = bs.Burkes(imread(SCREAMING_SNAKE_CASE__ , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _a ( SCREAMING_SNAKE_CASE__ : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE__ , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _a ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. SCREAMING_SNAKE_CASE__ : int = imread(SCREAMING_SNAKE_CASE__ , 0 ) # Test for get_neighbors_pixel function() return not None SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : int = image[x_coordinate][y_coordinate] SCREAMING_SNAKE_CASE__ : Optional[Any] = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image SCREAMING_SNAKE_CASE__ : Dict = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): SCREAMING_SNAKE_CASE__ : List[str] = lbp.local_binary_value(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert lbp_image.any()
157
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } _lowerCamelCase : Optional[int] = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: '''simple docstring''' for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models SCREAMING_SNAKE_CASE__ : Union[str, Any] = "lm_head" SCREAMING_SNAKE_CASE__ : List[str] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: SCREAMING_SNAKE_CASE__ : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ : str = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ : str = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ : Union[str, Any] = value else: SCREAMING_SNAKE_CASE__ : str = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ : str = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ : Tuple = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE__ : List[str] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ : Dict = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE__ : str = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ : str = name.split(SCREAMING_SNAKE_CASE__ )[0].split("." )[-2] SCREAMING_SNAKE_CASE__ : List[str] = mapped_key.replace("*" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ : Optional[int] = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE__ : Optional[int] = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE__ : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE__ : str = "weight" else: SCREAMING_SNAKE_CASE__ : List[Any] = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE__ : Any = name.split("." ) SCREAMING_SNAKE_CASE__ : List[str] = int(items[0] ) SCREAMING_SNAKE_CASE__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : Dict = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : int = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int=True ) -> List[str]: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE__ : str = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : str = UniSpeechConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ : List[Any] = Dictionary.load_from_json(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ : str = target_dict.pad_index SCREAMING_SNAKE_CASE__ : str = target_dict.bos_index SCREAMING_SNAKE_CASE__ : int = target_dict.eos_index SCREAMING_SNAKE_CASE__ : List[str] = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ : int = os.path.join(SCREAMING_SNAKE_CASE__ , "vocab.json" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE__ : Dict = 42 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 43 with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE__ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : str = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = UniSpeechForCTC(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE__ : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
157
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCamelCase_ ( _UpperCamelCase=None ) -> Optional[int]: """simple docstring""" if subparsers is not None: snake_case_ : Union[str, Any] = subparsers.add_parser('''env''' ) else: snake_case_ : Optional[int] = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=_UpperCamelCase , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" snake_case_ : Tuple = torch.__version__ snake_case_ : List[Any] = torch.cuda.is_available() snake_case_ : str = is_xpu_available() snake_case_ : List[Any] = is_npu_available() snake_case_ : List[Any] = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCamelCase ): snake_case_ : Any = load_config_from_file(args.config_file ).to_dict() snake_case_ : Dict = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(_UpperCamelCase ), '''PyTorch NPU available''': str(_UpperCamelCase ), '''System RAM''': f'''{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB''', } if pt_cuda_available: snake_case_ : List[str] = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([f'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) snake_case_ : Union[str, Any] = ( '''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else f'''\t{accelerate_config}''' ) print(_UpperCamelCase ) snake_case_ : Dict = accelerate_config return info def lowerCamelCase_ ( ) -> int: """simple docstring""" snake_case_ : List[Any] = env_command_parser() snake_case_ : int = parser.parse_args() env_command(_UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
60
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE : List[Any] = logging.getLogger() SCREAMING_SNAKE_CASE : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A_ ( a_ ): def _UpperCAmelCase ( self : str , __SCREAMING_SNAKE_CASE : int ): os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) __a = {"source": "What is love ?", "target": "life"} __a = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __a = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__SCREAMING_SNAKE_CASE , f"""{split}.{field}""" ) , "w" ) as f: f.write(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str = "pytorch" ): __a = self.get_auto_remove_tmp_dir() __a = os.path.join(__SCREAMING_SNAKE_CASE , "output" ) __a = os.path.join(__SCREAMING_SNAKE_CASE , "data" ) self._create_dummy_data(data_dir=__SCREAMING_SNAKE_CASE ) __a = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) __a = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=self.get_env() ) __a = os.path.join(__SCREAMING_SNAKE_CASE , "metrics.json" ) with open(__SCREAMING_SNAKE_CASE ) as f: __a = json.load(__SCREAMING_SNAKE_CASE ) return result @require_torch_gpu def _UpperCAmelCase ( self : Dict ): __a = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _UpperCAmelCase ( self : Optional[int] ): __a = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _UpperCAmelCase ( self : Optional[Any] ): __a = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _UpperCAmelCase ( self : Any ): __a = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
197
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( ) -> List[Any]: # Get the sagemaker specific mp parameters from smp_options variable. __UpperCamelCase : Dict = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __UpperCamelCase : Tuple = json.loads(__lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __UpperCamelCase : Tuple = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __UpperCamelCase : str = json.loads(__lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , __lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _A ( UpperCAmelCase_ ): lowercase_ : str = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def a ( self : Optional[Any] ): """simple docstring""" super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , lowerCamelCase__ , ) @cached_property def a ( self : Tuple ): """simple docstring""" logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __UpperCamelCase : int = torch.device("""cpu""" ) __UpperCamelCase : Union[str, Any] = 0 elif is_sagemaker_model_parallel_available(): __UpperCamelCase : str = smp.local_rank() __UpperCamelCase : str = torch.device("""cuda""" , lowerCamelCase__ ) __UpperCamelCase : Dict = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __UpperCamelCase : Optional[Any] = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __UpperCamelCase : str = torch.device("""cuda""" , self.local_rank ) __UpperCamelCase : List[str] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __UpperCamelCase : List[Any] = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __UpperCamelCase : List[str] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __UpperCamelCase : List[str] = torch.device("""cuda""" , self.local_rank ) __UpperCamelCase : Tuple = 1 if device.type == "cuda": torch.cuda.set_device(lowerCamelCase__ ) return device @property def a ( self : Any ): """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def a ( self : int ): """simple docstring""" return not is_sagemaker_model_parallel_available() @property def a ( self : Optional[int] ): """simple docstring""" return False
515
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCamelCase = imread(r'digital_image_processing/image_data/lena_small.jpg') UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY) def __lowerCamelCase ( ) -> int: __UpperCamelCase : int = cn.convert_to_negative(__lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def __lowerCamelCase ( ) -> Optional[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(__lowerCAmelCase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def __lowerCamelCase ( ) -> Dict: __UpperCamelCase : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __lowerCamelCase ( ) -> str: __UpperCamelCase : List[Any] = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __UpperCamelCase : Optional[int] = canny.canny(__lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def __lowerCamelCase ( ) -> Optional[int]: assert gg.gaussian_filter(__lowerCAmelCase , 5 , sigma=0.9 ).all() def __lowerCamelCase ( ) -> Tuple: # laplace diagonals __UpperCamelCase : List[str] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __UpperCamelCase : Any = conv.img_convolve(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase ) assert res.any() def __lowerCamelCase ( ) -> List[str]: assert med.median_filter(__lowerCAmelCase , 3 ).any() def __lowerCamelCase ( ) -> int: __UpperCamelCase , __UpperCamelCase : List[Any] = sob.sobel_filter(__lowerCAmelCase ) assert grad.any() and theta.any() def __lowerCamelCase ( ) -> Optional[int]: __UpperCamelCase : int = sp.make_sepia(__lowerCAmelCase , 20 ) assert sepia.all() def __lowerCamelCase ( __lowerCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg" ) -> Union[str, Any]: __UpperCamelCase : str = bs.Burkes(imread(__lowerCAmelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __lowerCamelCase ( __lowerCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> str: __UpperCamelCase : Dict = rs.NearestNeighbour(imread(__lowerCAmelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __lowerCamelCase ( ) -> Union[str, Any]: __UpperCamelCase : Any = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. __UpperCamelCase : int = imread(__lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None __UpperCamelCase : Dict = 0 __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : str = image[x_coordinate][y_coordinate] __UpperCamelCase : Tuple = lbp.get_neighbors_pixel( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __UpperCamelCase : List[Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __UpperCamelCase : str = lbp.local_binary_value(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert lbp_image.any()
515
1
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> List[str]: return 1.0 / (1.0 + np.exp(-_outputs )) def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> List[str]: __snake_case = np.max(_outputs , axis=-1 , keepdims=__lowerCamelCase ) __snake_case = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__lowerCamelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sigmoid""" __SCREAMING_SNAKE_CASE = """softmax""" __SCREAMING_SNAKE_CASE = """none""" @add_end_docstrings( _UpperCamelCase , r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = ClassificationFunction.NONE def __init__( self : List[str] , **a_ : List[Any] ): """simple docstring""" super().__init__(**a_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def A ( self : Any , a_ : int=None , a_ : Any=None , a_ : Union[str, Any]="" , **a_ : Tuple ): """simple docstring""" __snake_case = tokenizer_kwargs __snake_case = {} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: __snake_case = self.model.config.return_all_scores if isinstance(a_ , a_ ) or top_k is None: __snake_case = top_k __snake_case = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , a_ , ) if return_all_scores: __snake_case = None else: __snake_case = 1 if isinstance(a_ , a_ ): __snake_case = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __snake_case = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Dict , *a_ : Optional[int] , **a_ : Optional[Any] ): """simple docstring""" __snake_case = super().__call__(*a_ , **a_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __snake_case = "top_k" not in kwargs if isinstance(args[0] , a_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def A ( self : Union[str, Any] , a_ : Optional[Any] , **a_ : Optional[Any] ): """simple docstring""" __snake_case = self.framework if isinstance(a_ , a_ ): return self.tokenizer(**a_ , return_tensors=a_ , **a_ ) elif isinstance(a_ , a_ ) and len(a_ ) == 1 and isinstance(inputs[0] , a_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=a_ , **a_ ) elif isinstance(a_ , a_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(a_ , return_tensors=a_ , **a_ ) def A ( self : List[str] , a_ : Tuple ): """simple docstring""" return self.model(**a_ ) def A ( self : Dict , a_ : Union[str, Any] , a_ : int=None , a_ : Union[str, Any]=1 , a_ : Tuple=True ): """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __snake_case = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __snake_case = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: __snake_case = self.model.config.function_to_apply else: __snake_case = ClassificationFunction.NONE __snake_case = model_outputs["logits"][0] __snake_case = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __snake_case = sigmoid(a_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: __snake_case = softmax(a_ ) elif function_to_apply == ClassificationFunction.NONE: __snake_case = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __snake_case = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(a_ ) ] if not _legacy: dict_scores.sort(key=lambda a_ : x["score"] , reverse=a_ ) if top_k is not None: __snake_case = dict_scores[:top_k] return dict_scores
69
import operator as op __UpperCamelCase : Optional[Any] = "scaler.pt" __UpperCamelCase : Optional[Any] = "pytorch_model" __UpperCamelCase : str = "random_states" __UpperCamelCase : Optional[int] = "optimizer" __UpperCamelCase : Optional[int] = "scheduler" __UpperCamelCase : str = "pytorch_model.bin" __UpperCamelCase : List[str] = "pytorch_model.bin.index.json" __UpperCamelCase : List[str] = "model.safetensors" __UpperCamelCase : Optional[int] = "model.safetensors.index.json" __UpperCamelCase : List[str] = "1.10.2" __UpperCamelCase : Dict = "py38" __UpperCamelCase : List[str] = "4.17.0" __UpperCamelCase : Any = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] __UpperCamelCase : Any = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] __UpperCamelCase : int = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] __UpperCamelCase : Dict = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] __UpperCamelCase : str = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] __UpperCamelCase : List[Any] = "2.0.1" __UpperCamelCase : int = ["pdsh", "standard", "openmpi", "mvapich"] __UpperCamelCase : List[str] = ["default", "reduce-overhead", "max-autotune"] __UpperCamelCase : List[Any] = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __UpperCamelCase : List[Any] = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] __UpperCamelCase : List[str] = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] __UpperCamelCase : int = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
468
0
from __future__ import annotations from fractions import Fraction def __lowerCAmelCase ( A , A ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __lowerCAmelCase ( A ): UpperCAmelCase_ = [] UpperCAmelCase_ = 11 UpperCAmelCase_ = int("1" + "0" * digit_len ) for num in range(A , A ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(A , A ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 UpperCAmelCase_ = 10 return solutions def __lowerCAmelCase ( A = 2 ): UpperCAmelCase_ = 1.0 for fraction in fraction_list(A ): UpperCAmelCase_ = Fraction(A ) result *= frac.denominator / frac.numerator return int(A ) if __name__ == "__main__": print(solution())
268
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = (KDPMaDiscreteScheduler,) SCREAMING_SNAKE_CASE__ = 10 def __A ( self : Union[str, Any] , **lowerCAmelCase : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = { "num_train_timesteps": 1_100, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase ) return config def __A ( self : List[Any] ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def __A ( self : Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase ) def __A ( self : List[str] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def __A ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def __A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(prediction_type="v_prediction" ) UpperCAmelCase_ = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase_ = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = output.prev_sample UpperCAmelCase_ = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(lowerCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1_112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def __A ( self : int ): '''simple docstring''' if torch_device == "mps": return UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase_ = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = output.prev_sample UpperCAmelCase_ = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(lowerCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def __A ( self : Dict ): '''simple docstring''' if torch_device == "mps": return UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.to(lowerCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase_ = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = output.prev_sample UpperCAmelCase_ = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(lowerCAmelCase ) ) if str(lowerCAmelCase ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
268
1
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Optional[int]: return 1 / (1 + np.exp(-z )) def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> List[str]: return (-y * np.log(_UpperCAmelCase ) - (1 - y) * np.log(1 - h )).mean() def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ) -> Optional[Any]: __snake_case = np.dot(_UpperCAmelCase , _UpperCAmelCase ) return np.sum(y * scores - np.log(1 + np.exp(_UpperCAmelCase ) ) ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=7_00_00 ) -> Union[str, Any]: __snake_case = np.zeros(x.shape[1] ) for iterations in range(_UpperCAmelCase ): __snake_case = np.dot(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = sigmoid_function(_UpperCAmelCase ) __snake_case = np.dot(x.T , h - y ) / y.size __snake_case = theta - alpha * gradient # updating the weights __snake_case = np.dot(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = sigmoid_function(_UpperCAmelCase ) __snake_case = cost_function(_UpperCAmelCase , _UpperCAmelCase ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a : int = datasets.load_iris() a : int = iris.data[:, :2] a : Optional[Any] = (iris.target != 0) * 1 a : Tuple = 0.1 a : List[str] = logistic_reg(alpha, x, y, max_iterations=70_000) print('''theta: ''', theta) # printing the theta i.e our weights vector def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: return sigmoid_function( np.dot(_UpperCAmelCase , _UpperCAmelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((a) , (a)) : Any = (x[:, 0].min(), x[:, 0].max()) ((a) , (a)) : Any = (x[:, 1].min(), x[:, 1].max()) ((a) , (a)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a : Optional[Any] = np.c_[xxa.ravel(), xxa.ravel()] a : List[Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
69
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
69
1
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" class UpperCAmelCase : def __init__(self : Union[str, Any] , A__ : List[str] ) -> Optional[int]: lowercase = metric_id class UpperCAmelCase : UpperCAmelCase : str = [MetricMock(_lowercase ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def UpperCAmelCase__ (self : List[str] ) -> int: return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if "tmp_path" in args: lowercase = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(lowerCAmelCase_ , match="https://huggingface.co/docs/evaluate" ): func(*lowerCAmelCase_ )
459
'''simple docstring''' # Algorithm for the pigeonhole sorting def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = min(lowerCAmelCase_ ) # min() finds the minimum value lowercase = max(lowerCAmelCase_ ) # max() finds the maximum value lowercase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowercase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowercase = 0 for count in range(lowerCAmelCase_ ): while holes[count] > 0: holes[count] -= 1 lowercase = count + min_val i += 1 def UpperCAmelCase_ ( ): """simple docstring""" lowercase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCAmelCase_ ) print("Sorted order is:" , " ".join(lowerCAmelCase_ ) ) if __name__ == "__main__": main()
459
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def a_ ( __magic_name__ , __magic_name__ , __magic_name__=1e-12 ) -> Dict: """simple docstring""" snake_case : List[str] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(a__ , axis=1 ) , a_min=a__ ) ).T snake_case : Dict = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(a__ , axis=1 ) , a_min=a__ ) ).T return jnp.matmul(a__ , norm_emb_a.T ) class a_ ( nn.Module ): A__ : int = 42 A__ : List[str] = jnp.floataa def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" snake_case : Dict = FlaxCLIPVisionModule(self.config.vision_config ) snake_case : str = nn.Dense(self.config.projection_dim , use_bias=__UpperCamelCase , dtype=self.dtype ) snake_case : int = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) snake_case : int = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) snake_case : Union[str, Any] = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) snake_case : int = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : Optional[Any] , UpperCAmelCase__ : List[str] ): """simple docstring""" snake_case : int = self.vision_model(__UpperCamelCase )[1] snake_case : Any = self.visual_projection(__UpperCamelCase ) snake_case : str = jax_cosine_distance(__UpperCamelCase , self.special_care_embeds ) snake_case : str = jax_cosine_distance(__UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs snake_case : Tuple = 0.0 snake_case : List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment snake_case : Any = jnp.round(__UpperCamelCase , 3 ) snake_case : str = jnp.any(special_scores > 0 , axis=1 , keepdims=__UpperCamelCase ) # Use a lower threshold if an image has any special care concept snake_case : Optional[Any] = is_special_care * 0.01 snake_case : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment snake_case : Optional[Any] = jnp.round(__UpperCamelCase , 3 ) snake_case : str = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class a_ ( _lowercase ): A__ : List[Any] = CLIPConfig A__ : Union[str, Any] = 'clip_input' A__ : int = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Union[str, Any] , UpperCAmelCase__ : CLIPConfig , UpperCAmelCase__ : Optional[Tuple] = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : jnp.dtype = jnp.floataa , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Optional[Any] , ): """simple docstring""" if input_shape is None: snake_case : Optional[int] = (1, 224, 224, 3) snake_case : List[Any] = self.module_class(config=__UpperCamelCase , dtype=__UpperCamelCase , **__UpperCamelCase ) super().__init__(__UpperCamelCase , __UpperCamelCase , input_shape=__UpperCamelCase , seed=__UpperCamelCase , dtype=__UpperCamelCase , _do_init=_do_init ) def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : jax.random.KeyArray , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : FrozenDict = None ): """simple docstring""" # init input tensor snake_case : Union[str, Any] = jax.random.normal(__UpperCamelCase , __UpperCamelCase ) snake_case , snake_case : Dict = jax.random.split(__UpperCamelCase ) snake_case : Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} snake_case : Dict = self.module.init(__UpperCamelCase , __UpperCamelCase )['''params'''] return random_params def __call__( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : dict = None , ): """simple docstring""" snake_case : Optional[int] = jnp.transpose(__UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(__UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
598
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def lowercase ( a__ : dict , a__ : str , a__ : set , a__ : set , a__ : dict , a__ : dict , a__ : PriorityQueue , a__ : dict , a__ : float | int , ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCamelCase = cst_fwd.get(a__ , np.inf ) _UpperCamelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCamelCase = new_cost_f _UpperCamelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCamelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowercase ( a__ : str , a__ : str , a__ : dict , a__ : dict ) -> int: _UpperCamelCase = -1 _UpperCamelCase = set() _UpperCamelCase = set() _UpperCamelCase = {source: 0} _UpperCamelCase = {destination: 0} _UpperCamelCase = {source: None} _UpperCamelCase = {destination: None} _UpperCamelCase = PriorityQueue() _UpperCamelCase = PriorityQueue() _UpperCamelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCamelCase , _UpperCamelCase = queue_forward.get() visited_forward.add(a__ ) _UpperCamelCase , _UpperCamelCase = queue_backward.get() visited_backward.add(a__ ) _UpperCamelCase = pass_and_relaxation( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) _UpperCamelCase = pass_and_relaxation( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCamelCase = shortest_distance return shortest_path_distance UpperCAmelCase = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } UpperCAmelCase = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
420
0
def UpperCamelCase ( _A : list[int] , _A : list[int] , _A : int )-> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_A ) ) def UpperCamelCase ( _A : list[list[int]] , _A : int , _A : list[int] , _A : int )-> bool: """simple docstring""" if index == len(_A ): return True # Recursive Step for i in range(_A ): if valid_coloring(graph[index] , _A , _A ): # Color current vertex A__ = i # Validate coloring if util_color(_A , _A , _A , index + 1 ): return True # Backtrack A__ = -1 return False def UpperCamelCase ( _A : list[list[int]] , _A : int )-> list[int]: """simple docstring""" A__ = [-1] * len(_A ) if util_color(_A , _A , _A , 0 ): return colored_vertices return []
232
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( _A : list , _A : list , _A : list , _A : list , _A : list )-> float: """simple docstring""" A__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_A )] ) A__ = np.array(_A ) A__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _A ) ) , x.transpose() ) , _A ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( _A : list , _A : list , _A : list )-> float: """simple docstring""" A__ = (1, 2, 1) A__ = (1, 1, 0, 7) A__ = SARIMAX( _A , exog=_A , order=_A , seasonal_order=_A ) A__ = model.fit(disp=_A , maxiter=600 , method="nm" ) A__ = model_fit.predict(1 , len(_A ) , exog=[test_match] ) return result[0] def UpperCamelCase ( _A : list , _A : list , _A : list )-> float: """simple docstring""" A__ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_A , _A ) A__ = regressor.predict(_A ) return y_pred[0] def UpperCamelCase ( _A : list )-> float: """simple docstring""" train_user.sort() A__ = np.percentile(_A , 25 ) A__ = np.percentile(_A , 75 ) A__ = qa - qa A__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( _A : list , _A : float )-> bool: """simple docstring""" A__ = 0 A__ = 0 for i in list_vote: if i > actual_result: A__ = not_safe + 1 else: if abs(abs(_A ) - abs(_A ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCAmelCase_ : Tuple = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] UpperCAmelCase_ : Optional[int] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) UpperCAmelCase_ : Optional[int] = Normalizer().fit_transform(data_input_df.values) # split data UpperCAmelCase_ : str = normalize_df[:, 2].tolist() UpperCAmelCase_ : Optional[int] = normalize_df[:, 0].tolist() UpperCAmelCase_ : List[str] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCAmelCase_ : Optional[int] = normalize_df[:, [1, 2]].tolist() UpperCAmelCase_ : List[str] = x[: len(x) - 1] UpperCAmelCase_ : Optional[Any] = x[len(x) - 1 :] # for linear regression & sarimax UpperCAmelCase_ : Union[str, Any] = total_date[: len(total_date) - 1] UpperCAmelCase_ : Dict = total_user[: len(total_user) - 1] UpperCAmelCase_ : Any = total_match[: len(total_match) - 1] UpperCAmelCase_ : str = total_date[len(total_date) - 1 :] UpperCAmelCase_ : Dict = total_user[len(total_user) - 1 :] UpperCAmelCase_ : Dict = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCAmelCase_ : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCAmelCase_ : Optional[int] = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
232
1
def A_ ( _UpperCAmelCase = 1_00 ): SCREAMING_SNAKE_CASE_: Optional[Any] = 0 SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
671
from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase : Union[str, Any] = 637_8137.0 lowerCAmelCase : int = 635_6752.31_4245 lowerCAmelCase : Union[str, Any] = 6378137 def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = (AXIS_A - AXIS_B) / AXIS_A SCREAMING_SNAKE_CASE_: str = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_: Optional[int] = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_: Any = radians(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = radians(_UpperCAmelCase ) # Equation SCREAMING_SNAKE_CASE_: str = sin((phi_a - phi_a) / 2 ) SCREAMING_SNAKE_CASE_: List[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda SCREAMING_SNAKE_CASE_: Tuple = sqrt(sin_sq_phi + (cos(_UpperCAmelCase ) * cos(_UpperCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
671
1
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowerCamelCase :int = logging.getLogger(__name__) class UpperCAmelCase ( __snake_case ): a: int = "sequence-classification" def __init__( self: int , __UpperCamelCase: str ): if type(__UpperCamelCase ) == dict: _a = Namespace(**__UpperCamelCase ) _a = glue_output_modes[hparams.task] _a = glue_tasks_num_labels[hparams.task] super().__init__(__UpperCamelCase , __UpperCamelCase , self.mode ) def _A ( self: Dict , **__UpperCamelCase: str ): return self.model(**__UpperCamelCase ) def _A ( self: Optional[int] , __UpperCamelCase: Tuple , __UpperCamelCase: Union[str, Any] ): _a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _a = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _a = self(**__UpperCamelCase ) _a = outputs[0] _a = self.trainer.lr_schedulers[0]['''scheduler'''] _a = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _A ( self: Union[str, Any] ): _a = self.hparams _a = processors[args.task]() _a = processor.get_labels() for mode in ["train", "dev"]: _a = self._feature_file(__UpperCamelCase ) if os.path.exists(__UpperCamelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __UpperCamelCase ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) _a = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) _a = convert_examples_to_features( __UpperCamelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , __UpperCamelCase ) torch.save(__UpperCamelCase , __UpperCamelCase ) def _A ( self: str , __UpperCamelCase: str , __UpperCamelCase: int , __UpperCamelCase: bool = False ): _a = '''dev''' if mode == '''test''' else mode _a = self._feature_file(__UpperCamelCase ) logger.info('''Loading features from cached file %s''' , __UpperCamelCase ) _a = torch.load(__UpperCamelCase ) _a = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _a = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _a = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _a = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _a = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , batch_size=__UpperCamelCase , shuffle=__UpperCamelCase , ) def _A ( self: int , __UpperCamelCase: Tuple , __UpperCamelCase: Tuple ): _a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _a = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _a = self(**__UpperCamelCase ) _a , _a = outputs[:2] _a = logits.detach().cpu().numpy() _a = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _A ( self: List[str] , __UpperCamelCase: Any ): _a = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() _a = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _a = np.argmax(__UpperCamelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _a = np.squeeze(__UpperCamelCase ) _a = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) _a = [[] for _ in range(out_label_ids.shape[0] )] _a = [[] for _ in range(out_label_ids.shape[0] )] _a = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , __UpperCamelCase , __UpperCamelCase )} _a = dict(results.items() ) _a = results return ret, preds_list, out_label_list def _A ( self: Any , __UpperCamelCase: list ): _a , _a , _a = self._eval_end(__UpperCamelCase ) _a = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _A ( self: List[Any] , __UpperCamelCase: Any ): _a , _a , _a = self._eval_end(__UpperCamelCase ) _a = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _A ( __UpperCamelCase: Optional[Any] , __UpperCamelCase: int ): BaseTransformer.add_model_specific_args(__UpperCamelCase , __UpperCamelCase ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__UpperCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=__UpperCamelCase , required=__UpperCamelCase , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__UpperCamelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def __snake_case ( ) -> List[Any]: _a = argparse.ArgumentParser() add_generic_args(_UpperCamelCase , os.getcwd() ) _a = GLUETransformer.add_model_specific_args(_UpperCamelCase , os.getcwd() ) _a = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _a = os.path.join( '''./results''' , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) _a = GLUETransformer(_UpperCamelCase ) _a = generic_train(_UpperCamelCase , _UpperCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _a = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=_UpperCamelCase ) ) _a = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCamelCase ) if __name__ == "__main__": main()
346
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :List[str] = logging.get_logger(__name__) lowerCamelCase :List[str] = {} class UpperCAmelCase ( __snake_case ): a: str = "llama" a: List[str] = ["past_key_values"] def __init__( self: Tuple , __UpperCamelCase: Optional[Any]=3_2000 , __UpperCamelCase: Optional[int]=4096 , __UpperCamelCase: Union[str, Any]=1_1008 , __UpperCamelCase: str=32 , __UpperCamelCase: List[str]=32 , __UpperCamelCase: Tuple=None , __UpperCamelCase: Dict="silu" , __UpperCamelCase: Any=2048 , __UpperCamelCase: Optional[int]=0.0_2 , __UpperCamelCase: int=1E-6 , __UpperCamelCase: List[Any]=True , __UpperCamelCase: List[str]=0 , __UpperCamelCase: Union[str, Any]=1 , __UpperCamelCase: str=2 , __UpperCamelCase: int=1 , __UpperCamelCase: Optional[Any]=False , __UpperCamelCase: int=None , **__UpperCamelCase: Optional[int] , ): _a = vocab_size _a = max_position_embeddings _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads # for backward compatibility if num_key_value_heads is None: _a = num_attention_heads _a = num_key_value_heads _a = hidden_act _a = initializer_range _a = rms_norm_eps _a = pretraining_tp _a = use_cache _a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , tie_word_embeddings=__UpperCamelCase , **__UpperCamelCase , ) def _A ( self: Any ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) _a = self.rope_scaling.get('''type''' , __UpperCamelCase ) _a = self.rope_scaling.get('''factor''' , __UpperCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__UpperCamelCase , __UpperCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
346
1
# Lint as: python3 import itertools import os import re lowercase_ : List[Any] = re.compile(r'''([A-Z]+)([A-Z][a-z])''') lowercase_ : Tuple = re.compile(r'''([a-z\d])([A-Z])''') lowercase_ : Dict = re.compile(r'''(?<!_)_(?!_)''') lowercase_ : Optional[int] = re.compile(r'''(_{2,})''') lowercase_ : List[str] = r'''^\w+(\.\w+)*$''' lowercase_ : int = r'''<>:/\|?*''' def A__( __lowerCAmelCase ): _snake_case : int = _uppercase_uppercase_re.sub(R'\1_\2' , __lowerCAmelCase ) _snake_case : Any = _lowercase_uppercase_re.sub(R'\1_\2' , __lowerCAmelCase ) return name.lower() def A__( __lowerCAmelCase ): _snake_case : List[str] = _single_underscore_re.split(__lowerCAmelCase ) _snake_case : Any = [_multiple_underscores_re.split(__lowerCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__lowerCAmelCase ) if n != '' ) def A__( __lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , __lowerCAmelCase ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(__lowerCAmelCase )}-{split}''' def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): _snake_case : Dict = filename_prefix_for_split(__lowerCAmelCase , __lowerCAmelCase ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' _snake_case : int = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) return F'''{filepath}*''' def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ): _snake_case : Any = filename_prefix_for_split(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if shard_lengths: _snake_case : Dict = len(__lowerCAmelCase ) _snake_case : Optional[int] = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(__lowerCAmelCase )] if filetype_suffix: _snake_case : Tuple = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: _snake_case : Dict = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
304
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if exponent == 1: return base if exponent % 2 == 0: _snake_case : str = _modexpt(__lowerCAmelCase , exponent // 2 , __lowerCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__lowerCAmelCase , exponent - 1 , __lowerCAmelCase )) % modulo_value def A__( __lowerCAmelCase = 17_77 , __lowerCAmelCase = 18_55 , __lowerCAmelCase = 8 ): _snake_case : Optional[Any] = base for _ in range(1 , __lowerCAmelCase ): _snake_case : Any = _modexpt(__lowerCAmelCase , __lowerCAmelCase , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
304
1
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __A : List[str] = pd.read_csv('sample_data.csv', header=None) __A : List[Any] = df.shape[:1][0] # If you're using some other dataset input the target column __A : Tuple = df.iloc[:, 1:2] __A : List[str] = actual_data.values.reshape(len_data, 1) __A : Tuple = MinMaxScaler().fit_transform(actual_data) __A : Any = 1_0 __A : Any = 5 __A : Union[str, Any] = 2_0 __A : str = len_data - periods * look_back __A : Optional[Any] = actual_data[:division] __A : str = actual_data[division - look_back :] __A : Tuple = [], [] __A : List[str] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __A : Optional[Any] = np.array(train_x) __A : Any = np.array(test_x) __A : Optional[int] = np.array([list(i.ravel()) for i in train_y]) __A : Dict = np.array([list(i.ravel()) for i in test_y]) __A : Optional[Any] = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') __A : Union[str, Any] = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) __A : str = model.predict(x_test)
709
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
0
import os from collections.abc import Iterator def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(_SCREAMING_SNAKE_CASE ): _A = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).lstrip('./' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return F"{i * ' '}*" if i else "\n##" def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(F"{md_prefix(_SCREAMING_SNAKE_CASE )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = "." ) -> None: """simple docstring""" _A = '' for filepath in sorted(good_file_paths(_SCREAMING_SNAKE_CASE ) ): _A, _A = os.path.split(_SCREAMING_SNAKE_CASE ) if filepath != old_path: _A = print_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = (filepath.count(os.sep ) + 1) if filepath else 0 _A = F"{filepath}/{filename}".replace(' ' , '%20' ) _A = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F"{md_prefix(_SCREAMING_SNAKE_CASE )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(".")
27
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
1
import math from collections.abc import Iterator from itertools import takewhile def A_ ( A__ ) -> str: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A_ ( ) -> Optional[int]: a__ : str = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def A_ ( A__ = 200_0000 ) -> Optional[Any]: return sum(takewhile(lambda A__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
714
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> str: '''simple docstring''' a__ : int = XLMRobertaModel.from_pretrained('xlm-roberta-base') a__ : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house a__ : int = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim a__ : int = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a__ : Tuple = model(lowercase)['last_hidden_state'].detach() self.assertEqual(output.shape , lowercase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase , atol=1e-3)) @slow def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Dict = XLMRobertaModel.from_pretrained('xlm-roberta-large') a__ : str = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house a__ : List[Any] = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim a__ : List[Any] = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a__ : Union[str, Any] = model(lowercase)['last_hidden_state'].detach() self.assertEqual(output.shape , lowercase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase , atol=1e-3))
392
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __magic_name__ : Any = 16 __magic_name__ : Dict = 32 def lowercase__ ( _UpperCamelCase , _UpperCamelCase = 16 , _UpperCamelCase = "bert-base-cased") -> Any: """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(_UpperCamelCase) UpperCamelCase = load_dataset('glue' , 'mrpc') def tokenize_function(_UpperCamelCase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCamelCase , max_length=_UpperCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_UpperCamelCase) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(_UpperCamelCase): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCamelCase , padding='max_length' , max_length=1_28 , return_tensors='pt') return tokenizer.pad(_UpperCamelCase , padding='longest' , return_tensors='pt') # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase) UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase) return train_dataloader, eval_dataloader def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> str: """simple docstring""" UpperCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["lr"] UpperCamelCase = int(config['num_epochs']) UpperCamelCase = int(config['seed']) UpperCamelCase = int(config['batch_size']) UpperCamelCase = args.model_name_or_path set_seed(_UpperCamelCase) UpperCamelCase = get_dataloaders(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_UpperCamelCase , return_dict=_UpperCamelCase) # Instantiate optimizer UpperCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_UpperCamelCase) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: UpperCamelCase = 1 UpperCamelCase = (len(_UpperCamelCase) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=0 , num_training_steps=_UpperCamelCase , ) else: UpperCamelCase = DummyScheduler(_UpperCamelCase , total_num_steps=_UpperCamelCase , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) # We need to keep track of how many total steps we have iterated over UpperCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase = 0 # Now we train the model UpperCamelCase = evaluate.load('glue' , 'mrpc') UpperCamelCase = 0 UpperCamelCase = {} for epoch in range(_UpperCamelCase , _UpperCamelCase): model.train() for step, batch in enumerate(_UpperCamelCase): UpperCamelCase = model(**_UpperCamelCase) UpperCamelCase = outputs.loss UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(_UpperCamelCase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCamelCase = 0 for step, batch in enumerate(_UpperCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase = model(**_UpperCamelCase) UpperCamelCase = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times UpperCamelCase = accelerator.gather( (predictions, batch['labels'])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_UpperCamelCase) - 1: UpperCamelCase = predictions[: len(eval_dataloader.dataset) - samples_seen] UpperCamelCase = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , _UpperCamelCase) UpperCamelCase = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: UpperCamelCase = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json') , 'w') as f: json.dump(_UpperCamelCase , _UpperCamelCase) def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.') parser.add_argument( '--model_name_or_path' , type=_UpperCamelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCamelCase , ) parser.add_argument( '--output_dir' , type=_UpperCamelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=_UpperCamelCase , default=_UpperCamelCase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=_UpperCamelCase , default=3 , help='Number of train epochs.' , ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_UpperCamelCase , _UpperCamelCase) if __name__ == "__main__": main()
280
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __UpperCamelCase ( _a ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=0 ): UpperCAmelCase__: Any = 1.0 if scale is None else scale UpperCAmelCase__: int = 0.0 if loc is None else loc super().__init__(lowerCamelCase__ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase__ )] ) @property def _UpperCAmelCase ( self ): return self.base_dist.mean * self.scale + self.loc @property def _UpperCAmelCase ( self ): return self.base_dist.variance * self.scale**2 @property def _UpperCAmelCase ( self ): return self.variance.sqrt() class __UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): super().__init__(**lowerCamelCase__ ) UpperCAmelCase__: Any = args_dim UpperCAmelCase__: List[str] = nn.ModuleList([nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) for dim in args_dim.values()] ) UpperCAmelCase__: Any = domain_map def _UpperCAmelCase ( self , lowerCamelCase__ ): UpperCAmelCase__: str = [proj(lowerCamelCase__ ) for proj in self.proj] return self.domain_map(*lowerCamelCase__ ) class __UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase__ ): super().__init__() UpperCAmelCase__: str = function def _UpperCAmelCase ( self , lowerCamelCase__ , *lowerCamelCase__ ): return self.function(lowerCamelCase__ , *lowerCamelCase__ ) class __UpperCamelCase : '''simple docstring''' __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 def __init__( self , lowerCamelCase__ = 1 ): UpperCAmelCase__: str = dim UpperCAmelCase__: Any = {k: dim * self.args_dim[k] for k in self.args_dim} def _UpperCAmelCase ( self , lowerCamelCase__ ): if self.dim == 1: return self.distribution_class(*lowerCamelCase__ ) else: return Independent(self.distribution_class(*lowerCamelCase__ ) , 1 ) def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , ): UpperCAmelCase__: Optional[Any] = self._base_distribution(lowerCamelCase__ ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase__ , loc=lowerCamelCase__ , scale=lowerCamelCase__ , event_dim=self.event_dim ) @property def _UpperCAmelCase ( self ): return () if self.dim == 1 else (self.dim,) @property def _UpperCAmelCase ( self ): return len(self.event_shape ) @property def _UpperCAmelCase ( self ): return 0.0 def _UpperCAmelCase ( self , lowerCamelCase__ ): return ParameterProjection( in_features=lowerCamelCase__ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _UpperCAmelCase ( self , *lowerCamelCase__ ): raise NotImplementedError() @staticmethod def _UpperCAmelCase ( lowerCamelCase__ ): return (x + torch.sqrt(torch.square(lowerCamelCase__ ) + 4.0 )) / 2.0 class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = {"df": 1, "loc": 1, "scale": 1} __magic_name__ = StudentT @classmethod def _UpperCAmelCase ( cls , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: Dict = cls.squareplus(lowerCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase__: List[Any] = 2.0 + cls.squareplus(lowerCamelCase__ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = {"loc": 1, "scale": 1} __magic_name__ = Normal @classmethod def _UpperCAmelCase ( cls , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: str = cls.squareplus(lowerCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = {"total_count": 1, "logits": 1} __magic_name__ = NegativeBinomial @classmethod def _UpperCAmelCase ( cls , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: Dict = cls.squareplus(lowerCamelCase__ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _UpperCAmelCase ( self , lowerCamelCase__ ): UpperCAmelCase__ , UpperCAmelCase__: str = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase__ , logits=lowerCamelCase__ ) else: return Independent(self.distribution_class(total_count=lowerCamelCase__ , logits=lowerCamelCase__ ) , 1 ) def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ): UpperCAmelCase__ , UpperCAmelCase__: List[str] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
113
0
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : int ): """simple docstring""" _a : list[list[str]] = [[] for _ in range(__a )] _a : Optional[Any] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(__a ) <= key: return input_string for position, character in enumerate(__a ): _a : Tuple = position % (lowest * 2) # puts it in bounds _a : Tuple = min(__a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__a ) _a : Tuple = [''.join(__a ) for row in temp_grid] _a : List[str] = ''.join(__a ) return output_string def UpperCAmelCase_ (__a : str , __a : int ): """simple docstring""" _a : str = [] _a : Optional[int] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string _a : list[list[str]] = [[] for _ in range(__a )] # generates template for position in range(len(__a ) ): _a : Any = position % (lowest * 2) # puts it in bounds _a : Union[str, Any] = min(__a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) _a : Any = 0 for row in temp_grid: # fills in the characters _a : List[Any] = input_string[counter : counter + len(__a )] grid.append(list(__a ) ) counter += len(__a ) _a : str = '' # reads as zigzag for position in range(len(__a ) ): _a : Dict = position % (lowest * 2) # puts it in bounds _a : List[str] = min(__a , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Optional[int] = {} for key_guess in range(1 , len(__a ) ): # tries every key _a : int = decrypt(__a , __a ) return results if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = ViTImageProcessor if is_vision_available() else None @property def __lowercase ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : int = (3, 32, 128) _a : Any = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _a : Any = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) _a : Dict = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } _a : Dict = os.path.join(self.tmpdirname ,_a ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(_a ,_a ) def __lowercase ( self : Dict ,**_a : Any ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Optional[int] ,**_a : Optional[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Union[str, Any] = np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta ) _a : int = Image.fromarray(np.moveaxis(_a ,0 ,-1 ) ) return image_input def __lowercase ( self : Any ): '''simple docstring''' _a : str = self.get_tokenizer() _a : Optional[int] = self.get_image_processor() _a : int = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : List[Any] = MgpstrProcessor.from_pretrained(self.tmpdirname ,use_fast=_a ) self.assertEqual(processor.char_tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer ,_a ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor ,_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : Union[str, Any] = self.get_tokenizer() _a : Any = self.get_image_processor() _a : List[str] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : int = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) _a : Dict = self.get_image_processor(do_normalize=_a ,padding_value=1.0 ) _a : Optional[int] = MgpstrProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=_a ,padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer ,_a ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = self.get_image_processor() _a : int = self.get_tokenizer() _a : int = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : Optional[int] = self.prepare_image_inputs() _a : Optional[int] = image_processor(_a ,return_tensors='np' ) _a : str = processor(images=_a ,return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Optional[Any] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : Dict = 'test' _a : Optional[Any] = processor(text=_a ) _a : Any = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Union[str, Any] = self.get_image_processor() _a : Any = self.get_tokenizer() _a : List[str] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : Optional[int] = 'test' _a : Optional[Any] = self.prepare_image_inputs() _a : Tuple = processor(text=_a ,images=_a ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'labels'] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self : int ): '''simple docstring''' _a : Any = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _a : Any = processor.char_decode(_a ) _a : int = tokenizer.batch_decode(_a ) _a : List[Any] = [seq.replace(' ' ,'' ) for seq in decoded_tok] self.assertListEqual(_a ,_a ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : int = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : List[str] = None _a : int = self.prepare_image_inputs() _a : List[str] = processor(text=_a ,images=_a ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Optional[Any] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : Tuple = torch.randn(1 ,27 ,38 ) _a : Optional[int] = torch.randn(1 ,27 ,5_0257 ) _a : List[str] = torch.randn(1 ,27 ,3_0522 ) _a : List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) ,['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
319
0
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __a : def __init__( self , a__ , a__=2 , a__=3 , a__=4 , a__=2 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=36 , a__=3 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=16 , a__=2 , a__=0.02 , a__=6 , a__=6 , a__=3 , a__=4 , a__=None , a__=10_00 , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = text_seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = coordinate_size _lowerCamelCase = shape_size _lowerCamelCase = num_labels _lowerCamelCase = num_choices _lowerCamelCase = scope _lowerCamelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCamelCase = text_seq_length _lowerCamelCase = (image_size // patch_size) ** 2 + 1 _lowerCamelCase = self.text_seq_length + self.image_seq_length def snake_case_ ( self ): _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCamelCase = bbox[i, j, 3] _lowerCamelCase = bbox[i, j, 1] _lowerCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCamelCase = bbox[i, j, 2] _lowerCamelCase = bbox[i, j, 0] _lowerCamelCase = t _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowerCamelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = LayoutLMvaModel(config=a__ ) model.to(a__ ) model.eval() # text + image _lowerCamelCase = model(a__ , pixel_values=a__ ) _lowerCamelCase = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ ) _lowerCamelCase = model(a__ , bbox=a__ , pixel_values=a__ , token_type_ids=a__ ) _lowerCamelCase = model(a__ , bbox=a__ , pixel_values=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCamelCase = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCamelCase = model(pixel_values=a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = LayoutLMvaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = LayoutLMvaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = LayoutLMvaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : List[str] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Tuple = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def snake_case_ ( self ): _lowerCamelCase = LayoutLMvaModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=a__ , hidden_size=37 ) def snake_case_ ( self , a__ , a__ , a__=False ): _lowerCamelCase = copy.deepcopy(a__ ) if model_class in get_values(a__ ): _lowerCamelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(a__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a__ ): _lowerCamelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in get_values(a__ ): _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: _lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=a__ , ) return inputs_dict def snake_case_ ( self ): self.config_tester.run_common_tests() def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase = type self.model_tester.create_and_check_model(*a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def snake_case_ ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = LayoutLMvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE_ ( )-> str: _lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __a ( unittest.TestCase ): @cached_property def snake_case_ ( self ): return LayoutLMvaImageProcessor(apply_ocr=a__ ) if is_vision_available() else None @slow def snake_case_ ( self ): _lowerCamelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(a__ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values.to(a__ ) _lowerCamelCase = torch.tensor([[1, 2]] ) _lowerCamelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCamelCase = model( input_ids=input_ids.to(a__ ) , bbox=bbox.to(a__ ) , pixel_values=pixel_values.to(a__ ) , ) # verify the logits _lowerCamelCase = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , a__ ) _lowerCamelCase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-4 ) )
650
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int , snake_case : Tuple )-> Dict: _lowerCamelCase = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _lowerCamelCase = [] _lowerCamelCase = list(range(snake_case ) ) # Find permutation while factorials: _lowerCamelCase = factorials.pop() _lowerCamelCase , _lowerCamelCase = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
650
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , __a : Dict , __a : Optional[int]=3 , __a : Optional[Any]=32 , __a : int=3 , __a : Tuple=10 , __a : List[Any]=[10, 20, 30, 40] , __a : Tuple=[1, 1, 2, 1] , __a : Optional[int]=True , __a : List[str]=True , __a : List[Any]="relu" , __a : Union[str, Any]=3 , __a : List[Any]=None , ) -> Dict: _UpperCamelCase : int = parent _UpperCamelCase : int = batch_size _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : Union[str, Any] = num_channels _UpperCamelCase : List[Any] = embeddings_size _UpperCamelCase : List[Any] = hidden_sizes _UpperCamelCase : Optional[Any] = depths _UpperCamelCase : Dict = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : str = num_labels _UpperCamelCase : List[Any] = scope _UpperCamelCase : Tuple = len(__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Tuple = None if self.use_labels: _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : List[Any] , __a : List[str] ) -> List[str]: _UpperCamelCase : Union[str, Any] = RegNetModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : str = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : Optional[int] , __a : Optional[Any] ) -> str: _UpperCamelCase : Tuple = self.num_labels _UpperCamelCase : Optional[int] = RegNetForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[str] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = self.prepare_config_and_inputs() _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :Tuple = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = False SCREAMING_SNAKE_CASE__ :Tuple = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :List[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: _UpperCamelCase : List[Any] = RegNetModelTester(self ) _UpperCamelCase : List[str] = ConfigTester(self , config_class=__a , has_text_modality=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Tuple = [*signature.parameters.keys()] _UpperCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(config=__a ) for name, module in model.named_modules(): if isinstance(__a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: def check_hidden_states_output(__a : Union[str, Any] , __a : Any , __a : int ): _UpperCamelCase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : int = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : int = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Tuple = layer_type _UpperCamelCase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Optional[int] = True check_hidden_states_output(__a , __a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[Any] = RegNetModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : Union[str, Any] = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["OwlViTFeatureExtractor"] lowerCamelCase__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
0
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase_ : def __init__( self : Optional[int] , _A : Optional[Any] , _A : Tuple=2 , _A : Tuple=3 , _A : Optional[Any]=4 , _A : List[Any]=2 , _A : List[Any]=7 , _A : int=True , _A : Dict=True , _A : int=True , _A : Dict=True , _A : Tuple=99 , _A : Union[str, Any]=36 , _A : int=2 , _A : List[str]=4 , _A : int=37 , _A : List[Any]="gelu" , _A : str=0.1 , _A : str=0.1 , _A : Tuple=512 , _A : Dict=16 , _A : Tuple=2 , _A : Union[str, Any]=0.0_2 , _A : Any=6 , _A : Union[str, Any]=6 , _A : str=3 , _A : str=4 , _A : Tuple=None , _A : int=1_000 , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : str = image_size UpperCAmelCase__ : List[str] = patch_size UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : List[str] = use_input_mask UpperCAmelCase__ : Tuple = use_token_type_ids UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : Tuple = type_vocab_size UpperCAmelCase__ : Any = type_sequence_label_size UpperCAmelCase__ : List[str] = initializer_range UpperCAmelCase__ : List[str] = coordinate_size UpperCAmelCase__ : Tuple = shape_size UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : Optional[Any] = num_choices UpperCAmelCase__ : Union[str, Any] = scope UpperCAmelCase__ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase__ : str = text_seq_length UpperCAmelCase__ : Tuple = (image_size // patch_size) ** 2 + 1 UpperCAmelCase__ : Tuple = self.text_seq_length + self.image_seq_length def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCAmelCase__ : int = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase__ : str = bbox[i, j, 3] UpperCAmelCase__ : Dict = bbox[i, j, 1] UpperCAmelCase__ : str = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase__ : Optional[int] = bbox[i, j, 2] UpperCAmelCase__ : Any = bbox[i, j, 0] UpperCAmelCase__ : List[Any] = tmp_coordinate UpperCAmelCase__ : str = tf.constant(_A ) UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Any = None if self.use_input_mask: UpperCAmelCase__ : Any = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase__ : Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase_ ( self : Union[str, Any] , _A : int , _A : str , _A : Optional[int] , _A : Optional[int] , _A : List[str] , _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = TFLayoutLMvaModel(config=_A ) # text + image UpperCAmelCase__ : Tuple = model(_A , pixel_values=_A , training=_A ) UpperCAmelCase__ : Tuple = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , training=_A , ) UpperCAmelCase__ : Optional[Any] = model(_A , bbox=_A , pixel_values=_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase__ : Any = model(_A , training=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase__ : str = model({'''pixel_values''': pixel_values} , training=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase_ ( self : Union[str, Any] , _A : Optional[int] , _A : Optional[Any] , _A : Dict , _A : List[Any] , _A : List[Any] , _A : Any , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.num_labels UpperCAmelCase__ : int = TFLayoutLMvaForSequenceClassification(config=_A ) UpperCAmelCase__ : Union[str, Any] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict , _A : List[Any] , _A : Any , _A : Dict , _A : str , _A : Optional[int] , _A : str , _A : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : Union[str, Any] = TFLayoutLMvaForTokenClassification(config=_A ) UpperCAmelCase__ : Optional[int] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase_ ( self : Dict , _A : Dict , _A : List[str] , _A : Union[str, Any] , _A : int , _A : Tuple , _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : str = 2 UpperCAmelCase__ : Dict = TFLayoutLMvaForQuestionAnswering(config=_A ) UpperCAmelCase__ : str = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , training=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : List[str] = config_and_inputs UpperCAmelCase__ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : List[Any] , _A : Union[str, Any] , _A : str , _A : List[Any] , _A : Dict , _A : List[str] ): '''simple docstring''' return True def lowercase_ ( self : Optional[Any] , _A : Tuple , _A : Any , _A : Dict=False ): '''simple docstring''' UpperCAmelCase__ : List[Any] = copy.deepcopy(_A ) if model_class in get_values(_A ): UpperCAmelCase__ : Tuple = { k: tf.tile(tf.expand_dims(_A , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_A , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_A ): UpperCAmelCase__ : Dict = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCAmelCase__ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = TFLayoutLMvaModelTester(self ) UpperCAmelCase__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def lowercase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(_A ) if getattr(_A , '''hf_compute_loss''' , _A ): # The number of elements in the loss should be the same as the number of elements in the label UpperCAmelCase__ : Tuple = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_A )[0] ] UpperCAmelCase__ : Optional[Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCAmelCase__ : Any = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Tuple = prepared_for_class.pop('''input_ids''' ) UpperCAmelCase__ : List[Any] = model(_A , **_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Tuple = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: UpperCAmelCase__ : Optional[Any] = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCAmelCase__ : Any = -100 UpperCAmelCase__ : Union[str, Any] = tf.convert_to_tensor(_A ) UpperCAmelCase__ : int = model(_A , **_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCAmelCase__ : Optional[int] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Dict = model(_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCAmelCase__ : Dict = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) # Get keys that were added with the _prepare_for_class function UpperCAmelCase__ : Optional[int] = prepared_for_class.keys() - inputs_dict.keys() UpperCAmelCase__ : int = inspect.signature(model.call ).parameters UpperCAmelCase__ : Union[str, Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCAmelCase__ : Dict = {0: '''input_ids'''} for label_key in label_keys: UpperCAmelCase__ : str = signature_names.index(_A ) UpperCAmelCase__ : List[Any] = label_key UpperCAmelCase__ : Dict = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCAmelCase__ : Tuple = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCAmelCase__ : Any = prepared_for_class[value] UpperCAmelCase__ : Tuple = tuple(_A ) # Send to model UpperCAmelCase__ : Optional[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase_ ( self : int ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Union[str, Any] = type self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A ) def lowercase_ ( self : List[str] ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _A , _A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Any ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _A , _A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _A , _A , _A , _A , _A , _A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = TFLayoutLMvaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ) -> List[str]: UpperCAmelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : Dict ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) UpperCAmelCase__ : Dict = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : int = image_processor(images=_A , return_tensors='''tf''' ).pixel_values UpperCAmelCase__ : str = tf.constant([[1, 2]] ) UpperCAmelCase__ : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCAmelCase__ : int = model(input_ids=_A , bbox=_A , pixel_values=_A , training=_A ) # verify the logits UpperCAmelCase__ : Optional[int] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , _A ) UpperCAmelCase__ : Dict = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-4 ) )
75
from pathlib import Path import fire def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = Path(snake_case ) __SCREAMING_SNAKE_CASE : Dict = Path(snake_case ) dest_dir.mkdir(exist_ok=snake_case ) for path in src_dir.iterdir(): __SCREAMING_SNAKE_CASE : Union[str, Any] = [x.rstrip() for x in list(path.open().readlines() )][:n] __SCREAMING_SNAKE_CASE : Tuple = dest_dir.joinpath(path.name ) print(snake_case ) dest_path.open('''w''' ).write('''\n'''.join(snake_case ) ) if __name__ == "__main__": fire.Fire(minify)
74
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
285
"""simple docstring""" from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" if not input_list: return [] _a = [input_list.count(_lowerCAmelCase ) for value in input_list] _a = max(_lowerCAmelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_lowerCAmelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
285
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase__ : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", F"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", F"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", F"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", F"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.weight""", F"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", F"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", F"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", F"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.weight""", F"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", F"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", F"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", F"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", F"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", F"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.bias""", F"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", F"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", F"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", F"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.bias""", F"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", F"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = state_dict.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Dict = val def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE_ : Tuple = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) SCREAMING_SNAKE_CASE_ : List[str] = value else: SCREAMING_SNAKE_CASE_ : List[Any] = value return new_state_dict def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Any=False ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = '' if is_panoptic: SCREAMING_SNAKE_CASE_ : Any = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ : Dict = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ : Tuple = in_proj_weight[:2_56, :] SCREAMING_SNAKE_CASE_ : Tuple = in_proj_bias[:2_56] SCREAMING_SNAKE_CASE_ : Tuple = in_proj_weight[2_56:5_12, :] SCREAMING_SNAKE_CASE_ : List[Any] = in_proj_bias[2_56:5_12] SCREAMING_SNAKE_CASE_ : str = in_proj_weight[-2_56:, :] SCREAMING_SNAKE_CASE_ : Any = in_proj_bias[-2_56:] def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE_ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: SCREAMING_SNAKE_CASE_ : int = 'resnet101' if "dc5" in model_name: SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = 'panoptic' in model_name if is_panoptic: SCREAMING_SNAKE_CASE_ : Tuple = 2_50 else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 91 SCREAMING_SNAKE_CASE_ : Dict = 'huggingface/label-files' SCREAMING_SNAKE_CASE_ : int = 'coco-detection-id2label.json' SCREAMING_SNAKE_CASE_ : int = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE_ : List[str] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : str = idalabel SCREAMING_SNAKE_CASE_ : Any = {v: k for k, v in idalabel.items()} # load image processor SCREAMING_SNAKE_CASE_ : int = 'coco_panoptic' if is_panoptic else 'coco_detection' SCREAMING_SNAKE_CASE_ : List[Any] = ConditionalDetrImageProcessor(format=lowerCamelCase_ ) # prepare image SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE_ : int = image_processor(images=lowerCamelCase_ , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : str = encoding['pixel_values'] logger.info(F'Converting model {model_name}...' ) # load original model from torch hub SCREAMING_SNAKE_CASE_ : str = torch.hub.load('DeppMeng/ConditionalDETR' , lowerCamelCase_ , pretrained=lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE_ : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: SCREAMING_SNAKE_CASE_ : int = 'conditional_detr.' + src rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = rename_backbone_keys(lowerCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase_ , is_panoptic=lowerCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE_ : List[str] = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): SCREAMING_SNAKE_CASE_ : Tuple = state_dict.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE_ : str = state_dict.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: SCREAMING_SNAKE_CASE_ : List[str] = state_dict.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): SCREAMING_SNAKE_CASE_ : Tuple = state_dict.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE_ : List[Any] = ConditionalDetrForSegmentation(lowerCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() model.push_to_hub(repo_id=lowerCamelCase_ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion SCREAMING_SNAKE_CASE_ : str = conditional_detr(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = model(lowerCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4 ) # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
105
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=36, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> str: UpperCAmelCase_: int = parent UpperCAmelCase_: Dict = batch_size UpperCAmelCase_: Optional[int] = seq_length UpperCAmelCase_: int = is_training UpperCAmelCase_: List[Any] = use_input_mask UpperCAmelCase_: int = use_token_type_ids UpperCAmelCase_: Tuple = use_labels UpperCAmelCase_: Tuple = vocab_size UpperCAmelCase_: int = hidden_size UpperCAmelCase_: List[str] = num_hidden_layers UpperCAmelCase_: List[str] = num_attention_heads UpperCAmelCase_: Any = intermediate_size UpperCAmelCase_: str = hidden_act UpperCAmelCase_: Optional[int] = hidden_dropout_prob UpperCAmelCase_: Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_: List[str] = max_position_embeddings UpperCAmelCase_: Optional[int] = type_vocab_size UpperCAmelCase_: Tuple = type_sequence_label_size UpperCAmelCase_: Tuple = initializer_range UpperCAmelCase_: str = num_labels UpperCAmelCase_: str = num_choices UpperCAmelCase_: Optional[int] = scope def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase_: List[str] = None if self.use_input_mask: UpperCAmelCase_: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_: List[str] = None if self.use_token_type_ids: UpperCAmelCase_: str = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase_: str = None UpperCAmelCase_: List[Any] = None UpperCAmelCase_: Tuple = None if self.use_labels: UpperCAmelCase_: Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase_: str = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase_: Tuple = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase_: List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case (self ) -> List[Any]: return MraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Optional[Any] = self.get_config() UpperCAmelCase_: Dict = 300 return config def __snake_case (self ) -> List[Any]: ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ): Any = self.prepare_config_and_inputs() UpperCAmelCase_: List[str] = True UpperCAmelCase_: Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_: List[str] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Optional[int] = MraModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Optional[Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = model(SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> Union[str, Any]: UpperCAmelCase_: Any = True UpperCAmelCase_: Union[str, Any] = MraModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Optional[Any] = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: List[Any] = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Tuple = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: int = MraForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Any = MraForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: str = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, start_positions=SCREAMING_SNAKE_CASE_, end_positions=SCREAMING_SNAKE_CASE_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: List[str] = self.num_labels UpperCAmelCase_: Any = MraForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[str] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: Tuple = self.num_labels UpperCAmelCase_: Any = MraForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[str] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: Optional[Any] = self.num_choices UpperCAmelCase_: int = MraForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Dict = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase_: List[str] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase_: List[Any] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase_: List[Any] = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: int = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ): Any = config_and_inputs UpperCAmelCase_: Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , unittest.TestCase ): A = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) A = False A = False A = False A = False A = () def __snake_case (self ) -> Tuple: UpperCAmelCase_: Dict = MraModelTester(self ) UpperCAmelCase_: List[Any] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case (self ) -> Tuple: self.config_tester.run_common_tests() def __snake_case (self ) -> str: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_: str = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Dict: UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Tuple: UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Any: UpperCAmelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> Any: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_: List[str] = MraModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="""MRA does not output attentions""" ) def __snake_case (self ) -> List[str]: return @require_torch class _a ( unittest.TestCase ): @slow def __snake_case (self ) -> Tuple: UpperCAmelCase_: Union[str, Any] = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) UpperCAmelCase_: Optional[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_: Optional[Any] = model(SCREAMING_SNAKE_CASE_ )[0] UpperCAmelCase_: Optional[int] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) ) @slow def __snake_case (self ) -> Any: UpperCAmelCase_: List[str] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) UpperCAmelCase_: Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_: List[str] = model(SCREAMING_SNAKE_CASE_ )[0] UpperCAmelCase_: Any = 50265 UpperCAmelCase_: Any = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) ) @slow def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Optional[int] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) UpperCAmelCase_: List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_: List[Any] = model(SCREAMING_SNAKE_CASE_ )[0] UpperCAmelCase_: Dict = 50265 UpperCAmelCase_: int = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) )
556
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase : _SCREAMING_SNAKE_CASE : CommonSchedulerState # setable values _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : Optional[int] = None @classmethod def __snake_case ( cls :Optional[int] , __magic_name__ :CommonSchedulerState , __magic_name__ :jnp.ndarray , __magic_name__ :jnp.ndarray ) ->Optional[int]: return cls(common=__magic_name__ , init_noise_sigma=__magic_name__ , timesteps=__magic_name__ ) @dataclass class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : DDPMSchedulerState class UpperCamelCase (__snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : List[Any] = [e.name for e in FlaxKarrasDiffusionSchedulers] _SCREAMING_SNAKE_CASE : jnp.dtype @property def __snake_case ( self :int ) ->List[Any]: return True @register_to_config def __init__( self :str , __magic_name__ :int = 1_000 , __magic_name__ :float = 0.0001 , __magic_name__ :float = 0.02 , __magic_name__ :str = "linear" , __magic_name__ :Optional[jnp.ndarray] = None , __magic_name__ :str = "fixed_small" , __magic_name__ :bool = True , __magic_name__ :str = "epsilon" , __magic_name__ :jnp.dtype = jnp.floataa , ) ->List[str]: lowercase : Tuple = dtype def __snake_case ( self :Union[str, Any] , __magic_name__ :Optional[CommonSchedulerState] = None ) ->DDPMSchedulerState: if common is None: lowercase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase : Optional[Any] = jnp.array(1.0 , dtype=self.dtype ) lowercase : Union[str, Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__magic_name__ , init_noise_sigma=__magic_name__ , timesteps=__magic_name__ , ) def __snake_case ( self :Dict , __magic_name__ :DDPMSchedulerState , __magic_name__ :jnp.ndarray , __magic_name__ :Optional[int] = None ) ->jnp.ndarray: return sample def __snake_case ( self :Optional[int] , __magic_name__ :DDPMSchedulerState , __magic_name__ :int , __magic_name__ :Tuple = () ) ->DDPMSchedulerState: lowercase : Tuple = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase : Union[str, Any] = (jnp.arange(0 , __magic_name__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__magic_name__ , timesteps=__magic_name__ , ) def __snake_case ( self :Dict , __magic_name__ :DDPMSchedulerState , __magic_name__ :Union[str, Any] , __magic_name__ :List[Any]=None , __magic_name__ :Any=None ) ->Tuple: lowercase : Any = state.common.alphas_cumprod[t] lowercase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase : str = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase : Optional[int] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase : Optional[int] = jnp.clip(__magic_name__ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase : Union[str, Any] = jnp.log(jnp.clip(__magic_name__ , a_min=1E-20 ) ) elif variance_type == "fixed_large": lowercase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase : int = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase : Union[str, Any] = variance lowercase : str = state.common.betas[t] lowercase : Dict = (predicted_variance + 1) / 2 lowercase : List[str] = frac * max_log + (1 - frac) * min_log return variance def __snake_case ( self :Optional[Any] , __magic_name__ :DDPMSchedulerState , __magic_name__ :jnp.ndarray , __magic_name__ :int , __magic_name__ :jnp.ndarray , __magic_name__ :Optional[jax.random.KeyArray] = None , __magic_name__ :bool = True , ) ->Union[FlaxDDPMSchedulerOutput, Tuple]: lowercase : Tuple = timestep if key is None: lowercase : Any = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase : Optional[int] = jnp.split(__magic_name__ , sample.shape[1] , axis=1 ) else: lowercase : int = None # 1. compute alphas, betas lowercase : Dict = state.common.alphas_cumprod[t] lowercase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase : List[Any] = 1 - alpha_prod_t lowercase : int = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase : List[str] = model_output elif self.config.prediction_type == "v_prediction": lowercase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase : Tuple = jnp.clip(__magic_name__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase : str = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase : Any = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase : Union[str, Any] = jax.random.split(__magic_name__ , num=1 ) lowercase : Union[str, Any] = jax.random.normal(__magic_name__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__magic_name__ , __magic_name__ , predicted_variance=__magic_name__ ) ** 0.5) * noise lowercase : str = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__magic_name__ , state=__magic_name__ ) def __snake_case ( self :int , __magic_name__ :DDPMSchedulerState , __magic_name__ :jnp.ndarray , __magic_name__ :jnp.ndarray , __magic_name__ :jnp.ndarray , ) ->jnp.ndarray: return add_noise_common(state.common , __magic_name__ , __magic_name__ , __magic_name__ ) def __snake_case ( self :Any , __magic_name__ :DDPMSchedulerState , __magic_name__ :jnp.ndarray , __magic_name__ :jnp.ndarray , __magic_name__ :jnp.ndarray , ) ->jnp.ndarray: return get_velocity_common(state.common , __magic_name__ , __magic_name__ , __magic_name__ ) def __len__( self :Dict ) ->Union[str, Any]: return self.config.num_train_timesteps
704
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def UpperCamelCase ( _A , _A , _A=0 ) -> Any: # Format the message. if name is None: lowercase : Tuple = None else: lowercase : Any = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" lowercase : List[str] = fmt.format(_A ) # Print and recurse (if needed). if isinstance(_A , _A ): if msg is not None: print(_A ) for k in val.keys(): recursive_print(_A , val[k] , spaces + 2 ) elif isinstance(_A , torch.Tensor ): print(_A , """:""" , val.size() ) else: print(_A , """:""" , _A ) def UpperCamelCase ( _A , _A , _A , _A , _A ) -> Optional[int]: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowercase : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowercase : str = (num_heads, hidden_size, num_splits) + input_shape[1:] lowercase : Dict = param.view(*_A ) lowercase : str = param.transpose(0 , 2 ) lowercase : Optional[int] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowercase : Union[str, Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] lowercase : Any = param.view(*_A ) lowercase : Optional[int] = param.transpose(0 , 1 ).contiguous() lowercase : Any = param.view(*_A ) return param def UpperCamelCase ( _A , _A , _A ) -> List[str]: # The converted output model. lowercase : str = {} # old versions did not store training args lowercase : Optional[int] = input_state_dict.get("""args""" , _A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowercase : List[Any] = ds_args.padded_vocab_size lowercase : int = ds_args.max_position_embeddings lowercase : Optional[Any] = ds_args.hidden_size lowercase : int = ds_args.num_layers lowercase : Union[str, Any] = ds_args.num_attention_heads lowercase : List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowercase : int = config.n_head # The hidden_size per head. lowercase : Union[str, Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowercase : List[str] = input_state_dict["""checkpoint_version"""] else: lowercase : List[str] = 0.0 # The model. lowercase : Tuple = input_state_dict["""model"""] # The language model. lowercase : Optional[int] = model["""language_model"""] # The embeddings. lowercase : Optional[int] = lm["""embedding"""] # The word embeddings. lowercase : Union[str, Any] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. lowercase : Tuple = word_embeddings[: config.vocab_size, :] lowercase : Tuple = word_embeddings # The position embeddings. lowercase : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowercase : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. lowercase : Optional[int] = pos_embeddings # The transformer. lowercase : str = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. lowercase : str = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. lowercase : Optional[Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. lowercase : int = layer_re.match(_A ) # Stop if that's not a layer if m is None: break # The index of the layer. lowercase : Optional[int] = int(m.group(1 ) ) # The name of the operation. lowercase : Union[str, Any] = m.group(2 ) # Is it a weight or a bias? lowercase : Dict = m.group(3 ) # The name of the layer. lowercase : List[Any] = F"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): lowercase : List[str] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" lowercase : Dict = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowercase : Optional[int] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _A , _A ) lowercase : List[str] = causal_mask # Insert a "dummy" tensor for masked_bias. lowercase : str = torch.tensor(-1e4 , dtype=torch.floataa ) lowercase : Tuple = masked_bias lowercase : str = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowercase : int = out_val.transpose(0 , 1 ).contiguous() # Store. lowercase : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowercase : str = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Store. No change of shape. lowercase : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": lowercase : Optional[int] = megatron_to_transformers[op_name] lowercase : int = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowercase : Union[str, Any] = megatron_to_transformers[op_name] lowercase : str = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowercase : Dict = transformer["""final_layernorm.weight"""] lowercase : Any = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. lowercase : int = word_embeddings # It should be done! return output_state_dict def UpperCamelCase ( ) -> int: # Create the argument parser. lowercase : Dict = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=_A , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=_A , help="""An optional config json file describing the pre-trained model.""" , ) lowercase : Dict = parser.parse_args() # Extract the basename. lowercase : Union[str, Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: lowercase : Any = torch.load(_A , map_location="""cpu""" ) else: lowercase : Tuple = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) lowercase : Dict = input_state_dict.get("""args""" , _A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowercase : Optional[int] = """gelu_fast""" elif ds_args.openai_gelu: lowercase : int = """gelu_new""" else: lowercase : Tuple = """gelu""" else: # in the very early days this used to be "gelu_new" lowercase : List[str] = """gelu_new""" # Spell out all parameters in case the defaults change. lowercase : Optional[Any] = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=50_256 , eos_token_id=50_256 , ) else: lowercase : int = GPTaConfig.from_json_file(args.config_file ) lowercase : Optional[Any] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) lowercase : List[str] = convert_megatron_checkpoint(_A , _A , _A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_A , _A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowercase : Optional[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowercase : Tuple = """gpt2""" elif tokenizer_type == "PretrainedFromHF": lowercase : Optional[int] = ds_args.tokenizer_name_or_path else: raise ValueError(F"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: lowercase : Optional[Any] = """gpt2""" lowercase : int = AutoTokenizer.from_pretrained(_A ) lowercase : Union[str, Any] = type(_A ).__name__ lowercase : Any = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(_A ) # Save tokenizer based on args print(F"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(_A ) # Store the state_dict to file. lowercase : Any = os.path.join(_A , """pytorch_model.bin""" ) print(F"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(_A , _A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
348
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): _snake_case : Tuple = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: _snake_case : Any = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def snake_case_ (UpperCamelCase : Optional[int] ): '''simple docstring''' _a = (images / 2 + 0.5).clamp(0 , 1 ) _a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _a = numpy_to_pil(UpperCamelCase ) return images def snake_case_ (UpperCamelCase : str ): '''simple docstring''' if images.ndim == 3: _a = images[None, ...] _a = (images * 255).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _a = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: _a = [Image.fromarray(UpperCamelCase ) for image in images] return pil_images
22
import collections import importlib.util import os import re from pathlib import Path lowercase_ = """src/transformers""" # Matches is_xxx_available() lowercase_ = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowercase_ = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase_ = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowercase_ = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowercase_ = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase_ = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowercase_ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowercase_ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowercase_ = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowercase_ = re.compile(R"""^\s*try:""") # Catches a line with else: lowercase_ = re.compile(R"""^\s*else:""") def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if _re_test_backend.search(_SCREAMING_SNAKE_CASE ) is None: return None lowercase__ = [b[0] for b in _re_backend.findall(_SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: with open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase__ = f.readlines() lowercase__ = 0 while line_index < len(_SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure lowercase__ = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: lowercase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ): lowercase__ = _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ).groups()[0] lowercase__ = re.findall('\[([^\]]+)\]' , _SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue lowercase__ = _re_import_struct_key_value.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: lowercase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 lowercase__ = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): lowercase__ = lines[line_index] if _re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ) is not None: lowercase__ = _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowercase__ = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(_SCREAMING_SNAKE_CASE ) is not None: lowercase__ = _re_between_brackets.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowercase__ = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 lowercase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase__ = [] while ( line_index < len(_SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): lowercase__ = lines[line_index] lowercase__ = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase__ = {'none': objects} # Let's continue with backend-specific objects while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. lowercase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): lowercase__ = lines[line_index] lowercase__ = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: def find_duplicates(_SCREAMING_SNAKE_CASE ): return [k for k, v in collections.Counter(_SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase__ = [] for key in import_dict_objects.keys(): lowercase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowercase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase__ = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __UpperCamelCase () -> Tuple: lowercase__ = [] for root, _, files in os.walk(_SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , '__init__.py' ) lowercase__ = parse_init(_SCREAMING_SNAKE_CASE ) if objects is not None: lowercase__ = analyze_results(*_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(_SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase () -> Optional[int]: lowercase__ = [] for path, directories, files in os.walk(_SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(_SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue lowercase__ = str((Path(_SCREAMING_SNAKE_CASE ) / folder).relative_to(_SCREAMING_SNAKE_CASE ) ) lowercase__ = short_path.replace(os.path.sep , '.' ) submodules.append(_SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue lowercase__ = str((Path(_SCREAMING_SNAKE_CASE ) / fname).relative_to(_SCREAMING_SNAKE_CASE ) ) lowercase__ = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(_SCREAMING_SNAKE_CASE ) return submodules lowercase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __UpperCamelCase () -> List[Any]: # This is to make sure the transformers module imported is the one in the repo. lowercase__ = importlib.util.spec_from_file_location( 'transformers' , os.path.join(_SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowercase__ = spec.loader.load_module() lowercase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
235
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch _UpperCAmelCase = random.Random() def UpperCamelCase ( lowercase_ : str , lowercase_ : Optional[int]=1.0 , lowercase_ : Any=None , lowercase_ : Optional[int]=None ) -> Any: '''simple docstring''' if rng is None: lowercase =global_rng lowercase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __magic_name__ ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=7 , snake_case_=4_00 , snake_case_=20_00 , snake_case_=1 , snake_case_=0.0 , snake_case_=1_60_00 , snake_case_=True , snake_case_=80 , snake_case_=16 , snake_case_=64 , snake_case_="hann_window" , snake_case_=80 , snake_case_=76_00 , snake_case_=1E-10 , snake_case_=True , ): lowercase =parent lowercase =batch_size lowercase =min_seq_length lowercase =max_seq_length lowercase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase =feature_size lowercase =padding_value lowercase =sampling_rate lowercase =do_normalize lowercase =num_mel_bins lowercase =hop_length lowercase =win_length lowercase =win_function lowercase =fmin lowercase =fmax lowercase =mel_floor lowercase =return_attention_mask def _A( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _A( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*a_ ) ) if equal_length: lowercase =floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase =[ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase =[np.asarray(a_ ) for x in speech_inputs] return speech_inputs def _A( self , snake_case_=False , snake_case_=False ): if equal_length: lowercase =[floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase =[ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase =[np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch class __magic_name__ ( __a , unittest.TestCase ): UpperCamelCase__ = SpeechTaFeatureExtractor def _A( self ): lowercase =SpeechTaFeatureExtractionTester(self ) def _A( self , snake_case_ ): self.assertTrue(np.all(np.mean(a_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_ , axis=0 ) - 1 ) < 1E-3 ) ) def _A( self ): lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase =[floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase =[np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input lowercase =feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values lowercase =feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1E-3 ) ) # Test batched lowercase =feat_extract(a_ , return_tensors='''np''' ).input_values lowercase =feat_extract(a_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1E-3 ) ) def _A( self ): lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase =[floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase =["""longest""", """max_length""", """do_not_pad"""] lowercase =[None, 16_00, None] for max_length, padding in zip(a_ , a_ ): lowercase =feat_extract(a_ , padding=a_ , max_length=a_ , return_tensors='''np''' ) lowercase =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _A( self ): lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase =range(8_00 , 14_00 , 2_00 ) lowercase =[floats_list((1, x) )[0] for x in lengths] lowercase =["""longest""", """max_length""", """do_not_pad"""] lowercase =[None, 16_00, None] for max_length, padding in zip(a_ , a_ ): lowercase =feat_extract(a_ , max_length=a_ , padding=a_ ) lowercase =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _A( self ): lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase =[floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase =feat_extract( a_ , truncation=a_ , max_length=10_00 , padding='''max_length''' , return_tensors='''np''' ) lowercase =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _A( self ): lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase =[floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase =feat_extract( a_ , truncation=a_ , max_length=10_00 , padding='''longest''' , return_tensors='''np''' ) lowercase =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) lowercase =[floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase =feat_extract( a_ , truncation=a_ , max_length=20_00 , padding='''longest''' , return_tensors='''np''' ) lowercase =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) def _A( self ): lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase =np.random.rand(1_00 ).astype(np.floataa ) lowercase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase =feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase =feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _A( self ): lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase =[floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase =[np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size lowercase =feature_extractor(audio_target=a_ , padding=a_ , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowercase =feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values lowercase =feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1E-3 ) ) # Test batched lowercase =feature_extractor(a_ , return_tensors='''np''' ).input_values lowercase =feature_extractor(a_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase =[floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowercase =np.asarray(a_ ) lowercase =feature_extractor(a_ , return_tensors='''np''' ).input_values lowercase =feature_extractor(a_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1E-3 ) ) def _A( self ): lowercase =self.feat_extract_tester.prepare_inputs_for_target() lowercase =self.feature_extraction_class(**self.feat_extract_dict ) lowercase =feat_extract.model_input_names[0] lowercase =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(a_ ) == len(a_ ) for x, y in zip(a_ , processed_features[input_name] ) ) ) lowercase =self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ ) lowercase =BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) lowercase =processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _A( self ): lowercase =self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ ) lowercase =self.feature_extraction_class(**self.feat_extract_dict ) lowercase =feat_extract.model_input_names[0] lowercase =BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) lowercase =processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _A( self ): lowercase =self.feature_extraction_class(**self.feat_extract_dict ) lowercase =self.feat_extract_tester.prepare_inputs_for_target() lowercase =feat_extract.model_input_names[0] lowercase =BatchFeature({input_name: speech_inputs} ) lowercase =feat_extract.num_mel_bins # hack! lowercase =feat_extract.pad(a_ , padding='''longest''' , return_tensors='''np''' )[input_name] lowercase =feat_extract.pad(a_ , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _A( self ): lowercase =self.feat_extract_dict lowercase =True lowercase =self.feature_extraction_class(**a_ ) lowercase =self.feat_extract_tester.prepare_inputs_for_target() lowercase =[len(a_ ) for x in speech_inputs] lowercase =feat_extract.model_input_names[0] lowercase =BatchFeature({input_name: speech_inputs} ) lowercase =feat_extract.num_mel_bins # hack! lowercase =feat_extract.pad(a_ , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , a_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a_ ) def _A( self ): lowercase =self.feat_extract_dict lowercase =True lowercase =self.feature_extraction_class(**a_ ) lowercase =self.feat_extract_tester.prepare_inputs_for_target() lowercase =[len(a_ ) for x in speech_inputs] lowercase =feat_extract.model_input_names[0] lowercase =BatchFeature({input_name: speech_inputs} ) lowercase =min(a_ ) lowercase =feat_extract.num_mel_bins # hack! lowercase =feat_extract.pad( a_ , padding='''max_length''' , max_length=a_ , truncation=a_ , return_tensors='''np''' ) self.assertIn('''attention_mask''' , a_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _A( self , snake_case_ ): from datasets import load_dataset lowercase =load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowercase =ds.sort('''id''' ).select(range(a_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _A( self ): lowercase =torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on lowercase =self._load_datasamples(1 ) lowercase =SpeechTaFeatureExtractor() lowercase =feature_extractor(a_ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 9_36_80) ) self.assertTrue(torch.allclose(input_values[0, :30] , a_ , atol=1E-6 ) ) def _A( self ): lowercase =torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on lowercase =self._load_datasamples(1 ) lowercase =SpeechTaFeatureExtractor() lowercase =feature_extractor(audio_target=a_ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 3_66, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a_ , atol=1E-4 ) )
706
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase ( lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def UpperCamelCase ( lowercase_ : np.ndarray , lowercase_ : Optional[str] , lowercase_ : Optional[str] = None ) -> Tuple: '''simple docstring''' lowercase =tesseract_config if tesseract_config is not None else '''''' # apply OCR lowercase =to_pil_image(lowercase_ ) lowercase , lowercase =pil_image.size lowercase =pytesseract.image_to_data(lowercase_ , lang=lowercase_ , output_type='''dict''' , config=lowercase_ ) lowercase , lowercase , lowercase , lowercase , lowercase =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase =[idx for idx, word in enumerate(lowercase_ ) if not word.strip()] lowercase =[word for idx, word in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase =[] for x, y, w, h in zip(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): lowercase =[x, y, x + w, y + h] actual_boxes.append(lowercase_ ) # finally, normalize the bounding boxes lowercase =[] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase_ , lowercase_ , lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = ['pixel_values'] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = True , snake_case_ = None , snake_case_ = "" , **snake_case_ , ): super().__init__(**snake_case_ ) lowercase =size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase =get_size_dict(snake_case_ ) lowercase =do_resize lowercase =size lowercase =resample lowercase =apply_ocr lowercase =ocr_lang lowercase =tesseract_config def _A( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = None , **snake_case_ , ): lowercase =get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase =(size['''height'''], size['''width''']) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _A( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): lowercase =do_resize if do_resize is not None else self.do_resize lowercase =size if size is not None else self.size lowercase =get_size_dict(snake_case_ ) lowercase =resample if resample is not None else self.resample lowercase =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase =make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. lowercase =[to_numpy_array(snake_case_ ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase =[] lowercase =[] for image in images: lowercase , lowercase =apply_tesseract(snake_case_ , snake_case_ , snake_case_ ) words_batch.append(snake_case_ ) boxes_batch.append(snake_case_ ) if do_resize: lowercase =[self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase =[flip_channel_order(snake_case_ ) for image in images] lowercase =[to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] lowercase =BatchFeature(data={'''pixel_values''': images} , tensor_type=snake_case_ ) if apply_ocr: lowercase =words_batch lowercase =boxes_batch return data
145
0
def lowerCamelCase_ ( UpperCamelCase__ : int = 5000_0000 ) -> int: """simple docstring""" __lowerCamelCase = set() __lowerCamelCase = int((limit - 24) ** (1 / 2) ) __lowerCamelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , UpperCamelCase__ ) ) ) for primea in primes: __lowerCamelCase = primea * primea for primea in primes: __lowerCamelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCamelCase = primea * primea * primea * primea __lowerCamelCase = square + cube + tetr if total >= limit: break ret.add(UpperCamelCase__ ) return len(UpperCamelCase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
469
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bool: """simple docstring""" __lowerCamelCase = 0 for ch in input_str: __lowerCamelCase = ord(UpperCamelCase__ ) __lowerCamelCase = pow(2 , UpperCamelCase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
469
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class __a ( _lowerCAmelCase ): UpperCamelCase_ : List[str] = '''van''' def __init__( self : str , UpperCAmelCase_ : Any=224 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : str=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[64, 128, 320, 512] , UpperCAmelCase_ : Union[str, Any]=[3, 3, 12, 3] , UpperCAmelCase_ : Any=[8, 8, 4, 4] , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[int]=1e-6 , UpperCAmelCase_ : Optional[Any]=1e-2 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : List[str] , )-> Union[str, Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = patch_sizes UpperCamelCase = strides UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = mlp_ratios UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = layer_scale_init_value UpperCamelCase = drop_path_rate UpperCamelCase = dropout_rate
556
"""simple docstring""" def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ = False )-> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis UpperCamelCase = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] UpperCamelCase = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCAmelCase_ , 1 ): if n < _p: # then we have our last prime to check UpperCamelCase = primes[:idx] break UpperCamelCase , UpperCamelCase = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: UpperCamelCase = False for r in range(UpperCAmelCase_ ): UpperCamelCase = pow(UpperCAmelCase_ , d * 2**r , UpperCAmelCase_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): UpperCamelCase = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCamelCase__ ( )-> None: """simple docstring""" assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
556
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __snake_case : Dict = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowerCamelCase__ ( A_ ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowerCamelCase__ ( A_ , A_ , A_ ): return max(metric_fn(A_ , A_ ) for gt in ground_truths ) def lowerCamelCase__ ( A_ , A_ , A_ ): UpperCAmelCase_ = [line.strip() for line in open(A_ , "r" ).readlines()] UpperCAmelCase_ = [] if args.gold_data_mode == "qa": UpperCAmelCase_ = pd.read_csv(A_ , sep="\t" , header=A_ ) for answer_list in data[1]: UpperCAmelCase_ = ast.literal_eval(A_ ) answers.append(A_ ) else: UpperCAmelCase_ = [line.strip() for line in open(A_ , "r" ).readlines()] UpperCAmelCase_ = [[reference] for reference in references] UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = 0 for prediction, ground_truths in zip(A_ , A_ ): total += 1 em += metric_max_over_ground_truths(A_ , A_ , A_ ) fa += metric_max_over_ground_truths(A_ , A_ , A_ ) UpperCAmelCase_ = 100.0 * em / total UpperCAmelCase_ = 100.0 * fa / total logger.info(F"""F1: {fa:.2f}""" ) logger.info(F"""EM: {em:.2f}""" ) def lowerCamelCase__ ( A_ , A_ , A_ ): UpperCAmelCase_ = args.k UpperCAmelCase_ = [line.strip() for line in open(A_ , "r" ).readlines()] UpperCAmelCase_ = [line.strip() for line in open(A_ , "r" ).readlines()] UpperCAmelCase_ = UpperCAmelCase_ = 0 for hypo, reference in zip(A_ , A_ ): UpperCAmelCase_ = set(hypo.split("\t" )[:k] ) UpperCAmelCase_ = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase_ = 100.0 * em / total logger.info(F"""Precision@{k}: {em: .2f}""" ) def lowerCamelCase__ ( A_ , A_ , A_ ): def strip_title(A_ ): if title.startswith("\"" ): UpperCAmelCase_ = title[1:] if title.endswith("\"" ): UpperCAmelCase_ = title[:-1] return title UpperCAmelCase_ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A_ , return_tensors="pt" , padding=A_ , truncation=A_ , )["input_ids"].to(args.device ) UpperCAmelCase_ = rag_model.rag.question_encoder(A_ ) UpperCAmelCase_ = question_enc_outputs[0] UpperCAmelCase_ = rag_model.retriever( A_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) UpperCAmelCase_ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase_ = [] for docs in all_docs: UpperCAmelCase_ = [strip_title(A_ ) for title in docs["title"]] provenance_strings.append("\t".join(A_ ) ) return provenance_strings def lowerCamelCase__ ( A_ , A_ , A_ ): with torch.no_grad(): UpperCAmelCase_ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A_ , return_tensors="pt" , padding=A_ , truncation=A_ ) UpperCAmelCase_ = inputs_dict.input_ids.to(args.device ) UpperCAmelCase_ = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase_ = rag_model.generate( # rag_model overwrites generate A_ , attention_mask=A_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=A_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCAmelCase_ = rag_model.retriever.generator_tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) if args.print_predictions: for q, a in zip(A_ , A_ ): logger.info("Q: {} - A: {}".format(A_ , A_ ) ) return answers def lowerCamelCase__ ( ): UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=A_ , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=A_ , choices=["exact", "compressed", "legacy"] , type=A_ , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=A_ , type=A_ , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=A_ , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=A_ , type=A_ , required=A_ , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=A_ , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=A_ , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=A_ , type=A_ , required=A_ , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=A_ , type=A_ , required=A_ , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=A_ , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=A_ , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=A_ , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=A_ , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=A_ , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=A_ , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def lowerCamelCase__ ( A_ ): UpperCAmelCase_ = {} if args.model_type is None: UpperCAmelCase_ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): UpperCAmelCase_ = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration UpperCAmelCase_ = args.n_docs if args.index_name is not None: UpperCAmelCase_ = args.index_name if args.index_path is not None: UpperCAmelCase_ = args.index_path else: UpperCAmelCase_ = BartForConditionalGeneration UpperCAmelCase_ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , A_ ) UpperCAmelCase_ = get_scores if args.eval_mode == "e2e" else get_precision_at_k UpperCAmelCase_ = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(A_ , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(A_ ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): UpperCAmelCase_ = RagRetriever.from_pretrained(A_ , **A_ ) UpperCAmelCase_ = model_class.from_pretrained(A_ , retriever=A_ , **A_ ) model.retriever.init_retrieval() else: UpperCAmelCase_ = model_class.from_pretrained(A_ , **A_ ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: UpperCAmelCase_ = [] for line in tqdm(A_ ): questions.append(line.strip() ) if len(A_ ) == args.eval_batch_size: UpperCAmelCase_ = evaluate_batch_fn(A_ , A_ , A_ ) preds_file.write("\n".join(A_ ) + "\n" ) preds_file.flush() UpperCAmelCase_ = [] if len(A_ ) > 0: UpperCAmelCase_ = evaluate_batch_fn(A_ , A_ , A_ ) preds_file.write("\n".join(A_ ) ) preds_file.flush() score_fn(A_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __snake_case : int = get_args() main(args)
660
'''simple docstring''' import os from datetime import datetime as dt from github import Github __snake_case : Union[str, Any] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def lowerCamelCase__ ( ): UpperCAmelCase_ = Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase_ = g.get_repo("huggingface/diffusers" ) UpperCAmelCase_ = repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase_ = sorted(issue.get_comments() , key=lambda A_ : i.created_at , reverse=A_ ) UpperCAmelCase_ = comments[0] if len(A_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
660
1
from __future__ import annotations lowercase : Any = 1.6021e-19 # units = C def A_ ( A__ , A__ , A__ , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
392
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def A_ ( A__ ) -> float: return np.dot(A__ , A__ ) class A__ : """simple docstring""" def __init__( self , *, lowercase = np.inf , lowercase = "linear" , lowercase = 0.0 , ) -> None: '''simple docstring''' a__ : int = regularization a__ : int = gamma if kernel == "linear": a__ : Optional[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') a__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: a__ : List[str] = F'Unknown kernel: {kernel}' raise ValueError(lowercase) def __lowercase ( self , lowercase , lowercase) -> float: '''simple docstring''' return np.dot(lowercase , lowercase) def __lowercase ( self , lowercase , lowercase) -> float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __lowercase ( self , lowercase , lowercase) -> None: '''simple docstring''' a__ : Tuple = observations a__ : int = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((a__) , ) : Tuple = np.shape(lowercase) def to_minimize(lowercase) -> float: a__ : Tuple = 0 ((a__) , ) : Optional[Any] = np.shape(lowercase) for i in range(lowercase): for j in range(lowercase): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(lowercase) a__ : str = LinearConstraint(lowercase , 0 , 0) a__ : List[Any] = Bounds(0 , self.regularization) a__ : Optional[int] = minimize( lowercase , np.ones(lowercase) , bounds=lowercase , constraints=[ly_contraint]).x a__ : str = l_star # calculating mean offset of separation plane to points a__ : Optional[int] = 0 for i in range(lowercase): for j in range(lowercase): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) a__ : str = s / n def __lowercase ( self , lowercase) -> int: '''simple docstring''' a__ : int = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , lowercase) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
392
1
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''AutoImageProcessor''' _lowerCamelCase = '''AutoTokenizer''' def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> Union[str, Any]: A = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,__a ,) A = kwargs.pop("""feature_extractor""" ) A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__a ,__a ) A = self.image_processor A = False def __call__( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Dict: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a ,**__a ) A = kwargs.pop("""images""" ,__a ) A = kwargs.pop("""text""" ,__a ) if len(__a ) > 0: A = args[0] A = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: A = self.image_processor(__a ,*__a ,**__a ) if text is not None: A = self.tokenizer(__a ,**__a ) if text is None: return inputs elif images is None: return encodings else: A = encodings['input_ids'] return inputs def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]: return self.tokenizer.batch_decode(*__a ,**__a ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[Any]: return self.tokenizer.decode(*__a ,**__a ) @contextmanager def UpperCamelCase__ ( self ) -> List[Any]: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) A = True A = self.tokenizer yield A = self.image_processor A = False def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=False ,lowerCamelCase_=None ) -> List[str]: if added_vocab is None: A = self.tokenizer.get_added_vocab() A = {} while tokens: A = re.search(r"""<s_(.*?)>""" ,__a ,re.IGNORECASE ) if start_token is None: break A = start_token.group(1 ) A = re.search(rf'</s_{key}>' ,__a ,re.IGNORECASE ) A = start_token.group() if end_token is None: A = tokens.replace(__a ,"""""" ) else: A = end_token.group() A = re.escape(__a ) A = re.escape(__a ) A = re.search(f'{start_token_escaped}(.*?){end_token_escaped}' ,__a ,re.IGNORECASE ) if content is not None: A = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node A = self.tokenajson(__a ,is_inner_value=__a ,added_vocab=__a ) if value: if len(__a ) == 1: A = value[0] A = value else: # leaf nodes A = [] for leaf in content.split(r"""<sep/>""" ): A = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": A = leaf[1:-2] # for categorical special tokens output[key].append(__a ) if len(output[key] ) == 1: A = output[key][0] A = tokens[tokens.find(__a ) + len(__a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] ,is_inner_value=__a ,added_vocab=__a ) if len(__a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCamelCase__ ( self ) -> Any: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,__a ,) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,__a ,) return self.image_processor
617
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case__ ( unittest.TestCase ): def A_ ( self : int , __a : Optional[int] , __a : Union[str, Any] ) -> str: '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={"_".join([str(__a ) for s in shape] )}.npy''' def A_ ( self : Any ) -> List[str]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def A_ ( self : List[Any] , __a : Union[str, Any]=0 , __a : List[str]=(4, 4, 64, 64) , __a : Optional[Any]=False ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa __snake_case : List[Any] = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def A_ ( self : Any , __a : Any=False , __a : Dict="CompVis/stable-diffusion-v1-4" ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = jnp.bfloataa if fpaa else jnp.floataa __snake_case : int = 'bf16' if fpaa else None __snake_case , __snake_case : Union[str, Any] = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='unet' , dtype=__a , revision=__a ) return model, params def A_ ( self : Any , __a : Dict=0 , __a : Dict=(4, 77, 768) , __a : List[str]=False ) -> List[Any]: '''simple docstring''' __snake_case : List[Any] = jnp.bfloataa if fpaa else jnp.floataa __snake_case : Any = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def A_ ( self : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : Any ) -> Dict: '''simple docstring''' __snake_case , __snake_case : Tuple = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=__a ) __snake_case : Tuple = self.get_latents(__a , fpaa=__a ) __snake_case : int = self.get_encoder_hidden_states(__a , fpaa=__a ) __snake_case : List[str] = model.apply( {'params': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __snake_case : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case : str = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def A_ ( self : str , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case : int = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=__a ) __snake_case : int = self.get_latents(__a , shape=(4, 4, 96, 96) , fpaa=__a ) __snake_case : Optional[Any] = self.get_encoder_hidden_states(__a , shape=(4, 77, 1024) , fpaa=__a ) __snake_case : List[str] = model.apply( {'params': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __snake_case : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case : int = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
286
0
from __future__ import annotations def UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> float: '''simple docstring''' if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> float: '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> float: '''simple docstring''' if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( lowerCAmelCase_ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
476
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowerCAmelCase ( unittest.TestCase ): def a__ ( self , lowerCAmelCase__ ): _A= 3 _A= 250 _A= ids_tensor((batch_size, length) , lowerCAmelCase__ ) _A= torch.ones((batch_size, length) , device=lowerCAmelCase__ , dtype=torch.float ) / length return input_ids, scores def a__ ( self ): _A, _A= self._get_tensors(5 ) _A= StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) _A, _A= self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) _A, _A= self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def a__ ( self ): _A= MaxLengthCriteria(max_length=10 ) _A, _A= self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) _A, _A= self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) _A, _A= self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def a__ ( self ): _A= MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _A, _A= self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) _A, _A= self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) _A, _A= self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) _A= StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__ ( self ): _A, _A= self._get_tensors(5 ) _A= MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) _A= MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def a__ ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _A= validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase__ ) , 1 )
476
1
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase : str = logging.get_logger(__name__) class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = ['input_ids', 'attention_mask'] def __init__( self :Tuple , a :List[Any]="</s>" , a :str="<unk>" , a :int="<pad>" , a :Optional[int]=1_2_5 , a :List[Any]=None , **a :Any , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCamelCase : Any = [f'<extra_id_{i}>' for i in range(a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCamelCase : str = len(set(filter(lambda a : bool("extra_id" in str(a ) ) , a ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) __UpperCamelCase : List[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token __UpperCamelCase : Tuple = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token __UpperCamelCase : int = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token super().__init__( eos_token=a , unk_token=a , pad_token=a , extra_ids=a , additional_special_tokens=a , **a , ) __UpperCamelCase : List[str] = extra_ids __UpperCamelCase : Optional[Any] = 2**8 # utf is 8 bits # define special tokens dict __UpperCamelCase : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __UpperCamelCase : List[Any] = len(self.special_tokens_encoder ) __UpperCamelCase : int = len(a ) for i, token in enumerate(a ): __UpperCamelCase : Tuple = self.vocab_size + i - n __UpperCamelCase : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def _lowerCamelCase ( self :Optional[int] ) -> str: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def _lowerCamelCase ( self :Tuple , a :List[int] , a :Optional[List[int]] = None , a :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a )) + [1] return ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def _lowerCamelCase ( self :List[Any] , a :List[int] ) -> List[int]: if len(a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def _lowerCamelCase ( self :Optional[Any] , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Union[str, Any] = self._add_eos_if_not_present(a ) if token_ids_a is None: return token_ids_a else: __UpperCamelCase : Optional[Any] = self._add_eos_if_not_present(a ) return token_ids_a + token_ids_a def _lowerCamelCase ( self :int , a :str ) -> List[str]: __UpperCamelCase : str = [chr(a ) for i in text.encode("utf-8" )] return tokens def _lowerCamelCase ( self :Dict , a :Dict ) -> List[str]: if token in self.special_tokens_encoder: __UpperCamelCase : Optional[int] = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __UpperCamelCase : int = self.added_tokens_encoder[token] elif len(a ) != 1: __UpperCamelCase : Any = self.unk_token_id else: __UpperCamelCase : Tuple = ord(a ) + self._num_special_tokens return token_id def _lowerCamelCase ( self :int , a :int ) -> int: if index in self.special_tokens_decoder: __UpperCamelCase : List[str] = self.special_tokens_decoder[index] else: __UpperCamelCase : Optional[Any] = chr(index - self._num_special_tokens ) return token def _lowerCamelCase ( self :str , a :Dict ) -> List[str]: __UpperCamelCase : int = b"" for token in tokens: if token in self.special_tokens_decoder: __UpperCamelCase : Dict = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: __UpperCamelCase : List[Any] = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: __UpperCamelCase : List[Any] = token.encode("utf-8" ) elif token in self.added_tokens_encoder: __UpperCamelCase : Optional[int] = token.encode("utf-8" ) else: __UpperCamelCase : int = bytes([ord(a )] ) bstring += tok_string __UpperCamelCase : List[str] = bstring.decode("utf-8" , errors="ignore" ) return string def _lowerCamelCase ( self :List[Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: return ()
557
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> int: '''simple docstring''' __UpperCamelCase : Tuple = 1 for i in range(1 , num + 1): fact *= i return fact def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> int: '''simple docstring''' __UpperCamelCase : Dict = 0 while number > 0: __UpperCamelCase : List[Any] = number % 10 sum_of_digits += last_digit __UpperCamelCase : List[Any] = number // 10 # Removing the last_digit from the given number return sum_of_digits def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 100) -> int: '''simple docstring''' __UpperCamelCase : Optional[Any] = factorial(_lowerCamelCase) __UpperCamelCase : Tuple = split_and_add(_lowerCamelCase) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
557
1
"""simple docstring""" import math A: List[str] = 1_0 A: List[Any] = 7 A: Dict = BALLS_PER_COLOUR * NUM_COLOURS def _snake_case ( UpperCamelCase : Any = 20 ): UpperCAmelCase : Optional[Any] = math.comb(__A , __A ) UpperCAmelCase : Any = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __A ) UpperCAmelCase : Optional[int] = NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(2_0))
715
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : List[Any] = TransfoXLTokenizer __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase : Optional[Any] = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int = """<unk> UNwanted , running""" UpperCAmelCase : Dict = """<unk> unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [0, 4, 8, 7] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple = TransfoXLTokenizer(lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = TransfoXLTokenizer(lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] = TransfoXLTokenizer(lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" UpperCAmelCase : Optional[Any] = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.convert_tokens_to_string(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : Tuple = len(_SCREAMING_SNAKE_CASE ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
359
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.0_2 , a__=3 , a__=0.6 , a__=None , ) -> List[Any]: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = mask_ratio snake_case_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> List[str]: '''simple docstring''' snake_case_ = ViTMAEModel(config=a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = ViTMAEForPreTraining(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ ) snake_case_ = (self.image_size // self.patch_size) ** 2 snake_case_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ = 1 snake_case_ = ViTMAEForPreTraining(a__ ) model.to(a__ ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(a__ ) snake_case_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : Any = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase_ : List[Any] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Any = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Dict = False def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = ViTMAEModelTester(self ) snake_case_ = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(a__ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> List[Any]: '''simple docstring''' np.random.seed(2 ) snake_case_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ = torch.from_numpy(a__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ = pt_noise super().check_pt_tf_models(a__ , a__ , a__ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(a__ ) model.to(a__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(a__ , a__ ) ) snake_case_ = outputs[0].cpu().numpy() snake_case_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) snake_case_ = model_class.from_pretrained(a__ ) model.to(a__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(a__ , a__ ) ) # Make sure we don't have nans snake_case_ = after_outputs[0].cpu().numpy() snake_case_ = 0 snake_case_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass @slow def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ViTMAEModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' np.random.seed(2 ) snake_case_ = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(a__ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ = ViTMAEConfig() snake_case_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): snake_case_ = model(**a__ , noise=torch.from_numpy(a__ ).to(device=a__ ) ) # verify the logits snake_case_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , a__ ) snake_case_ = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(a__ ) , atol=1e-4 ) )
400
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart _SCREAMING_SNAKE_CASE : List[str] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } _SCREAMING_SNAKE_CASE : str = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _snake_case ( lowercase_ ): lowerCAmelCase_ : str = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[str] = ["input_ids", "attention_mask"] lowerCAmelCase_ : Dict = BartTokenizer def __init__( self , a__=None , a__=None , a__=None , a__="replace" , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=False , a__=True , **a__ , ) -> Optional[Any]: '''simple docstring''' super().__init__( a__ , a__ , tokenizer_file=a__ , errors=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , trim_offsets=a__ , **a__ , ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a__ ) != add_prefix_space: snake_case_ = getattr(a__ , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**a__ ) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = "post_processor" snake_case_ = getattr(self.backend_tokenizer , a__ , a__ ) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state["sep"] ) if "cls" in state: snake_case_ = tuple(state["cls"] ) snake_case_ = False if state.get("add_prefix_space" , a__ ) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get("trim_offsets" , a__ ) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(a__ , state.pop("type" ) ) snake_case_ = component_class(**a__ ) setattr(self.backend_tokenizer , a__ , a__ ) @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else value snake_case_ = value def lowerCAmelCase__ ( self , *a__ , **a__ ) -> BatchEncoding: '''simple docstring''' snake_case_ = kwargs.get("is_split_into_words" , a__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a__ , **a__ ) def lowerCAmelCase__ ( self , *a__ , **a__ ) -> BatchEncoding: '''simple docstring''' snake_case_ = kwargs.get("is_split_into_words" , a__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*a__ , **a__ ) def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' snake_case_ = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def lowerCAmelCase__ ( self , a__ , a__=None ) -> int: '''simple docstring''' snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
400
1
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase_ : Optional[int] = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) lowerCAmelCase_ : Optional[int] = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } lowerCAmelCase_ : Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase_ : Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase_ : Dict = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } lowerCAmelCase_ : Tuple = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase_ : Any = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) lowerCAmelCase_ : int = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase_ : Union[str, Any] = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) lowerCAmelCase_ : List[str] = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase_ : Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' lowerCAmelCase_ : Optional[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase_ : str = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' lowerCAmelCase_ : Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' lowerCAmelCase_ : List[str] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' lowerCAmelCase_ : str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' lowerCAmelCase_ : Tuple = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' lowerCAmelCase_ : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' lowerCAmelCase_ : int = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' lowerCAmelCase_ : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase_ : Tuple = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' lowerCAmelCase_ : Optional[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' lowerCAmelCase_ : Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' lowerCAmelCase_ : str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase_ : int = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' lowerCAmelCase_ : str = '' lowerCAmelCase_ : List[Any] = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' lowerCAmelCase_ : Optional[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowerCAmelCase_ : str = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[str] ) -> List[str]: assert ReadMe.from_string(lowercase , lowercase ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _lowerCamelCase ( lowercase : Any , lowercase : Optional[int] ) -> Any: with pytest.raises(lowercase , match=re.escape(expected_error.format(path="root" ) ) ): _a = ReadMe.from_string(lowercase , lowercase ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : str ) -> List[str]: with pytest.raises(lowercase , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(lowercase , lowercase ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _lowerCamelCase ( lowercase : List[Any] ) -> Tuple: ReadMe.from_string(lowercase , lowercase , suppress_parsing_errors=lowercase ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _lowerCamelCase ( lowercase : List[str] , lowercase : Union[str, Any] ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: _a = Path(lowercase ) / "README.md" with open(lowercase , "w+" ) as readme_file: readme_file.write(lowercase ) _a = ReadMe.from_readme(lowercase , lowercase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[Any] ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: _a = Path(lowercase ) / "README.md" with open(lowercase , "w+" ) as readme_file: readme_file.write(lowercase ) _a = expected_error.format(path=lowercase ) with pytest.raises(lowercase , match=re.escape(lowercase ) ): _a = ReadMe.from_readme(lowercase , lowercase ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _lowerCamelCase ( lowercase : List[str] , lowercase : List[Any] ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: _a = Path(lowercase ) / "README.md" with open(lowercase , "w+" ) as readme_file: readme_file.write(lowercase ) _a = expected_error.format(path=lowercase ) with pytest.raises(lowercase , match=re.escape(lowercase ) ): ReadMe.from_readme(lowercase , lowercase ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _lowerCamelCase ( lowercase : Union[str, Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: _a = Path(lowercase ) / "README.md" with open(lowercase , "w+" ) as readme_file: readme_file.write(lowercase ) ReadMe.from_readme(lowercase , lowercase , suppress_parsing_errors=lowercase )
521
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( lowercase : str , lowercase : int , lowercase : Any , lowercase : Any ) -> Any: # Initialise PyTorch model _a = FunnelConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) _a = FunnelBaseModel(lowercase ) if base_model else FunnelModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowercase , lowercase , lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
521
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): @slow def lowercase ( self : Dict ): _UpperCAmelCase = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" ) _UpperCAmelCase = { "input_ids": tf.convert_to_tensor([[0, 2_6_4_6, 1_0_2_6_9, 8_3, 9_9_9_4_2, 2]] , dtype=tf.intaa ), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } _UpperCAmelCase = model(snake_case_ )["last_hidden_state"] _UpperCAmelCase = tf.TensorShape((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice. _UpperCAmelCase = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
236
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def UpperCAmelCase_ ( __lowercase : int ) -> Optional[Any]: '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=__lowercase ) _UpperCAmelCase = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__lowercase ) EnvironmentCommand.register_subcommand(__lowercase ) TestCommand.register_subcommand(__lowercase ) RunBeamCommand.register_subcommand(__lowercase ) DummyDataCommand.register_subcommand(__lowercase ) # Parse args _UpperCAmelCase , _UpperCAmelCase = parser.parse_known_args() if not hasattr(__lowercase , "func" ): parser.print_help() exit(1 ) _UpperCAmelCase = parse_unknown_args(__lowercase ) # Run _UpperCAmelCase = args.func(__lowercase , **__lowercase ) service.run() if __name__ == "__main__": main()
236
1
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" , [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] , ) def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): _lowercase: Tuple = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" , "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _lowercase: str = DatasetInfosDict.from_directory(__magic_name__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( "dataset_info" , [ DatasetInfo(), DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=4_2 , ), ] , ) def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): _lowercase: Tuple = str(__magic_name__ ) dataset_info.write_to_directory(__magic_name__ ) _lowercase: List[str] = DatasetInfo.from_directory(__magic_name__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__magic_name__ , "dataset_info.json" ) ) def __lowerCAmelCase ( ): _lowercase: List[str] = DatasetInfo( description="foo" , citation="bar" , homepage="https://foo.bar" , license="CC0" , features=Features({"a": Value("int32" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train", "num_examples": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _lowercase: str = dataset_info._to_yaml_dict() assert sorted(__magic_name__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _lowercase: List[Any] = yaml.safe_dump(__magic_name__ ) _lowercase: Tuple = yaml.safe_load(__magic_name__ ) assert dataset_info_yaml_dict == reloaded def __lowerCAmelCase ( ): _lowercase: List[Any] = DatasetInfo() _lowercase: Union[str, Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" , [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=4_2 , ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=4_2 ), "v2": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): _lowercase: Tuple = str(__magic_name__ ) dataset_infos_dict.write_to_directory(__magic_name__ ) _lowercase: Optional[Any] = DatasetInfosDict.from_directory(__magic_name__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _lowercase: Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _lowercase: Tuple = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__magic_name__ , "README.md" ) )
206
_SCREAMING_SNAKE_CASE : dict[tuple[int, int, int], int] = {} def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowercase: Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowercase: Tuple = _calculate(days - 1 , __magic_name__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowercase: Dict = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowercase: Tuple = _calculate(days - 1 , __magic_name__ , 0 ) _lowercase: List[str] = state_late + state_absent + state_ontime _lowercase: Optional[int] = prizestrings return prizestrings def __lowerCAmelCase ( __magic_name__ = 3_0 ): return _calculate(__magic_name__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
206
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): UpperCamelCase = """encoder-decoder""" UpperCamelCase = True def __init__( self :str , **__snake_case :Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __magic_name__ : List[Any] =kwargs.pop("""encoder""" ) __magic_name__ : int =encoder_config.pop("""model_type""" ) __magic_name__ : Tuple =kwargs.pop("""decoder""" ) __magic_name__ : Dict =decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __magic_name__ : Dict =AutoConfig.for_model(__snake_case , **__snake_case ) __magic_name__ : int =AutoConfig.for_model(__snake_case , **__snake_case ) __magic_name__ : Tuple =True @classmethod def A__ ( cls :Tuple , __snake_case :PretrainedConfig , __snake_case :PretrainedConfig , **__snake_case :List[Any] ): '''simple docstring''' logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) __magic_name__ : List[Any] =True __magic_name__ : Union[str, Any] =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Union[str, Any] =copy.deepcopy(self.__dict__ ) __magic_name__ : str =self.encoder.to_dict() __magic_name__ : str =self.decoder.to_dict() __magic_name__ : int =self.__class__.model_type return output
21
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase__ ( snake_case__ ): def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_: str = 5 # Realm tok UpperCAmelCase_: Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_: int = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(A__ , exist_ok=A__ ) UpperCAmelCase_: Union[str, Any] = os.path.join(A__ , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_: Tuple = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(A__ , exist_ok=A__ ) def snake_case_ ( self ): """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def snake_case_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[Any] = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[int] = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=A__ , ) return block_records def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[Any] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[str] = self.get_config() UpperCAmelCase_: List[str] = self.get_dummy_retriever() UpperCAmelCase_: Optional[int] = retriever.tokenizer UpperCAmelCase_: Tuple = np.array([0, 3] , dtype="long" ) UpperCAmelCase_: Any = tokenizer(["Test question"] ).input_ids UpperCAmelCase_: int = tokenizer( ["the fourth"] , add_special_tokens=A__ , return_token_type_ids=A__ , return_attention_mask=A__ , ).input_ids UpperCAmelCase_: Optional[Any] = config.reader_seq_len UpperCAmelCase_: Any = retriever( A__ , A__ , answer_ids=A__ , max_length=A__ , return_tensors="np" ) self.assertEqual(len(A__ ) , 2 ) self.assertEqual(len(A__ ) , 2 ) self.assertEqual(len(A__ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[Any] = self.get_config() UpperCAmelCase_: Optional[Any] = self.get_dummy_retriever() UpperCAmelCase_: Optional[Any] = retriever.tokenizer UpperCAmelCase_: int = np.array([0, 3, 5] , dtype="long" ) UpperCAmelCase_: Optional[Any] = tokenizer(["Test question"] ).input_ids UpperCAmelCase_: int = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=A__ , return_token_type_ids=A__ , return_attention_mask=A__ , ).input_ids UpperCAmelCase_: Dict = config.reader_seq_len UpperCAmelCase_: Optional[int] = retriever( A__ , A__ , answer_ids=A__ , max_length=A__ , return_tensors="np" ) self.assertEqual([False, True, True] , A__ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A__ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: int = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path UpperCAmelCase_: Optional[int] = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: UpperCAmelCase_: Optional[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase_: str = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
703
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _lowerCAmelCase = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def lowercase ( _a ,_a ,_a ,_a=None ) -> int: # Initialise PyTorch model UpperCAmelCase_: Dict = XLNetConfig.from_json_file(_a ) UpperCAmelCase_: List[Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) UpperCAmelCase_: int = finetuning_task UpperCAmelCase_: List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_: Tuple = XLNetForSequenceClassification(_a ) elif "squad" in finetuning_task: UpperCAmelCase_: Any = finetuning_task UpperCAmelCase_: Tuple = XLNetForQuestionAnswering(_a ) else: UpperCAmelCase_: int = XLNetLMHeadModel(_a ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_a ,_a ,_a ) # Save pytorch-model UpperCAmelCase_: List[Any] = os.path.join(_a ,_a ) UpperCAmelCase_: Union[str, Any] = os.path.join(_a ,_a ) print(f"Save PyTorch model to {os.path.abspath(_a )}" ) torch.save(model.state_dict() ,_a ) print(f"Save configuration file to {os.path.abspath(_a )}" ) with open(_a ,"w" ,encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) _lowerCAmelCase = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
306
0
"""simple docstring""" from __future__ import annotations def _snake_case ( snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[list[str]] , snake_case__ : int , ): A = len(snake_case__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(snake_case__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , snake_case__ , snake_case__ , ) def _snake_case ( snake_case__ : int ): A = [] depth_first_search([] , [] , [] , snake_case__ , snake_case__ ) # Print all the boards for board in boards: for column in board: print(snake_case__ ) print('' ) print(len(snake_case__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
91
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = '''mobilenet_v1''' def __init__( self : Optional[int] ,A_ : Optional[int]=3 ,A_ : Any=224 ,A_ : List[Any]=1.0 ,A_ : Union[str, Any]=8 ,A_ : Union[str, Any]="relu6" ,A_ : Optional[Any]=True ,A_ : List[str]=0.9_99 ,A_ : int=0.02 ,A_ : int=0.0_01 ,**A_ : Union[str, Any] ,) -> Dict: super().__init__(**A_ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) A = num_channels A = image_size A = depth_multiplier A = min_depth A = hidden_act A = tf_padding A = classifier_dropout_prob A = initializer_range A = layer_norm_eps class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> float: return 1e-4
91
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE ={ """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE =[ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE =[ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" __snake_case = [] for line in lines: __snake_case = re.sub(r"#.*" , "" , SCREAMING_SNAKE_CASE ) # remove comments if line: filtered_lines.append(SCREAMING_SNAKE_CASE ) __snake_case = "\n".join(SCREAMING_SNAKE_CASE ) # Make a hash from all this code __snake_case = full_str.encode("utf-8" ) return shaaaa(SCREAMING_SNAKE_CASE ).hexdigest() # get importable module names and hash for caching _SCREAMING_SNAKE_CASE = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _SCREAMING_SNAKE_CASE = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _SCREAMING_SNAKE_CASE = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name _SCREAMING_SNAKE_CASE = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
614
0
"""simple docstring""" def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 _lowerCamelCase : int = 1 _lowerCamelCase : List[Any] = 1 while repunit: _lowerCamelCase : List[str] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCamelCase ( SCREAMING_SNAKE_CASE_ = 100_0000 ) ->int: _lowerCamelCase : int = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(SCREAMING_SNAKE_CASE_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
434
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 SCREAMING_SNAKE_CASE__ : Tuple =sys.version_info >= (3, 10) def UpperCamelCase ( SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) ->Optional[int]: return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = 42 __snake_case = 42 __snake_case = 42 @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = False __snake_case = True __snake_case = None class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """titi""" __snake_case = """toto""" class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """titi""" __snake_case = """toto""" __snake_case = 42 @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = "toto" def a__ ( self ) -> Optional[Any]: _lowerCamelCase : List[Any] = BasicEnum(self.foo ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = "toto" def a__ ( self ) -> Dict: _lowerCamelCase : Union[str, Any] = MixedTypeEnum(self.foo ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = None __snake_case = field(default=a_ , metadata={"""help""": """help message"""} ) __snake_case = None __snake_case = list_field(default=[] ) __snake_case = list_field(default=[] ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = list_field(default=[] ) __snake_case = list_field(default=[1, 2, 3] ) __snake_case = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) __snake_case = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = field() __snake_case = field() __snake_case = field() def a__ ( self ) -> Dict: _lowerCamelCase : str = BasicEnum(self.required_enum ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = field() __snake_case = None __snake_case = field(default="""toto""" , metadata={"""help""": """help message"""} ) __snake_case = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = False __snake_case = True __snake_case = None @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = None __snake_case = field(default=a_ , metadata={"""help""": """help message"""} ) __snake_case = None __snake_case = list_field(default=[] ) __snake_case = list_field(default=[] ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def a__ ( self , _lowercase , _lowercase ) -> Optional[Any]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _lowerCamelCase : List[str] = {k: v for k, v in vars(_lowercase ).items() if k != '''container'''} _lowerCamelCase : str = {k: v for k, v in vars(_lowercase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowercase ) and yy.get('''choices''' , _lowercase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowercase ) , yy['''type'''](_lowercase ) ) del xx["type"], yy["type"] self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> Optional[Any]: _lowerCamelCase : str = HfArgumentParser(_lowercase ) _lowerCamelCase : Dict = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--bar''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--baz''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--flag''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''' ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : str = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((_lowerCamelCase), ) : Union[str, Any] = parser.parse_args_into_dataclasses(_lowercase , look_for_args_file=_lowercase ) self.assertFalse(example.flag ) def a__ ( self ) -> Optional[int]: _lowerCamelCase : Dict = HfArgumentParser(_lowercase ) _lowerCamelCase : List[str] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowercase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowercase , help='''help message''' ) self.argparsersEqual(_lowercase , _lowercase ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowercase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowercase , default=_lowercase ) _lowerCamelCase : Optional[Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase ) for dataclass_type in dataclass_types: _lowerCamelCase : Optional[Any] = HfArgumentParser(_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : List[Any] = parser.parse_args([] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : Dict = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : int = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : Any = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : Union[str, Any] = HfArgumentParser(_lowercase ) _lowerCamelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : Dict = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _lowerCamelCase : int = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _lowerCamelCase : Optional[Any] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _lowerCamelCase : Any = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _lowerCamelCase : str = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) _lowerCamelCase : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def a__ ( self ) -> Dict: @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = "toto" _lowerCamelCase : Dict = HfArgumentParser(_lowercase ) _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _lowerCamelCase : Optional[int] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _lowerCamelCase : Optional[int] = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : int = HfArgumentParser(_lowercase ) _lowerCamelCase : Any = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowercase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowercase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowercase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : int = parser.parse_args([] ) self.assertEqual( _lowercase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) _lowerCamelCase : List[Any] = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowercase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def a__ ( self ) -> Optional[Any]: _lowerCamelCase : str = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowercase , type=_lowercase ) expected.add_argument('''--bar''' , default=_lowercase , type=_lowercase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowercase , type=_lowercase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowercase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowercase ) _lowerCamelCase : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase ) for dataclass_type in dataclass_types: _lowerCamelCase : Union[str, Any] = HfArgumentParser(_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : List[str] = parser.parse_args([] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , bar=_lowercase , baz=_lowercase , ces=[] , des=[] ) ) _lowerCamelCase : List[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowercase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def a__ ( self ) -> Any: _lowerCamelCase : str = HfArgumentParser(_lowercase ) _lowerCamelCase : List[str] = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--required_str''' , type=_lowercase , required=_lowercase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowercase , ) self.argparsersEqual(_lowercase , _lowercase ) def a__ ( self ) -> Dict: _lowerCamelCase : Tuple = HfArgumentParser(_lowercase ) _lowerCamelCase : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , required=_lowercase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowercase , ) expected.add_argument('''--opt''' , type=_lowercase , default=_lowercase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowercase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : List[Any] = HfArgumentParser(_lowercase ) _lowerCamelCase : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } _lowerCamelCase : Optional[int] = parser.parse_dict(_lowercase )[0] _lowerCamelCase : str = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> Optional[int]: _lowerCamelCase : Tuple = HfArgumentParser(_lowercase ) _lowerCamelCase : Dict = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowercase , parser.parse_dict , _lowercase , allow_extra_keys=_lowercase ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : Any = HfArgumentParser(_lowercase ) _lowerCamelCase : Dict = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Union[str, Any] = os.path.join(_lowercase , '''temp_json''' ) os.mkdir(_lowercase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowercase , _lowercase ) _lowerCamelCase : str = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] _lowerCamelCase : Optional[int] = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> Tuple: _lowerCamelCase : int = HfArgumentParser(_lowercase ) _lowerCamelCase : int = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : List[str] = os.path.join(_lowercase , '''temp_yaml''' ) os.mkdir(_lowercase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowercase , _lowercase ) _lowerCamelCase : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] _lowerCamelCase : Tuple = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> str: _lowerCamelCase : List[Any] = HfArgumentParser(_lowercase ) self.assertIsNotNone(_lowercase )
434
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def lowerCamelCase__ ( __lowerCAmelCase : Any ): """simple docstring""" return input_array.reshape((input_array.size, 1) ) def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = np.nan for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase_ = features[:, labels == i] lowerCAmelCase_ = data.mean(1 ) # Centralize the data of class i lowerCAmelCase_ = data - column_reshape(_SCREAMING_SNAKE_CASE ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_SCREAMING_SNAKE_CASE , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase_ = np.dot(_SCREAMING_SNAKE_CASE , centered_data.T ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] ): """simple docstring""" lowerCAmelCase_ = features.mean(1 ) lowerCAmelCase_ = np.nan for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase_ = features[:, labels == i] lowerCAmelCase_ = data.shape[1] lowerCAmelCase_ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_SCREAMING_SNAKE_CASE ) - column_reshape(_SCREAMING_SNAKE_CASE ) , (column_reshape(_SCREAMING_SNAKE_CASE ) - column_reshape(_SCREAMING_SNAKE_CASE )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase_ = device_data * np.dot( column_reshape(_SCREAMING_SNAKE_CASE ) - column_reshape(_SCREAMING_SNAKE_CASE ) , (column_reshape(_SCREAMING_SNAKE_CASE ) - column_reshape(_SCREAMING_SNAKE_CASE )).T , ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): """simple docstring""" if features.any(): lowerCAmelCase_ = features.mean(1 ) # Center the dataset lowerCAmelCase_ = features - np.reshape(_SCREAMING_SNAKE_CASE , (data_mean.size, 1) ) lowerCAmelCase_ = np.dot(_SCREAMING_SNAKE_CASE , centered_data.T ) / features.shape[1] lowerCAmelCase_ , lowerCAmelCase_ = np.linalg.eigh(_SCREAMING_SNAKE_CASE ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCAmelCase_ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCAmelCase_ = np.dot(filtered_eigenvectors.T , _SCREAMING_SNAKE_CASE ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_SCREAMING_SNAKE_CASE ) logging.error("Dataset empty" ) raise AssertionError def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] ): """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: lowerCAmelCase_ , lowerCAmelCase_ = eigh( covariance_between_classes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , covariance_within_classes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) lowerCAmelCase_ = eigenvectors[:, ::-1][:, :dimensions] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = np.linalg.svd(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ = svd_matrix[:, 0:dimensions] lowerCAmelCase_ = np.dot(filtered_svd_matrix.T , _SCREAMING_SNAKE_CASE ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_SCREAMING_SNAKE_CASE ) logging.error("Dataset empty" ) raise AssertionError def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCAmelCase_ = np.array([0, 0, 0, 1, 1] ) lowerCAmelCase_ = 2 lowerCAmelCase_ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_SCREAMING_SNAKE_CASE ) as error_info: lowerCAmelCase_ = linear_discriminant_analysis( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCAmelCase_ = 2 lowerCAmelCase_ = np.array([[6.92_820_323, 8.66_025_404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(_SCREAMING_SNAKE_CASE ) as error_info: lowerCAmelCase_ = principal_component_analysis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
279
0