code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Union[str, Any] = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] A : Optional[int] = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] SCREAMING_SNAKE_CASE__ = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
267
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = 10 snake_case_ = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) snake_case_ = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(UpperCamelCase__ ) ), } , features=UpperCamelCase__ , ) return dataset @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=UpperCamelCase__ ) return filename # FILE_CONTENT + files _UpperCAmelCase : List[str] = """\ Text data. Second line of data.""" @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt' snake_case_ = FILE_CONTENT with open(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ ) return filename @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' import bza snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' snake_case_ = bytes(UpperCamelCase__ , 'utf-8' ) with bza.open(UpperCamelCase__ , 'wb' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' import gzip snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) snake_case_ = bytes(UpperCamelCase__ , 'utf-8' ) with gzip.open(UpperCamelCase__ , 'wb' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' snake_case_ = bytes(UpperCamelCase__ , 'utf-8' ) with lza.frame.open(UpperCamelCase__ , 'wb' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(UpperCamelCase__ , 'w' ) as archive: archive.write(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' import tarfile snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(UpperCamelCase__ , 'w' ) as f: f.add(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' import lzma snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' snake_case_ = bytes(UpperCamelCase__ , 'utf-8' ) with lzma.open(UpperCamelCase__ , 'wb' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' import zipfile snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' snake_case_ = bytes(UpperCamelCase__ , 'utf-8' ) with zstd.open(UpperCamelCase__ , 'wb' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'file.xml' snake_case_ = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ ) return filename _UpperCAmelCase : Union[str, Any] = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] _UpperCAmelCase : List[Any] = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] _UpperCAmelCase : Tuple = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } _UpperCAmelCase : List[Any] = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] _UpperCAmelCase : Dict = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope='session' ) def __lowerCamelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = datasets.Dataset.from_dict(UpperCamelCase__ ) snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(UpperCamelCase__ ) ) as con: snake_case_ = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(UpperCamelCase__ , 'w' , newline='' ) as f: snake_case_ = csv.DictWriter(UpperCamelCase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(UpperCamelCase__ , 'w' , newline='' ) as f: snake_case_ = csv.DictWriter(UpperCamelCase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' import bza snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(UpperCamelCase__ , 'rb' ) as f: snake_case_ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(UpperCamelCase__ , 'wb' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) f.write(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(UpperCamelCase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase__ ) ) ) f.write(UpperCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase__ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) snake_case_ = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(UpperCamelCase__ , 'wb' ) as f: snake_case_ = pq.ParquetWriter(UpperCamelCase__ , schema=UpperCamelCase__ ) snake_case_ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(UpperCamelCase__ ) )] for k in DATA[0]} , schema=UpperCamelCase__ ) writer.write_table(UpperCamelCase__ ) writer.close() return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) snake_case_ = {'data': DATA} with open(UpperCamelCase__ , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) snake_case_ = {'data': DATA_DICT_OF_LISTS} with open(UpperCamelCase__ , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(UpperCamelCase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(UpperCamelCase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(UpperCamelCase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(UpperCamelCase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(UpperCamelCase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(UpperCamelCase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(UpperCamelCase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(UpperCamelCase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' import gzip snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(UpperCamelCase__ , 'rb' ) as orig_file: with gzip.open(UpperCamelCase__ , 'wb' ) as zipped_file: zipped_file.writelines(UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' import gzip snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(UpperCamelCase__ , 'rb' ) as orig_file: with gzip.open(UpperCamelCase__ , 'wb' ) as zipped_file: zipped_file.writelines(UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) f.write(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ , arcname=os.path.join('nested' , os.path.basename(UpperCamelCase__ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase__ ) ) ) f.write(UpperCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase__ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(UpperCamelCase__ , 'w' ) as f: f.add(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) f.add(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(UpperCamelCase__ , 'w' ) as f: f.add(UpperCamelCase__ , arcname=os.path.join('nested' , os.path.basename(UpperCamelCase__ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = ['0', '1', '2', '3'] snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(UpperCamelCase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = ['0', '1', '2', '3'] snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(UpperCamelCase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = ['0', '1', '2', '3'] snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(UpperCamelCase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) f.write(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase__ ) ) ) f.write(UpperCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase__ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(UpperCamelCase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) snake_case_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def __lowerCamelCase ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ) ) f.write(UpperCamelCase__ , arcname=os.path.basename(UpperCamelCase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
108
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=1 / 255 , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , snake_case=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case_ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = do_pad def a ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a ( self , snake_case , snake_case=False ): if not batched: snake_case_ = image_inputs[0] if isinstance(snake_case , Image.Image ): snake_case_ , snake_case_ = image.size else: snake_case_ , snake_case_ = image.shape[1], image.shape[2] if w < h: snake_case_ = int(self.size['shortest_edge'] * h / w ) snake_case_ = self.size['shortest_edge'] elif w > h: snake_case_ = self.size['shortest_edge'] snake_case_ = int(self.size['shortest_edge'] * w / h ) else: snake_case_ = self.size['shortest_edge'] snake_case_ = self.size['shortest_edge'] else: snake_case_ = [] for image in image_inputs: snake_case_ , snake_case_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ = max(snake_case , key=lambda snake_case : item[0] )[0] snake_case_ = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = DetrImageProcessor if is_vision_available() else None def a ( self ): snake_case_ = DetrImageProcessingTester(self ) @property def a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a ( self ): snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_rescale' ) ) self.assertTrue(hasattr(snake_case , 'rescale_factor' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'do_pad' ) ) def a ( self ): snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , snake_case ) snake_case_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , snake_case ) def a ( self ): pass def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a ( self ): # prepare image and target snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'image_id': 3_9769, 'annotations': target} # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) ) @slow def a ( self ): # prepare image, target and masks_path snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} snake_case_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , masks_path=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify masks snake_case_ = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , snake_case ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) )
108
1
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[float, float]: # Check if the input is valid if not len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _lowercase , _lowercase , _lowercase : Tuple = equationa _lowercase , _lowercase , _lowercase : Dict = equationa # Calculate the determinants of the matrices _lowercase : str = aa * ba - aa * ba _lowercase : Any = ca * ba - ca * ba _lowercase : Optional[int] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _lowercase : Union[str, Any] = determinant_x / determinant _lowercase : Tuple = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
66
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 50 ): '''simple docstring''' snake_case: Dict = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
329
0
"""simple docstring""" import math def __lowercase ( a : int ) -> bool: return math.sqrt(a ) * math.sqrt(a ) == num def __lowercase ( a : int ) -> bool: __snake_case : int =0 __snake_case : List[str] =n while left <= right: __snake_case : Tuple =(left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __snake_case : int =mid - 1 else: __snake_case : Tuple =mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
497
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __lowercase ( a : Any , a : List[Any] ) -> Dict: __snake_case : Any =checkpoint __snake_case : Dict ={} __snake_case : List[Any] =vae_state_dict['''encoder.conv_in.weight'''] __snake_case : List[str] =vae_state_dict['''encoder.conv_in.bias'''] __snake_case : Union[str, Any] =vae_state_dict['''encoder.conv_out.weight'''] __snake_case : Union[str, Any] =vae_state_dict['''encoder.conv_out.bias'''] __snake_case : str =vae_state_dict['''encoder.norm_out.weight'''] __snake_case : str =vae_state_dict['''encoder.norm_out.bias'''] __snake_case : Tuple =vae_state_dict['''decoder.conv_in.weight'''] __snake_case : str =vae_state_dict['''decoder.conv_in.bias'''] __snake_case : List[str] =vae_state_dict['''decoder.conv_out.weight'''] __snake_case : Tuple =vae_state_dict['''decoder.conv_out.bias'''] __snake_case : Union[str, Any] =vae_state_dict['''decoder.norm_out.weight'''] __snake_case : List[str] =vae_state_dict['''decoder.norm_out.bias'''] __snake_case : Tuple =vae_state_dict['''quant_conv.weight'''] __snake_case : List[str] =vae_state_dict['''quant_conv.bias'''] __snake_case : Optional[int] =vae_state_dict['''post_quant_conv.weight'''] __snake_case : Tuple =vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only __snake_case : Union[str, Any] =len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) __snake_case : Union[str, Any] ={ layer_id: [key for key in vae_state_dict if f'''down.{layer_id}''' in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only __snake_case : List[Any] =len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) __snake_case : List[Any] ={ layer_id: [key for key in vae_state_dict if f'''up.{layer_id}''' in key] for layer_id in range(a ) } for i in range(a ): __snake_case : Any =[key for key in down_blocks[i] if f'''down.{i}''' in key and f'''down.{i}.downsample''' not in key] if f'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: __snake_case : Optional[Any] =vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.weight''' ) __snake_case : Optional[int] =vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.bias''' ) __snake_case : Optional[Any] =renew_vae_resnet_paths(a ) __snake_case : Union[str, Any] ={'''old''': f'''down.{i}.block''', '''new''': f'''down_blocks.{i}.resnets'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Tuple =[key for key in vae_state_dict if '''encoder.mid.block''' in key] __snake_case : Any =2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case : Tuple =[key for key in mid_resnets if f'''encoder.mid.block_{i}''' in key] __snake_case : List[str] =renew_vae_resnet_paths(a ) __snake_case : List[str] ={'''old''': f'''mid.block_{i}''', '''new''': f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : int =[key for key in vae_state_dict if '''encoder.mid.attn''' in key] __snake_case : List[Any] =renew_vae_attention_paths(a ) __snake_case : Union[str, Any] ={'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): __snake_case : List[Any] =num_up_blocks - 1 - i __snake_case : Dict =[ key for key in up_blocks[block_id] if f'''up.{block_id}''' in key and f'''up.{block_id}.upsample''' not in key ] if f'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: __snake_case : int =vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.weight''' ] __snake_case : Optional[Any] =vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.bias''' ] __snake_case : List[str] =renew_vae_resnet_paths(a ) __snake_case : int ={'''old''': f'''up.{block_id}.block''', '''new''': f'''up_blocks.{i}.resnets'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Any =[key for key in vae_state_dict if '''decoder.mid.block''' in key] __snake_case : Dict =2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case : Dict =[key for key in mid_resnets if f'''decoder.mid.block_{i}''' in key] __snake_case : Tuple =renew_vae_resnet_paths(a ) __snake_case : Tuple ={'''old''': f'''mid.block_{i}''', '''new''': f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Optional[Any] =[key for key in vae_state_dict if '''decoder.mid.attn''' in key] __snake_case : Dict =renew_vae_attention_paths(a ) __snake_case : List[str] ={'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def __lowercase ( a : str , a : str , ) -> Optional[int]: # Only support V1 __snake_case : Union[str, Any] =requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) __snake_case : Union[str, Any] =io.BytesIO(r.content ) __snake_case : Any =OmegaConf.load(a ) __snake_case : Union[str, Any] =512 __snake_case : List[str] ='''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open __snake_case : Any ={} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): __snake_case : Optional[int] =f.get_tensor(a ) else: __snake_case : Optional[int] =torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. __snake_case : Dict =create_vae_diffusers_config(a , image_size=a ) __snake_case : Union[str, Any] =custom_convert_ldm_vae_checkpoint(a , a ) __snake_case : str =AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") UpperCamelCase_ : Optional[Any] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
497
1
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _UpperCAmelCase : Tuple = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _UpperCAmelCase : Optional[int] = [ord(letter) for letter in string.ascii_lowercase] _UpperCAmelCase : List[Any] = {ord(char) for char in VALID_CHARS} _UpperCAmelCase : Dict = ['''the''', '''be''', '''to''', '''of''', '''and''', '''in''', '''that''', '''have'''] def UpperCamelCase ( lowercase_ : List[str] , lowercase_ : str ) -> str | None: '''simple docstring''' lowercase ="" lowercase =42 lowercase =42 lowercase =42 for keychar, cipherchar in zip(cycle(lowercase_ ) , lowercase_ ): lowercase =cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def UpperCamelCase ( lowercase_ : Tuple ) -> list[str]: '''simple docstring''' lowercase =[] for key in product(lowercase_ , repeat=3 ): lowercase =try_key(lowercase_ , lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def UpperCamelCase ( lowercase_ : Optional[int] , lowercase_ : Optional[int] ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def UpperCamelCase ( lowercase_ : Union[str, Any] = "p059_cipher.txt" ) -> int: '''simple docstring''' lowercase =42 lowercase =42 lowercase =42 lowercase =42 lowercase =Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding='''utf-8''' ) lowercase =[int(lowercase_ ) for number in data.strip().split(''',''' )] lowercase =filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: lowercase =filter_common_word(lowercase_ , lowercase_ ) if len(lowercase_ ) == 1: break lowercase =possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
72
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[Any] = torch.nn.Linear(1_0 , 1_0 ) _lowercase : Any = torch.optim.SGD(model.parameters() , 0.1 ) _lowercase : str = Accelerator() _lowercase : Any = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
66
0
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_( lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : List[str] ) -> Optional[int]: # Initialise PyTorch model _lowerCamelCase = MobileBertConfig.from_json_file(lowercase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) _lowerCamelCase = MobileBertForPreTraining(lowercase_ ) # Load weights from tf checkpoint _lowerCamelCase = load_tf_weights_in_mobilebert(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
623
"""simple docstring""" import numpy as np def lowerCAmelCase_( lowercase_ : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_( lowercase_ : np.array ) -> np.array: return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
623
1
import datasets from .evaluate import evaluate a_ = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" a_ = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" a_ = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def __UpperCamelCase ( self : Any , a : Dict , a : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} SCREAMING_SNAKE_CASE : Dict = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Any = evaluate(dataset=snake_case_ , predictions=snake_case_ ) return score
25
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0
def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->float: """simple docstring""" if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
721
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowercase_ = True except (ImportError, AttributeError): lowercase_ = object def lowerCAmelCase ( *UpperCAmelCase, **UpperCAmelCase ) ->Any: """simple docstring""" pass lowercase_ = False lowercase_ = logging.get_logger('''transformers-cli/serving''') def lowerCAmelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" __magic_name__ : Optional[int] = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(UpperCAmelCase, args.host, args.port, args.workers ) class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : dict class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : List[str] lowerCamelCase__ : Optional[List[int]] class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : str class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Any class A__ ( __SCREAMING_SNAKE_CASE ): @staticmethod def lowercase ( lowerCamelCase ) -> Dict: """simple docstring""" __magic_name__ : int = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=lowerCamelCase , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=lowerCamelCase , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=lowerCamelCase , default=8888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=lowerCamelCase , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=lowerCamelCase , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=lowerCamelCase , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=lowerCamelCase , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=lowerCamelCase , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=lowerCamelCase ) def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" __magic_name__ : List[str] = pipeline __magic_name__ : Union[str, Any] = host __magic_name__ : int = port __magic_name__ : Optional[int] = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F'''Serving model over {host}:{port}''' ) __magic_name__ : int = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), ] , timeout=600 , ) def lowercase ( self ) -> Dict: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowercase ( self ) -> str: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowercase ( self , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) ) -> Any: """simple docstring""" try: __magic_name__ : List[str] = self._pipeline.tokenizer.tokenize(lowerCamelCase ) if return_ids: __magic_name__ : int = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCamelCase ) return ServeTokenizeResult(tokens=lowerCamelCase , tokens_ids=lowerCamelCase ) else: return ServeTokenizeResult(tokens=lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCamelCase )} ) def lowercase ( self , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , ) -> Any: """simple docstring""" try: __magic_name__ : Any = self._pipeline.tokenizer.decode(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return ServeDeTokenizeResult(model='''''' , text=lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCamelCase )} ) async def lowercase ( self , lowerCamelCase=Body(lowerCamelCase , embed=lowerCamelCase ) ) -> Optional[int]: """simple docstring""" if len(lowerCamelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __magic_name__ : Optional[int] = self._pipeline(lowerCamelCase ) return ServeForwardResult(output=lowerCamelCase ) except Exception as e: raise HTTPException(500 , {'''error''': str(lowerCamelCase )} )
336
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class UpperCAmelCase : def __init__( self : List[str] , __magic_name__ : str , __magic_name__ : Tuple=1_3 , __magic_name__ : Optional[int]=7 , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=True , __magic_name__ : Optional[int]=9_9 , __magic_name__ : int=3_2 , __magic_name__ : Optional[Any]=5 , __magic_name__ : List[str]=4 , __magic_name__ : List[Any]=4 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : int=0.0 , __magic_name__ : Dict=0.1 , __magic_name__ : Tuple=True , __magic_name__ : Any=5_1_2 , __magic_name__ : List[str]=1_6 , __magic_name__ : Any=2 , __magic_name__ : List[Any]=0.02 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_multiple_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = weight_tying UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase = True return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self : List[Any] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = GPTNeoXJapaneseModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCamelCase = model(__magic_name__ , attention_mask=__magic_name__ ) UpperCamelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : int ): """simple docstring""" UpperCamelCase = True UpperCamelCase = GPTNeoXJapaneseModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCamelCase = model(__magic_name__ , attention_mask=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" UpperCamelCase = GPTNeoXJapaneseForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCamelCase = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Dict , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : int ): """simple docstring""" UpperCamelCase = True UpperCamelCase = GPTNeoXJapaneseForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # first forward pass UpperCamelCase = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase = model(__magic_name__ , attention_mask=__magic_name__ , output_hidden_states=__magic_name__ ) UpperCamelCase = output_from_no_past["""hidden_states"""][0] UpperCamelCase = model( __magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ , output_hidden_states=__magic_name__ , )["""hidden_states"""][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): lowercase = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowercase = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowercase = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = GPTNeoXJapaneseModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=__magic_name__ , hidden_size=3_7 ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__magic_name__ , __magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase = None self.model_tester.create_and_check_model_as_decoder(__magic_name__ , __magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__magic_name__ , __magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__magic_name__ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase = GPTNeoXJapaneseTokenizer.from_pretrained(__magic_name__ ) UpperCamelCase = GPTNeoXJapaneseForCausalLM.from_pretrained(__magic_name__ ) UpperCamelCase = [] for prompt in prompts: UpperCamelCase = tokenizer(__magic_name__ , return_tensors="""pt""" ).input_ids UpperCamelCase = model.generate(__magic_name__ , max_length=5_0 ) UpperCamelCase = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) predicted_outputs += generated_string self.assertListEqual(__magic_name__ , __magic_name__ )
386
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __snake_case = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def _lowercase ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _lowercase ( SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase = _TestCommandArgs(dataset=SCREAMING_SNAKE_CASE_ , all_configs=SCREAMING_SNAKE_CASE_ , save_infos=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = TestCommand(*SCREAMING_SNAKE_CASE_ ) test_command.run() UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , """README.md""" ) assert os.path.exists(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_351_563, """num_examples""": 10_000, }, { """name""": """validation""", """num_bytes""": 238_418, """num_examples""": 1_000, }, ] , download_size=3_940_680 , dataset_size=2_589_981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCamelCase , UpperCamelCase = getattr(dataset_infos["""default"""] , SCREAMING_SNAKE_CASE_ ), getattr(expected_dataset_infos["""default"""] , SCREAMING_SNAKE_CASE_ ) if key == "num_bytes": assert is_apercent_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif key == "splits": assert list(SCREAMING_SNAKE_CASE_ ) == list(SCREAMING_SNAKE_CASE_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
386
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _A ( unittest.TestCase ): @property def a ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def a ( self : Tuple ): """simple docstring""" __UpperCamelCase : str = self.dummy_uncond_unet __UpperCamelCase : Optional[int] = KarrasVeScheduler() __UpperCamelCase : List[str] = KarrasVePipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : List[str] = torch.manual_seed(0 ) __UpperCamelCase : Any = pipe(num_inference_steps=2 , generator=lowerCamelCase__ , output_type="""numpy""" ).images __UpperCamelCase : Tuple = torch.manual_seed(0 ) __UpperCamelCase : int = pipe(num_inference_steps=2 , generator=lowerCamelCase__ , output_type="""numpy""" , return_dict=lowerCamelCase__ )[0] __UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] __UpperCamelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _A ( unittest.TestCase ): def a ( self : Optional[Any] ): """simple docstring""" __UpperCamelCase : Union[str, Any] = """google/ncsnpp-celebahq-256""" __UpperCamelCase : Any = UNetaDModel.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] = KarrasVeScheduler() __UpperCamelCase : Dict = KarrasVePipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Tuple = torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] = pipe(num_inference_steps=20 , generator=lowerCamelCase__ , output_type="""numpy""" ).images __UpperCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __UpperCamelCase : List[str] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
515
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
515
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a (unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCamelCase : Any , lowerCamelCase : int=7 , lowerCamelCase : str=3 , lowerCamelCase : Optional[int]=30 , lowerCamelCase : Dict=400 , lowerCamelCase : str=True , lowerCamelCase : str=None , lowerCamelCase : Any=True , lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[int]=1 / 255 , lowerCamelCase : Any=True , ) -> str: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __snake_case : Optional[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} __snake_case : Optional[Any] = parent __snake_case : List[Any] = batch_size __snake_case : Optional[int] = num_channels __snake_case : str = min_resolution __snake_case : int = max_resolution __snake_case : int = do_resize __snake_case : Tuple = size __snake_case : Any = do_normalize __snake_case : int = image_mean __snake_case : Tuple = image_std __snake_case : Dict = do_rescale __snake_case : Optional[Any] = rescale_factor __snake_case : str = do_pad def __snake_case ( self : Any ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __snake_case ( self : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=False ) -> List[str]: if not batched: __snake_case : Dict = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): __snake_case , __snake_case : Dict = image.size else: __snake_case , __snake_case : List[str] = image.shape[1], image.shape[2] if w < h: __snake_case : Optional[int] = int(self.size["shortest_edge"] * h / w ) __snake_case : int = self.size["shortest_edge"] elif w > h: __snake_case : List[str] = self.size["shortest_edge"] __snake_case : Optional[Any] = int(self.size["shortest_edge"] * w / h ) else: __snake_case : List[Any] = self.size["shortest_edge"] __snake_case : Any = self.size["shortest_edge"] else: __snake_case : int = [] for image in image_inputs: __snake_case , __snake_case : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : str = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] __snake_case : str = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ConditionalDetrImageProcessor if is_vision_available() else None def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : Optional[Any] = ConditionalDetrImageProcessingTester(self ) @property def __snake_case ( self : Any ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[Any] ) -> Optional[int]: __snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def __snake_case ( self : Any ) -> Dict: __snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) __snake_case : str = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Dict: pass def __snake_case ( self : Tuple ) -> str: # Initialize image_processing __snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case , __snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) __snake_case : Dict = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : int ) -> str: # Initialize image_processing __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : List[Any] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : int ) -> List[str]: # Initialize image_processing __snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : List[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : int = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __snake_case ( self : Any ) -> Optional[int]: # prepare image and target __snake_case : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __snake_case : str = json.loads(f.read() ) __snake_case : List[Any] = {"image_id": 39769, "annotations": target} # encode them __snake_case : List[str] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) __snake_case : List[str] = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="pt" ) # verify pixel values __snake_case : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __snake_case : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area __snake_case : List[Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __snake_case : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __snake_case : List[Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id __snake_case : Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __snake_case : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __snake_case : Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify orig_size __snake_case : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __snake_case : Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) ) @slow def __snake_case ( self : str ) -> Tuple: # prepare image, target and masks_path __snake_case : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __snake_case : str = json.loads(f.read() ) __snake_case : str = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} __snake_case : Optional[int] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __snake_case : int = ConditionalDetrImageProcessor(format="coco_panoptic" ) __snake_case : str = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="pt" ) # verify pixel values __snake_case : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __snake_case : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area __snake_case : Any = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __snake_case : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __snake_case : Optional[Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id __snake_case : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __snake_case : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __snake_case : int = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify masks __snake_case : List[Any] = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase ) # verify orig_size __snake_case : List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __snake_case : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) )
81
class a : """simple docstring""" def __init__( self : Tuple , lowerCamelCase : list ) -> None: __snake_case : str = set_counts __snake_case : Union[str, Any] = max(lowerCamelCase ) __snake_case : List[Any] = len(lowerCamelCase ) __snake_case : Tuple = [1] * num_sets __snake_case : Dict = list(range(lowerCamelCase ) ) def __snake_case ( self : str , lowerCamelCase : int , lowerCamelCase : int ) -> bool: __snake_case : List[Any] = self.get_parent(lowerCamelCase ) __snake_case : Tuple = self.get_parent(lowerCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __snake_case : List[str] = 0 __snake_case : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __snake_case : Dict = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = src_parent __snake_case : Tuple = self.set_counts[src_parent] __snake_case : str = max(self.max_set , lowerCamelCase ) return True def __snake_case ( self : int , lowerCamelCase : int ) -> int: if self.parents[disj_set] == disj_set: return disj_set __snake_case : Optional[int] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
81
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract snake_case__ : Dict = logging.get_logger(__name__) def __lowerCamelCase ( A__ : List[Any] , A__ : List[Any] , A__ : Dict ) -> Tuple: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __lowerCamelCase ( A__ : np.ndarray , A__ : Optional[str] , A__ : Optional[str] = None ) -> List[str]: lowerCamelCase_ : str = tesseract_config if tesseract_config is not None else """""" # apply OCR lowerCamelCase_ : Optional[Any] = to_pil_image(A__ ) lowerCamelCase_, lowerCamelCase_ : int = pil_image.size lowerCamelCase_ : str = pytesseract.image_to_data(A__ , lang=A__ , output_type="""dict""" , config=A__ ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Any = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates lowerCamelCase_ : Any = [idx for idx, word in enumerate(A__ ) if not word.strip()] lowerCamelCase_ : int = [word for idx, word in enumerate(A__ ) if idx not in irrelevant_indices] lowerCamelCase_ : Union[str, Any] = [coord for idx, coord in enumerate(A__ ) if idx not in irrelevant_indices] lowerCamelCase_ : int = [coord for idx, coord in enumerate(A__ ) if idx not in irrelevant_indices] lowerCamelCase_ : List[Any] = [coord for idx, coord in enumerate(A__ ) if idx not in irrelevant_indices] lowerCamelCase_ : Optional[Any] = [coord for idx, coord in enumerate(A__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCamelCase_ : List[Any] = [] for x, y, w, h in zip(A__ , A__ , A__ , A__ ): lowerCamelCase_ : List[Any] = [x, y, x + w, y + h] actual_boxes.append(A__ ) # finally, normalize the bounding boxes lowerCamelCase_ : Tuple = [] for box in actual_boxes: normalized_boxes.append(normalize_box(A__ , A__ , A__ ) ) assert len(A__ ) == len(A__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = ["pixel_values"] def __init__( self : Optional[int] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Optional[str] = None , __a : Optional[str] = "" , **__a : Tuple , ) ->None: super().__init__(**__a ) lowerCamelCase_ : Union[str, Any] = size if size is not None else {"""height""": 224, """width""": 224} lowerCamelCase_ : Any = get_size_dict(__a ) lowerCamelCase_ : Optional[Any] = do_resize lowerCamelCase_ : List[Any] = size lowerCamelCase_ : str = resample lowerCamelCase_ : Union[str, Any] = apply_ocr lowerCamelCase_ : Dict = ocr_lang lowerCamelCase_ : Optional[int] = tesseract_config def _lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) ->np.ndarray: lowerCamelCase_ : Union[str, Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCamelCase_ : Optional[Any] = (size["""height"""], size["""width"""]) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def _lowerCAmelCase ( self : Union[str, Any] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Optional[str] = None , __a : Optional[str] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : Optional[Any] , ) ->PIL.Image.Image: lowerCamelCase_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ : List[Any] = size if size is not None else self.size lowerCamelCase_ : int = get_size_dict(__a ) lowerCamelCase_ : Optional[Any] = resample if resample is not None else self.resample lowerCamelCase_ : Any = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCamelCase_ : Tuple = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCamelCase_ : Optional[int] = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCamelCase_ : Tuple = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. lowerCamelCase_ : List[Any] = [to_numpy_array(__a ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : str = [] for image in images: lowerCamelCase_, lowerCamelCase_ : str = apply_tesseract(__a , __a , __a ) words_batch.append(__a ) boxes_batch.append(__a ) if do_resize: lowerCamelCase_ : Tuple = [self.resize(image=__a , size=__a , resample=__a ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowerCamelCase_ : Dict = [flip_channel_order(__a ) for image in images] lowerCamelCase_ : Optional[Any] = [to_channel_dimension_format(__a , __a ) for image in images] lowerCamelCase_ : Union[str, Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=__a ) if apply_ocr: lowerCamelCase_ : str = words_batch lowerCamelCase_ : Union[str, Any] = boxes_batch return data
171
import logging import os import threading import time try: import warnings except ImportError: snake_case__ : Dict = None try: import msvcrt except ImportError: snake_case__ : Any = None try: import fcntl except ImportError: snake_case__ : int = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: snake_case__ : Optional[int] = OSError # Data # ------------------------------------------------ snake_case__ : Tuple = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] snake_case__ : Union[str, Any] = '3.0.12' snake_case__ : List[Any] = None def __lowerCamelCase ( ) -> Dict: global _logger lowerCamelCase_ : Dict = _logger or logging.getLogger(__name__ ) return _logger class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' def __init__( self : List[str] , __a : Union[str, Any] ) ->Tuple: lowerCamelCase_ : int = lock_file return None def __str__( self : Optional[int] ) ->Optional[Any]: lowerCamelCase_ : Optional[int] = F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : int , __a : Any ) ->Optional[Any]: lowerCamelCase_ : Union[str, Any] = lock return None def __enter__( self : List[Any] ) ->Union[str, Any]: return self.lock def __exit__( self : Optional[Any] , __a : int , __a : str , __a : str ) ->str: self.lock.release() return None class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Optional[Any] , __a : Union[str, Any] , __a : Optional[int]=-1 , __a : List[str]=None ) ->Optional[Any]: lowerCamelCase_ : str = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowerCamelCase_ : Optional[Any] = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. lowerCamelCase_ : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowerCamelCase_ : List[Any] = None # The default timeout value. lowerCamelCase_ : List[str] = timeout # We use this lock primarily for the lock counter. lowerCamelCase_ : str = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowerCamelCase_ : List[Any] = 0 return None @property def _lowerCAmelCase ( self : int ) ->str: return self._lock_file @property def _lowerCAmelCase ( self : List[Any] ) ->int: return self._timeout @timeout.setter def _lowerCAmelCase ( self : str , __a : Any ) ->Dict: lowerCamelCase_ : Dict = float(__a ) return None def _lowerCAmelCase ( self : str ) ->Tuple: raise NotImplementedError() def _lowerCAmelCase ( self : str ) ->List[Any]: raise NotImplementedError() @property def _lowerCAmelCase ( self : Optional[Any] ) ->Tuple: return self._lock_file_fd is not None def _lowerCAmelCase ( self : List[str] , __a : Union[str, Any]=None , __a : Dict=0.05 ) ->List[Any]: # Use the default timeout, if no timeout is provided. if timeout is None: lowerCamelCase_ : str = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowerCamelCase_ : List[Any] = id(self ) lowerCamelCase_ : List[Any] = self._lock_file lowerCamelCase_ : Union[str, Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowerCamelCase_ : Any = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _lowerCAmelCase ( self : str , __a : Dict=False ) ->Union[str, Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowerCamelCase_ : Optional[int] = id(self ) lowerCamelCase_ : Union[str, Any] = self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() lowerCamelCase_ : int = 0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self : List[Any] ) ->Tuple: self.acquire() return self def __exit__( self : List[Any] , __a : str , __a : Dict , __a : Dict ) ->Optional[Any]: self.release() return None def __del__( self : Optional[Any] ) ->Tuple: self.release(force=__a ) return None def _lowerCAmelCase ( self : Tuple , __a : str , __a : int ) ->str: lowerCamelCase_ : Optional[int] = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: lowerCamelCase_ : List[Any] = os.path.dirname(__a ) lowerCamelCase_ : str = str(hash(__a ) ) lowerCamelCase_ : Any = filename[: max_length - len(__a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__a , __a ) else: return path class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' def __init__( self : Tuple , __a : str , __a : Union[str, Any]=-1 , __a : Optional[Any]=None ) ->int: from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) lowerCamelCase_ : Tuple = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def _lowerCAmelCase ( self : Tuple ) ->List[str]: lowerCamelCase_ : Tuple = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowerCamelCase_ : Optional[Any] = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: lowerCamelCase_ : str = fd return None def _lowerCAmelCase ( self : str ) ->int: lowerCamelCase_ : Dict = self._lock_file_fd lowerCamelCase_ : List[str] = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' def __init__( self : Tuple , __a : Tuple , __a : List[str]=-1 , __a : Dict=None ) ->Union[str, Any]: lowerCamelCase_ : Dict = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def _lowerCAmelCase ( self : str ) ->str: lowerCamelCase_ : Any = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowerCamelCase_ : Dict = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: lowerCamelCase_ : Optional[Any] = fd return None def _lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition lowerCamelCase_ : Any = self._lock_file_fd lowerCamelCase_ : Tuple = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' def _lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: lowerCamelCase_ : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowerCamelCase_ : Any = os.open(self._lock_file , __a ) except OSError: pass else: lowerCamelCase_ : List[str] = fd return None def _lowerCAmelCase ( self : Optional[Any] ) ->List[str]: os.close(self._lock_file_fd ) lowerCamelCase_ : List[str] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None snake_case__ : List[str] = None if msvcrt: snake_case__ : Optional[Any] = WindowsFileLock elif fcntl: snake_case__ : Union[str, Any] = UnixFileLock else: snake_case__ : Dict = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
171
1
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home SCREAMING_SNAKE_CASE = HUGGINGFACE_HUB_CACHE SCREAMING_SNAKE_CASE = 'config.json' SCREAMING_SNAKE_CASE = 'diffusion_pytorch_model.bin' SCREAMING_SNAKE_CASE = 'diffusion_flax_model.msgpack' SCREAMING_SNAKE_CASE = 'model.onnx' SCREAMING_SNAKE_CASE = 'diffusion_pytorch_model.safetensors' SCREAMING_SNAKE_CASE = 'weights.pb' SCREAMING_SNAKE_CASE = 'https://huggingface.co' SCREAMING_SNAKE_CASE = default_cache_path SCREAMING_SNAKE_CASE = 'diffusers_modules' SCREAMING_SNAKE_CASE = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) SCREAMING_SNAKE_CASE = ['fp16', 'non-ema'] SCREAMING_SNAKE_CASE = '.self_attn'
94
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } A_ = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } A_ = {"facebook/blenderbot_small-90M": 512} def __UpperCAmelCase ( UpperCAmelCase )-> Tuple: """simple docstring""" lowercase = set() lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase = char lowercase = set(UpperCAmelCase ) return pairs class __lowercase ( _A ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]="__start__" , __lowerCamelCase : List[str]="__end__" , __lowerCamelCase : List[str]="__unk__" , __lowerCamelCase : Optional[int]="__null__" , **__lowerCamelCase : List[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , **__lowerCamelCase ) with open(__lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: lowercase = json.load(__lowerCamelCase ) lowercase = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding='''utf-8''' ) as merges_handle: lowercase = merges_handle.read().split('''\n''' )[1:-1] lowercase = [tuple(merge.split() ) for merge in merges] lowercase = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowercase = {} @property def __a ( self : int ) -> int: '''simple docstring''' return len(self.encoder ) def __a ( self : Any ) -> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Optional[int] , __lowerCamelCase : str ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase = re.sub('''([.,!?()])''' , r''' \1''' , __lowerCamelCase ) lowercase = re.sub('''(\')''' , r''' \1 ''' , __lowerCamelCase ) lowercase = re.sub(r'''\s{2,}''' , ''' ''' , __lowerCamelCase ) if "\n" in token: lowercase = token.replace('''\n''' , ''' __newln__''' ) lowercase = token.split(''' ''' ) lowercase = [] for token in tokens: if not len(__lowerCamelCase ): continue lowercase = token.lower() lowercase = tuple(__lowerCamelCase ) lowercase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowercase = get_pairs(__lowerCamelCase ) if not pairs: words.append(__lowerCamelCase ) continue while True: lowercase = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase ,lowercase = bigram lowercase = [] lowercase = 0 while i < len(__lowerCamelCase ): try: lowercase = word.index(__lowerCamelCase , __lowerCamelCase ) new_word.extend(word[i:j] ) lowercase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase = tuple(__lowerCamelCase ) lowercase = new_word if len(__lowerCamelCase ) == 1: break else: lowercase = get_pairs(__lowerCamelCase ) lowercase = '''@@ '''.join(__lowerCamelCase ) lowercase = word[:-4] lowercase = word words.append(__lowerCamelCase ) return " ".join(__lowerCamelCase ) def __a ( self : str , __lowerCamelCase : str ) -> List[str]: '''simple docstring''' lowercase = [] lowercase = re.findall(r'''\S+\n?''' , __lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def __a ( self : Optional[int] , __lowerCamelCase : str ) -> int: '''simple docstring''' lowercase = token.lower() return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def __a ( self : Optional[Any] , __lowerCamelCase : int ) -> str: '''simple docstring''' return self.decoder.get(__lowerCamelCase , self.unk_token ) def __a ( self : int , __lowerCamelCase : List[str] ) -> str: '''simple docstring''' lowercase = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def __a ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + '''\n''' ) lowercase = 0 with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase = token_index writer.write(''' '''.join(__lowerCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file
604
0
"""simple docstring""" lowerCamelCase__ : Dict = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
716
"""simple docstring""" from __future__ import annotations from fractions import Fraction def __A ( a_ : int , a_ : int )-> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __A ( a_ : int )-> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[str] = 11 SCREAMING_SNAKE_CASE : Union[str, Any] = int('''1''' + '''0''' * digit_len ) for num in range(a_ , a_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a_ , a_ ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 return solutions def __A ( a_ : int = 2 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 for fraction in fraction_list(a_ ): SCREAMING_SNAKE_CASE : List[str] = Fraction(a_ ) result *= frac.denominator / frac.numerator return int(a_ ) if __name__ == "__main__": print(solution())
18
0
"""simple docstring""" class lowerCamelCase__ : def __init__( self : Optional[Any] , A_ : Dict , A_ : str , A_ : Any ): '''simple docstring''' __lowercase = None __lowercase = None __lowercase = graph self._normalize_graph(A_ , A_ ) __lowercase = len(A_ ) __lowercase = None def SCREAMING_SNAKE_CASE_ ( self : Dict , A_ : str , A_ : List[Any] ): '''simple docstring''' if sources is int: __lowercase = [sources] if sinks is int: __lowercase = [sinks] if len(A_ ) == 0 or len(A_ ) == 0: return __lowercase = sources[0] __lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(A_ ) > 1 or len(A_ ) > 1: __lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __lowercase = max_input_flow __lowercase = 0 __lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __lowercase = max_input_flow __lowercase = size - 1 def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : Dict ): '''simple docstring''' __lowercase = algorithm(self ) class lowerCamelCase__ : def __init__( self : Tuple , A_ : Optional[int] ): '''simple docstring''' __lowercase = flow_network __lowercase = flow_network.verticesCount __lowercase = flow_network.sourceIndex __lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __lowercase = flow_network.graph __lowercase = False def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' if not self.executed: self._algorithm() __lowercase = True def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' pass class lowerCamelCase__ ( _a ): def __init__( self : Union[str, Any] , A_ : int ): '''simple docstring''' super().__init__(A_ ) # use this to save your result __lowercase = -1 def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase__ ( _a ): def __init__( self : List[str] , A_ : Tuple ): '''simple docstring''' super().__init__(A_ ) __lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] __lowercase = [0] * self.verticies_count __lowercase = [0] * self.verticies_count def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __lowercase = 0 while i < len(A_ ): __lowercase = vertices_list[i] __lowercase = self.heights[vertex_index] self.process_vertex(A_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A_ ) ) __lowercase = 0 else: i += 1 __lowercase = sum(self.preflow[self.source_index] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Optional[int] ): '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A_ , A_ ) self.relabel(A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , A_ : Union[str, Any] , A_ : List[str] ): '''simple docstring''' __lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Optional[Any] ): '''simple docstring''' __lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __lowercase = self.heights[to_index] if min_height is not None: __lowercase = min_height + 1 if __name__ == "__main__": UpperCAmelCase__ =[0] UpperCAmelCase__ =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase__ =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase__ =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase__ =flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
616
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase__ =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCAmelCase__ =" \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) __lowercase = self.diffusers_dir shutil.copy( os.path.join(A_ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : List[str] , A_ : int , A_ : Optional[Any] , A_ : str=None ): '''simple docstring''' __lowercase = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: __lowercase = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result __lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) __lowercase = black.format_str(A_ , mode=A_ ) __lowercase = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(A_ , """w""" , newline="""\n""" ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , """r""" ) as f: self.assertTrue(f.read() , A_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , A_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , A_ ) , ) # Copy consistency with a really long name __lowercase = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , A_ , overwrite_result=re.sub("""DDPM""" , """Test""" , A_ ) , )
616
1
import string from math import logaa def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' __snake_case : Optional[Any] = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) __snake_case : Union[str, Any] = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' __snake_case : List[Any] = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' __snake_case : Optional[int] = corpus_without_punctuation.split("""\n""" ) __snake_case : Any = term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' return round(tf * idf , 3 )
707
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
390
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__: List[str] = logging.get_logger(__name__) __magic_name__: Dict = {"vocab_file": "spm_char.model"} __magic_name__: Tuple = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } __magic_name__: List[str] = { "microsoft/speecht5_asr": 1_024, "microsoft/speecht5_tts": 1_024, "microsoft/speecht5_vc": 1_024, } class snake_case__ ( _SCREAMING_SNAKE_CASE ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : str = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Tuple: __magic_name__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __magic_name__ : Optional[Any] = vocab_file __magic_name__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def __magic_name__ ( self ) -> int: return self.sp_model.get_piece_size() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Any = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.__dict__.copy() __magic_name__ : Any = None return state def __setstate__( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : List[str] = {} __magic_name__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.sp_model.piece_to_id(lowerCAmelCase_ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: __magic_name__ : Tuple = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Any = [] __magic_name__ : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase_ ) + token __magic_name__ : Union[str, Any] = [] else: current_sub_tokens.append(lowerCAmelCase_ ) out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) __magic_name__ : Tuple = [1] if token_ids_a is None: return ([0] * len(lowerCAmelCase_ )) + suffix_ones return ([0] * len(lowerCAmelCase_ )) + ([0] * len(lowerCAmelCase_ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> int: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Optional[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
324
"""simple docstring""" def __UpperCamelCase ( snake_case__ = 200 ): A_ : Union[str, Any] = [1, 2, 5, 10, 20, 50, 100, 200] A_ : int = [0] * (pence + 1) A_ : Tuple = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
180
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase : Dict = logging.get_logger(__name__) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False ): lowerCamelCase_: int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): for i in range(config.num_hidden_layers ): lowerCamelCase_: Union[str, Any] = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_: List[str] = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" ) lowerCamelCase_: Optional[int] = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_: Tuple = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_: Optional[int] = in_proj_bias[: config.hidden_size] lowerCamelCase_: List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_: Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_: Dict = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_: Tuple = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( _UpperCAmelCase ): lowerCamelCase_: int = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase_: List[str] = dct.pop(_UpperCAmelCase ) lowerCamelCase_: Optional[Any] = val @torch.no_grad() def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase_: Union[str, Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=_UpperCAmelCase ) lowerCamelCase_: Dict = False lowerCamelCase_: Tuple = False lowerCamelCase_: Optional[int] = False lowerCamelCase_: Any = False if "vqa" in checkpoint_url: lowerCamelCase_: Optional[Any] = True lowerCamelCase_: Any = 3_1_2_9 lowerCamelCase_: int = """huggingface/label-files""" lowerCamelCase_: Any = """vqa2-id2label.json""" lowerCamelCase_: Union[str, Any] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase_: List[str] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase_: List[str] = idalabel lowerCamelCase_: Any = {v: k for k, v in idalabel.items()} lowerCamelCase_: Union[str, Any] = ViltForQuestionAnswering(_UpperCAmelCase ) elif "nlvr" in checkpoint_url: lowerCamelCase_: Union[str, Any] = True lowerCamelCase_: Union[str, Any] = 2 lowerCamelCase_: List[Any] = {0: """False""", 1: """True"""} lowerCamelCase_: str = {v: k for k, v in config.idalabel.items()} lowerCamelCase_: List[Any] = 3 lowerCamelCase_: int = ViltForImagesAndTextClassification(_UpperCAmelCase ) elif "irtr" in checkpoint_url: lowerCamelCase_: str = True lowerCamelCase_: Dict = ViltForImageAndTextRetrieval(_UpperCAmelCase ) elif "mlm_itm" in checkpoint_url: lowerCamelCase_: List[str] = True lowerCamelCase_: List[str] = ViltForMaskedLM(_UpperCAmelCase ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys lowerCamelCase_: List[Any] = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location="""cpu""" )["""state_dict"""] lowerCamelCase_: List[str] = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) if mlm_model or irtr_model: lowerCamelCase_: Optional[int] = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCamelCase_ , lowerCamelCase_: List[Any] = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_UpperCAmelCase ) # Define processor lowerCamelCase_: Dict = ViltImageProcessor(size=3_8_4 ) lowerCamelCase_: Dict = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowerCamelCase_: str = ViltProcessor(_UpperCAmelCase , _UpperCAmelCase ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCamelCase_: Tuple = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=_UpperCAmelCase ).raw ) lowerCamelCase_: List[str] = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=_UpperCAmelCase ).raw ) lowerCamelCase_: List[str] = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) lowerCamelCase_: Any = processor(_UpperCAmelCase , _UpperCAmelCase , return_tensors="""pt""" ) lowerCamelCase_: List[Any] = processor(_UpperCAmelCase , _UpperCAmelCase , return_tensors="""pt""" ) lowerCamelCase_: int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCamelCase_: Tuple = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=_UpperCAmelCase ).raw ) if mlm_model: lowerCamelCase_: str = """a bunch of [MASK] laying on a [MASK].""" else: lowerCamelCase_: Dict = """How many cats are there?""" lowerCamelCase_: Any = processor(_UpperCAmelCase , _UpperCAmelCase , return_tensors="""pt""" ) lowerCamelCase_: Tuple = model(**_UpperCAmelCase ) # Verify outputs if mlm_model: lowerCamelCase_: List[str] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowerCamelCase_: Optional[Any] = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _UpperCAmelCase , atol=1E-4 ) # verify masked token prediction equals "cats" lowerCamelCase_: Tuple = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCamelCase_: str = torch.Size([1, 3_1_2_9] ) lowerCamelCase_: Optional[Any] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _UpperCAmelCase , atol=1E-4 ) # verify vqa prediction equals "2" lowerCamelCase_: str = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCamelCase_: Dict = torch.Size([1, 2] ) lowerCamelCase_: Any = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : Optional[Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
584
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): if attention_mask is None: lowerCamelCase_: Optional[int] = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a__ : _A = OPTConfig _A = {} _A = "gelu" def __init__( self : int , A_ : List[str] , A_ : Dict=13 , A_ : str=7 , A_ : Dict=True , A_ : int=False , A_ : Any=99 , A_ : Dict=16 , A_ : List[str]=2 , A_ : Dict=4 , A_ : Dict=4 , A_ : int="gelu" , A_ : Tuple=0.1 , A_ : Tuple=0.1 , A_ : Dict=20 , A_ : int=2 , A_ : List[Any]=1 , A_ : Optional[Any]=0 , A_ : Dict=16 , A_ : Dict=16 , ) -> Dict: """simple docstring""" lowerCamelCase_: str = parent lowerCamelCase_: Tuple = batch_size lowerCamelCase_: str = seq_length lowerCamelCase_: Any = is_training lowerCamelCase_: Tuple = use_labels lowerCamelCase_: Any = vocab_size lowerCamelCase_: Optional[Any] = hidden_size lowerCamelCase_: Any = num_hidden_layers lowerCamelCase_: Dict = num_attention_heads lowerCamelCase_: Optional[Any] = intermediate_size lowerCamelCase_: Optional[int] = hidden_act lowerCamelCase_: Any = hidden_dropout_prob lowerCamelCase_: Union[str, Any] = attention_probs_dropout_prob lowerCamelCase_: List[Any] = max_position_embeddings lowerCamelCase_: Union[str, Any] = eos_token_id lowerCamelCase_: Optional[int] = pad_token_id lowerCamelCase_: Optional[Any] = bos_token_id lowerCamelCase_: List[Any] = embed_dim lowerCamelCase_: Optional[Any] = word_embed_proj_dim lowerCamelCase_: Any = False def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase_: Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_: Any = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=A_ , **self.config_updates , ) lowerCamelCase_: Optional[Any] = prepare_opt_inputs_dict(A_ , A_ ) return config, inputs_dict def lowerCAmelCase ( self : Any , A_ : Dict , A_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: List[Any] = TFOPTModel(config=A_ ) lowerCamelCase_: Union[str, Any] = inputs_dict["""input_ids"""] lowerCamelCase_: List[str] = input_ids[:1, :] lowerCamelCase_: int = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase_: Tuple = 1 # first forward pass lowerCamelCase_: int = model(A_ , attention_mask=A_ , use_cache=A_ ) lowerCamelCase_ , lowerCamelCase_: Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_: List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_: Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase_: Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase_: Any = model(A_ , attention_mask=A_ )[0] lowerCamelCase_: List[str] = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase_: List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase_: Tuple = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase_: List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1e-3 ) @require_tf class a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _A = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _A = (TFOPTForCausalLM,) if is_tf_available() else () _A = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) _A = False _A = False _A = False _A = 10 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_: List[str] = TFOPTModelTester(self ) lowerCamelCase_: Optional[Any] = ConfigTester(self , config_class=A_ ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ , lowerCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(A_ : Optional[Any] , A_ : Union[str, Any] ): if hasattr(A_ , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(A_ , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCamelCase_: List[Any] = model_class(config=A_ ) lowerCamelCase_: List[Any] = _get_word_embedding_weight(A_ , model.get_input_embeddings() ) lowerCamelCase_: List[Any] = _get_word_embedding_weight(A_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(A_ ) lowerCamelCase_: int = _get_word_embedding_weight(A_ , model.get_input_embeddings() ) lowerCamelCase_: List[Any] = _get_word_embedding_weight(A_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase_: List[Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , A_ ) # check that weights remain the same after resizing lowerCamelCase_: int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase_: Tuple = False self.assertTrue(A_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , A_ ) lowerCamelCase_: Union[str, Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase_: Any = False self.assertTrue(A_ ) def UpperCAmelCase_ ( _UpperCAmelCase ): return tf.constant(_UpperCAmelCase , dtype=tf.intaa ) @require_tf class a__ ( unittest.TestCase ): _A = 99 def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_: Dict = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCamelCase_: int = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCamelCase_: Tuple = input_ids.shape[0] lowerCamelCase_: Optional[int] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a__ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_: Dict = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowerCamelCase_: Dict = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) lowerCamelCase_: Union[str, Any] = tf.not_equal(A_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase_: Optional[int] = model(input_ids=A_ , attention_mask=A_ ).last_hidden_state lowerCamelCase_: Dict = (1, 11, 5_12) self.assertEqual(output.shape , A_ ) lowerCamelCase_: int = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , A_ , atol=4e-3 ) ) lowerCamelCase_: Any = tf.function(A_ , jit_compile=A_ ) lowerCamelCase_: int = xla_generate(A_ , A_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , A_ , atol=4e-2 ) ) @require_tf @slow class a__ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() lowerCamelCase_: List[str] = """facebook/opt-350m""" def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_: Optional[Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase_: Tuple = GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase_: Optional[int] = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase_: int = tokenizer(A_ , return_tensors="""tf""" , padding=A_ , add_special_tokens=A_ ) lowerCamelCase_: List[str] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCamelCase_: int = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(A_ , A_ , atol=1e-4 ) ) lowerCamelCase_: Any = tf.function(A_ , jit_compile=A_ ) lowerCamelCase_: Any = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(A_ , A_ , atol=1e-4 ) ) @require_tf @slow class a__ ( unittest.TestCase ): @property def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_: Dict = """facebook/opt-125m""" lowerCamelCase_: Optional[int] = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase_: Union[str, Any] = [] lowerCamelCase_: str = GPTaTokenizer.from_pretrained(A_ ) lowerCamelCase_: Union[str, Any] = TFOPTForCausalLM.from_pretrained(A_ ) for prompt in self.prompts: lowerCamelCase_: int = tokenizer(A_ , return_tensors="""tf""" ).input_ids lowerCamelCase_: Optional[Any] = model.generate(A_ , max_length=10 ) lowerCamelCase_: List[Any] = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) predicted_outputs += generated_string self.assertListEqual(A_ , A_ ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowerCamelCase_: Optional[Any] = """facebook/opt-350m""" lowerCamelCase_: Optional[int] = GPTaTokenizer.from_pretrained(A_ ) lowerCamelCase_: Union[str, Any] = TFOPTForCausalLM.from_pretrained(A_ ) lowerCamelCase_: Optional[int] = """left""" # use different length sentences to test batching lowerCamelCase_: str = [ """Hello, my dog is a little""", """Today, I""", ] lowerCamelCase_: Any = tokenizer(A_ , return_tensors="""tf""" , padding=A_ ) lowerCamelCase_: int = inputs["""input_ids"""] lowerCamelCase_: List[str] = model.generate(input_ids=A_ , attention_mask=inputs["""attention_mask"""] ) lowerCamelCase_: Tuple = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCamelCase_: Optional[int] = model.generate(input_ids=A_ ) lowerCamelCase_: Union[str, Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowerCamelCase_: Union[str, Any] = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCamelCase_: Dict = model.generate(input_ids=A_ , max_length=model.config.max_length - num_paddings ) lowerCamelCase_: int = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) lowerCamelCase_: Optional[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_ ) lowerCamelCase_: Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=A_ ) lowerCamelCase_: Any = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , [non_padded_sentence, padded_sentence] ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_: Dict = """facebook/opt-350m""" lowerCamelCase_: Any = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase_: Union[str, Any] = [] lowerCamelCase_: Dict = GPTaTokenizer.from_pretrained(A_ ) lowerCamelCase_: Union[str, Any] = TFOPTForCausalLM.from_pretrained(A_ ) for prompt in self.prompts: lowerCamelCase_: List[str] = tokenizer(A_ , return_tensors="""tf""" ).input_ids lowerCamelCase_: Dict = model.generate(A_ , max_length=10 ) lowerCamelCase_: Optional[Any] = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) predicted_outputs += generated_string self.assertListEqual(A_ , A_ )
584
1
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __UpperCAmelCase = logging.getLogger(__name__) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if os.path.exists(__UpperCamelCase ): if os.path.exists(os.path.join(__UpperCamelCase , """config.json""" ) ) and os.path.isfile( os.path.join(__UpperCamelCase , """config.json""" ) ): os.remove(os.path.join(__UpperCamelCase , """config.json""" ) ) if os.path.exists(os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) ): os.remove(os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) ) else: os.makedirs(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=False ): '''simple docstring''' UpperCAmelCase__ : str = 2 if unlogit: UpperCAmelCase__ : Tuple = torch.pow(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = p * torch.log(__UpperCamelCase ) UpperCAmelCase__ : int = 0 return -plogp.sum(dim=-1 ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' logger.info("""lv, h >\t""" + """\t""".join(F"{x + 1}" for x in range(len(__UpperCamelCase ) ) ) ) for row in range(len(__UpperCamelCase ) ): if tensor.dtype != torch.long: logger.info(F"layer {row + 1}:\t" + """\t""".join(F"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(F"layer {row + 1}:\t" + """\t""".join(F"{x:d}" for x in tensor[row].cpu().data ) ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=False ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = model.config.num_hidden_layers, model.config.num_attention_heads UpperCAmelCase__ : int = torch.zeros(__UpperCamelCase , __UpperCamelCase ).to(args.device ) UpperCAmelCase__ : Tuple = torch.zeros(__UpperCamelCase , __UpperCamelCase ).to(args.device ) if head_mask is None: UpperCAmelCase__ : Tuple = torch.ones(__UpperCamelCase , __UpperCamelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__UpperCamelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Any = 0.0 UpperCAmelCase__ : List[str] = 0.0 for step, inputs in enumerate(tqdm(__UpperCamelCase , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): UpperCAmelCase__ : Optional[int] = tuple(t.to(args.device ) for t in inputs ) ((UpperCAmelCase__) , ) : List[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCAmelCase__ : Tuple = model(__UpperCamelCase , labels=__UpperCamelCase , head_mask=__UpperCamelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__UpperCamelCase ): UpperCAmelCase__ : str = entropy(attn.detach() , __UpperCamelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__UpperCamelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCAmelCase__ : Optional[Any] = 2 UpperCAmelCase__ : Union[str, Any] = torch.pow(torch.pow(__UpperCamelCase , __UpperCamelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: UpperCAmelCase__ : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(__UpperCamelCase ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(__UpperCamelCase ) logger.info("""Head ranked by importance scores""" ) UpperCAmelCase__ : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCAmelCase__ : Tuple = torch.arange( head_importance.numel() , device=args.device ) UpperCAmelCase__ : Optional[int] = head_ranks.view_as(__UpperCamelCase ) print_ad_tensor(__UpperCamelCase ) return attn_entropy, head_importance, total_loss def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = compute_heads_importance(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , __UpperCamelCase , original_score * args.masking_threshold ) UpperCAmelCase__ : List[Any] = torch.ones_like(__UpperCamelCase ) UpperCAmelCase__ : Any = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCAmelCase__ : Any = original_score while current_score >= original_score * args.masking_threshold: UpperCAmelCase__ : List[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCAmelCase__ : Optional[int] = float("""Inf""" ) UpperCAmelCase__ : List[Any] = head_importance.view(-1 ).sort()[1] if len(__UpperCamelCase ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads UpperCAmelCase__ : List[str] = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) UpperCAmelCase__ : int = new_head_mask.view(-1 ) UpperCAmelCase__ : Dict = 0.0 UpperCAmelCase__ : Optional[int] = new_head_mask.view_as(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__UpperCamelCase ) # Compute metric and head importance again UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = compute_heads_importance( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase , head_mask=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , __UpperCamelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(__UpperCamelCase ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Dict = datetime.now() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = compute_heads_importance( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase , compute_importance=__UpperCamelCase , head_mask=__UpperCamelCase ) UpperCAmelCase__ : int = 1 / loss UpperCAmelCase__ : int = datetime.now() - before_time UpperCAmelCase__ : int = sum(p.numel() for p in model.parameters() ) UpperCAmelCase__ : Optional[int] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__UpperCamelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : List[str] = [ v, ] assert sum(len(__UpperCamelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = sum(p.numel() for p in model.parameters() ) UpperCAmelCase__ : str = datetime.now() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = compute_heads_importance( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase , compute_importance=__UpperCamelCase , head_mask=__UpperCamelCase , actually_pruned=__UpperCamelCase , ) UpperCAmelCase__ : Optional[int] = 1 / loss UpperCAmelCase__ : List[str] = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , __UpperCamelCase , __UpperCamelCase , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , __UpperCamelCase , __UpperCamelCase ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(__UpperCamelCase , args.output_dir ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=__UpperCamelCase , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=__UpperCamelCase , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=__UpperCamelCase , type=__UpperCamelCase , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=__UpperCamelCase , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=__UpperCamelCase , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=__UpperCamelCase , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=__UpperCamelCase , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__UpperCamelCase , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=__UpperCamelCase , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=__UpperCamelCase , default=42 ) parser.add_argument("""--local_rank""" , type=__UpperCamelCase , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=__UpperCamelCase , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=__UpperCamelCase , default="""""" , help="""Can be used for distant debugging.""" ) UpperCAmelCase__ : Any = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__UpperCamelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCAmelCase__ : Dict = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) UpperCAmelCase__ : List[str] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCAmelCase__ : List[Any] = torch.device("""cuda""" , args.local_rank ) UpperCAmelCase__ : List[str] = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCAmelCase__ : Dict = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCAmelCase__ : List[Any] = nn.parallel.DistributedDataParallel( __UpperCamelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__UpperCamelCase ) elif args.n_gpu > 1: UpperCAmelCase__ : Dict = nn.DataParallel(__UpperCamelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__UpperCamelCase ) torch.save(__UpperCamelCase , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , __UpperCamelCase ) # Prepare dataset UpperCAmelCase__ : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCAmelCase__ : Union[str, Any] = (torch.from_numpy(__UpperCamelCase ),) UpperCAmelCase__ : Optional[Any] = TensorDataset(*__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = RandomSampler(__UpperCamelCase ) UpperCAmelCase__ : Tuple = DataLoader(__UpperCamelCase , sampler=__UpperCamelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCAmelCase__ : Any = mask_heads(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) prune_heads(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
65
"""simple docstring""" import requests def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Tuple = {"""Content-Type""": """application/json"""} UpperCAmelCase__ : Optional[Any] = requests.post(__UpperCamelCase , json={"""text""": message_body} , headers=__UpperCamelCase ) if response.status_code != 200: UpperCAmelCase__ : Any = ( """Request to slack returned an error """ F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(__UpperCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
65
1
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys a= subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') a= subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() a= '''|'''.join(sys.argv[1:]) a= re.compile(rF"""^({joined_dirs}).*?\.py$""") a= [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
287
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a= logging.get_logger(__name__) a= { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a= { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } a= {'''facebook/blenderbot-3B''': 1_2_8} class __lowercase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ = BlenderbotTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) __UpperCamelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _lowerCamelCase ) != add_prefix_space: __UpperCamelCase : Any = getattr(_lowerCamelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase : Dict = add_prefix_space __UpperCamelCase : Optional[Any] = pre_tok_class(**_lowerCamelCase ) __UpperCamelCase : str = add_prefix_space __UpperCamelCase : Optional[int] = 'post_processor' __UpperCamelCase : Tuple = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: __UpperCamelCase : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase : List[Any] = tuple(state['sep'] ) if "cls" in state: __UpperCamelCase : str = tuple(state['cls'] ) __UpperCamelCase : Tuple = False if state.get('add_prefix_space' , _lowerCamelCase ) != add_prefix_space: __UpperCamelCase : Dict = add_prefix_space __UpperCamelCase : str = True if state.get('trim_offsets' , _lowerCamelCase ) != trim_offsets: __UpperCamelCase : int = trim_offsets __UpperCamelCase : Any = True if changes_to_apply: __UpperCamelCase : Dict = getattr(_lowerCamelCase , state.pop('type' ) ) __UpperCamelCase : Any = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCAmelCase ( self ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : int = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value __UpperCamelCase : Optional[Any] = value def lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ): __UpperCamelCase : Dict = kwargs.get('is_split_into_words' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ): __UpperCamelCase : Dict = kwargs.get('is_split_into_words' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ): __UpperCamelCase : List[str] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ): __UpperCamelCase : Union[str, Any] = [self.sep_token_id] __UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ): return token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_lowerCamelCase ) __UpperCamelCase : Union[str, Any] = ' '.join(_lowerCamelCase ) __UpperCamelCase : Union[str, Any] = self.encode(_lowerCamelCase ) if len(_lowerCamelCase ) > self.model_max_length: __UpperCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
287
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a_ :Union[str, Any] = get_logger(__name__) class snake_case__ ( enum.Enum ): """simple docstring""" _SCREAMING_SNAKE_CASE = '''all_checks''' _SCREAMING_SNAKE_CASE = '''basic_checks''' _SCREAMING_SNAKE_CASE = '''no_checks''' class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" def lowercase_ (A : Optional[dict] , A : dict , A : Any=None ): if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) snake_case__ : int = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] snake_case__ : List[Any] = ' for ' + verification_name if verification_name is not None else '' if len(__UpperCamelCase ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" def lowercase_ (A : Optional[dict] , A : dict ): if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise UnexpectedSplits(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) snake_case__ : List[Any] = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__UpperCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(__UpperCamelCase ) ) logger.info('All the splits matched successfully.' ) def lowercase_ (A : str , A : bool = True ): if record_checksum: snake_case__ : str = shaaaa() with open(__UpperCamelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , b'' ): m.update(__UpperCamelCase ) snake_case__ : Optional[int] = m.hexdigest() else: snake_case__ : int = None return {"num_bytes": os.path.getsize(__UpperCamelCase ), "checksum": checksum} def lowercase_ (A : Optional[int] ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
478
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = ['''audio_values''', '''audio_mask'''] def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ): '''simple docstring''' super().__init__( feature_size=A, sampling_rate=A, padding_value=A, **A, ) SCREAMING_SNAKE_CASE : str = spectrogram_length SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE : Dict = n_fft SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : int = padding_value SCREAMING_SNAKE_CASE : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = spectrogram( A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A, np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa ) elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE : int = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i] SCREAMING_SNAKE_CASE : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features} SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A ) return encoded_inputs
28
0
def a_ ( _A , _A ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(_A ) , _A ) return number - int(_A ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
372
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __UpperCamelCase : Optional[int] = 8 def a_ ( _A , _A=BITS ) -> List[Any]: """simple docstring""" snake_case__ = x.device snake_case__ = (x * 255).int().clamp(0 , 255 ) snake_case__ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_A ) snake_case__ = rearrange(_A , 'd -> d 1 1' ) snake_case__ = rearrange(_A , 'b c h w -> b c 1 h w' ) snake_case__ = ((x & mask) != 0).float() snake_case__ = rearrange(_A , 'b c d h w -> b (c d) h w' ) snake_case__ = bits * 2 - 1 return bits def a_ ( _A , _A=BITS ) -> List[str]: """simple docstring""" snake_case__ = x.device snake_case__ = (x > 0).int() snake_case__ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_A , dtype=torch.intaa ) snake_case__ = rearrange(_A , 'd -> d 1 1' ) snake_case__ = rearrange(_A , 'b (c d) h w -> b c d h w' , d=8 ) snake_case__ = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def a_ ( self , _A , _A , _A , _A = 0.0 , _A = True , _A=None , _A = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) snake_case__ = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas snake_case__ = self.alphas_cumprod[timestep] snake_case__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod snake_case__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" snake_case__ = self.bit_scale if self.config.clip_sample: snake_case__ = torch.clamp(_A , -scale , _A ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) snake_case__ = self._get_variance(_A , _A ) snake_case__ = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide snake_case__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case__ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 snake_case__ = model_output.device if torch.is_tensor(_A ) else 'cpu' snake_case__ = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_A ).to(_A ) snake_case__ = self._get_variance(_A , _A ) ** 0.5 * eta * noise snake_case__ = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_A , pred_original_sample=_A ) def a_ ( self , _A , _A , _A , _A="epsilon" , _A=None , _A = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" snake_case__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: snake_case__ , snake_case__ = torch.split(_A , sample.shape[1] , dim=1 ) else: snake_case__ = None # 1. compute alphas, betas snake_case__ = self.alphas_cumprod[t] snake_case__ = self.alphas_cumprod[t - 1] if t > 0 else self.one snake_case__ = 1 - alpha_prod_t snake_case__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": snake_case__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": snake_case__ = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" snake_case__ = self.bit_scale if self.config.clip_sample: snake_case__ = torch.clamp(_A , -scale , _A ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case__ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t snake_case__ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case__ = 0 if t > 0: snake_case__ = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_A ).to(model_output.device ) snake_case__ = (self._get_variance(_A , predicted_variance=_A ) ** 0.5) * noise snake_case__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_A , pred_original_sample=_A ) class __SCREAMING_SNAKE_CASE( a_ ): def __init__( self: Dict , UpperCamelCase: UNetaDConditionModel , UpperCamelCase: Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase: Optional[float] = 1.0 , ) -> Union[str, Any]: super().__init__() snake_case__ = bit_scale snake_case__ = ( ddim_bit_scheduler_step if isinstance(UpperCamelCase , UpperCamelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase ) @torch.no_grad() def __call__( self: Dict , UpperCamelCase: Optional[int] = 2_56 , UpperCamelCase: Optional[int] = 2_56 , UpperCamelCase: Optional[int] = 50 , UpperCamelCase: Optional[torch.Generator] = None , UpperCamelCase: Optional[int] = 1 , UpperCamelCase: Optional[str] = "pil" , UpperCamelCase: bool = True , **UpperCamelCase: int , ) -> Union[Tuple, ImagePipelineOutput]: snake_case__ = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCamelCase , ) snake_case__ = decimal_to_bits(UpperCamelCase ) * self.bit_scale snake_case__ = latents.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual snake_case__ = self.unet(UpperCamelCase , UpperCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case__ = self.scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample snake_case__ = bits_to_decimal(UpperCamelCase ) if output_type == "pil": snake_case__ = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase )
372
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCamelCase_ = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ = '''BlipImageProcessor''' lowerCamelCase_ = '''AutoTokenizer''' def __init__( self , lowercase , lowercase , lowercase ): """simple docstring""" super().__init__(_UpperCAmelCase , _UpperCAmelCase ) # add QFormer tokenizer A_ : List[str] = qformer_tokenizer def __call__( self , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) A_ : Dict = BatchFeature() if text is not None: A_ : List[Any] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) encoding.update(_UpperCAmelCase ) A_ : Union[str, Any] = self.qformer_tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) A_ : Optional[Any] = qformer_text_encoding.pop('input_ids' ) A_ : Optional[Any] = qformer_text_encoding.pop('attention_mask' ) if images is not None: A_ : Any = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) encoding.update(_UpperCAmelCase ) return encoding def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = self.tokenizer.model_input_names A_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCAmelCase_ ( self , lowercase , **lowercase ): """simple docstring""" if os.path.isfile(_UpperCAmelCase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) A_ : Dict = os.path.join(_UpperCAmelCase , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(_UpperCAmelCase ) return super().save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , **lowercase ): """simple docstring""" A_ : int = AutoTokenizer.from_pretrained(_UpperCAmelCase , subfolder='qformer_tokenizer' ) A_ : str = cls._get_arguments_from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) args.append(_UpperCAmelCase ) return cls(*_UpperCAmelCase )
558
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
0
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __lowercase = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' ,safety_checker=lowercase__ ,cache_dir=lowercase__ ) __lowercase = [t[-1] for t in os.walk(os.path.join(lowercase__ ,os.listdir(lowercase__ )[0] ,'''snapshots''' ) )] __lowercase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' ,safety_checker=lowercase__ ) __lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = 4 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = pipeline.prepare_inputs(lowercase__ ) # shard inputs and rng __lowercase = replicate(lowercase__ ) __lowercase = jax.random.split(lowercase__ ,lowercase__ ) __lowercase = shard(lowercase__ ) __lowercase = pipeline(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,jit=lowercase__ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(lowercase__ ,dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 __lowercase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase__ ) == num_samples def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''flax''' ,safety_checker=lowercase__ ) __lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = 5_0 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = pipeline.prepare_inputs(lowercase__ ) # shard inputs and rng __lowercase = replicate(lowercase__ ) __lowercase = jax.random.split(lowercase__ ,lowercase__ ) __lowercase = shard(lowercase__ ) __lowercase = pipeline(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,jit=lowercase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(lowercase__ ,dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=lowercase__ ) __lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = 5_0 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = pipeline.prepare_inputs(lowercase__ ) # shard inputs and rng __lowercase = replicate(lowercase__ ) __lowercase = jax.random.split(lowercase__ ,lowercase__ ) __lowercase = shard(lowercase__ ) __lowercase = pipeline(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,jit=lowercase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(lowercase__ ,dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ) __lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = 5_0 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = pipeline.prepare_inputs(lowercase__ ) # shard inputs and rng __lowercase = replicate(lowercase__ ) __lowercase = jax.random.split(lowercase__ ,lowercase__ ) __lowercase = shard(lowercase__ ) __lowercase = pipeline(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,jit=lowercase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(lowercase__ ,dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,set_alpha_to_one=lowercase__ ,steps_offset=1 ,) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,scheduler=lowercase__ ,safety_checker=lowercase__ ,) __lowercase = scheduler.create_state() __lowercase = scheduler_state __lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = 5_0 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = pipeline.prepare_inputs(lowercase__ ) # shard inputs and rng __lowercase = replicate(lowercase__ ) __lowercase = jax.random.split(lowercase__ ,lowercase__ ) __lowercase = shard(lowercase__ ) __lowercase = pipeline(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,jit=lowercase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(lowercase__ ,dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = jax.random.split(jax.random.PRNGKey(0 ) ,lowercase__ ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=lowercase__ ,) __lowercase = replicate(lowercase__ ) __lowercase = pipeline.prepare_inputs(lowercase__ ) __lowercase = shard(lowercase__ ) __lowercase = pipeline(lowercase__ ,lowercase__ ,lowercase__ ,jit=lowercase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) __lowercase = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=lowercase__ ,use_memory_efficient_attention=lowercase__ ,) __lowercase = replicate(lowercase__ ) __lowercase = pipeline.prepare_inputs(lowercase__ ) __lowercase = shard(lowercase__ ) __lowercase = pipeline(lowercase__ ,lowercase__ ,lowercase__ ,jit=lowercase__ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) __lowercase = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
624
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase_ : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( *lowercase__ : Union[str, Any] ,**lowercase__ : Tuple ): pass def _A ( A__ ): """simple docstring""" __lowercase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : List[str] ,lowercase__ : int ): __lowercase = DepthEstimationPipeline(model=lowercase__ ,image_processor=lowercase__ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ): __lowercase = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} ,lowercase__ ) import datasets __lowercase = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' ,'''image''' ,split='''test''' ) __lowercase = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] ,lowercase__ ,) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): pass @slow @require_torch def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = '''Intel/dpt-large''' __lowercase = pipeline('''depth-estimation''' ,model=lowercase__ ) __lowercase = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) __lowercase = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) ,2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) ,2.6_6_2 ) @require_torch def SCREAMING_SNAKE_CASE ( self : List[Any] ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
624
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''data2vec-text''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
5
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): """simple docstring""" # Initialise PyTorch model _lowerCAmelCase = BigBirdConfig.from_json_file(__lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: _lowerCAmelCase = BigBirdForQuestionAnswering(__lowerCamelCase ) else: _lowerCAmelCase = BigBirdForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__lowerCamelCase, __lowerCamelCase, is_trivia_qa=__lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) a__ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
589
0
"""simple docstring""" from math import pi, sqrt, tan def lowerCAmelCase ( UpperCamelCase_: float ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCAmelCase ( UpperCamelCase_: float ) -> float: '''simple docstring''' if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def lowerCAmelCase ( UpperCamelCase_: float ) -> float: '''simple docstring''' if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) _a = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(UpperCamelCase_ , 2 ) * torus_radius * tube_radius def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def lowerCAmelCase ( UpperCamelCase_: float ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) _a = (sidea + sidea + sidea) / 2 _a = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def lowerCAmelCase ( UpperCamelCase_: float ) -> float: '''simple docstring''' if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def lowerCAmelCase ( UpperCamelCase_: float , UpperCamelCase_: float ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: float ) -> float: '''simple docstring''' if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("""\nSurface Areas of various geometric shapes: \n""") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
700
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowercase_ : A__ : str = field( default=_UpperCAmelCase, metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_UpperCAmelCase )} ) A__ : str = field( default=_UpperCAmelCase, metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) A__ : int = field( default=128, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) A__ : int = field( default=128, metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''}, ) A__ : int = field( default=64, metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) }, ) A__ : int = field( default=30, metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) }, ) A__ : bool = field( default=_UpperCAmelCase, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) A__ : bool = field( default=_UpperCAmelCase, metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) A__ : float = field( default=0.0, metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) A__ : int = field( default=20, metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) A__ : int = field( default=0, metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) }, ) A__ : int = field(default=1, metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowercase_ (_UpperCAmelCase ): A__ : Tuple = '''train''' A__ : List[Any] = '''dev''' class lowercase_ (_UpperCAmelCase ): A__ : SquadDataTrainingArguments A__ : List[SquadFeatures] A__ : Split A__ : bool def __init__( self , a_ , a_ , a_ = None , a_ = Split.train , a_ = False , a_ = None , a_ = "pt" , ) ->List[str]: '''simple docstring''' _a = args _a = is_language_sensitive _a = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(a_ , a_ ): try: _a = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _a = mode # Load data features from cache or dataset file _a = "v2" if args.version_2_with_negative else "v1" _a = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a = cached_features_file + ".lock" with FileLock(a_ ): if os.path.exists(a_ ) and not args.overwrite_cache: _a = time.time() _a = torch.load(a_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _a = self.old_features["features"] _a = self.old_features.get("dataset" , a_ ) _a = self.old_features.get("examples" , a_ ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' " future run" ) else: if mode == Split.dev: _a = self.processor.get_dev_examples(args.data_dir ) else: _a = self.processor.get_train_examples(args.data_dir ) _a , _a = squad_convert_examples_to_features( examples=self.examples , tokenizer=a_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=a_ , ) _a = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , a_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) ->Optional[int]: '''simple docstring''' return len(self.features ) def __getitem__( self , a_ ) ->Dict[str, torch.Tensor]: '''simple docstring''' _a = self.features[i] _a = torch.tensor(feature.input_ids , dtype=torch.long ) _a = torch.tensor(feature.attention_mask , dtype=torch.long ) _a = torch.tensor(feature.token_type_ids , dtype=torch.long ) _a = torch.tensor(feature.cls_index , dtype=torch.long ) _a = torch.tensor(feature.p_mask , dtype=torch.float ) _a = torch.tensor(feature.is_impossible , dtype=torch.float ) _a = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _a = torch.tensor(feature.start_position , dtype=torch.long ) _a = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
612
0
import numpy as np def lowerCamelCase_ ( UpperCAmelCase_ : np.ndarray ): return 1 / (1 + np.exp(-vector )) def lowerCamelCase_ ( UpperCAmelCase_ : np.ndarray ): return vector * sigmoid(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
583
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings snake_case__ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase ( __lowerCamelCase ): a__: bool = field(default=__lowerCamelCase , metadata={"""help""": """Whether to use SortishSampler or not."""} ) a__: bool = field( default=__lowerCamelCase , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) a__: Optional[int] = field( default=__lowerCamelCase , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) a__: Optional[int] = field( default=__lowerCamelCase , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=__lowerCamelCase , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def _lowerCAmelCase ( self : List[str] ): lowercase : Union[str, Any] = super().to_dict() for k, v in d.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): lowercase : Tuple = v.to_dict() return d
583
1
'''simple docstring''' import socket def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCAmelCase = socket.gethostname() UpperCAmelCase = 1_23_12 sock.connect((host, port) ) sock.send(b'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: UpperCAmelCase = sock.recv(10_24 ) if not data: break out_file.write(A ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
50
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _A: List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A , __A ): super().__init__() self.register_modules(unet=__A , scheduler=__A ) @torch.no_grad() def __call__( self , __A = 1 , __A = 100 , __A = None , __A = None , __A = True , ): if audio_length_in_s is None: __UpperCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate __UpperCAmelCase = audio_length_in_s * self.unet.config.sample_rate __UpperCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' f' {3 * down_scale_factor / self.unet.config.sample_rate}.' ) __UpperCAmelCase = int(__A ) if sample_size % down_scale_factor != 0: __UpperCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' f' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' ' process.' ) __UpperCAmelCase = int(__A ) __UpperCAmelCase = next(iter(self.unet.parameters() ) ).dtype __UpperCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__A , __A ) and len(__A ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(__A )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __UpperCAmelCase = randn_tensor(__A , generator=__A , device=self.device , dtype=__A ) # set step values self.scheduler.set_timesteps(__A , device=audio.device ) __UpperCAmelCase = self.scheduler.timesteps.to(__A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __UpperCAmelCase = self.unet(__A , __A ).sample # 2. compute previous image: x_t -> t_t-1 __UpperCAmelCase = self.scheduler.step(__A , __A , __A ).prev_sample __UpperCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() __UpperCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__A )
126
'''simple docstring''' import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _A: Any = logging.get_logger(__name__) class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , *__A , **__A ): warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , __A , ) super().__init__(*__A , **__A )
126
1
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
79
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=True , lowerCamelCase_="pt" ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = {"""add_prefix_space""": True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(""" """ ) else {} SCREAMING_SNAKE_CASE : Optional[Any] = padding_side return tokenizer( [line] , max_length=lowerCamelCase_ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , ): """simple docstring""" SCREAMING_SNAKE_CASE : int = input_ids.ne(lowerCamelCase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str]="train" , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : int=None , lowerCamelCase_ : Union[str, Any]="" , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : str = Path(lowerCamelCase_ ).joinpath(type_path + """.source""" ) SCREAMING_SNAKE_CASE : Optional[Any] = Path(lowerCamelCase_ ).joinpath(type_path + """.target""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE : int = max_source_length SCREAMING_SNAKE_CASE : str = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' SCREAMING_SNAKE_CASE : List[str] = tokenizer SCREAMING_SNAKE_CASE : Dict = prefix if n_obs is not None: SCREAMING_SNAKE_CASE : List[Any] = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE : int = src_lang SCREAMING_SNAKE_CASE : Optional[int] = tgt_lang def __len__( self : List[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : Union[str, Any] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE : Dict = self.prefix + linecache.getline(str(self.src_file ) , lowerCamelCase_ ).rstrip("""\n""" ) SCREAMING_SNAKE_CASE : Dict = linecache.getline(str(self.tgt_file ) , lowerCamelCase_ ).rstrip("""\n""" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCamelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer ) SCREAMING_SNAKE_CASE : Any = self.tokenizer.generator if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer SCREAMING_SNAKE_CASE : Optional[int] = encode_line(lowerCamelCase_ , lowerCamelCase_ , self.max_source_length , """right""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = encode_line(lowerCamelCase_ , lowerCamelCase_ , self.max_target_length , """right""" ) SCREAMING_SNAKE_CASE : Tuple = source_inputs["""input_ids"""].squeeze() SCREAMING_SNAKE_CASE : Tuple = target_inputs["""input_ids"""].squeeze() SCREAMING_SNAKE_CASE : List[str] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCamelCase_ ( lowerCamelCase_ : Dict ): '''simple docstring''' return [len(lowerCamelCase_ ) for x in Path(lowerCamelCase_ ).open().readlines()] def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch.stack([x["""input_ids"""] for x in batch] ) SCREAMING_SNAKE_CASE : int = torch.stack([x["""attention_mask"""] for x in batch] ) SCREAMING_SNAKE_CASE : int = torch.stack([x["""decoder_input_ids"""] for x in batch] ) SCREAMING_SNAKE_CASE : int = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE : Dict = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE : Optional[int] = trim_batch(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = trim_batch(lowerCamelCase_ , lowerCamelCase_ , attention_mask=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __UpperCAmelCase = getLogger(__name__) def __A ( lowerCamelCase_ ): """simple docstring""" return list(itertools.chain.from_iterable(lowerCamelCase_ ) ) def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = get_git_info() save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , """git_log.json""" ) ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=4 , **lowerCamelCase_ ): """simple docstring""" with open(lowerCamelCase_ , """w""" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ ) def __A ( lowerCamelCase_ ): """simple docstring""" with open(lowerCamelCase_ ) as f: return json.load(lowerCamelCase_ ) def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = git.Repo(search_parent_directories=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = { """repo_id""": str(lowerCamelCase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return list(map(lowerCamelCase_ , lowerCamelCase_ ) ) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" with open(lowerCamelCase_ , """wb""" ) as f: return pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) def __A ( lowerCamelCase_ ): """simple docstring""" def remove_articles(lowerCamelCase_ ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , lowerCamelCase_ ) def white_space_fix(lowerCamelCase_ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) ) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = normalize_answer(lowerCamelCase_ ).split() SCREAMING_SNAKE_CASE : Optional[int] = normalize_answer(lowerCamelCase_ ).split() SCREAMING_SNAKE_CASE : Tuple = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE : Optional[int] = 1.0 * num_same / len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 1.0 * num_same / len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = (2 * precision * recall) / (precision + recall) return fa def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ ) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ): em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: em /= len(lowerCamelCase_ ) return {"em": em} def __A ( lowerCamelCase_ ): """simple docstring""" return model_prefix.startswith("""rag""" ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE : Dict = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) continue SCREAMING_SNAKE_CASE : Dict = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p] setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) return hparams, config
79
1
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __a ( a, a ): """simple docstring""" _a = checkpoint _a = {} _a = vae_state_dict["encoder.conv_in.weight"] _a = vae_state_dict["encoder.conv_in.bias"] _a = vae_state_dict["encoder.conv_out.weight"] _a = vae_state_dict["encoder.conv_out.bias"] _a = vae_state_dict["encoder.norm_out.weight"] _a = vae_state_dict["encoder.norm_out.bias"] _a = vae_state_dict["decoder.conv_in.weight"] _a = vae_state_dict["decoder.conv_in.bias"] _a = vae_state_dict["decoder.conv_out.weight"] _a = vae_state_dict["decoder.conv_out.bias"] _a = vae_state_dict["decoder.norm_out.weight"] _a = vae_state_dict["decoder.norm_out.bias"] _a = vae_state_dict["quant_conv.weight"] _a = vae_state_dict["quant_conv.bias"] _a = vae_state_dict["post_quant_conv.weight"] _a = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only _a = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) _a = { layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only _a = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) _a = { layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(a ) } for i in range(a ): _a = [key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: _a = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) _a = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) _a = renew_vae_resnet_paths(a ) _a = {"old": F'down.{i}.block', "new": F'down_blocks.{i}.resnets'} assign_to_checkpoint(a, a, a, additional_replacements=[meta_path], config=a ) _a = [key for key in vae_state_dict if "encoder.mid.block" in key] _a = 2 for i in range(1, num_mid_res_blocks + 1 ): _a = [key for key in mid_resnets if F'encoder.mid.block_{i}' in key] _a = renew_vae_resnet_paths(a ) _a = {"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(a, a, a, additional_replacements=[meta_path], config=a ) _a = [key for key in vae_state_dict if "encoder.mid.attn" in key] _a = renew_vae_attention_paths(a ) _a = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(a, a, a, additional_replacements=[meta_path], config=a ) conv_attn_to_linear(a ) for i in range(a ): _a = num_up_blocks - 1 - i _a = [ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: _a = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] _a = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] _a = renew_vae_resnet_paths(a ) _a = {"old": F'up.{block_id}.block', "new": F'up_blocks.{i}.resnets'} assign_to_checkpoint(a, a, a, additional_replacements=[meta_path], config=a ) _a = [key for key in vae_state_dict if "decoder.mid.block" in key] _a = 2 for i in range(1, num_mid_res_blocks + 1 ): _a = [key for key in mid_resnets if F'decoder.mid.block_{i}' in key] _a = renew_vae_resnet_paths(a ) _a = {"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(a, a, a, additional_replacements=[meta_path], config=a ) _a = [key for key in vae_state_dict if "decoder.mid.attn" in key] _a = renew_vae_attention_paths(a ) _a = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(a, a, a, additional_replacements=[meta_path], config=a ) conv_attn_to_linear(a ) return new_checkpoint def __a ( a, a, ): """simple docstring""" _a = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) _a = io.BytesIO(r.content ) _a = OmegaConf.load(a ) _a = 5_1_2 _a = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open _a = {} with safe_open(a, framework="pt", device="cpu" ) as f: for key in f.keys(): _a = f.get_tensor(a ) else: _a = torch.load(a, map_location=a )["state_dict"] # Convert the VAE model. _a = create_vae_diffusers_config(a, image_size=a ) _a = custom_convert_ldm_vae_checkpoint(a, a ) _a = AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") __SCREAMING_SNAKE_CASE = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
388
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Tuple ): # A mock response for an HTTP head request to emulate server down _a = mock.Mock() _a = 500 _a = {} _a = HTTPError _a = {} # Download this model to make sure it's in the cache. _a = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCamelCase__ ) as mock_head: _a = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE_ ( self :str ): # This test is for deprecated behavior and can be removed in v5 _a = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class __snake_case ( unittest.TestCase ): """simple docstring""" @classmethod def SCREAMING_SNAKE_CASE_ ( cls :Any ): _a = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls :Any ): try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase__ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) _a = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase__ , repo_id="test-feature-extractor" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) _a = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE_ ( self :str ): _a = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase__ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) _a = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) _a = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): CustomFeatureExtractor.register_for_auto_class() _a = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) _a = AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor' , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
388
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Dict = "bert" def __init__( self : Any , lowerCamelCase__ : List[Any]=3_05_22 , lowerCamelCase__ : Dict=7_68 , lowerCamelCase__ : List[str]=12 , lowerCamelCase__ : List[Any]=12 , lowerCamelCase__ : str=30_72 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : str=0.1 , lowerCamelCase__ : Tuple=5_12 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Optional[Any]=0.0_2 , lowerCamelCase__ : List[Any]=1E-12 , lowerCamelCase__ : str=0 , lowerCamelCase__ : Optional[Any]="absolute" , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Tuple=None , **lowerCamelCase__ : str , ) ->Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : int = vocab_size _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : Optional[int] = type_vocab_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : str = layer_norm_eps _UpperCAmelCase : Any = position_embedding_type _UpperCAmelCase : Any = use_cache _UpperCAmelCase : Union[str, Any] = classifier_dropout class lowerCAmelCase__ ( UpperCAmelCase__ ): @property def lowerCAmelCase__ ( self : Tuple ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
40
'''simple docstring''' from __future__ import annotations import numpy as np def __lowerCAmelCase (__lowerCAmelCase ): return np.maximum(0 , __lowerCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
40
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) SCREAMING_SNAKE_CASE__ = '''hf-internal-testing/tiny-random-bert''' SCREAMING_SNAKE_CASE__ = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') SCREAMING_SNAKE_CASE__ = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class _UpperCamelCase( unittest.TestCase ): def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : Tuple = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(SCREAMING_SNAKE_CASE__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'refs' , 'main' ) ) as f: __a : List[str] = f.read() self.assertEqual(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , 'snapshots' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(os.path.isfile(SCREAMING_SNAKE_CASE__ ) ) # File is cached at the same place the second time. __a : Any = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Using a specific revision to test the full commit hash. __a : Tuple = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , revision='9b8c223' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , 'snapshots' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : str ): '''simple docstring''' with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'is not a valid model identifier' ): __a : Union[str, Any] = cached_file('tiny-random-bert' , SCREAMING_SNAKE_CASE__ ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'is not a valid git identifier' ): __a : List[str] = cached_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , revision='aaaa' ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'does not appear to have a file named' ): __a : Dict = cached_file(SCREAMING_SNAKE_CASE__ , 'conf' ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'does not appear to have a file named' ): __a : Any = cached_file(SCREAMING_SNAKE_CASE__ , 'conf' ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'refs' , 'main' ) ) as f: __a : Any = f.read() self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , '.no_exist' , SCREAMING_SNAKE_CASE__ , 'conf' ) ) ) __a : List[Any] = cached_file(SCREAMING_SNAKE_CASE__ , 'conf' , _raise_exceptions_for_missing_entries=SCREAMING_SNAKE_CASE__ ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = cached_file(SCREAMING_SNAKE_CASE__ , 'conf' , local_files_only=SCREAMING_SNAKE_CASE__ , _raise_exceptions_for_missing_entries=SCREAMING_SNAKE_CASE__ ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) __a : int = mock.Mock() __a : List[Any] = 5_0_0 __a : Dict = {} __a : str = HTTPError __a : Optional[int] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=SCREAMING_SNAKE_CASE__ ) as mock_head: __a : Optional[int] = cached_file(SCREAMING_SNAKE_CASE__ , 'conf' , _raise_exceptions_for_connection_errors=SCREAMING_SNAKE_CASE__ ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self : Dict ): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , SCREAMING_SNAKE_CASE__ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , SCREAMING_SNAKE_CASE__ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : int ): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , SCREAMING_SNAKE_CASE__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , SCREAMING_SNAKE_CASE__ , revision='ahaha' ) __a : Optional[Any] = get_file_from_repo('bert-base-cased' , SCREAMING_SNAKE_CASE__ ) # The name is the cached name which is not very easy to test, so instead we load the content. __a : Optional[Any] = json.loads(open(SCREAMING_SNAKE_CASE__ , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 7_6_8 ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __a : List[str] = Path(SCREAMING_SNAKE_CASE__ ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(SCREAMING_SNAKE_CASE__ , 'a.txt' ) , str(SCREAMING_SNAKE_CASE__ ) ) self.assertIsNone(get_file_from_repo(SCREAMING_SNAKE_CASE__ , 'b.txt' ) )
47
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : Any = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class _a ( A__ ): """simple docstring""" snake_case ="""mobilenet_v2""" def __init__( self , _snake_case=3 , _snake_case=224 , _snake_case=1.0 , _snake_case=8 , _snake_case=8 , _snake_case=6 , _snake_case=32 , _snake_case=True , _snake_case=True , _snake_case="relu6" , _snake_case=True , _snake_case=0.8 , _snake_case=0.02 , _snake_case=0.001 , _snake_case=255 , **_snake_case , ): super().__init__(**_snake_case ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _UpperCAmelCase =num_channels _UpperCAmelCase =image_size _UpperCAmelCase =depth_multiplier _UpperCAmelCase =depth_divisible_by _UpperCAmelCase =min_depth _UpperCAmelCase =expand_ratio _UpperCAmelCase =output_stride _UpperCAmelCase =first_layer_is_expansion _UpperCAmelCase =finegrained_output _UpperCAmelCase =hidden_act _UpperCAmelCase =tf_padding _UpperCAmelCase =classifier_dropout_prob _UpperCAmelCase =initializer_range _UpperCAmelCase =layer_norm_eps _UpperCAmelCase =semantic_loss_ignore_index class _a ( A__ ): """simple docstring""" snake_case =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE ( self ): return OrderedDict([("pixel_values", {0: "batch"})] ) @property def SCREAMING_SNAKE_CASE ( self ): if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def SCREAMING_SNAKE_CASE ( self ): return 1E-4
408
0
import random from typing import Any def __UpperCAmelCase ( snake_case_ : list ): '''simple docstring''' for _ in range(len(snake_case_ ) ): UpperCAmelCase: List[str] = random.randint(0 , len(snake_case_ ) - 1 ) UpperCAmelCase: Optional[int] = random.randint(0 , len(snake_case_ ) - 1 ) UpperCAmelCase , UpperCAmelCase: Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": snake_case_ : Optional[int] = [0, 1, 2, 3, 4, 5, 6, 7] snake_case_ : Union[str, Any] = ['''python''', '''says''', '''hello''', '''!'''] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
717
import os import pytest from transformers.dynamic_module_utils import get_imports snake_case_ : Optional[int] = '\nimport os\n' snake_case_ : str = '\ndef foo():\n import os\n return False\n' snake_case_ : List[str] = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' snake_case_ : int = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' snake_case_ : Optional[int] = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' snake_case_ : List[str] = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' snake_case_ : List[Any] = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' snake_case_ : Optional[Any] = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' snake_case_ : Optional[Any] = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' snake_case_ : List[str] = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' snake_case_ : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , snake_case_ ) def __UpperCAmelCase ( snake_case_ : Tuple , snake_case_ : Tuple ): '''simple docstring''' UpperCAmelCase: List[Any] = os.path.join(snake_case_ , "test_file.py" ) with open(snake_case_ , "w" ) as _tmp_file: _tmp_file.write(snake_case_ ) UpperCAmelCase: Tuple = get_imports(snake_case_ ) assert parsed_imports == ["os"]
166
0
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __UpperCAmelCase = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class a__ ( a__ ): '''simple docstring''' lowercase__ : Dict = "ernie_m" lowercase__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , lowerCamelCase_ = 25_00_02 , lowerCamelCase_ = 7_68 , lowerCamelCase_ = 12 , lowerCamelCase_ = 12 , lowerCamelCase_ = 30_72 , lowerCamelCase_ = "gelu" , lowerCamelCase_ = 0.1 , lowerCamelCase_ = 0.1 , lowerCamelCase_ = 5_14 , lowerCamelCase_ = 0.02 , lowerCamelCase_ = 1 , lowerCamelCase_ = 1e-05 , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=0.0 , **lowerCamelCase_ , ) -> str: super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = classifier_dropout lowerCAmelCase__ = is_decoder lowerCAmelCase__ = act_dropout
90
'''simple docstring''' def lowerCamelCase_ ( A_ = 3 , A_ = 7 , A_ = 1_00_00_00 ): __lowerCamelCase = 0 __lowerCamelCase = 1 for current_denominator in range(1 , limit + 1 ): __lowerCamelCase = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowerCamelCase = current_numerator __lowerCamelCase = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
316
0
import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __lowerCamelCase ( __a ): lowerCamelCase__: int = "facebook/bart-large-mnli" lowerCamelCase__: Optional[Any] = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__: Dict = "text_classifier" lowerCamelCase__: str = AutoTokenizer lowerCamelCase__: List[str] = AutoModelForSequenceClassification lowerCamelCase__: str = ["text", ["text"]] lowerCamelCase__: List[Any] = ["text"] def A__ ( self ) -> int: """simple docstring""" super().setup() UpperCAmelCase: Any = self.model.config UpperCAmelCase: Optional[Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): UpperCAmelCase: List[Any] = int(lowerCAmelCase_ ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def A__ ( self , __snake_case , __snake_case ) -> Any: """simple docstring""" UpperCAmelCase: List[str] = labels return self.pre_processor( [text] * len(lowerCAmelCase_ ) , [F'This example is {label}' for label in labels] , return_tensors="pt" , padding="max_length" , ) def A__ ( self , __snake_case ) -> Dict: """simple docstring""" UpperCAmelCase: Tuple = outputs.logits UpperCAmelCase: List[Any] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
719
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case_ : Optional[int] = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : Optional[int]=8 ): '''simple docstring''' UpperCAmelCase: Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase: Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __lowerCamelCase ( lowercase ): def __init__( self , __snake_case , __snake_case , __snake_case , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( unet=__snake_case , scheduler=__snake_case , movq=__snake_case , ) UpperCAmelCase: List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" if latents is None: UpperCAmelCase: Tuple = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) UpperCAmelCase: str = latents.to(__snake_case ) UpperCAmelCase: Tuple = latents * scheduler.init_noise_sigma return latents def A__ ( self , __snake_case=0 ) -> str: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase: Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) UpperCAmelCase: Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) def A__ ( self , __snake_case=0 ) -> List[Any]: """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase: Optional[Any] = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=__snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase: int = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase: str = cpu_offload_with_hook(__snake_case , __snake_case , prev_module_hook=__snake_case ) # We'll offload the last model manually. UpperCAmelCase: Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A__ ( self ) -> Any: """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case = 5_1_2 , __snake_case = 5_1_2 , __snake_case = 1_0_0 , __snake_case = 4.0 , __snake_case = 1 , __snake_case = None , __snake_case = None , __snake_case = "pil" , __snake_case = True , ) -> Dict: """simple docstring""" UpperCAmelCase: Optional[int] = self._execution_device UpperCAmelCase: Optional[int] = guidance_scale > 1.0 if isinstance(__snake_case , __snake_case ): UpperCAmelCase: int = torch.cat(__snake_case , dim=0 ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: List[Any] = torch.cat(__snake_case , dim=0 ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: List[Any] = torch.cat(__snake_case , dim=0 ) UpperCAmelCase: Dict = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCAmelCase: Dict = image_embeds.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase: Dict = negative_image_embeds.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase: Tuple = hint.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase: Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) UpperCAmelCase: Any = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) self.scheduler.set_timesteps(__snake_case , device=__snake_case ) UpperCAmelCase: Any = self.scheduler.timesteps UpperCAmelCase: List[str] = self.movq.config.latent_channels UpperCAmelCase , UpperCAmelCase: Union[str, Any] = downscale_height_and_width(__snake_case , __snake_case , self.movq_scale_factor ) # create initial latent UpperCAmelCase: Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __snake_case , __snake_case , __snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase: List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase: str = {"image_embeds": image_embeds, "hint": hint} UpperCAmelCase: Any = self.unet( sample=__snake_case , timestep=__snake_case , encoder_hidden_states=__snake_case , added_cond_kwargs=__snake_case , return_dict=__snake_case , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase: Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase: str = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase: Dict = variance_pred.chunk(2 ) UpperCAmelCase: List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase: Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase: Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase: int = self.scheduler.step( __snake_case , __snake_case , __snake_case , generator=__snake_case , )[0] # post-processing UpperCAmelCase: Optional[Any] = self.movq.decode(__snake_case , force_not_quantize=__snake_case )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: UpperCAmelCase: Optional[Any] = image * 0.5 + 0.5 UpperCAmelCase: Union[str, Any] = image.clamp(0 , 1 ) UpperCAmelCase: List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase: Dict = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
166
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
354
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Any ) -> Dict: assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] ) -> List[Any]: __lowerCAmelCase =tmp_path / """cache""" __lowerCAmelCase ={"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase =TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __lowerCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Tuple ) -> List[Any]: __lowerCAmelCase =tmp_path / """cache""" __lowerCAmelCase ={"""text""": """string"""} __lowerCAmelCase =features.copy() if features else default_expected_features __lowerCAmelCase =( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase =TextDatasetReader(__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Any: __lowerCAmelCase =tmp_path / """cache""" __lowerCAmelCase ={"""text""": """string"""} __lowerCAmelCase =TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , split=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __lowerCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] ) -> Any: if issubclass(__lowerCamelCase , __lowerCamelCase ): __lowerCAmelCase =text_path elif issubclass(__lowerCamelCase , __lowerCamelCase ): __lowerCAmelCase =[text_path] __lowerCAmelCase =tmp_path / """cache""" __lowerCAmelCase ={"""text""": """string"""} __lowerCAmelCase =TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) def __lowerCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : str=("train",) ) -> Dict: assert isinstance(__lowerCamelCase , __lowerCamelCase ) for split in splits: __lowerCAmelCase =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] ) -> Dict: __lowerCAmelCase =tmp_path / """cache""" __lowerCAmelCase ={"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase =TextDatasetReader({"""train""": text_path} , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_text_datasetdict(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __lowerCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) -> Tuple: __lowerCAmelCase =tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase ={"""text""": """string"""} __lowerCAmelCase =features.copy() if features else default_expected_features __lowerCAmelCase =( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase =TextDatasetReader({"""train""": text_path} , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_datasetdict(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Any ) -> int: if split: __lowerCAmelCase ={split: text_path} else: __lowerCAmelCase ="""train""" __lowerCAmelCase ={"""train""": text_path, """test""": text_path} __lowerCAmelCase =tmp_path / """cache""" __lowerCAmelCase ={"""text""": """string"""} __lowerCAmelCase =TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_datasetdict(__lowerCamelCase , __lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
354
1
'''simple docstring''' import math import sys def _UpperCamelCase ( __A ) -> int: '''simple docstring''' if number != int(__A ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 UpperCamelCase__ = [-1] * (number + 1) UpperCamelCase__ = 0 for i in range(1 , number + 1 ): UpperCamelCase__ = sys.maxsize UpperCamelCase__ = int(math.sqrt(__A ) ) for j in range(1 , root + 1 ): UpperCamelCase__ = 1 + answers[i - (j**2)] UpperCamelCase__ = min(__A , __A ) UpperCamelCase__ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
223
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A , __A ) -> Optional[int]: '''simple docstring''' if len(__A ) <= 1 or n <= 1: return insert_next(__A , n - 1 ) rec_insertion_sort(__A , n - 1 ) def _UpperCamelCase ( __A , __A ) -> str: '''simple docstring''' if index >= len(__A ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCamelCase__ , UpperCamelCase__ = ( collection[index], collection[index - 1], ) insert_next(__A , index + 1 ) if __name__ == "__main__": a__ : str = input('Enter integers separated by spaces: ') a__ : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
223
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
from __future__ import annotations def lowerCAmelCase__(__snake_case ,__snake_case ) -> list[int]: '''simple docstring''' lowerCamelCase__ = 0 lowerCamelCase__ = len(__snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCamelCase__ = i + 1 else: lowerCamelCase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
481
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : List[Any] = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : Optional[int] = len(lowerCamelCase_ ) A : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): A : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): A : List[str] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: A : str = subset[i - 1][j] if arr[i - 1] <= j: A : str = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
423
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = '▁' __SCREAMING_SNAKE_CASE = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } __SCREAMING_SNAKE_CASE = { 'facebook/m2m100_418M': 1_024, } # fmt: off __SCREAMING_SNAKE_CASE = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class a__ ( A__ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self :Optional[int] , _lowerCamelCase :List[str] , _lowerCamelCase :Any , _lowerCamelCase :Optional[Any]=None , _lowerCamelCase :Union[str, Any]=None , _lowerCamelCase :Optional[Any]="<s>" , _lowerCamelCase :Optional[Any]="</s>" , _lowerCamelCase :Any="</s>" , _lowerCamelCase :Optional[Any]="<pad>" , _lowerCamelCase :Tuple="<unk>" , _lowerCamelCase :Union[str, Any]="m2m100" , _lowerCamelCase :Optional[Dict[str, Any]] = None , _lowerCamelCase :List[str]=8 , **_lowerCamelCase :List[Any] , ): '''simple docstring''' UpperCamelCase_ : Any ={} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase_ : Union[str, Any] =language_codes UpperCamelCase_ : List[Any] =FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCamelCase_ : Optional[int] ={lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} UpperCamelCase_ : Tuple =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_lowerCamelCase ) for lang_code in fairseq_language_code if self.get_lang_token(_lowerCamelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , language_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_ : Union[str, Any] =vocab_file UpperCamelCase_ : Dict =load_json(_lowerCamelCase ) UpperCamelCase_ : Tuple ={v: k for k, v in self.encoder.items()} UpperCamelCase_ : List[Any] =spm_file UpperCamelCase_ : Any =load_spm(_lowerCamelCase , self.sp_model_kwargs ) UpperCamelCase_ : Union[str, Any] =len(self.encoder ) UpperCamelCase_ : Union[str, Any] ={ self.get_lang_token(_lowerCamelCase ): self.encoder_size + i for i, lang_code in enumerate(_lowerCamelCase ) } UpperCamelCase_ : Optional[Any] ={lang_code: self.encoder_size + i for i, lang_code in enumerate(_lowerCamelCase )} UpperCamelCase_ : str ={v: k for k, v in self.lang_token_to_id.items()} UpperCamelCase_ : Optional[int] =src_lang if src_lang is not None else 'en' UpperCamelCase_ : str =tgt_lang UpperCamelCase_ : int =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCamelCase_ : Optional[Any] =num_madeup_words @property def lowerCamelCase_ ( self :Any ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :str ): '''simple docstring''' UpperCamelCase_ : List[Any] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :str ): '''simple docstring''' return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def lowerCamelCase_ ( self :List[Any] , _lowerCamelCase :Tuple ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def lowerCamelCase_ ( self :str , _lowerCamelCase :int ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_lowerCamelCase , self.unk_token ) def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Optional[int] =[] UpperCamelCase_ : str ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token UpperCamelCase_ : Optional[int] =[] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def lowerCamelCase_ ( self :str , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None , _lowerCamelCase :bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) UpperCamelCase_ : Dict =[1] * len(self.prefix_tokens ) UpperCamelCase_ : int =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self :Union[str, Any] ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] ={self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :List[Any] ): '''simple docstring''' UpperCamelCase_ : Dict =self.__dict__.copy() UpperCamelCase_ : Dict =None return state def __setstate__( self :Tuple , _lowerCamelCase :Dict ): '''simple docstring''' UpperCamelCase_ : List[str] =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase_ : List[str] ={} UpperCamelCase_ : Union[str, Any] =load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCamelCase_ ( self :List[Any] , _lowerCamelCase :str , _lowerCamelCase :Optional[str] = None ): '''simple docstring''' UpperCamelCase_ : Any =Path(_lowerCamelCase ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) UpperCamelCase_ : Union[str, Any] =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) UpperCamelCase_ : Optional[Any] =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , 'wb' ) as fi: UpperCamelCase_ : Any =self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def lowerCamelCase_ ( self :int , _lowerCamelCase :List[str] , _lowerCamelCase :str = "en" , _lowerCamelCase :Optional[List[str]] = None , _lowerCamelCase :str = "ro" , **_lowerCamelCase :Union[str, Any] , ): '''simple docstring''' UpperCamelCase_ : Dict =src_lang UpperCamelCase_ : Optional[Any] =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def lowerCamelCase_ ( self :str , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Optional[str] , _lowerCamelCase :Optional[str] , **_lowerCamelCase :int ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCamelCase_ : Any =src_lang UpperCamelCase_ : Tuple =self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_ : Union[str, Any] =self.get_lang_id(_lowerCamelCase ) UpperCamelCase_ : Dict =tgt_lang_id return inputs def lowerCamelCase_ ( self :str ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self :str ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self :Any , _lowerCamelCase :str ): '''simple docstring''' UpperCamelCase_ : List[Any] =self.get_lang_token(_lowerCamelCase ) UpperCamelCase_ : List[str] =self.lang_token_to_id[lang_token] UpperCamelCase_ : Tuple =[self.cur_lang_id] UpperCamelCase_ : List[Any] =[self.eos_token_id] def lowerCamelCase_ ( self :str , _lowerCamelCase :str ): '''simple docstring''' UpperCamelCase_ : Any =self.get_lang_token(_lowerCamelCase ) UpperCamelCase_ : Dict =self.lang_token_to_id[lang_token] UpperCamelCase_ : Dict =[self.cur_lang_id] UpperCamelCase_ : Optional[int] =[self.eos_token_id] def lowerCamelCase_ ( self :Any , _lowerCamelCase :str ): '''simple docstring''' return self.lang_code_to_token[lang] def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :str ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =self.get_lang_token(_lowerCamelCase ) return self.lang_token_to_id[lang_token] def A_ ( __lowercase , __lowercase ): UpperCamelCase_ : Any =sentencepiece.SentencePieceProcessor(**__lowercase ) spm.Load(str(__lowercase ) ) return spm def A_ ( __lowercase ): with open(__lowercase , 'r' ) as f: return json.load(__lowercase ) def A_ ( __lowercase , __lowercase ): with open(__lowercase , 'w' ) as f: json.dump(__lowercase , __lowercase , indent=2 )
357
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } __SCREAMING_SNAKE_CASE = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } __SCREAMING_SNAKE_CASE = '▁' class a__ ( A__ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :Optional[Any] , _lowerCamelCase :int , _lowerCamelCase :List[Any]=True , _lowerCamelCase :int=True , _lowerCamelCase :Tuple=False , _lowerCamelCase :Optional[Any]="[CLS]" , _lowerCamelCase :List[Any]="[SEP]" , _lowerCamelCase :Dict="<unk>" , _lowerCamelCase :int="[SEP]" , _lowerCamelCase :int="<pad>" , _lowerCamelCase :Optional[Any]="[CLS]" , _lowerCamelCase :str="[MASK]" , _lowerCamelCase :Optional[Dict[str, Any]] = None , **_lowerCamelCase :Union[str, Any] , ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] =( AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase , normalized=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token ) UpperCamelCase_ : Any ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) UpperCamelCase_ : str =do_lower_case UpperCamelCase_ : Any =remove_space UpperCamelCase_ : List[Any] =keep_accents UpperCamelCase_ : Optional[Any] =vocab_file UpperCamelCase_ : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def lowerCamelCase_ ( self :List[str] ): '''simple docstring''' return len(self.sp_model ) def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : Optional[int] ={self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[int] ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =self.__dict__.copy() UpperCamelCase_ : Optional[Any] =None return state def __setstate__( self :List[Any] , _lowerCamelCase :Any ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase_ : Tuple ={} UpperCamelCase_ : List[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :Tuple ): '''simple docstring''' if self.remove_space: UpperCamelCase_ : Union[str, Any] =' '.join(inputs.strip().split() ) else: UpperCamelCase_ : List[Any] =inputs UpperCamelCase_ : Optional[int] =outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: UpperCamelCase_ : Optional[Any] =unicodedata.normalize('NFKD' , _lowerCamelCase ) UpperCamelCase_ : Tuple =''.join([c for c in outputs if not unicodedata.combining(_lowerCamelCase )] ) if self.do_lower_case: UpperCamelCase_ : Optional[Any] =outputs.lower() return outputs def lowerCamelCase_ ( self :Dict , _lowerCamelCase :str ): '''simple docstring''' UpperCamelCase_ : str =self.preprocess_text(_lowerCamelCase ) UpperCamelCase_ : Any =self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) UpperCamelCase_ : int =[] for piece in pieces: if len(_lowerCamelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): UpperCamelCase_ : Union[str, Any] =self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCamelCase_ : Any =cur_pieces[1:] else: UpperCamelCase_ : List[str] =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCamelCase ) else: new_pieces.append(_lowerCamelCase ) return new_pieces def lowerCamelCase_ ( self :Dict , _lowerCamelCase :List[str] ): '''simple docstring''' return self.sp_model.PieceToId(_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :Union[str, Any] ): '''simple docstring''' return self.sp_model.IdToPiece(_lowerCamelCase ) def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :Optional[int] ): '''simple docstring''' UpperCamelCase_ : int =[] UpperCamelCase_ : int ='' UpperCamelCase_ : int =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase ) + token UpperCamelCase_ : List[Any] =True UpperCamelCase_ : str =[] else: current_sub_tokens.append(_lowerCamelCase ) UpperCamelCase_ : List[Any] =False out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase_ : Tuple =[self.sep_token_id] UpperCamelCase_ : Tuple =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None , _lowerCamelCase :bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] def lowerCamelCase_ ( self :List[Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase_ : Tuple =[self.sep_token_id] UpperCamelCase_ : List[str] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :str , _lowerCamelCase :Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ : int =os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , 'wb' ) as fi: UpperCamelCase_ : Dict =self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
357
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class a_ ( lowerCamelCase ): lowercase = """dpt""" def __init__( self , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-12 , _SCREAMING_SNAKE_CASE=384 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[2, 5, 8, 11] , _SCREAMING_SNAKE_CASE="project" , _SCREAMING_SNAKE_CASE=[4, 2, 1, 0.5] , _SCREAMING_SNAKE_CASE=[96, 192, 384, 768] , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.4 , _SCREAMING_SNAKE_CASE=255 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=[1, 1024, 24, 24] , _SCREAMING_SNAKE_CASE=[0, 1] , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = hidden_size UpperCamelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) UpperCamelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } UpperCamelCase = BitConfig(**_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info("""Initializing the config with a `BiT` backbone.""" ) UpperCamelCase = BitConfig(**_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = backbone_config else: raise ValueError( F"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) UpperCamelCase = backbone_featmap_shape UpperCamelCase = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = [] UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = qkv_bias UpperCamelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) UpperCamelCase = readout_type UpperCamelCase = reassemble_factors UpperCamelCase = neck_hidden_sizes UpperCamelCase = fusion_hidden_size UpperCamelCase = head_in_index UpperCamelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) UpperCamelCase = use_auxiliary_head UpperCamelCase = auxiliary_loss_weight UpperCamelCase = semantic_loss_ignore_index UpperCamelCase = semantic_classifier_dropout def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output
703
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> tuple[float, list[float]]: UpperCamelCase = list(range(len(__UpperCamelCase ) ) ) UpperCamelCase = [v / w for v, w in zip(__UpperCamelCase , __UpperCamelCase )] index.sort(key=lambda __UpperCamelCase : ratio[i] , reverse=__UpperCamelCase ) UpperCamelCase = 0 UpperCamelCase = [0] * len(__UpperCamelCase ) for i in index: if weight[i] <= capacity: UpperCamelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCamelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
35
0
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return 1 / (1 + np.exp(-z )) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return (-y * np.log(A_ ) - (1 - y) * np.log(1 - h )).mean() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = np.dot(A_ , A_ ) return np.sum(y * scores - np.log(1 + np.exp(A_ ) ) ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=70000 ): """simple docstring""" lowerCAmelCase__ : str = np.zeros(x.shape[1] ) for iterations in range(A_ ): lowerCAmelCase__ : List[Any] = np.dot(A_ , A_ ) lowerCAmelCase__ : Dict = sigmoid_function(A_ ) lowerCAmelCase__ : Optional[int] = np.dot(x.T , h - y ) / y.size lowerCAmelCase__ : Any = theta - alpha * gradient # updating the weights lowerCAmelCase__ : List[str] = np.dot(A_ , A_ ) lowerCAmelCase__ : Tuple = sigmoid_function(A_ ) lowerCAmelCase__ : Any = cost_function(A_ , A_ ) if iterations % 100 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _lowerCAmelCase = datasets.load_iris() _lowerCAmelCase = iris.data[:, :2] _lowerCAmelCase = (iris.target != 0) * 1 _lowerCAmelCase = 0.1 _lowerCAmelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return sigmoid_function( np.dot(A_ , A_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((_lowerCAmelCase) , (_lowerCAmelCase)) = (x[:, 0].min(), x[:, 0].max()) ((_lowerCAmelCase) , (_lowerCAmelCase)) = (x[:, 1].min(), x[:, 1].max()) ((_lowerCAmelCase) , (_lowerCAmelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _lowerCAmelCase = np.c_[xxa.ravel(), xxa.ravel()] _lowerCAmelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
565
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) a_ = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""BeitFeatureExtractor"""] a_ = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
221
0
snake_case = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ snake_case = [{"""type""": """code""", """content""": INSTALL_CONTENT}] snake_case = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
711
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
198
0
from __future__ import annotations lowerCamelCase__ = list[tuple[int, int]] lowerCamelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class snake_case__ : '''simple docstring''' def __init__( self , a__ , a__ , a__ , a__ , a__ , a__ , ) -> List[str]: '''simple docstring''' __snake_case :int = pos_x __snake_case :Optional[int] = pos_y __snake_case :Optional[Any] = (pos_y, pos_x) __snake_case :Any = goal_x __snake_case :List[Any] = goal_y __snake_case :Optional[Any] = g_cost __snake_case :int = parent __snake_case :Tuple = self.calculate_heuristic() def __lowercase ( self ) -> float: '''simple docstring''' __snake_case :List[Any] = abs(self.pos_x - self.goal_x ) __snake_case :Tuple = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , a__ ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class snake_case__ : '''simple docstring''' def __init__( self , a__ , a__ ) -> List[str]: '''simple docstring''' __snake_case :Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a__ ) __snake_case :Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , a__ ) __snake_case :str = [self.start] __snake_case :list[Node] = [] __snake_case :int = False def __lowercase ( self ) -> Path | None: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __snake_case :int = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __snake_case :Tuple = True return self.retrace_path(a__ ) self.closed_nodes.append(a__ ) __snake_case :Dict = self.get_successors(a__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a__ ) else: # retrieve the best current path __snake_case :Dict = self.open_nodes.pop(self.open_nodes.index(a__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a__ ) else: self.open_nodes.append(a__ ) if not self.reached: return [self.start.pos] return None def __lowercase ( self , a__ ) -> list[Node]: '''simple docstring''' __snake_case :List[str] = [] for action in delta: __snake_case :List[str] = parent.pos_x + action[1] __snake_case :str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a__ , a__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a__ , ) ) return successors def __lowercase ( self , a__ ) -> Path: '''simple docstring''' __snake_case :Optional[int] = node __snake_case :List[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __snake_case :Dict = current_node.parent path.reverse() return path if __name__ == "__main__": lowerCamelCase__ = (0, 0) lowerCamelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") lowerCamelCase__ = GreedyBestFirst(init, goal) lowerCamelCase__ = greedy_bf.search() if path: for pos_x, pos_y in path: lowerCamelCase__ = 2 for elem in grid: print(elem)
455
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """sentencepiece.model"""} lowerCamelCase__ = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } lowerCamelCase__ = { """google/rembert""": 256, } class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , a__ , a__=False , a__=True , a__=True , a__="[CLS]" , a__="[SEP]" , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , **a__ , ) -> List[str]: '''simple docstring''' super().__init__( do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , **a__ , ) __snake_case :List[Any] = do_lower_case __snake_case :Dict = remove_space __snake_case :int = keep_accents __snake_case :Optional[int] = vocab_file __snake_case :int = spm.SentencePieceProcessor() self.sp_model.Load(a__ ) @property def __lowercase ( self ) -> Tuple: '''simple docstring''' return len(self.sp_model ) def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case :int = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: '''simple docstring''' __snake_case :str = self.__dict__.copy() __snake_case :Dict = None return state def __setstate__( self , a__ ) -> str: '''simple docstring''' __snake_case :Dict = d __snake_case :Dict = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __lowercase ( self , a__ , a__=False ) -> Tuple: '''simple docstring''' __snake_case :Union[str, Any] = self.sp_model.EncodeAsPieces(a__ ) return pieces def __lowercase ( self , a__ ) -> str: '''simple docstring''' return self.sp_model.PieceToId(a__ ) def __lowercase ( self , a__ ) -> Any: '''simple docstring''' return self.sp_model.IdToPiece(a__ ) def __lowercase ( self , a__ ) -> Union[str, Any]: '''simple docstring''' __snake_case :List[Any] = self.sp_model.decode_pieces(a__ ) return out_string def __lowercase ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' __snake_case :Optional[int] = [self.sep_token_id] __snake_case :List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowercase ( self , a__ , a__ = None , a__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] def __lowercase ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' __snake_case :Any = [self.sep_token_id] __snake_case :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(a__ ) ) return __snake_case :Optional[int] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
455
1
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A_ : int = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowerCamelCase__ : str = 128 elif "12-12" in model_name: lowerCamelCase__ : Union[str, Any] = 12 lowerCamelCase__ : str = 12 elif "14-14" in model_name: lowerCamelCase__ : Union[str, Any] = 14 lowerCamelCase__ : str = 14 elif "16-16" in model_name: lowerCamelCase__ : Optional[Any] = 16 lowerCamelCase__ : int = 16 else: raise ValueError('Model not supported' ) lowerCamelCase__ : List[str] = 'huggingface/label-files' if "speech-commands" in model_name: lowerCamelCase__ : Optional[Any] = 35 lowerCamelCase__ : Any = 'speech-commands-v2-id2label.json' else: lowerCamelCase__ : Optional[int] = 527 lowerCamelCase__ : Any = 'audioset-id2label.json' lowerCamelCase__ : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : str = idalabel lowerCamelCase__ : str = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( _lowerCamelCase ): if "module.v" in name: lowerCamelCase__ : str = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: lowerCamelCase__ : Optional[Any] = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: lowerCamelCase__ : int = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: lowerCamelCase__ : Union[str, Any] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCamelCase__ : str = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: lowerCamelCase__ : str = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowerCamelCase__ : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase__ : List[str] = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase__ : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase__ : str = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase__ : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase__ : Any = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowerCamelCase__ : Dict = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: lowerCamelCase__ : Union[str, Any] = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: lowerCamelCase__ : Any = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Any = orig_state_dict.pop(_lowerCamelCase ) if "qkv" in key: lowerCamelCase__ : int = key.split('.' ) lowerCamelCase__ : Any = int(key_split[3] ) lowerCamelCase__ : Optional[int] = config.hidden_size if "weight" in key: lowerCamelCase__ : Dict = val[:dim, :] lowerCamelCase__ : Union[str, Any] = val[dim : dim * 2, :] lowerCamelCase__ : str = val[-dim:, :] else: lowerCamelCase__ : Tuple = val[:dim] lowerCamelCase__ : str = val[dim : dim * 2] lowerCamelCase__ : Optional[int] = val[-dim:] else: lowerCamelCase__ : Union[str, Any] = val return orig_state_dict def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): lowerCamelCase__ : Optional[int] = get_audio_spectrogram_transformer_config(_lowerCamelCase ) lowerCamelCase__ : str = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict lowerCamelCase__ : List[Any] = model_name_to_url[model_name] lowerCamelCase__ : str = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='cpu' ) # remove some keys remove_keys(_lowerCamelCase ) # rename some keys lowerCamelCase__ : List[str] = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) # load 🤗 model lowerCamelCase__ : List[Any] = ASTForAudioClassification(_lowerCamelCase ) model.eval() model.load_state_dict(_lowerCamelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowerCamelCase__ : Dict = -4.2_677_393 if 'speech-commands' not in model_name else -6.845_978 lowerCamelCase__ : Optional[Any] = 4.5_689_974 if 'speech-commands' not in model_name else 5.5_654_526 lowerCamelCase__ : Optional[int] = 1024 if 'speech-commands' not in model_name else 128 lowerCamelCase__ : Tuple = ASTFeatureExtractor(mean=_lowerCamelCase , std=_lowerCamelCase , max_length=_lowerCamelCase ) if "speech-commands" in model_name: lowerCamelCase__ : Dict = load_dataset('speech_commands' , 'v0.02' , split='validation' ) lowerCamelCase__ : str = dataset[0]['audio']['array'] else: lowerCamelCase__ : List[Any] = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) lowerCamelCase__ , lowerCamelCase__ : Dict = torchaudio.load(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = waveform.squeeze().numpy() lowerCamelCase__ : str = feature_extractor(_lowerCamelCase , sampling_rate=1_6000 , return_tensors='pt' ) # forward pass lowerCamelCase__ : List[Any] = model(**_lowerCamelCase ) lowerCamelCase__ : Dict = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowerCamelCase__ : int = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowerCamelCase__ : Union[str, Any] = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowerCamelCase__ : Optional[Any] = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowerCamelCase__ : Dict = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowerCamelCase__ : Optional[int] = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowerCamelCase__ : Tuple = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowerCamelCase__ : Optional[int] = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowerCamelCase__ : str = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(_lowerCamelCase ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A_ : Optional[int] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
696
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A_ : Optional[int] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A_ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) A_ : Tuple = BeautifulSoup(res.text, "html.parser") A_ : Dict = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
696
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Dict = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Optional[int] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __lowerCamelCase : List[str] = tuple[int, int] class a__ : def __init__( self : Union[str, Any],_A : int,_A : int,_A : int,_A : int,_A : int,_A : Node | None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = pos_x SCREAMING_SNAKE_CASE_ : str = pos_y SCREAMING_SNAKE_CASE_ : Dict = (pos_y, pos_x) SCREAMING_SNAKE_CASE_ : Optional[int] = goal_x SCREAMING_SNAKE_CASE_ : str = goal_y SCREAMING_SNAKE_CASE_ : List[str] = g_cost SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : str = self.calculate_heuristic() SCREAMING_SNAKE_CASE_ : Any = self.g_cost + self.h_cost def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.pos_x - self.goal_x SCREAMING_SNAKE_CASE_ : Optional[Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_A ) + abs(_A ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Dict,_A : Node ): """simple docstring""" return self.f_cost < other.f_cost class a__ : def __init__( self : Optional[Any],_A : TPosition,_A : TPosition ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = Node(start[1],start[0],goal[1],goal[0],0,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Node(goal[1],goal[0],goal[1],goal[0],9_9999,_A ) SCREAMING_SNAKE_CASE_ : List[Any] = [self.start] SCREAMING_SNAKE_CASE_ : list[Node] = [] SCREAMING_SNAKE_CASE_ : Any = False def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_A ) self.closed_nodes.append(_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_successors(_A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_A ) else: # retrieve the best current path SCREAMING_SNAKE_CASE_ : str = self.open_nodes.pop(self.open_nodes.index(_A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_A ) else: self.open_nodes.append(_A ) return [self.start.pos] def __UpperCamelCase ( self : Dict,_A : Node ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [] for action in delta: SCREAMING_SNAKE_CASE_ : int = parent.pos_x + action[1] SCREAMING_SNAKE_CASE_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _A,_A,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,_A,) ) return successors def __UpperCamelCase ( self : Optional[Any],_A : Node | None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = node SCREAMING_SNAKE_CASE_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE_ : int = current_node.parent path.reverse() return path class a__ : def __init__( self : Tuple,_A : TPosition,_A : TPosition ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = AStar(_A,_A ) SCREAMING_SNAKE_CASE_ : Tuple = AStar(_A,_A ) SCREAMING_SNAKE_CASE_ : Any = False def __UpperCamelCase ( self : Dict ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() SCREAMING_SNAKE_CASE_ : Optional[int] = self.fwd_astar.open_nodes.pop(0 ) SCREAMING_SNAKE_CASE_ : int = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _A,_A ) self.fwd_astar.closed_nodes.append(_A ) self.bwd_astar.closed_nodes.append(_A ) SCREAMING_SNAKE_CASE_ : int = current_bwd_node SCREAMING_SNAKE_CASE_ : Tuple = current_fwd_node SCREAMING_SNAKE_CASE_ : str = { self.fwd_astar: self.fwd_astar.get_successors(_A ), self.bwd_astar: self.bwd_astar.get_successors(_A ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_A ) else: # retrieve the best current path SCREAMING_SNAKE_CASE_ : Optional[int] = astar.open_nodes.pop( astar.open_nodes.index(_A ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_A ) else: astar.open_nodes.append(_A ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self : List[str],_A : Node,_A : Node ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.fwd_astar.retrace_path(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.bwd_astar.retrace_path(_A ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE_ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __lowerCamelCase : Tuple = (0, 0) __lowerCamelCase : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = AStar(init, goal) __lowerCamelCase : List[Any] = a_star.search() __lowerCamelCase : Tuple = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') __lowerCamelCase : Any = time.time() __lowerCamelCase : Any = BidirectionalAStar(init, goal) __lowerCamelCase : str = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
216
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : str = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : List[str] = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __lowerCamelCase : Tuple = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } __lowerCamelCase : Optional[int] = '''▁''' class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] A = BarthezTokenizer def __init__( self : Optional[int],_A : int=None,_A : List[Any]=None,_A : Union[str, Any]="<s>",_A : Dict="</s>",_A : Union[str, Any]="</s>",_A : Union[str, Any]="<s>",_A : Optional[Any]="<unk>",_A : str="<pad>",_A : Tuple="<mask>",**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( _A,tokenizer_file=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,**_A,) SCREAMING_SNAKE_CASE_ : List[Any] = vocab_file SCREAMING_SNAKE_CASE_ : Union[str, Any] = False if not self.vocab_file else True def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : Tuple,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : List[str],_A : str,_A : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : str = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file,_A ) return (out_vocab_file,)
216
1
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class __lowerCamelCase ( nn.Module ): '''simple docstring''' A_ : int A_ : jnp.dtype = jnp.floataa def _UpperCAmelCase ( self ) -> List[Any]: _a = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __UpperCAmelCase ) -> Union[str, Any]: _a , _a , _a , _a = hidden_states.shape _a = jax.image.resize( __UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) _a = self.conv(__UpperCAmelCase ) return hidden_states class __lowerCamelCase ( nn.Module ): '''simple docstring''' A_ : int A_ : jnp.dtype = jnp.floataa def _UpperCAmelCase ( self ) -> int: _a = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __UpperCAmelCase ) -> str: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _a = self.conv(__UpperCAmelCase ) return hidden_states class __lowerCamelCase ( nn.Module ): '''simple docstring''' A_ : int A_ : int = None A_ : float = 0.0 A_ : bool = None A_ : jnp.dtype = jnp.floataa def _UpperCAmelCase ( self ) -> Optional[Any]: _a = self.in_channels if self.out_channels is None else self.out_channels _a = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _a = nn.Conv( __UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _a = nn.Dense(__UpperCAmelCase , dtype=self.dtype ) _a = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _a = nn.Dropout(self.dropout_prob ) _a = nn.Conv( __UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _a = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _a = None if use_nin_shortcut: _a = nn.Conv( __UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> Any: _a = hidden_states _a = self.norma(__UpperCAmelCase ) _a = nn.swish(__UpperCAmelCase ) _a = self.conva(__UpperCAmelCase ) _a = self.time_emb_proj(nn.swish(__UpperCAmelCase ) ) _a = jnp.expand_dims(jnp.expand_dims(__UpperCAmelCase , 1 ) , 1 ) _a = hidden_states + temb _a = self.norma(__UpperCAmelCase ) _a = nn.swish(__UpperCAmelCase ) _a = self.dropout(__UpperCAmelCase , __UpperCAmelCase ) _a = self.conva(__UpperCAmelCase ) if self.conv_shortcut is not None: _a = self.conv_shortcut(__UpperCAmelCase ) return hidden_states + residual
285
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Union[str, Any] = ['input_values', 'padding_mask'] def __init__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 24000 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]: super().__init__(feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , **__UpperCAmelCase ) _a = chunk_length_s _a = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs _a = True _a = bool( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a = [np.asarray(__UpperCAmelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): _a = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _a = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _a = [np.asarray(__UpperCAmelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCAmelCase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _a = None _a = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _a = min(array.shape[0] for array in raw_audio ) _a = int(np.floor(max_length / self.chunk_stride ) ) _a = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _a = max(array.shape[0] for array in raw_audio ) _a = int(np.ceil(max_length / self.chunk_stride ) ) _a = (nb_step - 1) * self.chunk_stride + self.chunk_length _a = '''max_length''' else: _a = input_values # normal padding on batch if padded_inputs is None: _a = self.pad( __UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , padding=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) if padding: _a = padded_inputs.pop('''attention_mask''' ) _a = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: _a = example[..., None] input_values.append(example.T ) _a = input_values if return_tensors is not None: _a = padded_inputs.convert_to_tensors(__UpperCAmelCase ) return padded_inputs
285
1
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCAmelCase__ = numpy.array([0, 0]) UpperCAmelCase__ = numpy.array([0.5, 0.866_0254]) UpperCAmelCase__ = numpy.array([1, 0]) UpperCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = initial_vectors for _ in range(lowercase ): _UpperCAmelCase = iteration_step(lowercase ) return vectors def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCAmelCase = vectors[i + 1] new_vectors.append(lowercase ) _UpperCAmelCase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 ,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = numpy.radians(lowercase ) _UpperCAmelCase , _UpperCAmelCase = numpy.cos(lowercase ), numpy.sin(lowercase ) _UpperCAmelCase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCAmelCase , _UpperCAmelCase = zip(*lowercase ) plt.plot(lowercase ,lowercase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
277
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class a : def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=2 , __lowerCAmelCase : List[Any]=8 , __lowerCAmelCase : Dict=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[Any]=99 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Optional[int]=5 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[int]=36 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : int=0.0 , __lowerCAmelCase : List[str]=512 , __lowerCAmelCase : List[str]=16 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : str=4 , __lowerCAmelCase : Dict=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Any ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = self.get_config() _UpperCAmelCase = 300 return config def lowerCAmelCase_ ( self : Any ): ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = MraModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , ): _UpperCAmelCase = True _UpperCAmelCase = MraModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , ) _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , ) _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : str ): _UpperCAmelCase = MraForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : int ): _UpperCAmelCase = MraForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MraForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MraForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = MraForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _snake_case : Dict = False _snake_case : Any = False _snake_case : List[str] = False _snake_case : Tuple = False _snake_case : int = () def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = MraModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = MraModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def lowerCAmelCase_ ( self : str ): return @require_torch class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) _UpperCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) _UpperCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = 5_0265 _UpperCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) _UpperCAmelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = 5_0265 _UpperCAmelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) )
277
1
'''simple docstring''' import requests __a = "YOUR API KEY" def __snake_case( _lowerCAmelCase , _lowerCAmelCase = giphy_api_key ) -> list: snake_case__ : Optional[int] = """+""".join(query.split() ) snake_case__ : Dict = f"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}" snake_case__ : int = requests.get(_lowerCAmelCase ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
706
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __snake_case( ) -> Union[str, Any]: snake_case__ : Union[str, Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=_lowerCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=_lowerCAmelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=_lowerCAmelCase ) return parser.parse_args() def __snake_case( ) -> int: snake_case__ : Tuple = parse_args() # Import training_script as a module. snake_case__ : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case__ : Tuple = script_fpath.stem snake_case__ : Any = importlib.import_module(_lowerCAmelCase ) # Patch sys.argv snake_case__ : Any = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
301
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
def UpperCAmelCase__ ( lowerCamelCase_ : list[int] , lowerCamelCase_ : list[int] ): # Check if the input is valid if not len(lowerCamelCase_ ) == len(lowerCamelCase_ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients __a , __a , __a : Optional[Any] = equationa __a , __a , __a : Optional[int] = equationa # Calculate the determinants of the matrices __a : str = aa * ba - aa * ba __a : Tuple = ca * ba - ca * ba __a : Union[str, Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __a : Any = determinant_x / determinant __a : Optional[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
47
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ : Union[str, Any] = logging.get_logger(__name__) a_ : int = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class __UpperCamelCase ( _lowercase ): """simple docstring""" _lowercase : int = '''deberta-v2''' def __init__( self , SCREAMING_SNAKE_CASE=1_2_8_1_0_0 , SCREAMING_SNAKE_CASE=1_5_3_6 , SCREAMING_SNAKE_CASE=2_4 , SCREAMING_SNAKE_CASE=2_4 , SCREAMING_SNAKE_CASE=6_1_4_4 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=5_1_2 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=-1 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="gelu" , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE ) a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = initializer_range a__ = relative_attention a__ = max_relative_positions a__ = pad_token_id a__ = position_biased_input # Backwards compatibility if type(SCREAMING_SNAKE_CASE ) == str: a__ = [x.strip() for x in pos_att_type.lower().split('''|''' )] a__ = pos_att_type a__ = vocab_size a__ = layer_norm_eps a__ = kwargs.get('''pooler_hidden_size''' , SCREAMING_SNAKE_CASE ) a__ = pooler_dropout a__ = pooler_hidden_act class __UpperCamelCase ( _lowercase ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a__ = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def _UpperCAmelCase ( self ) -> int: return 1_2 def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 4_0 , SCREAMING_SNAKE_CASE = 4_0 , SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: a__ = super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
148
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a_ : List[Any] = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __UpperCamelCase ( _lowercase , unittest.TestCase ): """simple docstring""" _lowercase : Dict = SpeechTaTokenizer _lowercase : Optional[int] = False _lowercase : List[Any] = True def _UpperCAmelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing a__ = SpeechTaTokenizer(SCREAMING_SNAKE_CASE ) a__ = AddedToken('''<mask>''' , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) a__ = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: a__ = '''this is a test''' a__ = '''this is a test''' return input_text, output_text def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=2_0 , SCREAMING_SNAKE_CASE=5 ) -> Optional[Any]: a__ , a__ = self.get_input_output_texts(SCREAMING_SNAKE_CASE ) a__ = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) a__ = tokenizer.decode(SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) return text, ids def _UpperCAmelCase ( self ) -> Tuple: a__ = '''<pad>''' a__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> str: a__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 8_1 ) def _UpperCAmelCase ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def _UpperCAmelCase ( self ) -> str: a__ = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): a__ = tokenizer.vocab_size a__ = len(SCREAMING_SNAKE_CASE ) self.assertNotEqual(SCREAMING_SNAKE_CASE , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a__ = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] a__ = tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) a__ = tokenizer.vocab_size a__ = len(SCREAMING_SNAKE_CASE ) self.assertNotEqual(SCREAMING_SNAKE_CASE , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) self.assertEqual(SCREAMING_SNAKE_CASE , all_size + len(SCREAMING_SNAKE_CASE ) ) a__ = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) a__ = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} a__ = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE ) a__ = tokenizer.vocab_size a__ = len(SCREAMING_SNAKE_CASE ) self.assertNotEqual(SCREAMING_SNAKE_CASE , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) self.assertEqual(SCREAMING_SNAKE_CASE , all_size_a + len(SCREAMING_SNAKE_CASE ) ) a__ = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Optional[int]: a__ = self.get_tokenizer() a__ = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(SCREAMING_SNAKE_CASE , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) a__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( SCREAMING_SNAKE_CASE , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) a__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) # fmt: off self.assertListEqual(SCREAMING_SNAKE_CASE , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on a__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) self.assertListEqual( SCREAMING_SNAKE_CASE , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def _UpperCAmelCase ( self ) -> List[str]: # Use custom sequence because this tokenizer does not handle numbers. a__ = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off a__ = { '''input_ids''': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=SCREAMING_SNAKE_CASE , )
148
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } UpperCamelCase = { "b0": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1_408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1_536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1_792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2_048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2_304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2_560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def A ( lowercase__ : Union[str, Any] ) -> int: UpperCamelCase__ :Optional[int] = EfficientNetConfig() UpperCamelCase__ :Union[str, Any] = CONFIG_MAP[model_name]["""hidden_dim"""] UpperCamelCase__ :int = CONFIG_MAP[model_name]["""width_coef"""] UpperCamelCase__ :int = CONFIG_MAP[model_name]["""depth_coef"""] UpperCamelCase__ :List[Any] = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase__ :List[str] = CONFIG_MAP[model_name]["""dropout_rate"""] UpperCamelCase__ :Optional[int] = CONFIG_MAP[model_name]["""dw_padding"""] UpperCamelCase__ :str = """huggingface/label-files""" UpperCamelCase__ :str = """imagenet-1k-id2label.json""" UpperCamelCase__ :Tuple = 1000 UpperCamelCase__ :Any = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase__ :Union[str, Any] = {int(lowercase__ ): v for k, v in idalabel.items()} UpperCamelCase__ :Any = idalabel UpperCamelCase__ :Optional[Any] = {v: k for k, v in idalabel.items()} return config def A ( ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase__ :int = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im def A ( lowercase__ : int ) -> List[str]: UpperCamelCase__ :Union[str, Any] = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase__ :Any = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase__ , ) return preprocessor def A ( lowercase__ : Union[str, Any] ) -> Any: UpperCamelCase__ :Optional[int] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] UpperCamelCase__ :Union[str, Any] = sorted(set(lowercase__ ) ) UpperCamelCase__ :Any = len(lowercase__ ) UpperCamelCase__ :Tuple = {b: str(lowercase__ ) for b, i in zip(lowercase__ , range(lowercase__ ) )} UpperCamelCase__ :List[Any] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: UpperCamelCase__ :str = block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) UpperCamelCase__ :Tuple = {} for item in rename_keys: if item[0] in original_param_names: UpperCamelCase__ :List[str] = """efficientnet.""" + item[1] UpperCamelCase__ :Dict = """classifier.weight""" UpperCamelCase__ :int = """classifier.bias""" return key_mapping def A ( lowercase__ : str , lowercase__ : str , lowercase__ : List[str] ) -> List[str]: for key, value in tf_params.items(): if "normalization" in key: continue UpperCamelCase__ :Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCamelCase__ :int = torch.from_numpy(lowercase__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCamelCase__ :List[str] = torch.from_numpy(lowercase__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCamelCase__ :Any = torch.from_numpy(np.transpose(lowercase__ ) ) else: UpperCamelCase__ :Any = torch.from_numpy(lowercase__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase__ ) @torch.no_grad() def A ( lowercase__ : Optional[Any] , lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : int ) -> Dict: UpperCamelCase__ :str = model_classes[model_name]( include_top=lowercase__ , weights="""imagenet""" , input_tensor=lowercase__ , input_shape=lowercase__ , pooling=lowercase__ , classes=1000 , classifier_activation="""softmax""" , ) UpperCamelCase__ :Optional[int] = original_model.trainable_variables UpperCamelCase__ :Optional[Any] = original_model.non_trainable_variables UpperCamelCase__ :Tuple = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCamelCase__ :int = param.numpy() UpperCamelCase__ :Optional[int] = list(tf_params.keys() ) # Load HuggingFace model UpperCamelCase__ :str = get_efficientnet_config(lowercase__ ) UpperCamelCase__ :Any = EfficientNetForImageClassification(lowercase__ ).eval() UpperCamelCase__ :List[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) UpperCamelCase__ :Union[str, Any] = rename_keys(lowercase__ ) replace_params(lowercase__ , lowercase__ , lowercase__ ) # Initialize preprocessor and preprocess input image UpperCamelCase__ :int = convert_image_processor(lowercase__ ) UpperCamelCase__ :Any = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCamelCase__ :Dict = hf_model(**lowercase__ ) UpperCamelCase__ :Union[str, Any] = outputs.logits.detach().numpy() # Original model inference UpperCamelCase__ :str = False UpperCamelCase__ :Tuple = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase__ :Optional[int] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCamelCase__ :Any = image.img_to_array(lowercase__ ) UpperCamelCase__ :Union[str, Any] = np.expand_dims(lowercase__ , axis=0 ) UpperCamelCase__ :List[Any] = original_model.predict(lowercase__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase__ , lowercase__ , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase__ ): os.mkdir(lowercase__ ) # Save converted model and image processor hf_model.save_pretrained(lowercase__ ) preprocessor.save_pretrained(lowercase__ ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) UpperCamelCase__ :Dict = f"""efficientnet-{model_name}""" preprocessor.push_to_hub(lowercase__ ) hf_model.push_to_hub(lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") UpperCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
45
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __lowercase : List[Any] = None __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} __lowercase : Dict = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } __lowercase : Tuple = { """camembert-base""": 5_1_2, } __lowercase : List[str] = """▁""" class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Tuple = VOCAB_FILES_NAMES __lowercase :List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase :Any = ["input_ids", "attention_mask"] __lowercase :Union[str, Any] = CamembertTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase__ , ) -> str: '''simple docstring''' lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
142
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case (A_ :int , A_ :int , A_ :int , A_ :int , A_ :int , A_ :int ): '''simple docstring''' if (ksize % 2) == 0: a : Optional[int] = ksize + 1 a : List[Any] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(A_ ): for x in range(A_ ): # distance from center a : Tuple = x - ksize // 2 a : int = y - ksize // 2 # degree to radiant a : List[str] = theta / 1_8_0 * np.pi a : Any = np.cos(_theta ) a : List[Any] = np.sin(_theta ) # get kernel x a : int = cos_theta * px + sin_theta * py # get kernel y a : Tuple = -sin_theta * px + cos_theta * py # fill kernel a : Optional[int] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _UpperCamelCase : Optional[Any] = imread('../image_data/lena.jpg') # turn image in gray scale value _UpperCamelCase : List[str] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _UpperCamelCase : List[Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _UpperCamelCase : List[Any] = out / out.max() * 255 _UpperCamelCase : List[str] = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
118
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def snake_case (A_ :int = 1_0_0_0_0_0_0 , A_ :int = 1_0 ): '''simple docstring''' a : defaultdict = defaultdict(A_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a : Optional[Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a : Union[str, Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(A_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f'''{solution() = }''')
118
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowerCAmelCase : Union[str, Any] = Lock() def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __UpperCAmelCase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __UpperCAmelCase = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __UpperCAmelCase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __UpperCAmelCase = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __UpperCAmelCase = Pipe() __UpperCAmelCase = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __UpperCAmelCase = temp_rs __UpperCAmelCase = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): __UpperCAmelCase = Pipe() __UpperCAmelCase = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __UpperCAmelCase = temp_rs __UpperCAmelCase = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): __UpperCAmelCase = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = list(range(1_0 , 0 , -1 ) ) print('''Initial List''' ) print(*UpperCamelCase__ ) __UpperCAmelCase = odd_even_transposition(UpperCamelCase__ ) print('''Sorted List\n''' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
262
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A ( pl.LightningModule ): def __init__( self : Dict , __a : List[str] ) -> Tuple: super().__init__() __UpperCAmelCase = model __UpperCAmelCase = 2 __UpperCAmelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def snake_case__ ( self : int ) -> int: pass def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" # load longformer model from model identifier __UpperCAmelCase = LongformerModel.from_pretrained(UpperCamelCase__ ) __UpperCAmelCase = LightningModel(UpperCamelCase__ ) __UpperCAmelCase = torch.load(UpperCamelCase__ , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model __UpperCAmelCase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase__ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
262
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __A ( metaclass=a ): """simple docstring""" A_ = ['speech'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> str: requires_backends(self , ['''speech'''] ) class __A ( metaclass=a ): """simple docstring""" A_ = ['speech'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> List[str]: requires_backends(self , ['''speech'''] )
318
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __A ( a ): """simple docstring""" A_ = '' A_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) A_ = None # compression type in fsspec. ex: "gzip" A_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowerCamelCase = "" , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase )-> List[str]: super().__init__(self , **_lowerCamelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowercase__ = fsspec.open( _lowerCamelCase , mode='''rb''' , protocol=_lowerCamelCase , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowercase__ = os.path.basename(self.file.path.split('''::''' )[0] ) lowercase__ = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowercase__ = None @classmethod def snake_case_( cls , _lowerCamelCase )-> List[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(_lowerCamelCase ).lstrip('''/''' ) def snake_case_( self )-> List[str]: if self.dir_cache is None: lowercase__ = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowercase__ = {f['''name''']: f} def snake_case_( self , _lowerCamelCase )-> List[str]: return self.file.open().read() def snake_case_( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , )-> Tuple: lowercase__ = self._strip_protocol(_lowerCamelCase ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class __A ( a ): """simple docstring""" A_ = 'bz2' A_ = 'bz2' A_ = '.bz2' class __A ( a ): """simple docstring""" A_ = 'gzip' A_ = 'gzip' A_ = '.gz' class __A ( a ): """simple docstring""" A_ = 'lz4' A_ = 'lz4' A_ = '.lz4' class __A ( a ): """simple docstring""" A_ = 'xz' A_ = 'xz' A_ = '.xz' class __A ( a ): """simple docstring""" A_ = 'zstd' A_ = 'zstd' A_ = '.zst' def __init__( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = DEFAULT_BLOCK_SIZE , **_lowerCamelCase , )-> Tuple: super().__init__( fo=_lowerCamelCase , mode=_lowerCamelCase , target_protocol=_lowerCamelCase , target_options=_lowerCamelCase , block_size=_lowerCamelCase , **_lowerCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowercase__ = self.file.__enter__ class __A : """simple docstring""" def __init__( self , _lowerCamelCase )-> Union[str, Any]: lowercase__ = file_ def __enter__( self )-> int: self._file.__enter__() return self def __exit__( self , *_lowerCamelCase , **_lowerCamelCase )-> List[str]: self._file.__exit__(*_lowerCamelCase , **_lowerCamelCase ) def __iter__( self )-> int: return iter(self._file ) def snake_case_( self )-> List[Any]: return next(self._file ) def __getattr__( self , _lowerCamelCase )-> Any: return getattr(self._file , _lowerCamelCase ) def fixed_enter(*_lowerCamelCase , **_lowerCamelCase ): return WrappedFile(_enter(*_lowerCamelCase , **_lowerCamelCase ) ) lowercase__ = fixed_enter
318
1
'''simple docstring''' def UpperCamelCase__ ( _lowercase : list ) -> list: if len(_lowercase ) < 2: return collection def circle_sort_util(_lowercase : list , _lowercase : int , _lowercase : int ) -> bool: __UpperCAmelCase: Tuple = False if low == high: return swapped __UpperCAmelCase: int = low __UpperCAmelCase: int = high while left < right: if collection[left] > collection[right]: __UpperCAmelCase, __UpperCAmelCase: List[str] = ( collection[right], collection[left], ) __UpperCAmelCase: Optional[int] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __UpperCAmelCase, __UpperCAmelCase: str = ( collection[right + 1], collection[left], ) __UpperCAmelCase: Union[str, Any] = True __UpperCAmelCase: List[str] = low + int((high - low) / 2 ) __UpperCAmelCase: Optional[int] = circle_sort_util(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase: List[Any] = circle_sort_util(_lowercase , mid + 1 , _lowercase ) return swapped or left_swap or right_swap __UpperCAmelCase: str = True while is_not_sorted is True: __UpperCAmelCase: Dict = circle_sort_util(_lowercase , 0 , len(_lowercase ) - 1 ) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
523
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = StableDiffusionPanoramaPipeline __lowerCAmelCase = TEXT_TO_IMAGE_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase: List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase: List[str] = DDIMScheduler() torch.manual_seed(0 ) __UpperCAmelCase: List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __UpperCAmelCase: Union[str, Any] = CLIPTextModel(snake_case_ ) __UpperCAmelCase: List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase: int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase_ ( self , snake_case_ , snake_case_=0 ): '''simple docstring''' __UpperCAmelCase: Dict = torch.manual_seed(snake_case_ ) __UpperCAmelCase: Optional[Any] = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase: Any = self.get_dummy_components() __UpperCAmelCase: str = StableDiffusionPanoramaPipeline(**snake_case_ ) __UpperCAmelCase: Tuple = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __UpperCAmelCase: Optional[int] = self.get_dummy_inputs(snake_case_ ) __UpperCAmelCase: str = sd_pipe(**snake_case_ ).images __UpperCAmelCase: int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase: Dict = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase: Tuple = self.get_dummy_components() __UpperCAmelCase: Any = StableDiffusionPanoramaPipeline(**snake_case_ ) __UpperCAmelCase: List[Any] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __UpperCAmelCase: int = self.get_dummy_inputs(snake_case_ ) __UpperCAmelCase: Optional[Any] = """french fries""" __UpperCAmelCase: str = sd_pipe(**snake_case_ , negative_prompt=snake_case_ ) __UpperCAmelCase: Tuple = output.images __UpperCAmelCase: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase: int = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase: List[str] = self.get_dummy_components() __UpperCAmelCase: str = StableDiffusionPanoramaPipeline(**snake_case_ ) __UpperCAmelCase: Dict = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __UpperCAmelCase: str = self.get_dummy_inputs(snake_case_ ) __UpperCAmelCase: Dict = sd_pipe(**snake_case_ , view_batch_size=2 ) __UpperCAmelCase: Dict = output.images __UpperCAmelCase: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase: Optional[Any] = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase: Optional[int] = self.get_dummy_components() __UpperCAmelCase: Tuple = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" ) __UpperCAmelCase: str = StableDiffusionPanoramaPipeline(**snake_case_ ) __UpperCAmelCase: Dict = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __UpperCAmelCase: Dict = self.get_dummy_inputs(snake_case_ ) __UpperCAmelCase: Tuple = sd_pipe(**snake_case_ ).images __UpperCAmelCase: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase: Union[str, Any] = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase: Dict = self.get_dummy_components() __UpperCAmelCase: List[Any] = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , skip_prk_steps=snake_case_ ) __UpperCAmelCase: List[str] = StableDiffusionPanoramaPipeline(**snake_case_ ) __UpperCAmelCase: str = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __UpperCAmelCase: Optional[Any] = self.get_dummy_inputs(snake_case_ ) __UpperCAmelCase: int = sd_pipe(**snake_case_ ).images __UpperCAmelCase: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase: Dict = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , snake_case_=0 ): '''simple docstring''' __UpperCAmelCase: Any = torch.manual_seed(snake_case_ ) __UpperCAmelCase: Tuple = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = """stabilityai/stable-diffusion-2-base""" __UpperCAmelCase: Optional[Any] = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) __UpperCAmelCase: List[str] = StableDiffusionPanoramaPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() __UpperCAmelCase: Tuple = self.get_inputs() __UpperCAmelCase: Tuple = pipe(**snake_case_ ).images __UpperCAmelCase: List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) __UpperCAmelCase: int = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=snake_case_ ) __UpperCAmelCase: int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() __UpperCAmelCase: str = self.get_inputs() __UpperCAmelCase: str = pipe(**snake_case_ ).images __UpperCAmelCase: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) __UpperCAmelCase: str = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[Any] = 0 def callback_fn(snake_case_ , snake_case_ , snake_case_ ) -> None: __UpperCAmelCase: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __UpperCAmelCase: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) __UpperCAmelCase: Union[str, Any] = latents[0, -3:, -3:, -1] __UpperCAmelCase: Any = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __UpperCAmelCase: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) __UpperCAmelCase: str = latents[0, -3:, -3:, -1] __UpperCAmelCase: List[Any] = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __UpperCAmelCase: Union[str, Any] = False __UpperCAmelCase: Optional[Any] = """stabilityai/stable-diffusion-2-base""" __UpperCAmelCase: Optional[Any] = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) __UpperCAmelCase: Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) __UpperCAmelCase: List[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() __UpperCAmelCase: Optional[Any] = self.get_inputs() pipe(**snake_case_ , callback=snake_case_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase_ ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase: Optional[Any] = """stabilityai/stable-diffusion-2-base""" __UpperCAmelCase: Optional[int] = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) __UpperCAmelCase: Any = StableDiffusionPanoramaPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) __UpperCAmelCase: Tuple = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __UpperCAmelCase: Optional[Any] = self.get_inputs() __UpperCAmelCase: Union[str, Any] = pipe(**snake_case_ ) __UpperCAmelCase: Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
523
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : int = logging.get_logger(__name__) __a : Tuple = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Optional[int] = """visual_bert""" def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=512 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-12 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) lowercase__ : Optional[Any] = vocab_size lowercase__ : Any = max_position_embeddings lowercase__ : str = hidden_size lowercase__ : Optional[int] = visual_embedding_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : List[str] = initializer_range lowercase__ : Tuple = type_vocab_size lowercase__ : int = layer_norm_eps lowercase__ : Union[str, Any] = bypass_transformer lowercase__ : Dict = special_visual_initialize
298
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __a : Dict = logging.get_logger(__name__) class UpperCAmelCase( snake_case_ ): """simple docstring""" def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> None: """simple docstring""" warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
298
1
def A__ ( _a : int ): '''simple docstring''' if num < 0: return False snake_case__ : int =num snake_case__ : int =0 while num > 0: snake_case__ : Optional[int] =rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
385
def A ( lowercase__ : int ) -> Optional[Any]: stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : str ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ , UpperCamelCase__ :List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ :Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
45
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = set({'''(''', '''[''', '''{'''} ) __UpperCamelCase = set({''')''', ''']''', '''}'''} ) __UpperCamelCase = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(lowercase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowercase_ ) == 0 or (len(lowercase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowercase_ ) == 0 def __SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" __UpperCamelCase = input('''Enter sequence of brackets: ''' ) if is_balanced(lowercase_ ): print(lowercase_ , '''is balanced''' ) else: print(lowercase_ , '''is not balanced''' ) if __name__ == "__main__": main()
375
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @staticmethod @abstractmethod def snake_case ( snake_case : ArgumentParser ): raise NotImplementedError() @abstractmethod def snake_case ( self : Optional[Any] ): raise NotImplementedError()
375
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( A ): '''simple docstring''' _A : Optional[Any] = '''naver-clova-ix/donut-base-finetuned-docvqa''' _A : str = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) _A : str = '''document_qa''' _A : List[str] = AutoProcessor _A : Dict = VisionEncoderDecoderModel _A : List[Any] = ['''image''', '''text'''] _A : List[Any] = ['''text'''] def __init__( self : int , *_a : Any , **_a : Optional[Any] ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_a , **_a ) def A_ ( self : int , _a : "Image" , _a : str ): UpperCamelCase__ = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' UpperCamelCase__ = task_prompt.replace('''{user_input}''' , _a ) UpperCamelCase__ = self.pre_processor.tokenizer( _a , add_special_tokens=_a , return_tensors='''pt''' ).input_ids UpperCamelCase__ = self.pre_processor(_a , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def A_ ( self : Optional[Any] , _a : Any ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_a , ).sequences def A_ ( self : Dict , _a : Optional[int] ): UpperCamelCase__ = self.pre_processor.batch_decode(_a )[0] UpperCamelCase__ = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) UpperCamelCase__ = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) UpperCamelCase__ = re.sub(R'''<.*?>''' , '''''' , _a , count=1 ).strip() # remove first task start token UpperCamelCase__ = self.pre_processor.tokenajson(_a ) return sequence["answer"]
240
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase = { """configuration_vision_text_dual_encoder""": ["""VisionTextDualEncoderConfig"""], """processing_vision_text_dual_encoder""": ["""VisionTextDualEncoderProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""VisionTextDualEncoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""FlaxVisionTextDualEncoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""TFVisionTextDualEncoderModel"""] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
240
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase__ ( a : List[Any] ) -> List[str]: # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase__ ( ) -> Dict: """simple docstring""" with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" a__ :str = [1, 2, 3] with pytest.raises(_lowercase ): with parallel_backend("unsupported backend" ): map_nested(_lowercase , _lowercase , num_proc=2 ) with pytest.raises(_lowercase ): with parallel_backend("unsupported backend" ): map_nested(_lowercase , _lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCamelCase__ ( a : Union[str, Any] ) -> str: """simple docstring""" a__ :Dict = [1, 2] a__ :Tuple = {"a": 1, "b": 2} a__ :List[Any] = {"a": [1, 2], "b": [3, 4]} a__ :int = {"a": {"1": 1}, "b": 2} a__ :Dict = {"a": 1, "b": 2, "c": 3, "d": 4} a__ :Dict = [2, 3] a__ :List[str] = {"a": 2, "b": 3} a__ :Any = {"a": [2, 3], "b": [4, 5]} a__ :Optional[int] = {"a": {"1": 2}, "b": 3} a__ :int = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_lowercase , _lowercase , num_proc=_lowercase ) == expected_map_nested_sa assert map_nested(_lowercase , _lowercase , num_proc=_lowercase ) == expected_map_nested_sa assert map_nested(_lowercase , _lowercase , num_proc=_lowercase ) == expected_map_nested_sa assert map_nested(_lowercase , _lowercase , num_proc=_lowercase ) == expected_map_nested_sa assert map_nested(_lowercase , _lowercase , num_proc=_lowercase ) == expected_map_nested_sa
709
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowerCAmelCase_ : def __init__( self : str , __A : str = "cpu" , __A : str = "openai/clip-vit-large-patch14" ) ->None: """simple docstring""" a__ :List[str] = device a__ :Optional[Any] = CLIPTokenizerFast.from_pretrained(__A ) a__ :str = [0.48_145_466, 0.4_578_275, 0.40_821_073] a__ :Any = [0.26_862_954, 0.26_130_258, 0.27_577_711] a__ :Union[str, Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) a__ :List[Any] = torchvision.transforms.Resize(224 ) a__ :Optional[Any] = torchvision.transforms.CenterCrop(224 ) def _snake_case ( self : int , __A : int ) ->List[Any]: """simple docstring""" a__ :List[str] = self.resize(__A ) a__ :Union[str, Any] = self.center_crop(__A ) a__ :List[str] = self.normalize(__A ) return images def __call__( self : Union[str, Any] , __A : Dict=None , __A : List[Any]=None , **__A : Union[str, Any] ) ->Tuple: """simple docstring""" a__ :Optional[int] = self.tokenizer(text=__A , **__A ) a__ :str = self.preprocess_img(__A ) a__ :Any = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowerCAmelCase_ ( nn.Module): def __init__( self : List[str] , __A : List[str]=10 , __A : List[Any]=0.01 , __A : Optional[int]=None , __A : List[str]=None , __A : Dict=None , __A : List[str]=None , __A : Tuple=None , __A : str=None , __A : Any=False , __A : Union[str, Any]=True , __A : Tuple="image" , __A : Tuple=True , __A : int=False , __A : Tuple=False , __A : Union[str, Any]=False , ) ->None: """simple docstring""" super().__init__() a__ :List[str] = None a__ :int = device if device else get_device() if vqgan: a__ :Any = vqgan else: a__ :Optional[int] = load_vqgan(self.device , conf_path=__A , ckpt_path=__A ) self.vqgan.eval() if clip: a__ :Dict = clip else: a__ :Any = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) a__ :Optional[int] = ProcessorGradientFlow(device=self.device ) a__ :Any = iterations a__ :Any = lr a__ :List[str] = log a__ :List[Any] = make_grid a__ :Optional[int] = return_val a__ :Optional[Any] = quantize a__ :Any = self.vqgan.decoder.z_shape def _snake_case ( self : str , __A : str=None , __A : Optional[int]=None , __A : int=5 , __A : Any=True ) ->Optional[int]: """simple docstring""" a__ :Optional[int] = [] if output_path is None: a__ :Any = "./animation.gif" if input_path is None: a__ :Dict = self.save_path a__ :Dict = sorted(glob(input_path + "/*" ) ) if not len(__A ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(__A ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) a__ :str = total_duration / len(__A ) a__ :str = [frame_duration] * len(__A ) if extend_frames: a__ :Optional[Any] = 1.5 a__ :Optional[Any] = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(__A ) ) imageio.mimsave(__A , __A , duration=__A ) print(F'''gif saved to {output_path}''' ) def _snake_case ( self : str , __A : Tuple=None , __A : Optional[int]=None ) ->Optional[int]: """simple docstring""" if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError a__ :List[Any] = preprocess(Image.open(__A ) , target_image_size=256 ).to(self.device ) a__ :List[str] = preprocess_vqgan(__A ) a__ , *a__ :Union[str, Any] = self.vqgan.encode(__A ) return z def _snake_case ( self : List[str] , __A : Any ) ->Optional[int]: """simple docstring""" a__ :Dict = self.latent.detach().requires_grad_() a__ :int = base_latent + transform_vector if self.quantize: a__ , *a__ :str = self.vqgan.quantize(__A ) else: a__ :List[str] = trans_latent return self.vqgan.decode(__A ) def _snake_case ( self : List[str] , __A : Optional[Any] , __A : Optional[Any] , __A : List[Any]=None ) ->str: """simple docstring""" a__ :Dict = self.clip_preprocessor(text=__A , images=__A , return_tensors="pt" , padding=__A ) a__ :List[str] = self.clip(**__A ) a__ :Optional[int] = clip_outputs.logits_per_image if weights is not None: a__ :Tuple = similarity_logits * weights return similarity_logits.sum() def _snake_case ( self : List[str] , __A : List[Any] , __A : Optional[int] , __A : Optional[int] ) ->int: """simple docstring""" a__ :str = self._get_clip_similarity(pos_prompts["prompts"] , __A , weights=(1 / pos_prompts["weights"]) ) if neg_prompts: a__ :Optional[int] = self._get_clip_similarity(neg_prompts["prompts"] , __A , weights=neg_prompts["weights"] ) else: a__ :Tuple = torch.tensor([1] , device=self.device ) a__ :Dict = -torch.log(__A ) + torch.log(__A ) return loss def _snake_case ( self : int , __A : Dict , __A : Union[str, Any] , __A : List[str] ) ->List[str]: """simple docstring""" a__ :List[Any] = torch.randn_like(self.latent , requires_grad=__A , device=self.device ) a__ :Optional[Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() a__ :Tuple = self._add_vector(__A ) a__ :Dict = loop_post_process(__A ) a__ :str = self._get_CLIP_loss(__A , __A , __A ) print("CLIP loss" , __A ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=__A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _snake_case ( self : Union[str, Any] , __A : Optional[Any] , __A : Union[str, Any] , __A : Optional[Any] ) ->Optional[int]: """simple docstring""" wandb.init(reinit=__A , project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: a__ :List[str] = Image.open(__A ) a__ :Any = image.resize((256, 256) ) wandb.log("Original Image" , wandb.Image(__A ) ) def _snake_case ( self : Union[str, Any] , __A : Union[str, Any] ) ->int: """simple docstring""" if not prompts: return [] a__ :List[str] = [] a__ :Tuple = [] if isinstance(__A , __A ): a__ :Tuple = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(__A , (tuple, list) ): a__ :str = prompt[0] a__ :List[Any] = float(prompt[1] ) elif ":" in prompt: a__ , a__ :Tuple = prompt.split(":" ) a__ :Dict = float(__A ) else: a__ :int = prompt a__ :Any = 1.0 processed_prompts.append(__A ) weights.append(__A ) return { "prompts": processed_prompts, "weights": torch.tensor(__A , device=self.device ), } def _snake_case ( self : Optional[Any] , __A : Any , __A : int=None , __A : int=None , __A : str=True , __A : List[Any]=False , __A : Optional[int]=True , __A : Any=True , __A : Optional[Any]=None , ) ->Optional[Any]: """simple docstring""" if image_path: a__ :Optional[int] = self._get_latent(__A ) else: a__ :Dict = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__A , __A , __A ) assert pos_prompts, "You must provide at least one positive prompt." a__ :int = self.process_prompts(__A ) a__ :Any = self.process_prompts(__A ) if save_final and save_path is None: a__ :Dict = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"] ) ) if not os.path.exists(__A ): os.makedirs(__A ) else: a__ :str = save_path + "_" + get_timestamp() os.makedirs(__A ) a__ :Any = save_path a__ :Optional[int] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(__A ) ) a__ :List[str] = loop_post_process(__A ) for iter, transformed_img in enumerate(self._optimize_CLIP(__A , __A , __A ) ): if show_intermediate: show_pil(__A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"Image": wandb.Image(__A )} ) if show_final: show_pil(__A ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
373
0
"""simple docstring""" import math def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> list: _lowerCamelCase = [True] * n _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): _lowerCamelCase = i * 2 while index < n: _lowerCamelCase = False _lowerCamelCase = index + i _lowerCamelCase = [2] for i in range(3 , snake_case , 2 ): if is_prime[i]: primes.append(snake_case ) return primes def SCREAMING_SNAKE_CASE_ ( snake_case : int = 999_966_663_333 )-> int: _lowerCamelCase = math.floor(math.sqrt(snake_case ) ) + 100 _lowerCamelCase = prime_sieve(snake_case ) _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = primes[prime_index] while (last_prime**2) <= limit: _lowerCamelCase = primes[prime_index + 1] _lowerCamelCase = last_prime**2 _lowerCamelCase = next_prime**2 # Get numbers divisible by lps(current) _lowerCamelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _lowerCamelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _lowerCamelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _lowerCamelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
650
"""simple docstring""" from ..utils import DummyObject, requires_backends class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : str = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : int = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] )
650
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[Any] = logging.get_logger(__name__) a__ : str = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class __magic_name__ ( _a ): UpperCamelCase : List[str] = "realm" def __init__( self , __magic_name__=3_0_5_2_2 , __magic_name__=7_6_8 , __magic_name__=1_2_8 , __magic_name__=1_2 , __magic_name__=1_2 , __magic_name__=8 , __magic_name__=3_0_7_2 , __magic_name__="gelu_new" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_1_2 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=2_5_6 , __magic_name__=1_0 , __magic_name__=1e-3 , __magic_name__=5 , __magic_name__=3_2_0 , __magic_name__=1_3_3_5_3_7_1_8 , __magic_name__=5_0_0_0 , __magic_name__=1 , __magic_name__=0 , __magic_name__=2 , **__magic_name__ , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) # Common config _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = retriever_proj_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = num_candidates _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = type_vocab_size _lowerCAmelCase = layer_norm_eps # Reader config _lowerCAmelCase = span_hidden_size _lowerCAmelCase = max_span_width _lowerCAmelCase = reader_layer_norm_eps _lowerCAmelCase = reader_beam_size _lowerCAmelCase = reader_seq_len # Retrieval config _lowerCAmelCase = num_block_records _lowerCAmelCase = searcher_beam_size
714
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __magic_name__ : def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=1_0 , __magic_name__=3 , __magic_name__=2 , __magic_name__=2 , __magic_name__=True , __magic_name__=True , __magic_name__=3_2 , __magic_name__=5 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1_0 , __magic_name__=0.02 , __magic_name__="divided_space_time" , __magic_name__=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = patch_size _lowerCAmelCase = num_frames _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = attention_type _lowerCAmelCase = initializer_range _lowerCAmelCase = scope _lowerCAmelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _lowerCAmelCase = (image_size // patch_size) ** 2 _lowerCAmelCase = (num_frames) * self.num_patches_per_frame + 1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _lowerCAmelCase = self.num_labels return config def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ ) # verify the logits shape _lowerCAmelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Optional[Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () UpperCamelCase : int = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) UpperCamelCase : Dict = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Any = False UpperCamelCase : Tuple = False def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TimesformerModelTester(self ) _lowerCAmelCase = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=3_7 ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__=False ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" if not self.has_attentions: pass else: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: _lowerCAmelCase = self.model_tester.seq_length _lowerCAmelCase = self.model_tester.num_frames _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _lowerCAmelCase = len(__magic_name__ ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowerCamelCase ( self ): """simple docstring""" def check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ): _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) _lowerCAmelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def A__ ( ): """simple docstring""" _lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video', filename='eating_spaghetti.npy', repo_type='dataset' ) _lowerCAmelCase = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( __magic_name__ ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_video() _lowerCAmelCase = image_processor(video[:8] , return_tensors='pt' ).to(__magic_name__ ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**__magic_name__ ) # verify the logits _lowerCAmelCase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _lowerCAmelCase = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) )
309
0
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class SCREAMING_SNAKE_CASE( pl.LightningModule ): """simple docstring""" def __init__( self : int , __snake_case : Any ) -> str: super().__init__() UpperCAmelCase : str = model UpperCAmelCase : Dict = 2 UpperCAmelCase : str = nn.Linear(self.model.config.hidden_size , self.num_labels ) def A ( self : Optional[int] ) -> int: pass def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ) -> Optional[int]: # load longformer model from model identifier UpperCAmelCase : Optional[Any] = LongformerModel.from_pretrained(__UpperCamelCase ) UpperCAmelCase : Tuple = LightningModel(__UpperCamelCase ) UpperCAmelCase : Dict = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model UpperCAmelCase : List[Any] = LongformerForQuestionAnswering.from_pretrained(__UpperCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__UpperCamelCase ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": UpperCamelCase__: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase__: Optional[Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
127
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowerCamelCase_ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowerCamelCase_ = [0, 25, 50] lowerCamelCase_ = [25, 50, 75] lowerCamelCase_ = fuzz.membership.trimf(X, abca) lowerCamelCase_ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowerCamelCase_ = np.ones(75) lowerCamelCase_ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) lowerCamelCase_ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowerCamelCase_ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowerCamelCase_ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowerCamelCase_ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowerCamelCase_ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowerCamelCase_ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowerCamelCase_ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowerCamelCase_ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
151
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _A ( __lowerCAmelCase ): snake_case__ : List[str] = 'naver-clova-ix/donut-base-finetuned-docvqa' snake_case__ : Union[str, Any] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) snake_case__ : Dict = 'document_qa' snake_case__ : str = AutoProcessor snake_case__ : Union[str, Any] = VisionEncoderDecoderModel snake_case__ : Dict = ['image', 'text'] snake_case__ : Optional[int] = ['text'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase = task_prompt.replace("""{user_input}""" , _UpperCamelCase ) lowercase = self.pre_processor.tokenizer( _UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors="""pt""" ).input_ids lowercase = self.pre_processor(_UpperCamelCase , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCamelCase , ).sequences def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.pre_processor.batch_decode(_UpperCamelCase )[0] lowercase = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) lowercase = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) lowercase = re.sub(r"""<.*?>""" , """""" , _UpperCamelCase , count=1 ).strip() # remove first task start token lowercase = self.pre_processor.tokenajson(_UpperCamelCase ) return sequence["answer"]
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : Dict ={ """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =[ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
0
'''simple docstring''' from numpy import exp, pi, sqrt def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = 0.0 ,SCREAMING_SNAKE_CASE_ = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' import os import sys _SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _SCREAMING_SNAKE_CASE = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCamelCase( *SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) -> int: return AutoConfig.from_pretrained(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCamelCase( *SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) -> List[str]: return AutoTokenizer.from_pretrained(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCamelCase( *SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return AutoModel.from_pretrained(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCamelCase( *SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return AutoModelForCausalLM.from_pretrained(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCamelCase( *SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) -> Dict: return AutoModelForMaskedLM.from_pretrained(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCamelCase( *SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return AutoModelForSequenceClassification.from_pretrained(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCamelCase( *SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) -> str: return AutoModelForQuestionAnswering.from_pretrained(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
366
1
def snake_case_ ( SCREAMING_SNAKE_CASE__ = 10_00 ): '''simple docstring''' _snake_case = 2**power _snake_case = 0 while n: _snake_case , _snake_case = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
714
'''simple docstring''' import functools def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = len(SCREAMING_SNAKE_CASE__ ) _snake_case = len(SCREAMING_SNAKE_CASE__ ) @functools.cache def min_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _snake_case = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , SCREAMING_SNAKE_CASE__ ) , 1 + min_distance(SCREAMING_SNAKE_CASE__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
368
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def a_ ( __lowercase : str , __lowercase : List[Any] , __lowercase : List[str] , __lowercase : Union[str, Any] ) -> str: _snake_case = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] _snake_case = { 'wmt16-en-de-dist-12-1': [2_8.3, 2_7.5_2], 'wmt16-en-de-dist-6-1': [2_7.4, 2_7.1_1], 'wmt16-en-de-12-1': [2_6.9, 2_5.7_5], } _snake_case = f'''{src_lang}-{tgt_lang}''' _snake_case = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=__lowercase , exist_ok=__lowercase ) _snake_case = os.path.join(__lowercase , 'README.md' ) print(f'''Generating {path}''' ) with open(__lowercase , 'w' , encoding='utf-8' ) as f: f.write(__lowercase ) # make sure we are under the root of the project _lowerCamelCase : Dict = Path(__file__).resolve().parent.parent.parent _lowerCamelCase : Any = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _lowerCamelCase : Optional[int] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
686
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __lowercase : Any ) -> List[Any]: _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a_ ( __lowercase : Dict ) -> Tuple: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _snake_case = emb.weight.data return lin_layer def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any]=None ) -> Tuple: _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def a_ ( __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : List[str] , __lowercase : str = WEIGHTS_NAME ) -> Union[str, Any]: _snake_case = [] _snake_case = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): _snake_case = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): _snake_case = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = os.path.join( __lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) _snake_case = rename_fairseq_keys(__lowercase , __lowercase ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: _snake_case = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(__lowercase ): _snake_case = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) _snake_case = os.path.join(__lowercase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase , _lowerCamelCase : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase : Tuple = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
686
1
'''simple docstring''' def lowerCAmelCase_ ( __a , __a , __a ) -> float: """simple docstring""" if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate lowerCamelCase__: Optional[int] =rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowerCamelCase__: str =years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
703
def lowerCAmelCase_ ( __a , __a ) -> float: """simple docstring""" if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
437
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __a(SCREAMING_SNAKE_CASE_ : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _SCREAMING_SNAKE_CASE = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class lowerCAmelCase_ ( __magic_name__ ): @staticmethod def _snake_case ( _lowerCAmelCase ) -> str: _lowerCAmelCase = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=_lowerCAmelCase , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=_lowerCAmelCase ) def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = logging.get_logger("transformers-cli/converting" ) self._logger.info(f'''Loading model {model_type}''' ) _lowerCAmelCase = model_type _lowerCAmelCase = tf_checkpoint _lowerCAmelCase = pytorch_dump_output _lowerCAmelCase = config _lowerCAmelCase = finetuning_task_name def _snake_case ( self ) -> str: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): _lowerCAmelCase = self._tf_checkpoint _lowerCAmelCase = "" else: _lowerCAmelCase = self._tf_checkpoint _lowerCAmelCase = "" convert_transfo_xl_checkpoint_to_pytorch( _lowerCAmelCase , self._config , self._pytorch_dump_output , _lowerCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
18
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _snake_case = '''src/transformers''' _snake_case = '''docs/source/en''' _snake_case = '''.''' def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]: with open(snake_case__, "r", encoding="utf-8", newline="\n" ) as f: __UpperCAmelCase : str = f.readlines() # Find the start prompt. __UpperCAmelCase : Union[str, Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 __UpperCAmelCase : Optional[int] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _snake_case = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') _snake_case = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : int = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", snake_case__ ) return [m.group(0 ) for m in matches] def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Any = 2 if text == "✅" or text == "❌" else len(snake_case__ ) __UpperCAmelCase : Optional[Any] = (width - text_length) // 2 __UpperCAmelCase : Any = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _UpperCamelCase ( ) -> Union[str, Any]: __UpperCAmelCase : Dict = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase : Dict = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __UpperCAmelCase : Tuple = {name: config.replace("Config", "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __UpperCAmelCase : int = collections.defaultdict(snake_case__ ) __UpperCAmelCase : str = collections.defaultdict(snake_case__ ) __UpperCAmelCase : str = collections.defaultdict(snake_case__ ) __UpperCAmelCase : Optional[int] = collections.defaultdict(snake_case__ ) __UpperCAmelCase : Optional[int] = collections.defaultdict(snake_case__ ) # Let's lookup through all transformers object (once). for attr_name in dir(snake_case__ ): __UpperCAmelCase : Dict = None if attr_name.endswith("Tokenizer" ): __UpperCAmelCase : Tuple = slow_tokenizers __UpperCAmelCase : Tuple = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): __UpperCAmelCase : Dict = fast_tokenizers __UpperCAmelCase : int = attr_name[:-13] elif _re_tf_models.match(snake_case__ ) is not None: __UpperCAmelCase : Tuple = tf_models __UpperCAmelCase : Optional[Any] = _re_tf_models.match(snake_case__ ).groups()[0] elif _re_flax_models.match(snake_case__ ) is not None: __UpperCAmelCase : List[Any] = flax_models __UpperCAmelCase : Optional[int] = _re_flax_models.match(snake_case__ ).groups()[0] elif _re_pt_models.match(snake_case__ ) is not None: __UpperCAmelCase : Any = pt_models __UpperCAmelCase : Dict = _re_pt_models.match(snake_case__ ).groups()[0] if lookup_dict is not None: while len(snake_case__ ) > 0: if attr_name in model_name_to_prefix.values(): __UpperCAmelCase : int = True break # Try again after removing the last word in the name __UpperCAmelCase : Dict = "".join(camel_case_split(snake_case__ )[:-1] ) # Let's build that table! __UpperCAmelCase : Optional[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __UpperCAmelCase : int = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __UpperCAmelCase : Dict = [len(snake_case__ ) + 2 for c in columns] __UpperCAmelCase : Dict = max([len(snake_case__ ) for name in model_names] ) + 2 # Build the table per se __UpperCAmelCase : List[str] = "|" + "|".join([_center_text(snake_case__, snake_case__ ) for c, w in zip(snake_case__, snake_case__ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" __UpperCAmelCase : Any = {True: "✅", False: "❌"} for name in model_names: __UpperCAmelCase : str = model_name_to_prefix[name] __UpperCAmelCase : List[Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(snake_case__, snake_case__ ) for l, w in zip(snake_case__, snake_case__ )] ) + "|\n" return table def _UpperCamelCase ( snake_case__=False ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = _find_text_in_file( filename=os.path.join(snake_case__, "index.md" ), start_prompt="<!--This table is updated automatically from the auto modules", end_prompt="<!-- End table-->", ) __UpperCAmelCase : List[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(snake_case__, "index.md" ), "w", encoding="utf-8", newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _snake_case = parser.parse_args() check_model_table(args.fix_and_overwrite)
382
0
import doctest from collections import deque import numpy as np class _lowercase : def __init__( self : Optional[Any] ) -> None: """simple docstring""" a = [2, 1, 2, -1] a = [1, 2, 3, 4] def A ( self : Union[str, Any] ) -> list[float]: """simple docstring""" a = len(self.first_signal ) a = len(self.second_signal ) a = max(__lowerCAmelCase , __lowerCAmelCase ) # create a zero matrix of max_length x max_length a = [[0] * max_length for i in range(__lowerCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowerCAmelCase ): a = deque(self.second_signal ) rotated_signal.rotate(__lowerCAmelCase ) for j, item in enumerate(__lowerCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal a = np.matmul(np.transpose(__lowerCAmelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__lowerCAmelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
707
def UpperCAmelCase__ ( UpperCAmelCase__ :Any ): '''simple docstring''' if not head: return True # split the list to two parts a , a = head.next, head while fast and fast.next: a = fast.next.next a = slow.next a = slow.next a = None # Don't forget here! But forget still works! # reverse the second part a = None while second: a = second.next a = node a = second a = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False a = node.next a = head.next return True def UpperCAmelCase__ ( UpperCAmelCase__ :str ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) a = a = a = head while fast and fast.next: a , a = fast.next.next, slow.next # 2. Push the second half into the stack a = [slow.val] while slow.next: a = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False a = cur.next return True def UpperCAmelCase__ ( UpperCAmelCase__ :Any ): '''simple docstring''' if not head or not head.next: return True a = {} a = 0 while head: if head.val in d: d[head.val].append(UpperCAmelCase__ ) else: a = [pos] a = head.next pos += 1 a = pos - 1 a = 0 for v in d.values(): if len(UpperCAmelCase__ ) % 2 != 0: middle += 1 else: a = 0 for i in range(0 , len(UpperCAmelCase__ ) ): if v[i] + v[len(UpperCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
32
0
import math SCREAMING_SNAKE_CASE__ : Union[str, Any] = 10 SCREAMING_SNAKE_CASE__ : List[Any] = 7 SCREAMING_SNAKE_CASE__ : Optional[Any] = BALLS_PER_COLOUR * NUM_COLOURS def _lowerCamelCase ( __lowerCamelCase = 20 ) -> str: '''simple docstring''' UpperCAmelCase__ : Dict = math.comb(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __lowerCamelCase ) UpperCAmelCase__ : Tuple = NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(20))
79
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __snake_case : List[Any] = parser.parse_args() if args.model_type == "bert": __snake_case : int = BertForMaskedLM.from_pretrained(args.model_name) __snake_case : Tuple = 'bert' else: raise ValueError('args.model_type should be "bert".') __snake_case : List[Any] = model.state_dict() __snake_case : Any = {} for w in ["word_embeddings", "position_embeddings"]: __snake_case : List[str] = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: __snake_case : Optional[int] = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] __snake_case : List[str] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __snake_case : str = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] __snake_case : Tuple = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] __snake_case : str = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] __snake_case : Any = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] __snake_case : Union[str, Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] __snake_case : Union[str, Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] __snake_case : Any = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] __snake_case : Optional[int] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 __snake_case : Union[str, Any] = state_dict['cls.predictions.decoder.weight'] __snake_case : Union[str, Any] = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: __snake_case : Union[str, Any] = state_dict[F"""cls.predictions.transform.dense.{w}"""] __snake_case : List[str] = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
293
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = IFInpaintingPipeline lowerCAmelCase_ : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} lowerCAmelCase_ : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase_ : Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def A_ ( self : int ) -> str: '''simple docstring''' return self._get_dummy_components() def A_ ( self : List[str] , snake_case : Tuple , snake_case : Any=0 ) -> Optional[int]: '''simple docstring''' if str(_a ).startswith('mps' ): A = torch.manual_seed(_a ) else: A = torch.Generator(device=_a ).manual_seed(_a ) A = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) A = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) A = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A_ ( self : List[str] ) -> Dict: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def A_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def A_ ( self : Dict ) -> Dict: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def A_ ( self : Any ) -> int: '''simple docstring''' self._test_save_load_local() def A_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
705
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
109
0
'''simple docstring''' import os def lowercase__( _UpperCamelCase : str = "input.txt" )-> int: """simple docstring""" with open(os.path.join(os.path.dirname(_UpperCamelCase ) , _UpperCamelCase ) ) as input_file: _UpperCamelCase = [ [int(_UpperCamelCase ) for element in line.split("," )] for line in input_file.readlines() ] _UpperCamelCase = len(_UpperCamelCase ) _UpperCamelCase = len(matrix[0] ) _UpperCamelCase = [[-1 for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): _UpperCamelCase = matrix[i][0] for j in range(1 , _UpperCamelCase ): for i in range(_UpperCamelCase ): _UpperCamelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _UpperCamelCase ): _UpperCamelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _UpperCamelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
138
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput snake_case_ : Optional[int] = '''scheduler_config.json''' class A_ ( lowerCAmelCase_ ): '''simple docstring''' _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = 5 @dataclass class A_ ( lowerCAmelCase_ ): '''simple docstring''' _lowerCAmelCase = 42 class A_ : '''simple docstring''' _lowerCAmelCase = SCHEDULER_CONFIG_NAME _lowerCAmelCase = ["""dtype"""] _lowerCAmelCase = [] _lowerCAmelCase = True @classmethod def a ( cls , A_ = None , A_ = None , A_=False , **A_ , ): _UpperCamelCase , _UpperCamelCase = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) _UpperCamelCase , _UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , "create_state" ) and getattr(A_ , "has_state" , A_ ): _UpperCamelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def a ( self , A_ , A_ = False , **A_ ): self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def a ( self ): return self._get_compatibles() @classmethod def a ( cls ): _UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) ) _UpperCamelCase = importlib.import_module(__name__.split("." )[0] ) _UpperCamelCase = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def lowercase__( _UpperCamelCase : jnp.ndarray , _UpperCamelCase : Tuple[int] )-> jnp.ndarray: """simple docstring""" assert len(_UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCamelCase ) - x.ndim) ) , _UpperCamelCase ) def lowercase__( _UpperCamelCase : int , _UpperCamelCase : Tuple=0.999 , _UpperCamelCase : Any=jnp.floataa )-> jnp.ndarray: """simple docstring""" def alpha_bar(_UpperCamelCase : Any ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 _UpperCamelCase = [] for i in range(_UpperCamelCase ): _UpperCamelCase = i / num_diffusion_timesteps _UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCamelCase ) / alpha_bar(_UpperCamelCase ) , _UpperCamelCase ) ) return jnp.array(_UpperCamelCase , dtype=_UpperCamelCase ) @flax.struct.dataclass class A_ : '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 @classmethod def a ( cls , A_ ): _UpperCamelCase = scheduler.config if config.trained_betas is not None: _UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCamelCase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" ) _UpperCamelCase = 1.0 - betas _UpperCamelCase = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def lowercase__( _UpperCamelCase : CommonSchedulerState , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray )-> List[Any]: """simple docstring""" _UpperCamelCase = state.alphas_cumprod _UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 _UpperCamelCase = sqrt_alpha_prod.flatten() _UpperCamelCase = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) _UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 _UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() _UpperCamelCase = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowercase__( _UpperCamelCase : CommonSchedulerState , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray )-> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowercase__( _UpperCamelCase : CommonSchedulerState , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray , _UpperCamelCase : jnp.ndarray )-> Any: """simple docstring""" _UpperCamelCase , _UpperCamelCase = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
138
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ (a_ ): """simple docstring""" a__ = 42 a__ = 42 def __init__( self :int , lowerCAmelCase__ :UNetaDModel , lowerCAmelCase__ :KarrasVeScheduler ) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self :List[str] , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :int = 50 , lowerCAmelCase__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ :Optional[str] = "pil" , lowerCAmelCase__ :bool = True , **lowerCAmelCase__ :Optional[Any] , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' snake_case_ : Optional[Any] = self.unet.config.sample_size snake_case_ : Optional[int] = (batch_size, 3, img_size, img_size) snake_case_ : str = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) snake_case_ : str = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper snake_case_ : List[str] = self.scheduler.schedule[t] snake_case_ : Union[str, Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat snake_case_ : Union[str, Any] = self.scheduler.add_noise_to_input(lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. snake_case_ : List[Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev snake_case_ : str = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. snake_case_ : str = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample snake_case_ : List[str] = self.scheduler.step_correct( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , step_output.prev_sample , step_output["derivative"] , ) snake_case_ : Tuple = step_output.prev_sample snake_case_ : Dict = (sample / 2 + 0.5).clamp(0 , 1 ) snake_case_ : Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : Optional[int] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
720
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ (unittest.TestCase ): """simple docstring""" a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = ZeroShotClassificationPipeline( model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # No kwarg snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : str = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(1 ) ] , ) snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase__ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier(lowerCAmelCase__ , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , ) self.run_entailment_id(lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = zero_shot_classifier.model.config snake_case_ : Optional[int] = config.labelaid snake_case_ : Tuple = zero_shot_classifier.entailment_id snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case_ : List[str] = original_labelaid self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id ) @require_torch def _A ( self :Tuple ) -> Any: '''simple docstring''' snake_case_ : List[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) snake_case_ : int = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : List[str] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) snake_case_ : Optional[int] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _A ( self :Union[str, Any] ) -> int: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) snake_case_ : str = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) snake_case_ : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Tuple = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
656
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = ['input_ids', 'attention_mask'] lowerCamelCase : Tuple = None def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Any="<unk>" , __SCREAMING_SNAKE_CASE : Dict="<s>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="</s>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<pad>" , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : int=False , **__SCREAMING_SNAKE_CASE : int , ) -> Any: super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __SCREAMING_SNAKE_CASE ) != add_prefix_space: __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop("""type""" ) ) __UpperCAmelCase =add_prefix_space __UpperCAmelCase =pre_tok_class(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =add_prefix_space def _a ( self : int , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> BatchEncoding: __UpperCAmelCase =kwargs.get("""is_split_into_words""" , __SCREAMING_SNAKE_CASE ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> BatchEncoding: __UpperCAmelCase =kwargs.get("""is_split_into_words""" , __SCREAMING_SNAKE_CASE ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' """ pretokenized inputs.""" ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: __UpperCAmelCase =self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _a ( self : int , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]: __UpperCAmelCase =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(__SCREAMING_SNAKE_CASE ) > self.model_max_length: __UpperCAmelCase =input_ids[-self.model_max_length :] return input_ids
68
def lowercase_ ( SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def lowercase_ ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
381
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase ( __a ): a__ :List[str] = ['''image_processor''', '''tokenizer'''] a__ :Dict = '''BlipImageProcessor''' a__ :Dict = '''AutoTokenizer''' def __init__(self , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: UpperCamelCase_ : int = False super().__init__(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : Optional[int] = self.image_processor def __call__(self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: UpperCamelCase_ : Optional[int] = self.tokenizer UpperCamelCase_ : Optional[int] = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) return text_encoding # add pixel_values UpperCamelCase_ : Union[str, Any] = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase ) if text is not None: UpperCamelCase_ : Union[str, Any] = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) else: UpperCamelCase_ : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(__UpperCamelCase ) return encoding_image_processor def A_ (self , *__UpperCamelCase , **__UpperCamelCase ) -> List[Any]: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def A_ (self , *__UpperCamelCase , **__UpperCamelCase ) -> Tuple: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def A_ (self ) -> List[Any]: UpperCamelCase_ : Tuple = self.tokenizer.model_input_names UpperCamelCase_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
714
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase ( __a ): @staticmethod def A_ (__UpperCamelCase ) -> str: UpperCamelCase_ : int = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__UpperCamelCase , help="""Name of the model to download""" ) download_parser.set_defaults(func=__UpperCamelCase ) def __init__(self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: UpperCamelCase_ : Dict = model UpperCamelCase_ : Tuple = cache UpperCamelCase_ : int = force UpperCamelCase_ : Optional[int] = trust_remote_code def A_ (self ) -> Any: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
138
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str = 1 / sqrt(2 ) ) -> IIRFilter: __snake_case = tau * frequency / samplerate __snake_case = sin(_lowerCAmelCase ) __snake_case = cos(_lowerCAmelCase ) __snake_case = _sin / (2 * q_factor) __snake_case = (1 - _cos) / 2 __snake_case = 1 - _cos __snake_case = 1 + alpha __snake_case = -2 * _cos __snake_case = 1 - alpha __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] = 1 / sqrt(2 ) ) -> IIRFilter: __snake_case = tau * frequency / samplerate __snake_case = sin(_lowerCAmelCase ) __snake_case = cos(_lowerCAmelCase ) __snake_case = _sin / (2 * q_factor) __snake_case = (1 + _cos) / 2 __snake_case = -1 - _cos __snake_case = 1 + alpha __snake_case = -2 * _cos __snake_case = 1 - alpha __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Dict = 1 / sqrt(2 ) ) -> IIRFilter: __snake_case = tau * frequency / samplerate __snake_case = sin(_lowerCAmelCase ) __snake_case = cos(_lowerCAmelCase ) __snake_case = _sin / (2 * q_factor) __snake_case = _sin / 2 __snake_case = 0 __snake_case = -ba __snake_case = 1 + alpha __snake_case = -2 * _cos __snake_case = 1 - alpha __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple = 1 / sqrt(2 ) ) -> IIRFilter: __snake_case = tau * frequency / samplerate __snake_case = sin(_lowerCAmelCase ) __snake_case = cos(_lowerCAmelCase ) __snake_case = _sin / (2 * q_factor) __snake_case = 1 - alpha __snake_case = -2 * _cos __snake_case = 1 + alpha __snake_case = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] = 1 / sqrt(2 ) , ) -> IIRFilter: __snake_case = tau * frequency / samplerate __snake_case = sin(_lowerCAmelCase ) __snake_case = cos(_lowerCAmelCase ) __snake_case = _sin / (2 * q_factor) __snake_case = 10 ** (gain_db / 40) __snake_case = 1 + alpha * big_a __snake_case = -2 * _cos __snake_case = 1 - alpha * big_a __snake_case = 1 + alpha / big_a __snake_case = -2 * _cos __snake_case = 1 - alpha / big_a __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict = 1 / sqrt(2 ) , ) -> IIRFilter: __snake_case = tau * frequency / samplerate __snake_case = sin(_lowerCAmelCase ) __snake_case = cos(_lowerCAmelCase ) __snake_case = _sin / (2 * q_factor) __snake_case = 10 ** (gain_db / 40) __snake_case = (big_a + 1) - (big_a - 1) * _cos __snake_case = (big_a + 1) + (big_a - 1) * _cos __snake_case = (big_a - 1) - (big_a + 1) * _cos __snake_case = (big_a - 1) + (big_a + 1) * _cos __snake_case = 2 * sqrt(_lowerCAmelCase ) * alpha __snake_case = big_a * (pmc + aaa) __snake_case = 2 * big_a * mpc __snake_case = big_a * (pmc - aaa) __snake_case = ppmc + aaa __snake_case = -2 * pmpc __snake_case = ppmc - aaa __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str = 1 / sqrt(2 ) , ) -> IIRFilter: __snake_case = tau * frequency / samplerate __snake_case = sin(_lowerCAmelCase ) __snake_case = cos(_lowerCAmelCase ) __snake_case = _sin / (2 * q_factor) __snake_case = 10 ** (gain_db / 40) __snake_case = (big_a + 1) - (big_a - 1) * _cos __snake_case = (big_a + 1) + (big_a - 1) * _cos __snake_case = (big_a - 1) - (big_a + 1) * _cos __snake_case = (big_a - 1) + (big_a + 1) * _cos __snake_case = 2 * sqrt(_lowerCAmelCase ) * alpha __snake_case = big_a * (ppmc + aaa) __snake_case = -2 * big_a * pmpc __snake_case = big_a * (ppmc - aaa) __snake_case = pmc + aaa __snake_case = 2 * mpc __snake_case = pmc - aaa __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
69
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowercase , lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : Dict = VQModel __SCREAMING_SNAKE_CASE : Optional[int] = """sample""" @property def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[int]=(32, 32) ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) return {"sample": image} @property def UpperCAmelCase__ ( self : Tuple ): return (3, 32, 32) @property def UpperCAmelCase__ ( self : str ): return (3, 32, 32) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Dict ): pass def UpperCAmelCase__ ( self : str ): pass def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__UpperCamelCase ) _UpperCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(__UpperCamelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _UpperCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _UpperCAmelCase = image.to(__UpperCamelCase ) with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) )
684
0
'''simple docstring''' from __future__ import annotations import requests snake_case = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ = 1 , lowerCamelCase_ = "new" , lowerCamelCase_ = None ): """simple docstring""" lowerCAmelCase__ : Optional[int] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCamelCase_ ) - valid_terms ) ): lowerCAmelCase__ : Optional[int] = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(lowerCamelCase_ ) lowerCAmelCase__ : List[str] = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={"User-agent": "A random string"} , ) if response.status_code == 4_2_9: raise requests.HTTPError lowerCAmelCase__ : Union[str, Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCamelCase_ )} lowerCAmelCase__ : str = {} for id_ in range(lowerCamelCase_ ): lowerCAmelCase__ : List[Any] = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
568
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase ( UpperCamelCase_ ): A_ : List[Any] = (IPNDMScheduler,) A_ : Union[str, Any] = (("""num_inference_steps""", 50),) def _A ( self : Optional[int] , **a__ : int ): '''simple docstring''' lowerCAmelCase__ : Dict = {"num_train_timesteps": 1000} config.update(**a__ ) return config def _A ( self : int , a__ : Tuple=0 , **a__ : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[str] = dict(self.forward_default_kwargs ) lowerCAmelCase__ : Dict = kwargs.pop("num_inference_steps" , a__ ) lowerCAmelCase__ : Union[str, Any] = self.dummy_sample lowerCAmelCase__ : Union[str, Any] = 0.1 * sample lowerCAmelCase__ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : Dict = self.get_scheduler_config(**a__ ) lowerCAmelCase__ : Dict = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals lowerCAmelCase__ : Union[str, Any] = dummy_past_residuals[:] if time_step is None: lowerCAmelCase__ : str = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) lowerCAmelCase__ : Union[str, Any] = scheduler_class.from_pretrained(a__ ) new_scheduler.set_timesteps(a__ ) # copy over dummy past residuals lowerCAmelCase__ : Optional[int] = dummy_past_residuals[:] lowerCAmelCase__ : Tuple = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample lowerCAmelCase__ : Any = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase__ : Tuple = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample lowerCAmelCase__ : Union[str, Any] = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _A ( self : int ): '''simple docstring''' pass def _A ( self : Tuple , a__ : str=0 , **a__ : int ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase__ : List[Any] = kwargs.pop("num_inference_steps" , a__ ) lowerCAmelCase__ : Optional[Any] = self.dummy_sample lowerCAmelCase__ : Optional[Any] = 0.1 * sample lowerCAmelCase__ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : Optional[Any] = self.get_scheduler_config() lowerCAmelCase__ : Optional[int] = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase__ : Optional[Any] = dummy_past_residuals[:] if time_step is None: lowerCAmelCase__ : List[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) lowerCAmelCase__ : Any = scheduler_class.from_pretrained(a__ ) # copy over dummy past residuals new_scheduler.set_timesteps(a__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase__ : Dict = dummy_past_residuals[:] lowerCAmelCase__ : List[str] = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample lowerCAmelCase__ : Optional[int] = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase__ : Union[str, Any] = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample lowerCAmelCase__ : Optional[Any] = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _A ( self : Dict , **a__ : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Union[str, Any] = self.get_scheduler_config(**a__ ) lowerCAmelCase__ : Dict = scheduler_class(**a__ ) lowerCAmelCase__ : List[Any] = 10 lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : Optional[Any] = model(a__ , a__ ) lowerCAmelCase__ : int = scheduler.step(a__ , a__ , a__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : Tuple = model(a__ , a__ ) lowerCAmelCase__ : int = scheduler.step(a__ , a__ , a__ ).prev_sample return sample def _A ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = dict(self.forward_default_kwargs ) lowerCAmelCase__ : Tuple = kwargs.pop("num_inference_steps" , a__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a__ ) lowerCAmelCase__ : Any = self.dummy_sample lowerCAmelCase__ : Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(a__ , "set_timesteps" ): scheduler.set_timesteps(a__ ) elif num_inference_steps is not None and not hasattr(a__ , "set_timesteps" ): lowerCAmelCase__ : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase__ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase__ : Union[str, Any] = dummy_past_residuals[:] lowerCAmelCase__ : Tuple = scheduler.timesteps[5] lowerCAmelCase__ : Optional[Any] = scheduler.timesteps[6] lowerCAmelCase__ : Any = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample lowerCAmelCase__ : Dict = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase__ : int = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample lowerCAmelCase__ : List[Any] = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _A ( self : List[str] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=a__ , time_step=a__ ) def _A ( self : int ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=a__ , time_step=a__ ) def _A ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = self.full_loop() lowerCAmelCase__ : int = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 254_0529 ) < 10
568
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase_ : def __init__( self , lowercase_ , lowercase_=2 , lowercase_=3 , lowercase_=4 , lowercase_=2 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=36 , lowercase_=3 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=6 , lowercase_=6 , lowercase_=3 , lowercase_=4 , lowercase_=None , lowercase_=1000 , ) -> str: a__ =parent a__ =batch_size a__ =num_channels a__ =image_size a__ =patch_size a__ =text_seq_length a__ =is_training a__ =use_input_mask a__ =use_token_type_ids a__ =use_labels a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =coordinate_size a__ =shape_size a__ =num_labels a__ =num_choices a__ =scope a__ =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a__ =text_seq_length a__ =(image_size // patch_size) ** 2 + 1 a__ =self.text_seq_length + self.image_seq_length def __UpperCamelCase ( self) -> Optional[Any]: a__ =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size) a__ =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a__ =bbox[i, j, 3] a__ =bbox[i, j, 1] a__ =t if bbox[i, j, 2] < bbox[i, j, 0]: a__ =bbox[i, j, 2] a__ =bbox[i, j, 0] a__ =t a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =None if self.use_input_mask: a__ =random_attention_mask([self.batch_size, self.text_seq_length]) a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size) a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels) a__ =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: a__ =LayoutLMvaModel(config=lowercase_) model.to(lowercase_) model.eval() # text + image a__ =model(lowercase_ , pixel_values=lowercase_) a__ =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_) a__ =model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , token_type_ids=lowercase_) a__ =model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # text only a__ =model(lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size)) # image only a__ =model(pixel_values=lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[str]: a__ =self.num_labels a__ =LayoutLMvaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() a__ =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: a__ =self.num_labels a__ =LayoutLMvaForTokenClassification(config=lowercase_) model.to(lowercase_) model.eval() a__ =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: a__ =LayoutLMvaForQuestionAnswering(config=lowercase_) model.to(lowercase_) model.eval() a__ =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __UpperCamelCase ( self) -> Tuple: a__ =self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) =config_and_inputs a__ ={ 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowercase_ (lowercase__ , lowercase__ , unittest.TestCase ): snake_case =False snake_case =False snake_case =False snake_case =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case =( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Dict: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __UpperCamelCase ( self) -> int: a__ =LayoutLMvaModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , hidden_size=37) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=False) -> Tuple: a__ =copy.deepcopy(lowercase_) if model_class in get_values(lowercase_): a__ ={ k: v.unsqueeze(1).expand(-1 , self.model_tester.num_choices , -1).contiguous() if isinstance(lowercase_ , torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase_): a__ =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in get_values(lowercase_): a__ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) a__ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in [ *get_values(lowercase_), ]: a__ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in [ *get_values(lowercase_), ]: a__ =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowercase_ , ) return inputs_dict def __UpperCamelCase ( self) -> str: self.config_tester.run_common_tests() def __UpperCamelCase ( self) -> List[str]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ =type self.model_tester.create_and_check_model(*lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_) def __UpperCamelCase ( self) -> List[str]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_) def __UpperCamelCase ( self) -> List[str]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_) @slow def __UpperCamelCase ( self) -> Optional[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ =LayoutLMvaModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _lowercase( ): a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowercase_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self) -> List[str]: return LayoutLMvaImageProcessor(apply_ocr=lowercase_) if is_vision_available() else None @slow def __UpperCamelCase ( self) -> Optional[Any]: a__ =LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base').to(lowercase_) a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(images=lowercase_ , return_tensors='pt').pixel_values.to(lowercase_) a__ =torch.tensor([[1, 2]]) a__ =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass a__ =model( input_ids=input_ids.to(lowercase_) , bbox=bbox.to(lowercase_) , pixel_values=pixel_values.to(lowercase_) , ) # verify the logits a__ =torch.Size((1, 199, 768)) self.assertEqual(outputs.last_hidden_state.shape , lowercase_) a__ =torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]]).to(lowercase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1e-4))
20
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : List[str]=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 2, 1] , __SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 4] , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : Any=2.0 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : Tuple=1e-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=10 , __SCREAMING_SNAKE_CASE : Dict=8 , ) -> List[Any]: __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =image_size __UpperCAmelCase =patch_size __UpperCAmelCase =num_channels __UpperCAmelCase =embed_dim __UpperCAmelCase =depths __UpperCAmelCase =num_heads __UpperCAmelCase =window_size __UpperCAmelCase =mlp_ratio __UpperCAmelCase =qkv_bias __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =drop_path_rate __UpperCAmelCase =hidden_act __UpperCAmelCase =use_absolute_embeddings __UpperCAmelCase =patch_norm __UpperCAmelCase =layer_norm_eps __UpperCAmelCase =initializer_range __UpperCAmelCase =is_training __UpperCAmelCase =scope __UpperCAmelCase =use_labels __UpperCAmelCase =type_sequence_label_size __UpperCAmelCase =encoder_stride def _a ( self : Tuple ) -> Optional[int]: __UpperCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase =None if self.use_labels: __UpperCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase =self.get_config() return config, pixel_values, labels def _a ( self : List[Any] ) -> Optional[Any]: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: __UpperCAmelCase =SwinvaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase =int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Tuple: __UpperCAmelCase =SwinvaForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase =1 __UpperCAmelCase =SwinvaForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __UpperCAmelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: __UpperCAmelCase =self.type_sequence_label_size __UpperCAmelCase =SwinvaForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : List[str] ) -> Tuple: __UpperCAmelCase =self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =config_and_inputs __UpperCAmelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCamelCase : Tuple = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Dict = False lowerCamelCase : Tuple = False lowerCamelCase : List[str] = False lowerCamelCase : Tuple = False def _a ( self : str ) -> str: __UpperCAmelCase =SwinvaModelTester(self ) __UpperCAmelCase =ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , embed_dim=37 ) def _a ( self : List[Any] ) -> Optional[int]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : str ) -> str: __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def _a ( self : Tuple ) -> Tuple: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def _a ( self : Optional[Any] ) -> int: pass def _a ( self : Tuple ) -> int: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def _a ( self : str ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase =[*signature.parameters.keys()] __UpperCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =True for model_class in self.all_model_classes: __UpperCAmelCase =True __UpperCAmelCase =False __UpperCAmelCase =True __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __UpperCAmelCase =model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase =outputs.attentions __UpperCAmelCase =len(self.model_tester.depths ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase =True __UpperCAmelCase =config.window_size**2 __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __UpperCAmelCase =model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase =outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase =len(__SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine __UpperCAmelCase =True __UpperCAmelCase =True __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __UpperCAmelCase =model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase =self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase =2 self.assertEqual(out_len + added_hidden_states , len(__SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase =outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __UpperCAmelCase =model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase =outputs.hidden_states __UpperCAmelCase =getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length __UpperCAmelCase =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase =outputs.reshaped_hidden_states self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =reshaped_hidden_states[0].shape __UpperCAmelCase =( reshaped_hidden_states[0].view(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a ( self : str ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase =True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase =True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =3 __UpperCAmelCase =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase =True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase =True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def _a ( self : Optional[int] ) -> Tuple: __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Dict: __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _a ( self : int ) -> Dict: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase =SwinvaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( self : Dict ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =_config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __UpperCAmelCase =model_class(config=__SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _A ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Tuple ) -> Dict: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def _a ( self : int ) -> Optional[int]: __UpperCAmelCase =SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.default_image_processor __UpperCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase =image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE ) # verify the logits __UpperCAmelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
68
0
"""simple docstring""" from __future__ import annotations import math def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if num <= 0: UpperCamelCase = F"{num}: Invalid input, please enter a positive integer." raise ValueError(snake_case__ ) UpperCamelCase = [True] * (num + 1) UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = int(math.sqrt(snake_case__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case__ ) # Set multiples of start be False for i in range(start * start , num + 1 , snake_case__ ): if sieve[i] is True: UpperCamelCase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(snake_case__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
700
"""simple docstring""" import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowerCamelCase ( nn.Module ): def __init__(self , __a , __a ) -> Tuple: super().__init__() UpperCamelCase = module UpperCamelCase = nn.Sequential( nn.Linear(module.in_features , __a , bias=__a ) , nn.Linear(__a , module.out_features , bias=__a ) , ) UpperCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__a ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def snake_case_ (self , __a , *__a , **__a ) -> int: return self.module(__a , *__a , **__a ) + self.adapter(__a ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module UpperCAmelCase_ = "bigscience/bloom-1b7" # Constant values UpperCAmelCase_ = 2.109659552692574 UpperCAmelCase_ = "Hello my name is" UpperCAmelCase_ = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) UpperCAmelCase_ = 10 def snake_case_ (self ) -> str: # Models and tokenizer UpperCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class _lowerCamelCase ( _lowercase ): def snake_case_ (self ) -> Any: super().setUp() # Models and tokenizer UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a , device_map="auto" ) def snake_case_ (self ) -> str: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = self.model_abit.config self.assertTrue(hasattr(__a , "quantization_config" ) ) UpperCamelCase = config.to_dict() UpperCamelCase = config.to_diff_dict() UpperCamelCase = config.to_json_string() def snake_case_ (self ) -> Optional[int]: from bitsandbytes.nn import Paramsabit UpperCamelCase = self.model_fpaa.get_memory_footprint() UpperCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) UpperCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def snake_case_ (self ) -> Dict: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__a , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def snake_case_ (self ) -> Tuple: UpperCamelCase = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCamelCase = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS ) def snake_case_ (self ) -> Optional[int]: UpperCamelCase = BitsAndBytesConfig() UpperCamelCase = True UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__a , device_map="auto" ) UpperCamelCase = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCamelCase = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS ) def snake_case_ (self ) -> Dict: with self.assertRaises(__a ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__a ) def snake_case_ (self ) -> int: UpperCamelCase = BitsAndBytesConfig() with self.assertRaises(__a ): UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__a , load_in_abit=__a , device_map="auto" , bnb_abit_quant_type="nf4" , ) def snake_case_ (self ) -> Any: with self.assertRaises(__a ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(__a ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__a ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(__a ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__a ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything UpperCamelCase = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCamelCase = self.model_fpaa.to(torch.floataa ) UpperCamelCase = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error UpperCamelCase = self.model_fpaa.to("cpu" ) # Check this does not throw an error UpperCamelCase = self.model_fpaa.half() # Check this does not throw an error UpperCamelCase = self.model_fpaa.float() def snake_case_ (self ) -> str: UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=__a , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): @classmethod def snake_case_ (cls ) -> Tuple: UpperCamelCase = "t5-small" UpperCamelCase = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense UpperCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) UpperCamelCase = "Translate in German: Hello, my dog is cute" def snake_case_ (self ) -> Any: gc.collect() torch.cuda.empty_cache() def snake_case_ (self ) -> Optional[Any]: from transformers import TaForConditionalGeneration UpperCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules UpperCamelCase = None # test with `t5-small` UpperCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__a , device_map="auto" ) UpperCamelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCamelCase = model.generate(**__a ) # test with `flan-t5-small` UpperCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__a , device_map="auto" ) UpperCamelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCamelCase = model.generate(**__a ) UpperCamelCase = modules def snake_case_ (self ) -> str: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` UpperCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__a , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) UpperCamelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCamelCase = model.generate(**__a ) # test with `flan-t5-small` UpperCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__a , device_map="auto" ) UpperCamelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCamelCase = model.generate(**__a ) class _lowerCamelCase ( _lowercase ): def snake_case_ (self ) -> Optional[Any]: super().setUp() # model_name UpperCamelCase = "bigscience/bloom-560m" UpperCamelCase = "t5-small" # Different types of model UpperCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__a , device_map="auto" ) # Sequence classification model UpperCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__a , device_map="auto" ) # CausalLM model UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a , device_map="auto" ) # Seq2seq model UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__a , device_map="auto" ) def snake_case_ (self ) -> Tuple: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def snake_case_ (self ) -> Optional[int]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowerCamelCase ( _lowercase ): def snake_case_ (self ) -> int: super().setUp() def snake_case_ (self ) -> Any: del self.pipe gc.collect() torch.cuda.empty_cache() def snake_case_ (self ) -> List[Any]: UpperCamelCase = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass UpperCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowerCamelCase ( _lowercase ): def snake_case_ (self ) -> List[Any]: super().setUp() def snake_case_ (self ) -> Optional[int]: UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__a , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model UpperCamelCase = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch UpperCamelCase = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS ) class _lowerCamelCase ( _lowercase ): def snake_case_ (self ) -> Tuple: UpperCamelCase = "facebook/opt-350m" super().setUp() def snake_case_ (self ) -> List[Any]: if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): UpperCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability UpperCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__a ) ): UpperCamelCase = LoRALayer(module.q_proj , rank=16 ) UpperCamelCase = LoRALayer(module.k_proj , rank=16 ) UpperCamelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch UpperCamelCase = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): UpperCamelCase = model.forward(**__a ) out.logits.norm().backward() for module in model.modules(): if isinstance(__a , __a ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__a , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = "gpt2-xl" UpperCAmelCase_ = 3.3191854854152187
544
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
104
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __A ( snake_case__ ,unittest.TestCase ): '''simple docstring''' a_ = BioGptTokenizer a_ = False def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _lowerCAmelCase : Any = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) _lowerCAmelCase : Union[str, Any] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] _lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _lowerCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(_snake_case ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(_snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): _lowerCAmelCase : Optional[int] = "lower newer" _lowerCAmelCase : Union[str, Any] = "lower newer" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = BioGptTokenizer(self.vocab_file , self.merges_file ) _lowerCAmelCase : int = "lower" _lowerCAmelCase : List[Any] = ["low", "er</w>"] _lowerCAmelCase : Optional[Any] = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _lowerCAmelCase : int = tokens + ["<unk>"] _lowerCAmelCase : str = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) _lowerCAmelCase : Tuple = tokenizer.encode("sequence builders" , add_special_tokens=_snake_case ) _lowerCAmelCase : str = tokenizer.encode("multi-sequence build" , add_special_tokens=_snake_case ) _lowerCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(_snake_case ) _lowerCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
424
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , lowercase__ : List[Any] , lowercase__ : Tuple ) ->str: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase__ , scheduler=lowercase__ ) def __call__( self : int ) ->Tuple: '''simple docstring''' _UpperCamelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Any = self.unet(lowercase__ , lowercase__ ).sample _UpperCamelCase : Any = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample _UpperCamelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase__ ) return result
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = '''yolos''' def __init__( self : int , lowercase__ : List[str]=768 , lowercase__ : Optional[Any]=12 , lowercase__ : Union[str, Any]=12 , lowercase__ : Any=3_072 , lowercase__ : List[Any]="gelu" , lowercase__ : Dict=0.0 , lowercase__ : Any=0.0 , lowercase__ : Dict=0.0_2 , lowercase__ : Tuple=1e-12 , lowercase__ : str=[512, 864] , lowercase__ : Dict=16 , lowercase__ : int=3 , lowercase__ : Optional[Any]=True , lowercase__ : List[Any]=100 , lowercase__ : str=True , lowercase__ : str=False , lowercase__ : List[str]=1 , lowercase__ : Dict=5 , lowercase__ : str=2 , lowercase__ : Optional[int]=5 , lowercase__ : Optional[int]=2 , lowercase__ : Optional[Any]=0.1 , **lowercase__ : Union[str, Any] , ) ->Tuple: '''simple docstring''' super().__init__(**lowercase__ ) _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : str = layer_norm_eps _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : int = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = qkv_bias _UpperCamelCase : Dict = num_detection_tokens _UpperCamelCase : int = use_mid_position_embeddings _UpperCamelCase : int = auxiliary_loss # Hungarian matcher _UpperCamelCase : Tuple = class_cost _UpperCamelCase : str = bbox_cost _UpperCamelCase : str = giou_cost # Loss coefficients _UpperCamelCase : List[str] = bbox_loss_coefficient _UpperCamelCase : str = giou_loss_coefficient _UpperCamelCase : str = eos_coefficient class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = version.parse('''1.11''' ) @property def snake_case__ ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self : Any ) ->float: '''simple docstring''' return 1e-4 @property def snake_case__ ( self : List[str] ) ->int: '''simple docstring''' return 12
204
0
'''simple docstring''' def A_ ( snake_case ): return str(snake_case ) == str(snake_case )[::-1] def A_ ( snake_case ): return int(snake_case ) + int(str(snake_case )[::-1] ) def A_ ( snake_case = 10000 ): SCREAMING_SNAKE_CASE:str = [] for num in range(1 , snake_case ): SCREAMING_SNAKE_CASE:int = 0 SCREAMING_SNAKE_CASE:str = num while iterations < 50: SCREAMING_SNAKE_CASE:Dict = sum_reverse(snake_case ) iterations += 1 if is_palindrome(snake_case ): break else: lychrel_nums.append(snake_case ) return len(snake_case ) if __name__ == "__main__": print(f'''{solution() = }''')
143
import argparse import os import re _lowercase: Optional[Any] = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _lowercase: Union[str, Any] = re.compile(R'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings _lowercase: Optional[Any] = re.compile(R'''\s*\(\s*"(\S[^"]+)"''') def _lowerCamelCase ( snake_case , snake_case = False ): with open(snake_case , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase = f.read() _lowerCAmelCase = content.split('\n' ) _lowerCAmelCase = [] _lowerCAmelCase = 0 while line_idx < len(snake_case ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _lowerCAmelCase = len(re.search(R'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 _lowerCAmelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _lowerCAmelCase = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _lowerCAmelCase = sorted(snake_case , key=lambda snake_case : _re_identifier.search(snake_case ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(snake_case ) ) elif "\n".join(snake_case ) != content: return True def _lowerCamelCase ( snake_case = False ): _lowerCAmelCase = [os.path.join(snake_case , snake_case ) for f in os.listdir(snake_case ) if f.endswith('.py' )] _lowerCAmelCase = [sort_auto_mapping(snake_case , overwrite=snake_case ) for fname in fnames] if not overwrite and any(snake_case ): _lowerCAmelCase = [f for f, d in zip(snake_case , snake_case ) if d] raise ValueError( F'The following files have auto mappings that need sorting: {", ".join(snake_case )}. Run `make style` to fix' ' this.' ) if __name__ == "__main__": _lowercase: Any = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') _lowercase: Tuple = parser.parse_args() sort_all_auto_mappings(not args.check_only)
192
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests A_ : int = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user A_ : Optional[int] = BASE_URL + "/user" # https://github.com/settings/tokens A_ : int = os.environ.get("USER_TOKEN", "") def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = { 'Authorization': f'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
696
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __UpperCamelCase () -> None: print('Making key files...' ) make_key_files('rsa', 1_024 ) print('Key files generation successful.' ) def __UpperCamelCase (lowerCAmelCase : int ) -> tuple[tuple[int, int], tuple[int, int]]: print('Generating prime p...' ) A = rabinMiller.generate_large_prime(lowerCAmelCase ) print('Generating prime q...' ) A = rabinMiller.generate_large_prime(lowerCAmelCase ) A = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: A = random.randrange(2 ** (key_size - 1), 2 ** (key_size) ) if cryptoMath.gcd(lowerCAmelCase, (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) A = cryptoMath.find_mod_inverse(lowerCAmelCase, (p - 1) * (q - 1) ) A = (n, e) A = (n, d) return (public_key, private_key) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : int ) -> None: if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() A , A = generate_key(lowerCAmelCase ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''', 'w' ) as out_file: out_file.write(f'''{key_size},{public_key[0]},{public_key[1]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''', 'w' ) as out_file: out_file.write(f'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
699
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "layer_norm" , UpperCamelCase__ : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(UpperCamelCase__ , UpperCamelCase__ ) else: A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = Attention( query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) ) A = Attention( query_dim=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , upcast_attention=UpperCamelCase__ , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = FeedForward(UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn=UpperCamelCase__ , final_dropout=UpperCamelCase__ ) # let chunk size default to None A = None A = 0 def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): # Sets chunk feed-forward A = chunk_size A = dim def UpperCamelCase ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=hidden_states.dtype ) else: A = self.norma(UpperCamelCase__ ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( UpperCamelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase__ ) ) A = self.attna( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(UpperCamelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(UpperCamelCase__ , UpperCamelCase__ ) if activation_fn == "gelu-approximate": A = GELU(UpperCamelCase__ , UpperCamelCase__ , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(UpperCamelCase__ , UpperCamelCase__ ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(UpperCamelCase__ , UpperCamelCase__ ) A = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase__ ) ) # project out self.net.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase__ ) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int ): for module in self.net: A = module(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str = "none" ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A = approximate def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int ): A = self.proj(UpperCamelCase__ ) A = self.gelu(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , dim_out * 2 ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase ( self : str , UpperCamelCase__ : str ): A , A = self.proj(UpperCamelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase__ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] ): A = self.proj(UpperCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): super().__init__() A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , embedding_dim * 2 ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): A = self.linear(self.silu(self.emb(UpperCamelCase__ ) ) ) A , A = torch.chunk(UpperCamelCase__ , 2 ) A = self.norm(UpperCamelCase__ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): super().__init__() A = CombinedTimestepLabelEmbeddings(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , 6 * embedding_dim , bias=UpperCamelCase__ ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ , eps=1e-6 ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): A = self.linear(self.silu(self.emb(UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=UpperCamelCase__ ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(UpperCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , out_dim * 2 ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str ): if self.act: A = self.act(UpperCamelCase__ ) A = self.linear(UpperCamelCase__ ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(UpperCamelCase__ , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
699
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" _a = MODEL_FOR_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output __magic_name__ = text_generator('''This is a test''' , do_sample=A ) self.assertEqual( A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) __magic_name__ = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) __magic_name__ = text_generator('''This is a test''' , do_sample=A , num_return_sequences=2 , return_tensors=A ) self.assertEqual( A , [ {'''generated_token_ids''': ANY(A )}, {'''generated_token_ids''': ANY(A )}, ] , ) __magic_name__ = text_generator.model.config.eos_token_id __magic_name__ = '''<pad>''' __magic_name__ = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=A , num_return_sequences=2 , batch_size=2 , return_tensors=A , ) self.assertEqual( A , [ [ {'''generated_token_ids''': ANY(A )}, {'''generated_token_ids''': ANY(A )}, ], [ {'''generated_token_ids''': ANY(A )}, {'''generated_token_ids''': ANY(A )}, ], ] , ) @require_tf def __A ( self ) -> int: '''simple docstring''' __magic_name__ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output __magic_name__ = text_generator('''This is a test''' , do_sample=A ) self.assertEqual( A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) __magic_name__ = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=A ) self.assertEqual( A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def __A ( self , A , A , A ) -> Dict: '''simple docstring''' __magic_name__ = TextGenerationPipeline(model=A , tokenizer=A ) return text_generator, ["This is a test", "Another test"] def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = '''Hello I believe in''' __magic_name__ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) __magic_name__ = text_generator(A ) self.assertEqual( A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) __magic_name__ = text_generator(A , stop_sequence=''' fe''' ) self.assertEqual(A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def __A ( self , A , A ) -> Tuple: '''simple docstring''' __magic_name__ = text_generator.model __magic_name__ = text_generator.tokenizer __magic_name__ = text_generator('''This is a test''' ) self.assertEqual(A , [{'''generated_text''': ANY(A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __magic_name__ = text_generator('''This is a test''' , return_full_text=A ) self.assertEqual(A , [{'''generated_text''': ANY(A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __magic_name__ = pipeline(task='''text-generation''' , model=A , tokenizer=A , return_full_text=A ) __magic_name__ = text_generator('''This is a test''' ) self.assertEqual(A , [{'''generated_text''': ANY(A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __magic_name__ = text_generator('''This is a test''' , return_full_text=A ) self.assertEqual(A , [{'''generated_text''': ANY(A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __magic_name__ = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=A ) self.assertEqual( A , [ [{'''generated_text''': ANY(A )}, {'''generated_text''': ANY(A )}], [{'''generated_text''': ANY(A )}, {'''generated_text''': ANY(A )}], ] , ) if text_generator.tokenizer.pad_token is not None: __magic_name__ = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=A ) self.assertEqual( A , [ [{'''generated_text''': ANY(A )}, {'''generated_text''': ANY(A )}], [{'''generated_text''': ANY(A )}, {'''generated_text''': ANY(A )}], ] , ) with self.assertRaises(A ): __magic_name__ = text_generator('''test''' , return_full_text=A , return_text=A ) with self.assertRaises(A ): __magic_name__ = text_generator('''test''' , return_full_text=A , return_tensors=A ) with self.assertRaises(A ): __magic_name__ = text_generator('''test''' , return_text=A , return_tensors=A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __magic_name__ = text_generator('''''' ) self.assertEqual(A , [{'''generated_text''': ANY(A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __magic_name__ = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __magic_name__ = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_00 , max_new_tokens=20 ) __magic_name__ = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A ): text_generator( '''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __A ( self ) -> Any: '''simple docstring''' import torch # Classic `model_kwargs` __magic_name__ = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __magic_name__ = pipe('''This is a test''' ) self.assertEqual( A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __magic_name__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __magic_name__ = pipe('''This is a test''' ) self.assertEqual( A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __magic_name__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __magic_name__ = pipe('''This is a test''' ) self.assertEqual( A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def __A ( self ) -> Tuple: '''simple docstring''' import torch __magic_name__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def __A ( self ) -> Optional[int]: '''simple docstring''' import torch __magic_name__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=A , top_p=0.5 ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = '''Hello world''' __magic_name__ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": __magic_name__ = logging.get_logger('''transformers.generation.tf_utils''' ) else: __magic_name__ = logging.get_logger('''transformers.generation.utils''' ) __magic_name__ = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A ) as cl: __magic_name__ = text_generator(A , max_length=10 , max_new_tokens=1 ) self.assertIn(A , cl.out ) # The user only sets one -> no warning with CaptureLogger(A ) as cl: __magic_name__ = text_generator(A , max_new_tokens=1 ) self.assertNotIn(A , cl.out ) with CaptureLogger(A ) as cl: __magic_name__ = text_generator(A , max_length=10 ) self.assertNotIn(A , cl.out )
708
a_ : Dict = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) a_ : str = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : str , snake_case_ : str ): __magic_name__ = from_type.lower().strip('''s''' ) __magic_name__ = to_type.lower().strip('''s''' ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) if from_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) if to_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) __magic_name__ = METRIC_CONVERSION[from_sanitized] __magic_name__ = METRIC_CONVERSION[to_sanitized] __magic_name__ = 1 if from_exponent > to_exponent: __magic_name__ = from_exponent - to_exponent else: __magic_name__ = -(to_exponent - from_exponent) return value * pow(10 , snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
678
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""pixel_values"""] def __init__( self : Tuple , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 2_55 , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : bool = True , **__lowercase : Optional[int] , ) -> None: super().__init__(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any =size if size is not None else {'''shortest_edge''': 2_24} SCREAMING_SNAKE_CASE__ : str =get_size_dict(__lowercase , default_to_square=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} SCREAMING_SNAKE_CASE__ : List[Any] =get_size_dict(__lowercase , default_to_square=__lowercase , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =do_resize SCREAMING_SNAKE_CASE__ : Any =size SCREAMING_SNAKE_CASE__ : List[Any] =resample SCREAMING_SNAKE_CASE__ : Optional[int] =do_center_crop SCREAMING_SNAKE_CASE__ : Union[str, Any] =crop_size SCREAMING_SNAKE_CASE__ : Dict =do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] =rescale_factor SCREAMING_SNAKE_CASE__ : Dict =do_normalize SCREAMING_SNAKE_CASE__ : Union[str, Any] =image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE__ : Tuple =image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE__ : str =do_convert_rgb def __magic_name__ ( self : List[str] , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : int , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : Any =get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) SCREAMING_SNAKE_CASE__ : List[Any] =get_resize_output_image_size(__lowercase , size=size['''shortest_edge'''] , default_to_square=__lowercase ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Optional[Any] , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : Any =get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowercase , size=(size['''height'''], size['''width''']) , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Optional[int] , __lowercase : np.ndarray , __lowercase : Union[int, float] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Tuple , ) -> List[Any]: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Tuple , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[int] , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Tuple , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : bool = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__lowercase : int , ) -> PIL.Image.Image: SCREAMING_SNAKE_CASE__ : Dict =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Any =size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Union[str, Any] =get_size_dict(__lowercase , param_name='''size''' , default_to_square=__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : Tuple =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ : Tuple =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ : Any =get_size_dict(__lowercase , param_name='''crop_size''' , default_to_square=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Dict =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Optional[Any] =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : List[str] =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : List[str] =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Dict =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE__ : Tuple =make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE__ : Union[str, Any] =[convert_to_rgb(__lowercase ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : Dict =[to_numpy_array(__lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Union[str, Any] =[self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ : List[str] =[self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : str =[self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Union[str, Any] =[self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Any =[to_channel_dimension_format(__lowercase , __lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Optional[Any] ={'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
296
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : List[Any] , __lowercase : Optional[NestedDataStructureLike[PathLike]] = None , __lowercase : Optional[NamedSplit] = None , __lowercase : Optional[Features] = None , __lowercase : str = None , __lowercase : bool = False , __lowercase : bool = False , __lowercase : Optional[int] = None , **__lowercase : Tuple , ) -> Dict: SCREAMING_SNAKE_CASE__ : Any =path_or_paths SCREAMING_SNAKE_CASE__ : Dict =split if split or isinstance(__lowercase , __lowercase ) else '''train''' SCREAMING_SNAKE_CASE__ : Dict =features SCREAMING_SNAKE_CASE__ : Union[str, Any] =cache_dir SCREAMING_SNAKE_CASE__ : Tuple =keep_in_memory SCREAMING_SNAKE_CASE__ : str =streaming SCREAMING_SNAKE_CASE__ : str =num_proc SCREAMING_SNAKE_CASE__ : Tuple =kwargs @abstractmethod def __magic_name__ ( self : List[str] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Optional[int] , __lowercase : Optional[Features] = None , __lowercase : str = None , __lowercase : bool = False , __lowercase : bool = False , __lowercase : Optional[int] = None , **__lowercase : List[Any] , ) -> Any: SCREAMING_SNAKE_CASE__ : Any =features SCREAMING_SNAKE_CASE__ : str =cache_dir SCREAMING_SNAKE_CASE__ : Tuple =keep_in_memory SCREAMING_SNAKE_CASE__ : Optional[int] =streaming SCREAMING_SNAKE_CASE__ : List[str] =num_proc SCREAMING_SNAKE_CASE__ : str =kwargs @abstractmethod def __magic_name__ ( self : Any ) -> Union[Dataset, IterableDataset]: pass
296
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
708
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
0
'''simple docstring''' _lowercase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
1
'''simple docstring''' def _a ( lowerCamelCase_ ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) snake_case : int =0 snake_case : Tuple =str(lowerCamelCase_ ) while len(lowerCamelCase_ ) != 1: snake_case : Any =[int(lowerCamelCase_ ) for i in num_string] snake_case : Union[str, Any] =1 for i in range(0 , len(lowerCamelCase_ ) ): total *= numbers[i] snake_case : Dict =str(lowerCamelCase_ ) steps += 1 return steps def _a ( lowerCamelCase_ ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) snake_case : List[Any] =0 snake_case : Dict =str(lowerCamelCase_ ) while len(lowerCamelCase_ ) != 1: snake_case : int =[int(lowerCamelCase_ ) for i in num_string] snake_case : List[Any] =0 for i in range(0 , len(lowerCamelCase_ ) ): total += numbers[i] snake_case : int =str(lowerCamelCase_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _a ( lowerCamelCase_ ): snake_case : List[Any] =prime_factors(lowerCamelCase_ ) if is_square_free(lowerCamelCase_ ): return -1 if len(lowerCamelCase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
136
0
from __future__ import annotations from cmath import sqrt def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Optional[int] , lowercase : int ) -> Optional[Any]: if a == 0: raise ValueError("Coefficient \'a\' must not be zero." ) __snake_case : Tuple = b * b - 4 * a * c __snake_case : List[Any] = (-b + sqrt(a__ )) / (2 * a) __snake_case : List[str] = (-b - sqrt(a__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCAmelCase__( ) -> str: __snake_case , __snake_case : Dict = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
243
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings snake_case_ : Optional[Any] = R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(UpperCamelCase__ ) class A__ ( UpperCamelCase__ ): UpperCAmelCase = "rag" UpperCAmelCase = True def __init__( self : Tuple , _a : List[Any]=None , _a : Tuple=True , _a : Optional[Any]=None , _a : int=None , _a : List[str]=None , _a : int=None , _a : Optional[int]=None , _a : str=" / " , _a : Any=" // " , _a : Optional[Any]=5 , _a : int=300 , _a : Optional[Any]=768 , _a : Any=8 , _a : List[str]="wiki_dpr" , _a : Dict="train" , _a : Union[str, Any]="compressed" , _a : str=None , _a : Union[str, Any]=None , _a : int=False , _a : Any=False , _a : Any=0.0 , _a : Any=True , _a : List[str]=False , _a : Optional[int]=False , _a : int=False , _a : Union[str, Any]=True , _a : Optional[int]=None , **_a : List[str] , ) -> List[Any]: """simple docstring""" super().__init__( bos_token_id=_a , pad_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , forced_eos_token_id=_a , is_encoder_decoder=_a , prefix=_a , vocab_size=_a , **_a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _SCREAMING_SNAKE_CASE =kwargs.pop('''question_encoder''' ) _SCREAMING_SNAKE_CASE =question_encoder_config.pop('''model_type''' ) _SCREAMING_SNAKE_CASE =kwargs.pop('''generator''' ) _SCREAMING_SNAKE_CASE =decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _SCREAMING_SNAKE_CASE =AutoConfig.for_model(_a , **_a ) _SCREAMING_SNAKE_CASE =AutoConfig.for_model(_a , **_a ) _SCREAMING_SNAKE_CASE =reduce_loss _SCREAMING_SNAKE_CASE =label_smoothing _SCREAMING_SNAKE_CASE =exclude_bos_score _SCREAMING_SNAKE_CASE =do_marginalize _SCREAMING_SNAKE_CASE =title_sep _SCREAMING_SNAKE_CASE =doc_sep _SCREAMING_SNAKE_CASE =n_docs _SCREAMING_SNAKE_CASE =max_combined_length _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =dataset_split _SCREAMING_SNAKE_CASE =index_name _SCREAMING_SNAKE_CASE =retrieval_vector_size _SCREAMING_SNAKE_CASE =retrieval_batch_size _SCREAMING_SNAKE_CASE =passages_path _SCREAMING_SNAKE_CASE =index_path _SCREAMING_SNAKE_CASE =use_dummy_dataset _SCREAMING_SNAKE_CASE =output_retrieved _SCREAMING_SNAKE_CASE =do_deduplication _SCREAMING_SNAKE_CASE =use_cache if self.forced_eos_token_id is None: _SCREAMING_SNAKE_CASE =getattr(self.generator , '''forced_eos_token_id''' , _a ) @classmethod def __UpperCamelCase ( cls : Optional[int] , _a : PretrainedConfig , _a : PretrainedConfig , **_a : Dict ) -> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_a ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.question_encoder.to_dict() _SCREAMING_SNAKE_CASE =self.generator.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output
691
0
def a ( _UpperCAmelCase : Any ): '''simple docstring''' if num < 0: return False __UpperCAmelCase : Optional[int] = num __UpperCAmelCase : Optional[int] = 0 while num > 0: __UpperCAmelCase : List[str] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
703
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __A ="%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") __A =f'''https://www.google.com/search?q={query}&num=100''' __A =requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: __A =( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: __A =parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
241
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def lowerCamelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , """num_attention_heads""" ) ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : Any , lowerCamelCase : Optional[int]=13 , lowerCamelCase : List[str]=32 , lowerCamelCase : Any=2 , lowerCamelCase : Dict=3 , lowerCamelCase : int=640 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : Tuple="silu" , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=32 , lowerCamelCase : Any=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : Optional[Any]=True , lowerCamelCase : int=True , lowerCamelCase : Union[str, Any]=10 , lowerCamelCase : Dict=None , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = last_hidden_size _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = conv_kernel_size _UpperCAmelCase = output_stride _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = classifier_dropout_prob _UpperCAmelCase = use_labels _UpperCAmelCase = is_training _UpperCAmelCase = num_labels _UpperCAmelCase = initializer_range _UpperCAmelCase = scope def lowerCamelCase ( self : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase ( self : str ) -> int: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase = MobileViTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : str ) -> int: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileViTForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : str ) -> int: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileViTForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _UpperCAmelCase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = MobileViTModelTester(self ) _UpperCAmelCase = MobileViTConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def lowerCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def lowerCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" pass def lowerCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase ( self : Dict ) -> Dict: """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCamelCase ( self : List[str] ) -> int: """simple docstring""" def check_hidden_states_output(lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str ): _UpperCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = 5 self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _UpperCAmelCase = 2 for i in range(len(lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : Tuple ) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def lowerCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) @slow def lowerCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = MobileViTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( ) -> Dict: _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(lowerCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**lowerCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) _UpperCAmelCase = model.to(lowerCamelCase ) _UpperCAmelCase = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**lowerCamelCase ) _UpperCAmelCase = outputs.logits # verify the logits _UpperCAmelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) _UpperCAmelCase = model.to(lowerCamelCase ) _UpperCAmelCase = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**lowerCamelCase ) _UpperCAmelCase = outputs.logits.detach().cpu() _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(50, 60)] ) _UpperCAmelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) _UpperCAmelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
108
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") _UpperCamelCase = int(input("""Enter number: """).strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
341
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case_ ( unittest.TestCase): def __lowercase ( self ) -> int: lowerCamelCase : int =inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) lowerCamelCase : str =os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) lowerCamelCase : int =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def __lowercase ( self ) -> int: print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase : Optional[Any] =['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def __lowercase ( self ) -> str: print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase : Tuple =['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def __lowercase ( self ) -> Any: lowerCamelCase : str =['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) @require_multi_gpu def __lowercase ( self ) -> Optional[int]: print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) lowerCamelCase : Any =['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(__a , env=os.environ.copy() ) if __name__ == "__main__": snake_case_ = Accelerator() snake_case_ = (accelerator.state.process_index + 2, 1_0) snake_case_ = torch.randint(0, 1_0, shape).to(accelerator.device) snake_case_ = '''''' snake_case_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." snake_case_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." snake_case_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
712
from collections import defaultdict from math import ceil, sqrt def A__ ( SCREAMING_SNAKE_CASE_ = 1_0_0_0_0_0_0 , SCREAMING_SNAKE_CASE_ = 1_0 ) -> int: lowerCamelCase : defaultdict =defaultdict(SCREAMING_SNAKE_CASE_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCamelCase : Any =max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCamelCase : str =1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F"""{solution() = }""")
262
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig a_ = logging.get_logger(__name__) # General docstring a_ = 'RegNetConfig' # Base docstring a_ = 'facebook/regnet-y-040' a_ = [1, 1_088, 7, 7] # Image classification docstring a_ = 'facebook/regnet-y-040' a_ = 'tabby, tabby cat' a_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Optional[Any] , a: int , a: int = 3 , a: int = 1 , a: int = 1 , a: Optional[str] = "relu" , **a: Any , ) ->Optional[Any]: '''simple docstring''' super().__init__(**a) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb a_ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2) a_ = tf.keras.layers.ConvaD( filters=a , kernel_size=a , strides=a , padding="VALID" , groups=a , use_bias=a , name="convolution" , ) a_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization") a_ = ACTaFN[activation] if activation is not None else tf.identity def _lowerCAmelCase ( self: Optional[Any] , a: Tuple) ->Tuple: '''simple docstring''' a_ = self.convolution(self.padding(a)) a_ = self.normalization(a) a_ = self.activation(a) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Dict , a: RegNetConfig , **a: List[Any]) ->Union[str, Any]: '''simple docstring''' super().__init__(**a) a_ = config.num_channels a_ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def _lowerCAmelCase ( self: Optional[Any] , a: Any) ->Optional[int]: '''simple docstring''' a_ = shape_list(a)[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration.") # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) a_ = tf.transpose(a , perm=(0, 2, 3, 1)) a_ = self.embedder(a) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Any , a: int , a: int = 2 , **a: int) ->List[str]: '''simple docstring''' super().__init__(**a) a_ = tf.keras.layers.ConvaD( filters=a , kernel_size=1 , strides=a , use_bias=a , name="convolution") a_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization") def _lowerCAmelCase ( self: Optional[Any] , a: tf.Tensor , a: bool = False) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(a) , training=a) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Tuple , a: int , a: int , **a: Any) ->Optional[int]: '''simple docstring''' super().__init__(**a) a_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a , name="pooler") a_ = [ tf.keras.layers.ConvaD(filters=a , kernel_size=1 , activation="relu" , name="attention.0"), tf.keras.layers.ConvaD(filters=a , kernel_size=1 , activation="sigmoid" , name="attention.2"), ] def _lowerCAmelCase ( self: List[str] , a: Union[str, Any]) ->Any: '''simple docstring''' a_ = self.pooler(a) for layer_module in self.attention: a_ = layer_module(a) a_ = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Optional[int] , a: RegNetConfig , a: int , a: int , a: int = 1 , **a: Any) ->Tuple: '''simple docstring''' super().__init__(**a) a_ = in_channels != out_channels or stride != 1 a_ = max(1 , out_channels // config.groups_width) a_ = ( TFRegNetShortCut(a , stride=a , name="shortcut") if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut") ) # `self.layers` instead of `self.layer` because that is a reserved argument. a_ = [ TFRegNetConvLayer(a , kernel_size=1 , activation=config.hidden_act , name="layer.0"), TFRegNetConvLayer( a , stride=a , groups=a , activation=config.hidden_act , name="layer.1"), TFRegNetConvLayer(a , kernel_size=1 , activation=a , name="layer.2"), ] a_ = ACTaFN[config.hidden_act] def _lowerCAmelCase ( self: List[Any] , a: List[str]) ->Optional[Any]: '''simple docstring''' a_ = hidden_state for layer_module in self.layers: a_ = layer_module(a) a_ = self.shortcut(a) hidden_state += residual a_ = self.activation(a) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Optional[Any] , a: RegNetConfig , a: int , a: int , a: int = 1 , **a: List[Any]) ->List[str]: '''simple docstring''' super().__init__(**a) a_ = in_channels != out_channels or stride != 1 a_ = max(1 , out_channels // config.groups_width) a_ = ( TFRegNetShortCut(a , stride=a , name="shortcut") if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut") ) a_ = [ TFRegNetConvLayer(a , kernel_size=1 , activation=config.hidden_act , name="layer.0"), TFRegNetConvLayer( a , stride=a , groups=a , activation=config.hidden_act , name="layer.1"), TFRegNetSELayer(a , reduced_channels=int(round(in_channels / 4)) , name="layer.2"), TFRegNetConvLayer(a , kernel_size=1 , activation=a , name="layer.3"), ] a_ = ACTaFN[config.hidden_act] def _lowerCAmelCase ( self: str , a: Any) ->List[str]: '''simple docstring''' a_ = hidden_state for layer_module in self.layers: a_ = layer_module(a) a_ = self.shortcut(a) hidden_state += residual a_ = self.activation(a) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Optional[Any] , a: RegNetConfig , a: int , a: int , a: int = 2 , a: int = 2 , **a: Optional[int]) ->List[str]: '''simple docstring''' super().__init__(**a) a_ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer a_ = [ # downsampling is done in the first layer with stride of 2 layer(a , a , a , stride=a , name="layers.0"), *[layer(a , a , a , name=f"""layers.{i+1}""") for i in range(depth - 1)], ] def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->Optional[int]: '''simple docstring''' for layer_module in self.layers: a_ = layer_module(a) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Tuple , a: RegNetConfig , **a: Union[str, Any]) ->Optional[Any]: '''simple docstring''' super().__init__(**a) a_ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , )) a_ = zip(config.hidden_sizes , config.hidden_sizes[1:]) for i, ((in_channels, out_channels), depth) in enumerate(zip(a , config.depths[1:])): self.stages.append(TFRegNetStage(a , a , a , depth=a , name=f"""stages.{i+1}""")) def _lowerCAmelCase ( self: List[Any] , a: tf.Tensor , a: bool = False , a: bool = True) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' a_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a_ = hidden_states + (hidden_state,) a_ = stage_module(a) if output_hidden_states: a_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return TFBaseModelOutputWithNoAttention(last_hidden_state=a , hidden_states=a) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): _UpperCAmelCase =RegNetConfig def __init__( self: Optional[Any] , a: List[str] , **a: Optional[int]) ->str: '''simple docstring''' super().__init__(**a) a_ = config a_ = TFRegNetEmbeddings(a , name="embedder") a_ = TFRegNetEncoder(a , name="encoder") a_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a , name="pooler") @unpack_inputs def _lowerCAmelCase ( self: Optional[int] , a: tf.Tensor , a: Optional[bool] = None , a: Optional[bool] = None , a: bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.embedder(a , training=a) a_ = self.encoder( a , output_hidden_states=a , return_dict=a , training=a) a_ = encoder_outputs[0] a_ = self.pooler(a) # Change to NCHW output format have uniformity in the modules a_ = tf.transpose(a , perm=(0, 3, 1, 2)) a_ = tf.transpose(a , perm=(0, 3, 1, 2)) # Change the other hidden state outputs to NCHW as well if output_hidden_states: a_ = tuple([tf.transpose(a , perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a , pooler_output=a , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =RegNetConfig _UpperCAmelCase ='''regnet''' _UpperCAmelCase ='''pixel_values''' @property def _lowerCAmelCase ( self: Optional[Any]) ->int: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa)} a_ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' a_ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , lowercase_ , ) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: Union[str, Any] , a: RegNetConfig , *a: str , **a: Any) ->Any: '''simple docstring''' super().__init__(a , *a , **a) a_ = TFRegNetMainLayer(a , name="regnet") @unpack_inputs @add_start_docstrings_to_model_forward(a) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCAmelCase ( self: str , a: tf.Tensor , a: Optional[bool] = None , a: Optional[bool] = None , a: List[str]=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.regnet( pixel_values=a , output_hidden_states=a , return_dict=a , training=a , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowercase_ , ) class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ): def __init__( self: List[Any] , a: RegNetConfig , *a: List[str] , **a: Any) ->List[Any]: '''simple docstring''' super().__init__(a , *a , **a) a_ = config.num_labels a_ = TFRegNetMainLayer(a , name="regnet") # classification head a_ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1") if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(a) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCAmelCase ( self: Any , a: tf.Tensor = None , a: tf.Tensor = None , a: bool = None , a: bool = None , a: Tuple=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.regnet( a , output_hidden_states=a , return_dict=a , training=a) a_ = outputs.pooler_output if return_dict else outputs[1] a_ = self.classifier[0](a) a_ = self.classifier[1](a) a_ = None if labels is None else self.hf_compute_loss(labels=a , logits=a) if not return_dict: a_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=a , logits=a , hidden_states=outputs.hidden_states)
685
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 100 ) -> int: '''simple docstring''' a_ = n * (n + 1) * (2 * n + 1) / 6 a_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
685
1
def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if index == r: for j in range(lowerCAmelCase__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __a = arr[i] combination_util(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index + 1 , lowerCAmelCase__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # A temporary array to store all combination one by one __a = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , 0 , lowerCAmelCase__ , 0 ) if __name__ == "__main__": # Driver code to check the function above SCREAMING_SNAKE_CASE = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
209
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['YolosFeatureExtractor'] SCREAMING_SNAKE_CASE = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
209
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( __snake_case , unittest.TestCase ): """simple docstring""" snake_case = BlenderbotSmallTokenizer snake_case = False def lowerCamelCase__ ( self : Tuple ) -> Any: """simple docstring""" super().setUp() A_ = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] A_ = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) A_ = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] A_ = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_snake_case ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_snake_case ) ) def lowerCamelCase__ ( self : List[Any] , **_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def lowerCamelCase__ ( self : int , _snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" A_ = "adapt act apte" A_ = "adapt act apte" return input_text, output_text def lowerCamelCase__ ( self : Any ) -> Dict: """simple docstring""" A_ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A_ = "adapt act apte" A_ = ["adapt", "act", "ap@@", "te"] A_ = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) A_ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] A_ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" A_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_384] A_ = "I am a small frog." A_ = tok([src_text] , padding=_snake_case , truncation=_snake_case )["input_ids"] A_ = tok.batch_decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCamelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" A_ = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) A_ = "I am a small frog ." A_ = "." A_ = tok(_snake_case )["input_ids"] A_ = tok(_snake_case )["input_ids"] assert encoded[-1] == encoded_dot[0]
115
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowerCamelCase_ : List[Any] = pd.read_csv("""sample_data.csv""", header=None) lowerCamelCase_ : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column lowerCamelCase_ : Union[str, Any] = df.iloc[:, 1:2] lowerCamelCase_ : str = actual_data.values.reshape(len_data, 1) lowerCamelCase_ : List[Any] = MinMaxScaler().fit_transform(actual_data) lowerCamelCase_ : List[str] = 10 lowerCamelCase_ : Tuple = 5 lowerCamelCase_ : Optional[Any] = 20 lowerCamelCase_ : List[Any] = len_data - periods * look_back lowerCamelCase_ : Union[str, Any] = actual_data[:division] lowerCamelCase_ : Dict = actual_data[division - look_back :] lowerCamelCase_ , lowerCamelCase_ : int = [], [] lowerCamelCase_ , lowerCamelCase_ : List[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowerCamelCase_ : Dict = np.array(train_x) lowerCamelCase_ : Union[str, Any] = np.array(test_x) lowerCamelCase_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) lowerCamelCase_ : Any = np.array([list(i.ravel()) for i in test_y]) lowerCamelCase_ : int = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") lowerCamelCase_ : Optional[int] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) lowerCamelCase_ : int = model.predict(x_test)
559
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] =1 @register_to_config def __init__( self : Dict , UpperCamelCase : int=20_00 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : List[str]=20 , UpperCamelCase : Dict=1e-3 ): '''simple docstring''' _snake_case : str = None _snake_case : int = None _snake_case : int = None def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Union[str, torch.device] = None ): '''simple docstring''' _snake_case : Optional[Any] = torch.linspace(1 , self.config.sampling_eps , UpperCamelCase , device=UpperCamelCase ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _snake_case : Optional[Any] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _snake_case : List[str] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _snake_case : Dict = std.flatten() while len(std.shape ) < len(score.shape ): _snake_case : Optional[Any] = std.unsqueeze(-1 ) _snake_case : Dict = -score / std # compute _snake_case : Dict = -1.0 / len(self.timesteps ) _snake_case : Optional[int] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _snake_case : Dict = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _snake_case : List[str] = beta_t.unsqueeze(-1 ) _snake_case : List[Any] = -0.5 * beta_t * x _snake_case : Union[str, Any] = torch.sqrt(UpperCamelCase ) _snake_case : List[str] = drift - diffusion**2 * score _snake_case : int = x + drift * dt # add noise _snake_case : Any = randn_tensor(x.shape , layout=x.layout , generator=UpperCamelCase , device=x.device , dtype=x.dtype ) _snake_case : Tuple = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
669
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
1