code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import re def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: lowercase__ = split_input(SCREAMING_SNAKE_CASE ) if upper: lowercase__ = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowercase__ = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return to_simple_case(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" try: lowercase__ = to_simple_case(SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return to_complex_case(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''_''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return to_complex_case(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''-''' ) if __name__ == "__main__": __import__('doctest').testmod()
43
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
706
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class A ( __UpperCAmelCase ): __snake_case = 'roberta-prelayernorm' def __init__( self, UpperCamelCase__=5_0265, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=512, UpperCamelCase__=2, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=1, UpperCamelCase__=0, UpperCamelCase__=2, UpperCamelCase__="absolute", UpperCamelCase__=True, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache lowerCAmelCase_ = classifier_dropout class A ( __UpperCAmelCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
325
0
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = set({"""(""", """[""", """{"""} ) SCREAMING_SNAKE_CASE__ = set({""")""", """]""", """}"""} ) SCREAMING_SNAKE_CASE__ = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(UpperCamelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCamelCase__ ) == 0 or (len(UpperCamelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCamelCase__ ) == 0 def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = input("""Enter sequence of brackets: """ ) if is_balanced(UpperCamelCase__ ): print(UpperCamelCase__ , """is balanced""" ) else: print(UpperCamelCase__ , """is not balanced""" ) if __name__ == "__main__": main()
6
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase_ = None try: import msvcrt except ImportError: lowerCAmelCase_ = None try: import fcntl except ImportError: lowerCAmelCase_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase_ = OSError # Data # ------------------------------------------------ lowerCAmelCase_ = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] lowerCAmelCase_ = '3.0.12' lowerCAmelCase_ = None def A__ ( ): '''simple docstring''' global _logger UpperCamelCase : List[str] = _logger or logging.getLogger(__name__) return _logger class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase ) -> int: '''simple docstring''' UpperCamelCase : Tuple = lock_file return None def __str__( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Union[str, Any] = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase ) -> int: '''simple docstring''' UpperCamelCase : Optional[int] = lock return None def __enter__( self ) -> Optional[int]: '''simple docstring''' return self.lock def __exit__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: '''simple docstring''' self.lock.release() return None class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> List[str]: '''simple docstring''' UpperCamelCase : Tuple = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long UpperCamelCase : int = self.hash_filename_if_too_long(lowerCamelCase , lowerCamelCase ) # The path to the lock file. UpperCamelCase : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCamelCase : Dict = None # The default timeout value. UpperCamelCase : Dict = timeout # We use this lock primarily for the lock counter. UpperCamelCase : Any = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCamelCase : Any = 0 return None @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase ) -> List[str]: '''simple docstring''' UpperCamelCase : Optional[Any] = float(lowerCamelCase ) return None def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase=None , lowerCamelCase=0.05 ) -> Union[str, Any]: '''simple docstring''' if timeout is None: UpperCamelCase : Union[str, Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCamelCase : str = id(self ) UpperCamelCase : Union[str, Any] = self._lock_file UpperCamelCase : Union[str, Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(lowerCamelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCamelCase : Tuple = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCamelCase : Optional[Any] = id(self ) UpperCamelCase : Tuple = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() UpperCamelCase : List[str] = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ) -> List[Any]: '''simple docstring''' self.acquire() return self def __exit__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: '''simple docstring''' self.release() return None def __del__( self ) -> List[str]: '''simple docstring''' self.release(force=lowerCamelCase ) return None def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase ) -> str: '''simple docstring''' UpperCamelCase : Tuple = os.path.basename(lowerCamelCase ) if len(lowerCamelCase ) > max_length and max_length > 0: UpperCamelCase : str = os.path.dirname(lowerCamelCase ) UpperCamelCase : Any = str(hash(lowerCamelCase ) ) UpperCamelCase : Dict = filename[: max_length - len(lowerCamelCase ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(lowerCamelCase , lowerCamelCase ) else: return path class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> Optional[int]: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase , timeout=lowerCamelCase , max_filename_length=lowerCamelCase ) UpperCamelCase : List[str] = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' UpperCamelCase : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCamelCase : str = os.open(self._lock_file , lowerCamelCase ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase ) else: UpperCamelCase : Dict = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : str = self._lock_file_fd UpperCamelCase : List[Any] = None msvcrt.locking(lowerCamelCase , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> List[Any]: '''simple docstring''' UpperCamelCase : Optional[int] = os.statvfs(os.path.dirname(lowerCamelCase ) ).f_namemax super().__init__(lowerCamelCase , timeout=lowerCamelCase , max_filename_length=lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : int = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCamelCase : Union[str, Any] = os.open(self._lock_file , lowerCamelCase ) try: fcntl.flock(lowerCamelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase ) else: UpperCamelCase : Any = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Union[str, Any] = self._lock_file_fd UpperCamelCase : str = None fcntl.flock(lowerCamelCase , fcntl.LOCK_UN ) os.close(lowerCamelCase ) return None class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : Dict = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCamelCase : Union[str, Any] = os.open(self._lock_file , lowerCamelCase ) except OSError: pass else: UpperCamelCase : Dict = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' os.close(self._lock_file_fd ) UpperCamelCase : Optional[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase_ = None if msvcrt: lowerCAmelCase_ = WindowsFileLock elif fcntl: lowerCAmelCase_ = UnixFileLock else: lowerCAmelCase_ = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
173
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCAmelCase_ : Optional[int] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCAmelCase_ : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCAmelCase_ : str = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def UpperCAmelCase_ ( A , A ): '''simple docstring''' _a : List[Any] = len([g for position, g in enumerate(__SCREAMING_SNAKE_CASE ) if g == main_target[position]] ) return (item, float(__SCREAMING_SNAKE_CASE )) def UpperCAmelCase_ ( A , A ): '''simple docstring''' _a : Dict = random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) _a : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] _a : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCAmelCase_ ( A , A ): '''simple docstring''' _a : List[str] = list(__SCREAMING_SNAKE_CASE ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _a : Optional[int] = random.choice(__SCREAMING_SNAKE_CASE ) return "".join(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( A , A , A , ): '''simple docstring''' _a : Dict = [] # Generate more children proportionally to the fitness score. _a : Union[str, Any] = int(parent_a[1] * 1_0_0 ) + 1 _a : int = 1_0 if child_n >= 1_0 else child_n for _ in range(__SCREAMING_SNAKE_CASE ): _a : Union[str, Any] = population_score[random.randint(0 , __SCREAMING_SNAKE_CASE )][0] _a : List[Any] = crossover(parent_a[0] , __SCREAMING_SNAKE_CASE ) # Append new string to the population list. pop.append(mutate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) pop.append(mutate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) return pop def UpperCAmelCase_ ( A , A , A = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: _a : Optional[int] = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(__SCREAMING_SNAKE_CASE ) # Verify that the target contains no genes besides the ones inside genes variable. _a : Tuple = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _a : int = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(__SCREAMING_SNAKE_CASE ) # Generate random starting population. _a : List[str] = [] for _ in range(__SCREAMING_SNAKE_CASE ): population.append(''.join([random.choice(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) )] ) ) # Just some logs to know what the algorithms is doing. _a : Union[str, Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__SCREAMING_SNAKE_CASE ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _a : List[str] = [evaluate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in population] # Check if there is a matching evolution. _a : List[str] = sorted(__SCREAMING_SNAKE_CASE , key=lambda A : x[1] , reverse=__SCREAMING_SNAKE_CASE ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _a : Dict = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__SCREAMING_SNAKE_CASE ) # Normalize population score to be between 0 and 1. _a : int = [ (item, score / len(__SCREAMING_SNAKE_CASE )) for item, score in population_score ] # This is selection for i in range(__SCREAMING_SNAKE_CASE ): population.extend(select(population_score[int(__SCREAMING_SNAKE_CASE )] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__SCREAMING_SNAKE_CASE ) > N_POPULATION: break if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) UpperCAmelCase_ : Union[str, Any] = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
704
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = {"vocab_file": "sentencepiece.model"} UpperCAmelCase_ : Tuple = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCAmelCase_ : Dict = { "google/rembert": 256, } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_="[CLS]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , **lowerCamelCase_ , ) -> Optional[int]: super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) _a : int = do_lower_case _a : List[str] = remove_space _a : Optional[int] = keep_accents _a : Optional[int] = vocab_file _a : int = spm.SentencePieceProcessor() self.sp_model.Load(lowerCamelCase_ ) @property def __UpperCamelCase ( self ) -> List[str]: return len(self.sp_model ) def __UpperCamelCase ( self ) -> Optional[Any]: _a : Any = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: _a : Optional[int] = self.__dict__.copy() _a : Any = None return state def __setstate__( self , lowerCamelCase_ ) -> Union[str, Any]: _a : str = d _a : str = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_=False ) -> List[Any]: _a : Dict = self.sp_model.EncodeAsPieces(lowerCamelCase_ ) return pieces def __UpperCamelCase ( self , lowerCamelCase_ ) -> Optional[Any]: return self.sp_model.PieceToId(lowerCamelCase_ ) def __UpperCamelCase ( self , lowerCamelCase_ ) -> Dict: return self.sp_model.IdToPiece(lowerCamelCase_ ) def __UpperCamelCase ( self , lowerCamelCase_ ) -> Dict: _a : int = self.sp_model.decode_pieces(lowerCamelCase_ ) return out_string def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: _a : Dict = [self.sep_token_id] _a : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: _a : Tuple = [self.sep_token_id] _a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCamelCase_ ) ) return _a : Dict = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
424
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Union[str, Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 'pegasus' lowerCAmelCase = ['past_key_values'] lowerCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int]=5_0_2_6_5 , SCREAMING_SNAKE_CASE : int=1_0_2_4 , SCREAMING_SNAKE_CASE : List[Any]=1_2 , SCREAMING_SNAKE_CASE : int=4_0_9_6 , SCREAMING_SNAKE_CASE : List[str]=1_6 , SCREAMING_SNAKE_CASE : int=1_2 , SCREAMING_SNAKE_CASE : List[str]=4_0_9_6 , SCREAMING_SNAKE_CASE : int=1_6 , SCREAMING_SNAKE_CASE : int=0.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : int="gelu" , SCREAMING_SNAKE_CASE : str=1_0_2_4 , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : str=0.0 , SCREAMING_SNAKE_CASE : List[str]=0.0 , SCREAMING_SNAKE_CASE : Dict=0.0_2 , SCREAMING_SNAKE_CASE : Any=0 , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : str=0 , SCREAMING_SNAKE_CASE : int=1 , SCREAMING_SNAKE_CASE : str=1 , **SCREAMING_SNAKE_CASE : List[str] , ) -> int: """simple docstring""" lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = d_model lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = encoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , forced_eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) @property def __A ( self : Union[str, Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def __A ( self : int ) -> int: """simple docstring""" return self.d_model
649
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowercase : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowercase : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __a ( A__ ) -> Optional[Any]: with open(A__ , "rb" ) as f: lowerCAmelCase = Image.open(A__ ) return im.convert("RGB" ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase = field(default=UpperCamelCase_ , metadata={'help': 'A folder containing the training data.'} ) lowerCAmelCase = field(default=UpperCamelCase_ , metadata={'help': 'A folder containing the validation data.'} ) lowerCAmelCase = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self : Optional[int] ) -> List[str]: """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCAmelCase = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(UpperCamelCase_ )} , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCAmelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase = field(default=UpperCamelCase_ , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __a ( A__ ) -> Any: lowerCAmelCase = torch.stack([example["pixel_values"] for example in examples] ) lowerCAmelCase = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __a ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , A__ , A__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(A__ ) transformers.utils.logging.set_verbosity(A__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCAmelCase = {} if data_args.train_dir is not None: lowerCAmelCase = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: lowerCAmelCase = os.path.join(data_args.validation_dir , "**" ) lowerCAmelCase = load_dataset( "imagefolder" , data_files=A__ , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCAmelCase = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , A__ ) and data_args.train_val_split > 0.0: lowerCAmelCase = dataset["train"].train_test_split(data_args.train_val_split ) lowerCAmelCase = split["train"] lowerCAmelCase = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCAmelCase = dataset["train"].features["labels"].names lowerCAmelCase , lowerCAmelCase = {}, {} for i, label in enumerate(A__ ): lowerCAmelCase = str(A__ ) lowerCAmelCase = label # Load the accuracy metric from the datasets package lowerCAmelCase = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(A__ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel=A__ , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowerCAmelCase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowerCAmelCase = image_processor.size["shortest_edge"] else: lowerCAmelCase = (image_processor.size["height"], image_processor.size["width"]) lowerCAmelCase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowerCAmelCase = Compose( [ RandomResizedCrop(A__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowerCAmelCase = Compose( [ Resize(A__ ), CenterCrop(A__ ), ToTensor(), normalize, ] ) def train_transforms(A__ ): lowerCAmelCase = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(A__ ): lowerCAmelCase = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: lowerCAmelCase = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(A__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: lowerCAmelCase = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(A__ ) # Initalize our trainer lowerCAmelCase = Trainer( model=A__ , args=A__ , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=A__ , tokenizer=A__ , data_collator=A__ , ) # Training if training_args.do_train: lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase = last_checkpoint lowerCAmelCase = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase = trainer.evaluate() trainer.log_metrics("eval" , A__ ) trainer.save_metrics("eval" , A__ ) # Write model card and (optionally) push to hub lowerCAmelCase = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**A__ ) else: trainer.create_model_card(**A__ ) if __name__ == "__main__": main()
649
1
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) SCREAMING_SNAKE_CASE_ = '''\\n Text data.\n Second line of data.''' SCREAMING_SNAKE_CASE_ = '''file''' @pytest.fixture(scope="session" ) def A__ ( A__ ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _UpperCAmelCase = bytes(UpperCamelCase__ , "utf-8" ) with zstd.open(UpperCamelCase__ , "wb" ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture def A__ ( A__ ) -> List[Any]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , UpperCamelCase__ ) , "w" ) as f: f.write(UpperCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def A__ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _UpperCAmelCase = input_paths[compression_format] _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = DownloadConfig(cache_dir=UpperCamelCase__ , extract_compressed_file=UpperCamelCase__ ) _UpperCAmelCase = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) with open(UpperCamelCase__ ) as f: _UpperCAmelCase = f.read() with open(UpperCamelCase__ ) as f: _UpperCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def A__ ( A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = "custom_cache" _UpperCAmelCase = "custom_extracted_dir" _UpperCAmelCase = tmp_path / "custom_extracted_path" if default_extracted: _UpperCAmelCase = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , UpperCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(UpperCamelCase__ ) ) _UpperCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _UpperCAmelCase = xz_file _UpperCAmelCase = ( DownloadConfig(extract_compressed_file=UpperCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=UpperCamelCase__ ) ) _UpperCAmelCase = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) assert Path(UpperCamelCase__ ).parent.parts[-2:] == expected def A__ ( A__ ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = str(Path(UpperCamelCase__ ).resolve() ) assert cached_path(UpperCamelCase__ ) == text_file # relative path _UpperCAmelCase = str(Path(UpperCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(UpperCamelCase__ ) == text_file def A__ ( A__ ) -> Any: '''simple docstring''' _UpperCAmelCase = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) # relative path _UpperCAmelCase = "./__missing_file__.txt" with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) def A__ ( A__ ) -> str: '''simple docstring''' _UpperCAmelCase = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(UpperCamelCase__ ) as f: _UpperCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , UpperCamelCase__ ) def A__ ( ) -> int: '''simple docstring''' with pytest.raises(UpperCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , UpperCamelCase__ ) def A__ ( A__ ) -> str: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(UpperCamelCase__ ): http_get("https://huggingface.co" , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , UpperCamelCase__ ) def A__ ( A__ ) -> List[str]: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(UpperCamelCase__ ): ftp_get("ftp://huggingface.co" , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , UpperCamelCase__ ) def A__ ( A__ ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(UpperCamelCase__ ): fsspec_get("s3://huggingface.co" , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): fsspec_head("s3://huggingface.co" )
715
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" , [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] , ) def A__ ( A__ , A__ ) -> Tuple: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" , "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase = DatasetInfosDict.from_directory(A__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info" , [ DatasetInfo(), DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ), ] , ) def A__ ( A__ , A__ ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = str(A__ ) dataset_info.write_to_directory(A__ ) _UpperCAmelCase = DatasetInfo.from_directory(A__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(A__ , "dataset_info.json" ) ) def A__ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = DatasetInfo( description="foo" , citation="bar" , homepage="https://foo.bar" , license="CC0" , features=Features({"a": Value("int32" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train", "num_examples": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) _UpperCAmelCase = dataset_info._to_yaml_dict() assert sorted(A__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _UpperCAmelCase = yaml.safe_dump(A__ ) _UpperCAmelCase = yaml.safe_load(A__ ) assert dataset_info_yaml_dict == reloaded def A__ ( ) -> int: '''simple docstring''' _UpperCAmelCase = DatasetInfo() _UpperCAmelCase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" , [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1337 ), } ), ] , ) def A__ ( A__ , A__ ) -> Dict: '''simple docstring''' _UpperCAmelCase = str(A__ ) dataset_infos_dict.write_to_directory(A__ ) _UpperCAmelCase = DatasetInfosDict.from_directory(A__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(A__ , "README.md" ) )
579
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=10 , _UpperCamelCase=3 , _UpperCamelCase=2 , _UpperCamelCase=2 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase="divided_space_time" , _UpperCamelCase=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = num_frames _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = attention_type _UpperCAmelCase = initializer_range _UpperCAmelCase = scope _UpperCAmelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = (num_frames) * self.num_patches_per_frame + 1 def UpperCamelCase( self ): _UpperCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ): _UpperCAmelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _UpperCAmelCase = self.num_labels return config def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = TimesformerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = TimesformerForVideoClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # verify the logits shape _UpperCAmelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : List[Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __A : Union[str, Any] = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) __A : int = False __A : List[str] = False __A : int = False __A : str = False def UpperCamelCase( self ): _UpperCAmelCase = TimesformerModelTester(self ) _UpperCAmelCase = ConfigTester( self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): _UpperCAmelCase = copy.deepcopy(_UpperCamelCase ) if return_labels: if model_class in get_values(_UpperCamelCase ): _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) return inputs_dict def UpperCamelCase( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TimesformerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCamelCase( self ): if not self.has_attentions: pass else: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = self.model_tester.seq_length _UpperCAmelCase = self.model_tester.num_frames _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _UpperCAmelCase = len(_UpperCamelCase ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(_UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCamelCase( self ): def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) _UpperCAmelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def A__ ( ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) _UpperCAmelCase = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCamelCase( self ): _UpperCAmelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( _UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(video[:8] , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
32
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase__ ( ): __UpperCAmelCase : Union[str, Any] = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" ) __UpperCAmelCase : Any = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(__lowerCamelCase ) DownloadCommand.register_subcommand(__lowerCamelCase ) EnvironmentCommand.register_subcommand(__lowerCamelCase ) RunCommand.register_subcommand(__lowerCamelCase ) ServeCommand.register_subcommand(__lowerCamelCase ) UserCommands.register_subcommand(__lowerCamelCase ) AddNewModelCommand.register_subcommand(__lowerCamelCase ) AddNewModelLikeCommand.register_subcommand(__lowerCamelCase ) LfsCommands.register_subcommand(__lowerCamelCase ) PTtoTFCommand.register_subcommand(__lowerCamelCase ) # Let's go __UpperCAmelCase : Optional[Any] = parser.parse_args() if not hasattr(__lowerCamelCase , """func""" ): parser.print_help() exit(1 ) # Run __UpperCAmelCase : Tuple = args.func(__lowerCamelCase ) service.run() if __name__ == "__main__": main()
63
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Dict = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self ): super().setUp() # fmt: off UpperCAmelCase__ : Tuple = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on UpperCAmelCase__ : Optional[Any] = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 UpperCAmelCase__ : int = {'''unk_token''': '''<unk>'''} UpperCAmelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(_UpperCAmelCase ) ) def lowerCamelCase ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase ( self , _UpperCAmelCase ): UpperCAmelCase__ : Dict = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' UpperCAmelCase__ : Any = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def lowerCamelCase ( self , _UpperCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase__ : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def lowerCamelCase ( self ): pass # TODO add if relevant def lowerCamelCase ( self ): pass # TODO add if relevant def lowerCamelCase ( self ): pass # TODO add if relevant def lowerCamelCase ( self ): UpperCAmelCase__ : int = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ : Union[str, Any] = '''こんにちは、世界。 こんばんは、㔺界。''' UpperCAmelCase__ : List[Any] = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] UpperCAmelCase__ : Tuple = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids without special tokens UpperCAmelCase__ : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids with special tokens UpperCAmelCase__ : Optional[int] = tokens + [tokenizer.unk_token] UpperCAmelCase__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase__ : int = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase ( self ): UpperCAmelCase__ : Tuple = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ : Optional[Any] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' UpperCAmelCase__ : str = '''こんにちは、、、、世界。こんばんは、、、、世界。''' UpperCAmelCase__ : Optional[Any] = tokenizer.encode(_UpperCAmelCase ) UpperCAmelCase__ : Dict = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCamelCase ( self ): UpperCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization UpperCAmelCase__ : Union[str, Any] = '''こんにちは、世界。''' UpperCAmelCase__ : List[Any] = '''こんばんは、㔺界。😀''' UpperCAmelCase__ : Tuple = '''こんにちは、世界。こんばんは、世界。😀''' UpperCAmelCase__ : Dict = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase__ : List[Any] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) UpperCAmelCase__ : Tuple = tokenizer.encode(_UpperCAmelCase , prefix_text=_UpperCAmelCase ) UpperCAmelCase__ : Tuple = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ : List[str] = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCamelCase ( self ): UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization UpperCAmelCase__ : int = '''こんにちは、世界。''' UpperCAmelCase__ : Dict = '''こんばんは、㔺界。😀''' UpperCAmelCase__ : str = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ : Optional[Any] = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ : Union[str, Any] = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase__ : str = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase__ : Union[str, Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase__ : str = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase__ : Dict = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase__ : Tuple = tokenizer(_UpperCAmelCase , prefix_text=_UpperCAmelCase ).token_type_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCamelCase ( self ): UpperCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) UpperCAmelCase__ : List[Any] = tokenizer.encode('''あンいワ''' ) UpperCAmelCase__ : Optional[int] = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) UpperCAmelCase__ : Dict = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self ): UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) UpperCAmelCase__ : Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] UpperCAmelCase__ : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase ) UpperCAmelCase__ : Dict = tokenizer.batch_encode_plus(_UpperCAmelCase , padding=_UpperCAmelCase ) # fmt: off UpperCAmelCase__ : int = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] UpperCAmelCase__ : List[str] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase__ : Tuple = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , _UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , _UpperCAmelCase ) def lowerCamelCase ( self ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self ): # tokenizer has no padding token pass
599
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
599
1
'''simple docstring''' def a_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float: if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
286
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = KandinskyInpaintPipeline A__ = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] A__ = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] A__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] A__ = False @property def A_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return 32 @property def A_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' return 32 @property def A_ ( self : Dict ) -> str: '''simple docstring''' return self.time_input_dim @property def A_ ( self : Dict ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def A_ ( self : List[Any] ) -> List[str]: '''simple docstring''' return 100 @property def A_ ( self : int ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[str] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def A_ ( self : Tuple ) -> str: '''simple docstring''' torch.manual_seed(0 ) __snake_case : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) __snake_case : List[Any] = MultilingualCLIP(__a ) __snake_case : List[str] = text_encoder.eval() return text_encoder @property def A_ ( self : Dict ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Tuple = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __snake_case : Any = UNetaDConditionModel(**__a ) return model @property def A_ ( self : List[str] ) -> List[Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A_ ( self : int ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def A_ ( self : Dict ) -> Tuple: '''simple docstring''' __snake_case : Tuple = self.dummy_text_encoder __snake_case : str = self.dummy_tokenizer __snake_case : Any = self.dummy_unet __snake_case : Optional[Any] = self.dummy_movq __snake_case : Optional[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__a , set_alpha_to_one=__a , steps_offset=1 , prediction_type='epsilon' , thresholding=__a , ) __snake_case : List[str] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def A_ ( self : List[str] , __a : Dict , __a : int=0 ) -> Optional[Any]: '''simple docstring''' __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__a ) ).to(__a ) __snake_case : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__a ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__a ) ).to(__a ) __snake_case : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : List[str] = Image.fromarray(np.uinta(__a ) ).convert('RGB' ).resize((256, 256) ) # create mask __snake_case : Optional[int] = np.ones((64, 64) , dtype=np.floataa ) __snake_case : List[Any] = 0 if str(__a ).startswith('mps' ): __snake_case : Any = torch.manual_seed(__a ) else: __snake_case : Optional[int] = torch.Generator(device=__a ).manual_seed(__a ) __snake_case : int = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def A_ ( self : Any ) -> int: '''simple docstring''' __snake_case : List[str] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Optional[int] = self.pipeline_class(**__a ) __snake_case : Union[str, Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(__a ) ) __snake_case : Dict = output.images __snake_case : Union[str, Any] = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] __snake_case : int = image[0, -3:, -3:, -1] __snake_case : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __snake_case : List[Any] = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def A_ ( self : List[Any] ) -> List[str]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def A_ ( self : Dict ) -> List[str]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) __snake_case : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __snake_case : Tuple = np.ones((768, 768) , dtype=np.floataa ) __snake_case : Tuple = 0 __snake_case : Tuple = 'a hat' __snake_case : Optional[Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__a ) __snake_case : int = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) __snake_case : Optional[Any] = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) __snake_case : Any = torch.Generator(device='cpu' ).manual_seed(0 ) __snake_case , __snake_case : Union[str, Any] = pipe_prior( __a , generator=__a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __snake_case : List[str] = pipeline( __a , image=__a , mask_image=__a , image_embeds=__a , negative_image_embeds=__a , generator=__a , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) __snake_case : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__a , __a )
286
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase_ : def __init__( self : Tuple , _lowercase : Optional[int]=2 , _lowercase : Dict=3 , _lowercase : Optional[Any]=6_4 , _lowercase : List[str]=None ) -> Any: _lowercase = np.random.default_rng(_lowercase ) _lowercase = length _lowercase = rng.normal(size=(length,) ).astype(np.floataa ) _lowercase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ) -> int: return self.length def __getitem__( self : Any , _lowercase : str ) -> List[str]: return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase_ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : List[str]=0 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=False ) -> List[str]: super().__init__() _lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowercase = True def _lowerCamelCase ( self : Optional[int] , _lowercase : List[Any]=None ) -> Tuple: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) _lowercase = False return x * self.a[0] + self.b[0] class UpperCAmelCase_ ( torch.nn.Module ): def __init__( self : Any , _lowercase : Tuple=0 , _lowercase : Any=0 , _lowercase : Any=False ) -> int: super().__init__() _lowercase = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) _lowercase = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) _lowercase = True def _lowerCamelCase ( self : Any , _lowercase : Optional[int]=None ) -> Dict: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) _lowercase = False return x * self.a + self.b def __UpperCAmelCase ( _snake_case : List[str], _snake_case : int = 1_6 ): from datasets import load_dataset from transformers import AutoTokenizer _lowercase = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowercase = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowercase = load_dataset("csv", data_files=_snake_case ) _lowercase = datasets["train"].unique("label" ) _lowercase = {v: i for i, v in enumerate(_snake_case )} def tokenize_function(_snake_case : List[Any] ): # max_length=None => use the model max length (it's actually the default) _lowercase = tokenizer( examples["sentence1"], examples["sentence2"], truncation=_snake_case, max_length=_snake_case, padding="max_length" ) if "label" in examples: _lowercase = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase = datasets.map( _snake_case, batched=_snake_case, remove_columns=["sentence1", "sentence2", "label"], ) def collate_fn(_snake_case : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_snake_case, padding="max_length", max_length=1_2_8, return_tensors="pt" ) return tokenizer.pad(_snake_case, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. _lowercase = DataLoader(tokenized_datasets["train"], shuffle=_snake_case, collate_fn=_snake_case, batch_size=2 ) _lowercase = DataLoader(tokenized_datasets["validation"], shuffle=_snake_case, collate_fn=_snake_case, batch_size=1 ) return train_dataloader, eval_dataloader
704
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple , _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : List[str] ) -> int: self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase ) def _lowerCamelCase ( self : List[str] ) -> Optional[int]: _lowercase = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowercase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def _lowerCamelCase ( self : Union[str, Any] ) -> List[str]: _lowercase = None ops.enable_eager_execution_internal() _lowercase = tf.config.list_physical_devices("CPU" ) if len(_lowercase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) _lowercase = tf.config.list_logical_devices(device_type="CPU" ) _lowercase = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): _lowercase = GradientAccumulator() _lowercase = tf.Variable([4.0, 3.0] ) _lowercase , _lowercase = create_optimizer(5e-5 , 1_0 , 5 ) _lowercase = tf.Variable([0.0, 0.0] , trainable=_lowercase ) def accumulate_on_replica(_lowercase : Dict ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_lowercase : Optional[Any] , _lowercase : List[Any] ): with strategy.scope(): _lowercase = strategy.experimental_local_results(_lowercase ) local_variables[0].assign(_lowercase ) local_variables[1].assign(_lowercase ) strategy.run(_lowercase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowercase ) def _check_local_values(_lowercase : Union[str, Any] , _lowercase : Any ): _lowercase = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowercase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , _lowercase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
227
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''lxmert''' _UpperCAmelCase = {} def __init__( self , snake_case=30522 , snake_case=768 , snake_case=12 , snake_case=9500 , snake_case=1600 , snake_case=400 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1E-12 , snake_case=9 , snake_case=5 , snake_case=5 , snake_case=2048 , snake_case=4 , snake_case=6.67 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , **snake_case , ) -> Optional[int]: _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = num_qa_labels _UpperCAmelCase = num_object_labels _UpperCAmelCase = num_attr_labels _UpperCAmelCase = l_layers _UpperCAmelCase = x_layers _UpperCAmelCase = r_layers _UpperCAmelCase = visual_feat_dim _UpperCAmelCase = visual_pos_dim _UpperCAmelCase = visual_loss_normalizer _UpperCAmelCase = task_matched _UpperCAmelCase = task_mask_lm _UpperCAmelCase = task_obj_predict _UpperCAmelCase = task_qa _UpperCAmelCase = visual_obj_loss _UpperCAmelCase = visual_attr_loss _UpperCAmelCase = visual_feat_loss _UpperCAmelCase = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**snake_case )
573
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig lowercase = logging.getLogger(__name__) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''masked_bert''' def __init__( self , snake_case=30522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1E-12 , snake_case=0 , snake_case="topK" , snake_case="constant" , snake_case=0.0 , **snake_case , ) -> str: super().__init__(pad_token_id=snake_case , **snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = pruning_method _UpperCAmelCase = mask_init _UpperCAmelCase = mask_scale
573
1
'''simple docstring''' from __future__ import annotations import queue class lowerCAmelCase__ : def __init__( self : int , lowerCamelCase__ : Tuple ) ->Dict: '''simple docstring''' _UpperCAmelCase : str = data _UpperCAmelCase : Any = None _UpperCAmelCase : Tuple = None def __lowerCAmelCase (): print("\n********Press N to stop entering at any point of time********\n" ) _UpperCAmelCase : Optional[Any] = input("Enter the value of the root node: " ).strip().lower() _UpperCAmelCase : queue.Queue = queue.Queue() _UpperCAmelCase : List[Any] = TreeNode(int(__lowerCAmelCase ) ) q.put(__lowerCAmelCase ) while not q.empty(): _UpperCAmelCase : Tuple = q.get() _UpperCAmelCase : Union[str, Any] = F"""Enter the left node of {node_found.data}: """ _UpperCAmelCase : Any = input(__lowerCAmelCase ).strip().lower() or "n" if check == "n": return tree_node _UpperCAmelCase : List[Any] = TreeNode(int(__lowerCAmelCase ) ) _UpperCAmelCase : List[Any] = left_node q.put(__lowerCAmelCase ) _UpperCAmelCase : Any = F"""Enter the right node of {node_found.data}: """ _UpperCAmelCase : str = input(__lowerCAmelCase ).strip().lower() or "n" if check == "n": return tree_node _UpperCAmelCase : Dict = TreeNode(int(__lowerCAmelCase ) ) _UpperCAmelCase : List[str] = right_node q.put(__lowerCAmelCase ) raise def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(__lowerCAmelCase ) while not q.empty(): _UpperCAmelCase : List[str] = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(__lowerCAmelCase ) while not q.empty(): _UpperCAmelCase : Optional[int] = [] while not q.empty(): _UpperCAmelCase : List[Any] = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : List[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(__lowerCAmelCase ) _UpperCAmelCase : Any = n.left # end of while means current node doesn't have left child _UpperCAmelCase : str = stack.pop() # start to traverse its right child _UpperCAmelCase : List[Any] = n.right def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : Optional[Any] = node while n or stack: while n: stack.append(__lowerCAmelCase ) _UpperCAmelCase : int = n.left _UpperCAmelCase : int = stack.pop() print(n.data , end="," ) _UpperCAmelCase : int = n.right def __lowerCAmelCase (__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] _UpperCAmelCase : Any = node stacka.append(__lowerCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 _UpperCAmelCase : List[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__lowerCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def __lowerCAmelCase (__lowerCAmelCase = "" , __lowerCAmelCase=50 , __lowerCAmelCase="*" ): if not s: return "\n" + width * char _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = divmod(width - len(__lowerCAmelCase ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) lowerCamelCase__ = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
40
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase__ = parser.parse_args() if args.model_type == "bert": lowerCamelCase__ = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase__ = model.state_dict() lowerCamelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase__ = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: lowerCamelCase__ = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] lowerCamelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 lowerCamelCase__ = state_dict['cls.predictions.decoder.weight'] lowerCamelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase__ = state_dict[F'''cls.predictions.transform.dense.{w}'''] lowerCamelCase__ = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
40
1
import math class SCREAMING_SNAKE_CASE : def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : list[list[float]] , a : list[int] )-> int: """simple docstring""" lowercase__ = 0.0 lowercase__ = 0.0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE_ ( self : Any , a : list[list[int | float]] , a : list[int] , a : int , a : float )-> list[list[int | float]]: """simple docstring""" for i in range(len(_SCREAMING_SNAKE_CASE ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __UpperCamelCase () -> None: # Training Examples ( m, n ) lowercase__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowercase__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowercase__ = SelfOrganizingMap() lowercase__ = 3 lowercase__ = 0.5 for _ in range(__snake_case ): for j in range(len(__snake_case ) ): # training sample lowercase__ = training_samples[j] # Compute the winning vector lowercase__ = self_organizing_map.get_winner(__snake_case , __snake_case ) # Update the winning vector lowercase__ = self_organizing_map.update(__snake_case , __snake_case , __snake_case , __snake_case ) # classify test sample lowercase__ = [0, 0, 0, 1] lowercase__ = self_organizing_map.get_winner(__snake_case , __snake_case ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
235
"""simple docstring""" def _lowercase ( __snake_case ,__snake_case ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def _lowercase ( ) -> None: assert or_gate(0 ,0 ) == 0 assert or_gate(0 ,1 ) == 1 assert or_gate(1 ,0 ) == 1 assert or_gate(1 ,1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
293
0
"""simple docstring""" def a_ ( lowerCamelCase ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
632
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCAmelCase__ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCAmelCase__ : list[int] = [ord(letter) for letter in string.ascii_lowercase] lowerCAmelCase__ : set[int] = {ord(char) for char in VALID_CHARS} lowerCAmelCase__ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = "" UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 for keychar, cipherchar in zip(cycle(lowerCamelCase ) , lowerCamelCase ): UpperCAmelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowerCamelCase ) return decoded def a_ ( lowerCamelCase ): UpperCAmelCase__ = [] for key in product(lowerCamelCase , repeat=3 ): UpperCAmelCase__ = try_key(lowerCamelCase , lowerCamelCase ) if encoded is not None: possibles.append(lowerCamelCase ) return possibles def a_ ( lowerCamelCase , lowerCamelCase ): return [possible for possible in possibles if common_word in possible.lower()] def a_ ( lowerCamelCase = "p059_cipher.txt" ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = Path(lowerCamelCase ).parent.joinpath(lowerCamelCase ).read_text(encoding='utf-8' ) UpperCAmelCase__ = [int(lowerCamelCase ) for number in data.strip().split(',' )] UpperCAmelCase__ = filter_valid_chars(lowerCamelCase ) for common_word in COMMON_WORDS: UpperCAmelCase__ = filter_common_word(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: break UpperCAmelCase__ = possibles[0] return sum(ord(lowerCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
632
1
'''simple docstring''' import cva import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if k in (0.04, 0.06): UpperCamelCase : Optional[int] = k UpperCamelCase : Union[str, Any] = window_size else: raise ValueError("invalid k value" ) def __str__( self ) -> str: '''simple docstring''' return str(self.k ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase ) -> tuple[cva.Mat, list[list[int]]]: '''simple docstring''' UpperCamelCase : Any = cva.imread(lowerCamelCase , 0 ) UpperCamelCase , UpperCamelCase : List[Any] = img.shape UpperCamelCase : list[list[int]] = [] UpperCamelCase : List[str] = img.copy() UpperCamelCase : List[str] = cva.cvtColor(lowerCamelCase , cva.COLOR_GRAY2RGB ) UpperCamelCase , UpperCamelCase : List[Any] = np.gradient(lowerCamelCase ) UpperCamelCase : Any = dx**2 UpperCamelCase : Optional[Any] = dy**2 UpperCamelCase : Any = dx * dy UpperCamelCase : Any = 0.04 UpperCamelCase : List[Any] = self.window_size // 2 for y in range(lowerCamelCase , h - offset ): for x in range(lowerCamelCase , w - offset ): UpperCamelCase : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase : List[str] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase : List[Any] = (wxx * wyy) - (wxy**2) UpperCamelCase : Optional[int] = wxx + wyy UpperCamelCase : Tuple = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": lowerCAmelCase_ = HarrisCorner(0.04, 3) lowerCAmelCase_ , lowerCAmelCase_ = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
173
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: '''simple docstring''' UpperCamelCase : Union[str, Any] = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) UpperCamelCase : List[Any] = VideoClassificationPipeline(model=lowerCamelCase , image_processor=lowerCamelCase , top_k=2 ) UpperCamelCase : List[str] = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase ) -> List[Any]: '''simple docstring''' for example in examples: UpperCamelCase : int = video_classifier(lowerCamelCase ) self.assertEqual( lowerCamelCase , [ {"score": ANY(lowerCamelCase ), "label": ANY(lowerCamelCase )}, {"score": ANY(lowerCamelCase ), "label": ANY(lowerCamelCase )}, ] , ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' UpperCamelCase : List[Any] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" UpperCamelCase : Any = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) UpperCamelCase : List[str] = pipeline( "video-classification" , model=lowerCamelCase , feature_extractor=lowerCamelCase , frame_sampling_rate=4 ) UpperCamelCase : int = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) UpperCamelCase : List[str] = video_classifier(lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}] , ) UpperCamelCase : List[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ] , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' pass
173
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class UpperCamelCase ( a__ ): lowercase = "SpeechT5FeatureExtractor" lowercase = "SpeechT5Tokenizer" def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCamelCase_ ,lowerCamelCase_ ) def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = kwargs.pop('audio' ,lowerCamelCase_ ) lowercase_ : Dict = kwargs.pop('text' ,lowerCamelCase_ ) lowercase_ : Union[str, Any] = kwargs.pop('text_target' ,lowerCamelCase_ ) lowercase_ : Optional[int] = kwargs.pop('audio_target' ,lowerCamelCase_ ) lowercase_ : Dict = kwargs.pop('sampling_rate' ,lowerCamelCase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: lowercase_ : Union[str, Any] = self.feature_extractor(lowerCamelCase_ ,*lowerCamelCase_ ,sampling_rate=lowerCamelCase_ ,**lowerCamelCase_ ) elif text is not None: lowercase_ : Union[str, Any] = self.tokenizer(lowerCamelCase_ ,**lowerCamelCase_ ) else: lowercase_ : Union[str, Any] = None if audio_target is not None: lowercase_ : Dict = self.feature_extractor(audio_target=lowerCamelCase_ ,*lowerCamelCase_ ,sampling_rate=lowerCamelCase_ ,**lowerCamelCase_ ) lowercase_ : int = targets['input_values'] elif text_target is not None: lowercase_ : Optional[int] = self.tokenizer(lowerCamelCase_ ,**lowerCamelCase_ ) lowercase_ : Dict = targets['input_ids'] else: lowercase_ : Tuple = None if inputs is None: return targets if targets is not None: lowercase_ : str = labels lowercase_ : Dict = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowercase_ : Dict = decoder_attention_mask return inputs def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Any = kwargs.pop('input_values' ,lowerCamelCase_ ) lowercase_ : str = kwargs.pop('input_ids' ,lowerCamelCase_ ) lowercase_ : Union[str, Any] = kwargs.pop('labels' ,lowerCamelCase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: lowercase_ : List[str] = self.feature_extractor.pad(lowerCamelCase_ ,*lowerCamelCase_ ,**lowerCamelCase_ ) elif input_ids is not None: lowercase_ : Tuple = self.tokenizer.pad(lowerCamelCase_ ,**lowerCamelCase_ ) else: lowercase_ : List[str] = None if labels is not None: if "input_ids" in labels or (isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and "input_ids" in labels[0]): lowercase_ : Any = self.tokenizer.pad(lowerCamelCase_ ,**lowerCamelCase_ ) lowercase_ : str = targets['input_ids'] else: lowercase_ : Any = self.feature_extractor.feature_size lowercase_ : int = self.feature_extractor.num_mel_bins lowercase_ : Optional[Any] = self.feature_extractor.pad(lowerCamelCase_ ,*lowerCamelCase_ ,**lowerCamelCase_ ) lowercase_ : List[Any] = feature_size_hack lowercase_ : Optional[Any] = targets['input_values'] else: lowercase_ : Tuple = None if inputs is None: return targets if targets is not None: lowercase_ : str = labels lowercase_ : Tuple = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowercase_ : Any = decoder_attention_mask return inputs def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_ ,**lowerCamelCase_ ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_ ,**lowerCamelCase_ )
710
"""simple docstring""" __SCREAMING_SNAKE_CASE ="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def lowercase__( __SCREAMING_SNAKE_CASE : bytes ): # Make sure the supplied data is a bytes-like object if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Dict = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = ''.join(bin(__SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) lowercase_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase_ : Optional[int] = b'=' * ((6 - len(__SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__SCREAMING_SNAKE_CASE ) % 6) else: lowercase_ : List[Any] = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(__SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def lowercase__( __SCREAMING_SNAKE_CASE : str ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Tuple = ( 'argument should be a bytes-like object or ASCII string, ' F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(__SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): try: lowercase_ : List[str] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) lowercase_ : List[str] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase_ : Union[str, Any] = encoded_data[:-padding] lowercase_ : List[Any] = ''.join( bin(B64_CHARSET.index(__SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase_ : int = ''.join( bin(B64_CHARSET.index(__SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) lowercase_ : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(__SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
477
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> bool: '''simple docstring''' snake_case : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) snake_case : Any = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): snake_case : Union[str, Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): snake_case : List[str] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: snake_case : int = subset[i - 1][j] if arr[i - 1] <= j: snake_case : str = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowercase__ = get_logger(__name__) class snake_case__ ( enum.Enum ): """simple docstring""" lowerCamelCase = """all_checks""" lowerCamelCase = """basic_checks""" lowerCamelCase = """no_checks""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> str: '''simple docstring''' if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) snake_case : Any = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] snake_case : Union[str, Any] = ''' for ''' + verification_name if verification_name is not None else '''''' if len(SCREAMING_SNAKE_CASE__ ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: '''simple docstring''' if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) snake_case : Dict = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE__ ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE__ ) ) logger.info('''All the splits matched successfully.''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True ) -> dict: '''simple docstring''' if record_checksum: snake_case : Any = shaaaa() with open(SCREAMING_SNAKE_CASE__ , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ): m.update(SCREAMING_SNAKE_CASE__ ) snake_case : Any = m.hexdigest() else: snake_case : Tuple = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE__ ), "checksum": checksum} def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Dict: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
638
1
_lowerCAmelCase = 9.8_0665 def a__ ( a , a , a = g ) -> float: if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
236
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __UpperCAmelCase( A__ ): """simple docstring""" def __init__( self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , __magic_name__ = None , __magic_name__ = False , __magic_name__ = None , __magic_name__ = True , __magic_name__ = "arrow" , **__magic_name__ , ): """simple docstring""" super().__init__( split=__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ , keep_in_memory=__magic_name__ , streaming=__magic_name__ , **__magic_name__ , ) A_ : Tuple = load_from_cache_file A_ : List[str] = file_format A_ : List[Any] = Spark( df=__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ , working_dir=__magic_name__ , **__magic_name__ , ) def UpperCAmelCase ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) A_ : Optional[Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__magic_name__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
236
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } a_ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __lowerCAmelCase ( A_ : List[Any] , A_ : int , A_ : List[Any] , A_ : Union[str, Any] , A_ : str ) -> Optional[Any]: for attribute in key.split("." ): __UpperCAmelCase = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: __UpperCAmelCase = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: __UpperCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase = value elif weight_type == "weight_g": __UpperCAmelCase = value elif weight_type == "weight_v": __UpperCAmelCase = value elif weight_type == "bias": __UpperCAmelCase = value else: __UpperCAmelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCAmelCase ( A_ : List[Any] , A_ : str ) -> List[Any]: __UpperCAmelCase = [] __UpperCAmelCase = fairseq_model.state_dict() __UpperCAmelCase = hf_model.feature_extractor __UpperCAmelCase = hf_model.adapter for name, value in fairseq_dict.items(): __UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == "group" , ) __UpperCAmelCase = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __UpperCAmelCase = True if "*" in mapped_key: __UpperCAmelCase = name.split(UpperCamelCase_ )[0].split("." )[-2] __UpperCAmelCase = mapped_key.replace("*" , UpperCamelCase_ ) if "weight_g" in name: __UpperCAmelCase = """weight_g""" elif "weight_v" in name: __UpperCAmelCase = """weight_v""" elif "bias" in name: __UpperCAmelCase = """bias""" elif "weight" in name: __UpperCAmelCase = """weight""" else: __UpperCAmelCase = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCAmelCase ( A_ : List[Any] , A_ : Tuple , A_ : Any , A_ : Dict , A_ : int ) -> str: __UpperCAmelCase = full_name.split("conv_layers." )[-1] __UpperCAmelCase = name.split("." ) __UpperCAmelCase = int(items[0] ) __UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCamelCase_ ) def __lowerCAmelCase ( A_ : Union[str, Any] , A_ : Any , A_ : List[str] , A_ : Dict ) -> Optional[int]: __UpperCAmelCase = full_name.split("adaptor." )[-1] __UpperCAmelCase = name.split("." ) if items[1].isdigit(): __UpperCAmelCase = int(items[1] ) else: __UpperCAmelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' __UpperCAmelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' __UpperCAmelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' __UpperCAmelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' __UpperCAmelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' __UpperCAmelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' __UpperCAmelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(UpperCamelCase_ ) def __lowerCAmelCase ( A_ : List[Any] ) -> str: __UpperCAmelCase = emb.weight.shape __UpperCAmelCase = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) __UpperCAmelCase = emb.weight.data return lin_layer @torch.no_grad() def __lowerCAmelCase ( A_ : List[str] , A_ : int , A_ : List[str] , A_ : str , A_ : List[str] , A_ : Optional[Any] , A_ : Dict , A_ : List[Any] , A_ : Optional[Any] , A_ : List[str] , A_ : int , ) -> str: __UpperCAmelCase = WavaVecaConfig.from_pretrained( UpperCamelCase_ , add_adapter=UpperCamelCase_ , adapter_stride=UpperCamelCase_ , adapter_kernel_size=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , output_hidden_size=UpperCamelCase_ , ) __UpperCAmelCase = MBartConfig.from_pretrained(UpperCamelCase_ ) # load model __UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) __UpperCAmelCase = model[0].eval() # load feature extractor __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ , use_auth_token=UpperCamelCase_ ) # set weights for wav2vec2 encoder __UpperCAmelCase = WavaVecaModel(UpperCamelCase_ ) recursively_load_weights_wavaveca(model.encoder , UpperCamelCase_ ) # load decoder weights __UpperCAmelCase = MBartForCausalLM(UpperCamelCase_ ) __UpperCAmelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase_ ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __UpperCAmelCase = SpeechEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) __UpperCAmelCase = False __UpperCAmelCase = MBartaaTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase = hf_wavavec.config.to_dict() __UpperCAmelCase = tokenizer.pad_token_id __UpperCAmelCase = tokenizer.bos_token_id __UpperCAmelCase = tokenizer.eos_token_id __UpperCAmelCase = """mbart50""" __UpperCAmelCase = """wav2vec2""" __UpperCAmelCase = tokenizer.eos_token_id __UpperCAmelCase = 25_00_04 __UpperCAmelCase = tokenizer.eos_token_id __UpperCAmelCase = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase_ ) hf_wavavec.save_pretrained(UpperCamelCase_ ) feature_extractor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250004, type=int, help="""`decoder_start_token_id` of model config""") a_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
221
import math from datetime import datetime, timedelta def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = year % 19 _lowerCAmelCase : Tuple = year % 4 _lowerCAmelCase : Dict = year % 7 _lowerCAmelCase : Optional[Any] = math.floor(year / 100 ) _lowerCAmelCase : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _lowerCAmelCase : int = leap_day_inhibits / 4 _lowerCAmelCase : List[Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _lowerCAmelCase : str = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _lowerCAmelCase : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _lowerCAmelCase : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 18 ) else: return datetime(UpperCamelCase_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): _lowerCamelCase : List[Any] = "will be" if year > datetime.now().year else "was" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
429
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = """switch_transformers""" SCREAMING_SNAKE_CASE_ : Tuple = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ : Optional[int] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , lowerCAmelCase__=32_128 , lowerCAmelCase__=768 , lowerCAmelCase__=64 , lowerCAmelCase__=2_048 , lowerCAmelCase__=64 , lowerCAmelCase__=12 , lowerCAmelCase__=3 , lowerCAmelCase__=12 , lowerCAmelCase__=3 , lowerCAmelCase__=12 , lowerCAmelCase__=8 , lowerCAmelCase__=False , lowerCAmelCase__=0.01 , lowerCAmelCase__="float32" , lowerCAmelCase__=False , lowerCAmelCase__=32 , lowerCAmelCase__=128 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1e-6 , lowerCAmelCase__=0.0_01 , lowerCAmelCase__=0.0_01 , lowerCAmelCase__=1.0 , lowerCAmelCase__="relu" , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0 , lowerCAmelCase__=1 , **lowerCAmelCase__ , ) -> int: SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = d_kv SCREAMING_SNAKE_CASE = d_ff SCREAMING_SNAKE_CASE = num_sparse_encoder_layers SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: SCREAMING_SNAKE_CASE = self.num_layers // self.num_sparse_encoder_layers else: SCREAMING_SNAKE_CASE = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: SCREAMING_SNAKE_CASE = self.num_decoder_layers // self.num_sparse_decoder_layers else: SCREAMING_SNAKE_CASE = self.num_decoder_layers # HACK: this will create 0 sparse layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = num_experts SCREAMING_SNAKE_CASE = expert_capacity SCREAMING_SNAKE_CASE = router_bias SCREAMING_SNAKE_CASE = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE = router_dtype SCREAMING_SNAKE_CASE = router_ignore_padding_tokens SCREAMING_SNAKE_CASE = relative_attention_num_buckets SCREAMING_SNAKE_CASE = relative_attention_max_distance SCREAMING_SNAKE_CASE = dropout_rate SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = feed_forward_proj SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = add_router_probs SCREAMING_SNAKE_CASE = router_z_loss_coef SCREAMING_SNAKE_CASE = router_aux_loss_coef SCREAMING_SNAKE_CASE = self.feed_forward_proj.split('-' ) SCREAMING_SNAKE_CASE = act_info[-1] SCREAMING_SNAKE_CASE = act_info[0] == 'gated' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE = 'gelu_new' super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
327
"""simple docstring""" from math import sqrt def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE_ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE_ ): total += i return total - n def lowercase (SCREAMING_SNAKE_CASE_ : int = 1_00_00 ) -> int: SCREAMING_SNAKE_CASE = sum( i for i in range(1 , SCREAMING_SNAKE_CASE_ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE_ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
327
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def __magic_name__ ( self ) -> str: torch.manual_seed(0 ) __a : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __magic_name__ ( self ) -> Dict: __a : Optional[int] = self.dummy_uncond_unet __a : Optional[Any] = KarrasVeScheduler() __a : Tuple = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __a : Tuple = torch.manual_seed(0 ) __a : Tuple = pipe(num_inference_steps=2 , generator=_A , output_type='numpy' ).images __a : Optional[int] = torch.manual_seed(0 ) __a : Any = pipe(num_inference_steps=2 , generator=_A , output_type='numpy' , return_dict=_A )[0] __a : Union[str, Any] = image[0, -3:, -3:, -1] __a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self ) -> Dict: __a : int = 'google/ncsnpp-celebahq-256' __a : int = UNetaDModel.from_pretrained(_A ) __a : Tuple = KarrasVeScheduler() __a : Tuple = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __a : Dict = torch.manual_seed(0 ) __a : str = pipe(num_inference_steps=20 , generator=_A , output_type='numpy' ).images __a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __a : Optional[Any] = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
597
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging SCREAMING_SNAKE_CASE_ = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] SCREAMING_SNAKE_CASE_ = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = " Hello world! cécé herlolip" SCREAMING_SNAKE_CASE_ = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Dict = dct.pop(SCREAMING_SNAKE_CASE__ ) __a : Dict = val def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : Dict = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) __a : Dict = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a , __a : Dict = emb.weight.shape __a : Optional[Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): if not os.path.exists(SCREAMING_SNAKE_CASE__ ): __a : Tuple = torch.hub.load('pytorch/fairseq' , SCREAMING_SNAKE_CASE__ ).eval() else: __a : Optional[int] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: __a : List[str] = checkpoint_path.replace('.' , '-' ) __a : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) __a : List[str] = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( f'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": __a : List[Any] = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) __a : str = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Dict = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __a : Any = bart.predict('mnli' , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about __a : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = state_dict['decoder.embed_tokens.weight'] __a : List[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": __a : Dict = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __a : str = model(SCREAMING_SNAKE_CASE__ ).model[0] else: __a : Optional[Any] = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , 'lm_head' ): __a : Optional[int] = make_linear_from_emb(model.model.shared ) __a : List[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
597
1
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and number_of_steps > 0 ), F"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 __snake_case , __snake_case : Optional[int] = 1, 1 for _ in range(number_of_steps - 1 ): __snake_case , __snake_case : Tuple = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
192
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : List[Any]) -> Dict: __snake_case : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') __snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2').to(_A) __snake_case : Union[str, Any] = -1 __snake_case : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) __snake_case : Any = model.generate(_A , max_new_tokens=10 , do_sample=_A) __snake_case : str = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: __snake_case : List[str] = TextStreamer(_A) model.generate(_A , max_new_tokens=10 , do_sample=_A , streamer=_A) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case : Optional[Any] = cs.out[:-1] self.assertEqual(_A , _A) def _lowercase (self : int) -> Optional[Any]: __snake_case : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2').to(_A) __snake_case : Optional[int] = -1 __snake_case : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) __snake_case : int = model.generate(_A , max_new_tokens=10 , do_sample=_A) __snake_case : int = tokenizer.decode(greedy_ids[0]) __snake_case : int = TextIteratorStreamer(_A) __snake_case : List[Any] = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} __snake_case : Any = Thread(target=model.generate , kwargs=_A) thread.start() __snake_case : Dict = '' for new_text in streamer: streamer_text += new_text self.assertEqual(_A , _A) def _lowercase (self : Any) -> List[str]: __snake_case : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') __snake_case : Any = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2').to(_A) __snake_case : Union[str, Any] = -1 __snake_case : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) __snake_case : Optional[int] = model.generate(_A , max_new_tokens=10 , do_sample=_A) __snake_case : Union[str, Any] = greedy_ids[:, input_ids.shape[1] :] __snake_case : Optional[Any] = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: __snake_case : str = TextStreamer(_A , skip_prompt=_A) model.generate(_A , max_new_tokens=10 , do_sample=_A , streamer=_A) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case : List[str] = cs.out[:-1] self.assertEqual(_A , _A) def _lowercase (self : List[str]) -> Dict: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __snake_case : int = AutoTokenizer.from_pretrained('distilgpt2') __snake_case : Dict = AutoModelForCausalLM.from_pretrained('distilgpt2').to(_A) __snake_case : Union[str, Any] = -1 __snake_case : List[str] = torch.ones((1, 5) , device=_A).long() * model.config.bos_token_id with CaptureStdout() as cs: __snake_case : Tuple = TextStreamer(_A , skip_special_tokens=_A) model.generate(_A , max_new_tokens=1 , do_sample=_A , streamer=_A) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __snake_case : Tuple = cs.out[:-1] # Remove the final "\n" __snake_case : int = tokenizer(_A , return_tensors='pt') self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def _lowercase (self : Optional[int]) -> List[str]: __snake_case : Optional[int] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2').to(_A) __snake_case : int = -1 __snake_case : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(_A) __snake_case : List[Any] = TextIteratorStreamer(_A , timeout=0.001) __snake_case : str = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} __snake_case : str = Thread(target=model.generate , kwargs=_A) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_A): __snake_case : Any = '' for new_text in streamer: streamer_text += new_text
192
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) snake_case_ : Tuple = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : bool , __magic_name__ : str = None , __magic_name__ : list = None ) -> Dict: lowerCamelCase_ : str = None lowerCamelCase_ : str = os.path.abspath(os.path.join("examples" , "by_feature" ) ) lowerCamelCase_ : Union[str, Any] = os.path.abspath("examples" ) for item in os.listdir(__magic_name__ ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase_ : Union[str, Any] = os.path.join(__magic_name__ , __magic_name__ ) if os.path.isfile(__magic_name__ ) and ".py" in item_path: with self.subTest( tested_script=__magic_name__ , feature_script=__magic_name__ , tested_section="main()" if parser_only else "training_function()" , ): lowerCamelCase_ : List[str] = compare_against_test( os.path.join(__magic_name__ , __magic_name__ ) , __magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase_ : Optional[Any] = "\n".join(__magic_name__ ) if special_strings is not None: for string in special_strings: lowerCamelCase_ : str = diff.replace(__magic_name__ , "" ) self.assertEqual(__magic_name__ , "" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: self.one_complete_example("complete_nlp_example.py" , __magic_name__ ) self.one_complete_example("complete_nlp_example.py" , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: lowerCamelCase_ : Dict = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) lowerCamelCase_ : List[Any] = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , __magic_name__ , __magic_name__ , __magic_name__ ) self.one_complete_example("complete_cv_example.py" , __magic_name__ , __magic_name__ , __magic_name__ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = False @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[str] ) -> Union[str, Any]: super().setUpClass() lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : int = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) lowerCamelCase_ : Optional[Any] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def __SCREAMING_SNAKE_CASE ( cls : str ) -> Any: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: lowerCamelCase_ : Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: lowerCamelCase_ : Dict = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase_ : int = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: lowerCamelCase_ : List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase_ : Optional[Any] = run_command(self._launch_args + testargs , return_stdout=__magic_name__ ) self.assertNotIn("epoch 0:" , __magic_name__ ) self.assertIn("epoch 1:" , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: lowerCamelCase_ : Optional[int] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase_ : str = run_command(self._launch_args + testargs , return_stdout=__magic_name__ ) if torch.cuda.is_available(): lowerCamelCase_ : int = torch.cuda.device_count() else: lowerCamelCase_ : List[str] = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , __magic_name__ ) self.assertIn("epoch 1:" , __magic_name__ ) else: self.assertIn("epoch 0:" , __magic_name__ ) self.assertIn("epoch 1:" , __magic_name__ ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: lowerCamelCase_ : Dict = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): lowerCamelCase_ : Optional[Any] = run_command(self._launch_args + testargs , return_stdout=__magic_name__ ) lowerCamelCase_ : Any = re.findall("({.+})" , __magic_name__ ) lowerCamelCase_ : Any = [r for r in results if "accuracy" in r][-1] lowerCamelCase_ : str = ast.literal_eval(__magic_name__ ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: lowerCamelCase_ : Dict = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __SCREAMING_SNAKE_CASE ( self : str ) -> str: with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase_ : Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__magic_name__ , "tracking" ) ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: lowerCamelCase_ : List[Any] = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: lowerCamelCase_ : Tuple = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
488
def __a ( __UpperCAmelCase : int = 100 ) -> int: """simple docstring""" lowerCamelCase_ : Any = set() lowerCamelCase_ : int = 0 lowerCamelCase_ : Tuple = n + 1 # maximum limit for a in range(2 , __UpperCAmelCase ): for b in range(2 , __UpperCAmelCase ): lowerCamelCase_ : List[Any] = a**b # calculates the current power collect_powers.add(__UpperCAmelCase ) # adds the result to the set return len(__UpperCAmelCase ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
488
1
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
494
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase : def __init__( self ): _UpperCAmelCase = {} def __A ( self , a__ , a__ , a__=1 ): if self.graph.get(a__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase = [[w, v]] if not self.graph.get(a__ ): _UpperCAmelCase = [] def __A ( self ): return list(self.graph ) def __A ( self , a__ , a__ ): if self.graph.get(a__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a__ ) def __A ( self , a__=-2 , a__=-1 ): if s == d: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a__ ) != 0: _UpperCAmelCase = stack[len(a__ ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(a__ ) == 0: return visited def __A ( self , a__=-1 ): if c == -1: _UpperCAmelCase = floor(random() * 1_00_00 ) + 10 for i in range(a__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): _UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(a__ , a__ , 1 ) def __A ( self , a__=-2 ): _UpperCAmelCase = deque() _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] d.append(a__ ) visited.append(a__ ) while d: _UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __A ( self , a__ ): _UpperCAmelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __A ( self , a__ ): return len(self.graph[u] ) def __A ( self , a__=-2 ): _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase = s _UpperCAmelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(a__ ) != 0: _UpperCAmelCase = stack[len(a__ ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(a__ ) == 0: return sorted_nodes def __A ( self ): _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(a__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(a__ ) != 0: _UpperCAmelCase = stack[len(a__ ) - 1] else: _UpperCAmelCase = False indirect_parents.append(a__ ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(a__ ) == 0: return list(a__ ) def __A ( self ): _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(a__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(a__ ) != 0: _UpperCAmelCase = stack[len(a__ ) - 1] else: _UpperCAmelCase = False indirect_parents.append(a__ ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(a__ ) == 0: return False def __A ( self , a__=-2 , a__=-1 ): _UpperCAmelCase = time() self.dfs(a__ , a__ ) _UpperCAmelCase = time() return end - begin def __A ( self , a__=-2 ): _UpperCAmelCase = time() self.bfs(a__ ) _UpperCAmelCase = time() return end - begin class lowerCAmelCase : def __init__( self ): _UpperCAmelCase = {} def __A ( self , a__ , a__ , a__=1 ): # check if the u exists if self.graph.get(a__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase = [[w, v]] # add the other way if self.graph.get(a__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase = [[w, u]] def __A ( self , a__ , a__ ): if self.graph.get(a__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a__ ) # the other way round if self.graph.get(a__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(a__ ) def __A ( self , a__=-2 , a__=-1 ): if s == d: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a__ ) != 0: _UpperCAmelCase = stack[len(a__ ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(a__ ) == 0: return visited def __A ( self , a__=-1 ): if c == -1: _UpperCAmelCase = floor(random() * 1_00_00 ) + 10 for i in range(a__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): _UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(a__ , a__ , 1 ) def __A ( self , a__=-2 ): _UpperCAmelCase = deque() _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] d.append(a__ ) visited.append(a__ ) while d: _UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __A ( self , a__ ): return len(self.graph[u] ) def __A ( self ): _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(a__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(a__ ) != 0: _UpperCAmelCase = stack[len(a__ ) - 1] else: _UpperCAmelCase = False indirect_parents.append(a__ ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(a__ ) == 0: return list(a__ ) def __A ( self ): _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(a__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(a__ ) != 0: _UpperCAmelCase = stack[len(a__ ) - 1] else: _UpperCAmelCase = False indirect_parents.append(a__ ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(a__ ) == 0: return False def __A ( self ): return list(self.graph ) def __A ( self , a__=-2 , a__=-1 ): _UpperCAmelCase = time() self.dfs(a__ , a__ ) _UpperCAmelCase = time() return end - begin def __A ( self , a__=-2 ): _UpperCAmelCase = time() self.bfs(a__ ) _UpperCAmelCase = time() return end - begin
494
1
import math def A_ ( a , a ): """simple docstring""" return math.pow(a , 2 ) - a def A_ ( a ): """simple docstring""" return 2 * x def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 2.0 while start <= a: SCREAMING_SNAKE_CASE_ : Optional[Any] = math.pow(a , 2 ) return start def A_ ( a , a = 9_9_9_9 , a = 0.00_00_00_00_00_00_01 ): """simple docstring""" if a < 0: raise ValueError('math domain error' ) SCREAMING_SNAKE_CASE_ : Dict = get_initial_point(a ) for _ in range(a ): SCREAMING_SNAKE_CASE_ : Optional[Any] = value SCREAMING_SNAKE_CASE_ : Any = value - fx(a , a ) / fx_derivative(a ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
511
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) _UpperCamelCase = logging.getLogger(__name__) class __magic_name__ ( lowerCAmelCase ): """simple docstring""" def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): '''simple docstring''' __A : List[Any] = self.layer[current_layer](lowerCamelCase , lowerCamelCase , head_mask[current_layer] ) __A : Tuple = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , lowerCAmelCase , ) class __magic_name__ ( lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCamelCase ): '''simple docstring''' super().__init__(lowerCamelCase ) __A : Any = BertEncoderWithPabee(lowerCamelCase ) self.init_weights() __A : Optional[Any] = 0 __A : Union[str, Any] = 0 __A : Dict = 0 __A : List[Any] = 0 def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : Any = threshold def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : List[Any] = patience def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[str] = 0 __A : int = 0 def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = self.inference_layers_num / self.inference_instances_num __A : int = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(lowerCamelCase ) @add_start_docstrings_to_model_forward(lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __A : Optional[int] = input_ids.size() elif inputs_embeds is not None: __A : Any = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __A : List[str] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __A : Any = torch.ones(lowerCamelCase , device=lowerCamelCase ) if token_type_ids is None: __A : List[Any] = torch.zeros(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __A : torch.Tensor = self.get_extended_attention_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __A ,__A ,__A : Tuple = encoder_hidden_states.size() __A : Any = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __A : List[str] = torch.ones(lowerCamelCase , device=lowerCamelCase ) __A : Dict = self.invert_attention_mask(lowerCamelCase ) else: __A : Union[str, Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __A : Any = self.get_head_mask(lowerCamelCase , self.config.num_hidden_layers ) __A : Tuple = self.embeddings( input_ids=lowerCamelCase , position_ids=lowerCamelCase , token_type_ids=lowerCamelCase , inputs_embeds=lowerCamelCase ) __A : str = embedding_output if self.training: __A : Dict = [] for i in range(self.config.num_hidden_layers ): __A : str = self.encoder.adaptive_forward( lowerCamelCase , current_layer=lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase ) __A : Optional[Any] = self.pooler(lowerCamelCase ) __A : Optional[Any] = output_layers[i](output_dropout(lowerCamelCase ) ) res.append(lowerCamelCase ) elif self.patience == 0: # Use all layers for inference __A : int = self.encoder( lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __A : Optional[Any] = self.pooler(encoder_outputs[0] ) __A : List[str] = [output_layers[self.config.num_hidden_layers - 1](lowerCamelCase )] else: __A : int = 0 __A : List[str] = None __A : Optional[int] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __A : List[str] = self.encoder.adaptive_forward( lowerCamelCase , current_layer=lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase ) __A : List[str] = self.pooler(lowerCamelCase ) __A : str = output_layers[i](lowerCamelCase ) if regression: __A : int = logits.detach() if patient_result is not None: __A : Union[str, Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __A : Any = 0 else: __A : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __A : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCamelCase ) ): patient_counter += 1 else: __A : Union[str, Any] = 0 __A : int = logits if patient_counter == self.patience: break __A : List[str] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , lowerCAmelCase , ) class __magic_name__ ( lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCamelCase ): '''simple docstring''' super().__init__(lowerCamelCase ) __A : Union[str, Any] = config.num_labels __A : Union[str, Any] = BertModelWithPabee(lowerCamelCase ) __A : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) __A : int = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): '''simple docstring''' __A : Optional[Any] = self.bert( input_ids=lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , position_ids=lowerCamelCase , head_mask=lowerCamelCase , inputs_embeds=lowerCamelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __A : Any = (logits[-1],) if labels is not None: __A : Optional[Any] = None __A : int = 0 for ix, logits_item in enumerate(lowerCamelCase ): if self.num_labels == 1: # We are doing regression __A : Union[str, Any] = MSELoss() __A : str = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __A : Optional[int] = CrossEntropyLoss() __A : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __A : str = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __A : Tuple = (total_loss / total_weights,) + outputs return outputs
111
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : Union[str, Any] = """longformer""" def __init__( self :str , __lowercase :Union[List[int], int] = 512 , __lowercase :int = 2 , __lowercase :int = 1 , __lowercase :int = 0 , __lowercase :int = 2 , __lowercase :int = 3_0522 , __lowercase :int = 768 , __lowercase :int = 12 , __lowercase :int = 12 , __lowercase :int = 3072 , __lowercase :str = "gelu" , __lowercase :float = 0.1 , __lowercase :float = 0.1 , __lowercase :int = 512 , __lowercase :int = 2 , __lowercase :float = 0.02 , __lowercase :float = 1e-1_2 , __lowercase :bool = False , **__lowercase :Any , ): super().__init__(pad_token_id=__lowercase , **__lowercase ) __lowerCamelCase : Optional[Any] =attention_window __lowerCamelCase : Union[str, Any] =sep_token_id __lowerCamelCase : Tuple =bos_token_id __lowerCamelCase : Tuple =eos_token_id __lowerCamelCase : Optional[Any] =vocab_size __lowerCamelCase : Tuple =hidden_size __lowerCamelCase : List[Any] =num_hidden_layers __lowerCamelCase : Optional[int] =num_attention_heads __lowerCamelCase : List[Any] =hidden_act __lowerCamelCase : Optional[Any] =intermediate_size __lowerCamelCase : Optional[int] =hidden_dropout_prob __lowerCamelCase : Tuple =attention_probs_dropout_prob __lowerCamelCase : List[Any] =max_position_embeddings __lowerCamelCase : Tuple =type_vocab_size __lowerCamelCase : Dict =initializer_range __lowerCamelCase : List[Any] =layer_norm_eps __lowerCamelCase : Any =onnx_export class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :List[str] , __lowercase :"PretrainedConfig" , __lowercase :str = "default" , __lowercase :"List[PatchingSpec]" = None ): super().__init__(__lowercase , __lowercase , __lowercase ) __lowerCamelCase : Optional[Any] =True @property def __lowercase ( self :int ): if self.task == "multiple-choice": __lowerCamelCase : Dict ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase : Optional[Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def __lowercase ( self :List[str] ): __lowerCamelCase : Optional[int] =super().outputs if self.task == "default": __lowerCamelCase : Tuple ={0: '''batch'''} return outputs @property def __lowercase ( self :Tuple ): return 1e-4 @property def __lowercase ( self :Optional[int] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def __lowercase ( self :Any , __lowercase :"PreTrainedTokenizerBase" , __lowercase :int = -1 , __lowercase :int = -1 , __lowercase :bool = False , __lowercase :Optional[TensorType] = None , ): __lowerCamelCase : Optional[Any] =super().generate_dummy_inputs( preprocessor=__lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __lowerCamelCase : Tuple =torch.zeros_like(inputs['''input_ids'''] ) # make every second token global __lowerCamelCase : List[str] =1 return inputs
363
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : Union[str, Any] = """time_series_transformer""" __snake_case : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self :List[Any] , __lowercase :Optional[int] = None , __lowercase :Optional[int] = None , __lowercase :str = "student_t" , __lowercase :str = "nll" , __lowercase :int = 1 , __lowercase :List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase :Optional[Union[str, bool]] = "mean" , __lowercase :int = 0 , __lowercase :int = 0 , __lowercase :int = 0 , __lowercase :int = 0 , __lowercase :Optional[List[int]] = None , __lowercase :Optional[List[int]] = None , __lowercase :int = 32 , __lowercase :int = 32 , __lowercase :int = 2 , __lowercase :int = 2 , __lowercase :int = 2 , __lowercase :int = 2 , __lowercase :bool = True , __lowercase :str = "gelu" , __lowercase :int = 64 , __lowercase :float = 0.1 , __lowercase :float = 0.1 , __lowercase :float = 0.1 , __lowercase :float = 0.1 , __lowercase :float = 0.1 , __lowercase :int = 100 , __lowercase :float = 0.02 , __lowercase :int=True , **__lowercase :Optional[Any] , ): # time series specific configuration __lowerCamelCase : Tuple =prediction_length __lowerCamelCase : List[Any] =context_length or prediction_length __lowerCamelCase : Dict =distribution_output __lowerCamelCase : str =loss __lowerCamelCase : Tuple =input_size __lowerCamelCase : int =num_time_features __lowerCamelCase : int =lags_sequence __lowerCamelCase : Optional[int] =scaling __lowerCamelCase : str =num_dynamic_real_features __lowerCamelCase : Optional[Any] =num_static_real_features __lowerCamelCase : List[Any] =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __lowerCamelCase : Optional[int] =cardinality else: __lowerCamelCase : str =[0] if embedding_dimension and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __lowerCamelCase : int =embedding_dimension else: __lowerCamelCase : Optional[int] =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCamelCase : List[str] =num_parallel_samples # Transformer architecture configuration __lowerCamelCase : str =input_size * len(__lowercase ) + self._number_of_features __lowerCamelCase : Union[str, Any] =d_model __lowerCamelCase : int =encoder_attention_heads __lowerCamelCase : int =decoder_attention_heads __lowerCamelCase : Dict =encoder_ffn_dim __lowerCamelCase : int =decoder_ffn_dim __lowerCamelCase : List[Any] =encoder_layers __lowerCamelCase : int =decoder_layers __lowerCamelCase : Union[str, Any] =dropout __lowerCamelCase : Optional[Any] =attention_dropout __lowerCamelCase : List[str] =activation_dropout __lowerCamelCase : List[str] =encoder_layerdrop __lowerCamelCase : int =decoder_layerdrop __lowerCamelCase : Tuple =activation_function __lowerCamelCase : str =init_std __lowerCamelCase : Dict =use_cache super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def __lowercase ( self :int ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
363
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def a ( lowerCamelCase_="" ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() return os.path.join(lowerCamelCase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = torch.rand(12, dtype=torch.floataa ) - 0.5 lowercase__ = AgentAudio(lowerCamelCase ) lowercase__ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase, agent_type.to_raw(), atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase ) ) # Ensure that the file contains the same value as the original tensor lowercase__ , lowercase__ = sf.read(lowerCamelCase ) self.assertTrue(torch.allclose(lowerCamelCase, torch.tensor(lowerCamelCase ), atol=1E-4 ) ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = torch.rand(12, dtype=torch.floataa ) - 0.5 lowercase__ = get_new_path(suffix='''.wav''' ) sf.write(lowerCamelCase, lowerCamelCase, 16_000 ) lowercase__ = AgentAudio(lowerCamelCase ) self.assertTrue(torch.allclose(lowerCamelCase, agent_type.to_raw(), atol=1E-4 ) ) self.assertEqual(agent_type.to_string(), lowerCamelCase ) @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = torch.randint(0, 256, (64, 64, 3) ) lowercase__ = AgentImage(lowerCamelCase ) lowercase__ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase, agent_type._tensor, atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase ) ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' lowercase__ = Image.open(lowerCamelCase ) lowercase__ = AgentImage(lowerCamelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' lowercase__ = Image.open(lowerCamelCase ) lowercase__ = AgentImage(lowerCamelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase ) ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = '''Hey!''' lowercase__ = AgentText(lowerCamelCase ) self.assertEqual(lowerCamelCase, agent_type.to_string() ) self.assertEqual(lowerCamelCase, agent_type.to_raw() ) self.assertEqual(lowerCamelCase, lowerCamelCase )
183
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = (IPNDMScheduler,) lowercase__ = (("""num_inference_steps""", 50),) def lowercase__ ( self : Union[str, Any], **lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = {'''num_train_timesteps''': 1_000} config.update(**lowerCamelCase ) return config def lowercase__ ( self : Any, lowerCamelCase : Any=0, **lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowercase__ = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : str ): '''simple docstring''' pass def lowercase__ ( self : Dict, lowerCamelCase : Optional[int]=0, **lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowercase__ = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = new_scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase__ ( self : int, **lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCamelCase ) lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(lowerCamelCase, lowerCamelCase ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample return sample def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('''num_inference_steps''', lowerCamelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase, '''set_timesteps''' ): scheduler.set_timesteps(lowerCamelCase ) elif num_inference_steps is not None and not hasattr(lowerCamelCase, '''set_timesteps''' ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample lowercase__ = scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def lowercase__ ( self : Dict ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase, time_step=lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCamelCase, time_step=lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
183
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowerCamelCase ( lowerCamelCase : Dict): A_ , A_ : List[str] = image.size A_ , A_ : Optional[int] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 A_ : Optional[Any] = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""]) A_ : Dict = np.array(lowerCamelCase).astype(np.floataa) / 255.0 A_ : List[str] = image[None].transpose(0 , 3 , 1 , 2) A_ : int = torch.from_numpy(lowerCamelCase) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] ,_a : VQModel ,_a : UNetaDModel ,_a : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] ,): '''simple docstring''' super().__init__() self.register_modules(vqvae=_a ,unet=_a ,scheduler=_a ) @torch.no_grad() def __call__( self : Any ,_a : Union[torch.Tensor, PIL.Image.Image] = None ,_a : Optional[int] = 1 ,_a : Optional[int] = 100 ,_a : Optional[float] = 0.0 ,_a : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_a : Optional[str] = "pil" ,_a : bool = True ,): '''simple docstring''' if isinstance(_a ,PIL.Image.Image ): A_ : Any = 1 elif isinstance(_a ,torch.Tensor ): A_ : Optional[int] = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}' ) if isinstance(_a ,PIL.Image.Image ): A_ : str = preprocess(_a ) A_ , A_ : Any = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image A_ : Dict = (batch_size, self.unet.config.in_channels // 2, height, width) A_ : Optional[int] = next(self.unet.parameters() ).dtype A_ : int = randn_tensor(_a ,generator=_a ,device=self.device ,dtype=_a ) A_ : List[Any] = image.to(device=self.device ,dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a ,device=self.device ) A_ : Optional[int] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler A_ : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Union[str, Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[Any] = {} if accepts_eta: A_ : Union[str, Any] = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. A_ : List[str] = torch.cat([latents, image] ,dim=1 ) A_ : Optional[Any] = self.scheduler.scale_model_input(_a ,_a ) # predict the noise residual A_ : Union[str, Any] = self.unet(_a ,_a ).sample # compute the previous noisy sample x_t -> x_t-1 A_ : Union[str, Any] = self.scheduler.step(_a ,_a ,_a ,**_a ).prev_sample # decode the image latents with the VQVAE A_ : Any = self.vqvae.decode(_a ).sample A_ : Tuple = torch.clamp(_a ,-1.0 ,1.0 ) A_ : int = image / 2 + 0.5 A_ : Any = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": A_ : List[Any] = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
27
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = KandinskyVaaControlnetPipeline a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ = False @property def _a ( self : Any ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return 32 @property def _a ( self : Tuple ): '''simple docstring''' return self.time_input_dim @property def _a ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def _a ( self : Optional[Any] ): '''simple docstring''' return 100 @property def _a ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A_ : Tuple = UNetaDConditionModel(**_a ) return model @property def _a ( self : List[str] ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _a ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) A_ : int = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : List[str] ): '''simple docstring''' A_ : Optional[Any] = self.dummy_unet A_ : int = self.dummy_movq A_ : Tuple = DDIMScheduler( num_train_timesteps=1000 ,beta_schedule="""linear""" ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=_a ,set_alpha_to_one=_a ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_a ,) A_ : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _a ( self : Dict ,_a : str ,_a : Union[str, Any]=0 ): '''simple docstring''' A_ : Dict = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_a ) ).to(_a ) A_ : int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( _a ) # create hint A_ : List[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): A_ : Optional[Any] = torch.manual_seed(_a ) else: A_ : str = torch.Generator(device=_a ).manual_seed(_a ) A_ : List[Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _a ( self : Dict ): '''simple docstring''' A_ : List[Any] = """cpu""" A_ : List[str] = self.get_dummy_components() A_ : Tuple = self.pipeline_class(**_a ) A_ : Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Tuple = pipe(**self.get_dummy_inputs(_a ) ) A_ : Tuple = output.images A_ : Optional[Any] = pipe( **self.get_dummy_inputs(_a ) ,return_dict=_a ,)[0] A_ : Tuple = image[0, -3:, -3:, -1] A_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def _a ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Any ): '''simple docstring''' A_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A_ : Optional[int] = torch.from_numpy(np.array(_a ) ).float() / 255.0 A_ : List[Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) A_ : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_a ) A_ : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" ,torch_dtype=torch.floataa ) A_ : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) A_ : Optional[Any] = """A robot, 4k photo""" A_ : Any = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ , A_ : List[str] = pipe_prior( _a ,generator=_a ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() A_ : int = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ : List[Any] = pipeline( image_embeds=_a ,negative_image_embeds=_a ,hint=_a ,generator=_a ,num_inference_steps=100 ,output_type="""np""" ,) A_ : Dict = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a ,_a )
27
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict ,A : Optional[Any] ,): __A = parent __A = 13 __A = 7 __A = 30 __A = self.seq_length + self.mem_len __A = 15 __A = True __A = True __A = 99 __A = [10, 50, 80] __A = 32 __A = 32 __A = 4 __A = 8 __A = 1_28 __A = 2 __A = 2 __A = None __A = 1 __A = 0 __A = 3 __A = self.vocab_size - 1 __A = 0.01 def UpperCamelCase_ ( self : Union[str, Any] ): __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = TransfoXLConfig( vocab_size=self.vocab_size ,mem_len=self.mem_len ,clamp_len=self.clamp_len ,cutoffs=self.cutoffs ,d_model=self.hidden_size ,d_embed=self.d_embed ,n_head=self.num_attention_heads ,d_head=self.d_head ,d_inner=self.d_inner ,div_val=self.div_val ,n_layer=self.num_hidden_layers ,eos_token_id=self.eos_token_id ,pad_token_id=self.vocab_size - 1 ,init_range=self.init_range ,num_labels=self.num_labels ,) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCamelCase_ ( self : Any ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCamelCase_ ( self : str ,A : List[Any] ,A : str ,A : Optional[Any] ,A : Union[str, Any] ): __A = TFTransfoXLModel(A ) __A , __A = model(A ).to_tuple() __A = {"input_ids": input_ids_a, "mems": mems_a} __A , __A = model(A ).to_tuple() self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ,A : Any ,A : Any ,A : Optional[Any] ): __A = TFTransfoXLLMHeadModel(A ) __A , __A = model(A ).to_tuple() __A = {"input_ids": input_ids_a, "labels": lm_labels} __A , __A = model(A ).to_tuple() __A , __A = model([input_ids_a, mems_a] ).to_tuple() __A = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} __A , __A = model(A ).to_tuple() self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ,A : str ,A : Union[str, Any] ,A : Optional[int] ): __A = TFTransfoXLForSequenceClassification(A ) __A = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int ): __A = self.prepare_config_and_inputs() ((__A) , (__A) , (__A) , (__A)) = config_and_inputs __A = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) snake_case_ = () if is_tf_available() else () snake_case_ = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[Any] ,A : Any ,A : Optional[Any] ,A : List[Any] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCamelCase_ ( self : Optional[Any] ): __A = TFTransfoXLModelTester(self ) __A = ConfigTester(self ,config_class=A ,d_embed=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Tuple ): self.model_tester.set_seed() __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*A ) def UpperCamelCase_ ( self : str ): self.model_tester.set_seed() __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*A ) def UpperCamelCase_ ( self : int ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Tuple ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __A = model_class(A ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __A = model.get_output_embeddings() assert isinstance(A ,tf.keras.layers.Layer ) __A = model.get_bias() assert name is None else: __A = model.get_output_embeddings() assert x is None __A = model.get_bias() assert name is None def UpperCamelCase_ ( self : Union[str, Any] ): # TODO JP: Make TransfoXL XLA compliant pass @slow def UpperCamelCase_ ( self : List[Any] ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFTransfoXLModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved." ) @slow def UpperCamelCase_ ( self : List[Any] ): __A = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off __A = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] ,dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __A = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __A = model.generate(A ,max_length=2_00 ,do_sample=A ) self.assertListEqual(output_ids[0].numpy().tolist() ,A )
55
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __snake_case : List[Any] = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 10_00, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __snake_case : Optional[int] = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 10_00, '''block_out_channels''': [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __snake_case : int = { '''sample_size''': 2_56, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } __snake_case : Dict = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } __snake_case : Tuple = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } __snake_case : str = { '''num_train_timesteps''': 1_51, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def lowerCamelCase__ ( A_ ): if isinstance(A_ , A_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def lowerCamelCase__ ( A_ , A_ , A_ , A_ , A_=False ): UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.0.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.0.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.2.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.2.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.emb_layers.1.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.emb_layers.1.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.0.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.0.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.3.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.3.bias"""] if has_skip: UpperCAmelCase_ = checkpoint[F"""{old_prefix}.skip_connection.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def lowerCamelCase__ ( A_ , A_ , A_ , A_ , A_=None ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = checkpoint[F"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = checkpoint[F"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) UpperCAmelCase_ = checkpoint[F"""{old_prefix}.norm.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.norm.bias"""] UpperCAmelCase_ = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = ( checkpoint[F"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase_ = checkpoint[F"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase__ ( A_ , A_ ): UpperCAmelCase_ = torch.load(A_ , map_location="cpu" ) UpperCAmelCase_ = {} UpperCAmelCase_ = checkpoint["time_embed.0.weight"] UpperCAmelCase_ = checkpoint["time_embed.0.bias"] UpperCAmelCase_ = checkpoint["time_embed.2.weight"] UpperCAmelCase_ = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: UpperCAmelCase_ = checkpoint["label_emb.weight"] UpperCAmelCase_ = checkpoint["input_blocks.0.0.weight"] UpperCAmelCase_ = checkpoint["input_blocks.0.0.bias"] UpperCAmelCase_ = unet_config["down_block_types"] UpperCAmelCase_ = unet_config["layers_per_block"] UpperCAmelCase_ = unet_config["attention_head_dim"] UpperCAmelCase_ = unet_config["block_out_channels"] UpperCAmelCase_ = 1 UpperCAmelCase_ = channels_list[0] for i, layer_type in enumerate(A_ ): UpperCAmelCase_ = channels_list[i] UpperCAmelCase_ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(A_ ): UpperCAmelCase_ = F"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(A_ ): UpperCAmelCase_ = F"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) UpperCAmelCase_ = F"""down_blocks.{i}.attentions.{j}""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.1""" UpperCAmelCase_ = convert_attention( A_ , A_ , A_ , A_ , A_ ) current_layer += 1 if i != len(A_ ) - 1: UpperCAmelCase_ = F"""down_blocks.{i}.downsamplers.0""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) current_layer += 1 UpperCAmelCase_ = current_channels # hardcoded the mid-block for now UpperCAmelCase_ = "mid_block.resnets.0" UpperCAmelCase_ = "middle_block.0" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) UpperCAmelCase_ = "mid_block.attentions.0" UpperCAmelCase_ = "middle_block.1" UpperCAmelCase_ = convert_attention(A_ , A_ , A_ , A_ , A_ ) UpperCAmelCase_ = "mid_block.resnets.1" UpperCAmelCase_ = "middle_block.2" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) UpperCAmelCase_ = 0 UpperCAmelCase_ = unet_config["up_block_types"] for i, layer_type in enumerate(A_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ = F"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""output_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) current_layer += 1 if i != len(A_ ) - 1: UpperCAmelCase_ = F"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase_ = F"""output_blocks.{current_layer-1}.1""" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ = F"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""output_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) UpperCAmelCase_ = F"""up_blocks.{i}.attentions.{j}""" UpperCAmelCase_ = F"""output_blocks.{current_layer}.1""" UpperCAmelCase_ = convert_attention( A_ , A_ , A_ , A_ , A_ ) current_layer += 1 if i != len(A_ ) - 1: UpperCAmelCase_ = F"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase_ = F"""output_blocks.{current_layer-1}.2""" UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) UpperCAmelCase_ = checkpoint["out.0.weight"] UpperCAmelCase_ = checkpoint["out.0.bias"] UpperCAmelCase_ = checkpoint["out.2.weight"] UpperCAmelCase_ = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') __snake_case : List[str] = parser.parse_args() __snake_case : Any = strabool(args.class_cond) __snake_case : List[str] = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: __snake_case : Optional[int] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __snake_case : Union[str, Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __snake_case : List[str] = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: __snake_case : Optional[Any] = None __snake_case : Optional[int] = con_pt_to_diffuser(args.unet_path, unet_config) __snake_case : str = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __snake_case : Tuple = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __snake_case : Optional[int] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __snake_case : Union[str, Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') __snake_case : Optional[Any] = CMStochasticIterativeScheduler(**scheduler_config) __snake_case : Dict = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
660
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = IFInpaintingSuperResolutionPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCAmelCase ( self :Any ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self :Dict , _lowercase :Dict , _lowercase :Any=0 ): '''simple docstring''' if str(_lowercase ).startswith("mps" ): lowercase__ = torch.manual_seed(_lowercase ) else: lowercase__ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_lowercase ) ).to(_lowercase ) lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) lowercase__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase ( self :int ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self :List[str] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
611
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowerCAmelCase : @staticmethod def UpperCAmelCase ( *_lowercase :List[Any] , **_lowercase :Tuple ): '''simple docstring''' pass def _A ( __magic_name__ ): lowercase__ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowerCAmelCase ( unittest.TestCase ): __lowerCamelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCAmelCase ( self :Dict , _lowercase :str , _lowercase :Union[str, Any] , _lowercase :Tuple ): '''simple docstring''' lowercase__ = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase ( self :List[Any] , _lowercase :Optional[int] , _lowercase :str ): '''simple docstring''' lowercase__ = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , _lowercase ) import datasets lowercase__ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowercase__ = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def UpperCAmelCase ( self :str ): '''simple docstring''' pass @slow @require_torch def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = "Intel/dpt-large" lowercase__ = pipeline("depth-estimation" , model=_lowercase ) lowercase__ = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) lowercase__ = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
611
1
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __A : Dict = logging.get_logger(__name__) __A : Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __A : Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int ): '''simple docstring''' for attribute in key.split(""".""" ): snake_case_ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: snake_case_ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: snake_case_ : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case_ : Any = value elif weight_type == "weight_g": snake_case_ : Optional[int] = value elif weight_type == "weight_v": snake_case_ : Dict = value elif weight_type == "bias": snake_case_ : Optional[Any] = value else: snake_case_ : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : Optional[int] = [] snake_case_ : Dict = fairseq_model.state_dict() snake_case_ : str = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case_ : Union[str, Any] = None for name, value in fairseq_dict.items(): snake_case_ : str = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Dict = True elif name.split(""".""" )[0] == "proj": snake_case_ : Dict = fairseq_model.proj snake_case_ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ : Dict = True if "*" in mapped_key: snake_case_ : Optional[Any] = name.split(lowerCAmelCase__ )[0].split(""".""" )[-2] snake_case_ : Optional[int] = mapped_key.replace("""*""" , lowerCAmelCase__ ) if "weight_g" in name: snake_case_ : Dict = """weight_g""" elif "weight_v" in name: snake_case_ : Any = """weight_v""" elif "bias" in name: snake_case_ : List[Any] = """bias""" elif "weight" in name: snake_case_ : Dict = """weight""" else: snake_case_ : Any = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] ): '''simple docstring''' snake_case_ : List[str] = full_name.split("""conv_layers.""" )[-1] snake_case_ : Dict = name.split(""".""" ) snake_case_ : int = int(items[0] ) snake_case_ : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case_ : Optional[int] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case_ : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case_ : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case_ : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase__ ) def UpperCAmelCase ( lowerCamelCase_ :List[str] ): '''simple docstring''' snake_case_ , snake_case_ : Union[str, Any] = emb.weight.shape snake_case_ : Tuple = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) snake_case_ : Tuple = emb.weight.data return lin_layer def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: snake_case_ : List[str] = f.readlines() snake_case_ : str = [line.split(""" """ )[0] for line in lines] snake_case_ : Dict = len(lowerCAmelCase__ ) snake_case_ : int = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(lowerCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Any , ): '''simple docstring''' snake_case_ : List[str] = WavaVecaConfig.from_pretrained(lowerCAmelCase__ ) snake_case_ : Dict = SpeechaTextaConfig.from_pretrained( lowerCAmelCase__ , vocab_size=lowerCAmelCase__ , decoder_layers=lowerCAmelCase__ , do_stable_layer_norm=lowerCAmelCase__ ) snake_case_ : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case_ : int = model[0].eval() # set weights for wav2vec2 encoder snake_case_ : Dict = WavaVecaModel(lowerCAmelCase__ ) snake_case_ : Dict = recursively_load_weights_wavaveca(model.encoder , lowerCAmelCase__ ) snake_case_ : str = SpeechaTextaForCausalLM(lowerCAmelCase__ ) snake_case_ , snake_case_ : int = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case_ : Optional[int] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) snake_case_ : int = SpeechEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) snake_case_ : str = False # add projection layer snake_case_ : Dict = nn.Parameter(projection_layer.weight ) snake_case_ : Tuple = nn.Parameter(projection_layer.bias ) snake_case_ : Optional[int] = create_vocab_dict(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Union[str, Any] = SpeechaTextaTokenizer(os.path.join(lowerCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = hf_wavavec.config.to_dict() snake_case_ : List[Any] = tokenizer.pad_token_id snake_case_ : Any = tokenizer.bos_token_id snake_case_ : Any = tokenizer.eos_token_id snake_case_ : List[str] = """speech_to_text_2""" snake_case_ : Any = """wav2vec2""" snake_case_ : Dict = SpeechEncoderDecoderConfig.from_dict(lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) feature_extractor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=10_224, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') __A : Optional[int] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
334
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def __lowercase ( self : Optional[int] ): '''simple docstring''' super().setUp() # fmt: off UpperCAmelCase__ : Union[str, Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on UpperCAmelCase__ : List[str] = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) def __lowercase ( self : Tuple ,**A : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : str ,A : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = """tester""" UpperCAmelCase__ : Optional[Any] = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __lowercase ( self : int ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase__ : List[str] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) UpperCAmelCase__ : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=A ) self.assertEqual(len(A ) ,1 ) UpperCAmelCase__ : int = tokenizer.decode(A ,skip_special_tokens=A ) self.assertTrue(special_token not in decoded ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase__ : int = self.get_input_output_texts(A ) UpperCAmelCase__ : Any = tokenizer.tokenize(A ) UpperCAmelCase__ : int = tokenizer.convert_tokens_to_ids(A ) UpperCAmelCase__ : Dict = tokenizer.encode(A ,add_special_tokens=A ) self.assertListEqual(A ,A ) UpperCAmelCase__ : int = tokenizer.convert_ids_to_tokens(A ) self.assertNotEqual(len(A ) ,0 ) UpperCAmelCase__ : Optional[Any] = tokenizer.decode(A ) self.assertIsInstance(A ,A ) self.assertEqual(text_a.replace(""" """ ,"""""" ) ,A ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass
703
"""simple docstring""" import argparse import os import re import packaging.version __UpperCAmelCase = 'examples/' __UpperCAmelCase = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } __UpperCAmelCase = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } __UpperCAmelCase = 'README.md' def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ : Dict = f.read() UpperCAmelCase__ , UpperCAmelCase__ : Any = REPLACE_PATTERNS[pattern] UpperCAmelCase__ : List[str] = replace.replace("""VERSION""" , __UpperCamelCase ) UpperCAmelCase__ : Tuple = re_pattern.sub(__UpperCamelCase , __UpperCamelCase ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' for folder, directories, fnames in os.walk(__UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , pattern="""examples""" ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if not patch: update_version_in_examples(__UpperCamelCase ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Dict = """🤗 Transformers currently provides the following architectures""" UpperCAmelCase__ : Union[str, Any] = """1. Want to contribute a new model?""" with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ : str = f.readlines() # Find the start of the list. UpperCAmelCase__ : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase__ : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): UpperCAmelCase__ : List[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__UpperCamelCase ) def lowerCAmelCase ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: UpperCAmelCase__ : Optional[Any] = f.read() UpperCAmelCase__ : int = REPLACE_PATTERNS["""init"""][0].search(__UpperCamelCase ).groups()[0] return packaging.version.parse(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: UpperCAmelCase__ : List[str] = default_version.base_version elif patch: UpperCAmelCase__ : Any = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: UpperCAmelCase__ : Optional[Any] = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. UpperCAmelCase__ : Optional[int] = input(F"Which version are you releasing? [{default_version}]" ) if len(__UpperCamelCase ) == 0: UpperCAmelCase__ : Union[str, Any] = default_version print(F"Updating version to {version}." ) global_version_update(__UpperCamelCase , patch=__UpperCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = get_version() UpperCAmelCase__ : Any = F"{current_version.major}.{current_version.minor + 1}.0.dev0" UpperCAmelCase__ : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase__ : Dict = input(F"Which version are we developing now? [{dev_version}]" ) if len(__UpperCamelCase ) == 0: UpperCAmelCase__ : List[Any] = dev_version print(F"Updating version to {version}." ) global_version_update(__UpperCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') __UpperCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
194
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" A_ = '''swin''' A_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCamelCase_=2_2_4 , lowerCamelCase_=4 , lowerCamelCase_=3 , lowerCamelCase_=9_6 , lowerCamelCase_=[2, 2, 6, 2] , lowerCamelCase_=[3, 6, 1_2, 2_4] , lowerCamelCase_=7 , lowerCamelCase_=4.0 , lowerCamelCase_=True , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_="gelu" , lowerCamelCase_=False , lowerCamelCase_=0.02 , lowerCamelCase_=1e-5 , lowerCamelCase_=3_2 , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Any: super().__init__(**lowerCamelCase_) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_) - 1)) UpperCamelCase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(lowerCamelCase_) + 1)] UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def UpperCAmelCase__ ( self) -> float: return 1e-4
34
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
1
"""simple docstring""" from __future__ import annotations def A__ ( UpperCamelCase__ ): # This function is recursive '''simple docstring''' _SCREAMING_SNAKE_CASE = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _SCREAMING_SNAKE_CASE = array[0] _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = [] while not is_found and i < array_length: if array[i] < pivot: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = [element for element in array[i:] if element >= array[i]] _SCREAMING_SNAKE_CASE = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): _SCREAMING_SNAKE_CASE = temp_array else: i += 1 _SCREAMING_SNAKE_CASE = [element for element in array[1:] if element >= pivot] _SCREAMING_SNAKE_CASE = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
168
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __snake_case( __A ): def __lt__( self , A_ ): '''simple docstring''' return self[-1] < other[-1] def __eq__( self , A_ ): '''simple docstring''' return self[-1] == other[-1] def A__ ( UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] # sort into stacks for element in collection: _SCREAMING_SNAKE_CASE = Stack([element] ) _SCREAMING_SNAKE_CASE = bisect_left(UpperCamelCase__ , UpperCamelCase__ ) if i != len(UpperCamelCase__ ): stacks[i].append(UpperCamelCase__ ) else: stacks.append(UpperCamelCase__ ) # use a heap-based merge to merge stack efficiently _SCREAMING_SNAKE_CASE = merge(*(reversed(UpperCamelCase__ ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCamelCase : int = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase : Optional[Any] = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
168
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva A_ = "" A_ = "" A_ = "" A_ = 1 # (0 is vertical, 1 is horizontal) def _UpperCamelCase ( ) -> None: lowerCamelCase_ ,lowerCamelCase_ = get_dataset(__UpperCamelCase ,__UpperCamelCase ) print('Processing...' ) lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = update_image_and_anno(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) for index, image in enumerate(__UpperCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCamelCase_ = random_chars(32 ) lowerCamelCase_ = paths[index].split(os.sep )[-1].rsplit('.' ,1 )[0] lowerCamelCase_ = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' ,__UpperCamelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__UpperCamelCase )} with {file_name}''' ) lowerCamelCase_ = [] for anno in new_annos[index]: lowerCamelCase_ = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__UpperCamelCase ) with open(f'''/{file_root}.txt''' ,'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> tuple[list, list]: lowerCamelCase_ = [] lowerCamelCase_ = [] for label_file in glob.glob(os.path.join(__UpperCamelCase ,'*.txt' ) ): lowerCamelCase_ = label_file.split(os.sep )[-1].rsplit('.' ,1 )[0] with open(__UpperCamelCase ) as in_file: lowerCamelCase_ = in_file.readlines() lowerCamelCase_ = os.path.join(__UpperCamelCase ,f'''{label_name}.jpg''' ) lowerCamelCase_ = [] for obj_list in obj_lists: lowerCamelCase_ = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__UpperCamelCase ) labels.append(__UpperCamelCase ) return img_paths, labels def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = 1 ) -> tuple[list, list, list]: lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for idx in range(len(__UpperCamelCase ) ): lowerCamelCase_ = [] lowerCamelCase_ = img_list[idx] path_list.append(__UpperCamelCase ) lowerCamelCase_ = anno_list[idx] lowerCamelCase_ = cva.imread(__UpperCamelCase ) if flip_type == 1: lowerCamelCase_ = cva.flip(__UpperCamelCase ,__UpperCamelCase ) for bbox in img_annos: lowerCamelCase_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowerCamelCase_ = cva.flip(__UpperCamelCase ,__UpperCamelCase ) for bbox in img_annos: lowerCamelCase_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__UpperCamelCase ) new_imgs_list.append(__UpperCamelCase ) return new_imgs_list, new_annos_lists, path_list def _UpperCamelCase ( __UpperCamelCase = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" lowerCamelCase_ = ascii_lowercase + digits return "".join(random.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
42
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "camembert-base": 512, } UpperCAmelCase__ = "▁" class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ['input_ids', 'attention_mask'] UpperCamelCase_ : Any = CamembertTokenizer def __init__( self : Dict , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : List[str]="<s>" , lowerCamelCase__ : List[Any]="</s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : List[str]="<s>" , lowerCamelCase__ : Optional[Any]="<unk>" , lowerCamelCase__ : Optional[Any]="<pad>" , lowerCamelCase__ : Optional[int]="<mask>" , lowerCamelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCamelCase__ : Optional[int] , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def UpperCAmelCase_ ( self : Optional[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
332
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCamelCase_ : List[Any] = logging.get_logger(__name__) UpperCamelCase_ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase_ : Optional[int] = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } UpperCamelCase_ : Optional[int] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } UpperCamelCase_ : Optional[Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class __lowerCAmelCase ( _lowercase ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = PRETRAINED_INIT_CONFIGURATION snake_case = RoFormerTokenizer def __init__( self : List[Any] , _snake_case : List[Any]=None , _snake_case : str=None , _snake_case : str=True , _snake_case : Optional[int]="[UNK]" , _snake_case : List[Any]="[SEP]" , _snake_case : List[Any]="[PAD]" , _snake_case : Tuple="[CLS]" , _snake_case : List[Any]="[MASK]" , _snake_case : Optional[Any]=True , _snake_case : List[Any]=None , **_snake_case : Any , ) -> str: """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" , _snake_case ) != do_lower_case or pre_tok_state.get("strip_accents" , _snake_case ) != strip_accents ): A_ = getattr(_snake_case , pre_tok_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = pre_tok_class(**_snake_case ) A_ = do_lower_case def __getstate__( self : Optional[int] ) -> str: """simple docstring""" A_ = self.__dict__.copy() A_ = BertPreTokenizer() return state def __setstate__( self : Optional[int] , _snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A_ = d A_ = self.__dict__["_tokenizer"].get_vocab() A_ = PreTokenizer.custom(JiebaPreTokenizer(_snake_case ) ) def lowerCamelCase__ ( self : Dict , _snake_case : Any , _snake_case : Optional[Any]=None ) -> int: """simple docstring""" A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : int , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : List[str] , _snake_case : str , _snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" A_ = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case ) def lowerCamelCase__ ( self : str , _snake_case : Dict , _snake_case : Dict=None , _snake_case : int=None , _snake_case : Any=False , **_snake_case : int , ) -> str: """simple docstring""" A_ = BertPreTokenizer() return super().save_pretrained(_snake_case , _snake_case , _snake_case , _snake_case , **_snake_case )
713
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin UpperCamelCase_ : int = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class __lowerCAmelCase ( unittest.TestCase , _lowercase ): """simple docstring""" def lowerCamelCase__ ( self : str ) -> Dict: """simple docstring""" A_ = load_tool("text-question-answering" ) self.tool.setup() A_ = load_tool("text-question-answering" , remote=_snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" A_ = self.tool(_snake_case , "What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" A_ = self.remote_tool(_snake_case , "What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" A_ = self.tool(text=_snake_case , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" A_ = self.remote_tool(text=_snake_case , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_snake_case , "launched the BigScience Research Workshop" )
482
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Any = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' _lowerCamelCase : str = Image.open(requests.get(A_, stream=A_ ).raw ).convert('''RGB''' ) return image def snake_case_ ( A_ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( A_ : str, A_ : Optional[Any], A_ : Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(A_ ) _lowerCamelCase : Dict = val def snake_case_ ( A_ : List[Any], A_ : List[Any] ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCamelCase : Tuple = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) _lowerCamelCase : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict _lowerCamelCase : Union[str, Any] = torch.cat((q_bias, torch.zeros_like(A_, requires_grad=A_ ), v_bias) ) _lowerCamelCase : Any = qkv_bias def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : Tuple = 3_64 if '''coco''' in model_name else 2_24 _lowerCamelCase : Optional[int] = InstructBlipVisionConfig(image_size=A_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: _lowerCamelCase : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCamelCase : int = TaConfig.from_pretrained('''google/flan-t5-xxl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: _lowerCamelCase : int = LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''', vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: _lowerCamelCase : Dict = LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''', vocab_size=3_20_01 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 _lowerCamelCase : Any = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() _lowerCamelCase : List[Any] = InstructBlipConfig(vision_config=A_, text_config=A_, qformer_config=A_ ) return config, image_size @torch.no_grad() def snake_case_ ( A_ : str, A_ : Any=None, A_ : str=False ): '''simple docstring''' _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''bert-base-uncased''', truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: _lowerCamelCase : Dict = TaTokenizerFast.from_pretrained('''google/flan-t5-xl''', truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) _lowerCamelCase : Optional[int] = LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''', truncation_side='''left''', bos_token='''</s>''', unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) _lowerCamelCase , _lowerCamelCase : Dict = get_blipa_config(A_ ) _lowerCamelCase : Dict = InstructBlipForConditionalGeneration(A_ ).eval() _lowerCamelCase : Optional[int] = { '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } _lowerCamelCase , _lowerCamelCase : Any = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) _lowerCamelCase : Tuple = '''cuda:1''' if torch.cuda.is_available() else '''cpu''' _lowerCamelCase : Dict = '''cuda:2''' if torch.cuda.is_available() else '''cpu''' _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = load_model_and_preprocess( name=A_, model_type=A_, is_eval=A_, device=A_ ) original_model.eval() print('''Done!''' ) # update state dict keys _lowerCamelCase : Tuple = original_model.state_dict() _lowerCamelCase : Tuple = create_rename_keys(A_ ) for src, dest in rename_keys: rename_key(A_, A_, A_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCamelCase : Tuple = state_dict.pop(A_ ) if key.startswith('''Qformer.bert''' ): _lowerCamelCase : str = key.replace('''Qformer.bert''', '''qformer''' ) if "attention.self" in key: _lowerCamelCase : List[Any] = key.replace('''self''', '''attention''' ) if "llm_proj" in key: _lowerCamelCase : Dict = key.replace('''llm_proj''', '''language_projection''' ) if "t5_proj" in key: _lowerCamelCase : List[Any] = key.replace('''t5_proj''', '''language_projection''' ) if key.startswith('''llm_model''' ): _lowerCamelCase : Optional[int] = key.replace('''llm_model''', '''language_model''' ) if key.startswith('''t5''' ): _lowerCamelCase : List[Any] = key.replace('''t5''', '''language''' ) _lowerCamelCase : List[Any] = val # read in qv biases read_in_q_v_bias(A_, A_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(A_, strict=A_ ) _lowerCamelCase : str = load_demo_image() _lowerCamelCase : Union[str, Any] = '''What is unusual about this image?''' # create processor _lowerCamelCase : Tuple = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size}, image_mean=A_, image_std=A_ ) _lowerCamelCase : List[str] = InstructBlipProcessor( image_processor=A_, tokenizer=A_, qformer_tokenizer=A_, ) _lowerCamelCase : Dict = processor(images=A_, text=A_, return_tensors='''pt''' ).to(A_ ) # make sure processor creates exact same pixel values _lowerCamelCase : Optional[Any] = vis_processors['''eval'''](A_ ).unsqueeze(0 ).to(A_ ) _lowerCamelCase : List[Any] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ), A_ ) original_model.to(A_ ) hf_model.to(A_ ) with torch.no_grad(): if "vicuna" in model_name: _lowerCamelCase : List[Any] = original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits _lowerCamelCase : List[Any] = hf_model(**A_ ).logits else: _lowerCamelCase : Tuple = original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits _lowerCamelCase : str = tokenizer('''\n''', return_tensors='''pt''' ).input_ids.to(A_ ) _lowerCamelCase : Optional[Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id, -1_00 ) _lowerCamelCase : Any = hf_model(**A_, labels=A_ ).logits print('''First values of original logits:''', original_logits[0, :3, :3] ) print('''First values of HF logits:''', logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape _lowerCamelCase : Tuple = 1E-4 if '''vicuna''' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ), A_, atol=A_ ) print('''Looks ok!''' ) print('''Generating with original model...''' ) _lowerCamelCase : str = original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt}, num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) _lowerCamelCase : Tuple = hf_model.generate( **A_, do_sample=A_, num_beams=5, max_length=2_56, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? _lowerCamelCase : Union[str, Any] = 2 print('''Original generation:''', A_ ) _lowerCamelCase : Dict = processor.batch_decode(A_, skip_special_tokens=A_ ) _lowerCamelCase : str = [text.strip() for text in output_text] print('''HF generation:''', A_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) lowerCAmelCase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
83
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowercase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowercase__ = 1_2_8_0_2_2 lowercase__ = 1_2_8_0_2_8 @require_sentencepiece class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = MaMaaaTokenizer lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" super().setUp() snake_case : int = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] snake_case : int = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Optional[int] = Path(self.tmpdirname ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) snake_case : Optional[int] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Dict , **UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : Tuple ) -> str: """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case : Optional[int] = '''</s>''' snake_case : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" snake_case : Tuple = self.get_tokenizer() snake_case : Dict = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<s>''' ) self.assertEqual(len(UpperCamelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[Any] = self.get_tokenizer() snake_case : Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(UpperCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) snake_case : Optional[int] = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , '''This is a test''' ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case : Tuple = {'''input_ids''': [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): """simple docstring""" lowerCamelCase = """facebook/m2m100_418M""" lowerCamelCase = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] lowerCamelCase = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off lowerCamelCase = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def lowerCAmelCase ( cls : List[Any] ) -> int: """simple docstring""" snake_case : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''' ) snake_case : List[str] = 1 return cls def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) , 12_8063 ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" snake_case : List[str] = self.tokenizer.get_vocab() self.assertEqual(len(UpperCamelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] , 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case : Dict = '''en''' snake_case : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" self.assertIn(UpperCamelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case : str = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on snake_case : int = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) snake_case : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" snake_case : Union[str, Any] = tempfile.mkdtemp() snake_case : Union[str, Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCamelCase__ ) snake_case : Optional[int] = MaMaaaTokenizer.from_pretrained(UpperCamelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , UpperCamelCase__ ) @require_torch def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[Any] = '''en''' snake_case : int = '''fr''' snake_case : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , return_tensors='''pt''' ) snake_case : List[str] = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case : Tuple = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" snake_case : List[str] = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case : Optional[int] = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case : List[Any] = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case : List[str] = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" snake_case : int = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''' ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , { # en_XX, A, test, EOS '''input_ids''': [[12_8022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 12_8006, } , )
638
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _A = logging.getLogger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_ = 10 , SCREAMING_SNAKE_CASE_ = 2 ): def get_dataset(SCREAMING_SNAKE_CASE_ ): lowercase_ : Any = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowercase_ : Dict = get_dataset(SCREAMING_SNAKE_CASE_ ) lowercase_ : Dict = get_dataset(SCREAMING_SNAKE_CASE_ ) lowercase_ : List[str] = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) lowercase_ : List[str] = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): lowercase_ : Any = [] for epoch in range(SCREAMING_SNAKE_CASE_ ): # Train quickly model.train() for batch in dataloader: lowercase_ : List[str] = batch lowercase_ : Dict = model(SCREAMING_SNAKE_CASE_ ) lowercase_ : Dict = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__(self ) -> Tuple: super().__init__() lowercase_ : Any = nn.Parameter(torch.randn(1 ) ) lowercase_ : Any = nn.Parameter(torch.randn(1 ) ) def _lowerCamelCase (self , _a ) -> Optional[Any]: return x * self.a + self.b class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase (self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ : Union[str, Any] = DummyModel() lowercase_ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : Optional[int] = dummy_dataloaders() lowercase_ : Tuple = ProjectConfiguration(total_limit=1 , project_dir=_a , automatic_checkpoint_naming=_a ) # Train baseline lowercase_ : Optional[int] = Accelerator(project_config=_a ) lowercase_ : Tuple = accelerator.prepare( _a , _a , _a , _a ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _lowerCamelCase (self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ : Optional[int] = DummyModel() lowercase_ : str = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : str = dummy_dataloaders() # Train baseline lowercase_ : Any = Accelerator() lowercase_ : Tuple = accelerator.prepare( _a , _a , _a , _a ) # Save initial lowercase_ : str = os.path.join(_a , 'initial' ) accelerator.save_state(_a ) (lowercase_) : str = model.a.item(), model.b.item() lowercase_ : Any = optimizer.state_dict() lowercase_ : str = train(3 , _a , _a , _a , _a ) (lowercase_) : str = model.a.item(), model.b.item() lowercase_ : Optional[Any] = optimizer.state_dict() # Train partially set_seed(42 ) lowercase_ : Optional[int] = DummyModel() lowercase_ : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : Dict = dummy_dataloaders() lowercase_ : Optional[int] = Accelerator() lowercase_ : Optional[Any] = accelerator.prepare( _a , _a , _a , _a ) accelerator.load_state(_a ) (lowercase_) : List[Any] = model.a.item(), model.b.item() lowercase_ : str = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) lowercase_ : Union[str, Any] = train(2 , _a , _a , _a , _a ) # Save everything lowercase_ : int = os.path.join(_a , 'checkpoint' ) accelerator.save_state(_a ) # Load everything back in and make sure all states work accelerator.load_state(_a ) test_rands += train(1 , _a , _a , _a , _a ) (lowercase_) : Any = model.a.item(), model.b.item() lowercase_ : str = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) def _lowerCamelCase (self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ : str = DummyModel() lowercase_ : str = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : int = dummy_dataloaders() lowercase_ : List[str] = ProjectConfiguration(automatic_checkpoint_naming=_a ) # Train baseline lowercase_ : List[str] = Accelerator(project_dir=_a , project_config=_a ) lowercase_ : List[Any] = accelerator.prepare( _a , _a , _a , _a ) # Save initial accelerator.save_state() (lowercase_) : str = model.a.item(), model.b.item() lowercase_ : Optional[int] = optimizer.state_dict() lowercase_ : Any = train(3 , _a , _a , _a , _a ) (lowercase_) : Dict = model.a.item(), model.b.item() lowercase_ : List[str] = optimizer.state_dict() # Train partially set_seed(42 ) lowercase_ : Tuple = DummyModel() lowercase_ : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : Union[str, Any] = dummy_dataloaders() lowercase_ : List[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_a ) lowercase_ : Optional[Any] = Accelerator(project_dir=_a , project_config=_a ) lowercase_ : List[Any] = accelerator.prepare( _a , _a , _a , _a ) accelerator.load_state(os.path.join(_a , 'checkpoints' , 'checkpoint_0' ) ) (lowercase_) : Optional[int] = model.a.item(), model.b.item() lowercase_ : Dict = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) lowercase_ : List[Any] = train(2 , _a , _a , _a , _a ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_a , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _a , _a , _a , _a ) (lowercase_) : List[str] = model.a.item(), model.b.item() lowercase_ : Union[str, Any] = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) def _lowerCamelCase (self ) -> Optional[int]: lowercase_ : Optional[Any] = torch.tensor([1, 2, 3] ) lowercase_ : List[str] = torch.tensor([2, 3, 4] ) lowercase_ : Union[str, Any] = DummyModel() lowercase_ : int = torch.optim.Adam(net.parameters() ) lowercase_ : Tuple = Accelerator() with self.assertRaises(_a ) as ve: accelerator.register_for_checkpointing(_a , _a , _a , _a ) lowercase_ : List[Any] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def _lowerCamelCase (self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ : Optional[int] = DummyModel() lowercase_ : int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : Dict = torch.optim.lr_scheduler.StepLR(_a , step_size=1 , gamma=0.99 ) lowercase_ : List[Any] = dummy_dataloaders() lowercase_ : str = ProjectConfiguration(automatic_checkpoint_naming=_a ) # Train baseline lowercase_ : int = Accelerator(project_dir=_a , project_config=_a ) lowercase_ : Optional[Any] = accelerator.prepare( _a , _a , _a , _a , _a ) # Save initial accelerator.save_state() lowercase_ : Dict = scheduler.state_dict() train(3 , _a , _a , _a , _a , _a ) self.assertNotEqual(_a , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_a , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_a , scheduler.state_dict() ) def _lowerCamelCase (self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ : Union[str, Any] = DummyModel() lowercase_ : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=_a , total_limit=2 ) # Train baseline lowercase_ : int = Accelerator(project_dir=_a , project_config=_a ) lowercase_ : Tuple = accelerator.prepare(_a ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_a , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def _lowerCamelCase (self ) -> Optional[Any]: lowercase_ : Tuple = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": _A = '/tmp/accelerate/state_checkpointing' _A = DummyModel() _A = torch.optim.Adam(params=model.parameters(), lr=1e-3) _A = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) _A , _A = dummy_dataloaders() _A = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _A = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _A , _A , _A , _A , _A = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _A , _A = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _A = group['params'][0].device break assert param_device.type == accelerator.device.type _A = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: _A = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: _A = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
707
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__(self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[str]: lowercase_ : Optional[int] = parent lowercase_ : int = batch_size lowercase_ : Union[str, Any] = image_size lowercase_ : Optional[Any] = num_channels lowercase_ : Any = num_stages lowercase_ : Optional[Any] = hidden_sizes lowercase_ : Any = depths lowercase_ : Tuple = is_training lowercase_ : int = use_labels lowercase_ : Tuple = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Union[str, Any] = num_labels lowercase_ : Union[str, Any] = initializer_range lowercase_ : Optional[Any] = out_features lowercase_ : str = out_indices lowercase_ : Dict = scope def _lowerCamelCase (self ) -> Any: lowercase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : int = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : str = self.get_config() return config, pixel_values, labels def _lowerCamelCase (self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase (self , _a , _a , _a ) -> Tuple: lowercase_ : Optional[int] = ConvNextVaModel(config=_a ) model.to(_a ) model.eval() lowercase_ : List[Any] = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase (self , _a , _a , _a ) -> Any: lowercase_ : int = ConvNextVaForImageClassification(_a ) model.to(_a ) model.eval() lowercase_ : Dict = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase (self , _a , _a , _a ) -> Optional[Any]: lowercase_ : Any = ConvNextVaBackbone(config=_a ) model.to(_a ) model.eval() lowercase_ : Union[str, Any] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase_ : int = None lowercase_ : List[str] = ConvNextVaBackbone(config=_a ) model.to(_a ) model.eval() lowercase_ : Union[str, Any] = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase (self ) -> Union[str, Any]: lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ ,lowercase_ ,lowercase_ : str = config_and_inputs lowercase_ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict def _lowerCamelCase (self ) -> Optional[int]: lowercase_ : Optional[Any] = self.prepare_config_and_inputs() lowercase_ ,lowercase_ ,lowercase_ : Optional[Any] = config_and_inputs lowercase_ : Dict = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class UpperCAmelCase__ ( _snake_case , _snake_case , unittest.TestCase ): """simple docstring""" A : List[str] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) A : Optional[int] = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) A : Optional[int] = False A : str = False A : int = False A : Dict = False A : Optional[int] = False def _lowerCamelCase (self ) -> Optional[Any]: lowercase_ : Dict = ConvNextVaModelTester(self ) lowercase_ : List[str] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _lowerCamelCase (self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase (self ) -> List[Any]: return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def _lowerCamelCase (self ) -> Optional[Any]: pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def _lowerCamelCase (self ) -> Tuple: pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def _lowerCamelCase (self ) -> List[Any]: pass def _lowerCamelCase (self ) -> List[Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase_ ,lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() lowercase_ : Dict = True if model_class.__name__ in [ *get_values(_a ), *get_values(_a ), ]: continue lowercase_ : str = model_class(_a ) model.to(_a ) model.train() lowercase_ : Tuple = self._prepare_for_class(_a , _a , return_labels=_a ) lowercase_ : List[Any] = model(**_a ).loss loss.backward() def _lowerCamelCase (self ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase_ ,lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() lowercase_ : Optional[int] = False lowercase_ : Union[str, Any] = True if ( model_class.__name__ in [*get_values(_a ), *get_values(_a )] or not model_class.supports_gradient_checkpointing ): continue lowercase_ : Union[str, Any] = model_class(_a ) model.to(_a ) model.gradient_checkpointing_enable() model.train() lowercase_ : List[Any] = self._prepare_for_class(_a , _a , return_labels=_a ) lowercase_ : Optional[int] = model(**_a ).loss loss.backward() def _lowerCamelCase (self ) -> Optional[int]: lowercase_ ,lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Any = model_class(_a ) lowercase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : int = [*signature.parameters.keys()] lowercase_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _a ) def _lowerCamelCase (self ) -> List[Any]: lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowerCamelCase (self ) -> Any: def check_hidden_states_output(_a , _a , _a ): lowercase_ : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowercase_ : str = model(**self._prepare_for_class(_a , _a ) ) lowercase_ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase_ ,lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : int = True check_hidden_states_output(_a , _a , _a ) def _lowerCamelCase (self ) -> int: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def _lowerCamelCase (self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[int] = ConvNextVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _UpperCamelCase ( ): lowercase_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCamelCase (self ) -> str: return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def _lowerCamelCase (self ) -> int: lowercase_ : List[Any] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_a ) lowercase_ : Any = self.default_image_processor lowercase_ : Union[str, Any] = prepare_img() lowercase_ : List[str] = preprocessor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): lowercase_ : List[Any] = model(**_a ) # verify the logits lowercase_ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) lowercase_ : Tuple = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
438
0
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowercase__ : def __init__( self : Tuple , snake_case__ : Optional[int] , snake_case__ : List[Any]=13 , snake_case__ : Optional[int]=7 , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Optional[int]=True , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=99 , snake_case__ : Union[str, Any]=32 , snake_case__ : Tuple=5 , snake_case__ : Dict=4 , snake_case__ : Optional[int]=4 , snake_case__ : Any="gelu" , snake_case__ : Dict=0.0 , snake_case__ : List[str]=0.1 , snake_case__ : Dict=True , snake_case__ : str=512 , snake_case__ : Optional[Any]=16 , snake_case__ : Union[str, Any]=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Optional[int]=4 , snake_case__ : Any=None , ): lowerCamelCase_ : List[Any] =parent lowerCamelCase_ : Tuple =batch_size lowerCamelCase_ : List[Any] =seq_length lowerCamelCase_ : int =is_training lowerCamelCase_ : List[Any] =use_input_mask lowerCamelCase_ : Optional[int] =use_token_type_ids lowerCamelCase_ : List[str] =use_labels lowerCamelCase_ : int =vocab_size lowerCamelCase_ : int =hidden_size lowerCamelCase_ : Any =num_hidden_layers lowerCamelCase_ : int =num_attention_heads lowerCamelCase_ : List[str] =intermediate_multiple_size lowerCamelCase_ : List[Any] =hidden_act lowerCamelCase_ : Tuple =hidden_dropout lowerCamelCase_ : Union[str, Any] =attention_dropout lowerCamelCase_ : str =weight_tying lowerCamelCase_ : str =max_position_embeddings lowerCamelCase_ : Tuple =type_vocab_size lowerCamelCase_ : List[Any] =type_sequence_label_size lowerCamelCase_ : Tuple =initializer_range lowerCamelCase_ : List[Any] =num_labels lowerCamelCase_ : Optional[Any] =num_choices lowerCamelCase_ : Union[str, Any] =scope def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Optional[int] =None if self.use_input_mask: lowerCamelCase_ : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : List[str] =None if self.use_labels: lowerCamelCase_ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Dict =self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self : Union[str, Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[int] =self.prepare_config_and_inputs() lowerCamelCase_ : List[str] =True return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self : str , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any ): lowerCamelCase_ : List[Any] =GPTNeoXJapaneseModel(config=a__ ) model.to(a__ ) model.eval() lowerCamelCase_ : str =model(a__ , attention_mask=a__ ) lowerCamelCase_ : Dict =model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : int , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Optional[int] ): lowerCamelCase_ : Optional[Any] =True lowerCamelCase_ : List[Any] =GPTNeoXJapaneseModel(a__ ) model.to(a__ ) model.eval() lowerCamelCase_ : Optional[Any] =model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : str , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : List[Any] ): lowerCamelCase_ : Tuple =GPTNeoXJapaneseForCausalLM(config=a__ ) model.to(a__ ) model.eval() lowerCamelCase_ : List[str] =model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : str , snake_case__ : List[str] ): lowerCamelCase_ : List[Any] =True lowerCamelCase_ : Tuple =GPTNeoXJapaneseForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass lowerCamelCase_ : int =model(a__ , attention_mask=a__ , use_cache=a__ ) lowerCamelCase_ : Any =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase_ : Optional[int] =ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ : Dict =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase_ : Union[str, Any] =torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ : Dict =torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase_ : Optional[Any] =model(a__ , attention_mask=a__ , output_hidden_states=a__ ) lowerCamelCase_ : Optional[int] =output_from_no_past["hidden_states"][0] lowerCamelCase_ : List[str] =model( a__ , attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )["hidden_states"][0] # select random slice lowerCamelCase_ : List[str] =ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ : Optional[Any] =output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase_ : Union[str, Any] =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1E-3 ) ) def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Dict =self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =config_and_inputs lowerCamelCase_ : List[str] ={"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ): _UpperCAmelCase :Tuple = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _UpperCAmelCase :int = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _UpperCAmelCase :Optional[int] = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _UpperCAmelCase :List[str] = False _UpperCAmelCase :List[Any] = False _UpperCAmelCase :Any = False _UpperCAmelCase :Any = False def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Optional[int] =GPTNeoXJapaneseModelTester(self ) lowerCamelCase_ : List[Any] =ConfigTester(self , config_class=a__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a__ , a__ , a__ ) def UpperCAmelCase__ ( self : int ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a__ , a__ , a__ ) def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase_ : Tuple =None self.model_tester.create_and_check_model_as_decoder(a__ , a__ , a__ ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a__ , a__ , a__ ) def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a__ ) @slow def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : int ="abeja/gpt-neox-japanese-2.7b" lowerCamelCase_ : Dict =["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] lowerCamelCase_ : Dict =[ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] lowerCamelCase_ : Optional[Any] =GPTNeoXJapaneseTokenizer.from_pretrained(a__ ) lowerCamelCase_ : Optional[Any] =GPTNeoXJapaneseForCausalLM.from_pretrained(a__ ) lowerCamelCase_ : Dict =[] for prompt in prompts: lowerCamelCase_ : Optional[Any] =tokenizer(a__ , return_tensors="pt" ).input_ids lowerCamelCase_ : List[Any] =model.generate(a__ , max_length=50 ) lowerCamelCase_ : int =tokenizer.batch_decode(a__ , skip_special_tokens=a__ ) predicted_outputs += generated_string self.assertListEqual(a__ , a__ )
153
def lowerCamelCase__ ( snake_case_ : int = 1000 ) -> int: __snake_case = 2**power __snake_case = str(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = 0 for i in list_num: sum_of_num += int(snake_case_ ) return sum_of_num if __name__ == "__main__": snake_case_ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case_ = solution(power) print('Sum of the digits is: ', result)
592
0
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
491
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') _snake_case = parser.parse_args() _snake_case = '''cpu''' _snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' _snake_case = '''path-to-your-trained-model''' _snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _snake_case = pipe.to(device) # to channels last _snake_case = pipe.unet.to(memory_format=torch.channels_last) _snake_case = pipe.vae.to(memory_format=torch.channels_last) _snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _snake_case = torch.randn(2, 4, 6_4, 6_4) _snake_case = torch.rand(1) * 9_9_9 _snake_case = torch.randn(2, 7_7, 7_6_8) _snake_case = (sample, timestep, encoder_hidden_status) try: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _snake_case = 6_6_6 _snake_case = torch.Generator(device).manual_seed(seed) _snake_case = {'''generator''': generator} if args.steps is not None: _snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
491
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
221
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase__ : """simple docstring""" @staticmethod def _UpperCAmelCase ( *__lowerCAmelCase: Optional[int] , **__lowerCAmelCase: Dict ) -> Optional[int]: '''simple docstring''' pass def __lowerCAmelCase ( A_ : Image ) -> str: __UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : List[str] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self: List[Any] , __lowerCAmelCase: Dict , __lowerCAmelCase: List[str] , __lowerCAmelCase: List[Any] ) -> Tuple: '''simple docstring''' __UpperCAmelCase = DepthEstimationPipeline(model=__lowerCAmelCase , image_processor=__lowerCAmelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: Optional[int] , __lowerCAmelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , __lowerCAmelCase ) import datasets __UpperCAmelCase = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __UpperCAmelCase = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , __lowerCAmelCase , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def _UpperCAmelCase ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' pass @slow @require_torch def _UpperCAmelCase ( self: Optional[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = "Intel/dpt-large" __UpperCAmelCase = pipeline("depth-estimation" , model=__lowerCAmelCase ) __UpperCAmelCase = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) __UpperCAmelCase = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self: Union[str, Any] ) -> Tuple: '''simple docstring''' self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
221
1
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class _snake_case ( __snake_case ): """simple docstring""" a = "efficientnet" def __init__( self : int , _A : int = 3 , _A : int = 6_0_0 , _A : float = 2.0 , _A : float = 3.1 , _A : int = 8 , _A : List[int] = [3, 3, 5, 3, 5, 5, 3] , _A : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , _A : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , _A : List[int] = [] , _A : List[int] = [1, 2, 2, 2, 1, 2, 1] , _A : List[int] = [1, 2, 2, 3, 3, 4, 1] , _A : List[int] = [1, 6, 6, 6, 6, 6, 6] , _A : float = 0.25 , _A : str = "swish" , _A : int = 2_5_6_0 , _A : str = "mean" , _A : float = 0.02 , _A : float = 0.001 , _A : float = 0.99 , _A : float = 0.5 , _A : float = 0.2 , **_A : List[str] , ): """simple docstring""" super().__init__(**_A) _SCREAMING_SNAKE_CASE : List[str] = num_channels _SCREAMING_SNAKE_CASE : Union[str, Any] = image_size _SCREAMING_SNAKE_CASE : Optional[Any] = width_coefficient _SCREAMING_SNAKE_CASE : Tuple = depth_coefficient _SCREAMING_SNAKE_CASE : Dict = depth_divisor _SCREAMING_SNAKE_CASE : Optional[Any] = kernel_sizes _SCREAMING_SNAKE_CASE : Dict = in_channels _SCREAMING_SNAKE_CASE : Any = out_channels _SCREAMING_SNAKE_CASE : Dict = depthwise_padding _SCREAMING_SNAKE_CASE : str = strides _SCREAMING_SNAKE_CASE : Dict = num_block_repeats _SCREAMING_SNAKE_CASE : Tuple = expand_ratios _SCREAMING_SNAKE_CASE : int = squeeze_expansion_ratio _SCREAMING_SNAKE_CASE : int = hidden_act _SCREAMING_SNAKE_CASE : int = hidden_dim _SCREAMING_SNAKE_CASE : Union[str, Any] = pooling_type _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[str] = batch_norm_eps _SCREAMING_SNAKE_CASE : Tuple = batch_norm_momentum _SCREAMING_SNAKE_CASE : List[str] = dropout_rate _SCREAMING_SNAKE_CASE : Optional[Any] = drop_connect_rate _SCREAMING_SNAKE_CASE : int = sum(_A) * 4 class _snake_case ( __snake_case ): """simple docstring""" a = version.parse("1.11" ) @property def _lowerCAmelCase ( self : Optional[Any]): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _lowerCAmelCase ( self : str): """simple docstring""" return 1e-5
635
"""simple docstring""" from __future__ import annotations def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )-> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
635
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _UpperCamelCase (UpperCamelCase__ ): def __init__( self , __UpperCamelCase )-> Tuple: __lowerCAmelCase = data def __iter__( self )-> int: for element in self.data: yield element def __lowerCAmelCase ( __snake_case=True ): __lowerCAmelCase = Accelerator(even_batches=UpperCamelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case , __snake_case = False ): if iterable: __lowerCAmelCase = DummyIterableDataset(torch.as_tensor(range(UpperCamelCase__ ) ) ) else: __lowerCAmelCase = TensorDataset(torch.as_tensor(range(UpperCamelCase__ ) ) ) __lowerCAmelCase = DataLoader(UpperCamelCase__ , batch_size=UpperCamelCase__ ) __lowerCAmelCase = accelerator.prepare(UpperCamelCase__ ) return dl def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): __lowerCAmelCase = create_dataloader(accelerator=UpperCamelCase__ , dataset_size=UpperCamelCase__ , batch_size=UpperCamelCase__ ) __lowerCAmelCase = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __lowerCAmelCase ( ): __lowerCAmelCase = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __lowerCAmelCase ( ): __lowerCAmelCase = create_accelerator(even_batches=UpperCamelCase__ ) verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __lowerCAmelCase ( ): __lowerCAmelCase = create_accelerator(even_batches=UpperCamelCase__ ) __lowerCAmelCase = torch.nn.Linear(1 , 1 ) __lowerCAmelCase = accelerator.prepare(UpperCamelCase__ ) __lowerCAmelCase = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) __lowerCAmelCase = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCamelCase__ ): __lowerCAmelCase = ddp_model(batch[0].float() ) __lowerCAmelCase = output.sum() loss.backward() batch_idxs.append(UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __lowerCAmelCase ( __snake_case ): with warnings.catch_warnings(record=UpperCamelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCamelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def __lowerCAmelCase ( ): __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = create_accelerator(even_batches=UpperCamelCase__ ) __lowerCAmelCase = torch.nn.Linear(1 , 1 ) __lowerCAmelCase = accelerator.prepare(UpperCamelCase__ ) __lowerCAmelCase = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) __lowerCAmelCase = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase__ ): __lowerCAmelCase = train_dl.batch_sampler.even_batches __lowerCAmelCase = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __lowerCAmelCase ( ): __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = create_accelerator(even_batches=UpperCamelCase__ ) __lowerCAmelCase = torch.nn.Linear(1 , 1 ) __lowerCAmelCase = accelerator.prepare(UpperCamelCase__ ) create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCamelCase__ ) __lowerCAmelCase = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase__ ): __lowerCAmelCase = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __lowerCAmelCase ( ): __lowerCAmelCase = create_accelerator() __lowerCAmelCase = torch.nn.Linear(1 , 1 ) __lowerCAmelCase = accelerator.prepare(UpperCamelCase__ ) create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCamelCase__ ) with warnings.catch_warnings(record=UpperCamelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase__ ): pass assert issubclass(w[-1].category , UpperCamelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def __lowerCAmelCase ( ): __lowerCAmelCase = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) __lowerCAmelCase = accelerator.state.distributed_type __lowerCAmelCase = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCamelCase__ ) __lowerCAmelCase = original_state if __name__ == "__main__": main()
367
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ : Optional[Any] = """imagegpt""" lowercase__ : int = ["""past_key_values"""] lowercase__ : int = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , lowercase : int=512 + 1 , lowercase : List[str]=32 * 32 , lowercase : int=512 , lowercase : Optional[int]=24 , lowercase : List[str]=8 , lowercase : Dict=None , lowercase : Optional[Any]="quick_gelu" , lowercase : str=0.1 , lowercase : Optional[Any]=0.1 , lowercase : List[str]=0.1 , lowercase : str=1E-5 , lowercase : Union[str, Any]=0.02 , lowercase : int=True , lowercase : Optional[int]=True , lowercase : Optional[Any]=False , lowercase : List[Any]=False , lowercase : str=False , **lowercase : Tuple , ) -> str: """simple docstring""" __lowercase = vocab_size __lowercase = n_positions __lowercase = n_embd __lowercase = n_layer __lowercase = n_head __lowercase = n_inner __lowercase = activation_function __lowercase = resid_pdrop __lowercase = embd_pdrop __lowercase = attn_pdrop __lowercase = layer_norm_epsilon __lowercase = initializer_range __lowercase = scale_attn_weights __lowercase = use_cache __lowercase = scale_attn_by_inverse_layer_idx __lowercase = reorder_and_upcast_attn __lowercase = tie_word_embeddings super().__init__(tie_word_embeddings=_a , **_a ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @property def snake_case__ ( self : List[str] ) -> str: """simple docstring""" return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def snake_case__ ( self : int , lowercase : "FeatureExtractionMixin" , lowercase : int = 1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional["TensorType"] = None , lowercase : int = 3 , lowercase : int = 32 , lowercase : int = 32 , ) -> Any: """simple docstring""" __lowercase = self._generate_dummy_images(_a , _a , _a , _a ) __lowercase = dict(preprocessor(images=_a , return_tensors=_a ) ) return inputs
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
634
0
'''simple docstring''' def UpperCamelCase_ ( A__ ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence a_ = gray_code_sequence_string(A__ ) # # convert them to integers for i in range(len(A__ ) ): a_ = int(sequence[i] , 2 ) return sequence def UpperCamelCase_ ( A__ ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] a_ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits a_ = gray_code_sequence_string(bit_count - 1 ) a_ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): a_ = """0""" + smaller_sequence[i] sequence.append(A__ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): a_ = """1""" + smaller_sequence[i] sequence.append(A__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
263
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowercase__ =subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') lowercase__ =( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode('utf-8').split() ) lowercase__ ='|'.join(sys.argv[1:]) lowercase__ =re.compile(rF"""^({joined_dirs}).*?\.py$""") lowercase__ =[x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
263
1
"""simple docstring""" from collections.abc import Callable def _lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: '''simple docstring''' __A : List[Any] = a __A : Dict = b if function(A_ ) == 0: # one of the a or b is a root for the function return a elif function(A_ ) == 0: return b elif ( function(A_ ) * function(A_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: __A : Tuple = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(A_ ) == 0: return mid elif function(A_ ) * function(A_ ) < 0: __A : Optional[int] = mid else: __A : Dict = mid __A : Optional[Any] = start + (end - start) / 2.0 return mid def _lowercase ( _SCREAMING_SNAKE_CASE : Dict ) -> Dict: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
710
"""simple docstring""" from __future__ import annotations lowerCamelCase : str =[ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _lowercase ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __A : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the reference grid __A : List[Any] = 1 __A : Optional[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the action grid __A : Union[str, Any] = init[0] __A : List[Any] = init[1] __A : str = 0 __A : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __A : int = [[f, g, x, y]] __A : Optional[int] = False # flag that is set when search is complete __A : Dict = False # flag set if we can't find expand while not found and not resign: if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __A : Optional[int] = cell.pop() __A : Optional[int] = next_cell[2] __A : List[Any] = next_cell[3] __A : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __A : Union[str, Any] = True else: for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions __A : str = x + DIRECTIONS[i][0] __A : Any = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __A : Optional[int] = g + cost __A : Any = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __A : List[str] = 1 __A : List[str] = i __A : str = [] __A : Union[str, Any] = goal[0] __A : Optional[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __A : Tuple = x - DIRECTIONS[action[x][y]][0] __A : List[str] = y - DIRECTIONS[action[x][y]][1] __A : int = xa __A : Union[str, Any] = ya invpath.append([x, y] ) __A : List[str] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCamelCase : List[Any] =[ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCamelCase : List[str] =[0, 0] # all coordinates are given in format [y,x] lowerCamelCase : Union[str, Any] =[len(grid) - 1, len(grid[0]) - 1] lowerCamelCase : int =1 # the cost map which pushes the path closer to the goal lowerCamelCase : Tuple =[[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCamelCase : List[Any] =abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCamelCase : Union[str, Any] =99 lowerCamelCase , lowerCamelCase : Union[str, Any] =search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
237
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase = ''' Human: <<task>> Assistant: ''' UpperCAmelCase = '''huggingface-tools/default-prompts''' UpperCAmelCase = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="run" ): if prompt_or_repo_id is None: lowercase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __SCREAMING_SNAKE_CASE ) is not None: return prompt_or_repo_id lowercase = cached_file( __SCREAMING_SNAKE_CASE , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: return f.read()
84
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
0
import qiskit def snake_case_ ( __lowercase = 2 ): UpperCAmelCase_ : Union[str, Any] = qubits # Using Aer's simulator UpperCAmelCase_ : Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register UpperCAmelCase_ : Any = qiskit.QuantumCircuit(__lowercase , __lowercase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , __lowercase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , __lowercase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__lowercase ) ) , list(range(__lowercase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total count for various states are: {quantum_entanglement(3)}')
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
def UpperCamelCase_( _A :str )-> bool: UpperCamelCase__ = 0 for ch in input_str: UpperCamelCase__ = ord(_A ) UpperCamelCase__ = pow(2 , _A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
551
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
551
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class _UpperCamelCase (a_ ): snake_case_ = """ibert""" def __init__( self , __UpperCamelCase=3_0_5_2_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1e-12 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase="absolute" , __UpperCamelCase=False , __UpperCamelCase="none" , **__UpperCamelCase , )-> Dict: super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = quant_mode __lowerCAmelCase = force_dequant class _UpperCamelCase (a_ ): @property def __UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
290
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase : Tuple = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' lowerCamelCase : int = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' lowerCamelCase : List[str] = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase (datasets.Metric ): def __UpperCAmelCase ( self )-> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 , __UpperCamelCase = 4 , )-> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__UpperCamelCase , hypotheses=__UpperCamelCase , min_len=__UpperCamelCase , max_len=__UpperCamelCase ) }
290
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _lowerCamelCase = None _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } _lowerCamelCase = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off _lowerCamelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ["input_ids", "attention_mask"] lowerCamelCase_ = MBartTokenizer lowerCamelCase_ = [] lowerCamelCase_ = [] def __init__( self :int , __A :Optional[Any]=None , __A :Union[str, Any]=None , __A :Optional[Any]="<s>" , __A :int="</s>" , __A :Tuple="</s>" , __A :int="<s>" , __A :str="<unk>" , __A :str="<pad>" , __A :Dict="<mask>" , __A :Optional[Any]=None , __A :int=None , __A :Tuple=None , **__A :Optional[int] , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( vocab_file=__A , tokenizer_file=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , src_lang=__A , tgt_lang=__A , additional_special_tokens=__A , **__A , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = False if not self.vocab_file else True SCREAMING_SNAKE_CASE__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) SCREAMING_SNAKE_CASE__ = { lang_code: self.convert_tokens_to_ids(__A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE__ = src_lang if src_lang is not None else """en_XX""" SCREAMING_SNAKE_CASE__ = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _snake_case ( self :Union[str, Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self :Tuple , __A :str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self :Any , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self :Any , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self :List[str] , __A :Dict , __A :str , __A :Optional[str] , __A :Optional[str] , **__A :int ) -> Dict: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = self(__A , add_special_tokens=__A , return_tensors=__A , **__A ) SCREAMING_SNAKE_CASE__ = self.convert_tokens_to_ids(__A ) SCREAMING_SNAKE_CASE__ = tgt_lang_id return inputs def _snake_case ( self :Optional[int] , __A :List[str] , __A :str = "en_XX" , __A :Optional[List[str]] = None , __A :str = "ro_RO" , **__A :Optional[int] , ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = tgt_lang return super().prepare_seqaseq_batch(__A , __A , **__A ) def _snake_case ( self :List[str] ) -> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self :Optional[int] ) -> List[Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self :Any , __A :Tuple ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.convert_tokens_to_ids(__A ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self :Any , __A :str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.convert_tokens_to_ids(__A ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self :str , __A :str , __A :Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
6
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) _lowerCamelCase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _lowerCamelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCamelCase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
6
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : int = ["""image_processor""", """tokenizer"""] lowerCAmelCase_ : str = """ViltImageProcessor""" lowerCAmelCase_ : List[str] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] , snake_case : Tuple=None , snake_case : str=None , **snake_case : Any ) -> Dict: '''simple docstring''' A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case , ) A = kwargs.pop('feature_extractor' ) A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case , snake_case ) A = self.image_processor def __call__( self : Tuple , snake_case : Union[str, Any] , snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case : bool = True , snake_case : Union[bool, str, PaddingStrategy] = False , snake_case : Union[bool, str, TruncationStrategy] = None , snake_case : Optional[int] = None , snake_case : int = 0 , snake_case : Optional[int] = None , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : bool = False , snake_case : bool = False , snake_case : bool = False , snake_case : bool = False , snake_case : bool = True , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : int , ) -> BatchEncoding: '''simple docstring''' A = self.tokenizer( text=snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , stride=snake_case , pad_to_multiple_of=snake_case , return_token_type_ids=snake_case , return_attention_mask=snake_case , return_overflowing_tokens=snake_case , return_special_tokens_mask=snake_case , return_offsets_mapping=snake_case , return_length=snake_case , verbose=snake_case , return_tensors=snake_case , **snake_case , ) # add pixel_values + pixel_mask A = self.image_processor(snake_case , return_tensors=snake_case ) encoding.update(snake_case ) return encoding def A_ ( self : str , *snake_case : Dict , **snake_case : Optional[Any] ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case , **snake_case ) def A_ ( self : Union[str, Any] , *snake_case : Optional[Any] , **snake_case : int ) -> str: '''simple docstring''' return self.tokenizer.decode(*snake_case , **snake_case ) @property def A_ ( self : Optional[int] ) -> Dict: '''simple docstring''' A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case , ) return self.image_processor_class @property def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case , ) return self.image_processor
109
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A = logging.get_logger(__name__) def lowerCAmelCase__ ( lowerCamelCase__=None , lowerCamelCase__=None ) -> Dict: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : List[str] = list_field( default=[] ,metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } ,) lowerCAmelCase_ : List[int] = list_field( default=[8] ,metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) lowerCAmelCase_ : List[int] = list_field( default=[8, 32, 1_28, 5_12] ,metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} ,) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} ,) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} ,) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Use FP16 to accelerate inference."""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Benchmark training of model"""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Verbose memory tracing"""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} ,) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } ,) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Trace memory line by line"""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Save result to a CSV file"""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Save all print statements in a log file"""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Whether to print environment information"""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } ,) lowerCAmelCase_ : str = field( default=f"""inference_time_{round(time() )}.csv""" ,metadata={"""help""": """CSV filename used if saving time results to csv."""} ,) lowerCAmelCase_ : str = field( default=f"""inference_memory_{round(time() )}.csv""" ,metadata={"""help""": """CSV filename used if saving memory results to csv."""} ,) lowerCAmelCase_ : str = field( default=f"""train_time_{round(time() )}.csv""" ,metadata={"""help""": """CSV filename used if saving time results to csv for training."""} ,) lowerCAmelCase_ : str = field( default=f"""train_memory_{round(time() )}.csv""" ,metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} ,) lowerCAmelCase_ : str = field( default=f"""env_info_{round(time() )}.csv""" ,metadata={"""help""": """CSV filename used if saving environment information."""} ,) lowerCAmelCase_ : str = field( default=f"""log_{round(time() )}.csv""" ,metadata={"""help""": """Log filename used if print statements are saved in log."""} ,) lowerCAmelCase_ : int = field(default=3 ,metadata={"""help""": """Times an experiment will be run."""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } ,) def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , snake_case , ) def A_ ( self : str ) -> List[Any]: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def A_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def A_ ( self : Tuple ) -> List[str]: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
109
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : int = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''data2vec-text''' def __init__( self , _lowercase=3_0_5_2_2 , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=3_0_7_2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) snake_case_ : List[Any] = vocab_size snake_case_ : str = hidden_size snake_case_ : Any = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Tuple = hidden_act snake_case_ : str = intermediate_size snake_case_ : Dict = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Optional[int] = max_position_embeddings snake_case_ : str = type_vocab_size snake_case_ : Tuple = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : Optional[int] = position_embedding_type snake_case_ : List[Any] = use_cache snake_case_ : Tuple = classifier_dropout class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
58
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin snake_case : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') snake_case : Tuple = {'target_lang': 'fi', 'source_lang': 'en'} snake_case : str = '>>zh<<' snake_case : Optional[Any] = 'Helsinki-NLP/' if is_torch_available(): snake_case : Optional[Any] = 'pt' elif is_tf_available(): snake_case : Optional[int] = 'tf' else: snake_case : Optional[Any] = 'jax' @require_sentencepiece class lowerCamelCase__( snake_case_ , unittest.TestCase ): UpperCamelCase : Any = MarianTokenizer UpperCamelCase : Optional[Any] = False UpperCamelCase : Any = True def __magic_name__ ( self ): """simple docstring""" super().setUp() __lowercase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowercase = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowercase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , **__UpperCAmelCase ): """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return ( "This is a test", "This is a test", ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """</s>""" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__UpperCAmelCase ) , 9 ) def __magic_name__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __magic_name__ ( self ): """simple docstring""" __lowercase = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) __lowercase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(__UpperCAmelCase , batch.input_ids[0] ) __lowercase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(__UpperCAmelCase ) __lowercase = [x.name for x in Path(__UpperCAmelCase ).glob("""*""" )] self.assertIn("""source.spm""" , __UpperCAmelCase ) MarianTokenizer.from_pretrained(__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = tok( ["""I am a small frog""" * 1_0_0_0, """I am a small frog"""] , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = {"""input_ids""": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __magic_name__ ( self ): """simple docstring""" __lowercase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowercase = """Tämä on testi""" __lowercase = """This is a test""" __lowercase = [7_6, 7, 2_0_4_7, 2] __lowercase = [6_9, 1_2, 1_1, 9_4_0, 2] __lowercase = tokenizer(__UpperCAmelCase ).input_ids self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer(text_target=__UpperCAmelCase ).input_ids self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
566
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class A_ ( lowerCAmelCase__ ): """simple docstring""" lowercase : List[Any] = "altclip_text_model" def __init__( self , __UpperCAmelCase=25_00_02 , __UpperCAmelCase=10_24 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=40_96 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_14 , __UpperCAmelCase=1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-0_5 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=7_68 , **__UpperCAmelCase , ) -> Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) a : List[str] = vocab_size a : str = hidden_size a : Tuple = num_hidden_layers a : Optional[Any] = num_attention_heads a : Tuple = hidden_act a : List[Any] = intermediate_size a : Union[str, Any] = hidden_dropout_prob a : List[Any] = attention_probs_dropout_prob a : Any = max_position_embeddings a : Union[str, Any] = type_vocab_size a : Union[str, Any] = initializer_range a : Dict = initializer_factor a : Dict = layer_norm_eps a : Optional[Any] = position_embedding_type a : str = use_cache a : Tuple = project_dim class A_ ( lowerCAmelCase__ ): """simple docstring""" lowercase : Tuple = "altclip_vision_model" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=30_72 , __UpperCAmelCase=5_12 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3 , __UpperCAmelCase=2_24 , __UpperCAmelCase=32 , __UpperCAmelCase="quick_gelu" , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1.0 , **__UpperCAmelCase , ) -> str: super().__init__(**_lowerCamelCase ) a : int = hidden_size a : List[Any] = intermediate_size a : Union[str, Any] = projection_dim a : Union[str, Any] = num_hidden_layers a : Optional[Any] = num_attention_heads a : Tuple = num_channels a : Union[str, Any] = patch_size a : Tuple = image_size a : Tuple = initializer_range a : List[Any] = initializer_factor a : Tuple = attention_dropout a : Any = layer_norm_eps a : Optional[Any] = hidden_act @classmethod def lowercase_ ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowerCamelCase ) a , a : Optional[Any] = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('model_type' ) == "altclip": a : Optional[int] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class A_ ( lowerCAmelCase__ ): """simple docstring""" lowercase : Optional[Any] = "altclip" lowercase : Union[str, Any] = True def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=7_68 , __UpperCAmelCase=2.6592 , **__UpperCAmelCase ) -> List[Any]: a : Any = kwargs.pop('text_config_dict' , _lowerCamelCase ) a : List[Any] = kwargs.pop('vision_config_dict' , _lowerCamelCase ) super().__init__(**_lowerCamelCase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: a : Union[str, Any] = {} # This is the complete result when using `text_config_dict`. a : Dict = AltCLIPTextConfig(**_lowerCamelCase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: a : Union[str, Any] = ( f'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' f'The value `text_config_dict[\"{key}\"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: a : int = ( f'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' f'value `text_config[\"{key}\"]` will be overriden.' ) logger.warning(_lowerCamelCase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: a : Optional[int] = {} # This is the complete result when using `vision_config_dict`. a : Optional[Any] = AltCLIPVisionConfig(**_lowerCamelCase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: a : Optional[int] = { str(_lowerCamelCase ): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: a : Tuple = ( f'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' f'values. The value `vision_config_dict[\"{key}\"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: a : str = ( f'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' f'The value `vision_config[\"{key}\"]` will be overriden.' ) logger.warning(_lowerCamelCase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: a : List[str] = {} logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.' ) if vision_config is None: a : Optional[Any] = {} logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.' ) a : Union[str, Any] = AltCLIPTextConfig(**_lowerCamelCase ) a : List[str] = AltCLIPVisionConfig(**_lowerCamelCase ) a : str = projection_dim a : Optional[int] = logit_scale_init_value a : Any = 1.0 @classmethod def lowercase_ ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowerCamelCase ) def lowercase_ ( self ) -> List[Any]: a : List[str] = copy.deepcopy(self.__dict__ ) a : List[Any] = self.text_config.to_dict() a : Union[str, Any] = self.vision_config.to_dict() a : Any = self.__class__.model_type return output
712
"""simple docstring""" from math import factorial, pi def A_ ( UpperCAmelCase__ , UpperCAmelCase__ = 30 ) -> float: if not isinstance(UpperCAmelCase__ , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) a : Tuple = float(UpperCAmelCase__ ) a : Any = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(UpperCAmelCase__ ) ) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ = 30 ) -> float: if not isinstance(UpperCAmelCase__ , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) a : Dict = float(UpperCAmelCase__ ) a : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
509
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' lowerCAmelCase__ : Tuple = Image.open(requests.get(A_ , stream=A_ ).raw ).convert('''RGB''' ) return image def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Dict = dct.pop(A_ ) lowerCAmelCase__ : int = val def __SCREAMING_SNAKE_CASE ( A_ , A_ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase__ : List[str] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) lowerCAmelCase__ : Tuple = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict lowerCAmelCase__ : List[str] = torch.cat((q_bias, torch.zeros_like(A_ , requires_grad=A_ ), v_bias) ) lowerCAmelCase__ : str = qkv_bias def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Any = 3_64 if '''coco''' in model_name else 2_24 lowerCAmelCase__ : List[str] = BlipaVisionConfig(image_size=A_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCAmelCase__ : List[str] = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=A_ ).to_dict() elif "opt-6.7b" in model_name: lowerCAmelCase__ : Dict = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=A_ ).to_dict() elif "t5-xl" in model_name: lowerCAmelCase__ : int = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase__ : List[Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() lowerCAmelCase__ : str = BlipaConfig(vision_config=A_ , text_config=A_ ) return config, image_size @torch.no_grad() def __SCREAMING_SNAKE_CASE ( A_ , A_=None , A_=False ): lowerCAmelCase__ : Optional[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) lowerCAmelCase__ : str = tokenizer('''\n''' , add_special_tokens=A_ ).input_ids[0] lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = get_blipa_config(A_ , eos_token_id=A_ ) lowerCAmelCase__ : List[Any] = BlipaForConditionalGeneration(A_ ).eval() lowerCAmelCase__ : str = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } lowerCAmelCase__ ,lowerCAmelCase__ : Any = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) lowerCAmelCase__ : Union[str, Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = load_model_and_preprocess( name=A_ , model_type=A_ , is_eval=A_ , device=A_ ) original_model.eval() print('''Done!''' ) # update state dict keys lowerCAmelCase__ : Optional[Any] = original_model.state_dict() lowerCAmelCase__ : List[Any] = create_rename_keys(A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase__ : Any = state_dict.pop(A_ ) if key.startswith('''Qformer.bert''' ): lowerCAmelCase__ : int = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: lowerCAmelCase__ : str = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: lowerCAmelCase__ : List[Any] = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: lowerCAmelCase__ : List[Any] = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): lowerCAmelCase__ : List[Any] = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): lowerCAmelCase__ : Any = key.replace('''t5''' , '''language''' ) lowerCAmelCase__ : Optional[int] = val # read in qv biases read_in_q_v_bias(A_ , A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Any = hf_model.load_state_dict(A_ , strict=A_ ) assert len(A_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCAmelCase__ : Dict = load_demo_image() lowerCAmelCase__ : Optional[Any] = vis_processors['''eval'''](A_ ).unsqueeze(0 ).to(A_ ) lowerCAmelCase__ : List[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(A_ ) # create processor lowerCAmelCase__ : Optional[Any] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=A_ , image_std=A_ ) lowerCAmelCase__ : List[str] = BlipaProcessor(image_processor=A_ , tokenizer=A_ ) lowerCAmelCase__ : Any = processor(images=A_ , return_tensors='''pt''' ).pixel_values.to(A_ ) # make sure processor creates exact same pixel values assert torch.allclose(A_ , A_ ) original_model.to(A_ ) hf_model.to(A_ ) with torch.no_grad(): if "opt" in model_name: lowerCAmelCase__ : Any = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits lowerCAmelCase__ : List[Any] = hf_model(A_ , A_ ).logits else: lowerCAmelCase__ : Dict = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits lowerCAmelCase__ : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) lowerCAmelCase__ : Dict = hf_model(A_ , A_ , labels=A_ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCAmelCase__ : Optional[Any] = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=A_ ) assert torch.allclose(logits[0, :3, :3] , A_ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCAmelCase__ : Dict = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=A_ ) else: # cast to same type lowerCAmelCase__ : List[str] = logits.dtype assert torch.allclose(original_logits.to(A_ ) , A_ , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) lowerCAmelCase__ : Union[str, Any] = '''''' lowerCAmelCase__ : Union[str, Any] = tokenizer(A_ , return_tensors='''pt''' ).input_ids.to(A_ ) lowerCAmelCase__ : Any = original_model.generate({'''image''': original_pixel_values} ) lowerCAmelCase__ : Optional[int] = hf_model.generate( A_ , A_ , do_sample=A_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , A_ ) lowerCAmelCase__ : str = input_ids.shape[1] lowerCAmelCase__ : Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=A_ ) lowerCAmelCase__ : Dict = [text.strip() for text in output_text] print('''HF generation:''' , A_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() __UpperCamelCase : Tuple = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
450
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __UpperCamelCase : Any = None __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : str = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } __UpperCamelCase : Any = { '''albert-base-v1''': 5_1_2, '''albert-large-v1''': 5_1_2, '''albert-xlarge-v1''': 5_1_2, '''albert-xxlarge-v1''': 5_1_2, '''albert-base-v2''': 5_1_2, '''albert-large-v2''': 5_1_2, '''albert-xlarge-v2''': 5_1_2, '''albert-xxlarge-v2''': 5_1_2, } __UpperCamelCase : Union[str, Any] = '''▁''' class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = AlbertTokenizer def __init__( self : Union[str, Any] ,lowercase_ : List[str]=None ,lowercase_ : Union[str, Any]=None ,lowercase_ : str=True ,lowercase_ : Optional[Any]=True ,lowercase_ : str=False ,lowercase_ : Tuple="[CLS]" ,lowercase_ : Optional[int]="[SEP]" ,lowercase_ : Optional[Any]="<unk>" ,lowercase_ : List[Any]="[SEP]" ,lowercase_ : Optional[int]="<pad>" ,lowercase_ : List[Any]="[CLS]" ,lowercase_ : Optional[int]="[MASK]" ,**lowercase_ : Optional[int] ,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase__ : Optional[Any] = ( AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ,normalized=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else mask_token ) super().__init__( lowercase_ ,tokenizer_file=lowercase_ ,do_lower_case=lowercase_ ,remove_space=lowercase_ ,keep_accents=lowercase_ ,bos_token=lowercase_ ,eos_token=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,pad_token=lowercase_ ,cls_token=lowercase_ ,mask_token=lowercase_ ,**lowercase_ ,) lowerCAmelCase__ : List[Any] = do_lower_case lowerCAmelCase__ : str = remove_space lowerCAmelCase__ : Optional[int] = keep_accents lowerCAmelCase__ : Dict = vocab_file lowerCAmelCase__ : Optional[int] = False if not self.vocab_file else True def __lowerCAmelCase ( self : Dict ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ): lowerCAmelCase__ : List[Any] = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ): lowerCAmelCase__ : List[str] = [self.sep_token_id] lowerCAmelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : str ,lowercase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ : Union[str, Any] = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file ,lowercase_ ) return (out_vocab_file,)
450
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCamelCase_ ( lowerCAmelCase__ = 8 ): """simple docstring""" _lowerCAmelCase : int = ascii_letters + digits + punctuation return "".join(secrets.choice(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ) ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" i -= len(lowerCAmelCase__ ) _lowerCAmelCase : Optional[Any] = i // 3 _lowerCAmelCase : Tuple = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : Optional[Any] = ( chars_incl + random(lowerCAmelCase__ , quotient + remainder ) + random(lowerCAmelCase__ , lowerCAmelCase__ ) + random(lowerCAmelCase__ , lowerCAmelCase__ ) ) _lowerCAmelCase : Tuple = list(lowerCAmelCase__ ) shuffle(lowerCAmelCase__ ) return "".join(lowerCAmelCase__ ) # random is a generalised function for letters, characters and numbers def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" return "".join(secrets.choice(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ) ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" pass # Put your code here... def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" pass # Put your code here... def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" pass # Put your code here... def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ = 8 ): """simple docstring""" if len(lowerCAmelCase__ ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : List[Any] = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Optional[int] = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Tuple = any(char in digits for char in password ) _lowerCAmelCase : Any = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : Tuple = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Optional[Any] = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(lowerCAmelCase__ ) ) print( "Alternative Password generated:" , alternative_password_generator(lowerCAmelCase__ , lowerCAmelCase__ ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
587
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: snake_case = False snake_case = logging.get_logger(__name__) snake_case = "ybelkada/fonts" def UpperCamelCase_ ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ "Pix2StructImageProcessor. Please upgrade torch." ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" requires_backends(lowerCAmelCase__ , ["torch"] ) _check_torch_version() _lowerCAmelCase : int = image_tensor.unsqueeze(0 ) _lowerCAmelCase : List[str] = torch.nn.functional.unfold(lowerCAmelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) _lowerCAmelCase : Any = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowerCAmelCase__ , lowerCAmelCase__ , -1 ) _lowerCAmelCase : int = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ = 36 , lowerCAmelCase__ = "black" , lowerCAmelCase__ = "white" , lowerCAmelCase__ = 5 , lowerCAmelCase__ = 5 , lowerCAmelCase__ = 5 , lowerCAmelCase__ = 5 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ): """simple docstring""" requires_backends(lowerCAmelCase__ , "vision" ) # Add new lines so that each line is no more than 80 characters. _lowerCAmelCase : List[Any] = textwrap.TextWrapper(width=80 ) _lowerCAmelCase : Optional[Any] = wrapper.wrap(text=lowerCAmelCase__ ) _lowerCAmelCase : int = "\n".join(lowerCAmelCase__ ) if font_bytes is not None and font_path is None: _lowerCAmelCase : Optional[int] = io.BytesIO(lowerCAmelCase__ ) elif font_path is not None: _lowerCAmelCase : Dict = font_path else: _lowerCAmelCase : int = hf_hub_download(lowerCAmelCase__ , "Arial.TTF" ) _lowerCAmelCase : str = ImageFont.truetype(lowerCAmelCase__ , encoding="UTF-8" , size=lowerCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _lowerCAmelCase : Union[str, Any] = ImageDraw.Draw(Image.new("RGB" , (1, 1) , lowerCAmelCase__ ) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = temp_draw.textbbox((0, 0) , lowerCAmelCase__ , lowerCAmelCase__ ) # Create the actual image with a bit of padding around the text. _lowerCAmelCase : List[str] = text_width + left_padding + right_padding _lowerCAmelCase : Union[str, Any] = text_height + top_padding + bottom_padding _lowerCAmelCase : Any = Image.new("RGB" , (image_width, image_height) , lowerCAmelCase__ ) _lowerCAmelCase : List[Any] = ImageDraw.Draw(lowerCAmelCase__ ) draw.text(xy=(left_padding, top_padding) , text=lowerCAmelCase__ , fill=lowerCAmelCase__ , font=lowerCAmelCase__ ) return image def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" requires_backends(lowerCAmelCase__ , "vision" ) # Convert to PIL image if necessary _lowerCAmelCase : Union[str, Any] = to_pil_image(lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = render_text(lowerCAmelCase__ , **lowerCAmelCase__ ) _lowerCAmelCase : str = max(header_image.width , image.width ) _lowerCAmelCase : Optional[Any] = int(image.height * (new_width / image.width) ) _lowerCAmelCase : Dict = int(header_image.height * (new_width / header_image.width) ) _lowerCAmelCase : int = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary _lowerCAmelCase : Union[str, Any] = to_numpy_array(lowerCAmelCase__ ) if infer_channel_dimension_format(lowerCAmelCase__ ) == ChannelDimension.LAST: _lowerCAmelCase : Union[str, Any] = to_channel_dimension_format(lowerCAmelCase__ , ChannelDimension.LAST ) return new_image class __A ( snake_case__ ): '''simple docstring''' a_ = ['''flattened_patches'''] def __init__( self , _snake_case = True , _snake_case = True , _snake_case = None , _snake_case = 2048 , _snake_case = False , **_snake_case , ): super().__init__(**_snake_case ) _lowerCAmelCase : List[Any] = patch_size if patch_size is not None else {"height": 16, "width": 16} _lowerCAmelCase : Any = do_normalize _lowerCAmelCase : Tuple = do_convert_rgb _lowerCAmelCase : Tuple = max_patches _lowerCAmelCase : Optional[int] = is_vqa def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , **_snake_case ): requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch _lowerCAmelCase : Dict = to_channel_dimension_format(_snake_case , ChannelDimension.FIRST ) _lowerCAmelCase : Dict = torch.from_numpy(_snake_case ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = patch_size["height"], patch_size["width"] _lowerCAmelCase , _lowerCAmelCase : Dict = get_image_size(_snake_case ) # maximize scale s.t. _lowerCAmelCase : Any = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _lowerCAmelCase : str = max(min(math.floor(scale * image_height / patch_height ) , _snake_case ) , 1 ) _lowerCAmelCase : Any = max(min(math.floor(scale * image_width / patch_width ) , _snake_case ) , 1 ) _lowerCAmelCase : Any = max(num_feasible_rows * patch_height , 1 ) _lowerCAmelCase : Optional[int] = max(num_feasible_cols * patch_width , 1 ) _lowerCAmelCase : Tuple = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_snake_case , antialias=_snake_case , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _lowerCAmelCase : str = torch_extract_patches(_snake_case , _snake_case , _snake_case ) _lowerCAmelCase : Optional[Any] = patches.shape _lowerCAmelCase : List[Any] = patches_shape[1] _lowerCAmelCase : str = patches_shape[2] _lowerCAmelCase : int = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _lowerCAmelCase : List[Any] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _lowerCAmelCase : Tuple = torch.arange(_snake_case ).reshape([rows, 1] ).repeat(1 , _snake_case ).reshape([rows * columns, 1] ) _lowerCAmelCase : List[str] = torch.arange(_snake_case ).reshape([1, columns] ).repeat(_snake_case , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _lowerCAmelCase : Tuple = row_ids.to(torch.floataa ) _lowerCAmelCase : Optional[int] = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _lowerCAmelCase : int = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _lowerCAmelCase : List[Any] = torch.nn.functional.pad(_snake_case , [0, 0, 0, max_patches - (rows * columns)] ).float() _lowerCAmelCase : List[Any] = to_numpy_array(_snake_case ) return result def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = None , **_snake_case ): if image.dtype == np.uinta: _lowerCAmelCase : Any = image.astype(np.floataa ) # take mean across the whole `image` _lowerCAmelCase : str = np.mean(_snake_case ) _lowerCAmelCase : List[Any] = np.std(_snake_case ) _lowerCAmelCase : int = max(_snake_case , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_snake_case , mean=_snake_case , std=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ): _lowerCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase : Tuple = patch_size if patch_size is not None else self.patch_size _lowerCAmelCase : Optional[int] = max_patches if max_patches is not None else self.max_patches _lowerCAmelCase : List[str] = self.is_vqa if kwargs.get("data_format" , _snake_case ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) _lowerCAmelCase : Union[str, Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase : Dict = [convert_to_rgb(_snake_case ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase : Tuple = [to_numpy_array(_snake_case ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) _lowerCAmelCase : Tuple = kwargs.pop("font_bytes" , _snake_case ) _lowerCAmelCase : List[Any] = kwargs.pop("font_path" , _snake_case ) if isinstance(_snake_case , _snake_case ): _lowerCAmelCase : str = [header_text] * len(_snake_case ) _lowerCAmelCase : Union[str, Any] = [ render_header(_snake_case , header_text[i] , font_bytes=_snake_case , font_path=_snake_case ) for i, image in enumerate(_snake_case ) ] if do_normalize: _lowerCAmelCase : Tuple = [self.normalize(image=_snake_case ) for image in images] # convert to torch tensor and permute _lowerCAmelCase : Dict = [ self.extract_flattened_patches(image=_snake_case , max_patches=_snake_case , patch_size=_snake_case ) for image in images ] # create attention mask in numpy _lowerCAmelCase : Optional[Any] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _lowerCAmelCase : int = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_snake_case ) return encoded_outputs
587
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: debug_launcher(test_script.main ) def _lowerCamelCase ( self ) -> Dict: debug_launcher(test_ops.main )
76
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a : str = 'pt' elif is_tf_available(): a : Dict = 'tf' else: a : Optional[Any] = 'jax' class lowercase(_lowercase , unittest.TestCase ): __snake_case: List[Any] = PerceiverTokenizer __snake_case: Optional[Any] = False def lowercase__ ( self ) -> Tuple: """simple docstring""" super().setUp() a__ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self ) -> Any: """simple docstring""" return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase__ ( self , **__SCREAMING_SNAKE_CASE ) -> PerceiverTokenizer: """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2_0 , __SCREAMING_SNAKE_CASE=5 ) -> Tuple[str, list]: """simple docstring""" a__ = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): try: a__ = tokenizer.decode([i] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) except UnicodeDecodeError: pass toks.append((i, tok) ) a__ = list(filter(lambda __SCREAMING_SNAKE_CASE : re.match(R'^[ a-zA-Z]+$' , t[1] ) , __SCREAMING_SNAKE_CASE ) ) a__ = list(filter(lambda __SCREAMING_SNAKE_CASE : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ) if max_length is not None and len(__SCREAMING_SNAKE_CASE ) > max_length: a__ = toks[:max_length] if min_length is not None and len(__SCREAMING_SNAKE_CASE ) < min_length and len(__SCREAMING_SNAKE_CASE ) > 0: while len(__SCREAMING_SNAKE_CASE ) < min_length: a__ = toks + toks # toks_str = [t[1] for t in toks] a__ = [t[0] for t in toks] # Ensure consistency a__ = tokenizer.decode(__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) if " " not in output_txt and len(__SCREAMING_SNAKE_CASE ) > 1: a__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) ) if with_prefix_space: a__ = ' ' + output_txt a__ = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) return output_txt, output_ids def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" a__ = self.perceiver_tokenizer a__ = 'Unicode €.' a__ = tokenizer(__SCREAMING_SNAKE_CASE ) a__ = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , __SCREAMING_SNAKE_CASE ) # decoding a__ = tokenizer.decode(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , '[CLS]Unicode €.[SEP]' ) a__ = tokenizer('e è é ê ë' ) a__ = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , __SCREAMING_SNAKE_CASE ) # decoding a__ = tokenizer.decode(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase__ ( self ) -> List[str]: """simple docstring""" a__ = self.perceiver_tokenizer a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off a__ = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on a__ = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if FRAMEWORK != "jax": a__ = list(batch.input_ids.numpy()[0] ) else: a__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def lowercase__ ( self ) -> Tuple: """simple docstring""" a__ = self.perceiver_tokenizer a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] a__ = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , __SCREAMING_SNAKE_CASE ) self.assertIn('attention_mask' , __SCREAMING_SNAKE_CASE ) self.assertNotIn('decoder_input_ids' , __SCREAMING_SNAKE_CASE ) self.assertNotIn('decoder_attention_mask' , __SCREAMING_SNAKE_CASE ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" a__ = self.perceiver_tokenizer a__ = [ 'Summary of the text.', 'Another summary.', ] a__ = tokenizer( text_target=__SCREAMING_SNAKE_CASE , max_length=3_2 , padding='max_length' , truncation=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" a__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test a__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc a__ = tempfile.mkdtemp() a__ = ' He is very happy, UNwant\u00E9d,running' a__ = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) a__ = tokenizer.__class__.from_pretrained(__SCREAMING_SNAKE_CASE ) a__ = after_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) a__ = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc a__ = tempfile.mkdtemp() a__ = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) a__ = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) a__ = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) a__ = tokenizer.__class__.from_pretrained(__SCREAMING_SNAKE_CASE ) a__ = after_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) a__ = tokenizer.__class__.from_pretrained(__SCREAMING_SNAKE_CASE , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" a__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: a__ = json.load(__SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: a__ = json.load(__SCREAMING_SNAKE_CASE ) a__ = [f'<extra_id_{i}>' for i in range(1_2_5 )] a__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] a__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(__SCREAMING_SNAKE_CASE , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a__ = tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a__ = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=__SCREAMING_SNAKE_CASE )] a__ = tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" a__ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def lowercase__ ( self ) -> str: """simple docstring""" pass def lowercase__ ( self ) -> List[str]: """simple docstring""" pass def lowercase__ ( self ) -> Dict: """simple docstring""" pass def lowercase__ ( self ) -> List[str]: """simple docstring""" pass def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" a__ = self.get_tokenizers(fast=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): a__ = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] a__ = tokenizer.convert_tokens_to_string(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
273
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_lowercase ): __lowercase = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) __lowercase = FlaxAutoModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_lowercase ): __lowercase = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) __lowercase = FlaxAutoModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: __lowercase = AutoTokenizer.from_pretrained(_lowercase ) __lowercase = FlaxBertModel.from_pretrained(_lowercase ) __lowercase = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ ): return model(**_lowercase ) eval(**_lowercase ).block_until_ready() @slow def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: __lowercase = AutoTokenizer.from_pretrained(_lowercase ) __lowercase = FlaxRobertaModel.from_pretrained(_lowercase ) __lowercase = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ ): return model(**_lowercase ) eval(**_lowercase ).block_until_ready() def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( _lowercase , '''bert-base is not a local folder and is not a valid model identifier''' ): __lowercase = FlaxAutoModel.from_pretrained('''bert-base''' ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' with self.assertRaisesRegex( _lowercase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowercase = FlaxAutoModel.from_pretrained(_lowercase , revision='''aaaaaa''' ) def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' with self.assertRaisesRegex( _lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): __lowercase = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex(_lowercase , '''Use `from_pt=True` to load this model''' ): __lowercase = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __a : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __a : Any = TaTokenizerFast __a : Any = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Union[str, Any] = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Any = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __a : int = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
522
0
from manim import * class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" def UpperCamelCase__ ( self :List[str]): """simple docstring""" _lowercase =Rectangle(height=0.5, width=0.5) _lowercase =Rectangle(height=0.4_6, width=0.4_6).set_stroke(width=0) _lowercase =[mem.copy() for i in range(6)] _lowercase =[mem.copy() for i in range(6)] _lowercase =VGroup(*snake_case).arrange(snake_case, buff=0) _lowercase =VGroup(*snake_case).arrange(snake_case, buff=0) _lowercase =VGroup(snake_case, snake_case).arrange(snake_case, buff=0) _lowercase =Text('CPU', font_size=24) _lowercase =Group(snake_case, snake_case).arrange(snake_case, buff=0.5, aligned_edge=snake_case) cpu.move_to([-2.5, -0.5, 0]) self.add(snake_case) _lowercase =[mem.copy() for i in range(1)] _lowercase =VGroup(*snake_case).arrange(snake_case, buff=0) _lowercase =Text('GPU', font_size=24) _lowercase =Group(snake_case, snake_case).arrange(snake_case, buff=0.5, aligned_edge=snake_case) gpu.align_to(snake_case, snake_case) gpu.set_x(gpu.get_x() - 1) self.add(snake_case) _lowercase =[mem.copy() for i in range(6)] _lowercase =VGroup(*snake_case).arrange(snake_case, buff=0) _lowercase =Text('Model', font_size=24) _lowercase =Group(snake_case, snake_case).arrange(snake_case, buff=0.5, aligned_edge=snake_case) model.move_to([3, -1.0, 0]) self.play( Create(snake_case, run_time=1), Create(snake_case, run_time=1), Create(snake_case, run_time=1), ) _lowercase =MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''', font_size=24, ) _lowercase =Square(side_length=2.2) key.move_to([-5, 2, 0]) _lowercase =MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=18, ) key_text.move_to([-5, 2.4, 0]) step_a.move_to([2, 2, 0]) self.play(Write(snake_case, run_time=2.5), Write(snake_case), Write(snake_case)) self.add(snake_case) _lowercase =[] _lowercase =[] _lowercase =[] for i, rect in enumerate(snake_case): _lowercase =Rectangle(height=0.4_6, width=0.4_6).set_stroke(width=0.0).set_fill(snake_case, opacity=0.7) cpu_target.move_to(snake_case) cpu_target.generate_target() _lowercase =0.4_6 / 4 _lowercase =0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT), buff=0.0_2, direction=snake_case) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=snake_case, buff=0.0) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=snake_case, buff=0.0) cpu_targs.append(snake_case) first_animations.append(rect.animate(run_time=0.5).set_stroke(snake_case)) second_animations.append(MoveToTarget(snake_case, run_time=1.5)) self.play(*snake_case) self.play(*snake_case) self.wait()
181
import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE_ ( torch.nn.Module ): """simple docstring""" def __init__( self :Dict, snake_case :str="sayef/fsner-bert-base-uncased"): """simple docstring""" super(snake_case, self).__init__() _lowercase =AutoModel.from_pretrained(snake_case, return_dict=snake_case) _lowercase =torch.nn.CosineSimilarity(3, 1e-0_8) _lowercase =torch.nn.Softmax(dim=1) def UpperCamelCase__ ( self :str, **snake_case :int): """simple docstring""" return self.bert(**snake_case).last_hidden_state def UpperCamelCase__ ( self :Union[str, Any], snake_case :Optional[Any]): """simple docstring""" return token_embeddings.sum(2, keepdim=snake_case) def UpperCamelCase__ ( self :List[Any], snake_case :int, snake_case :Dict, snake_case :Dict=1): """simple docstring""" return self.softmax(T * self.cos(snake_case, snake_case)) def UpperCamelCase__ ( self :List[str], snake_case :int, snake_case :List[str]): """simple docstring""" _lowercase =W_supports['sizes'].tolist() _lowercase =W_supports['start_token_id'].item() _lowercase =W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _lowercase =self.BERT(**snake_case) _lowercase =self.BERT(**snake_case) _lowercase =None _lowercase =None _lowercase =W_supports['input_ids'] == start_token_id _lowercase =W_supports['input_ids'] == end_token_id for i, size in enumerate(snake_case): if i == 0: _lowercase =0 else: _lowercase =support_sizes[i - 1] _lowercase =S[s : s + size][start_token_masks[s : s + size]] _lowercase =S[s : s + size][end_token_masks[s : s + size]] _lowercase =torch.matmul(q[i], s_start.T).sum(1).softmax(0) _lowercase =torch.matmul(q[i], s_end.T).sum(1).softmax(0) if p_starts is not None: _lowercase =torch.vstack((p_starts, p_start)) _lowercase =torch.vstack((p_ends, p_end)) else: _lowercase =p_start _lowercase =p_end return p_starts, p_ends
181
1
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowercase = 50003 lowercase = 50002 @require_sentencepiece @require_tokenizers class A_ ( snake_case_ , unittest.TestCase ): UpperCAmelCase__ = PLBartTokenizer UpperCAmelCase__ = None UpperCAmelCase__ = False def _snake_case ( self : Union[str, Any] ) -> int: super().setUp() # We have a SentencePiece fixture for testing __magic_name__ = PLBartTokenizer(__lowerCamelCase , language_codes="base" , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : int ) -> Dict: __magic_name__ = PLBartTokenizer(__lowerCamelCase , language_codes="base" , keep_accents=__lowerCamelCase ) __magic_name__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __magic_name__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __magic_name__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __magic_name__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) __magic_name__ = tokenizer.vocab_size __magic_name__ = [tokenizer.convert_ids_to_tokens(__lowerCamelCase ) for x in range(end - 4 , __lowerCamelCase )] self.assertListEqual(__lowerCamelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) __magic_name__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" __magic_name__ = tokenizer(__lowerCamelCase ).input_ids self.assertEqual( tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) , __lowerCamelCase , ) def _snake_case ( self : Union[str, Any] ) -> str: __magic_name__ = PLBartTokenizer(__lowerCamelCase , language_codes="multi" , keep_accents=__lowerCamelCase ) __magic_name__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __magic_name__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __magic_name__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __magic_name__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) __magic_name__ = tokenizer.vocab_size __magic_name__ = [tokenizer.convert_ids_to_tokens(__lowerCamelCase ) for x in range(end - 7 , __lowerCamelCase )] self.assertListEqual( __lowerCamelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) __magic_name__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" __magic_name__ = tokenizer(__lowerCamelCase ).input_ids self.assertEqual( tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) , __lowerCamelCase , ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): UpperCAmelCase__ = '''uclanlp/plbart-python-en_XX''' UpperCAmelCase__ = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCAmelCase__ = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCAmelCase__ = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def _snake_case ( cls : List[str] ) -> List[str]: __magic_name__ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) __magic_name__ = 1 return cls def _snake_case ( self : Union[str, Any] ) -> Tuple: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def _snake_case ( self : List[Any] ) -> Tuple: __magic_name__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) def _snake_case ( self : Tuple ) -> Dict: self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids ) __magic_name__ = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] __magic_name__ = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) __magic_name__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase ) def _snake_case ( self : List[str] ) -> Union[str, Any]: __magic_name__ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , __lowerCamelCase ) __magic_name__ = 1_0 __magic_name__ = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self : Any ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def _snake_case ( self : Optional[int] ) -> Any: __magic_name__ = tempfile.mkdtemp() __magic_name__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase ) __magic_name__ = PLBartTokenizer.from_pretrained(__lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase ) @require_torch def _snake_case ( self : Union[str, Any] ) -> Dict: __magic_name__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , return_tensors="pt" ) __magic_name__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __lowerCamelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _snake_case ( self : str ) -> Union[str, Any]: __magic_name__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __magic_name__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) __magic_name__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _snake_case ( self : List[Any] ) -> List[str]: __magic_name__ = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors="pt" ) __magic_name__ = self.tokenizer( text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0 , return_tensors="pt" ) __magic_name__ = targets["input_ids"] __magic_name__ = shift_tokens_right(__lowerCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _snake_case ( self : Tuple ) -> List[Any]: __magic_name__ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
468
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A_ ( snake_case_ ): UpperCAmelCase__ = (UnCLIPScheduler,) def _snake_case ( self : Any , **__lowerCamelCase : List[Any] ) -> str: __magic_name__ = { "num_train_timesteps": 1_0_0_0, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**__lowerCamelCase ) return config def _snake_case ( self : int ) -> Tuple: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def _snake_case ( self : int ) -> Any: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def _snake_case ( self : List[Any] ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def _snake_case ( self : Tuple ) -> Optional[int]: for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def _snake_case ( self : List[Any] ) -> Any: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def _snake_case ( self : Union[str, Any] ) -> List[str]: for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def _snake_case ( self : Union[str, Any] ) -> Tuple: __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config(variance_type="fixed_small_log" ) __magic_name__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.999_4987 ) ) < 1e-5 def _snake_case ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config(variance_type="learned_range" ) __magic_name__ = scheduler_class(**__lowerCamelCase ) __magic_name__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(4_8_7 , predicted_variance=__lowerCamelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(9_9_9 , predicted_variance=__lowerCamelCase ) - -0.001_0011 < 1e-5 def _snake_case ( self : Optional[Any] ) -> str: __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**__lowerCamelCase ) __magic_name__ = scheduler.timesteps __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter __magic_name__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual __magic_name__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 __magic_name__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample __magic_name__ = pred_prev_sample __magic_name__ = torch.sum(torch.abs(__lowerCamelCase ) ) __magic_name__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def _snake_case ( self : int ) -> int: __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(2_5 ) __magic_name__ = scheduler.timesteps __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter __magic_name__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual __magic_name__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: __magic_name__ = None else: __magic_name__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __magic_name__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample __magic_name__ = pred_prev_sample __magic_name__ = torch.sum(torch.abs(__lowerCamelCase ) ) __magic_name__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def _snake_case ( self : List[str] ) -> Any: pass def _snake_case ( self : int ) -> Optional[int]: pass
468
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> Optional[Any]: if config_name_or_path is None: lowerCamelCase_ = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: lowerCamelCase_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase_ = question_encoder_name_or_path lowerCamelCase_ = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. lowerCamelCase_ = RagConfig.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = AutoConfig.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = AutoConfig.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = gen_config lowerCamelCase_ = question_encoder_config lowerCamelCase_ = model_class.from_pretrained_question_encoder_generator( __UpperCamelCase ,__UpperCamelCase ,config=__UpperCamelCase ) rag_model.save_pretrained(__UpperCamelCase ) # Sanity check. model_class.from_pretrained(__UpperCamelCase ) # Save tokenizers. lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) A_ = parser.parse_args() A_ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
42
'''simple docstring''' from math import isclose, sqrt def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> tuple[float, float, float]: lowerCamelCase_ = point_y / 4 / point_x lowerCamelCase_ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCamelCase_ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCamelCase_ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCamelCase_ = outgoing_gradient**2 + 4 lowerCamelCase_ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCamelCase_ = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 lowerCamelCase_ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCamelCase_ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCamelCase_ = x_minus if isclose(__UpperCamelCase ,__UpperCamelCase ) else x_plus lowerCamelCase_ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _UpperCamelCase ( __UpperCamelCase = 1.4 ,__UpperCamelCase = -9.6 ) -> int: lowerCamelCase_ = 0 lowerCamelCase_ = first_x_coord lowerCamelCase_ = first_y_coord lowerCamelCase_ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = next_point(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
42
1
"""simple docstring""" def _UpperCamelCase ( _A , _A ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def _UpperCamelCase ( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
19
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): @property def _snake_case ( self : Dict ) ->int: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def _snake_case ( self : Optional[Any] ) ->str: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def _snake_case ( self : List[Any] ) ->Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__UpperCamelCase ) def _snake_case ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.dummy_uncond_unet _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = self.dummy_vq_model _UpperCAmelCase = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" ).images _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=__UpperCamelCase )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) _UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class a_ ( unittest.TestCase ): def _snake_case ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type="""numpy""" ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCAmelCase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) _UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
19
1
_lowerCamelCase = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _lowerCamelCase = [{'type': 'code', 'content': INSTALL_CONTENT}] _lowerCamelCase = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
6
'''simple docstring''' import random def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = a[left_index] SCREAMING_SNAKE_CASE_ : Union[str, Any] = left_index + 1 for j in range(left_index + 1 , SCREAMING_SNAKE_CASE_ ): if a[j] < pivot: SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = a[i], a[j] i += 1 SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = a[i - 1], a[left_index] return i - 1 def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]: """simple docstring""" if left < right: SCREAMING_SNAKE_CASE_ : Tuple = random.randint(SCREAMING_SNAKE_CASE_ , right - 1 ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[str] = ( a[left], a[pivot], ) # switches the pivot with the left most bound SCREAMING_SNAKE_CASE_ : List[str] = partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) quick_sort_random( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # recursive quicksort to the left of the pivot point quick_sort_random( SCREAMING_SNAKE_CASE_ , pivot_index + 1 , SCREAMING_SNAKE_CASE_ ) # recursive quicksort to the right of the pivot point def __lowerCamelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = input("Enter numbers separated by a comma:\n" ).strip() SCREAMING_SNAKE_CASE_ : str = [int(SCREAMING_SNAKE_CASE_ ) for item in user_input.split("," )] quick_sort_random(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
421
0
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( __snake_case , unittest.TestCase ): _lowerCAmelCase = AudioLDMPipeline _lowerCAmelCase = TEXT_TO_AUDIO_PARAMS _lowerCAmelCase = TEXT_TO_AUDIO_BATCH_PARAMS _lowerCAmelCase = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def lowerCAmelCase__(self ): '''simple docstring''' torch.manual_seed(0 ) __a : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_lowercase , ) __a : Optional[int] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __a : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __a : str = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) __a : Any = ClapTextModelWithProjection(_lowercase ) __a : Optional[int] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) __a : Tuple = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_lowercase , ) __a : int = SpeechTaHifiGan(_lowercase ) __a : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def lowerCAmelCase__(self , _lowercase , _lowercase=0 ): '''simple docstring''' if str(_lowercase ).startswith("""mps""" ): __a : Any = torch.manual_seed(_lowercase ) else: __a : int = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __a : List[Any] = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __a : int = self.get_dummy_components() __a : str = AudioLDMPipeline(**_lowercase ) __a : Union[str, Any] = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __a : Union[str, Any] = self.get_dummy_inputs(_lowercase ) __a : Optional[int] = audioldm_pipe(**_lowercase ) __a : Tuple = output.audios[0] assert audio.ndim == 1 assert len(_lowercase ) == 256 __a : Union[str, Any] = audio[:10] __a : Dict = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def lowerCAmelCase__(self ): '''simple docstring''' __a : List[str] = self.get_dummy_components() __a : List[str] = AudioLDMPipeline(**_lowercase ) __a : Dict = audioldm_pipe.to(_lowercase ) __a : List[str] = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __a : List[str] = self.get_dummy_inputs(_lowercase ) __a : Any = 3 * [inputs["""prompt"""]] # forward __a : List[str] = audioldm_pipe(**_lowercase ) __a : Tuple = output.audios[0] __a : int = self.get_dummy_inputs(_lowercase ) __a : Optional[Any] = 3 * [inputs.pop("""prompt""" )] __a : str = audioldm_pipe.tokenizer( _lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_lowercase , return_tensors="""pt""" , ) __a : Tuple = text_inputs["""input_ids"""].to(_lowercase ) __a : str = audioldm_pipe.text_encoder( _lowercase , ) __a : Optional[int] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __a : List[str] = F.normalize(_lowercase , dim=-1 ) __a : List[Any] = prompt_embeds # forward __a : Dict = audioldm_pipe(**_lowercase ) __a : Dict = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = self.get_dummy_components() __a : Any = AudioLDMPipeline(**_lowercase ) __a : Optional[Any] = audioldm_pipe.to(_lowercase ) __a : Dict = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __a : List[Any] = self.get_dummy_inputs(_lowercase ) __a : Optional[int] = 3 * ["""this is a negative prompt"""] __a : Union[str, Any] = negative_prompt __a : Dict = 3 * [inputs["""prompt"""]] # forward __a : Any = audioldm_pipe(**_lowercase ) __a : Union[str, Any] = output.audios[0] __a : Dict = self.get_dummy_inputs(_lowercase ) __a : Optional[Any] = 3 * [inputs.pop("""prompt""" )] __a : Union[str, Any] = [] for p in [prompt, negative_prompt]: __a : str = audioldm_pipe.tokenizer( _lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_lowercase , return_tensors="""pt""" , ) __a : Optional[int] = text_inputs["""input_ids"""].to(_lowercase ) __a : Optional[int] = audioldm_pipe.text_encoder( _lowercase , ) __a : Optional[int] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __a : Tuple = F.normalize(_lowercase , dim=-1 ) embeds.append(_lowercase ) __a : int = embeds # forward __a : List[Any] = audioldm_pipe(**_lowercase ) __a : int = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def lowerCAmelCase__(self ): '''simple docstring''' __a : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator __a : int = self.get_dummy_components() __a : Tuple = PNDMScheduler(skip_prk_steps=_lowercase ) __a : Optional[int] = AudioLDMPipeline(**_lowercase ) __a : Optional[int] = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __a : Optional[int] = self.get_dummy_inputs(_lowercase ) __a : Any = """egg cracking""" __a : Optional[Any] = audioldm_pipe(**_lowercase , negative_prompt=_lowercase ) __a : Tuple = output.audios[0] assert audio.ndim == 1 assert len(_lowercase ) == 256 __a : List[Any] = audio[:10] __a : Optional[Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator __a : str = self.get_dummy_components() __a : Optional[int] = PNDMScheduler(skip_prk_steps=_lowercase ) __a : Any = AudioLDMPipeline(**_lowercase ) __a : Optional[int] = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __a : List[str] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) __a : Optional[int] = audioldm_pipe(_lowercase , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts __a : List[str] = 2 __a : int = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt __a : str = 2 __a : Tuple = audioldm_pipe(_lowercase , num_inference_steps=2 , num_waveforms_per_prompt=_lowercase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts __a : List[Any] = 2 __a : List[Any] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_lowercase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def lowerCAmelCase__(self ): '''simple docstring''' __a : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator __a : str = self.get_dummy_components() __a : Tuple = AudioLDMPipeline(**_lowercase ) __a : int = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __a : Union[str, Any] = audioldm_pipe.vocoder.config.sampling_rate __a : List[str] = self.get_dummy_inputs(_lowercase ) __a : str = audioldm_pipe(audio_length_in_s=0.016 , **_lowercase ) __a : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(_lowercase ) / vocoder_sampling_rate == 0.016 __a : List[str] = audioldm_pipe(audio_length_in_s=0.032 , **_lowercase ) __a : Dict = output.audios[0] assert audio.ndim == 1 assert len(_lowercase ) / vocoder_sampling_rate == 0.032 def lowerCAmelCase__(self ): '''simple docstring''' __a : str = self.get_dummy_components() __a : Dict = AudioLDMPipeline(**_lowercase ) __a : List[str] = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __a : Optional[int] = ["""hey"""] __a : List[Any] = audioldm_pipe(_lowercase , num_inference_steps=1 ) __a : List[Any] = output.audios.shape assert audio_shape == (1, 256) __a : Union[str, Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __a : List[Any] = SpeechTaHifiGan(_lowercase ).to(_lowercase ) __a : Dict = audioldm_pipe(_lowercase , num_inference_steps=1 ) __a : int = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def lowerCAmelCase__(self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=_lowercase ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__(self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_lowercase ) @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__(self , _lowercase , _lowercase="cpu" , _lowercase=torch.floataa , _lowercase=0 ): '''simple docstring''' __a : List[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __a : int = np.random.RandomState(_lowercase ).standard_normal((1, 8, 128, 16) ) __a : str = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) __a : Dict = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __a : Dict = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __a : str = self.get_inputs(_lowercase ) __a : Dict = 25 __a : Optional[int] = audioldm_pipe(**_lowercase ).audios[0] assert audio.ndim == 1 assert len(_lowercase ) == 81920 __a : List[Any] = audio[77230:77240] __a : Any = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) __a : Optional[Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __a : int = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __a : Union[str, Any] = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __a : Optional[int] = self.get_inputs(_lowercase ) __a : Union[str, Any] = audioldm_pipe(**_lowercase ).audios[0] assert audio.ndim == 1 assert len(_lowercase ) == 81920 __a : int = audio[27780:27790] __a : List[Any] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) __a : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase__ = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
63
0
__a :str = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) __a :List[str] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = from_type.lower().strip("s" ) A_ = to_type.lower().strip("s" ) A_ = UNIT_SYMBOL.get(__UpperCamelCase ,__UpperCamelCase ) A_ = UNIT_SYMBOL.get(__UpperCamelCase ,__UpperCamelCase ) if from_sanitized not in METRIC_CONVERSION: A_ = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) if to_sanitized not in METRIC_CONVERSION: A_ = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) A_ = METRIC_CONVERSION[from_sanitized] A_ = METRIC_CONVERSION[to_sanitized] A_ = 1 if from_exponent > to_exponent: A_ = from_exponent - to_exponent else: A_ = -(to_exponent - from_exponent) return value * pow(10 ,__UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
86
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __a :Any = logging.getLogger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=None ): super().__init__( UpperCAmelCase , question_encoder_tokenizer=UpperCAmelCase , generator_tokenizer=UpperCAmelCase , index=UpperCAmelCase , init_retrieval=UpperCAmelCase , ) A_ = None def __A ( self : Dict , UpperCAmelCase : int ): logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually A_ = self._infer_socket_ifname() # avoid clash with the NCCL port A_ = str(distributed_port + 1 ) A_ = dist.new_group(ranks=UpperCAmelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __A ( self : List[str] ): return dist.get_rank(group=self.process_group ) == 0 def __A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict=torch.floataa ): A_ = torch.empty(UpperCAmelCase , dtype=UpperCAmelCase ) dist.scatter(UpperCAmelCase , src=0 , scatter_list=UpperCAmelCase , group=self.process_group ) return target_tensor def __A ( self : Any ): A_ = psutil.net_if_addrs() # a hacky way to deal with varying network interface names A_ = next((addr for addr in addrs if addr.startswith("e" )) , UpperCAmelCase ) return ifname def __A ( self : Tuple , UpperCAmelCase : np.ndarray , UpperCAmelCase : int ): # single GPU training if not dist.is_initialized(): A_ , A_ = self._main_retrieve(UpperCAmelCase , UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase ) # distributed training A_ = dist.get_world_size(group=self.process_group ) # gather logic A_ = None if self._is_main(): A_ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(UpperCAmelCase )] dist.gather(torch.tensor(UpperCAmelCase ) , dst=0 , gather_list=UpperCAmelCase , group=self.process_group ) # scatter logic A_ = question_hidden_states.shape[0] A_ = [] A_ = [] if self._is_main(): assert len(UpperCAmelCase ) == world_size A_ , A_ = self._main_retrieve(torch.cat(UpperCAmelCase ).numpy() , UpperCAmelCase ) A_ , A_ = torch.tensor(UpperCAmelCase ), torch.tensor(UpperCAmelCase ) A_ = self._chunk_tensor(UpperCAmelCase , UpperCAmelCase ) A_ = self._chunk_tensor(UpperCAmelCase , UpperCAmelCase ) A_ = self._scattered(UpperCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) A_ = self._scattered(UpperCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(UpperCAmelCase )
86
1
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split SCREAMING_SNAKE_CASE__ : str = datasets.load_iris() SCREAMING_SNAKE_CASE__ : Dict = np.array(data["data"]) SCREAMING_SNAKE_CASE__ : Dict = np.array(data["target"]) SCREAMING_SNAKE_CASE__ : Optional[int] = data["target_names"] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = train_test_split(X, y) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: return np.linalg.norm(np.array(UpperCAmelCase__ ) - np.array(UpperCAmelCase__ ) ) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=5 ) -> Optional[Any]: a : List[str] = zip(UpperCAmelCase__ , UpperCAmelCase__ ) # List of distances of all points from the point to be classified a : str = [] for data_point in data: a : Union[str, Any] = euclidean_distance(data_point[0] , UpperCAmelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. a : List[str] = [i[1] for i in sorted(UpperCAmelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified a : Dict = Counter(UpperCAmelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
509
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase_ ( self ) -> Any: a , a : str = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) a : List[Any] = 'A painting of a squirrel eating a burger' a : Union[str, Any] = jax.device_count() a : Optional[int] = num_samples * [prompt] a : Tuple = sd_pipe.prepare_inputs(__UpperCAmelCase ) a : Dict = replicate(__UpperCAmelCase ) a : int = shard(__UpperCAmelCase ) a : str = jax.random.PRNGKey(0 ) a : List[Any] = jax.random.split(__UpperCAmelCase , jax.device_count() ) a : Optional[int] = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=25 , jit=__UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) a : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a : Optional[Any] = images[0, 2_53:2_56, 2_53:2_56, -1] a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a : str = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowercase_ ( self ) -> Union[str, Any]: a : str = 'stabilityai/stable-diffusion-2' a , a : Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(__UpperCAmelCase , subfolder='scheduler' ) a , a : Any = FlaxStableDiffusionPipeline.from_pretrained( __UpperCAmelCase , scheduler=__UpperCAmelCase , revision='bf16' , dtype=jnp.bfloataa , ) a : Union[str, Any] = scheduler_params a : Any = 'A painting of a squirrel eating a burger' a : Any = jax.device_count() a : str = num_samples * [prompt] a : Optional[Any] = sd_pipe.prepare_inputs(__UpperCAmelCase ) a : Optional[Any] = replicate(__UpperCAmelCase ) a : Union[str, Any] = shard(__UpperCAmelCase ) a : Optional[int] = jax.random.PRNGKey(0 ) a : str = jax.random.split(__UpperCAmelCase , jax.device_count() ) a : Tuple = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=25 , jit=__UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) a : Optional[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a : List[str] = images[0, 2_53:2_56, 2_53:2_56, -1] a : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a : Tuple = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
509
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ : Optional[int] = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Dict = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys UpperCamelCase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
115
"""simple docstring""" def A_ (__a ): '''simple docstring''' A_ = len(__a ) while cur > 1: # Find the maximum number in arr A_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list A_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase_ : Any = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
115
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class _lowerCAmelCase ( __a ): _lowercase ='''roc_bert''' def __init__( self , _UpperCamelCase=30_522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3_072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-1_2 , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=768 , _UpperCamelCase=910 , _UpperCamelCase=512 , _UpperCamelCase=24_858 , _UpperCamelCase=True , **_UpperCamelCase , ) -> int: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = use_cache lowerCAmelCase_ = enable_pronunciation lowerCAmelCase_ = enable_shape lowerCAmelCase_ = pronunciation_embed_dim lowerCAmelCase_ = pronunciation_vocab_size lowerCAmelCase_ = shape_embed_dim lowerCAmelCase_ = shape_vocab_size lowerCAmelCase_ = concat_input lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = classifier_dropout super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase )
279
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _A = get_logger(__name__) _A = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class _lowerCAmelCase : @add_start_docstrings(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _lowerCAmelCase : @add_start_docstrings(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _lowerCAmelCase ( __a ): @add_start_docstrings(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> jnp.ndarray: for processor in self: lowerCAmelCase_ = inspect.signature(processor.__call__ ).parameters if len(_UpperCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f"""Make sure that all the required parameters: {list(function_args.keys() )} for """ f"""{processor.__class__} are passed to the logits processor.""" ) lowerCAmelCase_ = processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) else: lowerCAmelCase_ = processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase ) -> Tuple: if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not (temperature > 0): raise ValueError(f"""`temperature` has to be a strictly positive float, but is {temperature}""" ) lowerCAmelCase_ = temperature def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ = scores / self.temperature return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase = -float("Inf" ) , _UpperCamelCase = 1 ) -> Union[str, Any]: if not isinstance(_UpperCamelCase , _UpperCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(f"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) lowerCAmelCase_ = top_p lowerCAmelCase_ = filter_value lowerCAmelCase_ = min_tokens_to_keep def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ , lowerCAmelCase_ = lax.top_k(_UpperCamelCase , scores.shape[-1] ) lowerCAmelCase_ = jnp.full_like(_UpperCamelCase , self.filter_value ) lowerCAmelCase_ = jax.nn.softmax(_UpperCamelCase , axis=-1 ).cumsum(axis=-1 ) lowerCAmelCase_ = cumulative_probs < self.top_p # include the token that is higher than top_p as well lowerCAmelCase_ = jnp.roll(_UpperCamelCase , 1 ) score_mask |= score_mask.at[:, 0].set(_UpperCamelCase ) # min tokens to keep lowerCAmelCase_ = score_mask.at[:, : self.min_tokens_to_keep].set(_UpperCamelCase ) lowerCAmelCase_ = jnp.where(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jax.lax.sort_key_val(_UpperCamelCase , _UpperCamelCase )[-1] return next_scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase = -float("Inf" ) , _UpperCamelCase = 1 ) -> List[Any]: if not isinstance(_UpperCamelCase , _UpperCamelCase ) or top_k <= 0: raise ValueError(f"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) lowerCAmelCase_ = max(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = filter_value def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ , lowerCAmelCase_ = scores.shape lowerCAmelCase_ = jnp.full(batch_size * vocab_size , self.filter_value ) lowerCAmelCase_ = min(self.top_k , scores.shape[-1] ) # Safety check lowerCAmelCase_ , lowerCAmelCase_ = lax.top_k(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jnp.broadcast_to((jnp.arange(_UpperCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowerCAmelCase_ = topk_scores.flatten() lowerCAmelCase_ = topk_indices.flatten() + shift lowerCAmelCase_ = next_scores_flat.at[topk_indices_flat].set(_UpperCamelCase ) lowerCAmelCase_ = next_scores_flat.reshape(_UpperCamelCase , _UpperCamelCase ) return next_scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase ) -> Any: lowerCAmelCase_ = bos_token_id def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ = jnp.full(scores.shape , -float("inf" ) ) lowerCAmelCase_ = 1 - jnp.bool_(cur_len - 1 ) lowerCAmelCase_ = jnp.where(_UpperCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , _UpperCamelCase ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> List[str]: lowerCAmelCase_ = max_length lowerCAmelCase_ = eos_token_id def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ = jnp.full(scores.shape , -float("inf" ) ) lowerCAmelCase_ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowerCAmelCase_ = jnp.where(_UpperCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , _UpperCamelCase ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: if not isinstance(_UpperCamelCase , _UpperCamelCase ) or min_length < 0: raise ValueError(f"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or eos_token_id < 0: raise ValueError(f"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) lowerCAmelCase_ = min_length lowerCAmelCase_ = eos_token_id def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied lowerCAmelCase_ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowerCAmelCase_ = jnp.where(_UpperCamelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _UpperCamelCase ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> int: lowerCAmelCase_ = list(_UpperCamelCase ) lowerCAmelCase_ = begin_index def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: lowerCAmelCase_ = 1 - jnp.bool_(cur_len - self.begin_index ) lowerCAmelCase_ = jnp.where(_UpperCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _UpperCamelCase ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase ) -> Optional[Any]: lowerCAmelCase_ = list(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase ) -> List[Any]: lowerCAmelCase_ = dict(_UpperCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowerCAmelCase_ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowerCAmelCase_ = force_token_array.at[index].set(_UpperCamelCase ) lowerCAmelCase_ = jnp.intaa(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: def _force_token(_UpperCamelCase ): lowerCAmelCase_ = scores.shape[0] lowerCAmelCase_ = self.force_token_array[generation_idx] lowerCAmelCase_ = jnp.ones_like(_UpperCamelCase , dtype=scores.dtype ) * -float("inf" ) lowerCAmelCase_ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowerCAmelCase_ = lax.dynamic_update_slice(_UpperCamelCase , _UpperCamelCase , (0, current_token) ) return new_scores lowerCAmelCase_ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_UpperCamelCase ) , lambda: scores , ) , ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: lowerCAmelCase_ = generate_config.eos_token_id lowerCAmelCase_ = generate_config.no_timestamps_token_id lowerCAmelCase_ = generate_config.no_timestamps_token_id + 1 lowerCAmelCase_ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_UpperCamelCase , "max_initial_timestamp_index" ): lowerCAmelCase_ = generate_config.max_initial_timestamp_index else: lowerCAmelCase_ = model_config.vocab_size if self.max_initial_timestamp_index is None: lowerCAmelCase_ = model_config.vocab_size def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: # suppress <|notimestamps|> which is handled by without_timestamps lowerCAmelCase_ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(_UpperCamelCase , _UpperCamelCase ): lowerCAmelCase_ = jnp.where((cur_len - self.begin_index) >= 1 , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _UpperCamelCase , ) lowerCAmelCase_ = jnp.where((cur_len - self.begin_index) < 2 , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _UpperCamelCase , _UpperCamelCase , ) return jnp.where( _UpperCamelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _UpperCamelCase , ) lowerCAmelCase_ = jax.vmap(_UpperCamelCase )(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jnp.where(cur_len == self.begin_index , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _UpperCamelCase , ) lowerCAmelCase_ = self.timestamp_begin + self.max_initial_timestamp_index lowerCAmelCase_ = jnp.where( _UpperCamelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _UpperCamelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp lowerCAmelCase_ = jax.nn.log_softmax(_UpperCamelCase , axis=-1 ) def handle_cumulative_probs(_UpperCamelCase , _UpperCamelCase ): lowerCAmelCase_ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowerCAmelCase_ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _UpperCamelCase , ) lowerCAmelCase_ = jax.vmap(_UpperCamelCase )(_UpperCamelCase , _UpperCamelCase ) return scores
279
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _a ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = """ylacombe/bark-small""" lowercase_ = tempfile.mkdtemp() lowercase_ = """en_speaker_1""" lowercase_ = """This is a test string""" lowercase_ = """speaker_embeddings_path.json""" lowercase_ = """speaker_embeddings""" def lowerCamelCase__ ( self : Any , **lowercase_ : Optional[int] ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def lowerCamelCase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.get_tokenizer() lowercase_ = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) lowercase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ ( self : Any ): '''simple docstring''' lowercase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase_ = 35 lowercase_ = 2 lowercase_ = 8 lowercase_ = { """semantic_prompt""": np.ones(lowercase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase_ = processor(text=self.input_string , voice_preset=lowercase_ ) lowercase_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase_ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowercase_ , **lowercase_ ) lowercase_ = processor(text=self.input_string , voice_preset=lowercase_ ) lowercase_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.get_tokenizer() lowercase_ = BarkProcessor(tokenizer=lowercase_ ) lowercase_ = processor(text=self.input_string ) lowercase_ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
451
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ ) ->bool: if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
451
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any]=13 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Dict=99 , lowerCAmelCase_ : Tuple=32 , lowerCAmelCase_ : Union[str, Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Any=37 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=5_12 , lowerCAmelCase_ : Optional[Any]=16 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]="None" , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=None , ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =parent A__ : List[Any] =batch_size A__ : Any =seq_length A__ : List[str] =is_training A__ : str =use_input_mask A__ : List[Any] =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : str =vocab_size A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : str =num_attention_heads A__ : int =intermediate_size A__ : int =hidden_act A__ : List[Any] =hidden_dropout_prob A__ : str =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : List[str] =type_vocab_size A__ : List[str] =type_sequence_label_size A__ : List[Any] =initializer_range A__ : List[str] =num_labels A__ : Any =num_choices A__ : Union[str, Any] =relative_attention A__ : int =position_biased_input A__ : Any =pos_att_type A__ : List[str] =scope def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' A__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[Any] =None if self.use_input_mask: A__ : str =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A__ : str =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Any =None A__ : str =None A__ : Any =None if self.use_labels: A__ : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : int =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any =ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[int] =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase__ ( self : int , lowerCAmelCase_ : List[Any] ) -> Any: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] ) -> List[Any]: '''simple docstring''' A__ : Dict =DebertaVaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] A__ : Dict =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] A__ : List[Any] =model(lowerCAmelCase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =DebertaVaForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> Any: '''simple docstring''' A__ : str =self.num_labels A__ : Union[str, Any] =DebertaVaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> str: '''simple docstring''' A__ : Tuple =self.num_labels A__ : Tuple =DebertaVaForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' A__ : List[Any] =DebertaVaForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ) -> str: '''simple docstring''' A__ : Any =DebertaVaForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : int =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Optional[Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' A__ : List[str] =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : int =config_and_inputs A__ : str ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __snake_case = True __snake_case = False __snake_case = False __snake_case = False __snake_case = False def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =DebertaVaModelTester(self ) A__ : List[Any] =ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCAmelCase_ ) @slow def lowercase__ ( self : str ) -> Any: '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : List[Any] =DebertaVaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' pass @slow def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' A__ : Dict =DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) A__ : List[Any] =torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) A__ : Union[str, Any] =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ : Optional[int] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] # compare the actual values for a slice. A__ : Optional[Any] =torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1e-4 ) , f"{output[:, 1:4, 1:4]}" )
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
'''simple docstring''' import argparse import os import re import packaging.version A = '''examples/''' A = { '''examples''': (re.compile(R'''^check_min_version\(\"[^\"]+\"\)\s*$''', re.MULTILINE), '''check_min_version(\"VERSION\")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+\"([^\"]+)\"\s*$''', re.MULTILINE), '''__version__ = \"VERSION\"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*\"[^\"]+\",''', re.MULTILINE), R'''\1version=\"VERSION\",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*\"[^\"]+\"$''', re.MULTILINE), '''release = \"VERSION\"\n'''), } A = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } A = '''README.md''' def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any]) -> List[Any]: '''simple docstring''' with open(lowerCamelCase__ , 'r' , encoding='utf-8' , newline='\n') as f: _lowercase : Optional[int] = f.read() _lowercase : int = REPLACE_PATTERNS[pattern] _lowercase : str = replace.replace('VERSION' , lowerCamelCase__) _lowercase : List[Any] = re_pattern.sub(lowerCamelCase__ , lowerCamelCase__) with open(lowerCamelCase__ , 'w' , encoding='utf-8' , newline='\n') as f: f.write(lowerCamelCase__) def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Any) -> int: '''simple docstring''' for folder, directories, fnames in os.walk(lowerCamelCase__): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects') if "legacy" in directories: directories.remove('legacy') for fname in fnames: if fname.endswith('.py'): update_version_in_file(os.path.join(lowerCamelCase__ , lowerCamelCase__) , lowerCamelCase__ , pattern='examples') def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any]=False) -> int: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) if not patch: update_version_in_examples(lowerCamelCase__) def SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' _lowercase : Optional[Any] = '🤗 Transformers currently provides the following architectures' _lowercase : Tuple = '1. Want to contribute a new model?' with open(lowerCamelCase__ , 'r' , encoding='utf-8' , newline='\n') as f: _lowercase : Dict = f.readlines() # Find the start of the list. _lowercase : Union[str, Any] = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 _lowercase : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt): if lines[index].startswith('1.'): _lowercase : Optional[int] = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(lowerCamelCase__ , 'w' , encoding='utf-8' , newline='\n') as f: f.writelines(lowerCamelCase__) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' with open(REPLACE_FILES['init'] , 'r') as f: _lowercase : Optional[Any] = f.read() _lowercase : int = REPLACE_PATTERNS['init'][0].search(lowerCamelCase__).groups()[0] return packaging.version.parse(lowerCamelCase__) def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : str=False) -> Tuple: '''simple docstring''' _lowercase : str = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!') if default_version.is_devrelease: _lowercase : Tuple = default_version.base_version elif patch: _lowercase : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _lowercase : Any = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _lowercase : Optional[Any] = input(F'''Which version are you releasing? [{default_version}]''') if len(lowerCamelCase__) == 0: _lowercase : int = default_version print(F'''Updating version to {version}.''') global_version_update(lowerCamelCase__ , patch=lowerCamelCase__) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' _lowercase : Optional[int] = get_version() _lowercase : Dict = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _lowercase : str = current_version.base_version # Check with the user we got that right. _lowercase : List[str] = input(F'''Which version are we developing now? [{dev_version}]''') if len(lowerCamelCase__) == 0: _lowercase : List[Any] = dev_version print(F'''Updating version to {version}.''') global_version_update(lowerCamelCase__) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') A = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
125
import math def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> list: __lowerCamelCase : Union[str, Any] = [True] * n __lowerCamelCase : List[Any] = False __lowerCamelCase : int = False __lowerCamelCase : Any = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): __lowerCamelCase : List[str] = i * 2 while index < n: __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = index + i __lowerCamelCase : Optional[Any] = [2] for i in range(3 , lowerCamelCase__ , 2 ): if is_prime[i]: primes.append(lowerCamelCase__ ) return primes def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 9_9_9_9_6_6_6_6_3_3_3_3 ) -> int: __lowerCamelCase : Optional[Any] = math.floor(math.sqrt(lowerCamelCase__ ) ) + 1_0_0 __lowerCamelCase : Dict = prime_sieve(lowerCamelCase__ ) __lowerCamelCase : Tuple = 0 __lowerCamelCase : Dict = 0 __lowerCamelCase : Any = primes[prime_index] while (last_prime**2) <= limit: __lowerCamelCase : Any = primes[prime_index + 1] __lowerCamelCase : Optional[Any] = last_prime**2 __lowerCamelCase : Dict = next_prime**2 # Get numbers divisible by lps(current) __lowerCamelCase : Tuple = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __lowerCamelCase : Any = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __lowerCamelCase : List[Any] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __lowerCamelCase : Dict = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
652
0
from __future__ import annotations def snake_case__ ( lowerCamelCase_ ): A : Optional[Any] = 0.00 A : Union[str, Any] = 0 for resistor in resistors: if resistor <= 0: A : List[Any] = F'Resistor at index {index} has a negative or zero value!' raise ValueError(lowerCamelCase_ ) first_sum += 1 / float(lowerCamelCase_ ) index += 1 return 1 / first_sum def snake_case__ ( lowerCamelCase_ ): A : List[Any] = 0.00 A : Optional[Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: A : List[str] = F'Resistor at index {index} has a negative value!' raise ValueError(lowerCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
423
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : List[str] = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = '''vit_mae''' def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=2_24 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=16 , __UpperCAmelCase=5_12 , __UpperCAmelCase=8 , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.7_5 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) A : List[Any] = hidden_size A : str = num_hidden_layers A : Optional[Any] = num_attention_heads A : List[str] = intermediate_size A : Any = hidden_act A : str = hidden_dropout_prob A : Optional[int] = attention_probs_dropout_prob A : Optional[Any] = initializer_range A : Optional[int] = layer_norm_eps A : List[Any] = image_size A : Tuple = patch_size A : Optional[int] = num_channels A : int = qkv_bias A : Optional[Any] = decoder_num_attention_heads A : Optional[Any] = decoder_hidden_size A : Union[str, Any] = decoder_num_hidden_layers A : List[str] = decoder_intermediate_size A : List[Any] = mask_ratio A : Union[str, Any] = norm_pix_loss
423
1
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) class lowerCAmelCase ( __lowerCAmelCase): def __init__( self , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(args=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
24
'''simple docstring''' def _snake_case ( A ) -> int: if n == 1 or not isinstance(A , A ): return 0 elif n == 2: return 1 else: lowerCAmelCase__ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _snake_case ( A ) -> int: lowerCAmelCase__ = 0 lowerCAmelCase__ = 2 while digits < n: index += 1 lowerCAmelCase__ = len(str(fibonacci(A ) ) ) return index def _snake_case ( A = 1000 ) -> int: return fibonacci_digits_index(A ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
90
0
from __future__ import annotations from cmath import sqrt def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) UpperCamelCase__ : Dict = b * b - 4 * a * c UpperCamelCase__ : int = (-b + sqrt(SCREAMING_SNAKE_CASE )) / (2 * a) UpperCamelCase__ : List[Any] = (-b - sqrt(SCREAMING_SNAKE_CASE )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Tuple = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
106
import functools def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" UpperCamelCase__ : str = len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE ) @functools.cache def min_distance(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCamelCase__ : Tuple = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , SCREAMING_SNAKE_CASE ) , 1 + min_distance(SCREAMING_SNAKE_CASE , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
106
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class a_ : a : Any = MBartConfig a : Any = {} a : str = '''gelu''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=20 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=0 , ): _lowercase = parent _lowercase = batch_size _lowercase = seq_length _lowercase = is_training _lowercase = use_labels _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = eos_token_id _lowercase = pad_token_id _lowercase = bos_token_id def UpperCamelCase_ ( self ): _lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowercase = prepare_mbart_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): _lowercase = TFMBartModel(config=__snake_case ).get_decoder() _lowercase = inputs_dict["""input_ids"""] _lowercase = input_ids[:1, :] _lowercase = inputs_dict["""attention_mask"""][:1, :] _lowercase = inputs_dict["""head_mask"""] _lowercase = 1 # first forward pass _lowercase = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case ) _lowercase , _lowercase = outputs.to_tuple() _lowercase = past_key_values[1] def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , ) -> Dict: if attention_mask is None: _lowercase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): a : Dict = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () a : Optional[Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else () a : List[str] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) a : Optional[int] = True a : List[Any] = False a : str = False def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCamelCase_ ( self ): _lowercase = TFMBartModelTester(self ) _lowercase = ConfigTester(self , config_class=__snake_case ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): _lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case ) @require_sentencepiece @require_tokenizers @require_tf class a_ ( unittest.TestCase ): a : List[Any] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] a : int = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] a : List[str] = '''facebook/mbart-large-en-ro''' @cached_property def UpperCamelCase_ ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase_ ( self ): _lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCamelCase_ ( self , **__UpperCamelCase ): _lowercase = self.translate_src_text(**__snake_case ) self.assertListEqual(self.expected_text , __snake_case ) def UpperCamelCase_ ( self , **__UpperCamelCase ): _lowercase = self.tokenizer(self.src_text , **__snake_case , return_tensors="""tf""" ) _lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _lowercase = self.tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) return generated_words @slow def UpperCamelCase_ ( self ): self._assert_generated_batch_equal_expected()
287
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class UpperCAmelCase ( snake_case_ ): def __init__( self : Union[str, Any] , __snake_case : Callable , __snake_case : Optional[Features] = None , __snake_case : str = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[dict] = None , __snake_case : Optional[int] = None , **__snake_case : Optional[Any] , ) -> Union[str, Any]: super().__init__( features=__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case , streaming=__snake_case , num_proc=__snake_case , **__snake_case , ) _lowerCAmelCase = Generator( cache_dir=__snake_case , features=__snake_case , generator=__snake_case , gen_kwargs=__snake_case , **__snake_case , ) def lowercase__ ( self : str ) -> Dict: # Build iterable dataset if self.streaming: _lowerCAmelCase = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None self.builder.download_and_prepare( download_config=__snake_case , download_mode=__snake_case , verification_mode=__snake_case , base_path=__snake_case , num_proc=self.num_proc , ) _lowerCAmelCase = self.builder.as_dataset( split="""train""" , verification_mode=__snake_case , in_memory=self.keep_in_memory ) return dataset
207
0
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Dict = StableDiffusionControlNetImgaImgPipeline UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) UpperCamelCase : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _lowerCAmelCase = CLIPTextModel(__magic_name__ ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self , __magic_name__ , __magic_name__=0 ): """simple docstring""" if str(__magic_name__ ).startswith('mps' ): _lowerCAmelCase = torch.manual_seed(__magic_name__ ) else: _lowerCAmelCase = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) _lowerCAmelCase = 2 _lowerCAmelCase = randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ) _lowerCAmelCase = floats_tensor(control_image.shape , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__magic_name__ ) ).convert('RGB' ).resize((6_4, 6_4) ) _lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowerCamelCase ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : str = StableDiffusionControlNetImgaImgPipeline UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) def init_weights(__magic_name__ ): if isinstance(__magic_name__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(__magic_name__ ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(__magic_name__ ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _lowerCAmelCase = CLIPTextModel(__magic_name__ ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase = MultiControlNetModel([controlneta, controlneta] ) _lowerCAmelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self , __magic_name__ , __magic_name__=0 ): """simple docstring""" if str(__magic_name__ ).startswith('mps' ): _lowerCAmelCase = torch.manual_seed(__magic_name__ ) else: _lowerCAmelCase = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) _lowerCAmelCase = 2 _lowerCAmelCase = [ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ), ] _lowerCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__magic_name__ ) ).convert('RGB' ).resize((6_4, 6_4) ) _lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) _lowerCAmelCase = 10.0 _lowerCAmelCase = 4 _lowerCAmelCase = self.get_dummy_inputs(__magic_name__ ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__magic_name__ )[0] _lowerCAmelCase = self.get_dummy_inputs(__magic_name__ ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__magic_name__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _lowerCAmelCase = self.get_dummy_inputs(__magic_name__ ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__magic_name__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _lowerCAmelCase = self.get_dummy_inputs(__magic_name__ ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__magic_name__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _lowerCamelCase ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__magic_name__ ) except NotImplementedError: pass @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) _lowerCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=__magic_name__ , controlnet=__magic_name__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase = 'evil space-punk bird' _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_1_2, 5_1_2) ) _lowerCAmelCase = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_1_2, 5_1_2) ) _lowerCAmelCase = pipe( __magic_name__ , __magic_name__ , control_image=__magic_name__ , generator=__magic_name__ , output_type='np' , num_inference_steps=5_0 , strength=0.6 , ) _lowerCAmelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) _lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
309
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ : Any = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ["""PoolFormerFeatureExtractor"""] a__ : Any = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
309
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any] ): __lowercase = tmp_path / '''cache''' __lowercase = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any ): __lowercase = tmp_path / '''cache''' __lowercase = {'''text''': '''string'''} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(lowerCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = TextDatasetReader(lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ): __lowercase = tmp_path / '''cache''' __lowercase = {'''text''': '''string'''} __lowercase = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ , split=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): if issubclass(lowerCamelCase_ , lowerCamelCase_ ): __lowercase = text_path elif issubclass(lowerCamelCase_ , lowerCamelCase_ ): __lowercase = [text_path] __lowercase = tmp_path / '''cache''' __lowercase = {'''text''': '''string'''} __lowercase = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any=("train",) ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) for split in splits: __lowercase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): __lowercase = tmp_path / '''cache''' __lowercase = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = TextDatasetReader({'''train''': text_path} , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ).read() _check_text_datasetdict(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str ): __lowercase = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowercase = {'''text''': '''string'''} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(lowerCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = TextDatasetReader({'''train''': text_path} , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_datasetdict(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : str ): if split: __lowercase = {split: text_path} else: __lowercase = '''train''' __lowercase = {'''train''': text_path, '''test''': text_path} __lowercase = tmp_path / '''cache''' __lowercase = {'''text''': '''string'''} __lowercase = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_datasetdict(lowerCamelCase_ , lowerCamelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
502
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : list , lowerCamelCase_ : int | None = None , lowerCamelCase_ : int | None = None ): if start is None: __lowercase = 0 if end is None: __lowercase = len(lowerCamelCase_ ) - 1 if start >= end: return __lowercase = (start + end) // 2 slowsort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) slowsort(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) if sequence[end] < sequence[mid]: __lowercase , __lowercase = sequence[mid], sequence[end] slowsort(lowerCamelCase_ , lowerCamelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
502
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) # General docstring _lowerCamelCase : List[str] = 'RegNetConfig' # Base docstring _lowerCamelCase : List[str] = 'facebook/regnet-y-040' _lowerCamelCase : List[Any] = [1, 1088, 7, 7] # Image classification docstring _lowerCamelCase : Dict = 'facebook/regnet-y-040' _lowerCamelCase : Any = 'tabby, tabby cat' _lowerCamelCase : Dict = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[str] = "relu" , ) -> int: super().__init__() UpperCAmelCase_ = nn.Convad( lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , stride=lowerCAmelCase_ , padding=kernel_size // 2 , groups=lowerCAmelCase_ , bias=lowerCAmelCase_ , ) UpperCAmelCase_ = nn.BatchNormad(lowerCAmelCase_ ) UpperCAmelCase_ = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> int: UpperCAmelCase_ = self.convolution(lowerCAmelCase_ ) UpperCAmelCase_ = self.normalization(lowerCAmelCase_ ) UpperCAmelCase_ = self.activation(lowerCAmelCase_ ) return hidden_state class snake_case__ ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : RegNetConfig ) -> str: super().__init__() UpperCAmelCase_ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) UpperCAmelCase_ = config.num_channels def UpperCamelCase ( self : Any , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) UpperCAmelCase_ = self.embedder(lowerCAmelCase_ ) return hidden_state class snake_case__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 2 ) -> Dict: super().__init__() UpperCAmelCase_ = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , stride=lowerCAmelCase_ , bias=lowerCAmelCase_ ) UpperCAmelCase_ = nn.BatchNormad(lowerCAmelCase_ ) def UpperCamelCase ( self : Any , lowerCAmelCase_ : Tensor ) -> Tensor: UpperCAmelCase_ = self.convolution(lowerCAmelCase_ ) UpperCAmelCase_ = self.normalization(lowerCAmelCase_ ) return hidden_state class snake_case__ ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict: super().__init__() UpperCAmelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) UpperCAmelCase_ = nn.Sequential( nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 ) , nn.Sigmoid() , ) def UpperCamelCase ( self : List[Any] , lowerCAmelCase_ : List[str] ) -> Optional[int]: # b c h w -> b c 1 1 UpperCAmelCase_ = self.pooler(lowerCAmelCase_ ) UpperCAmelCase_ = self.attention(lowerCAmelCase_ ) UpperCAmelCase_ = hidden_state * attention return hidden_state class snake_case__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 1 ) -> str: super().__init__() UpperCAmelCase_ = in_channels != out_channels or stride != 1 UpperCAmelCase_ = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ = ( RegNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase_ = nn.Sequential( RegNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ ) , ) UpperCAmelCase_ = ACTaFN[config.hidden_act] def UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] ) -> Any: UpperCAmelCase_ = hidden_state UpperCAmelCase_ = self.layer(lowerCAmelCase_ ) UpperCAmelCase_ = self.shortcut(lowerCAmelCase_ ) hidden_state += residual UpperCAmelCase_ = self.activation(lowerCAmelCase_ ) return hidden_state class snake_case__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 1 ) -> Optional[int]: super().__init__() UpperCAmelCase_ = in_channels != out_channels or stride != 1 UpperCAmelCase_ = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ = ( RegNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase_ = nn.Sequential( RegNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act ) , RegNetSELayer(lowerCAmelCase_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ ) , ) UpperCAmelCase_ = ACTaFN[config.hidden_act] def UpperCamelCase ( self : List[str] , lowerCAmelCase_ : List[str] ) -> str: UpperCAmelCase_ = hidden_state UpperCAmelCase_ = self.layer(lowerCAmelCase_ ) UpperCAmelCase_ = self.shortcut(lowerCAmelCase_ ) hidden_state += residual UpperCAmelCase_ = self.activation(lowerCAmelCase_ ) return hidden_state class snake_case__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , ) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer UpperCAmelCase_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , ) , *[layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for _ in range(depth - 1 )] , ) def UpperCamelCase ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ = self.layers(lowerCAmelCase_ ) return hidden_state class snake_case__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : RegNetConfig ) -> int: super().__init__() UpperCAmelCase_ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCAmelCase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase_ , config.depths[1:] ): self.stages.append(RegNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ ) ) def UpperCamelCase ( self : Tuple , lowerCAmelCase_ : Tensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> BaseModelOutputWithNoAttention: UpperCAmelCase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase_ = hidden_states + (hidden_state,) UpperCAmelCase_ = stage_module(lowerCAmelCase_ ) if output_hidden_states: UpperCAmelCase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ ) class snake_case__ ( __snake_case ): '''simple docstring''' __A = RegNetConfig __A = '''regnet''' __A = '''pixel_values''' __A = True def UpperCamelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] ) -> int: if isinstance(lowerCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowerCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def UpperCamelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int=False ) -> List[Any]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ = value _lowerCamelCase : Any = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase : Any = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , __snake_case , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case__ ( __snake_case ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : Dict ) -> List[Any]: super().__init__(lowerCAmelCase_ ) UpperCAmelCase_ = config UpperCAmelCase_ = RegNetEmbeddings(lowerCAmelCase_ ) UpperCAmelCase_ = RegNetEncoder(lowerCAmelCase_ ) UpperCAmelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self : Optional[int] , lowerCAmelCase_ : Tensor , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: UpperCAmelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ = self.embedder(lowerCAmelCase_ ) UpperCAmelCase_ = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) UpperCAmelCase_ = encoder_outputs[0] UpperCAmelCase_ = self.pooler(lowerCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __snake_case , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case__ ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : int ) -> Optional[int]: super().__init__(lowerCAmelCase_ ) UpperCAmelCase_ = config.num_labels UpperCAmelCase_ = RegNetModel(lowerCAmelCase_ ) # classification head UpperCAmelCase_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self : List[Any] , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[torch.LongTensor] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: UpperCAmelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ = self.regnet(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) UpperCAmelCase_ = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase_ = self.classifier(lowerCAmelCase_ ) UpperCAmelCase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase_ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase_ = '''single_label_classification''' else: UpperCAmelCase_ = '''multi_label_classification''' if self.config.problem_type == "regression": UpperCAmelCase_ = MSELoss() if self.num_labels == 1: UpperCAmelCase_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase_ = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase_ = CrossEntropyLoss() UpperCAmelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase_ = BCEWithLogitsLoss() UpperCAmelCase_ = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: UpperCAmelCase_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states )
407
from pathlib import Path import fire def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :str , __magic_name__ :int ): UpperCAmelCase_ = Path(__magic_name__ ) UpperCAmelCase_ = Path(__magic_name__ ) dest_dir.mkdir(exist_ok=__magic_name__ ) for path in src_dir.iterdir(): UpperCAmelCase_ = [x.rstrip() for x in list(path.open().readlines() )][:n] UpperCAmelCase_ = dest_dir.joinpath(path.name ) print(__magic_name__ ) dest_path.open('''w''' ).write('''\n'''.join(__magic_name__ ) ) if __name__ == "__main__": fire.Fire(minify)
407
1
def __lowerCAmelCase ( a__ = 10 ) -> str: if not isinstance(a__ , a__ ) or n < 0: raise ValueError('''Invalid input''' ) __a = 10**n __a = 2_8433 * (pow(2 , 783_0457 , a__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(1_0) = }")
219
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A : str = logging.get_logger() @dataclass class __A: snake_case_ = 42 snake_case_ = field(default_factory=a ) snake_case_ = field(default_factory=a ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = len(list(m.modules() ) ) == 1 or isinstance(_snake_case , nn.Convad ) or isinstance(_snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(_snake_case ) def __call__( self , _snake_case ) -> Any: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_snake_case ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return list(filter(lambda _snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __A: snake_case_ = 42 snake_case_ = 42 snake_case_ = 0 snake_case_ = field(default_factory=a ) snake_case_ = field(default_factory=a ) def __call__( self , _snake_case ) -> Dict: '''simple docstring''' __a = Tracker(self.dest )(_snake_case ).parametrized __a = Tracker(self.src )(_snake_case ).parametrized __a = list(filter(lambda _snake_case : type(_snake_case ) not in self.src_skip , _snake_case ) ) __a = list(filter(lambda _snake_case : type(_snake_case ) not in self.dest_skip , _snake_case ) ) if len(_snake_case ) != len(_snake_case ): raise Exception( F"""Numbers of operations are different. Source module has {len(_snake_case )} operations while""" F""" destination module has {len(_snake_case )}.""" ) for dest_m, src_m in zip(_snake_case , _snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = True ) -> str: print(F"""Converting {name}...""" ) with torch.no_grad(): __a = timm.create_model(a__ , pretrained=a__ ).eval() __a = ResNetForImageClassification(a__ ).eval() __a = ModuleTransfer(src=a__ , dest=a__ ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(a__ ) assert torch.allclose(from_model(a__ ) , our_model(a__ ).logits ), "The model logits don't match the original one." __a = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(a__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=a__ , ) # we can use the convnext one __a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=a__ , ) print(F"""Pushed {checkpoint_name}""" ) def __lowerCAmelCase ( a__ , a__ = None , a__ = True ) -> List[Any]: __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = (1, num_labels) __a = '''huggingface/label-files''' __a = num_labels __a = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(a__ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(a__ , num_labels=a__ , idalabel=a__ , labelaid=a__ ) __a = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(a__ , names_to_config[model_name] , a__ , a__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a__ , a__ , a__ , a__ ) return config, expected_shape if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) A : List[Any] = parser.parse_args() A : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
219
1
"""simple docstring""" from __future__ import annotations _lowerCamelCase = 8.988e9 # units = N * m^s * C^-2 def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float , lowercase_ : float , lowercase_ : float ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __SCREAMING_SNAKE_CASE : int = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __SCREAMING_SNAKE_CASE : List[str] = abs(lowercase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __SCREAMING_SNAKE_CASE : Optional[int] = abs(lowercase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __SCREAMING_SNAKE_CASE : Tuple = (COULOMBS_CONSTANT * charge_product / abs(lowercase_ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
401
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class snake_case : def __init__( self :Dict , _lowerCamelCase :List[str] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = str(id_ ) __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Optional[Any] = {} # {vertex:distance} def __lt__( self :Any , _lowerCamelCase :Any ): return self.key < other.key def __repr__( self :Any ): return self.id def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :str ): self.neighbors.append(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , _lowerCamelCase :Any , _lowerCamelCase :Tuple ): __SCREAMING_SNAKE_CASE : int = weight def lowerCAmelCase_ ( lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Dict ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase_ ) graph[b - 1].add_edge(graph[a - 1] , lowercase_ ) def lowerCAmelCase_ ( lowercase_ : list , lowercase_ : Vertex ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = [] for u in graph: __SCREAMING_SNAKE_CASE : Tuple = math.inf __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Dict = graph[:] while q: __SCREAMING_SNAKE_CASE : Tuple = min(lowercase_ ) q.remove(lowercase_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __SCREAMING_SNAKE_CASE : Tuple = u __SCREAMING_SNAKE_CASE : List[str] = u.edges[v.id] for i in range(1 , len(lowercase_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCAmelCase_ ( lowercase_ : list , lowercase_ : Vertex ): '''simple docstring''' for u in graph: __SCREAMING_SNAKE_CASE : Optional[Any] = math.inf __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = list(lowercase_ ) hq.heapify(lowercase_ ) while h: __SCREAMING_SNAKE_CASE : int = hq.heappop(lowercase_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __SCREAMING_SNAKE_CASE : Union[str, Any] = u __SCREAMING_SNAKE_CASE : int = u.edges[v.id] hq.heapify(lowercase_ ) for i in range(1 , len(lowercase_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCAmelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
401
1
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def snake_case_ ( A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Any = np.inf def set_batch_size(A_ : Any ) -> None: nonlocal batch_size if isinstance(A_, A_ ): _lowerCamelCase : List[Any] = min(A_, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(A_, A_ ): _lowerCamelCase : Any = min(A_, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(A_, A_ ) and feature.dtype == "binary": _lowerCamelCase : int = min(A_, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(A_, A_ ) return None if batch_size is np.inf else batch_size class __snake_case ( UpperCAmelCase_): def __init__( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple = None , __lowerCAmelCase : Union[str, Any] = None , __lowerCAmelCase : Any = None , __lowerCAmelCase : str = False , __lowerCAmelCase : str = False , __lowerCAmelCase : List[str] = None , **__lowerCAmelCase : int , ): """simple docstring""" super().__init__( UpperCamelCase__ , split=UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , streaming=UpperCamelCase__ , num_proc=UpperCamelCase__ , **UpperCamelCase__ , ) _lowerCamelCase : Any = path_or_paths if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else {self.split: path_or_paths} _lowerCamelCase : List[Any] = _PACKAGED_DATASETS_MODULES['''parquet'''][1] _lowerCamelCase : Union[str, Any] = Parquet( cache_dir=UpperCamelCase__ , data_files=UpperCamelCase__ , features=UpperCamelCase__ , hash=UpperCamelCase__ , **UpperCamelCase__ , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" if self.streaming: _lowerCamelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[int] = None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , num_proc=self.num_proc , ) _lowerCamelCase : str = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory ) return dataset class __snake_case : def __init__( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any = None , **__lowerCAmelCase : int , ): """simple docstring""" _lowerCamelCase : Optional[Any] = dataset _lowerCamelCase : Optional[Any] = path_or_buf _lowerCamelCase : Union[str, Any] = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[Any] = parquet_writer_kwargs def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : List[Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: _lowerCamelCase : int = self._write(file_obj=UpperCamelCase__ , batch_size=UpperCamelCase__ , **self.parquet_writer_kwargs ) else: _lowerCamelCase : str = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase__ , **self.parquet_writer_kwargs ) return written def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , **__lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : List[str] = 0 _lowerCamelCase : Union[str, Any] = parquet_writer_kwargs.pop('''path_or_buf''' , UpperCamelCase__ ) _lowerCamelCase : Tuple = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(UpperCamelCase__ , schema=UpperCamelCase__ , **UpperCamelCase__ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCamelCase__ ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): _lowerCamelCase : int = query_table( table=self.dataset._data , key=slice(UpperCamelCase__ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCamelCase__ ) written += batch.nbytes writer.close() return written
83
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCAmelCase =logging.getLogger(__name__) __UpperCAmelCase =list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCAmelCase =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase__ : lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowerCAmelCase__ : lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) lowercase__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Whether ot not to use whole word mask."""} ) lowercase__ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) lowercase__ : float = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) lowercase__ : int = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) lowercase__ : int = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __a ( A , A , A = False , A = None , ) -> Tuple: '''simple docstring''' def _dataset(A , A=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __a ( ) -> Tuple: '''simple docstring''' A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__ , A__ , A__ = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: A__ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: A__ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: A__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: A__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: A__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: A__ = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) A__ = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: A__ = tokenizer.max_len # Our input block size will be the max possible for the model else: A__ = min(data_args.block_size , tokenizer.max_len ) # Get datasets A__ = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) A__ = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": A__ = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: A__ = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: A__ = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A__ = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: A__ = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) A__ = trainer.evaluate() A__ = math.exp(eval_output["eval_loss"] ) A__ = {"perplexity": perplexity} A__ = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(A , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , A , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(A ) return results def __a ( A ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
337
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : Dict ='''unispeech''' def __init__( self , UpperCamelCase=32 , UpperCamelCase=7_68 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=30_72 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.0_2 , UpperCamelCase=1E-5 , UpperCamelCase="group" , UpperCamelCase="gelu" , UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase=False , UpperCamelCase=1_28 , UpperCamelCase=16 , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=0.0_5 , UpperCamelCase=10 , UpperCamelCase=2 , UpperCamelCase=0.0 , UpperCamelCase=10 , UpperCamelCase=0 , UpperCamelCase=3_20 , UpperCamelCase=2 , UpperCamelCase=0.1 , UpperCamelCase=1_00 , UpperCamelCase=2_56 , UpperCamelCase=2_56 , UpperCamelCase=0.1 , UpperCamelCase="mean" , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=2_56 , UpperCamelCase=80 , UpperCamelCase=0 , UpperCamelCase=1 , UpperCamelCase=2 , UpperCamelCase=0.5 , **UpperCamelCase , ): super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase) lowerCamelCase__ = hidden_size lowerCamelCase__ = feat_extract_norm lowerCamelCase__ = feat_extract_activation lowerCamelCase__ = list(UpperCamelCase) lowerCamelCase__ = list(UpperCamelCase) lowerCamelCase__ = list(UpperCamelCase) lowerCamelCase__ = conv_bias lowerCamelCase__ = num_conv_pos_embeddings lowerCamelCase__ = num_conv_pos_embedding_groups lowerCamelCase__ = len(self.conv_dim) lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = feat_proj_dropout lowerCamelCase__ = final_dropout lowerCamelCase__ = layerdrop lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range lowerCamelCase__ = num_ctc_classes lowerCamelCase__ = vocab_size lowerCamelCase__ = do_stable_layer_norm lowerCamelCase__ = use_weighted_layer_sum lowerCamelCase__ = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ = apply_spec_augment lowerCamelCase__ = mask_time_prob lowerCamelCase__ = mask_time_length lowerCamelCase__ = mask_time_min_masks lowerCamelCase__ = mask_feature_prob lowerCamelCase__ = mask_feature_length lowerCamelCase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__ = num_codevectors_per_group lowerCamelCase__ = num_codevector_groups lowerCamelCase__ = contrastive_logits_temperature lowerCamelCase__ = feat_quantizer_dropout lowerCamelCase__ = num_negatives lowerCamelCase__ = codevector_dim lowerCamelCase__ = proj_codevector_dim lowerCamelCase__ = diversity_loss_weight # ctc loss lowerCamelCase__ = ctc_loss_reduction lowerCamelCase__ = ctc_zero_infinity # pretraining loss lowerCamelCase__ = replace_prob @property def __UpperCAmelCase ( self): return functools.reduce(operator.mul , self.conv_stride , 1)
714
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase_ = 1.0_5457_1817E-34 # unit of ℏ : J * s lowerCAmelCase_ = 3E8 # unit of c : m * s^-1 def lowerCAmelCase( a__ : float , a__ : float , a__ : float ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: lowerCamelCase__ = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCamelCase__ = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCamelCase__ = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
426
0
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class SCREAMING_SNAKE_CASE__ : def __lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowercase__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Tuple = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowercase__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Tuple = self.pipeline_class(**lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dummy_inputs(lowercase__ ) SCREAMING_SNAKE_CASE_ : int = inputs["prompt"] SCREAMING_SNAKE_CASE_ : List[str] = inputs["generator"] SCREAMING_SNAKE_CASE_ : List[Any] = inputs["num_inference_steps"] SCREAMING_SNAKE_CASE_ : str = inputs["output_type"] if "image" in inputs: SCREAMING_SNAKE_CASE_ : Dict = inputs["image"] else: SCREAMING_SNAKE_CASE_ : Tuple = None if "mask_image" in inputs: SCREAMING_SNAKE_CASE_ : List[str] = inputs["mask_image"] else: SCREAMING_SNAKE_CASE_ : Tuple = None if "original_image" in inputs: SCREAMING_SNAKE_CASE_ : Optional[int] = inputs["original_image"] else: SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = pipe.encode_prompt(lowercase__ ) # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = image if mask_image is not None: SCREAMING_SNAKE_CASE_ : int = mask_image if original_image is not None: SCREAMING_SNAKE_CASE_ : Any = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**lowercase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class.from_pretrained(lowercase__ ) pipe_loaded.to(lowercase__ ) pipe_loaded.set_progress_bar_config(disable=lowercase__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowercase__ , lowercase__ ) is None , F"`{optional_component}` did not stay set to None after loading." , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dummy_inputs(lowercase__ ) SCREAMING_SNAKE_CASE_ : int = inputs["generator"] SCREAMING_SNAKE_CASE_ : Dict = inputs["num_inference_steps"] SCREAMING_SNAKE_CASE_ : Any = inputs["output_type"] # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE_ : Dict = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: SCREAMING_SNAKE_CASE_ : Any = image if mask_image is not None: SCREAMING_SNAKE_CASE_ : int = mask_image if original_image is not None: SCREAMING_SNAKE_CASE_ : Any = original_image SCREAMING_SNAKE_CASE_ : Dict = pipe_loaded(**lowercase__ )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(to_np(lowercase__ ) - to_np(lowercase__ ) ).max() self.assertLess(lowercase__ , 1e-4 ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Tuple = self.pipeline_class(**lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_dummy_inputs(lowercase__ ) SCREAMING_SNAKE_CASE_ : int = pipe(**lowercase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.pipeline_class.from_pretrained(lowercase__ ) pipe_loaded.to(lowercase__ ) pipe_loaded.set_progress_bar_config(disable=lowercase__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests SCREAMING_SNAKE_CASE_ : str = self.get_dummy_inputs(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = pipe_loaded(**lowercase__ )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.abs(to_np(lowercase__ ) - to_np(lowercase__ ) ).max() self.assertLess(lowercase__ , 1e-4 )
421
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = (1 + 2_4 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int = 5_0_0_0 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE_ )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): SCREAMING_SNAKE_CASE_ : Dict = pentagonal_nums[j] SCREAMING_SNAKE_CASE_ : Optional[int] = pentagonal_i + pentagonal_j SCREAMING_SNAKE_CASE_ : Tuple = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE_ ) and is_pentagonal(SCREAMING_SNAKE_CASE_ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
421
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
'''simple docstring''' from torch import nn def lowerCAmelCase_ ( snake_case_ : int ) -> Dict: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
78
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] SCREAMING_SNAKE_CASE__ = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] ): __a : str = torch.load(lowerCamelCase_ , map_location='cpu' ) return sd def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict=rename_keys_prefix ): __a : Optional[Any] = OrderedDict() __a : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __a : List[Any] = key for name_pair in rename_keys_prefix: __a : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __a : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __a : int = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ): assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: __a : Dict = 'pretraining' if "vcr" in checkpoint_path: __a : int = {'visual_embedding_dim': 5_1_2} elif "vqa_advanced" in checkpoint_path: __a : int = {'visual_embedding_dim': 2_0_4_8} elif "vqa" in checkpoint_path: __a : Tuple = {'visual_embedding_dim': 2_0_4_8} elif "nlvr" in checkpoint_path: __a : List[Any] = {'visual_embedding_dim': 1_0_2_4} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: __a : int = {'visual_embedding_dim': 5_1_2} __a : Any = 'multichoice' elif "vqa_advanced" in checkpoint_path: __a : Any = {'visual_embedding_dim': 2_0_4_8} __a : List[str] = 'vqa_advanced' elif "vqa" in checkpoint_path: __a : List[Any] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9} __a : List[Any] = 'vqa' elif "nlvr" in checkpoint_path: __a : Optional[int] = { 'visual_embedding_dim': 1_0_2_4, 'num_labels': 2, } __a : Optional[Any] = 'nlvr' __a : str = VisualBertConfig(**lowerCamelCase_ ) # Load State Dict __a : str = load_state_dict(lowerCamelCase_ ) __a : str = get_new_dict(lowerCamelCase_ , lowerCamelCase_ ) if model_type == "pretraining": __a : Optional[Any] = VisualBertForPreTraining(lowerCamelCase_ ) elif model_type == "vqa": __a : Any = VisualBertForQuestionAnswering(lowerCamelCase_ ) elif model_type == "nlvr": __a : int = VisualBertForVisualReasoning(lowerCamelCase_ ) elif model_type == "multichoice": __a : Optional[int] = VisualBertForMultipleChoice(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # Save Checkpoints Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
47
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __A = True except ImportError: __A = False __A = logging.get_logger(__name__) # pylint: disable=invalid-name def _SCREAMING_SNAKE_CASE ( A : Namespace ) -> str: """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class a_ ( UpperCamelCase_ ): @staticmethod def SCREAMING_SNAKE_CASE__ (__a) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = parser.add_parser('add-new-model') add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.') add_new_model_parser.add_argument('--testing_file' , type=__a , help='Configuration file on which to run.') add_new_model_parser.add_argument( '--path' , type=__a , help='Path to cookiecutter. Should only be used for testing purposes.') add_new_model_parser.set_defaults(func=__a) def __init__(self , __a , __a , __a=None , *__a) -> int: """simple docstring""" __snake_case : Optional[int] = testing __snake_case : List[str] = testing_file __snake_case : Optional[Any] = path def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.') if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n') # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __snake_case : Any = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:2_2]] if len(__a) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.') __snake_case : Union[str, Any] = ( Path(__a).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent ) __snake_case : str = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(__a)) else: with open(self._testing_file , 'r') as configuration_file: __snake_case : List[Any] = json.load(__a) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path) , no_input=__a , extra_context=__a , ) __snake_case : Union[str, Any] = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:2_2]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r') as configuration_file: __snake_case : List[str] = json.load(__a) __snake_case : Optional[Any] = configuration['lowercase_modelname'] __snake_case : List[Any] = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F"""{directory}/configuration.json""") __snake_case : str = 'PyTorch' in generate_tensorflow_pytorch_and_flax __snake_case : str = 'TensorFlow' in generate_tensorflow_pytorch_and_flax __snake_case : Any = 'Flax' in generate_tensorflow_pytorch_and_flax __snake_case : Optional[Any] = F"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__a , exist_ok=__a) os.makedirs(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__a) # Tests require submodules as they have parent imports with open(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , 'w'): pass shutil.move( F"""{directory}/__init__.py""" , F"""{model_dir}/__init__.py""" , ) shutil.move( F"""{directory}/configuration_{lowercase_model_name}.py""" , F"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__a): with open(__a , 'r') as f: __snake_case : Optional[int] = f.readlines() with open(__a , 'w') as f: for line in lines: if "# Copied from transformers." not in line: f.write(__a) if output_pytorch: if not self._testing: remove_copy_lines(F"""{directory}/modeling_{lowercase_model_name}.py""") shutil.move( F"""{directory}/modeling_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_{lowercase_model_name}.py""") os.remove(F"""{directory}/test_modeling_{lowercase_model_name}.py""") if output_tensorflow: if not self._testing: remove_copy_lines(F"""{directory}/modeling_tf_{lowercase_model_name}.py""") shutil.move( F"""{directory}/modeling_tf_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_tf_{lowercase_model_name}.py""") os.remove(F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""") if output_flax: if not self._testing: remove_copy_lines(F"""{directory}/modeling_flax_{lowercase_model_name}.py""") shutil.move( F"""{directory}/modeling_flax_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_flax_{lowercase_model_name}.py""") os.remove(F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""") shutil.move( F"""{directory}/{lowercase_model_name}.md""" , F"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( F"""{directory}/tokenization_{lowercase_model_name}.py""" , F"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , F"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__a , __a , __a): # Create temp file __snake_case ,__snake_case : Any = mkstemp() __snake_case : Any = False with fdopen(__a , 'w') as new_file: with open(__a) as old_file: for line in old_file: new_file.write(__a) if line_to_copy_below in line: __snake_case : Union[str, Any] = True for line_to_copy in lines_to_copy: new_file.write(__a) if not line_found: raise ValueError(F"""Line {line_to_copy_below} was not found in file.""") # Copy the file permissions from the old file to the new file copymode(__a , __a) # Remove original file remove(__a) # Move new file move(__a , __a) def skip_units(__a): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__a): with open(__a) as datafile: __snake_case : Optional[Any] = [] __snake_case : Optional[int] = False __snake_case : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: __snake_case : Optional[int] = line.split('"')[1] __snake_case : Dict = skip_units(__a) elif "# Below: " in line and "##" not in line: __snake_case : Optional[Any] = line.split('"')[1] __snake_case : Union[str, Any] = skip_units(__a) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__a , __a , __a) __snake_case : List[Any] = [] elif "# Replace with" in line and "##" not in line: __snake_case : List[str] = [] elif "##" not in line: lines_to_copy.append(__a) remove(__a) replace_in_files(F"""{directory}/to_replace_{lowercase_model_name}.py""") os.rmdir(__a)
61
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
61
1
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _lowercase ( nn.Module ): def __init__( self , UpperCamelCase_ = 16 , UpperCamelCase_ = 88 , UpperCamelCase_ = None , UpperCamelCase_ = 1 , UpperCamelCase_ = 0.0 , UpperCamelCase_ = 32 , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "geglu" , UpperCamelCase_ = None , ): super().__init__() __magic_name__ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCamelCase_ , attention_head_dim=UpperCamelCase_ , in_channels=UpperCamelCase_ , num_layers=UpperCamelCase_ , dropout=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , cross_attention_dim=UpperCamelCase_ , attention_bias=UpperCamelCase_ , sample_size=UpperCamelCase_ , num_vector_embeds=UpperCamelCase_ , activation_fn=UpperCamelCase_ , num_embeds_ada_norm=UpperCamelCase_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __magic_name__ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __magic_name__ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __magic_name__ = [1, 0] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = True , ): __magic_name__ = hidden_states __magic_name__ = [] __magic_name__ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __magic_name__ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __magic_name__ = self.transformer_index_for_condition[i] __magic_name__ = self.transformers[transformer_index]( UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ , cross_attention_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __magic_name__ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __magic_name__ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCamelCase_ )
490
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = {"facebook/bart-base": BartForConditionalGeneration} __lowerCamelCase = {"facebook/bart-base": BartTokenizer} def lowercase ( ) -> List[str]: __magic_name__ = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=__UpperCamelCase , default=__UpperCamelCase , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=__UpperCamelCase , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=__UpperCamelCase , default=__UpperCamelCase , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=__UpperCamelCase , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__UpperCamelCase , ) parser.add_argument( '''--config_name''' , type=__UpperCamelCase , default=__UpperCamelCase , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=__UpperCamelCase , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=__UpperCamelCase , default=__UpperCamelCase , help='''Where to store the final ONNX file.''' ) __magic_name__ = parser.parse_args() return args def lowercase ( __UpperCamelCase , __UpperCamelCase="cpu" ) -> int: __magic_name__ = model_dict[model_name].from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) __magic_name__ = tokenizer_dict[model_name].from_pretrained(__UpperCamelCase ) if model_name in ["facebook/bart-base"]: __magic_name__ = 0 __magic_name__ = None __magic_name__ = 0 return huggingface_model, tokenizer def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: model.eval() __magic_name__ = None __magic_name__ = torch.jit.script(BARTBeamSearchGenerator(__UpperCamelCase ) ) with torch.no_grad(): __magic_name__ = '''My friends are cool but they eat too many carbs.''' __magic_name__ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) __magic_name__ = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=__UpperCamelCase , max_length=__UpperCamelCase , early_stopping=__UpperCamelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __UpperCamelCase , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , __UpperCamelCase , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=__UpperCamelCase , ) logger.info('''Model exported to {}'''.format(__UpperCamelCase ) ) __magic_name__ = remove_dup_initializers(os.path.abspath(__UpperCamelCase ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(__UpperCamelCase ) ) __magic_name__ = onnxruntime.InferenceSession(__UpperCamelCase ) __magic_name__ = ort_sess.run( __UpperCamelCase , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(__UpperCamelCase ), '''max_length''': np.array(__UpperCamelCase ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def lowercase ( ) -> Any: __magic_name__ = parse_args() __magic_name__ = 5 __magic_name__ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __magic_name__ = torch.device(args.device ) __magic_name__ , __magic_name__ = load_model_tokenizer(args.model_name_or_path , __UpperCamelCase ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(__UpperCamelCase ) if args.max_length: __magic_name__ = args.max_length if args.num_beams: __magic_name__ = args.num_beams if args.output_file_path: __magic_name__ = args.output_file_path else: __magic_name__ = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
490
1
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): __magic_name__: Optional[int] = SpeechTaTokenizer __magic_name__: List[str] = False __magic_name__: List[str] = True def UpperCAmelCase_ ( self : Any ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case_ : Tuple = SpeechTaTokenizer(_lowercase ) snake_case_ : List[str] = AddedToken('<mask>' , lstrip=_lowercase , rstrip=_lowercase ) snake_case_ : int = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : Tuple , _A : str ) -> Tuple: """simple docstring""" snake_case_ : Optional[int] = """this is a test""" snake_case_ : Dict = """this is a test""" return input_text, output_text def UpperCAmelCase_ ( self : Any , _A : List[Any] , _A : Dict=False , _A : Any=20 , _A : Optional[int]=5 ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) snake_case_ : Optional[Any] = tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) return text, ids def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" snake_case_ : List[str] = """<pad>""" snake_case_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def UpperCAmelCase_ ( self : Any ) -> int: """simple docstring""" snake_case_ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(_lowercase ) , 81 ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: """simple docstring""" snake_case_ : List[Any] = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ : Optional[Any] = tokenizer.vocab_size snake_case_ : str = len(_lowercase ) self.assertNotEqual(_lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case_ : Dict = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] snake_case_ : Optional[Any] = tokenizer.add_tokens(_lowercase ) snake_case_ : int = tokenizer.vocab_size snake_case_ : int = len(_lowercase ) self.assertNotEqual(_lowercase , 0 ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , len(_lowercase ) ) self.assertEqual(_lowercase , all_size + len(_lowercase ) ) snake_case_ : Optional[int] = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_lowercase ) self.assertGreaterEqual(len(_lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case_ : Optional[Any] = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} snake_case_ : str = tokenizer.add_special_tokens(_lowercase ) snake_case_ : List[Any] = tokenizer.vocab_size snake_case_ : Tuple = len(_lowercase ) self.assertNotEqual(_lowercase , 0 ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , len(_lowercase ) ) self.assertEqual(_lowercase , all_size_a + len(_lowercase ) ) snake_case_ : List[str] = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_lowercase ) self.assertGreaterEqual(len(_lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCAmelCase_ ( self : str ) -> Any: """simple docstring""" pass def UpperCAmelCase_ ( self : Dict ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = self.get_tokenizer() snake_case_ : Any = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(_lowercase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) snake_case_ : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) snake_case_ : List[str] = tokenizer.convert_tokens_to_ids(_lowercase ) # fmt: off self.assertListEqual(_lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" snake_case_ : Tuple = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off snake_case_ : int = { """input_ids""": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_lowercase , )
721
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _SCREAMING_SNAKE_CASE = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _SCREAMING_SNAKE_CASE = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} _SCREAMING_SNAKE_CASE = """zero2""" _SCREAMING_SNAKE_CASE = """zero3""" _SCREAMING_SNAKE_CASE = [ZEROa, ZEROa] def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param snake_case_ : Tuple = parameterized.to_safe_name('_'.join(str(__a ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test _SCREAMING_SNAKE_CASE = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( snake_case_ ): @parameterized.expand(_A , name_func=_A ) def UpperCAmelCase_ ( self : Tuple , _A : Optional[Any] , _A : Optional[int] ) -> Dict: """simple docstring""" self.run_and_check( stage=_A , model=_A , distributed=_A , fpaa=_A , ) @require_torch_multi_gpu @parameterized.expand(_A , name_func=_A ) def UpperCAmelCase_ ( self : int , _A : Any , _A : int ) -> Dict: """simple docstring""" self.run_and_check( stage=_A , model=_A , distributed=_A , fpaa=_A , ) @parameterized.expand(_A , name_func=_A ) def UpperCAmelCase_ ( self : str , _A : List[str] , _A : str ) -> Tuple: """simple docstring""" self.run_and_check( stage=_A , model=_A , distributed=_A , fpaa=_A , ) @require_torch_multi_gpu @parameterized.expand(_A , name_func=_A ) def UpperCAmelCase_ ( self : Optional[int] , _A : int , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" self.run_and_check( stage=_A , model=_A , distributed=_A , fpaa=_A , ) def UpperCAmelCase_ ( self : Any , _A : Union[str, Any] ) -> Any: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] , _A : str , _A : str , _A : int = 10 , _A : bool = True , _A : bool = True , _A : bool = True , ) -> Any: """simple docstring""" snake_case_ : Dict = models[model] snake_case_ : str = self.run_trainer( stage=_A , model_name=_A , eval_steps=_A , num_train_epochs=1 , distributed=_A , fpaa=_A , ) self.do_checks(_A ) return output_dir def UpperCAmelCase_ ( self : Any , _A : str , _A : str , _A : int = 10 , _A : int = 1 , _A : bool = True , _A : bool = True , ) -> Dict: """simple docstring""" snake_case_ : str = self.get_auto_remove_tmp_dir('./xxx' , after=_A ) snake_case_ : Tuple = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_A )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files snake_case_ : Any = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() snake_case_ : str = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] snake_case_ : int = self.get_launcher(_A ) snake_case_ : List[str] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_A , env=self.get_env() ) return output_dir def UpperCAmelCase_ ( self : Optional[Any] , _A : Optional[Any]=False ) -> List[str]: """simple docstring""" snake_case_ : str = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
534
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCamelCase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple=False ): lowerCamelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCamelCase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : Any=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase_ = '''''' else: lowerCamelCase_ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowerCamelCase_ = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _lowerCamelCase : Dict ): lowerCamelCase_ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : List[Any] ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. lowerCamelCase_ = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : int ): lowerCamelCase_ = dct.pop(_lowerCamelCase ) lowerCamelCase_ = val def lowerCamelCase_ ( _lowerCamelCase : str , _lowerCamelCase : Optional[Any] ): lowerCamelCase_ = ViTMSNConfig() lowerCamelCase_ = 1_0_0_0 lowerCamelCase_ = '''datasets/huggingface/label-files''' lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase ) , '''r''' ) ) lowerCamelCase_ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 6 elif "l16" in checkpoint_url: lowerCamelCase_ = 1_0_2_4 lowerCamelCase_ = 4_0_9_6 lowerCamelCase_ = 2_4 lowerCamelCase_ = 1_6 lowerCamelCase_ = 0.1 elif "b4" in checkpoint_url: lowerCamelCase_ = 4 elif "l7" in checkpoint_url: lowerCamelCase_ = 7 lowerCamelCase_ = 1_0_2_4 lowerCamelCase_ = 4_0_9_6 lowerCamelCase_ = 2_4 lowerCamelCase_ = 1_6 lowerCamelCase_ = 0.1 lowerCamelCase_ = ViTMSNModel(_lowerCamelCase ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='''cpu''' )['''target_encoder'''] lowerCamelCase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(_lowerCamelCase ) lowerCamelCase_ = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , base_model=_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) lowerCamelCase_ = ViTImageProcessor( size=config.image_size , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) lowerCamelCase_ = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowerCamelCase_ = model(**_lowerCamelCase ) lowerCamelCase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCamelCase_ = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] ) elif "b16" in checkpoint_url: lowerCamelCase_ = torch.tensor([[14.28_89, -18.90_45, 11.72_81]] ) elif "l16" in checkpoint_url: lowerCamelCase_ = torch.tensor([[41.50_28, -22.86_81, 45.64_75]] ) elif "b4" in checkpoint_url: lowerCamelCase_ = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] ) else: lowerCamelCase_ = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _lowerCamelCase , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __lowercase : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
142
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Optional[Any] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : int = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
142
1
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCAmelCase__ ( unittest.TestCase ,_UpperCamelCase ): '''simple docstring''' def _snake_case ( self : Optional[Any] ) -> str: _lowerCamelCase = load_tool('text-to-speech' ) self.tool.setup() def _snake_case ( self : Tuple ) -> str: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _lowerCamelCase = self.tool('hey' ) _lowerCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def _snake_case ( self : Optional[Any] ) -> List[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _lowerCamelCase = self.tool('hey' ) _lowerCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
713
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
234
0
"""simple docstring""" def _snake_case ( ): return 1 def _snake_case ( lowercase__ ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def _snake_case ( lowercase__ ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowercase__ ) def _snake_case ( lowercase__ ): return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowercase__ ) def _snake_case ( lowercase__ ): return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowercase__ ) def _snake_case ( lowercase__ ): return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowercase__ ) def _snake_case ( lowercase__ ): return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowercase__ ) def _snake_case ( lowercase__ ): return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowercase__ ) def _snake_case ( lowercase__ = 200 ): return two_pound(lowercase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
630
"""simple docstring""" import operator as op def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = [] _lowerCamelCase : List[str] = lambda lowercase__ , lowercase__ : int(x / y ) # noqa: E731 integer division operation _lowerCamelCase : Optional[int] = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(lowercase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) else: _lowerCamelCase : int = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) _lowerCamelCase : Tuple = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) stack.append( str(opr[x](int(lowercase__ ) , int(lowercase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowercase__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
630
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase__ ( _lowerCamelCase ): def __init__( self : Dict ) -> Optional[int]: # test for the above condition self.test() def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: A = 0 A = False while not completed: if counter == 1: self.reset() A = self.advance() if not self.does_advance(__UpperCamelCase ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) A , A , A = self.update(__UpperCamelCase ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self : Any , __UpperCamelCase : int ) -> List[Any]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self : str , __UpperCamelCase : int ) -> Dict: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self : Any ) -> List[str]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self : int , __UpperCamelCase : int=False ) -> Dict: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCAmelCase__ ( _lowerCamelCase ): def __init__( self : List[str] , __UpperCamelCase : List[int] ) -> str: super(__UpperCamelCase , self ).__init__() if not isinstance(__UpperCamelCase , __UpperCamelCase ) or len(__UpperCamelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(__UpperCamelCase , __UpperCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) A = token_ids A = len(self.token_ids ) A = -1 # the index of the currently fulfilled step A = False def __UpperCamelCase ( self : Any ) -> int: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self : int , __UpperCamelCase : int ) -> Union[str, Any]: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(__UpperCamelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self : Tuple , __UpperCamelCase : int ) -> Optional[Any]: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(__UpperCamelCase )}''' ) A = False A = False A = False if self.does_advance(__UpperCamelCase ): self.fulfilled_idx += 1 A = True if self.fulfilled_idx == (self.seqlen - 1): A = True A = completed else: # failed to make progress. A = True self.reset() return stepped, completed, reset def __UpperCamelCase ( self : List[str] ) -> Tuple: A = False A = 0 def __UpperCamelCase ( self : Optional[int] ) -> List[str]: return self.seqlen - (self.fulfilled_idx + 1) def __UpperCamelCase ( self : int , __UpperCamelCase : Union[str, Any]=False ) -> Optional[int]: A = PhrasalConstraint(self.token_ids ) if stateful: A = self.seqlen A = self.fulfilled_idx A = self.completed return new_constraint class lowerCAmelCase__ : def __init__( self : int , __UpperCamelCase : List[List[int]] , __UpperCamelCase : str=True ) -> Optional[Any]: A = max([len(__UpperCamelCase ) for one in nested_token_ids] ) A = {} for token_ids in nested_token_ids: A = root for tidx, token_id in enumerate(__UpperCamelCase ): if token_id not in level: A = {} A = level[token_id] if no_subsets and self.has_subsets(__UpperCamelCase , __UpperCamelCase ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' f''' {nested_token_ids}.''' ) A = root def __UpperCamelCase ( self : List[str] , __UpperCamelCase : List[str] ) -> int: A = self.trie for current_token in current_seq: A = start[current_token] A = list(start.keys() ) return next_tokens def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Tuple ) -> int: A = self.next_tokens(__UpperCamelCase ) return len(__UpperCamelCase ) == 0 def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Any ) -> Optional[int]: A = list(root.values() ) if len(__UpperCamelCase ) == 0: return 1 else: return sum([self.count_leaves(__UpperCamelCase ) for nn in next_nodes] ) def __UpperCamelCase ( self : int , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> List[str]: A = self.count_leaves(__UpperCamelCase ) return len(__UpperCamelCase ) != leaf_count class lowerCAmelCase__ ( _lowerCamelCase ): def __init__( self : Tuple , __UpperCamelCase : List[List[int]] ) -> Any: super(__UpperCamelCase , self ).__init__() if not isinstance(__UpperCamelCase , __UpperCamelCase ) or len(__UpperCamelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(__UpperCamelCase , __UpperCamelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(__UpperCamelCase , __UpperCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) A = DisjunctiveTrie(__UpperCamelCase ) A = nested_token_ids A = self.trie.max_height A = [] A = False def __UpperCamelCase ( self : str ) -> Dict: A = self.trie.next_tokens(self.current_seq ) if len(__UpperCamelCase ) == 0: return None else: return token_list def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : int ) -> Any: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(__UpperCamelCase )}''' ) A = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __UpperCamelCase ( self : Tuple , __UpperCamelCase : int ) -> Union[str, Any]: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(__UpperCamelCase )}''' ) A = False A = False A = False if self.does_advance(__UpperCamelCase ): self.current_seq.append(__UpperCamelCase ) A = True else: A = True self.reset() A = self.trie.reached_leaf(self.current_seq ) A = completed return stepped, completed, reset def __UpperCamelCase ( self : Tuple ) -> List[Any]: A = False A = [] def __UpperCamelCase ( self : Dict ) -> List[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Optional[int]=False ) -> int: A = DisjunctiveConstraint(self.token_ids ) if stateful: A = self.seqlen A = self.current_seq A = self.completed return new_constraint class lowerCAmelCase__ : def __init__( self : Optional[int] , __UpperCamelCase : List[Constraint] ) -> Dict: A = constraints # max # of steps required to fulfill a given constraint A = max([c.seqlen for c in constraints] ) A = len(__UpperCamelCase ) A = False self.init_state() def __UpperCamelCase ( self : Optional[Any] ) -> Any: A = [] A = None A = [constraint.copy(stateful=__UpperCamelCase ) for constraint in self.constraints] def __UpperCamelCase ( self : Any ) -> List[str]: A = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __UpperCamelCase ( self : str ) -> int: A = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" A = constraint.advance() if isinstance(__UpperCamelCase , __UpperCamelCase ): token_list.append(__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): token_list.extend(__UpperCamelCase ) else: A = self.inprogress_constraint.advance() if isinstance(__UpperCamelCase , __UpperCamelCase ): token_list.append(__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): token_list.extend(__UpperCamelCase ) if len(__UpperCamelCase ) == 0: return None else: return token_list def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[List[int]] ) -> int: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint A , A = self.add(__UpperCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : int ) -> str: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) A , A = False, False if self.completed: A = True A = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state A , A , A = self.inprogress_constraint.update(__UpperCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__UpperCamelCase ) ) A = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) A = None if len(self.pending_constraints ) == 0: # we're done! A = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__UpperCamelCase ): A , A , A = pending_constraint.update(__UpperCamelCase ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(__UpperCamelCase ) A = None if not complete and stepped: A = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". A = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. A = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __UpperCamelCase ( self : Dict , __UpperCamelCase : Optional[int]=True ) -> str: A = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: A = [ constraint.copy(stateful=__UpperCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: A = self.inprogress_constraint.copy(stateful=__UpperCamelCase ) A = [constraint.copy() for constraint in self.pending_constraints] return new_state
700
def lowerCamelCase_ ( lowerCAmelCase__ : list ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] A = grid[0] for row_n in range(1 , len(lowerCAmelCase__ ) ): A = grid[row_n] A = fill_row(lowerCAmelCase__ , lowerCAmelCase__ ) A = grid[row_n] return grid[-1][-1] def lowerCamelCase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(lowerCAmelCase__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
224
0
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __SCREAMING_SNAKE_CASE = 5_00_00 __SCREAMING_SNAKE_CASE = 50_00 __SCREAMING_SNAKE_CASE = os.path.split(__file__) __SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' for i in range(snake_case_ ): lowerCAmelCase :List[str] = dataset[i] @get_duration def UpperCAmelCase ( a__ , a__ , a__ ): '''simple docstring''' for i in range(0 , len(snake_case_ ) , snake_case_ ): lowerCAmelCase :Optional[int] = dataset[i : i + batch_size] @get_duration def UpperCAmelCase ( a__ , a__ , a__ ): '''simple docstring''' with dataset.formatted_as(type=snake_case_ ): for i in range(snake_case_ ): lowerCAmelCase :Dict = dataset[i] @get_duration def UpperCAmelCase ( a__ , a__ , a__ , a__ ): '''simple docstring''' with dataset.formatted_as(type=snake_case_ ): for i in range(0 , snake_case_ , snake_case_ ): lowerCAmelCase :Optional[int] = dataset[i : i + batch_size] def UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase :int = {'num examples': SPEED_TEST_N_EXAMPLES} lowerCAmelCase :Optional[int] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] lowerCAmelCase :Union[str, Any] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) lowerCAmelCase :Optional[int] = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) lowerCAmelCase :Any = generate_example_dataset( os.path.join(snake_case_ , 'dataset.arrow' ) , snake_case_ , num_examples=snake_case_ , seq_shapes={'list': (1_00,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(snake_case_ ) ) lowerCAmelCase :Dict = func(snake_case_ , **snake_case_ ) print('shuffling dataset' ) lowerCAmelCase :Optional[int] = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(snake_case_ ) ) lowerCAmelCase :str = func( snake_case_ , **snake_case_ ) with open(snake_case_ , 'wb' ) as f: f.write(json.dumps(snake_case_ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
553
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCamelCase__ : Tuple = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCamelCase__ : Union[str, Any] = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCamelCase__ : Any = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ,id='''token''' ) ,id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' ,id='''token''' ) ,id='''sequence''' ) ,id='''references''' ), } ) ,) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[List[List[str]]] ,__lowerCamelCase : List[List[str]] ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 4 ,): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__lowerCamelCase ,hypotheses=__lowerCamelCase ,min_len=__lowerCamelCase ,max_len=__lowerCamelCase ) }
387
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ : Optional[Any] = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
"""simple docstring""" import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : Union[str, Any] = str(file.readlines()[0] ) lowerCamelCase__ : int = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : str = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Dict = 0 return total_score if __name__ == "__main__": print(solution())
696
0
from typing import TYPE_CHECKING from ...utils import _LazyModule A__: Dict = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A__: List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
380
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__: Union[str, Any] = logging.get_logger(__name__) A__: int = {'''vocab_file''': '''sentencepiece.model'''} A__: Dict = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } A__: Any = { '''google/rembert''': 256, } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str]=False , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Dict=True , __lowerCamelCase: Tuple="[CLS]" , __lowerCamelCase: List[str]="[SEP]" , __lowerCamelCase: List[str]="[UNK]" , __lowerCamelCase: Union[str, Any]="[SEP]" , __lowerCamelCase: List[Any]="[PAD]" , __lowerCamelCase: Optional[int]="[CLS]" , __lowerCamelCase: str="[MASK]" , **__lowerCamelCase: Union[str, Any] , ): '''simple docstring''' super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase__: Optional[int] = do_lower_case UpperCamelCase__: Optional[int] = remove_space UpperCamelCase__: str = keep_accents UpperCamelCase__: Union[str, Any] = vocab_file UpperCamelCase__: Any = spm.SentencePieceProcessor() self.sp_model.Load(__lowerCamelCase ) @property def UpperCAmelCase_ ( self: Any ): '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Any = self.__dict__.copy() UpperCamelCase__: str = None return state def __setstate__( self: Optional[int] , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: int = d UpperCamelCase__: List[Any] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = self.sp_model.EncodeAsPieces(__lowerCamelCase ) return pieces def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: Optional[int] ): '''simple docstring''' return self.sp_model.IdToPiece(__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[Any] , __lowerCamelCase: Any ): '''simple docstring''' UpperCamelCase__: Optional[Any] = self.sp_model.decode_pieces(__lowerCamelCase ) return out_string def UpperCAmelCase_ ( self: Any , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase__: int = [self.sep_token_id] UpperCamelCase__: int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCAmelCase_ ( self: Any , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase__: Dict = [self.sep_token_id] UpperCamelCase__: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(__lowerCamelCase ) ) return UpperCamelCase__: Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
380
1
import argparse from collections import defaultdict import yaml __lowerCamelCase = """docs/source/en/_toctree.yml""" def UpperCamelCase__ ( UpperCAmelCase ) -> Tuple: """simple docstring""" _a : Union[str, Any] = defaultdict(UpperCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 _a : Union[str, Any] = [key for key, value in counts.items() if value > 1] _a : Optional[int] = [] for duplicate_key in duplicates: _a : int = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(UpperCAmelCase ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(UpperCAmelCase , key=lambda UpperCAmelCase : s["title"].lower() ) def UpperCamelCase__ ( UpperCAmelCase=False ) -> Union[str, Any]: """simple docstring""" with open(UpperCAmelCase , encoding='''utf-8''' ) as f: _a : Tuple = yaml.safe_load(f.read() ) # Get to the API doc _a : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Optional[Any] = content[api_idx]['''sections'''] # Then to the model doc _a : Dict = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a : Union[str, Any] = api_doc[model_idx]['''sections'''] _a : Any = [(idx, section) for idx, section in enumerate(UpperCAmelCase ) if '''sections''' in section] _a : Any = False for idx, modality_doc in modalities_docs: _a : Tuple = modality_doc['''sections'''] _a : Dict = clean_model_doc_toc(UpperCAmelCase ) if old_modality_doc != new_modality_doc: _a : Dict = True if overwrite: _a : int = new_modality_doc if diff: if overwrite: _a : Dict = model_doc _a : int = api_doc with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCAmelCase , allow_unicode=UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __lowerCamelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
720
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" _a : Any = LxmertConfig.from_json_file(UpperCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) _a : List[Any] = LxmertForPreTraining(UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
307
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase = logging.getLogger(__name__) _lowerCAmelCase = """pytorch_model.bin""" @dataclasses.dataclass class _UpperCAmelCase : a = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) a = dataclasses.field( default=a_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class _UpperCAmelCase : a = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) a = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) a = dataclasses.field( default=a_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) a = dataclasses.field( default=a_ , metadata={'''help''': '''The name of the task to train on.'''} , ) a = dataclasses.field( default=a_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class _UpperCAmelCase : a = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) a = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) a = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]''' } , ) a = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) a = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) a = dataclasses.field( default=a_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) a = dataclasses.field( default=a_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) a = dataclasses.field( default=a_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) a = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) a = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) a = dataclasses.field( default=a_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Optional[Any] = datasets.concatenate_datasets([infer_input, infer_output] ,axis=1 ) if args.do_filter_by_confidence: A_ : Optional[int] = dataset.filter(lambda _lowerCAmelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 A_ : Union[str, Any] = int(eval_result * len(__snake_case ) ) print(__snake_case ) A_ : Dict = dataset.sort("""probability""" ,reverse=__snake_case ) A_ : List[str] = dataset.select(range(__snake_case ) ) A_ : Optional[Any] = dataset.remove_columns(["""label""", """probability"""] ) A_ : Any = dataset.rename_column("""prediction""" ,"""label""" ) A_ : Union[str, Any] = dataset.map(lambda _lowerCAmelCase : {"label": idalabel[example["label"]]} ) A_ : int = dataset.shuffle(seed=args.seed ) A_ : Optional[int] = os.path.join(__snake_case ,f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__snake_case ,index=__snake_case ) else: dataset.to_json(__snake_case ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): '''simple docstring''' A_ : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO ,) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() A_ : int = STModelArguments(model_name_or_path=__snake_case ) A_ : Any = STDataArguments(train_file=__snake_case ,infer_file=__snake_case ) A_ : Tuple = STTrainingArguments(output_dir=__snake_case ) A_ : List[str] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__snake_case ).items(): setattr(__snake_case ,__snake_case ,__snake_case ) for key, value in kwargs.items(): if hasattr(__snake_case ,__snake_case ): setattr(__snake_case ,__snake_case ,__snake_case ) # Sanity checks A_ : Optional[Any] = {} A_ : Any = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None A_ : List[Any] = args.train_file A_ : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None A_ : Any = args.eval_file for key in data_files: A_ : List[str] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: A_ : Optional[Any] = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) A_ : Dict = f"""{args.output_dir}/self-train_iter-{{}}""".format A_ : Tuple = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir ,exist_ok=__snake_case ) os.makedirs(__snake_case ,exist_ok=__snake_case ) accelerator.wait_for_everyone() A_ : Union[str, Any] = None A_ : Tuple = None A_ : Any = 0 A_ : Tuple = False # Show the progress bar A_ : str = tqdm(range(args.max_selftrain_iterations ) ,disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 ,int(args.max_selftrain_iterations ) ): A_ : Optional[int] = data_dir_format(__snake_case ) assert os.path.exists(__snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 A_ : List[str] = os.path.join(__snake_case ,"""stage-1""" ) A_ : str = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__snake_case ,__snake_case ): arguments_dict.update({key: value} ) A_ : List[str] = os.path.join(__snake_case ,"""best-checkpoint""" ,__snake_case ) if os.path.exists(__snake_case ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" ,__snake_case ,__snake_case ,) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" ,__snake_case ) finetune(**__snake_case ) accelerator.wait_for_everyone() assert os.path.exists(__snake_case ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" ,__snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data A_ : List[Any] = os.path.join(__snake_case ,"""best-checkpoint""" ) A_ : str = os.path.join(__snake_case ,"""stage-2""" ) # Update arguments_dict A_ : Union[str, Any] = model_path A_ : Tuple = data_files["""train"""] A_ : int = current_output_dir A_ : Optional[Any] = os.path.join(__snake_case ,"""best-checkpoint""" ,__snake_case ) if os.path.exists(__snake_case ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" ,__snake_case ,__snake_case ,) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" ,__snake_case ) finetune(**__snake_case ) accelerator.wait_for_everyone() assert os.path.exists(__snake_case ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" ,__snake_case ) A_ : Dict = iteration A_ : int = data_dir_format(iteration + 1 ) A_ : Optional[int] = AutoConfig.from_pretrained(os.path.join(__snake_case ,"""best-checkpoint""" ) ) A_ : Tuple = config.idalabel A_ : int = os.path.join(__snake_case ,"""eval_results_best-checkpoint.json""" ) A_ : List[str] = os.path.join(__snake_case ,"""test_results_best-checkpoint.json""" ) assert os.path.exists(__snake_case ) with open(__snake_case ,"""r""" ) as f: A_ : List[Any] = float(json.load(__snake_case )[args.eval_metric] ) A_ : List[str] = os.path.join(__snake_case ,"""infer_output_best-checkpoint.csv""" ) assert os.path.exists(__snake_case ) # Loading the dataset from local csv or json files. A_ : List[Any] = load_dataset(args.data_file_extension ,data_files={"""data""": data_files["""infer"""]} )["""data"""] A_ : List[Any] = load_dataset("""csv""" ,data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(__snake_case ,exist_ok=__snake_case ) shutil.copy(__snake_case ,os.path.join(__snake_case ,f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__snake_case ): shutil.copy(__snake_case ,os.path.join(__snake_case ,f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) accelerator.wait_for_everyone() A_ : Optional[int] = os.path.join(__snake_case ,f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: A_ : Any = eval_result if best_iteration is None: A_ : int = new_iteration A_ : List[str] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: A_ : Dict = new_iteration A_ : Optional[Any] = new_eval_result A_ : Tuple = 0 else: if new_eval_result == best_eval_result: A_ : Dict = new_iteration A_ : Dict = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: A_ : Tuple = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" ,__snake_case ) logger.info("""Best evaluation result: %s = %f""" ,args.eval_metric ,__snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__snake_case ,f"""eval_results_iter-{iteration}.json""" ) ,os.path.join(__snake_case ,"""eval_results_best-iteration.json""" ) ,) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" ,args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" ,args.eval_metric ,__snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__snake_case ,f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) ,os.path.join(__snake_case ,"""eval_results_best-iteration.json""" ) ,)
569
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer snake_case : List[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case : List[Any] = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } snake_case : Optional[int] = { """unc-nlp/lxmert-base-uncased""": 5_1_2, } snake_case : List[Any] = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class UpperCamelCase__ ( a_): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = LxmertTokenizer def __init__( self : Union[str, Any] , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : str="[SEP]" , UpperCamelCase_ : Dict="[PAD]" , UpperCamelCase_ : Optional[int]="[CLS]" , UpperCamelCase_ : Any="[MASK]" , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[Any]=None , **UpperCamelCase_ : Dict , ): '''simple docstring''' super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) __magic_name__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase_ ) != tokenize_chinese_chars ): __magic_name__ = getattr(UpperCamelCase_ , normalizer_state.pop('type' ) ) __magic_name__ = do_lower_case __magic_name__ = strip_accents __magic_name__ = tokenize_chinese_chars __magic_name__ = normalizer_class(**UpperCamelCase_ ) __magic_name__ = do_lower_case def a__ ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int]=None ): '''simple docstring''' __magic_name__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self : int , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): '''simple docstring''' __magic_name__ = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
545
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( _lowerCAmelCase ): A = ["pixel_values"] def __init__( self : str , UpperCamelCase_ : Tuple = True , UpperCamelCase_ : Union[str, Any] = None , UpperCamelCase_ : Union[str, Any] = PILImageResampling.BILINEAR , UpperCamelCase_ : int = True , UpperCamelCase_ : Union[str, Any] = None , UpperCamelCase_ : List[Any] = True , UpperCamelCase_ : Union[str, Any] = 1 / 255 , UpperCamelCase_ : Union[str, Any] = True , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : Optional[int] , ) -> None: """simple docstring""" super().__init__(**__a ) lowerCamelCase_ : Any = size if size is not None else {'''shortest_edge''': 256} lowerCamelCase_ : Any = get_size_dict(__a , default_to_square=__a ) lowerCamelCase_ : List[str] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCamelCase_ : Dict = get_size_dict(__a ) lowerCamelCase_ : Union[str, Any] = do_resize lowerCamelCase_ : Any = size lowerCamelCase_ : List[Any] = resample lowerCamelCase_ : Tuple = do_center_crop lowerCamelCase_ : int = crop_size lowerCamelCase_ : Dict = do_rescale lowerCamelCase_ : Tuple = rescale_factor lowerCamelCase_ : Union[str, Any] = do_normalize lowerCamelCase_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] = PILImageResampling.BICUBIC , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : Optional[Any] , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ : Tuple = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCamelCase_ : int = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] = None , **UpperCamelCase_ : Optional[Any] , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ : Optional[int] = get_size_dict(__a ) return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a ) def __UpperCamelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple = None , **UpperCamelCase_ : Any ) -> np.ndarray: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def __UpperCamelCase ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str = None , **UpperCamelCase_ : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : int = None , UpperCamelCase_ : Dict = None , UpperCamelCase_ : Union[str, Any] = None , UpperCamelCase_ : Tuple = None , UpperCamelCase_ : Optional[Any] = None , UpperCamelCase_ : Tuple = None , UpperCamelCase_ : Optional[Any] = None , UpperCamelCase_ : Any = None , UpperCamelCase_ : List[Any] = None , UpperCamelCase_ : str = None , UpperCamelCase_ : int = None , UpperCamelCase_ : Union[str, Any] = ChannelDimension.FIRST , **UpperCamelCase_ : Tuple , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ : Dict = size if size is not None else self.size lowerCamelCase_ : List[str] = get_size_dict(__a , default_to_square=__a ) lowerCamelCase_ : Any = resample if resample is not None else self.resample lowerCamelCase_ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ : Any = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ : Any = get_size_dict(__a ) lowerCamelCase_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ : Any = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ : List[str] = image_std if image_std is not None else self.image_std lowerCamelCase_ : str = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCamelCase_ : int = [to_numpy_array(__a ) for image in images] if do_resize: lowerCamelCase_ : Tuple = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: lowerCamelCase_ : Optional[int] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: lowerCamelCase_ : Optional[Any] = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: lowerCamelCase_ : List[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] lowerCamelCase_ : Any = [to_channel_dimension_format(__a , __a ) for image in images] lowerCamelCase_ : Dict = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a )
712
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCAmelCase ) lowerCamelCase_ : str = FlaxAutoModelForSeqaSeqLM.from_config(config=__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = checkpoints.load_tax_checkpoint(__UpperCAmelCase ) lowerCamelCase_ : Any = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": lowerCamelCase_ : Dict = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowerCamelCase_ : List[str] = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ : List[str] = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): lowerCamelCase_ : List[str] = F"""layers_{str(__UpperCAmelCase )}""" # Self-Attention lowerCamelCase_ : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] lowerCamelCase_ : Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] lowerCamelCase_ : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] lowerCamelCase_ : str = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ : List[Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization lowerCamelCase_ : Any = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: lowerCamelCase_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowerCamelCase_ : Dict = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowerCamelCase_ : List[Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowerCamelCase_ : Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowerCamelCase_ : int = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowerCamelCase_ : Tuple = flax_model.params['''encoder''']['''block'''][str(__UpperCAmelCase )]['''layer'''] lowerCamelCase_ : str = tax_attention_key lowerCamelCase_ : Any = tax_attention_out lowerCamelCase_ : List[str] = tax_attention_query lowerCamelCase_ : int = tax_attention_value lowerCamelCase_ : Dict = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ : Optional[Any] = tax_global_layer_norm if split_mlp_wi: lowerCamelCase_ : Optional[Any] = tax_mlp_wi_a lowerCamelCase_ : Any = tax_mlp_wi_a else: lowerCamelCase_ : List[Any] = tax_mlp_wi lowerCamelCase_ : Tuple = tax_mlp_wo lowerCamelCase_ : Tuple = tax_mlp_layer_norm lowerCamelCase_ : int = flax_model_encoder_layer_block # Only for layer 0: lowerCamelCase_ : Tuple = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T lowerCamelCase_ : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ : Dict = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T lowerCamelCase_ : Dict = tax_encoder_global_rel_embedding # Assigning lowerCamelCase_ : Dict = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] lowerCamelCase_ : List[Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowerCamelCase_ : Dict = F"""layers_{str(__UpperCAmelCase )}""" # Self-Attention lowerCamelCase_ : Any = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] lowerCamelCase_ : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] lowerCamelCase_ : str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] lowerCamelCase_ : str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization lowerCamelCase_ : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention lowerCamelCase_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] lowerCamelCase_ : List[str] = tax_enc_dec_attention_module['''key''']['''kernel'''] lowerCamelCase_ : Union[str, Any] = tax_enc_dec_attention_module['''out''']['''kernel'''] lowerCamelCase_ : Optional[int] = tax_enc_dec_attention_module['''query''']['''kernel'''] lowerCamelCase_ : List[str] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization lowerCamelCase_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: lowerCamelCase_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowerCamelCase_ : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowerCamelCase_ : Any = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowerCamelCase_ : str = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowerCamelCase_ : int = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowerCamelCase_ : List[Any] = flax_model.params['''decoder''']['''block'''][str(__UpperCAmelCase )]['''layer'''] lowerCamelCase_ : str = tax_attention_key lowerCamelCase_ : Optional[Any] = tax_attention_out lowerCamelCase_ : Optional[Any] = tax_attention_query lowerCamelCase_ : str = tax_attention_value lowerCamelCase_ : Tuple = tax_pre_attention_layer_norm lowerCamelCase_ : Optional[Any] = tax_enc_dec_attention_key lowerCamelCase_ : Tuple = tax_enc_dec_attention_out lowerCamelCase_ : Any = tax_enc_dec_attention_query lowerCamelCase_ : Optional[Any] = tax_enc_dec_attention_value lowerCamelCase_ : List[str] = tax_cross_layer_norm if split_mlp_wi: lowerCamelCase_ : List[Any] = tax_mlp_wi_a lowerCamelCase_ : Optional[int] = tax_mlp_wi_a else: lowerCamelCase_ : Tuple = tax_mlp_wi lowerCamelCase_ : Optional[int] = tax_mlp_wo lowerCamelCase_ : Tuple = txa_mlp_layer_norm lowerCamelCase_ : Optional[Any] = flax_model_decoder_layer_block # Decoder Normalization lowerCamelCase_ : int = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] lowerCamelCase_ : Optional[int] = txa_decoder_norm # Only for layer 0: lowerCamelCase_ : Dict = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T lowerCamelCase_ : List[Any] = tax_decoder_rel_embedding # Token Embeddings lowerCamelCase_ : Tuple = tax_model['''target''']['''token_embedder''']['''embedding'''] lowerCamelCase_ : Union[str, Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowerCamelCase_ : Optional[Any] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(__UpperCAmelCase ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) __lowerCamelCase : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
418
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCAmelCase__ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowercase_ = BertJapaneseTokenizer lowercase_ = False lowercase_ = True def __UpperCamelCase ( self ): '''simple docstring''' super().setUp() __A =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] __A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A ='''こんにちは、世界。 \nこんばんは、世界。''' __A ='''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A , __A =self.get_input_output_texts(_a ) __A =tokenizer.encode(_a , add_special_tokens=_a ) __A =tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def __UpperCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __UpperCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __UpperCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer_class(self.vocab_file ) __A =tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_a ) __A ='''こんにちは、世界。\nこんばんは、世界。''' __A =tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __A =os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: __A =pickle.load(_a ) __A =tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) def __UpperCamelCase ( self ): '''simple docstring''' __A =MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __UpperCamelCase ( self ): '''simple docstring''' try: __A =MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __UpperCamelCase ( self ): '''simple docstring''' try: __A =MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __UpperCamelCase ( self ): '''simple docstring''' __A =MecabTokenizer(do_lower_case=_a , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __UpperCamelCase ( self ): '''simple docstring''' try: __A =MecabTokenizer( do_lower_case=_a , normalize_text=_a , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def __UpperCamelCase ( self ): '''simple docstring''' __A =MecabTokenizer(normalize_text=_a , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_a ) __A ='''こんにちは、世界。\nこんばんは、世界。''' __A =tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __A =os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: __A =pickle.load(_a ) __A =tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_sudachi def __UpperCamelCase ( self ): '''simple docstring''' __A =SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __UpperCamelCase ( self ): '''simple docstring''' __A =SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def __UpperCamelCase ( self ): '''simple docstring''' __A =SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def __UpperCamelCase ( self ): '''simple docstring''' __A =SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def __UpperCamelCase ( self ): '''simple docstring''' __A =SudachiTokenizer(do_lower_case=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __UpperCamelCase ( self ): '''simple docstring''' __A =SudachiTokenizer(normalize_text=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __UpperCamelCase ( self ): '''simple docstring''' __A =SudachiTokenizer(trim_whitespace=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_a ) __A ='''こんにちは、世界。\nこんばんは、世界。''' __A =tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __A =os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: __A =pickle.load(_a ) __A =tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_jumanpp def __UpperCamelCase ( self ): '''simple docstring''' __A =JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __UpperCamelCase ( self ): '''simple docstring''' __A =JumanppTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __UpperCamelCase ( self ): '''simple docstring''' __A =JumanppTokenizer(normalize_text=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __UpperCamelCase ( self ): '''simple docstring''' __A =JumanppTokenizer(trim_whitespace=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def __UpperCamelCase ( self ): '''simple docstring''' __A =JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def __UpperCamelCase ( self ): '''simple docstring''' __A =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] __A ={} for i, token in enumerate(_a ): __A =i __A =WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def __UpperCamelCase ( self ): '''simple docstring''' __A =BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) __A =tokenizer.subword_tokenizer __A =subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_a , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) __A =subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_a , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) __A =tokenizer.encode('''ありがとう。''' , add_special_tokens=_a ) __A =tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a ) __A =tokenizer.build_inputs_with_special_tokens(_a ) __A =tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowercase_ = BertJapaneseTokenizer lowercase_ = False def __UpperCamelCase ( self ): '''simple docstring''' super().setUp() __A =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCamelCase ( self , **lowercase__ ): '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_a ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A ='''こんにちは、世界。 \nこんばんは、世界。''' __A ='''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def __UpperCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __UpperCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __UpperCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) __A =tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _a , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def __UpperCamelCase ( self ): '''simple docstring''' __A =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __A ={} for i, token in enumerate(_a ): __A =i __A =CharacterTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) __A =tokenizer.encode('''ありがとう。''' , add_special_tokens=_a ) __A =tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a ) __A =tokenizer.build_inputs_with_special_tokens(_a ) __A =tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' __A ='''cl-tohoku/bert-base-japanese''' __A =AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , _a ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' __A ='''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) __A ='''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
184
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
0
from queue import PriorityQueue from typing import Any import numpy as np def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCAmelCase = cst_fwd.get(__snake_case , np.inf ) _UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCAmelCase = new_cost_f _UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case ) -> int: _UpperCAmelCase = -1 _UpperCAmelCase = set() _UpperCAmelCase = set() _UpperCAmelCase = {source: 0} _UpperCAmelCase = {destination: 0} _UpperCAmelCase = {source: None} _UpperCAmelCase = {destination: None} _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCAmelCase , _UpperCAmelCase = queue_forward.get() visited_forward.add(__snake_case ) _UpperCAmelCase , _UpperCAmelCase = queue_backward.get() visited_backward.add(__snake_case ) _UpperCAmelCase = pass_and_relaxation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _UpperCAmelCase = pass_and_relaxation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCAmelCase = shortest_distance return shortest_path_distance __a: Optional[Any] = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __a: Any = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
402
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> float: return 1_0 - x * x def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(__snake_case ) * equation(__snake_case ) >= 0: raise ValueError("""Wrong space!""" ) _UpperCAmelCase = a while (b - a) >= 0.01: # Find middle point _UpperCAmelCase = (a + b) / 2 # Check if middle point is root if equation(__snake_case ) == 0.0: break # Decide the side to repeat the steps if equation(__snake_case ) * equation(__snake_case ) < 0: _UpperCAmelCase = c else: _UpperCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
402
1