code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowerCAmelCase ( lowercase_ ): """simple docstring""" def __magic_name__ ( self : List[Any]): '''simple docstring''' snake_case__ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """tf_padding""")) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """depth_multiplier""")) class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=1_3 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Optional[Any]=3_2 , UpperCamelCase__ : List[str]=0.25 , UpperCamelCase__ : Optional[int]=8 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : List[Any]=6 , UpperCamelCase__ : Tuple=3_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str="relu6" , UpperCamelCase__ : Any=1_2_8_0 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[int]=1_0 , UpperCamelCase__ : Union[str, Any]=None , ): '''simple docstring''' snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = image_size snake_case__ = depth_multiplier snake_case__ = depth_divisible_by snake_case__ = min_depth snake_case__ = expand_ratio snake_case__ = tf_padding snake_case__ = output_stride snake_case__ = first_layer_is_expansion snake_case__ = finegrained_output snake_case__ = hidden_act snake_case__ = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) snake_case__ = classifier_dropout_prob snake_case__ = use_labels snake_case__ = is_training snake_case__ = num_labels snake_case__ = initializer_range snake_case__ = scope def __magic_name__ ( self : Any): '''simple docstring''' snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels) snake_case__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) snake_case__ = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : int): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Any): '''simple docstring''' snake_case__ = MobileNetVaModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() snake_case__ = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]): '''simple docstring''' snake_case__ = self.num_labels snake_case__ = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() snake_case__ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any]): '''simple docstring''' snake_case__ = self.num_labels snake_case__ = MobileNetVaForSemanticSegmentation(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() snake_case__ = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case__ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ ( self : str): '''simple docstring''' snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" _lowercase : List[str] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _lowercase : Optional[int] = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase : Optional[Any] = False _lowercase : str = False _lowercase : Optional[int] = False _lowercase : List[Any] = False def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = MobileNetVaModelTester(self) snake_case__ = MobileNetVaConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE) def __magic_name__ ( self : str): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""") def __magic_name__ ( self : List[str]): '''simple docstring''' pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""") def __magic_name__ ( self : Tuple): '''simple docstring''' pass @unittest.skip(reason="""MobileNetV2 does not output attentions""") def __magic_name__ ( self : str): '''simple docstring''' pass def __magic_name__ ( self : Optional[Any]): '''simple docstring''' snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_SCREAMING_SNAKE_CASE) snake_case__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE) def __magic_name__ ( self : List[Any]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def __magic_name__ ( self : List[str]): '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict): snake_case__ = model_class(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) snake_case__ = outputs.hidden_states snake_case__ = 1_6 self.assertEqual(len(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def __magic_name__ ( self : Optional[Any]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE) def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE) @slow def __magic_name__ ( self : List[Any]): '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = MobileNetVaModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) def _UpperCAmelCase ( ): snake_case__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ ( self : List[Any]): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""") if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""").to(_SCREAMING_SNAKE_CASE) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""").to(_SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): snake_case__ = model(**_SCREAMING_SNAKE_CASE) # verify the logits snake_case__ = torch.Size((1, 1_0_0_1)) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE) snake_case__ = torch.tensor([0.24_45, -1.19_93, 0.19_05]).to(_SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4)) @slow def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' snake_case__ = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""") snake_case__ = model.to(_SCREAMING_SNAKE_CASE) snake_case__ = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""") snake_case__ = prepare_img() snake_case__ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""").to(_SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): snake_case__ = model(**_SCREAMING_SNAKE_CASE) snake_case__ = outputs.logits # verify the logits snake_case__ = torch.Size((1, 2_1, 6_5, 6_5)) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE) snake_case__ = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ] , device=_SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4))
654
def lowerCAmelCase__ ( a__: int , a__: int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(a__ , x % y ) def lowerCAmelCase__ ( a__: int , a__: int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(a__ , a__ ) def lowerCAmelCase__ ( a__: int = 2_0 ) -> int: '''simple docstring''' _UpperCAmelCase = 1 for i in range(1 , n + 1 ): _UpperCAmelCase = lcm(a__ , a__ ) return g if __name__ == "__main__": print(f'''{solution() = }''')
618
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , ): __lowerCAmelCase = size if size is not None else {"height": 18, "width": 18} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = apply_ocr def snake_case ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): __lowerCAmelCase = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size" ) ) self.assertTrue(hasattr(__a , "apply_ocr" ) ) def snake_case ( self ): __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , __a ) self.assertIsInstance(encoding.boxes , __a ) # Test batched __lowerCAmelCase = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def snake_case ( self ): # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __lowerCAmelCase = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def snake_case ( self ): # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __lowerCAmelCase = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def snake_case ( self ): # with apply_OCR = True __lowerCAmelCase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowerCAmelCase = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) __lowerCAmelCase = Image.open(ds[0]["file"] ).convert("RGB" ) __lowerCAmelCase = image_processing(__a , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowerCAmelCase = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 __lowerCAmelCase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __a ) self.assertListEqual(encoding.boxes , __a ) # with apply_OCR = False __lowerCAmelCase = LayoutLMvaImageProcessor(apply_ocr=__a ) __lowerCAmelCase = image_processing(__a , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
282
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A : Optional[int] = logging.get_logger(__name__) A : List[str] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""bit""" __UpperCAmelCase : Optional[int] =["""preactivation""", """bottleneck"""] __UpperCAmelCase : List[str] =["""SAME""", """VALID"""] def __init__( self , __a=3 , __a=64 , __a=[2_56, 5_12, 10_24, 20_48] , __a=[3, 4, 6, 3] , __a="preactivation" , __a="relu" , __a=None , __a=32 , __a=0.0 , __a=False , __a=32 , __a=1 , __a=None , __a=None , **__a , ): super().__init__(**__a ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowerCAmelCase = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) __lowerCAmelCase = num_channels __lowerCAmelCase = embedding_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = layer_type __lowerCAmelCase = hidden_act __lowerCAmelCase = global_padding __lowerCAmelCase = num_groups __lowerCAmelCase = drop_path_rate __lowerCAmelCase = embedding_dynamic_padding __lowerCAmelCase = output_stride __lowerCAmelCase = width_factor __lowerCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__a ) + 1 )] __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
282
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __lowercase : Optional[int] =logging.get_logger(__name__) # General docstring __lowercase : Tuple ="""PoolFormerConfig""" # Base docstring __lowercase : Union[str, Any] ="""sail/poolformer_s12""" __lowercase : int =[1, 512, 7, 7] # Image classification docstring __lowercase : Tuple ="""sail/poolformer_s12""" __lowercase : Optional[Any] ="""tabby, tabby cat""" __lowercase : List[str] =[ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def a__ ( lowercase__ , lowercase__ = 0.0 , lowercase__ = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input UpperCAmelCase_ =1 - drop_prob UpperCAmelCase_ =(input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets UpperCAmelCase_ =keep_prob + torch.rand(lowercase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize UpperCAmelCase_ =input.div(lowercase__ ) * random_tensor return output class A ( nn.Module ): def __init__( self: Optional[Any] , _lowerCAmelCase: Optional[float] = None ) -> None: '''simple docstring''' super().__init__() UpperCAmelCase_ =drop_prob def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: torch.Tensor ) -> torch.Tensor: '''simple docstring''' return drop_path(_lowerCAmelCase , self.drop_prob , self.training ) def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' return "p={}".format(self.drop_prob ) class A ( nn.Module ): def __init__( self: str , _lowerCAmelCase: Dict , _lowerCAmelCase: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any]=None ) -> List[str]: '''simple docstring''' super().__init__() UpperCAmelCase_ =patch_size if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size) UpperCAmelCase_ =stride if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (stride, stride) UpperCAmelCase_ =padding if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (padding, padding) UpperCAmelCase_ =nn.Convad(_lowerCAmelCase , _lowerCAmelCase , kernel_size=_lowerCAmelCase , stride=_lowerCAmelCase , padding=_lowerCAmelCase ) UpperCAmelCase_ =norm_layer(_lowerCAmelCase ) if norm_layer else nn.Identity() def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.projection(_lowerCAmelCase ) UpperCAmelCase_ =self.norm(_lowerCAmelCase ) return embeddings class A ( nn.GroupNorm ): def __init__( self: int , _lowerCAmelCase: int , **_lowerCAmelCase: Any ) -> Tuple: '''simple docstring''' super().__init__(1 , _lowerCAmelCase , **_lowerCAmelCase ) class A ( nn.Module ): def __init__( self: Tuple , _lowerCAmelCase: int ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.AvgPoolad(_lowerCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Optional[int] ) -> Optional[int]: '''simple docstring''' return self.pool(_lowerCAmelCase ) - hidden_states class A ( nn.Module ): def __init__( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[str] ) -> Any: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) UpperCAmelCase_ =nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) UpperCAmelCase_ =PoolFormerDropPath(_lowerCAmelCase ) if isinstance(config.hidden_act , _lowerCAmelCase ): UpperCAmelCase_ =ACTaFN[config.hidden_act] else: UpperCAmelCase_ =config.hidden_act def lowerCAmelCase__ ( self: str , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.conva(_lowerCAmelCase ) UpperCAmelCase_ =self.act_fn(_lowerCAmelCase ) UpperCAmelCase_ =self.drop(_lowerCAmelCase ) UpperCAmelCase_ =self.conva(_lowerCAmelCase ) UpperCAmelCase_ =self.drop(_lowerCAmelCase ) return hidden_states class A ( nn.Module ): def __init__( self: str , _lowerCAmelCase: str , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Any ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =PoolFormerPooling(_lowerCAmelCase ) UpperCAmelCase_ =PoolFormerOutput(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =PoolFormerGroupNorm(_lowerCAmelCase ) UpperCAmelCase_ =PoolFormerGroupNorm(_lowerCAmelCase ) # Useful for training neural nets UpperCAmelCase_ =PoolFormerDropPath(_lowerCAmelCase ) if drop_path > 0.0 else nn.Identity() UpperCAmelCase_ =config.use_layer_scale if config.use_layer_scale: UpperCAmelCase_ =nn.Parameter( config.layer_scale_init_value * torch.ones((_lowerCAmelCase) ) , requires_grad=_lowerCAmelCase ) UpperCAmelCase_ =nn.Parameter( config.layer_scale_init_value * torch.ones((_lowerCAmelCase) ) , requires_grad=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: List[str] ) -> List[Any]: '''simple docstring''' if self.use_layer_scale: UpperCAmelCase_ =self.pooling(self.before_norm(_lowerCAmelCase ) ) UpperCAmelCase_ =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection UpperCAmelCase_ =hidden_states + self.drop_path(_lowerCAmelCase ) UpperCAmelCase_ =() UpperCAmelCase_ =self.output(self.after_norm(_lowerCAmelCase ) ) UpperCAmelCase_ =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection UpperCAmelCase_ =hidden_states + self.drop_path(_lowerCAmelCase ) UpperCAmelCase_ =(output,) + outputs return outputs else: UpperCAmelCase_ =self.drop_path(self.pooling(self.before_norm(_lowerCAmelCase ) ) ) # First residual connection UpperCAmelCase_ =pooling_output + hidden_states UpperCAmelCase_ =() # Second residual connection inside the PoolFormerOutput block UpperCAmelCase_ =self.drop_path(self.output(self.after_norm(_lowerCAmelCase ) ) ) UpperCAmelCase_ =hidden_states + layer_output UpperCAmelCase_ =(output,) + outputs return outputs class A ( nn.Module ): def __init__( self: Union[str, Any] , _lowerCAmelCase: Dict ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase_ =config # stochastic depth decay rule UpperCAmelCase_ =[x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings UpperCAmelCase_ =[] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) UpperCAmelCase_ =nn.ModuleList(_lowerCAmelCase ) # Transformer blocks UpperCAmelCase_ =[] UpperCAmelCase_ =0 for i in range(config.num_encoder_blocks ): # each block consists of layers UpperCAmelCase_ =[] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _lowerCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_lowerCAmelCase ) ) UpperCAmelCase_ =nn.ModuleList(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: Dict=True ) -> str: '''simple docstring''' UpperCAmelCase_ =() if output_hidden_states else None UpperCAmelCase_ =pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): UpperCAmelCase_ , UpperCAmelCase_ =layers # Get patch embeddings from hidden_states UpperCAmelCase_ =embedding_layer(_lowerCAmelCase ) # Send the embeddings through the blocks for _, blk in enumerate(_lowerCAmelCase ): UpperCAmelCase_ =blk(_lowerCAmelCase ) UpperCAmelCase_ =layer_outputs[0] if output_hidden_states: UpperCAmelCase_ =all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) class A ( __lowercase ): _snake_case =PoolFormerConfig _snake_case ='''poolformer''' _snake_case ='''pixel_values''' _snake_case =True def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: str ) -> Optional[Any]: '''simple docstring''' if isinstance(_lowerCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCAmelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Tuple=False ) -> Optional[Any]: '''simple docstring''' if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =value __lowercase : Union[str, Any] =R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ __lowercase : Union[str, Any] =R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , __lowercase , ) class A ( __lowercase ): def __init__( self: Any , _lowerCAmelCase: List[Any] ) -> str: '''simple docstring''' super().__init__(_lowerCAmelCase ) UpperCAmelCase_ =config UpperCAmelCase_ =PoolFormerEncoder(_lowerCAmelCase ) # Initialize weights and apply final processing self.post_init() def lowerCAmelCase__ ( self: str ) -> int: '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: '''simple docstring''' UpperCAmelCase_ =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ =return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) UpperCAmelCase_ =self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) UpperCAmelCase_ =encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class A ( nn.Module ): def __init__( self: str , _lowerCAmelCase: Dict ) -> Dict: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.Linear(config.hidden_size , config.hidden_size ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.dense(_lowerCAmelCase ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , __lowercase , ) class A ( __lowercase ): def __init__( self: Union[str, Any] , _lowerCAmelCase: Optional[int] ) -> Dict: '''simple docstring''' super().__init__(_lowerCAmelCase ) UpperCAmelCase_ =config.num_labels UpperCAmelCase_ =PoolFormerModel(_lowerCAmelCase ) # Final norm UpperCAmelCase_ =PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head UpperCAmelCase_ =( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: Optional[torch.LongTensor] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' UpperCAmelCase_ =return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ =self.poolformer( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) UpperCAmelCase_ =outputs[0] UpperCAmelCase_ =self.classifier(self.norm(_lowerCAmelCase ).mean([-2, -1] ) ) UpperCAmelCase_ =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase_ ="regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase_ ="single_label_classification" else: UpperCAmelCase_ ="multi_label_classification" if self.config.problem_type == "regression": UpperCAmelCase_ =MSELoss() if self.num_labels == 1: UpperCAmelCase_ =loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase_ =loss_fct(_lowerCAmelCase , _lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase_ =CrossEntropyLoss() UpperCAmelCase_ =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase_ =BCEWithLogitsLoss() UpperCAmelCase_ =loss_fct(_lowerCAmelCase , _lowerCAmelCase ) if not return_dict: UpperCAmelCase_ =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
54
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Tuple = ["image_processor", "tokenizer"] __A : Any = "ViTImageProcessor" __A : Dict = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __A=None , __A=None , **__A ): """simple docstring""" lowerCamelCase : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __A , ) lowerCamelCase : Optional[Any] = kwargs.pop("feature_extractor" ) lowerCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , __A=None , **__A ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCamelCase : Any = self.tokenizer(__A , return_tensors=__A , **__A ) if visual_prompt is not None: lowerCamelCase : Optional[Any] = self.image_processor(__A , return_tensors=__A , **__A ) if images is not None: lowerCamelCase : Optional[int] = self.image_processor(__A , return_tensors=__A , **__A ) if visual_prompt is not None and images is not None: lowerCamelCase : Tuple = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCamelCase : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCamelCase : Optional[int] = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self , *__A , **__A ): """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self , *__A , **__A ): """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __A , ) return self.image_processor_class @property def _snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __A , ) return self.image_processor
340
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def snake_case_ ( SCREAMING_SNAKE_CASE__="ro" , SCREAMING_SNAKE_CASE__="en" , SCREAMING_SNAKE_CASE__="wmt16" , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) _snake_case = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) _snake_case = datasets.load_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if save_dir is None: _snake_case = f'''{dataset}-{pair}''' _snake_case = Path(SCREAMING_SNAKE_CASE__ ) save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets _snake_case = "val" if split == "validation" else split _snake_case = save_dir.joinpath(f'''{fn}.source''' ) _snake_case = save_dir.joinpath(f'''{fn}.target''' ) _snake_case = src_path.open("w+" ) _snake_case = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _snake_case = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
368
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __magic_name__ : List[str] = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) requires_backends(SCREAMING_SNAKE_CASE__ , "sklearn" ) return (preds == labels).mean() def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) requires_backends(SCREAMING_SNAKE_CASE__ , "sklearn" ) _snake_case = simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case = fa_score(y_true=SCREAMING_SNAKE_CASE__ , y_pred=SCREAMING_SNAKE_CASE__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) requires_backends(SCREAMING_SNAKE_CASE__ , "sklearn" ) _snake_case = pearsonr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] _snake_case = spearmanr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) requires_backends(SCREAMING_SNAKE_CASE__ , "sklearn" ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ), f'''Predictions and labels have mismatched lengths {len(SCREAMING_SNAKE_CASE__ )} and {len(SCREAMING_SNAKE_CASE__ )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "mrpc": return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif task_name == "sts-b": return pearson_and_spearman(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif task_name == "qqp": return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "qnli": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "rte": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "wnli": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "hans": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} else: raise KeyError(SCREAMING_SNAKE_CASE__ ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) requires_backends(SCREAMING_SNAKE_CASE__ , "sklearn" ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError(f'''Predictions and labels have mismatched lengths {len(SCREAMING_SNAKE_CASE__ )} and {len(SCREAMING_SNAKE_CASE__ )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} else: raise KeyError(SCREAMING_SNAKE_CASE__ )
368
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Optional[int] = ShapEPipeline __snake_case :Optional[int] = ['prompt'] __snake_case :str = ['prompt'] __snake_case :Tuple = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __snake_case :str = False @property def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return 32 @property def _a ( self : str ) -> str: """simple docstring""" return 32 @property def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def _a ( self : str ) -> Union[str, Any]: """simple docstring""" return 8 @property def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _a ( self : int ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_lowerCAmelCase ) @property def _a ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) __lowercase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowercase = PriorTransformer(**_lowerCAmelCase ) return model @property def _a ( self : Any ) -> int: """simple docstring""" torch.manual_seed(0 ) __lowercase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowercase = ShapERenderer(**_lowerCAmelCase ) return model def _a ( self : List[Any] ) -> str: """simple docstring""" __lowercase = self.dummy_prior __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_renderer __lowercase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_lowerCAmelCase , clip_sample=_lowerCAmelCase , clip_sample_range=1.0 , ) __lowercase = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def _a ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=0 ) -> Dict: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _a ( self : str ) -> Any: """simple docstring""" __lowercase = """cpu""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCAmelCase ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) __lowercase = output.images[0] __lowercase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowercase = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> int: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self : Dict ) -> int: """simple docstring""" __lowercase = torch_device == """cpu""" __lowercase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowerCAmelCase , relax_max_difference=_lowerCAmelCase , ) def _a ( self : Any ) -> str: """simple docstring""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCAmelCase ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = 1 __lowercase = 2 __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __lowercase = batch_size * [inputs[key]] __lowercase = pipe(**_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Dict ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) __lowercase = ShapEPipeline.from_pretrained("""openai/shap-e""" ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) __lowercase = pipe( """a shark""" , generator=_lowerCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
80
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=13 , _lowerCAmelCase : Any=32 , _lowerCAmelCase : str=3 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Optional[int]=[10, 20, 30, 40] , _lowerCAmelCase : Optional[Any]=[2, 2, 3, 2] , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : List[str]=37 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : List[Any]=10 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : str=["stage2", "stage3", "stage4"] , _lowerCAmelCase : Dict=[2, 3, 4] , _lowerCAmelCase : Tuple=None , ) -> Any: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_labels __lowercase = initializer_range __lowercase = out_features __lowercase = out_indices __lowercase = scope def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : List[str] ) -> Any: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase = ConvNextModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = ConvNextForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ConvNextBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase = None __lowercase = ConvNextBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Optional[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __snake_case :List[str] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) __snake_case :str = True __snake_case :Any = False __snake_case :Any = False __snake_case :Any = False __snake_case :int = False def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = ConvNextModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[Any] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Any ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def _a ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def _a ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ConvNextModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Tuple ) -> Any: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase , _lowerCAmelCase ): __snake_case :Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () __snake_case :str = ConvNextConfig __snake_case :Optional[Any] = False def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = ConvNextModelTester(self )
80
1
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand a= logging.get_logger(__name__) # pylint: disable=invalid-name def _UpperCamelCase ( _a : str ): """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_a ): return ext raise Exception( f"""Unable to determine file format from file extension {path}. """ f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def _UpperCamelCase ( _a : List[str] ): """simple docstring""" __UpperCamelCase : List[str] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) __UpperCamelCase : int = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format __UpperCamelCase : Dict = PipelineDataFormat.from_str( format=_a , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(_a , _a ) class __lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Dict = nlp __UpperCamelCase : int = reader @staticmethod def lowerCAmelCase ( _lowerCamelCase ): __UpperCamelCase : int = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=_lowerCamelCase , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=_lowerCamelCase , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=_lowerCamelCase , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=_lowerCamelCase , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=_lowerCamelCase , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=_lowerCamelCase , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=_lowerCamelCase , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=_lowerCamelCase , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=_lowerCamelCase ) def lowerCAmelCase ( self ): __UpperCamelCase , __UpperCamelCase : Tuple = self._nlp, [] for entry in self._reader: __UpperCamelCase : Dict = nlp(**_lowerCamelCase ) if self._reader.is_multi_columns else nlp(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): outputs.append(_lowerCamelCase ) else: outputs += output # Saving data if self._nlp.binary_output: __UpperCamelCase : Optional[int] = self._reader.save_binary(_lowerCamelCase ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(_lowerCamelCase )
287
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False def lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase : List[str] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) __UpperCamelCase : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def lowerCAmelCase ( self , _lowerCamelCase ): return "lower newer", "lower newer" def lowerCAmelCase ( self ): __UpperCamelCase : Dict = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __UpperCamelCase : List[Any] = 'lower' __UpperCamelCase : Union[str, Any] = ['low', 'er</w>'] __UpperCamelCase : Tuple = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __UpperCamelCase : List[str] = tokens + ['<unk>'] __UpperCamelCase : Optional[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input __UpperCamelCase : int = 'This is a simple input' __UpperCamelCase : Any = ['This is a simple input 1', 'This is a simple input 2'] __UpperCamelCase : Union[str, Any] = ('This is a simple input', 'This is a pair') __UpperCamelCase : Any = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) def lowerCAmelCase ( self ): pass @require_ftfy @require_spacy @require_tokenizers class __lowercase ( _lowerCamelCase ): """simple docstring""" pass
287
1
from queue import PriorityQueue from typing import Any import numpy as np def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue __SCREAMING_SNAKE_CASE : int = cst_fwd.get(lowerCAmelCase_ , np.inf ) __SCREAMING_SNAKE_CASE : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __SCREAMING_SNAKE_CASE : Optional[int] = new_cost_f __SCREAMING_SNAKE_CASE : int = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __SCREAMING_SNAKE_CASE : Optional[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = -1 __SCREAMING_SNAKE_CASE : List[str] = set() __SCREAMING_SNAKE_CASE : Tuple = set() __SCREAMING_SNAKE_CASE : Union[str, Any] = {source: 0} __SCREAMING_SNAKE_CASE : str = {destination: 0} __SCREAMING_SNAKE_CASE : Any = {source: None} __SCREAMING_SNAKE_CASE : Tuple = {destination: None} __SCREAMING_SNAKE_CASE : Tuple = PriorityQueue() __SCREAMING_SNAKE_CASE : Optional[int] = PriorityQueue() __SCREAMING_SNAKE_CASE : Any = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = queue_forward.get() visited_forward.add(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = queue_backward.get() visited_backward.add(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE : Any = pass_and_relaxation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) __SCREAMING_SNAKE_CASE : List[str] = pass_and_relaxation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __SCREAMING_SNAKE_CASE : int = shortest_distance return shortest_path_distance lowercase_ = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } lowercase_ = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
74
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Dict=1_8 , _lowerCAmelCase : Tuple=3_0 , _lowerCAmelCase : Optional[int]=4_0_0 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[Any]=True , ) -> Dict: """simple docstring""" snake_case_ = size if size is not None else {"height": 1_8, "width": 1_8} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_normalize def lowerCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "clusters" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_normalize" ) ) def lowerCAmelCase__ ( self : int ) -> Any: """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def lowerCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) snake_case_ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowerCAmelCase ) def lowerCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = os.path.join(_lowerCAmelCase , "image_processor.json" ) image_processor_first.to_json_file(_lowerCAmelCase ) snake_case_ = self.image_processing_class.from_json_file(_lowerCAmelCase ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCAmelCase ) snake_case_ = self.image_processing_class.from_pretrained(_lowerCAmelCase ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) @unittest.skip("ImageGPT requires clusters at initialization" ) def lowerCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" pass def _lowerCAmelCase ( )->Optional[Any]: '''simple docstring''' snake_case_ = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) snake_case_ = Image.open(dataset[4]["file"] ) snake_case_ = Image.open(dataset[5]["file"] ) snake_case_ = [imagea, imagea] return images @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" snake_case_ = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) snake_case_ = prepare_images() # test non-batched snake_case_ = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) snake_case_ = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowerCAmelCase ) # test batched snake_case_ = image_processing(_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) snake_case_ = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowerCAmelCase )
283
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _a ( UpperCamelCase__ ): _lowercase : str = '''swinv2''' _lowercase : Optional[Any] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self: Optional[int] , UpperCamelCase_: Union[str, Any]=224 , UpperCamelCase_: Optional[Any]=4 , UpperCamelCase_: List[str]=3 , UpperCamelCase_: int=96 , UpperCamelCase_: Tuple=[2, 2, 6, 2] , UpperCamelCase_: List[str]=[3, 6, 12, 24] , UpperCamelCase_: Optional[int]=7 , UpperCamelCase_: Union[str, Any]=4.0 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: Tuple=0.02 , UpperCamelCase_: str=1E-5 , UpperCamelCase_: List[Any]=32 , **UpperCamelCase_: List[str] , ) -> Dict: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = len(UpperCamelCase_ ) lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase__ = int(embed_dim * 2 ** (len(UpperCamelCase_ ) - 1) ) lowercase__ = (0, 0, 0, 0)
701
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] lowerCAmelCase = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
429
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def __lowerCAmelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) -> Any: lowerCamelCase_ = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) lowerCamelCase_ = DatasetInfosDict.from_directory(UpperCAmelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def __lowerCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : DatasetInfo ) -> Dict: lowerCamelCase_ = str(UpperCAmelCase__ ) dataset_info.write_to_directory(UpperCAmelCase__ ) lowerCamelCase_ = DatasetInfo.from_directory(UpperCAmelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase__ , """dataset_info.json""" ) ) def __lowerCAmelCase ( ) -> List[str]: lowerCamelCase_ = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) lowerCamelCase_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCamelCase_ = yaml.safe_dump(UpperCAmelCase__ ) lowerCamelCase_ = yaml.safe_load(UpperCAmelCase__ ) assert dataset_info_yaml_dict == reloaded def __lowerCAmelCase ( ) -> Any: lowerCamelCase_ = DatasetInfo() lowerCamelCase_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def __lowerCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : DatasetInfosDict ) -> Optional[Any]: lowerCamelCase_ = str(UpperCAmelCase__ ) dataset_infos_dict.write_to_directory(UpperCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(UpperCAmelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCamelCase_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCamelCase_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase__ , """README.md""" ) )
272
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = '''gpt_neox_japanese''' def __init__( self : Union[str, Any] , __UpperCamelCase : str=3_2_0_0_0 , __UpperCamelCase : List[Any]=2_5_6_0 , __UpperCamelCase : Any=3_2 , __UpperCamelCase : List[str]=3_2 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : List[Any]=1.00 , __UpperCamelCase : Any=1_0_0_0_0 , __UpperCamelCase : Optional[Any]=2_0_4_8 , __UpperCamelCase : Tuple=0.02 , __UpperCamelCase : List[str]=1E-5 , __UpperCamelCase : str=True , __UpperCamelCase : str=3_1_9_9_6 , __UpperCamelCase : int=3_1_9_9_9 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Tuple=0.0 , **__UpperCamelCase : List[str] , ): super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
272
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _A = logging.get_logger(__name__) class A ( __UpperCAmelCase ): def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''', UpperCamelCase__, ) super().__init__(*UpperCamelCase__, **UpperCamelCase__ )
706
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class A ( __UpperCAmelCase ): __snake_case = 'roberta-prelayernorm' def __init__( self, UpperCamelCase__=5_0265, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=512, UpperCamelCase__=2, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=1, UpperCamelCase__=0, UpperCamelCase__=2, UpperCamelCase__="absolute", UpperCamelCase__=True, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache lowerCAmelCase_ = classifier_dropout class A ( __UpperCAmelCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
325
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
389
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
389
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowerCamelCase__ ( A , A , A , unittest.TestCase ): '''simple docstring''' A_ = StableDiffusionControlNetImgaImgPipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) _lowercase : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _lowercase : Optional[int] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) _lowercase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _lowercase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _lowercase : Any = CLIPTextModel(UpperCamelCase_ ) _lowercase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowercase : List[Any] = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any]=0 ) -> Dict: '''simple docstring''' if str(UpperCamelCase_ ).startswith('mps' ): _lowercase : Any = torch.manual_seed(UpperCamelCase_ ) else: _lowercase : List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _lowercase : Union[str, Any] = 2 _lowercase : Optional[Any] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ) _lowercase : Optional[Any] = floats_tensor(control_image.shape , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) _lowercase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase : str = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) _lowercase : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __UpperCAmelCase ( self : Dict ) -> Any: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class lowerCamelCase__ ( A , A , unittest.TestCase ): '''simple docstring''' A_ = StableDiffusionControlNetImgaImgPipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __UpperCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(UpperCamelCase_ : Optional[int] ): if isinstance(UpperCamelCase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _lowercase : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCamelCase_ ) torch.manual_seed(0 ) _lowercase : str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCamelCase_ ) torch.manual_seed(0 ) _lowercase : Optional[int] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) _lowercase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _lowercase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _lowercase : Optional[int] = CLIPTextModel(UpperCamelCase_ ) _lowercase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowercase : Tuple = MultiControlNetModel([controlneta, controlneta] ) _lowercase : Any = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple=0 ) -> int: '''simple docstring''' if str(UpperCamelCase_ ).startswith('mps' ): _lowercase : List[Any] = torch.manual_seed(UpperCamelCase_ ) else: _lowercase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _lowercase : List[Any] = 2 _lowercase : Optional[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ), ] _lowercase : int = floats_tensor(control_image[0].shape , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) _lowercase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase : Optional[int] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) _lowercase : str = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def __UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' _lowercase : Dict = self.get_dummy_components() _lowercase : List[str] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) _lowercase : Tuple = 10.0 _lowercase : List[Any] = 4 _lowercase : Any = self.get_dummy_inputs(UpperCamelCase_ ) _lowercase : Union[str, Any] = steps _lowercase : Optional[int] = scale _lowercase : Optional[int] = pipe(**UpperCamelCase_ )[0] _lowercase : Dict = self.get_dummy_inputs(UpperCamelCase_ ) _lowercase : Tuple = steps _lowercase : Any = scale _lowercase : List[Any] = pipe(**UpperCamelCase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _lowercase : int = self.get_dummy_inputs(UpperCamelCase_ ) _lowercase : Optional[int] = steps _lowercase : Any = scale _lowercase : Dict = pipe(**UpperCamelCase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _lowercase : Optional[Any] = self.get_dummy_inputs(UpperCamelCase_ ) _lowercase : List[Any] = steps _lowercase : List[Any] = scale _lowercase : Optional[Any] = pipe(**UpperCamelCase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __UpperCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __UpperCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' _lowercase : int = self.get_dummy_components() _lowercase : Any = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(UpperCamelCase_ ) except NotImplementedError: pass @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' _lowercase : Union[str, Any] = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) _lowercase : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=UpperCamelCase_ , controlnet=UpperCamelCase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowercase : Union[str, Any] = 'evil space-punk bird' _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) _lowercase : str = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) _lowercase : str = pipe( UpperCamelCase_ , UpperCamelCase_ , control_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='np' , num_inference_steps=50 , strength=0.6 , ) _lowercase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) _lowercase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9E-2
4
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
1
_UpperCAmelCase = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] _UpperCAmelCase = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] _UpperCAmelCase = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _UpperCAmelCase = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] _UpperCAmelCase = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] _UpperCAmelCase = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] _UpperCAmelCase = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] _UpperCAmelCase = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
504
import numpy class snake_case_ : def __init__( self : List[str] , _snake_case : numpy.ndarray , _snake_case : numpy.ndarray )->None: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __lowerCAmelCase : Tuple = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __lowerCAmelCase : Union[str, Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __lowerCAmelCase : Dict = numpy.random.rand(3 , 1 ) # Real output values provided. __lowerCAmelCase : Optional[int] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __lowerCAmelCase : Tuple = numpy.zeros(output_array.shape ) def UpperCAmelCase__ ( self : int )->numpy.ndarray: '''simple docstring''' __lowerCAmelCase : List[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __lowerCAmelCase : str = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __lowerCAmelCase : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ ( self : int )->None: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __lowerCAmelCase : Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __lowerCAmelCase : Dict = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ ( self : Any , _snake_case : numpy.ndarray , _snake_case : int , _snake_case : bool )->None: '''simple docstring''' for iteration in range(1 , iterations + 1 ): __lowerCAmelCase : Tuple = self.feedforward() self.back_propagation() if give_loss: __lowerCAmelCase : List[Any] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def UpperCAmelCase__ ( self : Optional[int] , _snake_case : numpy.ndarray )->int: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = input_arr __lowerCAmelCase : str = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __lowerCAmelCase : List[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __lowerCAmelCase : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :numpy.ndarray ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :numpy.ndarray ) -> numpy.ndarray: return (value) * (1 - (value)) def _SCREAMING_SNAKE_CASE ( ) -> int: __lowerCAmelCase : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __lowerCAmelCase : Optional[Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __lowerCAmelCase : Union[str, Any] = TwoHiddenLayerNeuralNetwork( input_array=SCREAMING_SNAKE_CASE , output_array=SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=SCREAMING_SNAKE_CASE , iterations=10 , give_loss=SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
504
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor A = logging.get_logger(__name__) class a__ ( __A ): def __init__( self : Dict , *UpperCamelCase_ : Any , **UpperCamelCase_ : List[str]): """simple docstring""" warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__)
709
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = ConsistencyModelPipeline lowercase_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase_ = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : Dict = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def a_ ( self : Any , UpperCamelCase_ : int=False): """simple docstring""" if class_cond: __UpperCAmelCase : List[Any] = self.dummy_cond_unet else: __UpperCAmelCase : Optional[int] = self.dummy_uncond_unet # Default to CM multistep sampler __UpperCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCAmelCase : Optional[int] = { "unet": unet, "scheduler": scheduler, } return components def a_ ( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=0): """simple docstring""" if str(UpperCamelCase_).startswith("mps"): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_) else: __UpperCAmelCase : Optional[Any] = torch.Generator(device=UpperCamelCase_).manual_seed(UpperCamelCase_) __UpperCAmelCase : List[Any] = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Union[str, Any] = self.get_dummy_components() __UpperCAmelCase : str = ConsistencyModelPipeline(**UpperCamelCase_) __UpperCAmelCase : Any = pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_) __UpperCAmelCase : str = pipe(**UpperCamelCase_).images assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] __UpperCAmelCase : List[Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Optional[int] = self.get_dummy_components(class_cond=UpperCamelCase_) __UpperCAmelCase : Optional[Any] = ConsistencyModelPipeline(**UpperCamelCase_) __UpperCAmelCase : str = pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_) __UpperCAmelCase : Dict = 0 __UpperCAmelCase : int = pipe(**UpperCamelCase_).images assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Any = image[0, -3:, -3:, -1] __UpperCAmelCase : List[Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Optional[int] = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = ConsistencyModelPipeline(**UpperCamelCase_) __UpperCAmelCase : Optional[Any] = pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : List[str] = self.get_dummy_inputs(UpperCamelCase_) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : int = None __UpperCAmelCase : List[Any] = pipe(**UpperCamelCase_).images assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] __UpperCAmelCase : Union[str, Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[str] = self.get_dummy_components(class_cond=UpperCamelCase_) __UpperCAmelCase : Tuple = ConsistencyModelPipeline(**UpperCamelCase_) __UpperCAmelCase : int = pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_) __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Tuple = pipe(**UpperCamelCase_).images assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] __UpperCAmelCase : Dict = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): def a_ ( self : Optional[int]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self : Union[str, Any] , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : int="cpu" , UpperCamelCase_ : Any=torch.floataa , UpperCamelCase_ : List[str]=(1, 3, 64, 64)): """simple docstring""" __UpperCAmelCase : Optional[int] = torch.manual_seed(UpperCamelCase_) __UpperCAmelCase : int = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: __UpperCAmelCase : int = self.get_fixed_latents(seed=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ , shape=UpperCamelCase_) __UpperCAmelCase : Optional[int] = latents return inputs def a_ ( self : Union[str, Any] , UpperCamelCase_ : int=0 , UpperCamelCase_ : Tuple="cpu" , UpperCamelCase_ : Tuple=torch.floataa , UpperCamelCase_ : Optional[Any]=(1, 3, 64, 64)): """simple docstring""" if type(UpperCamelCase_) == str: __UpperCAmelCase : Union[str, Any] = torch.device(UpperCamelCase_) __UpperCAmelCase : Union[str, Any] = torch.Generator(device=UpperCamelCase_).manual_seed(UpperCamelCase_) __UpperCAmelCase : Optional[int] = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_) return latents def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : Optional[int] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __UpperCAmelCase : Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCAmelCase : Dict = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_) pipe.to(torch_device=UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Dict = self.get_inputs() __UpperCAmelCase : List[str] = pipe(**UpperCamelCase_).images assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] __UpperCAmelCase : Union[str, Any] = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : List[str] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __UpperCAmelCase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCAmelCase : Any = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_) pipe.to(torch_device=UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : int = self.get_inputs() __UpperCAmelCase : str = 1 __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = pipe(**UpperCamelCase_).images assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : str = image[0, -3:, -3:, -1] __UpperCAmelCase : Union[str, Any] = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 @require_torch_a def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : int = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __UpperCAmelCase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCAmelCase : int = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_) pipe.to(torch_device=UpperCamelCase_ , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Tuple = self.get_inputs(get_fixed_latents=UpperCamelCase_ , device=UpperCamelCase_) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase_ , enable_math=UpperCamelCase_ , enable_mem_efficient=UpperCamelCase_): __UpperCAmelCase : List[str] = pipe(**UpperCamelCase_).images assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] __UpperCAmelCase : Optional[int] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @require_torch_a def a_ ( self : str): """simple docstring""" __UpperCAmelCase : Tuple = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __UpperCAmelCase : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCAmelCase : List[Any] = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_) pipe.to(torch_device=UpperCamelCase_ , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Optional[int] = self.get_inputs(get_fixed_latents=UpperCamelCase_ , device=UpperCamelCase_) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : Any = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase_ , enable_math=UpperCamelCase_ , enable_mem_efficient=UpperCamelCase_): __UpperCAmelCase : List[str] = pipe(**UpperCamelCase_).images assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : int = image[0, -3:, -3:, -1] __UpperCAmelCase : List[str] = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
487
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset snake_case_ : Optional[Any] = random.Random() def __snake_case ( _UpperCAmelCase : int, _UpperCAmelCase : Tuple=1.0, _UpperCAmelCase : Union[str, Any]=None, _UpperCAmelCase : Optional[Any]=None): if rng is None: UpperCamelCase = global_rng UpperCamelCase = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=4_0_0 , lowerCamelCase__=2_0_0_0 , lowerCamelCase__=2_0_4_8 , lowerCamelCase__=1_2_8 , lowerCamelCase__=1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=3_0 , lowerCamelCase__=4_4_1_0_0 , ): '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = min_seq_length UpperCamelCase = max_seq_length UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase = spectrogram_length UpperCamelCase = feature_size UpperCamelCase = num_audio_channels UpperCamelCase = hop_length UpperCamelCase = chunk_length UpperCamelCase = sampling_rate def UpperCAmelCase ( self ): '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCAmelCase ( self , lowerCamelCase__=False , lowerCamelCase__=False ): '''simple docstring''' def _flatten(lowerCamelCase__ ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: UpperCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = TvltFeatureExtractor def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = TvltFeatureExtractionTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''spectrogram_length''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''feature_size''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''num_audio_channels''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''hop_length''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''chunk_length''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''sampling_rate''' ) ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) UpperCamelCase = self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) UpperCamelCase = feat_extract_first.to_dict() UpperCamelCase = feat_extract_second.to_dict() UpperCamelCase = dict_first.pop('''mel_filters''' ) UpperCamelCase = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(lowerCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(lowerCamelCase__ ) UpperCamelCase = self.feature_extraction_class.from_json_file(lowerCamelCase__ ) UpperCamelCase = feat_extract_first.to_dict() UpperCamelCase = feat_extract_second.to_dict() UpperCamelCase = dict_first.pop('''mel_filters''' ) UpperCamelCase = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched UpperCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking UpperCamelCase = feature_extractor( lowerCamelCase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=lowerCamelCase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. UpperCamelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCamelCase = np.asarray(lowerCamelCase__ ) UpperCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCamelCase = ds.sort('''id''' ).select(range(lowerCamelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self._load_datasamples(1 ) UpperCamelCase = TvltFeatureExtractor() UpperCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) UpperCamelCase = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowerCamelCase__ , atol=1e-4 ) )
212
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=9_9 , lowerCamelCase__=3_2 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=1_6 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ): '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = True _snake_case = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = FlaxRobertaModelTester(self ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=lowerCamelCase__ ) UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
212
1
import requests def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> None: SCREAMING_SNAKE_CASE_ : Any ={'''Content-Type''': '''application/json'''} SCREAMING_SNAKE_CASE_ : int =requests.post(UpperCAmelCase_ , json={'''text''': message_body} , headers=UpperCAmelCase_ ) if response.status_code != 2_0_0: SCREAMING_SNAKE_CASE_ : Optional[int] =( '''Request to slack returned an error ''' f'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(UpperCAmelCase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
431
# Function to print upper half of diamond (pyramid) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int ) -> Dict: for i in range(0 , UpperCAmelCase_ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] ) -> List[str]: for i in range(UpperCAmelCase_ , 0 , -1 ): for _ in range(UpperCAmelCase_ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(UpperCAmelCase_ ) # upper half reverse_floyd(UpperCAmelCase_ ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") _lowercase = 1 while K: _lowercase = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) _lowercase = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
431
1
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ = emb.weight.shape UpperCAmelCase__ = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) UpperCAmelCase__ = emb.weight.data return lin_layer def lowercase ( _lowerCAmelCase , _lowerCAmelCase="facebook/mbart-large-en-ro" , _lowerCAmelCase=False , _lowerCAmelCase=False ): UpperCAmelCase__ = torch.load(_lowerCAmelCase , map_location="""cpu""" )["""model"""] remove_ignore_keys_(_lowerCAmelCase ) UpperCAmelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] UpperCAmelCase__ = MBartConfig.from_pretrained(_lowerCAmelCase , vocab_size=_lowerCAmelCase ) if mbart_aa and finetuned: UpperCAmelCase__ = """relu""" UpperCAmelCase__ = state_dict["""decoder.embed_tokens.weight"""] UpperCAmelCase__ = MBartForConditionalGeneration(_lowerCAmelCase ) model.model.load_state_dict(_lowerCAmelCase ) if finetuned: UpperCAmelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') snake_case__ : List[Any] = parser.parse_args() snake_case__ : Optional[int] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
392
class snake_case : '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ) ->Tuple: '''simple docstring''' UpperCAmelCase__ = name UpperCAmelCase__ = value UpperCAmelCase__ = weight def __repr__( self : List[Any] ) ->List[Any]: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def UpperCAmelCase ( self : Optional[Any] ) ->Tuple: '''simple docstring''' return self.value def UpperCAmelCase ( self : Union[str, Any] ) ->Dict: '''simple docstring''' return self.name def UpperCAmelCase ( self : List[str] ) ->Optional[Any]: '''simple docstring''' return self.weight def UpperCAmelCase ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' return self.value / self.weight def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) UpperCAmelCase__ = [] UpperCAmelCase__ , UpperCAmelCase__ = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
392
1
'''simple docstring''' import json import sys def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): with open(UpperCAmelCase_ , encoding='utf-8' ) as f: UpperCAmelCase : Optional[Any] = json.load(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = results[benchmark_name] UpperCAmelCase : List[str] = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) UpperCAmelCase : Union[str, Any] = '| metric |' UpperCAmelCase : List[Any] = '|--------|' UpperCAmelCase : int = '| new / old (diff) |' for metric_name in sorted(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = benchmark_res[metric_name] UpperCAmelCase : List[Any] = metric_vals['new'] UpperCAmelCase : Any = metric_vals.get('old' , UpperCAmelCase_ ) UpperCAmelCase : int = metric_vals.get('diff' , UpperCAmelCase_ ) UpperCAmelCase : Dict = F""" {new_val:f}""" if isinstance(UpperCAmelCase_ , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(UpperCAmelCase_ , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(UpperCAmelCase_ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(UpperCAmelCase_ ) ) if __name__ == "__main__": lowercase__ = sys.argv[1] lowercase__ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
1
'''simple docstring''' from __future__ import annotations a : Optional[Any] = '''Muhammad Umer Farooq''' a : int = '''MIT''' a : Dict = '''1.0.0''' a : Optional[int] = '''Muhammad Umer Farooq''' a : Optional[Any] = '''[email protected]''' a : Union[str, Any] = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Optional[Any] , a_ : str ): """simple docstring""" super().__init__() __snake_case = [] __snake_case = domain def A ( self : str , a_ : str , a_ : list[tuple[str, str | None]] ): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case = parse.urljoin(self.domain , a_ ) self.urls.append(a_ ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: return ".".join(get_sub_domain_name(_UpperCAmelCase ).split("." )[-2:] ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: return parse.urlparse(_UpperCAmelCase ).netloc def __UpperCAmelCase ( _UpperCAmelCase : str = "https://github.com" ) -> list[str]: __snake_case = get_domain_name(_UpperCAmelCase ) # Initialize the parser __snake_case = Parser(_UpperCAmelCase ) try: # Open URL __snake_case = requests.get(_UpperCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case = requests.get(_UpperCAmelCase ) # Get the valid email. __snake_case = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_UpperCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_UpperCAmelCase ) if __name__ == "__main__": a : Any = emails_from_url('''https://github.com''') print(F'''{len(emails)} emails found:''') print('''\n'''.join(sorted(emails)))
69
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __snake_case = gray_code_sequence_string(_UpperCAmelCase ) # # convert them to integers for i in range(len(_UpperCAmelCase ) ): __snake_case = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( _UpperCAmelCase : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __snake_case = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __snake_case = gray_code_sequence_string(bit_count - 1 ) __snake_case = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __snake_case = "0" + smaller_sequence[i] sequence.append(_UpperCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __snake_case = "1" + smaller_sequence[i] sequence.append(_UpperCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
69
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _lowerCAmelCase( unittest.TestCase): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self )-> str: __A = torch.nn.Linear(10 , 10 ) __A = torch.optim.SGD(model.parameters() , 0.1 ) __A = Accelerator() __A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
707
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> np.ndarray: '''simple docstring''' if (ksize % 2) == 0: __A = ksize + 1 __A = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(snake_case ): for x in range(snake_case ): # distance from center __A = x - ksize // 2 __A = y - ksize // 2 # degree to radiant __A = theta / 1_8_0 * np.pi __A = np.cos(_theta ) __A = np.sin(_theta ) # get kernel x __A = cos_theta * px + sin_theta * py # get kernel y __A = -sin_theta * px + cos_theta * py # fill kernel __A = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _UpperCamelCase : int = imread("""../image_data/lena.jpg""") # turn image in gray scale value _UpperCamelCase : str = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _UpperCamelCase : List[Any] = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: _UpperCamelCase : Optional[Any] = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _UpperCamelCase : Any = out / out.max() * 2_5_5 _UpperCamelCase : Optional[Any] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
341
0
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _a : Dict = logging.get_logger(__name__) def a_ ( __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: """simple docstring""" snake_case : List[str] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(a_ ) == len(a_ ), F"{len(a_ )} != {len(a_ )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) _a : Tuple = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _a : Union[str, Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a_ ( __magic_name__ , __magic_name__ ) -> Union[str, Any]: """simple docstring""" try: snake_case : Optional[int] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(a_ ) ) def a_ ( __magic_name__ , __magic_name__ ) -> Optional[Any]: """simple docstring""" if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(a_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a_ ( __magic_name__ , __magic_name__ = "student" , __magic_name__ = None , __magic_name__ = None , __magic_name__=False , __magic_name__=None , __magic_name__=None , **__magic_name__ , ) -> Any: """simple docstring""" snake_case : Optional[int] = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(a_ , a_ ): AutoTokenizer.from_pretrained(a_ ).save_pretrained(a_ ) # purely for convenience snake_case : Tuple = AutoModelForSeqaSeqLM.from_pretrained(a_ ).eval() else: assert isinstance(a_ , a_ ), F"teacher must be a model or string got type {type(a_ )}" snake_case : str = teacher.config.to_diff_dict() try: snake_case : Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: snake_case : List[str] = teacher_e if d is None: snake_case : List[str] = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): snake_case : Dict = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: snake_case : List[str] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: snake_case : str = teacher_e if d is None: snake_case : Tuple = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(a_ ) # Copy weights snake_case : Optional[Any] = teacher.config_class(**a_ ) snake_case : int = AutoModelForSeqaSeqLM.from_config(a_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. snake_case : Union[str, Any] = student.load_state_dict(teacher.state_dict() , strict=a_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save snake_case : Dict = list(range(a_ ) ), list(range(a_ ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(a_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: snake_case : List[int] = pick_layers_to_copy(a_ , a_ ) if d_layers_to_copy is None: snake_case : List[int] = pick_layers_to_copy(a_ , a_ ) try: if hasattr( a_ , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , a_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , a_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , a_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , a_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , a_ ) copy_layers(teacher.decoder.block , student.decoder.block , a_ ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) snake_case : Any = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(a_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
598
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __A ( ): lowerCAmelCase , lowerCAmelCase : List[Any] = 9, 1_4 # noqa: F841 lowerCAmelCase : int = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCAmelCase : Optional[Any] = defaultdict(a_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCAmelCase : int = mst(a_ ) lowerCAmelCase : Tuple = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCAmelCase : List[str] = tuple(answer[:2] ) lowerCAmelCase : int = tuple(edge[::-1] ) assert edge in result or reverse in result
525
0
"""simple docstring""" from collections import deque from .hash_table import HashTable class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Any , *__lowerCamelCase : str , **__lowerCamelCase : int ): """simple docstring""" super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) _snake_case = self.values[key] def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any]=None ): """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
404
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } snake_case = { '''google/bigbird-roberta-base''': 4_0_9_6, '''google/bigbird-roberta-large''': 4_0_9_6, '''google/bigbird-base-trivia-itc''': 4_0_9_6, } snake_case = '''▁''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Dict = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[Any] = BigBirdTokenizer A__ : Dict = ['''input_ids''', '''attention_mask'''] A__ : List[int] = [] def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : int="<unk>" , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : Tuple="</s>" , __lowerCamelCase : Any="<pad>" , __lowerCamelCase : List[str]="[SEP]" , __lowerCamelCase : str="[MASK]" , __lowerCamelCase : str="[CLS]" , **__lowerCamelCase : Any , ): """simple docstring""" _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) _snake_case = vocab_file _snake_case = False if not self.vocab_file else True def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
404
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: _lowercase = tempfile.mkdtemp() _lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] _lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _lowercase = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], 'do_convert_rgb': True, } _lowercase = os.path.join(self.tmpdirname ,__A ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(__A ,__A ) def __UpperCAmelCase ( self : Optional[int] ,**__A : Tuple ) -> Any: return BertTokenizer.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : int ,**__A : Union[str, Any] ) -> List[Any]: return BertTokenizerFast.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : List[Any] ,**__A : List[Any] ) -> List[str]: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : Tuple ) -> Dict: shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self : Tuple ) -> int: _lowercase = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] _lowercase = [Image.fromarray(np.moveaxis(__A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: _lowercase = self.get_tokenizer() _lowercase = self.get_rust_tokenizer() _lowercase = self.get_image_processor() _lowercase = ChineseCLIPProcessor(tokenizer=__A ,image_processor=__A ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=__A ) _lowercase = ChineseCLIPProcessor(tokenizer=__A ,image_processor=__A ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,__A ) self.assertIsInstance(processor_fast.tokenizer ,__A ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,__A ) self.assertIsInstance(processor_fast.image_processor ,__A ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: _lowercase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase = self.get_tokenizer(cls_token='(CLS)' ,sep_token='(SEP)' ) _lowercase = self.get_image_processor(do_normalize=__A ) _lowercase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname ,cls_token='(CLS)' ,sep_token='(SEP)' ,do_normalize=__A ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__A ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: _lowercase = self.get_image_processor() _lowercase = self.get_tokenizer() _lowercase = ChineseCLIPProcessor(tokenizer=__A ,image_processor=__A ) _lowercase = self.prepare_image_inputs() _lowercase = image_processor(__A ,return_tensors='np' ) _lowercase = processor(images=__A ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: _lowercase = self.get_image_processor() _lowercase = self.get_tokenizer() _lowercase = ChineseCLIPProcessor(tokenizer=__A ,image_processor=__A ) _lowercase = 'Alexandra,T-shirt的价格是15便士。' _lowercase = processor(text=__A ) _lowercase = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def __UpperCAmelCase ( self : Optional[int] ) -> str: _lowercase = self.get_image_processor() _lowercase = self.get_tokenizer() _lowercase = ChineseCLIPProcessor(tokenizer=__A ,image_processor=__A ) _lowercase = 'Alexandra,T-shirt的价格是15便士。' _lowercase = self.prepare_image_inputs() _lowercase = processor(text=__A ,images=__A ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def __UpperCAmelCase ( self : Optional[Any] ) -> int: _lowercase = self.get_image_processor() _lowercase = self.get_tokenizer() _lowercase = ChineseCLIPProcessor(tokenizer=__A ,image_processor=__A ) _lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase = processor.batch_decode(__A ) _lowercase = tokenizer.batch_decode(__A ) self.assertListEqual(__A ,__A ) def __UpperCAmelCase ( self : Dict ) -> str: _lowercase = self.get_image_processor() _lowercase = self.get_tokenizer() _lowercase = ChineseCLIPProcessor(tokenizer=__A ,image_processor=__A ) _lowercase = 'Alexandra,T-shirt的价格是15便士。' _lowercase = self.prepare_image_inputs() _lowercase = processor(text=__A ,images=__A ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
67
from typing import Any import numpy as np def SCREAMING_SNAKE_CASE__ ( snake_case__ :np.ndarray ) -> bool: return np.array_equal(snake_case__ , matrix.conjugate().T ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :np.ndarray , snake_case__ :np.ndarray ) -> Any: _lowercase = v.conjugate().T _lowercase = v_star.dot(snake_case__ ) assert isinstance(snake_case__ , np.ndarray ) return (v_star_dot.dot(snake_case__ )) / (v_star.dot(snake_case__ )) def SCREAMING_SNAKE_CASE__ ( ) -> None: _lowercase = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) _lowercase = np.array([[1], [2], [3]] ) assert is_hermitian(snake_case__ ), F"""{a} is not hermitian.""" print(rayleigh_quotient(snake_case__ , snake_case__ ) ) _lowercase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(snake_case__ ), F"""{a} is not hermitian.""" assert rayleigh_quotient(snake_case__ , snake_case__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
67
1
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __UpperCAmelCase = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def lowerCAmelCase_ ( __A : Optional[int] , __A : int=None ): '''simple docstring''' require_version(deps[pkg] , __A )
692
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _UpperCamelCase (a_ ): snake_case_ = """time_series_transformer""" snake_case_ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "student_t" , __UpperCamelCase = "nll" , __UpperCamelCase = 1 , __UpperCamelCase = [1, 2, 3, 4, 5, 6, 7] , __UpperCamelCase = "mean" , __UpperCamelCase = 0 , __UpperCamelCase = 0 , __UpperCamelCase = 0 , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 3_2 , __UpperCamelCase = 3_2 , __UpperCamelCase = 2 , __UpperCamelCase = 2 , __UpperCamelCase = 2 , __UpperCamelCase = 2 , __UpperCamelCase = True , __UpperCamelCase = "gelu" , __UpperCamelCase = 6_4 , __UpperCamelCase = 0.1 , __UpperCamelCase = 0.1 , __UpperCamelCase = 0.1 , __UpperCamelCase = 0.1 , __UpperCamelCase = 0.1 , __UpperCamelCase = 1_0_0 , __UpperCamelCase = 0.0_2 , __UpperCamelCase=True , **__UpperCamelCase , )-> List[Any]: # time series specific configuration __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length or prediction_length __lowerCAmelCase = distribution_output __lowerCAmelCase = loss __lowerCAmelCase = input_size __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = scaling __lowerCAmelCase = num_dynamic_real_features __lowerCAmelCase = num_static_real_features __lowerCAmelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __lowerCAmelCase = cardinality else: __lowerCAmelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __lowerCAmelCase = embedding_dimension else: __lowerCAmelCase = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCAmelCase = num_parallel_samples # Transformer architecture configuration __lowerCAmelCase = input_size * len(__UpperCamelCase ) + self._number_of_features __lowerCAmelCase = d_model __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = decoder_layers __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = use_cache super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def __UpperCAmelCase ( self )-> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
367
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : List[Any] = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : int = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : Optional[int] = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : str = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } lowerCamelCase : List[str] = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } lowerCamelCase : Union[str, Any] = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } lowerCamelCase : Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : Union[str, Any] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _UpperCamelCase (a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRContextEncoderTokenizer class _UpperCamelCase (a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRQuestionEncoderTokenizer lowerCamelCase : Dict = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCamelCase : int = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCamelCase : Optional[int] = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(a_ ) class _UpperCamelCase : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> BatchEncoding: if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: __lowerCAmelCase = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) __lowerCAmelCase = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] __lowerCAmelCase = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages assert len(__UpperCamelCase ) == len( __UpperCamelCase ), F"""There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.""" __lowerCAmelCase = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["input_ids"] __lowerCAmelCase = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["input_ids"] __lowerCAmelCase = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: __lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowerCAmelCase = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1_6 , __UpperCamelCase = 6_4 , __UpperCamelCase = 4 , )-> List[DPRSpanPrediction]: __lowerCAmelCase = reader_input["input_ids"] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reader_output[:3] __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) __lowerCAmelCase = [] for doc_id in sorted_docs: __lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> List[DPRSpanPrediction]: __lowerCAmelCase = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowerCAmelCase = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) __lowerCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" __lowerCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a_ ) class _UpperCamelCase (a_ , a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = READER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = READER_PRETRAINED_INIT_CONFIGURATION snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = DPRReaderTokenizer
367
1
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCAmelCase__ = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } UpperCAmelCase__ = { """facebook/blenderbot_small-90M""": 5_1_2, } class a ( lowerCAmelCase_ ): _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : str , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[Any]="<|endoftext|>" , __lowerCAmelCase : Tuple="<|endoftext|>" , __lowerCAmelCase : Optional[Any]="<|endoftext|>" , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Union[str, Any]=True , **__lowerCAmelCase : Optional[int] , ): super().__init__( ByteLevelBPETokenizer( vocab=__lowerCAmelCase , merges=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , ) , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = add_prefix_space def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any]=None ): _UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
711
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
275
0
lowerCAmelCase = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
43
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
1
from sklearn.metrics import recall_score import datasets snake_case__ : Optional[int] = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ snake_case__ : int = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ snake_case__ : int = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Tuple ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int]=None , lowerCamelCase : List[Any]=1 , lowerCamelCase : List[str]="binary" , lowerCamelCase : Tuple=None , lowerCamelCase : Tuple="warn" , ): '''simple docstring''' __lowercase = recall_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase , zero_division=lowerCamelCase , ) return {"recall": float(lowerCamelCase ) if score.size == 1 else score}
721
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Dict ) -> List[Any]: """simple docstring""" if "cls_token" in name: SCREAMING_SNAKE_CASE_ : Tuple =name.replace('cls_token' ,'vit.embeddings.cls_token' ) if "mask_token" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] =name.replace('mask_token' ,'decoder.mask_token' ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_ : Any =name.replace('decoder_pos_embed' ,'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_ : Any =name.replace('pos_embed' ,'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_ : List[Any] =name.replace('patch_embed.proj' ,'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_ : Optional[int] =name.replace('patch_embed.norm' ,'vit.embeddings.norm' ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] =name.replace('decoder_blocks' ,'decoder.decoder_layers' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] =name.replace('blocks' ,'vit.encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_ : Optional[int] =name.replace('attn.proj' ,'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE_ : List[Any] =name.replace('attn' ,'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ : List[str] =name.replace('norm1' ,'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE_ : List[str] =name.replace('norm2' ,'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] =name.replace('mlp.fc1' ,'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_ : str =name.replace('mlp.fc2' ,'output.dense' ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] =name.replace('decoder_embed' ,'decoder.decoder_embed' ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_ : int =name.replace('decoder_norm' ,'decoder.decoder_norm' ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_ : str =name.replace('decoder_pred' ,'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_ : Dict =name.replace('norm.weight' ,'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] =name.replace('norm.bias' ,'vit.layernorm.bias' ) return name def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Union[str, Any] ) -> int: """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ : List[str] =orig_state_dict.pop(lowerCAmelCase_ ) if "qkv" in key: SCREAMING_SNAKE_CASE_ : Dict =key.split('.' ) SCREAMING_SNAKE_CASE_ : List[str] =int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_ : List[Any] =config.decoder_hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] ='decoder.decoder_layers.' if "weight" in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] =val[:dim, :] SCREAMING_SNAKE_CASE_ : Optional[int] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_ : Optional[int] =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] =val[:dim] SCREAMING_SNAKE_CASE_ : Union[str, Any] =val[dim : dim * 2] SCREAMING_SNAKE_CASE_ : int =val[-dim:] else: SCREAMING_SNAKE_CASE_ : List[str] =config.hidden_size SCREAMING_SNAKE_CASE_ : Tuple ='vit.encoder.layer.' if "weight" in key: SCREAMING_SNAKE_CASE_ : Any =val[:dim, :] SCREAMING_SNAKE_CASE_ : Any =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_ : int =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_ : Dict =val[:dim] SCREAMING_SNAKE_CASE_ : Dict =val[dim : dim * 2] SCREAMING_SNAKE_CASE_ : int =val[-dim:] else: SCREAMING_SNAKE_CASE_ : List[str] =val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_ : List[str] =1024 SCREAMING_SNAKE_CASE_ : Optional[Any] =4096 SCREAMING_SNAKE_CASE_ : Any =24 SCREAMING_SNAKE_CASE_ : Dict =16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_ : str =14 SCREAMING_SNAKE_CASE_ : List[Any] =1280 SCREAMING_SNAKE_CASE_ : Optional[Any] =5120 SCREAMING_SNAKE_CASE_ : Optional[Any] =32 SCREAMING_SNAKE_CASE_ : Any =16 SCREAMING_SNAKE_CASE_ : List[str] =ViTMAEForPreTraining(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Dict =torch.hub.load_state_dict_from_url(lowerCAmelCase_ ,map_location='cpu' )['model'] SCREAMING_SNAKE_CASE_ : Optional[int] =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_ : Tuple =convert_state_dict(lowerCAmelCase_ ,lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE_ : int ='https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' SCREAMING_SNAKE_CASE_ : List[str] =Image.open(requests.get(lowerCAmelCase_ ,stream=lowerCAmelCase_ ).raw ) SCREAMING_SNAKE_CASE_ : Any =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_ : Optional[int] =image_processor(images=lowerCAmelCase_ ,return_tensors='pt' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_ : Any =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] =outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_ : str =torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,lowerCAmelCase_ ,atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
220
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = 'Speech2TextFeatureExtractor' _lowercase = 'Speech2TextTokenizer' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): super().__init__(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] =self.feature_extractor SCREAMING_SNAKE_CASE_ : Optional[int] =False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) SCREAMING_SNAKE_CASE_ : Any =kwargs.pop('raw_speech' ) else: SCREAMING_SNAKE_CASE_ : str =kwargs.pop('audio' , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =kwargs.pop('sampling_rate' , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple =kwargs.pop('text' , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE_ : Dict =args[0] SCREAMING_SNAKE_CASE_ : Optional[Any] =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: SCREAMING_SNAKE_CASE_ : str =self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ : str =encodings['input_ids'] return inputs def __lowerCamelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @contextmanager def __lowerCamelCase ( self ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =True SCREAMING_SNAKE_CASE_ : int =self.tokenizer yield SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.feature_extractor SCREAMING_SNAKE_CASE_ : Tuple =False
220
1
"""simple docstring""" import re def lowercase ( UpperCamelCase : str ): """simple docstring""" A__ : str =re.compile( R"^(?:0|94|\+94|0{2}94)" R"7(0|1|2|4|5|6|7|8)" R"(-| |)" R"\d{7}$" ) return bool(re.search(UpperCamelCase , UpperCamelCase ) ) if __name__ == "__main__": __A : Optional[Any] = "0094702343221" print(is_sri_lankan_phone_number(phone))
595
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A : Optional[Any] = "pt" elif is_tf_available(): __A : Optional[Any] = "tf" else: __A : Tuple = "jax" class __lowerCAmelCase ( _UpperCamelCase , unittest.TestCase): '''simple docstring''' __magic_name__ : List[Any] = ByTaTokenizer __magic_name__ : Optional[Any] = False def _UpperCAmelCase ( self : int ): super().setUp() A__ : List[Any] =ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase ( self : List[Any] ): return ByTaTokenizer.from_pretrained("google/byt5-small" ) def _UpperCAmelCase ( self : List[Any] , **UpperCamelCase__ : Union[str, Any] ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _UpperCAmelCase ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[Any]=20 , UpperCamelCase__ : Tuple=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. A__ : int =[] for i in range(len(UpperCamelCase__ ) ): try: A__ : str =tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) A__ : Any =list(filter(lambda UpperCamelCase__ : re.match(R"^[ a-zA-Z]+$" , t[1] ) , UpperCamelCase__ ) ) A__ : str =list(filter(lambda UpperCamelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase__ ) , UpperCamelCase__ ) ) if max_length is not None and len(UpperCamelCase__ ) > max_length: A__ : int =toks[:max_length] if min_length is not None and len(UpperCamelCase__ ) < min_length and len(UpperCamelCase__ ) > 0: while len(UpperCamelCase__ ) < min_length: A__ : List[Any] =toks + toks # toks_str = [t[1] for t in toks] A__ : str =[t[0] for t in toks] # Ensure consistency A__ : Optional[int] =tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) if " " not in output_txt and len(UpperCamelCase__ ) > 1: A__ : List[Any] =( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase__ ) ) if with_prefix_space: A__ : List[Any] =" " + output_txt A__ : Tuple =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) return output_txt, output_ids def _UpperCAmelCase ( self : Union[str, Any] ): A__ : Any =self.ta_base_tokenizer A__ : str =tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) A__ : Any =tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def _UpperCAmelCase ( self : List[Any] ): A__ : Optional[int] =self.ta_base_tokenizer A__ : Dict ="Unicode €." A__ : List[Any] =tokenizer(UpperCamelCase__ ) A__ : List[str] =[88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"] , UpperCamelCase__ ) # decoding A__ : Tuple =tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , "Unicode €.</s>" ) A__ : Tuple =tokenizer("e è é ê ë" ) A__ : Tuple =[104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"] , UpperCamelCase__ ) # decoding A__ : Union[str, Any] =tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def _UpperCAmelCase ( self : Dict ): A__ : Dict =self.ta_base_tokenizer A__ : Any =["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off A__ : Any =[68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on A__ : Union[str, Any] =tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) if FRAMEWORK != "jax": A__ : str =list(batch.input_ids.numpy()[0] ) else: A__ : int =list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCAmelCase ( self : Optional[Any] ): A__ : Any =self.ta_base_tokenizer A__ : List[Any] =["A long paragraph for summarization.", "Another paragraph for summarization."] A__ : Tuple =tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , UpperCamelCase__ ) self.assertIn("attention_mask" , UpperCamelCase__ ) self.assertNotIn("decoder_input_ids" , UpperCamelCase__ ) self.assertNotIn("decoder_attention_mask" , UpperCamelCase__ ) def _UpperCAmelCase ( self : Optional[Any] ): A__ : Union[str, Any] =self.ta_base_tokenizer A__ : Union[str, Any] =[ "Summary of the text.", "Another summary.", ] A__ : Dict =tokenizer( text_target=UpperCamelCase__ , max_length=32 , padding="max_length" , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _UpperCAmelCase ( self : List[str] ): A__ : Optional[int] =self.ta_base_tokenizer A__ : int =["A long paragraph for summarization. </s>"] A__ : str =["Summary of the text. </s>"] # fmt: off A__ : int =[68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] A__ : str =[86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on A__ : int =tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch["input_ids"][0] ) self.assertEqual(UpperCamelCase__ , batch["labels"][0] ) def _UpperCAmelCase ( self : List[Any] ): # safety check on max_len default value so we are sure the test works A__ : List[str] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test A__ : List[Any] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc A__ : Tuple =tempfile.mkdtemp() A__ : List[str] =" He is very happy, UNwant\u00E9d,running" A__ : str =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) A__ : Optional[Any] =tokenizer.__class__.from_pretrained(UpperCamelCase__ ) A__ : str =after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) A__ : int =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc A__ : str =tempfile.mkdtemp() A__ : Optional[Any] =" He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) A__ : Dict =tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) A__ : Tuple =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) A__ : List[str] =tokenizer.__class__.from_pretrained(UpperCamelCase__ ) A__ : List[str] =after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) A__ : List[str] =tokenizer.__class__.from_pretrained(UpperCamelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase__ ) def _UpperCAmelCase ( self : Dict ): A__ : List[str] =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: A__ : List[Any] =json.load(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: A__ : Tuple =json.load(UpperCamelCase__ ) A__ : int =[F'''<extra_id_{i}>''' for i in range(125 )] A__ : int =added_tokens_extra_ids + [ "an_additional_special_token" ] A__ : Optional[Any] =added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(UpperCamelCase__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A__ : Tuple =tokenizer_class.from_pretrained( UpperCamelCase__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A__ : Optional[int] =added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=UpperCamelCase__ )] A__ : Union[str, Any] =tokenizer_class.from_pretrained( UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def _UpperCAmelCase ( self : List[Any] ): A__ : str =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) A__ : Optional[int] =tokenizer_class.from_pretrained(UpperCamelCase__ ) self.assertTrue(tokenizer.decode([255] ) == "" ) def _UpperCAmelCase ( self : List[Any] ): pass def _UpperCAmelCase ( self : Optional[Any] ): pass def _UpperCAmelCase ( self : Optional[int] ): pass def _UpperCAmelCase ( self : Optional[int] ): pass def _UpperCAmelCase ( self : Any ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens A__ : Union[str, Any] =self.get_tokenizers(fast=UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): A__ : Tuple =["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] A__ : Optional[Any] =tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCAmelCase ( self : List[str] ): A__ : Union[str, Any] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): A__ : List[str] =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] A__ : List[Any] =0 A__ : List[Any] =tokenizer.convert_ids_to_tokens( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for attr in attributes_list: setattr(UpperCamelCase__ , attr + "_id" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + "_id" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , attr + "_id" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + "_id" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens_ids" ) , [] ) setattr(UpperCamelCase__ , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
595
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = LEDTokenizer A_ = LEDTokenizerFast A_ = True def UpperCAmelCase__ ( self) -> int: super().setUp() UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_)))) UpperCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase = {'''unk_token''': '''<unk>'''} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(lowerCamelCase_) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(lowerCamelCase_)) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Union[str, Any]: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Optional[int]: kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return "lower newer", "lower newer" @cached_property def UpperCAmelCase__ ( self) -> Any: return LEDTokenizer.from_pretrained('''allenai/led-base-16384''') @cached_property def UpperCAmelCase__ ( self) -> Any: return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''') @require_torch def UpperCAmelCase__ ( self) -> str: UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCamelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , max_length=len(lowerCamelCase_) , padding=lowerCamelCase_ , return_tensors='''pt''') self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) @require_torch def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''pt''') self.assertIn('''input_ids''' , lowerCamelCase_) self.assertIn('''attention_mask''' , lowerCamelCase_) self.assertNotIn('''labels''' , lowerCamelCase_) self.assertNotIn('''decoder_attention_mask''' , lowerCamelCase_) @require_torch def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(text_target=lowerCamelCase_ , max_length=3_2 , padding='''max_length''' , return_tensors='''pt''') self.assertEqual(3_2 , targets['''input_ids'''].shape[1]) @require_torch def UpperCAmelCase__ ( self) -> Union[str, Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer( ['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''] , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors='''pt''') self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2)) @require_torch def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = ['''A long paragraph for summarization.'''] UpperCamelCase = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , return_tensors='''pt''') UpperCamelCase = tokenizer(text_target=lowerCamelCase_ , return_tensors='''pt''') UpperCamelCase = inputs['''input_ids'''] UpperCamelCase = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) @require_torch def UpperCAmelCase__ ( self) -> Dict: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = ['''Summary of the text.''', '''Another summary.'''] UpperCamelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_) UpperCamelCase = [[0] * len(lowerCamelCase_) for x in encoded_output['''input_ids''']] UpperCamelCase = tokenizer.pad(lowerCamelCase_) self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Tuple: pass def UpperCAmelCase__ ( self) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = '''A, <mask> AllenNLP sentence.''' UpperCamelCase = tokenizer_r.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_) UpperCamelCase = tokenizer_p.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_) self.assertEqual(sum(tokens_r['''token_type_ids''']) , sum(tokens_p['''token_type_ids'''])) self.assertEqual( sum(tokens_r['''attention_mask''']) / len(tokens_r['''attention_mask''']) , sum(tokens_p['''attention_mask''']) / len(tokens_p['''attention_mask''']) , ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids''']) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids''']) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2]) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2]) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>''']) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''])
34
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def snake_case_ (__A : Dict ) -> Dict: __lowerCAmelCase : Tuple = 3_8_4 __lowerCAmelCase : List[str] = 7 if "tiny" in model_name: __lowerCAmelCase : int = 9_6 __lowerCAmelCase : Tuple = (2, 2, 6, 2) __lowerCAmelCase : Tuple = (3, 6, 1_2, 2_4) elif "small" in model_name: __lowerCAmelCase : List[str] = 9_6 __lowerCAmelCase : int = (2, 2, 1_8, 2) __lowerCAmelCase : Dict = (3, 6, 1_2, 2_4) elif "base" in model_name: __lowerCAmelCase : Tuple = 1_2_8 __lowerCAmelCase : Union[str, Any] = (2, 2, 1_8, 2) __lowerCAmelCase : Dict = (4, 8, 1_6, 3_2) __lowerCAmelCase : Tuple = 1_2 __lowerCAmelCase : int = 5_1_2 elif "large" in model_name: __lowerCAmelCase : Tuple = 1_9_2 __lowerCAmelCase : Dict = (2, 2, 1_8, 2) __lowerCAmelCase : Tuple = (6, 1_2, 2_4, 4_8) __lowerCAmelCase : Optional[Any] = 1_2 __lowerCAmelCase : Optional[int] = 7_6_8 # set label information __lowerCAmelCase : Dict = 1_5_0 __lowerCAmelCase : Union[str, Any] = """huggingface/label-files""" __lowerCAmelCase : Tuple = """ade20k-id2label.json""" __lowerCAmelCase : List[str] = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : List[Any] = {int(__A ): v for k, v in idalabel.items()} __lowerCAmelCase : List[str] = {v: k for k, v in idalabel.items()} __lowerCAmelCase : Any = SwinConfig( embed_dim=__A , depths=__A , num_heads=__A , window_size=__A , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) __lowerCAmelCase : List[Any] = UperNetConfig( backbone_config=__A , auxiliary_in_channels=__A , num_labels=__A , idalabel=__A , labelaid=__A , ) return config def snake_case_ (__A : int ) -> Optional[Any]: __lowerCAmelCase : Dict = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def snake_case_ (__A : Dict , __A : Any , __A : List[Any] ) -> Tuple: __lowerCAmelCase : Optional[int] = dct.pop(__A ) __lowerCAmelCase : int = val def snake_case_ (__A : Optional[Any] , __A : str ) -> Optional[Any]: __lowerCAmelCase : Tuple = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase : List[str] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase : Any = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) __lowerCAmelCase : Dict = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase : Optional[int] = in_proj_weight[:dim, :] __lowerCAmelCase : str = in_proj_bias[: dim] __lowerCAmelCase : str = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase : Optional[int] = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase : List[Any] = in_proj_weight[ -dim :, : ] __lowerCAmelCase : List[str] = in_proj_bias[-dim :] # fmt: on def snake_case_ (__A : Optional[Any] ) -> Optional[int]: __lowerCAmelCase : Any = x.shape __lowerCAmelCase : Union[str, Any] = x.reshape(__A , 4 , in_channel // 4 ) __lowerCAmelCase : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__A , __A ) return x def snake_case_ (__A : Dict ) -> Optional[int]: __lowerCAmelCase : str = x.shape __lowerCAmelCase : List[Any] = x.reshape(__A , in_channel // 4 , 4 ) __lowerCAmelCase : List[Any] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__A , __A ) return x def snake_case_ (__A : List[Any] ) -> Union[str, Any]: __lowerCAmelCase : Optional[Any] = x.shape[0] __lowerCAmelCase : List[str] = x.reshape(4 , in_channel // 4 ) __lowerCAmelCase : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__A ) return x def snake_case_ (__A : Optional[Any] ) -> Any: __lowerCAmelCase : Dict = x.shape[0] __lowerCAmelCase : str = x.reshape(in_channel // 4 , 4 ) __lowerCAmelCase : Union[str, Any] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__A ) return x def snake_case_ (__A : List[Any] , __A : str , __A : Optional[int] ) -> Tuple: __lowerCAmelCase : List[str] = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } __lowerCAmelCase : List[Any] = model_name_to_url[model_name] __lowerCAmelCase : Dict = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" , file_name=__A )[ """state_dict""" ] for name, param in state_dict.items(): print(__A , param.shape ) __lowerCAmelCase : Tuple = get_upernet_config(__A ) __lowerCAmelCase : int = UperNetForSemanticSegmentation(__A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowerCAmelCase : Union[str, Any] = state_dict.pop(__A ) if "bn" in key: __lowerCAmelCase : Dict = key.replace("""bn""" , """batch_norm""" ) __lowerCAmelCase : Any = val # rename keys __lowerCAmelCase : Any = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __lowerCAmelCase : Optional[Any] = reverse_correct_unfold_reduction_order(__A ) if "norm" in key: __lowerCAmelCase : Dict = reverse_correct_unfold_norm_order(__A ) model.load_state_dict(__A ) # verify on image __lowerCAmelCase : List[Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" __lowerCAmelCase : str = Image.open(requests.get(__A , stream=__A ).raw ).convert("""RGB""" ) __lowerCAmelCase : Any = SegformerImageProcessor() __lowerCAmelCase : int = processor(__A , return_tensors="""pt""" ).pixel_values with torch.no_grad(): __lowerCAmelCase : str = model(__A ) __lowerCAmelCase : str = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __lowerCAmelCase : int = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": __lowerCAmelCase : str = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": __lowerCAmelCase : Tuple = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": __lowerCAmelCase : Optional[int] = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __A , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__A ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[F'upernet-swin-{size}' for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
705
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] =BertJapaneseTokenizer lowerCamelCase : List[str] =False lowerCamelCase : Tuple =True def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: """simple docstring""" super().setUp() __lowerCAmelCase : str = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] __lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : str = """こんにちは、世界。 \nこんばんは、世界。""" __lowerCAmelCase : str = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = self.get_input_output_texts(lowerCAmelCase ) __lowerCAmelCase : int = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : Any = tokenizer.decode(lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) return text, ids def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : str = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase : str = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(lowerCAmelCase ) __lowerCAmelCase : List[str] = """こんにちは、世界。\nこんばんは、世界。""" __lowerCAmelCase : int = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowerCAmelCase , """wb""" ) as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase ) with open(lowerCAmelCase , """rb""" ) as handle: __lowerCAmelCase : List[str] = pickle.load(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = tokenizer_new.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: """simple docstring""" __lowerCAmelCase : Dict = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: """simple docstring""" try: __lowerCAmelCase : Optional[Any] = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: """simple docstring""" try: __lowerCAmelCase : Dict = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = MecabTokenizer(do_lower_case=lowerCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: """simple docstring""" try: __lowerCAmelCase : str = MecabTokenizer( do_lower_case=lowerCAmelCase , normalize_text=lowerCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: """simple docstring""" __lowerCAmelCase : List[Any] = MecabTokenizer(normalize_text=lowerCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(lowerCAmelCase ) __lowerCAmelCase : Tuple = """こんにちは、世界。\nこんばんは、世界。""" __lowerCAmelCase : Optional[int] = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowerCAmelCase , """wb""" ) as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase ) with open(lowerCAmelCase , """rb""" ) as handle: __lowerCAmelCase : Tuple = pickle.load(lowerCAmelCase ) __lowerCAmelCase : Tuple = tokenizer_new.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: """simple docstring""" __lowerCAmelCase : Optional[Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: """simple docstring""" __lowerCAmelCase : str = SudachiTokenizer(do_lower_case=lowerCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Dict = SudachiTokenizer(normalize_text=lowerCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = SudachiTokenizer(trim_whitespace=lowerCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" __lowerCAmelCase : List[str] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = """こんにちは、世界。\nこんばんは、世界。""" __lowerCAmelCase : Optional[Any] = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowerCAmelCase , """wb""" ) as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase ) with open(lowerCAmelCase , """rb""" ) as handle: __lowerCAmelCase : Optional[int] = pickle.load(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = tokenizer_new.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Tuple = JumanppTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Tuple = JumanppTokenizer(normalize_text=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: """simple docstring""" __lowerCAmelCase : str = JumanppTokenizer(trim_whitespace=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : str = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] __lowerCAmelCase : Any = {} for i, token in enumerate(lowerCAmelCase ): __lowerCAmelCase : str = i __lowerCAmelCase : Tuple = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) __lowerCAmelCase : Dict = tokenizer.subword_tokenizer __lowerCAmelCase : Dict = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(lowerCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) __lowerCAmelCase : str = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(lowerCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) __lowerCAmelCase : Any = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Dict =BertJapaneseTokenizer lowerCamelCase : Optional[Any] =False def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" super().setUp() __lowerCAmelCase : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , **lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Tuple ) -> str: """simple docstring""" __lowerCAmelCase : str = """こんにちは、世界。 \nこんばんは、世界。""" __lowerCAmelCase : Optional[Any] = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) __lowerCAmelCase : List[Any] = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( lowerCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __lowerCAmelCase : List[str] = {} for i, token in enumerate(lowerCAmelCase ): __lowerCAmelCase : List[Any] = i __lowerCAmelCase : Dict = CharacterTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) __lowerCAmelCase : List[Any] = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: """simple docstring""" __lowerCAmelCase : Optional[int] = """cl-tohoku/bert-base-japanese""" __lowerCAmelCase : int = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ) -> int: """simple docstring""" __lowerCAmelCase : List[Any] = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(lowerCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) __lowerCAmelCase : Optional[int] = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
218
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def __lowercase ( _UpperCAmelCase ) -> str: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __lowercase = k.replace(_UpperCAmelCase , _UpperCAmelCase ) if k.startswith("encoder" ): __lowercase = k.replace(".attn" , ".self_attn" ) __lowercase = k.replace("norm1" , "self_attn_layer_norm" ) __lowercase = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): __lowercase = k.replace("norm1" , "self_attn_layer_norm" ) __lowercase = k.replace("norm2" , "encoder_attn_layer_norm" ) __lowercase = k.replace("norm3" , "final_layer_norm" ) return k def __lowercase ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __lowercase = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: __lowercase = sd.pop(_UpperCAmelCase ) __lowercase = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd __lowercase = v lowerCAmelCase__ = ['START'] @torch.no_grad() def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = torch.load(_UpperCAmelCase , map_location="cpu" ) __lowercase = model["model"] __lowercase = BlenderbotConfig.from_json_file(_UpperCAmelCase ) __lowercase = BlenderbotForConditionalGeneration(_UpperCAmelCase ) __lowercase = m.model.state_dict().keys() __lowercase = [] __lowercase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __lowercase = rename_state_dict_key(_UpperCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __lowercase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_UpperCAmelCase ) m.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) m.half() m.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
321
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = ["""image_processor""", """tokenizer"""] __lowerCAmelCase = """LayoutLMv2ImageProcessor""" __lowerCAmelCase = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase_ , ) __lowercase = kwargs.pop("feature_extractor" ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = True , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor __lowercase = self.image_processor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features["words"] __lowercase = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) # add pixel values __lowercase = features.pop("pixel_values" ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(lowerCAmelCase_ , encoded_inputs["overflow_to_sample_mapping"] ) __lowercase = images return encoded_inputs def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f''' {len(lowerCAmelCase_ )} and {len(lowerCAmelCase_ )}''' ) return images_with_overflow def snake_case__ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def snake_case__ ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def snake_case__ ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase_ , ) return self.image_processor_class @property def snake_case__ ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase_ , ) return self.image_processor
321
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser SCREAMING_SNAKE_CASE__ : Optional[int] =logging.getLogger(__name__) torch.set_grad_enabled(False) SCREAMING_SNAKE_CASE__ : Union[str, Any] ='cuda' if torch.cuda.is_available() else 'cpu' def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=" " ) ->List[str]: _lowerCamelCase : Optional[int] = text.split(__UpperCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase )] def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->dict: _lowerCamelCase, _lowerCamelCase : Optional[int] = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(__UpperCAmelCase ): titles.append(title if title is not None else '''''' ) texts.append(__UpperCAmelCase ) return {"title": titles, "text": texts} def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->dict: _lowerCamelCase : str = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] _lowerCamelCase : Optional[Any] = ctx_encoder(input_ids.to(device=__UpperCAmelCase ) , return_dict=__UpperCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) ->Any: logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _lowerCamelCase : int = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _lowerCamelCase : Optional[int] = dataset.map(__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _lowerCamelCase : List[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__UpperCAmelCase ) _lowerCamelCase : Union[str, Any] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _lowerCamelCase : List[str] = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space _lowerCamelCase : Dict = dataset.map( partial(__UpperCAmelCase , ctx_encoder=__UpperCAmelCase , ctx_tokenizer=__UpperCAmelCase ) , batched=__UpperCAmelCase , batch_size=processing_args.batch_size , features=__UpperCAmelCase , ) # And finally save your dataset _lowerCamelCase : Dict = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(__UpperCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _lowerCamelCase : Dict = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=__UpperCAmelCase ) # And save the index _lowerCamelCase : Tuple = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(__UpperCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = field( default=str(Path(_snake_case ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns \'title\' and \'text\'"""} , ) __snake_case = field( default=_snake_case , metadata={"""help""": """Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'."""} , ) __snake_case = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\'"""} , ) __snake_case = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or""" """ \'facebook/dpr-ctx_encoder-multiset-base\'""" ) } , ) __snake_case = field( default=str(Path(_snake_case ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = field( default=_snake_case , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) __snake_case = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = field( default=768 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) __snake_case = field( default=128 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) SCREAMING_SNAKE_CASE__ : int =HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] =parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : int =rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
434
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = b.T __SCREAMING_SNAKE_CASE = np.sum(np.square(__UpperCAmelCase ) , axis=1 ) __SCREAMING_SNAKE_CASE = np.sum(np.square(__UpperCAmelCase ) , axis=0 ) __SCREAMING_SNAKE_CASE = np.matmul(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = aa[:, None] - 2 * ab + ba[None, :] return d def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = x.reshape(-1 , 3 ) __SCREAMING_SNAKE_CASE = squared_euclidean_distance(__UpperCAmelCase , __UpperCAmelCase ) return np.argmin(__UpperCAmelCase , axis=1 ) class __a ( _snake_case ): __UpperCamelCase : Any = ['pixel_values'] def __init__( self : Any ,lowerCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None ,lowerCamelCase : bool = True ,lowerCamelCase : Dict[str, int] = None ,lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase : bool = True ,lowerCamelCase : bool = True ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 256, """width""": 256} __SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.array(lowerCamelCase ) if clusters is not None else None __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = do_color_quantize def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : np.ndarray ,lowerCamelCase : Dict[str, int] ,lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase : int ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( lowerCamelCase ,size=(size["""height"""], size["""width"""]) ,resample=lowerCamelCase ,data_format=lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : np.ndarray ,lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = rescale(image=lowerCamelCase ,scale=1 / 127.5 ,data_format=lowerCamelCase ) __SCREAMING_SNAKE_CASE = image - 1 return image def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : ImageInput ,lowerCamelCase : bool = None ,lowerCamelCase : Dict[str, int] = None ,lowerCamelCase : PILImageResampling = None ,lowerCamelCase : bool = None ,lowerCamelCase : Optional[bool] = None ,lowerCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None ,lowerCamelCase : Optional[Union[str, TensorType]] = None ,lowerCamelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST ,**lowerCamelCase : Any ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __SCREAMING_SNAKE_CASE = clusters if clusters is not None else self.clusters __SCREAMING_SNAKE_CASE = np.array(lowerCamelCase ) __SCREAMING_SNAKE_CASE = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=lowerCamelCase ,size=lowerCamelCase ,resample=lowerCamelCase ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=lowerCamelCase ) for image in images] if do_color_quantize: __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(lowerCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __SCREAMING_SNAKE_CASE = np.array(lowerCamelCase ) __SCREAMING_SNAKE_CASE = color_quantize(lowerCamelCase ,lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __SCREAMING_SNAKE_CASE = images.shape[0] __SCREAMING_SNAKE_CASE = images.reshape(lowerCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(lowerCamelCase ,lowerCamelCase ) for image in images] __SCREAMING_SNAKE_CASE = {"""input_ids""": images} return BatchFeature(data=lowerCamelCase ,tensor_type=lowerCamelCase )
109
0
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance SCREAMING_SNAKE_CASE__ = 6_37_81_37.0 SCREAMING_SNAKE_CASE__ = 6_35_67_52.31_42_45 SCREAMING_SNAKE_CASE__ = 6_378_137 def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' lowerCAmelCase = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowerCAmelCase = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowerCAmelCase = haversine_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowerCAmelCase = (b_lata + b_lata) / 2 lowerCAmelCase = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowerCAmelCase = (sin(SCREAMING_SNAKE_CASE ) ** 2) * (cos(SCREAMING_SNAKE_CASE ) ** 2) lowerCAmelCase = cos(sigma / 2 ) ** 2 lowerCAmelCase = (sigma - sin(SCREAMING_SNAKE_CASE )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowerCAmelCase = (cos(SCREAMING_SNAKE_CASE ) ** 2) * (sin(SCREAMING_SNAKE_CASE ) ** 2) lowerCAmelCase = sin(sigma / 2 ) ** 2 lowerCAmelCase = (sigma + sin(SCREAMING_SNAKE_CASE )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
393
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'table-transformer' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , lowercase=True , lowercase=None , lowercase=3 , lowercase=100 , lowercase=6 , lowercase=2_048 , lowercase=8 , lowercase=6 , lowercase=2_048 , lowercase=8 , lowercase=0.0 , lowercase=0.0 , lowercase=True , lowercase="relu" , lowercase=256 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1.0 , lowercase=False , lowercase="sine" , lowercase="resnet50" , lowercase=True , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=1 , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=0.1 , **lowercase , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase , lowercase ): lowerCAmelCase = backbone_config.get("""model_type""" ) lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase = config_class.from_dict(lowercase ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None, None, None lowerCAmelCase = use_timm_backbone lowerCAmelCase = backbone_config lowerCAmelCase = num_channels lowerCAmelCase = num_queries lowerCAmelCase = d_model lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = init_xavier_std lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = encoder_layers lowerCAmelCase = auxiliary_loss lowerCAmelCase = position_embedding_type lowerCAmelCase = backbone lowerCAmelCase = use_pretrained_backbone lowerCAmelCase = dilation # Hungarian matcher lowerCAmelCase = class_cost lowerCAmelCase = bbox_cost lowerCAmelCase = giou_cost # Loss coefficients lowerCAmelCase = mask_loss_coefficient lowerCAmelCase = dice_loss_coefficient lowerCAmelCase = bbox_loss_coefficient lowerCAmelCase = giou_loss_coefficient lowerCAmelCase = eos_coefficient super().__init__(is_encoder_decoder=lowercase , **lowercase ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
393
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _lowerCAmelCase : List[str] = parse(importlib.metadata.version('''torch''')) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) _lowerCamelCase : Any = STR_OPERATION_TO_FUNC[operation] if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = parse(importlib.metadata.version(_lowerCamelCase ) ) return operation(_lowerCamelCase , parse(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' return compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
46
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = ComputeEnvironment.AMAZON_SAGEMAKER __snake_case : Tuple = True __snake_case : List[str] = """ml.p3.2xlarge""" __snake_case : Optional[int] = """accelerate_sagemaker_execution_role""" __snake_case : List[Any] = """hf-sm""" __snake_case : str = """us-east-1""" __snake_case : int = 1 __snake_case : int = """accelerate-sagemaker-1""" __snake_case : Union[str, Any] = """1.6""" __snake_case : Tuple = """4.4""" __snake_case : List[str] = """train.py""" __snake_case : str = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] __snake_case : List[Any] = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __a ( unittest.TestCase ): def A ( self : int ): # If no defaults are changed, `to_kwargs` returns an empty dict. lowerCAmelCase_ : Dict = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , UpperCAmelCase ) assert isinstance(converted_args["""do_train"""] , UpperCAmelCase ) assert isinstance(converted_args["""epochs"""] , UpperCAmelCase ) assert isinstance(converted_args["""learning_rate"""] , UpperCAmelCase ) assert isinstance(converted_args["""max_steps"""] , UpperCAmelCase ) with pytest.raises(UpperCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
600
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ : Optional[int] = """▁""" lowerCamelCase_ : List[str] = {"""vocab_file""": """spiece.model"""} lowerCamelCase_ : Any = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } lowerCamelCase_ : List[Any] = { """google/pegasus-xsum""": 512, } lowerCamelCase_ : List[str] = logging.get_logger(__name__) class a__ ( __snake_case ): A__ : Tuple = VOCAB_FILES_NAMES A__ : List[str] = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple = ['input_ids', 'attention_mask'] def __init__( self , UpperCAmelCase , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<mask_2>" , UpperCAmelCase="<mask_1>" , UpperCAmelCase=None , UpperCAmelCase=1_0_3 , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: __a = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(UpperCAmelCase )}, but is''' f''' {type(UpperCAmelCase )}''' ) __a = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(UpperCAmelCase ) , self.offset - 1 ) ] if len(set(UpperCAmelCase ) ) != len(UpperCAmelCase ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __a = additional_special_tokens_extended else: __a = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , mask_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token_sent=UpperCAmelCase , offset=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __a = mask_token_sent __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase ) # add special tokens to encoder dict __a = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __a = {v: k for k, v in self.encoder.items()} @property def __SCREAMING_SNAKE_CASE ( self ) -> int: return len(self.sp_model ) + self.offset def __SCREAMING_SNAKE_CASE ( self ) -> Dict[str, int]: __a = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: __a = self.__dict__.copy() __a = None return state def __setstate__( self , UpperCAmelCase ) -> Optional[int]: __a = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> List[str]: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __a = self.sp_model.piece_to_id(UpperCAmelCase ) return sp_id + self.offset def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __a = self.sp_model.IdToPiece(index - self.offset ) return token def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> List[Any]: __a = [] __a = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase ) + token __a = [] else: current_sub_tokens.append(UpperCAmelCase ) out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase=False ) -> int: return 1 def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Any: __a = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , 'wb' ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
719
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class a__ : A__ : List[Any] = MBartConfig A__ : Any = {} A__ : List[str] = 'gelu' def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , ) -> List[str]: __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __a = tf.concat([input_ids, eos_tensor] , axis=1 ) __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __a = prepare_mbart_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> int: __a = TFMBartModel(config=UpperCAmelCase ).get_decoder() __a = inputs_dict['input_ids'] __a = input_ids[:1, :] __a = inputs_dict['attention_mask'][:1, :] __a = inputs_dict['head_mask'] __a = 1 # first forward pass __a = model(UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) __a , __a = outputs.to_tuple() __a = past_key_values[1] def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ): if attention_mask is None: __a = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( __snake_case , __snake_case , unittest.TestCase ): A__ : List[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A__ : Any = (TFMBartForConditionalGeneration,) if is_tf_available() else () A__ : List[str] = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A__ : int = True A__ : List[str] = False A__ : Union[str, Any] = False def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = TFMBartModelTester(self ) __a = ConfigTester(self , config_class=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> int: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class a__ ( unittest.TestCase ): A__ : Optional[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ] A__ : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] A__ : List[Any] = 'facebook/mbart-large-en-ro' @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> Dict: __a = self.translate_src_text(**UpperCAmelCase ) self.assertListEqual(self.expected_text , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> int: __a = self.tokenizer(self.src_text , **UpperCAmelCase , return_tensors='tf' ) __a = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __a = self.tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) return generated_words @slow def __SCREAMING_SNAKE_CASE ( self ) -> Any: self._assert_generated_batch_equal_expected()
246
0
'''simple docstring''' def lowercase__( _UpperCamelCase : str )-> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__lowerCAmelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
138
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : List[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Dict , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" super().__init__() lowercase_ = torchvision.models.resnetaaa(pretrained=lowerCAmelCase_) lowercase_ = list(model.children())[:-2] lowercase_ = nn.Sequential(*lowerCAmelCase_) lowercase_ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = self.pool(self.model(lowerCAmelCase_)) lowercase_ = torch.flatten(lowerCAmelCase_ , start_dim=2) lowercase_ = out.transpose(1 , 2).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = [json.loads(lowerCAmelCase_) for l in open(lowerCAmelCase_)] lowercase_ = os.path.dirname(lowerCAmelCase_) lowercase_ = tokenizer lowercase_ = labels lowercase_ = len(lowerCAmelCase_) lowercase_ = max_seq_length lowercase_ = transforms def __len__( self : List[Any]): """simple docstring""" return len(self.data) def __getitem__( self : Tuple , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=lowerCAmelCase_)) lowercase_ , lowercase_ , lowercase_ = sentence[0], sentence[1:-1], sentence[-1] lowercase_ = sentence[: self.max_seq_length] lowercase_ = torch.zeros(self.n_classes) lowercase_ = 1 lowercase_ = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""])).convert("""RGB""") lowercase_ = self.transforms(lowerCAmelCase_) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Counter() for row in self.data: label_freqs.update(row["""label"""]) return label_freqs def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = [len(row["""sentence"""] ) for row in batch] lowercase_ , lowercase_ = len(__lowerCAmelCase ), max(__lowerCAmelCase ) lowercase_ = torch.zeros(__lowerCAmelCase , __lowerCAmelCase , dtype=torch.long ) lowercase_ = torch.zeros(__lowerCAmelCase , __lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): lowercase_ = input_row["""sentence"""] lowercase_ = 1 lowercase_ = torch.stack([row["""image"""] for row in batch] ) lowercase_ = torch.stack([row["""label"""] for row in batch] ) lowercase_ = torch.stack([row["""image_start_token"""] for row in batch] ) lowercase_ = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _SCREAMING_SNAKE_CASE () -> Dict: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _SCREAMING_SNAKE_CASE () -> List[Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
567
0
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _a: Union[str, Any] = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) _a: Tuple = dataset.iloc[:, 1:2].values _a: Optional[Any] = dataset.iloc[:, 2].values _a: List[Any] = train_test_split(X, y, test_size=0.2, random_state=0) _a: Any = PolynomialFeatures(degree=4) _a: Union[str, Any] = poly_reg.fit_transform(X) _a: Optional[int] = LinearRegression() pol_reg.fit(X_poly, y) def __lowerCAmelCase ( ): plt.scatter(_lowerCamelCase , _lowerCamelCase , color="red" ) plt.plot(_lowerCamelCase , pol_reg.predict(poly_reg.fit_transform(_lowerCamelCase ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
704
from sklearn.metrics import mean_squared_error import datasets _a: Any = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _a: List[Any] = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _a: List[str] = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def __A ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def __A ( self : Optional[Any] ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def __A ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : str=None , lowerCAmelCase : str="uniform_average" , lowerCAmelCase : Any=True ): '''simple docstring''' UpperCAmelCase_ = mean_squared_error( lowerCAmelCase , lowerCAmelCase , sample_weight=lowerCAmelCase , multioutput=lowerCAmelCase , squared=lowerCAmelCase ) return {"mse": mse}
268
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A__( unittest.TestCase ): lowerCAmelCase = ViTImageProcessor if is_vision_available() else None @property def _a ( self : Any ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = (3, 32, 1_28) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) __SCREAMING_SNAKE_CASE = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 1_28}, } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] , **__SCREAMING_SNAKE_CASE : Dict ) -> Dict: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) __SCREAMING_SNAKE_CASE = Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) return image_input def _a ( self : str ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) __SCREAMING_SNAKE_CASE = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = '''test''' __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = '''test''' __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.char_decode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def _a ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.randn(1 , 27 , 38 ) __SCREAMING_SNAKE_CASE = torch.randn(1 , 27 , 5_02_57 ) __SCREAMING_SNAKE_CASE = torch.randn(1 , 27 , 3_05_22 ) __SCREAMING_SNAKE_CASE = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
482
"""simple docstring""" def _a ( UpperCAmelCase__ = 10 ) -> str: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or n < 0: raise ValueError('''Invalid input''' ) __SCREAMING_SNAKE_CASE = 10**n __SCREAMING_SNAKE_CASE = 2_84_33 * (pow(2 , 7_83_04_57 , UpperCAmelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(10) = }''')
482
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCamelCase ( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase__ : Dict = None , UpperCAmelCase__ : Tuple = None , UpperCAmelCase__ : int = None , UpperCAmelCase__ : str = None , UpperCAmelCase__ : Any = False , UpperCAmelCase__ : Tuple = False , UpperCAmelCase__ : Any = None , **UpperCAmelCase__ : int , ) ->Optional[Any]: UpperCAmelCase_ = path_or_paths UpperCAmelCase_ = split if split or isinstance(A_ , A_ ) else "train" UpperCAmelCase_ = features UpperCAmelCase_ = cache_dir UpperCAmelCase_ = keep_in_memory UpperCAmelCase_ = streaming UpperCAmelCase_ = num_proc UpperCAmelCase_ = kwargs @abstractmethod def lowerCAmelCase__ ( self : Optional[int] ) ->Dict: pass class lowerCamelCase ( __snake_case ): '''simple docstring''' def __init__( self : int , UpperCAmelCase__ : Tuple = None , UpperCAmelCase__ : Optional[Any] = None , UpperCAmelCase__ : Any = False , UpperCAmelCase__ : Optional[Any] = False , UpperCAmelCase__ : Optional[int] = None , **UpperCAmelCase__ : str , ) ->Optional[int]: UpperCAmelCase_ = features UpperCAmelCase_ = cache_dir UpperCAmelCase_ = keep_in_memory UpperCAmelCase_ = streaming UpperCAmelCase_ = num_proc UpperCAmelCase_ = kwargs @abstractmethod def lowerCAmelCase__ ( self : Optional[Any] ) ->Tuple: pass
716
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ : Optional[Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowercase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
43
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : int = 0 __UpperCamelCase : bool = False __UpperCamelCase : float = 3.0 class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Tuple ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case_ ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def lowerCAmelCase__ ( self : Union[str, Any] ): # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase_: List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase_: Optional[Any] = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase_: int = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case_ ) @require_multi_gpu def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[int] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase_ : List[str] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCamelCase_ : Union[str, Any] = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCamelCase_ : List[Any] = torch.nn.Linear(1_00, 2_00) lowerCamelCase_ : Any = accelerator.prepare(model) # Check the values changed in kwargs lowerCamelCase_ : List[Any] = """""" lowerCamelCase_ : int = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
548
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase_ : Optional[int] = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
548
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class A ( lowercase__ ): __snake_case = 42 __snake_case = jnp.floataa __snake_case = True def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().setup() lowerCAmelCase_ = nn.Dense(5, dtype=self.dtype ) def __call__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = super().__call__(*UpperCAmelCase__, **UpperCAmelCase__ ) lowerCAmelCase_ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class A ( lowercase__ ): __snake_case = FlaxBigBirdForNaturalQuestionsModule def __UpperCamelCase ( _A , _A , _A , _A , _A , _A ): def cross_entropy(_A , _A , _A=None ): lowerCAmelCase_ = logits.shape[-1] lowerCAmelCase_ = (labels[..., None] == jnp.arange(_A )[None]).astype('''f4''' ) lowerCAmelCase_ = jax.nn.log_softmax(_A , axis=-1 ) lowerCAmelCase_ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCAmelCase_ = reduction(_A ) return loss lowerCAmelCase_ = partial(_A , reduction=jnp.mean ) lowerCAmelCase_ = cross_entropy(_A , _A ) lowerCAmelCase_ = cross_entropy(_A , _A ) lowerCAmelCase_ = cross_entropy(_A , _A ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class A : __snake_case = 'google/bigbird-roberta-base' __snake_case = 3000 __snake_case = 1_0500 __snake_case = 128 __snake_case = 3 __snake_case = 1 __snake_case = 5 # tx_args __snake_case = 3E-5 __snake_case = 0.0 __snake_case = 2_0000 __snake_case = 0.0095 __snake_case = 'bigbird-roberta-natural-questions' __snake_case = 'training-expt' __snake_case = 'data/nq-training.jsonl' __snake_case = 'data/nq-validation.jsonl' def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" os.makedirs(self.base_dir, exist_ok=UpperCAmelCase__ ) lowerCAmelCase_ = os.path.join(self.base_dir, self.save_dir ) lowerCAmelCase_ = self.batch_size_per_device * jax.device_count() @dataclass class A : __snake_case = 42 __snake_case = 4096 # no dynamic padding on TPUs def __call__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.collate_fn(UpperCAmelCase__ ) lowerCAmelCase_ = jax.tree_util.tree_map(UpperCAmelCase__, UpperCAmelCase__ ) return batch def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.fetch_inputs(features['''input_ids'''] ) lowerCAmelCase_ = { '''input_ids''': jnp.array(UpperCAmelCase__, dtype=jnp.intaa ), '''attention_mask''': jnp.array(UpperCAmelCase__, dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''], dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''], dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''], dtype=jnp.intaa ), } return batch def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [self._fetch_inputs(UpperCAmelCase__ ) for ids in input_ids] return zip(*UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [1 for _ in range(len(UpperCAmelCase__ ) )] while len(UpperCAmelCase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __UpperCamelCase ( _A , _A , _A=None ): if seed is not None: lowerCAmelCase_ = dataset.shuffle(seed=_A ) for i in range(len(_A ) // batch_size ): lowerCAmelCase_ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_A ) @partial(jax.pmap , axis_name='''batch''' ) def __UpperCamelCase ( _A , _A , **_A ): def loss_fn(_A ): lowerCAmelCase_ = model_inputs.pop('''start_labels''' ) lowerCAmelCase_ = model_inputs.pop('''end_labels''' ) lowerCAmelCase_ = model_inputs.pop('''pooled_labels''' ) lowerCAmelCase_ = state.apply_fn(**_A , params=_A , dropout_rng=_A , train=_A ) lowerCAmelCase_ = outputs return state.loss_fn( _A , _A , _A , _A , _A , _A , ) lowerCAmelCase_ = jax.random.split(_A ) lowerCAmelCase_ = jax.value_and_grad(_A ) lowerCAmelCase_ = grad_fn(state.params ) lowerCAmelCase_ = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) lowerCAmelCase_ = jax.lax.pmean(_A , '''batch''' ) lowerCAmelCase_ = state.apply_gradients(grads=_A ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def __UpperCamelCase ( _A , **_A ): lowerCAmelCase_ = model_inputs.pop('''start_labels''' ) lowerCAmelCase_ = model_inputs.pop('''end_labels''' ) lowerCAmelCase_ = model_inputs.pop('''pooled_labels''' ) lowerCAmelCase_ = state.apply_fn(**_A , params=state.params , train=_A ) lowerCAmelCase_ = outputs lowerCAmelCase_ = state.loss_fn(_A , _A , _A , _A , _A , _A ) lowerCAmelCase_ = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class A ( train_state.TrainState ): __snake_case = struct.field(pytree_node=lowercase__ ) @dataclass class A : __snake_case = 42 __snake_case = 42 __snake_case = 42 __snake_case = 42 __snake_case = 42 __snake_case = 42 __snake_case = None def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = model.params lowerCAmelCase_ = TrainState.create( apply_fn=model.__call__, params=UpperCAmelCase__, tx=UpperCAmelCase__, loss_fn=UpperCAmelCase__, ) if ckpt_dir is not None: lowerCAmelCase_ = restore_checkpoint(UpperCAmelCase__, UpperCAmelCase__ ) lowerCAmelCase_ = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } lowerCAmelCase_ = build_tx(**UpperCAmelCase__ ) lowerCAmelCase_ = train_state.TrainState( step=UpperCAmelCase__, apply_fn=model.__call__, params=UpperCAmelCase__, tx=UpperCAmelCase__, opt_state=UpperCAmelCase__, ) lowerCAmelCase_ = args lowerCAmelCase_ = data_collator lowerCAmelCase_ = lr lowerCAmelCase_ = params lowerCAmelCase_ = jax_utils.replicate(UpperCAmelCase__ ) return state def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.args lowerCAmelCase_ = len(UpperCAmelCase__ ) // args.batch_size lowerCAmelCase_ = jax.random.PRNGKey(0 ) lowerCAmelCase_ = jax.random.split(UpperCAmelCase__, jax.device_count() ) for epoch in range(args.max_epochs ): lowerCAmelCase_ = jnp.array(0, dtype=jnp.floataa ) lowerCAmelCase_ = get_batched_dataset(UpperCAmelCase__, args.batch_size, seed=UpperCAmelCase__ ) lowerCAmelCase_ = 0 for batch in tqdm(UpperCAmelCase__, total=UpperCAmelCase__, desc=f"Running EPOCH-{epoch}" ): lowerCAmelCase_ = self.data_collator(UpperCAmelCase__ ) lowerCAmelCase_ = self.train_step_fn(UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: lowerCAmelCase_ = jax_utils.unreplicate(state.step ) lowerCAmelCase_ = running_loss.item() / i lowerCAmelCase_ = self.scheduler_fn(state_step - 1 ) lowerCAmelCase_ = self.evaluate(UpperCAmelCase__, UpperCAmelCase__ ) lowerCAmelCase_ = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(UpperCAmelCase__ ) ) self.logger.log(UpperCAmelCase__, commit=UpperCAmelCase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}", state=UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = get_batched_dataset(UpperCAmelCase__, self.args.batch_size ) lowerCAmelCase_ = len(UpperCAmelCase__ ) // self.args.batch_size lowerCAmelCase_ = jnp.array(0, dtype=jnp.floataa ) lowerCAmelCase_ = 0 for batch in tqdm(UpperCAmelCase__, total=UpperCAmelCase__, desc='''Evaluating ... ''' ): lowerCAmelCase_ = self.data_collator(UpperCAmelCase__ ) lowerCAmelCase_ = self.val_step_fn(UpperCAmelCase__, **UpperCAmelCase__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = jax_utils.unreplicate(UpperCAmelCase__ ) print(f"SAVING CHECKPOINT IN {save_dir}", end=''' ... ''' ) self.model_save_fn(UpperCAmelCase__, params=state.params ) with open(os.path.join(UpperCAmelCase__, '''opt_state.msgpack''' ), '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args, os.path.join(UpperCAmelCase__, '''args.joblib''' ) ) joblib.dump(self.data_collator, os.path.join(UpperCAmelCase__, '''data_collator.joblib''' ) ) with open(os.path.join(UpperCAmelCase__, '''training_state.json''' ), '''w''' ) as f: json.dump({'''step''': state.step.item()}, UpperCAmelCase__ ) print('''DONE''' ) def __UpperCamelCase ( _A , _A ): print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=''' ... ''' ) with open(os.path.join(_A , '''flax_model.msgpack''' ) , '''rb''' ) as f: lowerCAmelCase_ = from_bytes(state.params , f.read() ) with open(os.path.join(_A , '''opt_state.msgpack''' ) , '''rb''' ) as f: lowerCAmelCase_ = from_bytes(state.opt_state , f.read() ) lowerCAmelCase_ = joblib.load(os.path.join(_A , '''args.joblib''' ) ) lowerCAmelCase_ = joblib.load(os.path.join(_A , '''data_collator.joblib''' ) ) with open(os.path.join(_A , '''training_state.json''' ) , '''r''' ) as f: lowerCAmelCase_ = json.load(_A ) lowerCAmelCase_ = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def __UpperCamelCase ( _A , _A , _A , _A ): lowerCAmelCase_ = num_train_steps - warmup_steps lowerCAmelCase_ = optax.linear_schedule(init_value=_A , end_value=_A , transition_steps=_A ) lowerCAmelCase_ = optax.linear_schedule(init_value=_A , end_value=1E-7 , transition_steps=_A ) lowerCAmelCase_ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __UpperCamelCase ( _A , _A , _A , _A , _A ): def weight_decay_mask(_A ): lowerCAmelCase_ = traverse_util.flatten_dict(_A ) lowerCAmelCase_ = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(_A ) lowerCAmelCase_ = scheduler_fn(_A , _A , _A , _A ) lowerCAmelCase_ = optax.adamw(learning_rate=_A , weight_decay=_A , mask=_A ) return tx, lr
700
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class A ( __UpperCAmelCase ): __snake_case = 'data2vec-vision' def __init__( self, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=224, UpperCamelCase__=16, UpperCamelCase__=3, UpperCamelCase__=False, UpperCamelCase__=False, UpperCamelCase__=False, UpperCamelCase__=False, UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=True, UpperCamelCase__=[3, 5, 7, 11], UpperCamelCase__=[1, 2, 3, 6], UpperCamelCase__=True, UpperCamelCase__=0.4, UpperCamelCase__=256, UpperCamelCase__=1, UpperCamelCase__=False, UpperCamelCase__=255, **UpperCamelCase__, ): """simple docstring""" super().__init__(**UpperCamelCase__ ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = use_mask_token lowerCAmelCase_ = use_absolute_position_embeddings lowerCAmelCase_ = use_relative_position_bias lowerCAmelCase_ = use_shared_relative_position_bias lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase_ = out_indices lowerCAmelCase_ = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase_ = use_auxiliary_head lowerCAmelCase_ = auxiliary_loss_weight lowerCAmelCase_ = auxiliary_channels lowerCAmelCase_ = auxiliary_num_convs lowerCAmelCase_ = auxiliary_concat_input lowerCAmelCase_ = semantic_loss_ignore_index class A ( __UpperCAmelCase ): __snake_case = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 1E-4
325
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split A_ = datasets.load_iris() A_ = np.array(data["data"]) A_ = np.array(data["target"]) A_ = data["target_names"] A_ , A_ , A_ , A_ = train_test_split(X, y) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[Any]: return np.linalg.norm(np.array(a__ ) - np.array(a__ ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=5 ) -> Dict: lowerCamelCase_ = zip(a__ ,a__ ) # List of distances of all points from the point to be classified lowerCamelCase_ = [] for data_point in data: lowerCamelCase_ = euclidean_distance(data_point[0] ,a__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCamelCase_ = [i[1] for i in sorted(a__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCamelCase_ = Counter(a__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
42
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self , lowerCamelCase_ , lowerCamelCase_=3 , lowerCamelCase_=32 , lowerCamelCase_=3 , lowerCamelCase_=10 , lowerCamelCase_=[10, 20, 30, 40] , lowerCamelCase_=[1, 1, 2, 1] , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_="relu" , lowerCamelCase_=3 , lowerCamelCase_=None , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = embeddings_size _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_act _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = len(lowerCamelCase_ ) def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def lowercase ( self ) -> List[str]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: """simple docstring""" _UpperCamelCase = TFResNetModel(config=lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = TFResNetForImageClassification(lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( lowercase , lowercase , unittest.TestCase ): __lowercase : str = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowercase : Union[str, Any] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) __lowercase : Tuple = False __lowercase : Dict = False __lowercase : Any = False __lowercase : int = False __lowercase : Optional[Any] = False def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = TFResNetModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowercase ( self ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self ) -> List[str]: """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" pass def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowercase ( self ) -> Dict: """simple docstring""" def check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase = layer_type _UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowercase ( self ) -> List[str]: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFResNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def _lowercase ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase ( self ) -> Optional[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="tf" ) # forward pass _UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits _UpperCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) _UpperCamelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase_ , atol=1E-4 ) )
147
0
def __lowerCAmelCase ( A , A , A ): return round(float(moles / volume ) * nfactor ) def __lowerCAmelCase ( A , A , A ): return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __lowerCAmelCase ( A , A , A ): return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __lowerCAmelCase ( A , A , A ): return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
268
def __lowerCAmelCase ( A ): if len(A ) <= 1: return lst UpperCAmelCase_ = 1 while i < len(A ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCAmelCase_ , UpperCAmelCase_ = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCAmelCase_ = 1 return lst if __name__ == "__main__": _a: List[Any] = input("""Enter numbers separated by a comma:\n""").strip() _a: Optional[int] = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
268
1
import math def SCREAMING_SNAKE_CASE_ ( __A : int ) -> str: """simple docstring""" a_ : str = 0 a_ : Union[str, Any] = 0 while num > 0: a_ : List[Any] = num % 8 a_ : Dict = octal + (remainder * math.floor(math.pow(10 , __A ) )) counter += 1 a_ : List[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(__A )}""" def SCREAMING_SNAKE_CASE_ ( ) -> None: """simple docstring""" print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(2_16 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
570
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[int] = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: a_ : Optional[int] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : List[Any] = self.scheduler_classes[0] a_ : Optional[Any] = self.get_scheduler_config() a_ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: a_ : int = self.scheduler_classes[0] a_ : List[Any] = self.get_scheduler_config() a_ : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : List[str] = len(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.dummy_model() a_ : str = self.dummy_sample_deter a_ : int = self.dummy_sample_deter + 0.1 a_ : List[str] = self.dummy_sample_deter - 0.1 a_ : Dict = samplea.shape[0] a_ : Any = torch.stack([samplea, samplea, samplea] , dim=0 ) a_ : Optional[int] = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ ) a_ : Tuple = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) a_ : str = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) a_ : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) a_ : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: a_ : Any = self.scheduler_classes[0] a_ : List[str] = self.get_scheduler_config() a_ : int = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : Dict = len(SCREAMING_SNAKE_CASE__ ) a_ : int = self.dummy_model() a_ : Optional[Any] = self.dummy_sample_deter a_ : Any = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ): # 1. predict noise residual a_ : List[Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # 2. predict previous mean of sample x_t-1 a_ : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample a_ : Union[str, Any] = pred_prev_sample a_ : List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) a_ : Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: a_ : Any = self.scheduler_classes[0] a_ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) a_ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : Tuple = len(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.dummy_model() a_ : Optional[Any] = self.dummy_sample_deter a_ : str = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ): # 1. predict noise residual a_ : Any = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # 2. predict previous mean of sample x_t-1 a_ : int = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample a_ : List[str] = pred_prev_sample a_ : Optional[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) a_ : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : Optional[int] = self.scheduler_classes[0] a_ : int = self.get_scheduler_config() a_ : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : int = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE__ ): if i == len(SCREAMING_SNAKE_CASE__ ) - 1: a_ : Any = -1 else: a_ : Optional[int] = timesteps[i + 1] a_ : Optional[Any] = scheduler.previous_timestep(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: a_ : Tuple = self.scheduler_classes[0] a_ : List[Any] = self.get_scheduler_config() a_ : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : str = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: a_ : List[str] = self.scheduler_classes[0] a_ : Dict = self.get_scheduler_config() a_ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] a_ : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE__ , timesteps=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: a_ : int = self.scheduler_classes[0] a_ : str = self.get_scheduler_config() a_ : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ )
570
1
from scipy.stats import spearmanr import datasets _lowercase : int ='\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _lowercase : List[str] ='\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _lowercase : int =R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _A ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' a__ = spearmanr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
709
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _lowercase : int =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase_ ( A_ ): '''simple docstring''' def __init__( self , *lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ): '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) a__ = eval_examples a__ = post_process_function a__ = quant_trainer_args a__ = 128 # default number of calibration samples def _A ( self , lowerCamelCase=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) a__ = calib_dataset if calib_dataset is not None else self.calib_dataset a__ = self._remove_unused_columns(lowerCamelCase , description="""Calibration""" ) return DataLoader( lowerCamelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowerCamelCase , ) def _A ( self , lowerCamelCase=None ): '''simple docstring''' a__ = self.train_dataset if calib_dataset is None else calib_dataset a__ = self.get_calib_dataloader(lowerCamelCase ) a__ = self.model quant_trainer.configure_model(lowerCamelCase , self.quant_trainer_args , calib=lowerCamelCase ) model.eval() quant_trainer.enable_calibration(lowerCamelCase ) logger.info("""***** Running calibration *****""" ) logger.info(f' Num examples = {self.calib_num}' ) logger.info(f' Batch size = {calib_dataloader.batch_size}' ) for step, inputs in enumerate(lowerCamelCase ): # Prediction step a__ , a__ , a__ = self.prediction_step(lowerCamelCase , lowerCamelCase , prediction_loss_only=lowerCamelCase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCamelCase , self.quant_trainer_args ) a__ = model def _A ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase = "eval" ): '''simple docstring''' a__ = self.eval_dataset if eval_dataset is None else eval_dataset a__ = self.get_eval_dataloader(lowerCamelCase ) a__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a__ = self.compute_metrics a__ = None a__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a__ = eval_loop( lowerCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase , ) finally: a__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: a__ = self.post_process_function(lowerCamelCase , lowerCamelCase , output.predictions ) a__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): a__ = metrics.pop(lowerCamelCase ) self.log(lowerCamelCase ) else: a__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCamelCase ) return metrics def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase = "test" ): '''simple docstring''' a__ = self.get_test_dataloader(lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. a__ = self.compute_metrics a__ = None a__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a__ = eval_loop( lowerCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase , ) finally: a__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output a__ = self.post_process_function(lowerCamelCase , lowerCamelCase , output.predictions , """predict""" ) a__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): a__ = metrics.pop(lowerCamelCase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCamelCase ) def _A ( self , lowerCamelCase="./" ): '''simple docstring''' a__ = self.eval_dataset a__ = self.get_eval_dataloader(lowerCamelCase ) a__ = next(iter(lowerCamelCase ) ) # saving device - to make it consistent a__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple a__ = tuple(v.to(lowerCamelCase ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer a__ = True a__ = self.model.to(lowerCamelCase ) model.eval() model.float() a__ = model.module if hasattr(lowerCamelCase , """module""" ) else model quant_trainer.configure_model(lowerCamelCase , self.quant_trainer_args ) a__ = os.path.join(lowerCamelCase , """model.onnx""" ) logger.info(f'exporting model to {output_model_file}' ) a__ = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( lowerCamelCase , lowerCamelCase , lowerCamelCase , export_params=lowerCamelCase , opset_version=13 , do_constant_folding=lowerCamelCase , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=lowerCamelCase , ) logger.info("""onnx export finished""" )
412
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : str = logging.get_logger(__name__) def _lowerCAmelCase ( __magic_name__ :Dict , __magic_name__ :Optional[int]=False ): UpperCAmelCase_ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def _lowerCAmelCase ( __magic_name__ :Optional[int] , __magic_name__ :List[Any] , __magic_name__ :List[str]=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ = '''''' else: UpperCAmelCase_ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = in_proj_bias[: config.hidden_size] UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( __magic_name__ :str ): UpperCAmelCase_ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def _lowerCAmelCase ( __magic_name__ :int , __magic_name__ :Optional[Any] , __magic_name__ :Union[str, Any] ): UpperCAmelCase_ = dct.pop(__magic_name__ ) UpperCAmelCase_ = val def _lowerCAmelCase ( ): UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __magic_name__ :int , __magic_name__ :List[Any] , __magic_name__ :List[str]=False ): UpperCAmelCase_ = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=__magic_name__ , ) UpperCAmelCase_ = ViTHybridConfig(backbone_config=__magic_name__ , image_size=3_8_4 , num_labels=1_0_0_0 ) UpperCAmelCase_ = False # load original model from timm UpperCAmelCase_ = timm.create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = timm_model.state_dict() if base_model: remove_classification_head_(__magic_name__ ) UpperCAmelCase_ = create_rename_keys(__magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''imagenet-1k-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": UpperCAmelCase_ = ViTHybridModel(__magic_name__ ).eval() else: UpperCAmelCase_ = ViTHybridForImageClassification(__magic_name__ ).eval() model.load_state_dict(__magic_name__ ) # create image processor UpperCAmelCase_ = create_transform(**resolve_data_config({} , model=__magic_name__ ) ) UpperCAmelCase_ = transform.transforms UpperCAmelCase_ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } UpperCAmelCase_ = ViTHybridImageProcessor( do_resize=__magic_name__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = transform(__magic_name__ ).unsqueeze(0 ) UpperCAmelCase_ = processor(__magic_name__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__magic_name__ , __magic_name__ ) # verify logits with torch.no_grad(): UpperCAmelCase_ = model(__magic_name__ ) UpperCAmelCase_ = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: UpperCAmelCase_ = timm_model.forward_features(__magic_name__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1e-3 ) else: UpperCAmelCase_ = timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
121
import os from math import logaa def _lowerCAmelCase ( __magic_name__ :str = "base_exp.txt" ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) ): UpperCAmelCase_, UpperCAmelCase_ = list(map(__magic_name__ , line.split(''',''' ) ) ) if x * logaa(__magic_name__ ) > largest: UpperCAmelCase_ = x * logaa(__magic_name__ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
121
1
def A_ ( _lowerCAmelCase = 100 ) -> int: UpperCamelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 UpperCamelCase : List[str] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
713
from PIL import Image def A_ ( _lowerCAmelCase ) -> Image: UpperCamelCase , UpperCamelCase : List[Any] = image.size UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : List[str] = image.load() for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): UpperCamelCase : List[Any] = pixels[j, i] mean += pixel mean //= width * height for j in range(_lowerCAmelCase ): for i in range(_lowerCAmelCase ): UpperCamelCase : Union[str, Any] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
38
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Tuple = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : torch.FloatTensor class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , A = 16 , A = 88 , A = None , A = None , A = 1 , A = 0.0 , A = 32 , A = None , A = False , A = None , A = "geglu" , A = True , A = True , ) -> Union[str, Any]: super().__init__() A: Union[str, Any] = num_attention_heads A: Optional[Any] = attention_head_dim A: Optional[int] = num_attention_heads * attention_head_dim A: str = in_channels A: List[Any] = torch.nn.GroupNorm(num_groups=A , num_channels=A , eps=1e-6 , affine=A ) A: Optional[int] = nn.Linear(A , A ) # 3. Define transformers blocks A: Optional[Any] = nn.ModuleList( [ BasicTransformerBlock( A , A , A , dropout=A , cross_attention_dim=A , activation_fn=A , attention_bias=A , double_self_attention=A , norm_elementwise_affine=A , ) for d in range(A ) ] ) A: Tuple = nn.Linear(A , A ) def a__ ( self , A , A=None , A=None , A=None , A=1 , A=None , A = True , ) -> str: A , A , A , A: Optional[Any] = hidden_states.shape A: Optional[Any] = batch_frames // num_frames A: List[str] = hidden_states A: List[str] = hidden_states[None, :].reshape(A , A , A , A , A ) A: Dict = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) A: List[str] = self.norm(A ) A: List[Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , A , A ) A: Optional[Any] = self.proj_in(A ) # 2. Blocks for block in self.transformer_blocks: A: int = block( A , encoder_hidden_states=A , timestep=A , cross_attention_kwargs=A , class_labels=A , ) # 3. Output A: Tuple = self.proj_out(A ) A: List[str] = ( hidden_states[None, None, :] .reshape(A , A , A , A , A ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) A: Optional[int] = hidden_states.reshape(A , A , A , A ) A: Optional[int] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=A )
135
0
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class snake_case ( __lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = 8 , **lowerCamelCase , ) -> None: """simple docstring""" super().__init__(**_UpperCamelCase ) snake_case__ : Tuple = do_rescale snake_case__ : str = rescale_factor snake_case__ : Any = do_pad snake_case__ : Optional[int] = pad_size def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None ) -> Union[str, Any]: """simple docstring""" snake_case__ : Any = get_image_size(_UpperCamelCase ) snake_case__ : str = (old_height // size + 1) * size - old_height snake_case__ : List[Any] = (old_width // size + 1) * size - old_width return pad(_UpperCamelCase , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=_UpperCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : int = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : List[Any] = do_pad if do_pad is not None else self.do_pad snake_case__ : List[str] = pad_size if pad_size is not None else self.pad_size snake_case__ : str = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. snake_case__ : Optional[int] = [to_numpy_array(_UpperCamelCase ) for image in images] if do_rescale: snake_case__ : Union[str, Any] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_pad: snake_case__ : Union[str, Any] = [self.pad(_UpperCamelCase , size=_UpperCamelCase ) for image in images] snake_case__ : Optional[Any] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] snake_case__ : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
715
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowerCAmelCase : Dict = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowerCAmelCase : str = {"vinai/bartpho-syllable": 1_0_2_4} class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token snake_case__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) snake_case__ : int = vocab_file snake_case__ : Optional[Any] = monolingual_vocab_file snake_case__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : Dict = {} snake_case__ : Union[str, Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : List[str] = cnt cnt += 1 with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): snake_case__ : Optional[int] = line.strip().split()[0] snake_case__ : List[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = len(self.fairseq_tokens_to_ids ) snake_case__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: """simple docstring""" snake_case__ : int = self.__dict__.copy() snake_case__ : Any = None snake_case__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : Dict = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : str = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : List[str] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : int = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = ''''''.join(lowerCamelCase ).replace(lowerCamelCase , ''' ''' ).strip() return out_string def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , '''wb''' ) as fi: snake_case__ : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
694
0
def lowerCAmelCase_ (lowerCAmelCase__: list ): """simple docstring""" def merge(lowerCAmelCase__: list , lowerCAmelCase__: list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCAmelCase__ ) <= 1: return collection UpperCAmelCase_: str = len(lowerCAmelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() a : Tuple = input('Enter numbers separated by a comma:\n').strip() a : str = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
556
def lowerCAmelCase_ (lowerCAmelCase__: list ): """simple docstring""" if len(lowerCAmelCase__ ) <= 1: return [tuple(lowerCAmelCase__ )] UpperCAmelCase_: List[Any] = [] def generate(lowerCAmelCase__: int , lowerCAmelCase__: list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = arr[k - 1], arr[i] else: # k is odd UpperCAmelCase_ , UpperCAmelCase_: Optional[int] = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase__ ) generate(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) return res if __name__ == "__main__": a : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() a : str = [int(item) for item in user_input.split(',')] print(heaps(arr))
556
1
"""simple docstring""" def lowerCamelCase (a_ :int , a_ :int) -> int: while a != 0: lowercase :List[Any] = b % a, a return b def lowerCamelCase (a_ :int , a_ :int) -> int: if gcd(a_ , a_) != 1: lowercase :List[str] = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(a_) lowercase :Tuple = 1, 0, a lowercase :Optional[Any] = 0, 1, m while va != 0: lowercase :str = ua // va lowercase :Tuple = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
706
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowerCamelCase (a_ :Dict) -> Dict: lowercase :Tuple = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(a_ , a_) def lowerCamelCase (a_ :Union[str, Any]) -> str: lowercase , lowercase :Tuple = emb.weight.shape lowercase :List[str] = nn.Linear(a_ , a_ , bias=a_) lowercase :List[str] = emb.weight.data return lin_layer def lowerCamelCase (a_ :int , a_ :Union[str, Any]="facebook/mbart-large-en-ro" , a_ :Union[str, Any]=False , a_ :List[Any]=False) -> List[Any]: lowercase :List[Any] = torch.load(a_ , map_location='''cpu''')['''model'''] remove_ignore_keys_(a_) lowercase :Dict = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase :Tuple = MBartConfig.from_pretrained(a_ , vocab_size=a_) if mbart_aa and finetuned: lowercase :List[Any] = '''relu''' lowercase :Optional[int] = state_dict['''decoder.embed_tokens.weight'''] lowercase :Union[str, Any] = MBartForConditionalGeneration(a_) model.model.load_state_dict(a_) if finetuned: lowercase :Dict = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') UpperCAmelCase = parser.parse_args() UpperCAmelCase = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
475
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class snake_case ( __snake_case ): '''simple docstring''' UpperCAmelCase : str = ["""image_processor"""] UpperCAmelCase : Tuple = """SamImageProcessor""" def __init__( self : int , lowerCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" super().__init__(lowercase_ ) SCREAMING_SNAKE_CASE_ = self.image_processor SCREAMING_SNAKE_CASE_ = -10 SCREAMING_SNAKE_CASE_ = self.image_processor.size["longest_edge"] def __call__( self : List[str] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any = None , **lowerCAmelCase_ : Optional[Any] , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.image_processor( lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # pop arguments that are not used in the foward but used nevertheless SCREAMING_SNAKE_CASE_ = encoding_image_processor["original_sizes"] if hasattr(lowercase_ , '''numpy''' ): # Checks if Torch or TF tensor SCREAMING_SNAKE_CASE_ = original_sizes.numpy() SCREAMING_SNAKE_CASE_ = self._check_and_preprocess_points( input_points=lowercase_ , input_labels=lowercase_ , input_boxes=lowercase_ , ) SCREAMING_SNAKE_CASE_ = self._normalize_and_convert( lowercase_ , lowercase_ , input_points=lowercase_ , input_labels=lowercase_ , input_boxes=lowercase_ , return_tensors=lowercase_ , ) return encoding_image_processor def _lowercase ( self : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple="pt" , ) -> Dict: """simple docstring""" if input_points is not None: if len(lowercase_ ) != len(lowercase_ ): SCREAMING_SNAKE_CASE_ = [ self._normalize_coordinates(self.target_size , lowercase_ , original_sizes[0] ) for point in input_points ] else: SCREAMING_SNAKE_CASE_ = [ self._normalize_coordinates(self.target_size , lowercase_ , lowercase_ ) for point, original_size in zip(lowercase_ , lowercase_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: SCREAMING_SNAKE_CASE_ = self._pad_points_and_labels(lowercase_ , lowercase_ ) SCREAMING_SNAKE_CASE_ = np.array(lowercase_ ) if input_labels is not None: SCREAMING_SNAKE_CASE_ = np.array(lowercase_ ) if input_boxes is not None: if len(lowercase_ ) != len(lowercase_ ): SCREAMING_SNAKE_CASE_ = [ self._normalize_coordinates(self.target_size , lowercase_ , original_sizes[0] , is_bounding_box=lowercase_ ) for box in input_boxes ] else: SCREAMING_SNAKE_CASE_ = [ self._normalize_coordinates(self.target_size , lowercase_ , lowercase_ , is_bounding_box=lowercase_ ) for box, original_size in zip(lowercase_ , lowercase_ ) ] SCREAMING_SNAKE_CASE_ = np.array(lowercase_ ) if input_boxes is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE_ = torch.from_numpy(lowercase_ ) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE_ = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(lowercase_ ) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE_ = tf.expand_dims(lowercase_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE_ = torch.from_numpy(lowercase_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE_ = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(lowercase_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE_ = tf.expand_dims(lowercase_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE_ = torch.from_numpy(lowercase_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE_ = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(lowercase_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE_ = tf.expand_dims(lowercase_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def _lowercase ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = max([point.shape[0] for point in input_points] ) SCREAMING_SNAKE_CASE_ = [] for i, point in enumerate(lowercase_ ): if point.shape[0] != expected_nb_points: SCREAMING_SNAKE_CASE_ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) SCREAMING_SNAKE_CASE_ = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowercase_ ) SCREAMING_SNAKE_CASE_ = processed_input_points return input_points, input_labels def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = original_size SCREAMING_SNAKE_CASE_ = self.image_processor._get_preprocess_shape(lowercase_ , longest_edge=lowercase_ ) SCREAMING_SNAKE_CASE_ = deepcopy(lowercase_ ).astype(lowercase_ ) if is_bounding_box: SCREAMING_SNAKE_CASE_ = coords.reshape(-1 , 2 , 2 ) SCREAMING_SNAKE_CASE_ = coords[..., 0] * (new_w / old_w) SCREAMING_SNAKE_CASE_ = coords[..., 1] * (new_h / old_h) if is_bounding_box: SCREAMING_SNAKE_CASE_ = coords.reshape(-1 , 4 ) return coords def _lowercase ( self : List[str] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=None , ) -> List[str]: """simple docstring""" if input_points is not None: if hasattr(lowercase_ , '''numpy''' ): # Checks for TF or Torch tensor SCREAMING_SNAKE_CASE_ = input_points.numpy().tolist() if not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_points[0] , lowercase_ ): raise ValueError('''Input points must be a list of list of floating points.''' ) SCREAMING_SNAKE_CASE_ = [np.array(lowercase_ ) for input_point in input_points] else: SCREAMING_SNAKE_CASE_ = None if input_labels is not None: if hasattr(lowercase_ , '''numpy''' ): SCREAMING_SNAKE_CASE_ = input_labels.numpy().tolist() if not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_labels[0] , lowercase_ ): raise ValueError('''Input labels must be a list of list integers.''' ) SCREAMING_SNAKE_CASE_ = [np.array(lowercase_ ) for label in input_labels] else: SCREAMING_SNAKE_CASE_ = None if input_boxes is not None: if hasattr(lowercase_ , '''numpy''' ): SCREAMING_SNAKE_CASE_ = input_boxes.numpy().tolist() if ( not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_boxes[0] , lowercase_ ) or not isinstance(input_boxes[0][0] , lowercase_ ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) SCREAMING_SNAKE_CASE_ = [np.array(lowercase_ ).astype(np.floataa ) for box in input_boxes] else: SCREAMING_SNAKE_CASE_ = None return input_points, input_labels, input_boxes @property def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(lowercase_ ) ) def _lowercase ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : int ) -> List[str]: """simple docstring""" return self.image_processor.post_process_masks(*lowercase_ , **lowercase_ )
393
def snake_case (__lowercase ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _snake_case : Union[str, Any] = grid[0] for row_n in range(1 , len(__lowercase ) ): _snake_case : Union[str, Any] = grid[row_n] _snake_case : List[Any] = fill_row(__lowercase , __lowercase ) _snake_case : List[Any] = grid[row_n] return grid[-1][-1] def snake_case (__lowercase , __lowercase ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(__lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
670
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowercase : Dict = get_logger(__name__) def lowerCamelCase__ ( A : List[Any] , A : str , A : Dict , A : int , A : List[Any]=0 ): '''simple docstring''' os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase = os.path.join(A , A ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(A , A ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(A , A ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase = os.path.join(A , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(A , exist_ok=A ) logger.info(f"""Saving model to {ckpt_dir}""" ) UpperCAmelCase = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=A , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def lowerCamelCase__ ( A : Optional[int] , A : List[str] , A : Union[str, Any] , A : Dict , A : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return UpperCAmelCase = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Loading model from {input_model_file}""" ) UpperCAmelCase = torch.load(A ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Loading model from {input_model_file}""" ) UpperCAmelCase = torch.load(A ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase = ( os.path.join(A , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) UpperCAmelCase = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=A , storage_reader=dist_cp.FileSystemReader(A ) , planner=DefaultLoadPlanner() , ) UpperCAmelCase = state_dict['''model'''] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(A ) def lowerCamelCase__ ( A : str , A : Any , A : List[Any] , A : Dict , A : int , A : Optional[Any]=0 ): '''simple docstring''' os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase = FSDP.optim_state_dict(A , A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCAmelCase = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(A , A ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: UpperCAmelCase = os.path.join(A , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(A , exist_ok=A ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def lowerCamelCase__ ( A : Union[str, Any] , A : Dict , A : Union[str, Any] , A : Any , A : Tuple , A : int=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCAmelCase = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) UpperCAmelCase = torch.load(A ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: UpperCAmelCase = ( os.path.join(A , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) UpperCAmelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(A ) , ) UpperCAmelCase = optim_state['''optimizer'''] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) UpperCAmelCase = FSDP.optim_state_dict_to_load(A , A , A ) optimizer.load_state_dict(A )
50
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
1
import argparse import os import re _UpperCAmelCase = 'src/diffusers' # Pattern that looks at the indentation in a line. _UpperCAmelCase = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _UpperCAmelCase = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _UpperCAmelCase = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _UpperCAmelCase = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _UpperCAmelCase = re.compile(R'\[([^\]]+)\]') def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[str] ) -> Optional[int]: __lowerCAmelCase : Any = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Tuple="" , SCREAMING_SNAKE_CASE :Union[str, Any]=None , SCREAMING_SNAKE_CASE :Tuple=None ) -> Optional[Any]: __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Dict = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 __lowerCAmelCase : Tuple = ["""\n""".join(lines[:index] )] else: __lowerCAmelCase : Optional[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowerCAmelCase : Dict = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: __lowerCAmelCase : Optional[Any] = [lines[index + 1]] index += 1 else: __lowerCAmelCase : List[Any] = [] else: blocks.append("""\n""".join(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("""\n""".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> Tuple: def _inner(SCREAMING_SNAKE_CASE :List[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("""_""" , """""" ) return _inner def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str]=None ) -> List[str]: # If no key is provided, we use a noop. def noop(SCREAMING_SNAKE_CASE :Dict ): return x if key is None: __lowerCAmelCase : Tuple = noop # Constants are all uppercase, they go first. __lowerCAmelCase : Optional[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowerCAmelCase : Union[str, Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. __lowerCAmelCase : Dict = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] __lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any ) -> List[str]: # This inner function sort imports between [ ]. def _replace(SCREAMING_SNAKE_CASE :int ): __lowerCAmelCase : Tuple = match.groups()[0] if "," not in imports: return F'''[{imports}]''' __lowerCAmelCase : Union[str, Any] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCAmelCase : Optional[int] = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" __lowerCAmelCase : Tuple = import_statement.split("""\n""" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowerCAmelCase : List[Any] = 2 if lines[1].strip() == """[""" else 1 __lowerCAmelCase : List[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowerCAmelCase : Dict = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) __lowerCAmelCase : List[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowerCAmelCase : Any = _re_bracket_content.sub(_replace , lines[1] ) else: __lowerCAmelCase : Dict = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCAmelCase : Dict = keys[:-1] __lowerCAmelCase : List[Any] = get_indent(lines[1] ) + """, """.join([F'''"{k}"''' for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line __lowerCAmelCase : Dict = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :List[str]=True ) -> int: with open(SCREAMING_SNAKE_CASE , """r""" ) as f: __lowerCAmelCase : Optional[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowerCAmelCase : int = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowerCAmelCase : Tuple = main_blocks[block_idx] __lowerCAmelCase : Tuple = block.split("""\n""" ) # Get to the start of the imports. __lowerCAmelCase : Union[str, Any] = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. __lowerCAmelCase : str = """\n""".join(block_lines[line_idx:-1] ) __lowerCAmelCase : Union[str, Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowerCAmelCase : Optional[int] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend __lowerCAmelCase : str = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowerCAmelCase : Dict = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowerCAmelCase : Optional[Any] = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] __lowerCAmelCase : Dict = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowerCAmelCase : Any = 0 __lowerCAmelCase : Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. __lowerCAmelCase : Optional[Any] = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(SCREAMING_SNAKE_CASE , """w""" ) as f: f.write("""\n""".join(SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[str]=True ) -> Union[str, Any]: __lowerCAmelCase : Tuple = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowerCAmelCase : Dict = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , """__init__.py""" ) , check_only=SCREAMING_SNAKE_CASE ) if result: __lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , """__init__.py""" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(F'''Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _UpperCAmelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
504
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case_ : A_ = field( metadata={'help': 'The output directory where the model will be written.'} ,) A_ = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } ,) A_ = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } ,) A_ = field( default=__lowercase ,metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) A_ = field( default=__lowercase ,metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def _SCREAMING_SNAKE_CASE ( ) -> int: __lowerCAmelCase : int = HfArgumentParser((ModelArguments,) ) ((__lowerCAmelCase) , ) : str = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: __lowerCAmelCase : List[str] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: __lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: __lowerCAmelCase : str = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Tuple = True __lowerCAmelCase : Tuple = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=SCREAMING_SNAKE_CASE , decoder_config=SCREAMING_SNAKE_CASE , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens __lowerCAmelCase : str = decoder_config.decoder_start_token_id __lowerCAmelCase : Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: __lowerCAmelCase : List[Any] = decoder_config.bos_token_id if pad_token_id is None: __lowerCAmelCase : List[str] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work __lowerCAmelCase : List[str] = decoder_config.eos_token_id __lowerCAmelCase : Union[str, Any] = decoder_start_token_id __lowerCAmelCase : Any = pad_token_id __lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) __lowerCAmelCase : str = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) __lowerCAmelCase : Any = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
504
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __UpperCamelCase ( a, a, a, a, ) ->list[float]: lowerCamelCase__ , lowerCamelCase__ = coefficient_matrix.shape lowerCamelCase__ , lowerCamelCase__ = constant_matrix.shape if rowsa != colsa: lowerCamelCase__ = f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(a) if colsa != 1: lowerCamelCase__ = f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(a) if rowsa != rowsa: lowerCamelCase__ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(a) if len(a) != rowsa: lowerCamelCase__ = ( "Number of initial values must be equal to number of rows in coefficient " f"matrix but received {len(a)} and {rowsa}" ) raise ValueError(a) if iterations <= 0: raise ValueError("Iterations must be at least 1") lowerCamelCase__ = np.concatenate( (coefficient_matrix, constant_matrix), axis=1) lowerCamelCase__ , lowerCamelCase__ = table.shape strictly_diagonally_dominant(a) # Iterates the whole matrix for given number of times for _ in range(a): lowerCamelCase__ = [] for row in range(a): lowerCamelCase__ = 0 for col in range(a): if col == row: lowerCamelCase__ = table[row][col] elif col == cols - 1: lowerCamelCase__ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase__ = (temp + val) / denom new_val.append(a) lowerCamelCase__ = new_val return [float(a) for i in new_val] def __UpperCamelCase ( a) ->bool: lowerCamelCase__ , lowerCamelCase__ = table.shape lowerCamelCase__ = True for i in range(0, a): lowerCamelCase__ = 0 for j in range(0, cols - 1): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant") return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
718
def __UpperCamelCase ( a) ->float: return 10 - x * x def __UpperCamelCase ( a, a) ->float: # Bolzano theory in order to find if there is a root between a and b if equation(a) * equation(a) >= 0: raise ValueError("Wrong space!") lowerCamelCase__ = a while (b - a) >= 0.0_1: # Find middle point lowerCamelCase__ = (a + b) / 2 # Check if middle point is root if equation(a) == 0.0: break # Decide the side to repeat the steps if equation(a) * equation(a) < 0: lowerCamelCase__ = c else: lowerCamelCase__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
360
0
from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase = 6_3_7_8_1_3_7.0 lowerCAmelCase = 6_3_5_6_7_5_2.3_1_4_2_4_5 lowerCAmelCase = 637_8137 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = (AXIS_A - AXIS_B) / AXIS_A lowercase__ = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) lowercase__ = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) lowercase__ = radians(SCREAMING_SNAKE_CASE ) lowercase__ = radians(SCREAMING_SNAKE_CASE ) # Equation lowercase__ = sin((phi_a - phi_a) / 2 ) lowercase__ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowercase__ = sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE ) * cos(SCREAMING_SNAKE_CASE ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCAmelCase_ ( ): print("""Making key files...""" ) make_key_files("""rsa""" , 1024 ) print("""Key files generation successful.""" ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): print("""Generating prime p...""" ) UpperCamelCase_ : Tuple = rabinMiller.generate_large_prime(_SCREAMING_SNAKE_CASE ) print("""Generating prime q...""" ) UpperCamelCase_ : List[Any] = rabinMiller.generate_large_prime(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : List[str] = p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: UpperCamelCase_ : Union[str, Any] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) UpperCamelCase_ : Tuple = cryptoMath.find_mod_inverse(_SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) UpperCamelCase_ : Tuple = (n, e) UpperCamelCase_ : int = (n, d) return (public_key, private_key) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print("""\nWARNING:""" ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' """Use a different name or delete these files and re-run this program.""" ) sys.exit() UpperCamelCase_,UpperCamelCase_ : str = generate_key(_SCREAMING_SNAKE_CASE ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , """w""" ) as out_file: out_file.write(f'''{key_size},{public_key[0]},{public_key[1]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , """w""" ) as out_file: out_file.write(f'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
635
0
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): super().__init__() _snake_case : str = value_function _snake_case : str = unet _snake_case : List[str] = scheduler _snake_case : Optional[Any] = env _snake_case : List[Any] = env.get_dataset() _snake_case : Union[str, Any] = {} for key in self.data.keys(): try: _snake_case : int = self.data[key].mean() except: # noqa: E722 pass _snake_case : Optional[Any] = {} for key in self.data.keys(): try: _snake_case : str = self.data[key].std() except: # noqa: E722 pass _snake_case : Any = env.observation_space.shape[0] _snake_case : str = env.action_space.shape[0] def lowerCamelCase__ ( self , snake_case_ , snake_case_ ): return (x_in - self.means[key]) / self.stds[key] def lowerCamelCase__ ( self , snake_case_ , snake_case_ ): return x_in * self.stds[key] + self.means[key] def lowerCamelCase__ ( self , snake_case_ ): if type(snake_case_ ) is dict: return {k: self.to_torch(snake_case_ ) for k, v in x_in.items()} elif torch.is_tensor(snake_case_ ): return x_in.to(self.unet.device ) return torch.tensor(snake_case_ , device=self.unet.device ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): for key, val in cond.items(): _snake_case : Optional[int] = val.clone() return x_in def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _snake_case : Optional[int] = x.shape[0] _snake_case : Optional[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _snake_case : Union[str, Any] = torch.full((batch_size,) , snake_case_ , device=self.unet.device , dtype=torch.long ) for _ in range(snake_case_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _snake_case : Optional[Any] = self.value_function(x.permute(0 , 2 , 1 ) , snake_case_ ).sample _snake_case : Tuple = torch.autograd.grad([y.sum()] , [x] )[0] _snake_case : Optional[int] = self.scheduler._get_variance(snake_case_ ) _snake_case : Dict = torch.exp(0.5 * posterior_variance ) _snake_case : int = model_std * grad _snake_case : List[Any] = 0 _snake_case : int = x.detach() _snake_case : int = x + scale * grad _snake_case : Dict = self.reset_xa(snake_case_ , snake_case_ , self.action_dim ) _snake_case : List[Any] = self.unet(x.permute(0 , 2 , 1 ) , snake_case_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _snake_case : List[str] = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , predict_epsilon=snake_case_ )["prev_sample"] # apply conditions to the trajectory (set the initial state) _snake_case : Union[str, Any] = self.reset_xa(snake_case_ , snake_case_ , self.action_dim ) _snake_case : int = self.to_torch(snake_case_ ) return x, y def __call__( self , snake_case_ , snake_case_=64 , snake_case_=32 , snake_case_=2 , snake_case_=0.1 ): # normalize the observations and create batch dimension _snake_case : Dict = self.normalize(snake_case_ , "observations" ) _snake_case : Union[str, Any] = obs[None].repeat(snake_case_ , axis=0 ) _snake_case : Dict = {0: self.to_torch(snake_case_ )} _snake_case : Optional[int] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _snake_case : List[str] = randn_tensor(snake_case_ , device=self.unet.device ) _snake_case : Optional[int] = self.reset_xa(snake_case_ , snake_case_ , self.action_dim ) _snake_case : Optional[int] = self.to_torch(snake_case_ ) # run the diffusion process _snake_case , _snake_case : Optional[int] = self.run_diffusion(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # sort output trajectories by value _snake_case : Union[str, Any] = y.argsort(0 , descending=snake_case_ ).squeeze() _snake_case : List[str] = x[sorted_idx] _snake_case : Union[str, Any] = sorted_values[:, :, : self.action_dim] _snake_case : Union[str, Any] = actions.detach().cpu().numpy() _snake_case : List[Any] = self.de_normalize(snake_case_ , key="actions" ) # select the action with the highest value if y is not None: _snake_case : Dict = 0 else: # if we didn't run value guiding, select a random action _snake_case : Union[str, Any] = np.random.randint(0 , snake_case_ ) _snake_case : List[Any] = denorm_actions[selected_index, 0] return denorm_actions
87
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a : Optional[int] = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
1
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> List[str]: super().tearDown() gc.collect() def __snake_case ( self ) -> int: lowerCAmelCase = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) lowerCAmelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) lowerCAmelCase = controlnet_params lowerCAmelCase = "bird" lowerCAmelCase = jax.device_count() lowerCAmelCase = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) lowerCAmelCase = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCAmelCase = jax.random.PRNGKey(0 ) lowerCAmelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) lowerCAmelCase = replicate(lowerCAmelCase__ ) lowerCAmelCase = shard(lowerCAmelCase__ ) lowerCAmelCase = shard(lowerCAmelCase__ ) lowerCAmelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase = images[0, 253:256, 253:256, -1] lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) lowerCAmelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) lowerCAmelCase = controlnet_params lowerCAmelCase = "Chef in the kitchen" lowerCAmelCase = jax.device_count() lowerCAmelCase = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) lowerCAmelCase = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCAmelCase = jax.random.PRNGKey(0 ) lowerCAmelCase = jax.random.split(lowerCAmelCase__ , jax.device_count() ) lowerCAmelCase = replicate(lowerCAmelCase__ ) lowerCAmelCase = shard(lowerCAmelCase__ ) lowerCAmelCase = shard(lowerCAmelCase__ ) lowerCAmelCase = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase = images[0, 253:256, 253:256, -1] lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
433
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = StableDiffusionLDMaDPipeline UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) lowerCAmelCase_ : Any = DDIMScheduler( beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=lowerCAmelCase__ ,set_alpha_to_one=lowerCAmelCase__ ,) torch.manual_seed(0 ) lowerCAmelCase_ : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=6 ,out_channels=6 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) lowerCAmelCase_ : Optional[int] = CLIPTextModel(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ : List[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[str]=0 ) -> Dict: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Any = output.rgb, output.depth lowerCAmelCase_ : Dict = rgb[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ : Optional[Any] = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) lowerCAmelCase_ : Tuple = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Dict = self.get_dummy_components() lowerCAmelCase_ : List[str] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : str = 3 * [inputs["prompt"]] # forward lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = output.rgb, output.depth lowerCAmelCase_ : str = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ : List[str] = depth_slice_a[0, -3:, -1] lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = 3 * [inputs.pop("prompt" )] lowerCAmelCase_ : str = ldmad_pipe.tokenizer( lowerCAmelCase__ ,padding="max_length" ,max_length=ldmad_pipe.tokenizer.model_max_length ,truncation=lowerCAmelCase__ ,return_tensors="pt" ,) lowerCAmelCase_ : Union[str, Any] = text_inputs["input_ids"].to(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = ldmad_pipe.text_encoder(lowerCAmelCase__ )[0] lowerCAmelCase_ : Optional[int] = prompt_embeds # forward lowerCAmelCase_ : str = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : str = output.rgb, output.depth lowerCAmelCase_ : Optional[Any] = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : Any = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = "french fries" lowerCAmelCase_ : Optional[int] = ldmad_pipe(**lowerCAmelCase__ ,negative_prompt=lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = output.rgb, output.depth lowerCAmelCase_ : Any = rgb[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ : int = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) lowerCAmelCase_ : Union[str, Any] = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict="cpu" ,lowerCAmelCase__ : Union[str, Any]=torch.floataa ,lowerCAmelCase__ : List[str]=0 ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ,dtype=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) lowerCAmelCase_ : List[str] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = output.rgb, output.depth lowerCAmelCase_ : List[str] = rgb[0, -3:, -3:, -1].flatten() lowerCAmelCase_ : Optional[int] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) lowerCAmelCase_ : int = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) lowerCAmelCase_ : Optional[Any] = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict="cpu" ,lowerCAmelCase__ : List[str]=torch.floataa ,lowerCAmelCase__ : Optional[int]=0 ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ : Any = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ,dtype=lowerCAmelCase__ ) lowerCAmelCase_ : int = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Any = output.rgb, output.depth lowerCAmelCase_ : Dict = 0.495_586 lowerCAmelCase_ : Optional[Any] = 0.33_795_515 lowerCAmelCase_ : Any = 112.48_518 lowerCAmelCase_ : List[Any] = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : str = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = output.rgb, output.depth lowerCAmelCase_ : List[str] = 0.4_194_127 lowerCAmelCase_ : List[str] = 0.35_375_586 lowerCAmelCase_ : str = 0.5_638_502 lowerCAmelCase_ : Optional[Any] = 0.34_686_103 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
659
0
def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> str: if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) _a = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
346
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase :Any = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase :List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase :List[str] = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowerCamelCase :Optional[Any] = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase :List[Any] = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase :int = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __snake_case ( _UpperCamelCase ) -> Dict: _a = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , _UpperCamelCase ) return [m.group(0 ) for m in matches] def __snake_case ( ) -> Union[str, Any]: _a = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a = collections.defaultdict(_UpperCamelCase ) _a = collections.defaultdict(_UpperCamelCase ) _a = collections.defaultdict(_UpperCamelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_UpperCamelCase ): _a = None if _re_tf_models.match(_UpperCamelCase ) is not None: _a = tf_models _a = _re_tf_models.match(_UpperCamelCase ).groups()[0] elif _re_flax_models.match(_UpperCamelCase ) is not None: _a = flax_models _a = _re_flax_models.match(_UpperCamelCase ).groups()[0] elif _re_pt_models.match(_UpperCamelCase ) is not None: _a = pt_models _a = _re_pt_models.match(_UpperCamelCase ).groups()[0] if lookup_dict is not None: while len(_UpperCamelCase ) > 0: if attr_name in model_prefix_to_model_type: _a = True break # Try again after removing the last word in the name _a = ''''''.join(camel_case_split(_UpperCamelCase )[:-1] ) _a = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a = list(_UpperCamelCase ) all_models.sort() _a = {'''model_type''': all_models} _a = [pt_models[t] for t in all_models] _a = [tf_models[t] for t in all_models] _a = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a = '''AutoTokenizer''' _a = [processors[t] for t in all_models] return pd.DataFrame(_UpperCamelCase ) def __snake_case ( _UpperCamelCase ) -> int: _a = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a = [model_mapping, f"TF_{model_mapping}", f"FLAX_{model_mapping}"] _a = [auto_class, f"TF_{auto_class}", f"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): # The type of pipeline may not exist in this framework if not hasattr(_UpperCamelCase , _UpperCamelCase ): continue # First extract all model_names _a = [] for name in getattr(_UpperCamelCase , _UpperCamelCase ).values(): if isinstance(_UpperCamelCase , _UpperCamelCase ): model_names.append(_UpperCamelCase ) else: model_names.extend(list(_UpperCamelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> Tuple: _a = get_frameworks_table() _a = Dataset.from_pandas(_UpperCamelCase ) _a = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=_UpperCamelCase ) _a = Dataset.from_json(_UpperCamelCase ) _a = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(_UpperCamelCase ) ) } _a = update_pipeline_and_auto_class_table(_UpperCamelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a = sorted(table.keys() ) _a = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) _a = Dataset.from_pandas(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_UpperCamelCase , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(_UpperCamelCase , '''pipeline_tags.json''' ) ) if commit_sha is not None: _a = ( f"Update with commit {commit_sha}\n\nSee: " f"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: _a = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=_UpperCamelCase , repo_type='''dataset''' , token=_UpperCamelCase , commit_message=_UpperCamelCase , ) def __snake_case ( ) -> str: _a = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a = transformers_module.pipelines.SUPPORTED_TASKS _a = [] for key in pipeline_tasks: if key not in in_table: _a = pipeline_tasks[key]['''pt'''] if isinstance(_UpperCamelCase , (list, tuple) ): _a = model[0] _a = model.__name__ if model not in in_table.values(): missing.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: _a = ''', '''.join(_UpperCamelCase ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": lowerCamelCase :str = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') lowerCamelCase :Dict = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
346
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device A = False class __snake_case ( unittest.TestCase): pass @nightly @require_torch_gpu class __snake_case ( unittest.TestCase): def UpperCAmelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : str = 'A painting of a squirrel eating a burger ' lowerCamelCase : Optional[int] = torch.manual_seed(0 ) lowerCamelCase : Optional[Any] = pipe( prompt=UpperCAmelCase_, generator=UpperCAmelCase_, guidance_scale=7.5, num_inference_steps=2, output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_ ) lowerCamelCase : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained(UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : List[str] = generator.manual_seed(0 ) lowerCamelCase : Union[str, Any] = pipe( prompt=UpperCAmelCase_, generator=UpperCAmelCase_, guidance_scale=7.5, num_inference_steps=2, output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion', torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : List[str] = 'A painting of a squirrel eating a burger ' lowerCamelCase : List[str] = torch.manual_seed(0 ) lowerCamelCase : Any = pipe( prompt=UpperCAmelCase_, generator=UpperCAmelCase_, guidance_scale=7.5, num_inference_steps=50, output_type='numpy' ).images lowerCamelCase : Optional[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase : Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
320
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
508
0
def lowerCamelCase ( UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1000 , UpperCAmelCase_ : bool = True )-> int: """simple docstring""" assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int )-> int: """simple docstring""" return int((number_a + number_a) / 2 ) def lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int )-> None: """simple docstring""" assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(UpperCAmelCase_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) a =lower a =higher a =[] while True: a =get_avg(UpperCAmelCase_ , UpperCAmelCase_ ) last_numbers.append(UpperCAmelCase_ ) if answer(UpperCAmelCase_ ) == "low": a =number elif answer(UpperCAmelCase_ ) == "high": a =number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def lowerCamelCase ( )-> None: """simple docstring""" a =int(input("""Enter lower value : """ ).strip() ) a =int(input("""Enter high value : """ ).strip() ) a =int(input("""Enter value to guess : """ ).strip() ) guess_the_number(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
321
from __future__ import annotations from collections.abc import Callable def lowerCamelCase ( UpperCAmelCase_ : Callable[[int | float], int | float] , UpperCAmelCase_ : int | float , UpperCAmelCase_ : int | float , UpperCAmelCase_ : int = 100 , )-> float: """simple docstring""" a =x_start a =fnc(UpperCAmelCase_ ) a =0.0 for _ in range(UpperCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area a =(x_end - x_start) / steps + xa a =fnc(UpperCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step a =xa a =fxa return area if __name__ == "__main__": def lowerCamelCase ( UpperCAmelCase_ : List[str] )-> Optional[Any]: """simple docstring""" return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') _lowerCamelCase = 10 while i <= 100000: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
321
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase : Optional[Any] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
649
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : str = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
649
1
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCAmelCase : def __init__( self :Dict ): A = "" A = "" A = [] A = 0 A = 2_56 A = 0 A = 0 A = 0 A = 0 def lowerCamelCase ( self :Union[str, Any] , __UpperCamelCase :Tuple ): A = cva.imread(__UpperCamelCase , 0 ) A = copy.deepcopy(self.img ) A, A, A = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label="x" ) A = np.sum(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): A = x[i] / self.k self.sk += prk A = (self.L - 1) * self.sk if self.rem != 0: A = int(last % last ) A = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__UpperCamelCase ) A = int(np.ma.count(self.img ) / self.img[1].size ) A = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): A = self.img[j][i] if num != self.last_list[num]: A = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowerCamelCase ( self :List[str] ): plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def lowerCamelCase ( self :List[Any] ): cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": _snake_case : List[str] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _snake_case : Dict = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
524
"""simple docstring""" def A__ ( UpperCamelCase , UpperCamelCase ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(UpperCamelCase ) * abs(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
524
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a = None , ) -> str: a__ : int = {} if train_file is not None: a__ : int = [train_file] if eval_file is not None: a__ : Union[str, Any] = [eval_file] if test_file is not None: a__ : str = [test_file] a__ : Optional[Any] = datasets.load_dataset("csv" , data_files=__a ) a__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) a__ : str = features_name.pop(__a ) a__ : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) a__ : str = {label: i for i, label in enumerate(__a )} a__ : Tuple = tokenizer.model_input_names a__ : List[str] = {} if len(__a ) == 1: for k in files.keys(): a__ : Optional[Any] = ds[k].map( lambda __a : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__a , max_length=__a , padding="max_length" ) , batched=__a , ) elif len(__a ) == 2: for k in files.keys(): a__ : Dict = ds[k].map( lambda __a : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__a , max_length=__a , padding="max_length" , ) , batched=__a , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: a__ : str = {k: v for k, v in ex.items() if k in input_names} a__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: a__ : Tuple = {k: v for k, v in ex.items() if k in input_names} a__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: a__ : List[Any] = {k: v for k, v in ex.items() if k in input_names} a__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) a__ : Optional[Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: a__ : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: a__ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: a__ : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" _lowercase = field(metadata={'help': 'Which column contains the label'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the training file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the development file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the test file'} ) _lowercase = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _lowercase = field( default=A__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class A__ : """simple docstring""" _lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowercase = field(default=A__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCamelCase_ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) a__, a__, a__ : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a__, a__, a__, a__ : Optional[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) a__ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__a ) , labelaid=__a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): a__ : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , ) def compute_metrics(__a ) -> Dict: a__ : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer a__ : Dict = TFTrainer( model=__a , args=__a , train_dataset=__a , eval_dataset=__a , compute_metrics=__a , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a__ : Dict = trainer.evaluate() a__ : int = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(__a , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__a ) return results if __name__ == "__main__": main()
37
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return 0 elif n == 2: return 1 else: _a : Dict =[0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: _a : Union[str, Any] =0 _a : Optional[Any] =2 while digits < n: index += 1 _a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int: return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
694
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class UpperCAmelCase__ ( _snake_case ): """simple docstring""" A : torch.FloatTensor class UpperCAmelCase__ ( _snake_case , _snake_case ): """simple docstring""" @register_to_config def __init__(self , _a = 16 , _a = 88 , _a = None , _a = None , _a = 1 , _a = 0.0 , _a = 32 , _a = None , _a = False , _a = None , _a = "geglu" , _a = True , _a = True , ) -> Optional[int]: super().__init__() lowercase_ : Optional[int] = num_attention_heads lowercase_ : Union[str, Any] = attention_head_dim lowercase_ : int = num_attention_heads * attention_head_dim lowercase_ : Tuple = in_channels lowercase_ : List[Any] = torch.nn.GroupNorm(num_groups=_a , num_channels=_a , eps=1e-6 , affine=_a ) lowercase_ : str = nn.Linear(_a , _a ) # 3. Define transformers blocks lowercase_ : Any = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , cross_attention_dim=_a , activation_fn=_a , attention_bias=_a , double_self_attention=_a , norm_elementwise_affine=_a , ) for d in range(_a ) ] ) lowercase_ : Optional[int] = nn.Linear(_a , _a ) def _lowerCamelCase (self , _a , _a=None , _a=None , _a=None , _a=1 , _a=None , _a = True , ) -> Union[str, Any]: lowercase_ : List[Any] = hidden_states.shape lowercase_ : List[str] = batch_frames // num_frames lowercase_ : Optional[int] = hidden_states lowercase_ : List[str] = hidden_states[None, :].reshape(_a , _a , _a , _a , _a ) lowercase_ : Optional[int] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ : List[str] = self.norm(_a ) lowercase_ : List[Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _a , _a ) lowercase_ : Dict = self.proj_in(_a ) # 2. Blocks for block in self.transformer_blocks: lowercase_ : Optional[int] = block( _a , encoder_hidden_states=_a , timestep=_a , cross_attention_kwargs=_a , class_labels=_a , ) # 3. Output lowercase_ : List[Any] = self.proj_out(_a ) lowercase_ : Any = ( hidden_states[None, None, :] .reshape(_a , _a , _a , _a , _a ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ : int = hidden_states.reshape(_a , _a , _a , _a ) lowercase_ : List[str] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_a )
720
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[Any] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowercase_ : List[Any] = 128 elif "12-12" in model_name: lowercase_ : Tuple = 12 lowercase_ : List[Any] = 12 elif "14-14" in model_name: lowercase_ : List[str] = 14 lowercase_ : Optional[Any] = 14 elif "16-16" in model_name: lowercase_ : Union[str, Any] = 16 lowercase_ : List[str] = 16 else: raise ValueError('Model not supported' ) lowercase_ : Optional[Any] = 'huggingface/label-files' if "speech-commands" in model_name: lowercase_ : List[str] = 35 lowercase_ : int = 'speech-commands-v2-id2label.json' else: lowercase_ : Union[str, Any] = 527 lowercase_ : int = 'audioset-id2label.json' lowercase_ : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) lowercase_ : Union[str, Any] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowercase_ : Optional[int] = idalabel lowercase_ : Optional[int] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): if "module.v" in name: lowercase_ : Dict = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: lowercase_ : Optional[Any] = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: lowercase_ : Any = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: lowercase_ : List[str] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowercase_ : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: lowercase_ : Optional[Any] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowercase_ : Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowercase_ : Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase_ : int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase_ : Optional[int] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase_ : Optional[int] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase_ : int = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowercase_ : int = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: lowercase_ : Dict = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: lowercase_ : List[Any] = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for key in orig_state_dict.copy().keys(): lowercase_ : List[str] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: lowercase_ : List[str] = key.split('.' ) lowercase_ : int = int(key_split[3] ) lowercase_ : Tuple = config.hidden_size if "weight" in key: lowercase_ : Tuple = val[:dim, :] lowercase_ : Union[str, Any] = val[dim : dim * 2, :] lowercase_ : Optional[int] = val[-dim:, :] else: lowercase_ : Optional[Any] = val[:dim] lowercase_ : Any = val[dim : dim * 2] lowercase_ : Tuple = val[-dim:] else: lowercase_ : Optional[Any] = val return orig_state_dict def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[Any] = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): lowercase_ : Dict = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE_ ) lowercase_ : Optional[int] = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict lowercase_ : Dict = model_name_to_url[model_name] lowercase_ : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE_ ) # rename some keys lowercase_ : str = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load 🤗 model lowercase_ : Optional[Any] = ASTForAudioClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowercase_ : Tuple = -4.267_7393 if 'speech-commands' not in model_name else -6.84_5978 lowercase_ : str = 4.568_9974 if 'speech-commands' not in model_name else 5.565_4526 lowercase_ : str = 1_024 if 'speech-commands' not in model_name else 128 lowercase_ : Dict = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) if "speech-commands" in model_name: lowercase_ : Optional[Any] = load_dataset('speech_commands' , 'v0.02' , split='validation' ) lowercase_ : Any = dataset[0]['audio']['array'] else: lowercase_ : Any = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) lowercase_ ,lowercase_ : Union[str, Any] = torchaudio.load(SCREAMING_SNAKE_CASE_ ) lowercase_ : str = waveform.squeeze().numpy() lowercase_ : str = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=16_000 , return_tensors='pt' ) # forward pass lowercase_ : Tuple = model(**SCREAMING_SNAKE_CASE_ ) lowercase_ : Tuple = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowercase_ : int = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowercase_ : Optional[int] = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowercase_ : Optional[Any] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowercase_ : List[str] = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowercase_ : List[str] = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowercase_ : Any = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowercase_ : List[str] = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowercase_ : Optional[Any] = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
438
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[list[str]] , SCREAMING_SNAKE_CASE__ : int , ): """simple docstring""" snake_case_ : Any = len(SCREAMING_SNAKE_CASE__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(SCREAMING_SNAKE_CASE__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : list[list[str]] = [] depth_first_search([] , [] , [] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Print all the boards for board in boards: for column in board: print(SCREAMING_SNAKE_CASE__ ) print("""""" ) print(len(SCREAMING_SNAKE_CASE__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
480
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : List[str] = CpmAntTokenizer _A : str = False def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __UpperCamelCase (self ): snake_case_ : Dict = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) snake_case_ : Any = """今天天气真好!""" snake_case_ : str = ["""今天""", """天气""", """真""", """好""", """!"""] snake_case_ : Dict = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : Optional[int] = """今天天气真好!""" snake_case_ : Dict = [tokenizer.bos_token] + tokens snake_case_ : int = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
480
1
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 32 def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] = 16 ) -> str: snake_case = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) snake_case = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case = 16 elif accelerator.mixed_precision != "no": snake_case = 8 else: snake_case = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , drop_last=lowerCAmelCase_ ) snake_case = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ) -> List[Any]: snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case = config["lr"] snake_case = int(config["""num_epochs"""] ) snake_case = int(config["""seed"""] ) snake_case = int(config["""batch_size"""] ) snake_case = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation snake_case = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case = batch_size // MAX_GPU_BATCH_SIZE snake_case = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) snake_case = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case = model.to(accelerator.device ) # Instantiate optimizer snake_case = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler snake_case = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case = model(**lowerCAmelCase_ ) snake_case = outputs.loss snake_case = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case = model(**lowerCAmelCase_ ) snake_case = outputs.logits.argmax(dim=-1 ) snake_case = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) def __lowerCamelCase ( ) -> Union[str, Any]: snake_case = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case = parser.parse_args() snake_case = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
707
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _SCREAMING_SNAKE_CASE = random.Random() def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]=1.0 , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[int]=None ) -> Optional[Any]: if rng is None: snake_case = global_rng snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __snake_case : int , __snake_case : Dict=7 , __snake_case : Optional[int]=4_00 , __snake_case : Optional[int]=20_00 , __snake_case : List[str]=1 , __snake_case : str=0.0 , __snake_case : Dict=1_60_00 , __snake_case : Dict=True , __snake_case : Optional[int]=True , )-> Optional[int]: snake_case = parent snake_case = batch_size snake_case = min_seq_length snake_case = max_seq_length snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case = feature_size snake_case = padding_value snake_case = sampling_rate snake_case = return_attention_mask snake_case = do_normalize def lowerCAmelCase ( self : Union[str, Any] )-> Dict: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase ( self : Tuple , __snake_case : List[Any]=False , __snake_case : int=False )-> Tuple: def _flatten(__snake_case : List[str] ): return list(itertools.chain(*__snake_case ) ) if equal_length: snake_case = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case = [np.asarray(__snake_case ) for x in speech_inputs] return speech_inputs class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = WavaVecaFeatureExtractor def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = WavaVecaFeatureExtractionTester(self ) def lowerCAmelCase ( self : Dict , __snake_case : str )-> List[Any]: self.assertTrue(np.all(np.mean(__snake_case , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__snake_case , axis=0 ) - 1 ) < 1e-3 ) ) def lowerCAmelCase ( self : Optional[Any] )-> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = [np.asarray(__snake_case ) for speech_input in speech_inputs] # Test not batched input snake_case = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values snake_case = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3 ) ) # Test batched snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ): self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case = np.asarray(__snake_case ) snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ): self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3 ) ) def lowerCAmelCase ( self : int )-> List[str]: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = ["""longest""", """max_length""", """do_not_pad"""] snake_case = [None, 16_00, None] for max_length, padding in zip(__snake_case , __snake_case ): snake_case = feat_extract(__snake_case , padding=__snake_case , max_length=__snake_case , return_tensors="""np""" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def lowerCAmelCase ( self : Any )-> Tuple: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = range(8_00 , 14_00 , 2_00 ) snake_case = [floats_list((1, x) )[0] for x in lengths] snake_case = ["""longest""", """max_length""", """do_not_pad"""] snake_case = [None, 16_00, None] for max_length, padding in zip(__snake_case , __snake_case ): snake_case = feat_extract(__snake_case , max_length=__snake_case , padding=__snake_case ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def lowerCAmelCase ( self : int )-> str: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = feat_extract( __snake_case , truncation=__snake_case , max_length=10_00 , padding="""max_length""" , return_tensors="""np""" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase ( self : int )-> str: snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = feat_extract( __snake_case , truncation=__snake_case , max_length=10_00 , padding="""longest""" , return_tensors="""np""" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = feat_extract( __snake_case , truncation=__snake_case , max_length=20_00 , padding="""longest""" , return_tensors="""np""" ) snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def lowerCAmelCase ( self : List[str] )-> Union[str, Any]: import torch snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case = np.random.rand(1_00 ).astype(np.floataa ) snake_case = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def lowerCAmelCase ( self : str )-> List[Any]: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: snake_case = WavaVecaConfig.from_pretrained(__snake_case ) snake_case = WavaVecaFeatureExtractor.from_pretrained(__snake_case ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
517
0
from __future__ import annotations class A : def __init__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(UpperCAmelCase__ ) != 0: lowerCAmelCase_ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(UpperCAmelCase__ ) != cols: raise error for value in row: if not isinstance(UpperCAmelCase__, (int, float) ): raise error lowerCAmelCase_ = rows else: lowerCAmelCase_ = [] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return len(self.rows ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return len(self.rows[0] ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return (self.num_rows, self.num_columns) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.order[0] == self.order[1] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return bool(self.determinant() ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(UpperCAmelCase__ ).determinant() def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase__, UpperCAmelCase__ ) return -1 * self.get_minor(UpperCAmelCase__, UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return Matrix( [ [self.get_minor(UpperCAmelCase__, UpperCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self ): """simple docstring""" return str(self.rows ) def __str__( self ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(UpperCAmelCase__ ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise type_error for value in row: if not isinstance(UpperCAmelCase__, (int, float) ): raise type_error if len(UpperCAmelCase__ ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(UpperCAmelCase__ ) else: lowerCAmelCase_ = self.rows[0:position] + [row] + self.rows[position:] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise type_error for value in column: if not isinstance(UpperCAmelCase__, (int, float) ): raise type_error if len(UpperCAmelCase__ ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: lowerCAmelCase_ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowerCAmelCase_ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self, UpperCamelCase__ ): """simple docstring""" if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self, UpperCamelCase__ ): """simple docstring""" return not self == other def __neg__( self ): """simple docstring""" return self * -1 def __add__( self, UpperCamelCase__ ): """simple docstring""" if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self, UpperCamelCase__ ): """simple docstring""" if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self, UpperCamelCase__ ): """simple docstring""" if isinstance(UpperCAmelCase__, (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(UpperCAmelCase__, UpperCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(UpperCAmelCase__, UpperCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self, UpperCamelCase__ ): """simple docstring""" if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) lowerCAmelCase_ = self for _ in range(other - 1 ): result *= self return result @classmethod def SCREAMING_SNAKE_CASE__ ( cls, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
431
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=13 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__=99 , UpperCAmelCase__=32 , UpperCAmelCase__=5 , UpperCAmelCase__=4 , UpperCAmelCase__=37 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=16 , UpperCAmelCase__=2 , UpperCAmelCase__=0.02 , UpperCAmelCase__=3 , UpperCAmelCase__=4 , UpperCAmelCase__=None , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def __A ( self ): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCAmelCase__ , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = OpenLlamaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): A__ = True A__ = OpenLlamaModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): A__ = OpenLlamaForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): A__ = True A__ = True A__ = OpenLlamaForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ = torch.cat([input_mask, next_mask] , dim=-1 ) A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )["hidden_states"][0] A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )["hidden_states"][0] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) def __A ( self ): A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase : Optional[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCAmelCase : Dict = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : Optional[int] = False lowerCAmelCase : Union[str, Any] = False def __A ( self ): A__ = OpenLlamaModelTester(self ) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __A ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = input_dict["input_ids"] A__ = input_ids.ne(1 ).to(UpperCAmelCase__ ) A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ = OpenLlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = "single_label_classification" A__ = input_dict["input_ids"] A__ = input_ids.ne(1 ).to(UpperCAmelCase__ ) A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ = OpenLlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = "multi_label_classification" A__ = input_dict["input_ids"] A__ = input_ids.ne(1 ).to(UpperCAmelCase__ ) A__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ = OpenLlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def __A ( self ): pass @parameterized.expand([("linear",), ("dynamic",)] ) def __A ( self , UpperCAmelCase__ ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ids_tensor([1, 10] , config.vocab_size ) A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ = OpenLlamaModel(UpperCAmelCase__ ) original_model.to(UpperCAmelCase__ ) original_model.eval() A__ = original_model(UpperCAmelCase__ ).last_hidden_state A__ = original_model(UpperCAmelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ = {"type": scaling_type, "factor": 10.0} A__ = OpenLlamaModel(UpperCAmelCase__ ) scaled_model.to(UpperCAmelCase__ ) scaled_model.eval() A__ = scaled_model(UpperCAmelCase__ ).last_hidden_state A__ = scaled_model(UpperCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) )
491
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: # Initialise PyTorch model UpperCAmelCase : Optional[int] = BertConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase : str = BertForPreTraining(lowerCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
706
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : str = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
691
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class A__ ( unittest.TestCase ): def __init__( self : List[str] , _a : Dict , _a : Dict=7 , _a : List[str]=3 , _a : str=18 , _a : Optional[int]=30 , _a : Tuple=400 , _a : Optional[Any]=True , _a : Dict=None , _a : str=True , _a : Tuple=None , _a : Any=True , _a : Any=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , _a : str=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , _a : List[Any]=True , ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =size if size is not None else {'''height''': 224, '''width''': 224} _SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =min_resolution _SCREAMING_SNAKE_CASE =max_resolution _SCREAMING_SNAKE_CASE =do_resize _SCREAMING_SNAKE_CASE =size _SCREAMING_SNAKE_CASE =do_center_crop _SCREAMING_SNAKE_CASE =crop_size _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =image_mean _SCREAMING_SNAKE_CASE =image_std _SCREAMING_SNAKE_CASE =do_convert_rgb def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __UpperCamelCase ( self : Tuple , _a : Optional[Any]=False , _a : str=False , _a : Dict=False ) -> Dict: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _SCREAMING_SNAKE_CASE =[] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _SCREAMING_SNAKE_CASE =[] for i in range(self.batch_size ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] if torchify: _SCREAMING_SNAKE_CASE =[torch.from_numpy(_a ) for x in image_inputs] return image_inputs @require_torch @require_vision class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =ChineseCLIPImageProcessingTester(self , do_center_crop=_a ) @property def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''do_center_crop''' ) ) self.assertTrue(hasattr(_a , '''center_crop''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : int ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=_a ) _SCREAMING_SNAKE_CASE =3 @property def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''do_center_crop''' ) ) self.assertTrue(hasattr(_a , '''center_crop''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" pass def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
691
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = (UniPCMultistepScheduler,) UpperCAmelCase__ = (('''num_inference_steps''', 25),) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **UpperCAmelCase__ : str) ->Dict: '''simple docstring''' A__ = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**UpperCAmelCase__) return config def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[str]=0 , **UpperCAmelCase__ : Union[str, Any]) ->str: '''simple docstring''' A__ = dict(self.forward_default_kwargs) A__ = kwargs.pop('''num_inference_steps''' , UpperCAmelCase__) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**UpperCAmelCase__) A__ = scheduler_class(**UpperCAmelCase__) scheduler.set_timesteps(UpperCAmelCase__) # copy over dummy past residuals A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase__) A__ = scheduler_class.from_pretrained(UpperCAmelCase__) new_scheduler.set_timesteps(UpperCAmelCase__) # copy over dummy past residuals A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ , A__ = sample, sample for t in range(UpperCAmelCase__ , time_step + scheduler.config.solver_order + 1): A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample A__ = new_scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[Any]=0 , **UpperCAmelCase__ : List[str]) ->Dict: '''simple docstring''' A__ = dict(self.forward_default_kwargs) A__ = kwargs.pop('''num_inference_steps''' , UpperCAmelCase__) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) scheduler.set_timesteps(UpperCAmelCase__) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase__) A__ = scheduler_class.from_pretrained(UpperCAmelCase__) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase__) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample A__ = new_scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Any=None , **UpperCAmelCase__ : List[Any]) ->List[str]: '''simple docstring''' if scheduler is None: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**UpperCAmelCase__) A__ = scheduler_class(**UpperCAmelCase__) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**UpperCAmelCase__) A__ = scheduler_class(**UpperCAmelCase__) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase__) for i, t in enumerate(scheduler.timesteps): A__ = model(UpperCAmelCase__ , UpperCAmelCase__) A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' A__ = dict(self.forward_default_kwargs) A__ = kwargs.pop('''num_inference_steps''' , UpperCAmelCase__) for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = self.dummy_sample A__ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase__ , '''set_timesteps'''): scheduler.set_timesteps(UpperCAmelCase__) elif num_inference_steps is not None and not hasattr(UpperCAmelCase__ , '''set_timesteps'''): A__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ = [residual + 0.2, residual + 0.15, residual + 0.10] A__ = dummy_past_residuals[: scheduler.config.solver_order] A__ = scheduler.timesteps[5] A__ = scheduler.timesteps[6] A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' A__ = UniPCMultistepScheduler(**self.get_scheduler_config()) A__ = self.full_loop(scheduler=UpperCAmelCase__) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_mean.item() - 0.2464) < 1e-3 A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config) A__ = DEISMultistepScheduler.from_config(scheduler.config) A__ = DPMSolverMultistepScheduler.from_config(scheduler.config) A__ = UniPCMultistepScheduler.from_config(scheduler.config) A__ = self.full_loop(scheduler=UpperCAmelCase__) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_mean.item() - 0.2464) < 1e-3 def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase__) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , sample_max_value=UpperCAmelCase__ , solver_order=UpperCAmelCase__ , solver_type=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase__ , solver_type=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , ) A__ = self.full_loop( solver_order=UpperCAmelCase__ , solver_type=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , ) assert not torch.isnan(UpperCAmelCase__).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' self.check_over_configs(lower_order_final=UpperCAmelCase__) self.check_over_configs(lower_order_final=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=UpperCAmelCase__ , time_step=0) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: '''simple docstring''' A__ = self.full_loop() A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_mean.item() - 0.2464) < 1e-3 def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = self.full_loop(prediction_type='''v_prediction''') A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_mean.item() - 0.1014) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(thresholding=UpperCAmelCase__ , dynamic_thresholding_ratio=0) A__ = scheduler_class(**UpperCAmelCase__) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase__) for i, t in enumerate(scheduler.timesteps): A__ = model(UpperCAmelCase__ , UpperCAmelCase__) A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__).prev_sample assert sample.dtype == torch.floataa def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **UpperCAmelCase__ : Optional[Any]) ->Optional[int]: '''simple docstring''' for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**UpperCAmelCase__) A__ = scheduler_class(**UpperCAmelCase__) scheduler.set_timesteps(scheduler.config.num_train_timesteps) assert len(scheduler.timesteps.unique()) == scheduler.num_inference_steps
177
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A__ = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = features.copy() if features else default_expected_features A__ = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) A__ = ParquetDatasetReader(lowercase_ , features=lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , split=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" if issubclass(lowercase_ , lowercase_ ): A__ = parquet_path elif issubclass(lowercase_ , lowercase_ ): A__ = [parquet_path] A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=("train",) ) -> List[str]: """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) for split in splits: A__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A__ = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = features.copy() if features else default_expected_features A__ = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) A__ = ParquetDatasetReader({'''train''': parquet_path} , features=lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" if split: A__ = {split: parquet_path} else: A__ = '''train''' A__ = {'''train''': parquet_path, '''test''': parquet_path} A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" A__ = ParquetDatasetWriter(lowercase_ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 A__ = pq.ParquetFile(tmp_path / '''foo.parquet''' ) A__ = pf.read() assert dataset.data.table == output_table def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = str(shared_datadir / '''test_image_rgb.jpg''' ) A__ = {'''image''': [image_path]} A__ = Features({'''image''': Image()} ) A__ = Dataset.from_dict(lowercase_ , features=lowercase_ ) A__ = ParquetDatasetWriter(lowercase_ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 A__ = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features A__ = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=lowercase_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" assert get_writer_batch_size(lowercase_ ) == expected
177
1
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers __magic_name__ : List[str] = float("""nan""") class lowercase__ : """simple docstring""" def __init__( self , _A ): '''simple docstring''' UpperCamelCase : Tuple = sys.stdout UpperCamelCase : str = open(_A , """a""" ) def __getattr__( self , _A ): '''simple docstring''' return getattr(self.stdout , _A ) def _a ( self , _A ): '''simple docstring''' self.stdout.write(_A ) # strip tqdm codes self.file.write(re.sub(r"""^.*\r""" , """""" , _A , 0 , re.M ) ) def UpperCamelCase (SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=False ): UpperCamelCase : List[str] = [] # deal with critical env vars UpperCamelCase : int = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: UpperCamelCase : str = os.environ.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) UpperCamelCase : Union[str, Any] = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(SCREAMING_SNAKE_CASE ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes UpperCamelCase : List[Any] = [] UpperCamelCase : Dict = """""" while len(SCREAMING_SNAKE_CASE ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = """""" return "\\\n".join(SCREAMING_SNAKE_CASE ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # unwrap multi-line input UpperCamelCase : int = re.sub(r"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own UpperCamelCase : Union[str, Any] = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir UpperCamelCase : Optional[Any] = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) UpperCamelCase : Tuple = subprocess.run(SCREAMING_SNAKE_CASE , capture_output=SCREAMING_SNAKE_CASE , text=SCREAMING_SNAKE_CASE ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams UpperCamelCase : List[Any] = variation.replace(""" """ , """-""" ) with open(Path(SCREAMING_SNAKE_CASE ) / f"""log.{prefix}.stdout.txt""" , """w""" ) as f: f.write(result.stdout ) with open(Path(SCREAMING_SNAKE_CASE ) / f"""log.{prefix}.stderr.txt""" , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase : Optional[int] = json.load(SCREAMING_SNAKE_CASE ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): UpperCamelCase : Tuple = [] UpperCamelCase : List[Any] = [] UpperCamelCase : Tuple = f"""{id}: {variation:<{longest_variation_len}}""" UpperCamelCase : List[str] = f"""{preamble}: """ UpperCamelCase : List[Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(SCREAMING_SNAKE_CASE ) , desc=SCREAMING_SNAKE_CASE , leave=SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = process_run_single( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = single_run_metrics[target_metric_key] if not math.isnan(SCREAMING_SNAKE_CASE ): metrics.append(SCREAMING_SNAKE_CASE ) results.append(SCREAMING_SNAKE_CASE ) outcome += "✓" else: outcome += "✘" UpperCamelCase : Any = f"""\33[2K\r{outcome}""" if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase : Optional[int] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} UpperCamelCase : Any = round(mean_metrics[target_metric_key] , 2 ) UpperCamelCase : Any = f"""{outcome} {mean_target}""" if len(SCREAMING_SNAKE_CASE ) > 1: results_str += f""" {tuple(round(SCREAMING_SNAKE_CASE , 2 ) for x in results )}""" print(SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = variation return mean_metrics else: print(SCREAMING_SNAKE_CASE ) return {variation_key: variation, target_metric_key: nan} def UpperCamelCase (): UpperCamelCase : int = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f""" Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = pd.DataFrame(SCREAMING_SNAKE_CASE ) UpperCamelCase : str = """variation""" UpperCamelCase : int = """diff_%""" UpperCamelCase : List[str] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan UpperCamelCase : Union[str, Any] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(SCREAMING_SNAKE_CASE ): # as a fallback, use the minimal value as the sentinel UpperCamelCase : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(SCREAMING_SNAKE_CASE ): UpperCamelCase : str = df.apply( lambda SCREAMING_SNAKE_CASE : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns UpperCamelCase : Tuple = [variation_key, target_metric_key, diff_key, *report_metric_keys] UpperCamelCase : Dict = df.reindex(SCREAMING_SNAKE_CASE , axis="""columns""" ) # reorder cols # capitalize UpperCamelCase : Any = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible UpperCamelCase : int = df.rename(lambda SCREAMING_SNAKE_CASE : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) UpperCamelCase : Tuple = df.rename(lambda SCREAMING_SNAKE_CASE : c.replace("""_""" , """\n""" ) , axis="""columns""" ) UpperCamelCase : List[str] = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=SCREAMING_SNAKE_CASE , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=SCREAMING_SNAKE_CASE , floatfmt=""".2f""" )] print("""\n\n""".join(SCREAMING_SNAKE_CASE ) ) def UpperCamelCase (): UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , nargs="""+""" , required=SCREAMING_SNAKE_CASE , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=SCREAMING_SNAKE_CASE , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=SCREAMING_SNAKE_CASE , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=SCREAMING_SNAKE_CASE , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=SCREAMING_SNAKE_CASE , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) UpperCamelCase : str = parser.parse_args() UpperCamelCase : Union[str, Any] = args.output_dir Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = get_base_command(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # split each dimension into its --foo variations UpperCamelCase : Union[str, Any] = [list(map(str.strip , re.split(r"""\|""" , SCREAMING_SNAKE_CASE ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty UpperCamelCase : int = list(map(str.strip , map(""" """.join , itertools.product(*SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : int = max(len(SCREAMING_SNAKE_CASE ) for x in variations ) # split wanted keys UpperCamelCase : Union[str, Any] = args.report_metric_keys.split() # capture prints into a log file for convenience UpperCamelCase : List[str] = f"""benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) UpperCamelCase : Union[str, Any] = Tee(SCREAMING_SNAKE_CASE ) print(f"""\n*** Running {len(SCREAMING_SNAKE_CASE )} benchmarks:""" ) print(f"""Base command: {" ".join(SCREAMING_SNAKE_CASE )}""" ) UpperCamelCase : Optional[Any] = """variation""" UpperCamelCase : Any = [] for id, variation in enumerate(tqdm(SCREAMING_SNAKE_CASE , desc="""Total completion: """ , leave=SCREAMING_SNAKE_CASE ) ): UpperCamelCase : Optional[int] = base_cmd + variation.split() results.append( process_run( id + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , args.target_metric_key , SCREAMING_SNAKE_CASE , args.repeat_times , SCREAMING_SNAKE_CASE , args.verbose , ) ) process_results(SCREAMING_SNAKE_CASE , args.target_metric_key , SCREAMING_SNAKE_CASE , args.base_variation , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
102
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowercase : List[str] = ['''text''', '''image''', '''audio'''] def lowercase ( __A : List[str] ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__A , __A ): inputs.append(create_inputs(__A ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def lowercase ( __A : List ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = [] for output in outputs: if isinstance(__A , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(__A , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(__A , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class _A : '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool ,"""inputs""" ) ) self.assertTrue(hasattr(self.tool ,"""outputs""" ) ) snake_case : Dict = self.tool.inputs for _input in inputs: if isinstance(_input ,SCREAMING_SNAKE_CASE_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : int = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : str = self.tool(*SCREAMING_SNAKE_CASE_ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : Union[str, Any] = [outputs] self.assertListEqual(output_types(SCREAMING_SNAKE_CASE_ ) ,self.tool.outputs ) def snake_case_ ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool ,"""description""" ) ) self.assertTrue(hasattr(self.tool ,"""default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : Any = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,len(self.tool.outputs ) ) for output, output_type in zip(SCREAMING_SNAKE_CASE_ ,self.tool.outputs ): snake_case : List[str] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = create_inputs(self.tool.inputs ) snake_case : Any = [] for _input, input_type in zip(SCREAMING_SNAKE_CASE_ ,self.tool.inputs ): if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Tuple = self.tool(*SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : Union[str, Any] = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,len(self.tool.outputs ) )
36
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
314
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __magic_name__ = get_tests_dir('''fixtures''') __magic_name__ = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __magic_name__ = get_tests_dir('''fixtures/dummy-config.json''') class a__ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self :str ): lowercase = 0 def __UpperCAmelCase ( self :Tuple ): lowercase = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase__ , lowercase__ ) def __UpperCAmelCase ( self :Any ): lowercase = AutoFeatureExtractor.from_pretrained(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def __UpperCAmelCase ( self :int ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowercase = AutoFeatureExtractor.from_pretrained(lowercase__ ).to_dict() config_dict.pop('feature_extractor_type' ) lowercase = WavaVecaFeatureExtractor(**lowercase__ ) # save in new folder model_config.save_pretrained(lowercase__ ) config.save_pretrained(lowercase__ ) lowercase = AutoFeatureExtractor.from_pretrained(lowercase__ ) # make sure private variable is not incorrectly saved lowercase = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowercase__ , lowercase__ ) def __UpperCAmelCase ( self :List[Any] ): lowercase = AutoFeatureExtractor.from_pretrained(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def __UpperCAmelCase ( self :List[Any] ): with self.assertRaisesRegex( lowercase__ , 'bert-base is not a local folder and is not a valid model identifier' ): lowercase = AutoFeatureExtractor.from_pretrained('bert-base' ) def __UpperCAmelCase ( self :List[str] ): with self.assertRaisesRegex( lowercase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase = AutoFeatureExtractor.from_pretrained(lowercase__ , revision='aaaaaa' ) def __UpperCAmelCase ( self :Any ): with self.assertRaisesRegex( lowercase__ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): lowercase = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def __UpperCAmelCase ( self :Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase__ ): lowercase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase__ ): lowercase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase__ ) lowercase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase__ ) lowercase = AutoFeatureExtractor.from_pretrained(lowercase__ , trust_remote_code=lowercase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def __UpperCAmelCase ( self :Optional[int] ): try: AutoConfig.register('custom' , lowercase__ ) AutoFeatureExtractor.register(lowercase__ , lowercase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase__ ): AutoFeatureExtractor.register(lowercase__ , lowercase__ ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase = CustomFeatureExtractor.from_pretrained(lowercase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase__ ) lowercase = AutoFeatureExtractor.from_pretrained(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __UpperCAmelCase ( self :Any ): class a__ ( _snake_case ): """simple docstring""" A__ : Union[str, Any] = True try: AutoConfig.register('custom' , lowercase__ ) AutoFeatureExtractor.register(lowercase__ , lowercase__ ) # If remote code is not set, the default is to use local lowercase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowercase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowercase = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowercase__ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
314
1
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __snake_case : List[str] = logging.get_logger(__name__) def lowerCamelCase__ ( A_ , A_ , A_ ): UpperCAmelCase_ = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(A_ ) == len(A_ ), F"""{len(A_ )} != {len(A_ )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) __snake_case : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __snake_case : Dict = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def lowerCamelCase__ ( A_ , A_ ): try: UpperCAmelCase_ = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(A_ ) ) def lowerCamelCase__ ( A_ , A_ ): if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(A_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def lowerCamelCase__ ( A_ , A_ = "student" , A_ = None , A_ = None , A_=False , A_=None , A_=None , **A_ , ): UpperCAmelCase_ = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(A_ , A_ ): AutoTokenizer.from_pretrained(A_ ).save_pretrained(A_ ) # purely for convenience UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained(A_ ).eval() else: assert isinstance(A_ , A_ ), F"""teacher must be a model or string got type {type(A_ )}""" UpperCAmelCase_ = teacher.config.to_diff_dict() try: UpperCAmelCase_ , UpperCAmelCase_ = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase_ = teacher_e if d is None: UpperCAmelCase_ = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): UpperCAmelCase_ , UpperCAmelCase_ = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase_ , UpperCAmelCase_ = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase_ = teacher_e if d is None: UpperCAmelCase_ = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(A_ ) # Copy weights UpperCAmelCase_ = teacher.config_class(**A_ ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_config(A_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase_ = student.load_state_dict(teacher.state_dict() , strict=A_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase_ , UpperCAmelCase_ = list(range(A_ ) ), list(range(A_ ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(A_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase_ = pick_layers_to_copy(A_ , A_ ) if d_layers_to_copy is None: UpperCAmelCase_ = pick_layers_to_copy(A_ , A_ ) try: if hasattr( A_ , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , A_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , A_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , A_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , A_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , A_ ) copy_layers(teacher.decoder.block , student.decoder.block , A_ ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) UpperCAmelCase_ = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(A_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
660
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowercase_ ( _A ): a_ = """""" a_ = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Tuple: """simple docstring""" super().__init__(self , **UpperCamelCase__ ) UpperCAmelCase_ = repo_info UpperCAmelCase_ = token UpperCAmelCase_ = None def lowerCamelCase_ ( self ) -> List[Any]: """simple docstring""" if self.dir_cache is None: UpperCAmelCase_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase_ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(UpperCamelCase__ ): {"name": str(UpperCamelCase__ ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ = "rb" , **UpperCamelCase__ , ) -> Optional[int]: """simple docstring""" if not isinstance(self.repo_info , UpperCamelCase__ ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) UpperCAmelCase_ = hf_hub_url(self.repo_info.id , UpperCamelCase__ , revision=self.repo_info.sha ) return fsspec.open( UpperCamelCase__ , mode=UpperCamelCase__ , headers=get_authentication_headers_for_url(UpperCamelCase__ , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCamelCase_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: """simple docstring""" self._get_dirs() UpperCAmelCase_ = self._strip_protocol(UpperCamelCase__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__=False , **UpperCamelCase__ ) -> str: """simple docstring""" self._get_dirs() UpperCAmelCase_ = PurePosixPath(path.strip("/" ) ) UpperCAmelCase_ = {} for p, f in self.dir_cache.items(): UpperCAmelCase_ = PurePosixPath(p.strip("/" ) ) UpperCAmelCase_ = p.parent if root == path: UpperCAmelCase_ = f UpperCAmelCase_ = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
660
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = XLNetTokenizer lowercase = XLNetTokenizerFast lowercase = True lowercase = True def lowerCamelCase ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Union[str, Any] = XLNetTokenizer(snake_case_ , keep_accents=snake_case_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : str ): snake_case__ : str = """<s>""" snake_case__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCamelCase ( self : List[Any] ): snake_case__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(snake_case_ ) , 1_006 ) def lowerCamelCase ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowerCamelCase ( self : int ): snake_case__ : Any = XLNetTokenizer(snake_case_ , keep_accents=snake_case_ ) snake_case__ : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [285, 46, 10, 170, 382] ) snake_case__ : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case__ : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCamelCase ( self : Tuple ): snake_case__ : Union[str, Any] = XLNetTokenizer(snake_case_ , do_lower_case=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def lowerCamelCase ( self : int ): snake_case__ : Optional[Any] = XLNetTokenizer(snake_case_ , do_lower_case=snake_case_ ) snake_case__ : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) snake_case__ : List[str] = tokenizer.encode("""sequence builders""" , add_special_tokens=snake_case_ ) snake_case__ : str = tokenizer.encode("""multi-sequence build""" , add_special_tokens=snake_case_ ) snake_case__ : List[Any] = tokenizer.build_inputs_with_special_tokens(snake_case_ ) snake_case__ : int = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase ( self : Optional[Any] ): # fmt: off snake_case__ : Any = {"""input_ids""": [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
301
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __snake_case( _lowerCAmelCase ) -> Dict: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Dict = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue snake_case__ : int = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) snake_case__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) snake_case__ : Any = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) snake_case__ : Optional[Any] = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) snake_case__ : Union[str, Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) snake_case__ : str = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) snake_case__ : str = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) snake_case__ : Any = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) snake_case__ : Optional[int] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) snake_case__ : Dict = key.replace("""image_encoder.module""" , """flava.image_model""" ) snake_case__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" ) snake_case__ : Any = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) snake_case__ : Dict = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) snake_case__ : str = key.replace("""text_projection""" , """flava.text_projection""" ) snake_case__ : str = key.replace("""image_projection""" , """flava.image_projection""" ) snake_case__ : Any = value.float() for key, value in codebook_state_dict.items(): snake_case__ : Dict = value return upgrade @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ) -> Tuple: if config_path is not None: snake_case__ : Dict = FlavaConfig.from_pretrained(_lowerCAmelCase ) else: snake_case__ : Any = FlavaConfig() snake_case__ : List[str] = FlavaForPreTraining(_lowerCAmelCase ).eval() snake_case__ : List[str] = convert_dalle_checkpoint(_lowerCAmelCase , _lowerCAmelCase , save_checkpoint=_lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ): snake_case__ : Tuple = torch.load(_lowerCAmelCase , map_location="""cpu""" ) else: snake_case__ : Union[str, Any] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="""cpu""" ) snake_case__ : Optional[Any] = upgrade_state_dict(_lowerCAmelCase , _lowerCAmelCase ) hf_model.load_state_dict(_lowerCAmelCase ) snake_case__ : Optional[Any] = hf_model.state_dict() snake_case__ : int = count_parameters(_lowerCAmelCase ) snake_case__ : Optional[Any] = count_parameters(_lowerCAmelCase ) + count_parameters(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __a = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
301
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowercase : List[Any] = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ['''OwlViTFeatureExtractor'''] __lowercase : str = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __lowercase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase__ = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowercase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowercase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowercase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def lowerCAmelCase__(self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase=0.9 , _lowercase=3 , _lowercase=0.5 ): '''simple docstring''' if NLTK_VERSION >= version.Version("""3.6.5""" ): __a : Dict = [ meteor_score.single_meteor_score( word_tokenize(_lowercase ) , word_tokenize(_lowercase ) , alpha=_lowercase , beta=_lowercase , gamma=_lowercase ) for ref, pred in zip(_lowercase , _lowercase ) ] else: __a : Optional[int] = [ meteor_score.single_meteor_score(_lowercase , _lowercase , alpha=_lowercase , beta=_lowercase , gamma=_lowercase ) for ref, pred in zip(_lowercase , _lowercase ) ] return {"meteor": np.mean(_lowercase )}
581
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
707
def _A ( _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase : Tuple = len(_UpperCamelCase ) _UpperCAmelCase : Tuple = len(_UpperCamelCase ) _UpperCAmelCase : Dict = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _UpperCAmelCase : List[Any] = True for i in range(_UpperCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _UpperCAmelCase : List[Any] = True if a[i].islower(): _UpperCAmelCase : str = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
416
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") SCREAMING_SNAKE_CASE__ : List[str] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) SCREAMING_SNAKE_CASE__ : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) SCREAMING_SNAKE_CASE__ : Any = BeautifulSoup(res.text, "html.parser") SCREAMING_SNAKE_CASE__ : List[str] = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F'https://google.com{link.get("href")}')
298
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase__ ( __lowercase ): a__ : List[str] = """longformer""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[List[int], int] = 5_12 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 3_05_22 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 30_72 , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1e-12 , SCREAMING_SNAKE_CASE__ : bool = False , **SCREAMING_SNAKE_CASE__ : str , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = attention_window __lowerCamelCase = sep_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = eos_token_id __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = onnx_export class lowerCAmelCase__ ( __lowercase ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "PretrainedConfig" , SCREAMING_SNAKE_CASE__ : str = "default" , SCREAMING_SNAKE_CASE__ : "List[PatchingSpec]" = None ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = True @property def __A ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def __A ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: __lowerCamelCase = super().outputs if self.task == "default": __lowerCamelCase = {0: '''batch'''} return outputs @property def __A ( self : Tuple ) -> float: return 1e-4 @property def __A ( self : str ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: __lowerCamelCase = super().generate_dummy_inputs( preprocessor=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __lowerCamelCase = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global __lowerCamelCase = 1 return inputs
298
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : Optional[Any] = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = ["""PoolFormerFeatureExtractor"""] lowerCAmelCase : List[Any] = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
630
'''simple docstring''' import math from datetime import datetime, timedelta def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = year % 1_9 _lowerCAmelCase : Any = year % 4 _lowerCAmelCase : Optional[int] = year % 7 _lowerCAmelCase : int = math.floor(year / 1_0_0 ) _lowerCAmelCase : Dict = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) _lowerCAmelCase : Optional[Any] = leap_day_inhibits / 4 _lowerCAmelCase : Dict = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 _lowerCAmelCase : List[Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _lowerCAmelCase : Dict = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon _lowerCAmelCase : Union[str, Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(_A , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(_A , 4 , 1_8 ) else: return datetime(_A , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): lowerCAmelCase : List[str] = """will be""" if year > datetime.now().year else """was""" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
630
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __lowercase (_SCREAMING_SNAKE_CASE :Optional[Any] ): SCREAMING_SNAKE_CASE : str = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: SCREAMING_SNAKE_CASE : List[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : Optional[Any] = 48 SCREAMING_SNAKE_CASE : int = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE : List[Any] = [6, 6, 6, 6] SCREAMING_SNAKE_CASE : Optional[Any] = 60 SCREAMING_SNAKE_CASE : Optional[int] = [6, 6, 6, 6] SCREAMING_SNAKE_CASE : List[str] = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 4 SCREAMING_SNAKE_CASE : Optional[int] = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : str = 1_26 SCREAMING_SNAKE_CASE : List[str] = 7 SCREAMING_SNAKE_CASE : Tuple = 255.0 SCREAMING_SNAKE_CASE : int = '''''' return config def __lowercase (_SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :Tuple ): if "patch_embed.proj" in name and "layers" not in name: SCREAMING_SNAKE_CASE : str = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : int = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: SCREAMING_SNAKE_CASE : int = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: SCREAMING_SNAKE_CASE : int = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: SCREAMING_SNAKE_CASE : str = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": SCREAMING_SNAKE_CASE : str = '''layernorm.weight''' if name == "norm.bias": SCREAMING_SNAKE_CASE : List[Any] = '''layernorm.bias''' if "conv_first" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''upsample.2''' , '''upsample.convolution_1''' ) SCREAMING_SNAKE_CASE : int = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: SCREAMING_SNAKE_CASE : List[Any] = '''swin2sr.''' + name return name def __lowercase (_SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :int ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Any = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: SCREAMING_SNAKE_CASE : Optional[Any] = key.split('''.''' ) SCREAMING_SNAKE_CASE : int = int(key_split[1] ) SCREAMING_SNAKE_CASE : int = int(key_split[4] ) SCREAMING_SNAKE_CASE : Any = config.embed_dim if "weight" in key: SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim, :] SCREAMING_SNAKE_CASE : Optional[int] = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : Optional[int] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : Dict = val[:dim] SCREAMING_SNAKE_CASE : Dict = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Optional[int] = val[-dim:] pass else: SCREAMING_SNAKE_CASE : Dict = val return orig_state_dict def __lowercase (_SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :Dict ): SCREAMING_SNAKE_CASE : int = get_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = SwinaSRForImageSuperResolution(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE : str = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : Any = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(_SCREAMING_SNAKE_CASE ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'''Unexpected key {key} in state_dict''' ) # verify values SCREAMING_SNAKE_CASE : Tuple = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' SCREAMING_SNAKE_CASE : int = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) SCREAMING_SNAKE_CASE : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE : List[str] = 1_26 if '''Jpeg''' in checkpoint_url else 2_56 SCREAMING_SNAKE_CASE : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) SCREAMING_SNAKE_CASE : Union[str, Any] = transforms(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) if config.num_channels == 1: SCREAMING_SNAKE_CASE : Optional[Any] = pixel_values[:, 0, :, :].unsqueeze(1 ) SCREAMING_SNAKE_CASE : List[str] = model(_SCREAMING_SNAKE_CASE ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE : Dict = torch.Size([1, 3, 5_12, 5_12] ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: SCREAMING_SNAKE_CASE : Any = torch.Size([1, 3, 10_24, 10_24] ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE : List[Any] = torch.Size([1, 3, 5_12, 5_12] ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: SCREAMING_SNAKE_CASE : str = torch.Size([1, 3, 10_24, 10_24] ) SCREAMING_SNAKE_CASE : str = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print('''Looks ok!''' ) SCREAMING_SNAKE_CASE : int = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } SCREAMING_SNAKE_CASE : Optional[Any] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: model.push_to_hub(F'''caidas/{model_name}''' ) processor.push_to_hub(F'''caidas/{model_name}''' ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") snake_case_ = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
507
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case_ = logging.get_logger(__name__) snake_case_ = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class a__ ( _lowercase, _lowercase ): __magic_name__ : List[Any] = "resnet" __magic_name__ : Optional[int] = ["basic", "bottleneck"] def __init__(self : Optional[Any], __UpperCAmelCase : Optional[Any]=3, __UpperCAmelCase : Tuple=64, __UpperCAmelCase : str=[256, 512, 1024, 2048], __UpperCAmelCase : Optional[Any]=[3, 4, 6, 3], __UpperCAmelCase : List[str]="bottleneck", __UpperCAmelCase : Dict="relu", __UpperCAmelCase : Any=False, __UpperCAmelCase : List[Any]=None, __UpperCAmelCase : List[str]=None, **__UpperCAmelCase : int, ) -> Any: """simple docstring""" super().__init__(**__UpperCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Optional[int] = embedding_size SCREAMING_SNAKE_CASE : Tuple = hidden_sizes SCREAMING_SNAKE_CASE : Dict = depths SCREAMING_SNAKE_CASE : List[str] = layer_type SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = downsample_in_first_stage SCREAMING_SNAKE_CASE : str = ['''stem'''] + [F'''stage{idx}''' for idx in range(1, len(__UpperCAmelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase, out_indices=__UpperCAmelCase, stage_names=self.stage_names ) class a__ ( _lowercase ): __magic_name__ : Optional[int] = version.parse("1.11" ) @property def lowercase__ (self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ (self : int ) -> float: """simple docstring""" return 1e-3
507
1
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = ['''model.decoder.embed_positions.weights'''] def _a ( __UpperCamelCase ): if "emb" in name: a_ : str = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: a_ : Tuple = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: a_ : Dict = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: a_ : Optional[Any] = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: a_ : List[str] = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: a_ : int = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: a_ : List[Any] = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: a_ : List[Any] = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: a_ : int = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: a_ : int = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: a_ : Tuple = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _a ( __UpperCamelCase , __UpperCamelCase ): a_ : List[Any] = list(state_dict.keys() ) a_ : Union[str, Any] = {} for key in keys: a_ : int = state_dict.pop(__UpperCamelCase ) a_ : Dict = rename_keys(__UpperCamelCase ) if "in_proj_weight" in key: # split fused qkv proj a_ : Dict = val[:hidden_size, :] a_ : Optional[int] = val[hidden_size : 2 * hidden_size, :] a_ : Any = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: a_ : Any = val else: a_ : Tuple = val return state_dict, enc_dec_proj_state_dict def _a ( __UpperCamelCase ): if checkpoint == "small": # default config values a_ : List[Any] = 1_0_2_4 a_ : Optional[Any] = 2_4 a_ : Optional[Any] = 1_6 elif checkpoint == "medium": a_ : Any = 1_5_3_6 a_ : int = 4_8 a_ : int = 2_4 elif checkpoint == "large": a_ : Any = 2_0_4_8 a_ : List[str] = 4_8 a_ : Union[str, Any] = 3_2 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) a_ : List[Any] = MusicgenDecoderConfig( hidden_size=__UpperCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , ) return config @torch.no_grad() def _a ( __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="cpu" ): a_ : Optional[Any] = MusicGen.get_pretrained(__UpperCamelCase , device=__UpperCamelCase ) a_ : List[Any] = decoder_config_from_checkpoint(__UpperCamelCase ) a_ : List[Any] = fairseq_model.lm.state_dict() a_ : Dict = rename_state_dict( __UpperCamelCase , hidden_size=decoder_config.hidden_size ) a_ : Any = TaEncoderModel.from_pretrained("""t5-base""" ) a_ : Union[str, Any] = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) a_ : str = MusicgenForCausalLM(__UpperCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection a_ : Optional[Any] = decoder.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(__UpperCamelCase ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model a_ : Tuple = MusicgenForConditionalGeneration(text_encoder=__UpperCamelCase , audio_encoder=__UpperCamelCase , decoder=__UpperCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__UpperCamelCase ) # check we can do a forward pass a_ : Dict = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) a_ : List[str] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): a_ : Optional[Any] = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor a_ : Dict = AutoTokenizer.from_pretrained("""t5-base""" ) a_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) a_ : List[str] = MusicgenProcessor(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase ) # set the appropriate bos/pad token ids a_ : Optional[Any] = 2_0_4_8 a_ : List[Any] = 2_0_4_8 # set other default generation config params a_ : List[str] = int(3_0 * audio_encoder.config.frame_rate ) a_ : str = True a_ : Tuple = 3.0 if pytorch_dump_folder is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(__UpperCamelCase ) processor.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) __lowerCamelCase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
711
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class a__ ( lowerCAmelCase_ ): lowerCamelCase__: torch.FloatTensor lowerCamelCase__: Optional[torch.FloatTensor] = None def _a ( __UpperCamelCase , __UpperCamelCase=0.9_99 , __UpperCamelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) a_ : List[Any] = [] for i in range(__UpperCamelCase ): a_ : str = i / num_diffusion_timesteps a_ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) , __UpperCamelCase ) ) return torch.tensor(__UpperCamelCase , dtype=torch.floataa ) class a__ ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self : str , lowerCamelCase_ : int = 1_0_0_0 , lowerCamelCase_ : str = "fixed_small_log" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[float] = 1.0 , lowerCamelCase_ : str = "epsilon" , lowerCamelCase_ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) a_ : Dict = betas_for_alpha_bar(lowerCamelCase_ ) a_ : List[Any] = 1.0 - self.betas a_ : List[str] = torch.cumprod(self.alphas , dim=0 ) a_ : List[Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution a_ : int = 1.0 # setable values a_ : List[str] = None a_ : Optional[int] = torch.from_numpy(np.arange(0 , lowerCamelCase_ )[::-1].copy() ) a_ : List[Any] = variance_type def UpperCAmelCase( self : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Optional[int] = None ): return sample def UpperCAmelCase( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, torch.device] = None ): a_ : Tuple = num_inference_steps a_ : Tuple = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) a_ : Tuple = (np.arange(0 , lowerCamelCase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) a_ : Dict = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) def UpperCAmelCase( self : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : str=None ): if prev_timestep is None: a_ : List[Any] = t - 1 a_ : Any = self.alphas_cumprod[t] a_ : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one a_ : List[Any] = 1 - alpha_prod_t a_ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: a_ : int = self.betas[t] else: a_ : Optional[int] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample a_ : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: a_ : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": a_ : Dict = torch.log(torch.clamp(lowerCamelCase_ , min=1E-20 ) ) a_ : List[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler a_ : Dict = variance.log() a_ : Optional[Any] = beta.log() a_ : str = (predicted_variance + 1) / 2 a_ : Optional[int] = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : bool = True , ): a_ : List[str] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": a_ , a_ : List[str] = torch.split(lowerCamelCase_ , sample.shape[1] , dim=1 ) else: a_ : Any = None # 1. compute alphas, betas if prev_timestep is None: a_ : Optional[Any] = t - 1 a_ : Tuple = self.alphas_cumprod[t] a_ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one a_ : int = 1 - alpha_prod_t a_ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: a_ : Optional[int] = self.betas[t] a_ : int = self.alphas[t] else: a_ : int = 1 - alpha_prod_t / alpha_prod_t_prev a_ : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": a_ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": a_ : Optional[Any] = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: a_ : Dict = torch.clamp( lowerCamelCase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a_ : Dict = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t a_ : Any = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a_ : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise a_ : Optional[int] = 0 if t > 0: a_ : Any = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCamelCase_ , device=model_output.device ) a_ : Tuple = self._get_variance( lowerCamelCase_ , predicted_variance=lowerCamelCase_ , prev_timestep=lowerCamelCase_ , ) if self.variance_type == "fixed_small_log": a_ : str = variance elif self.variance_type == "learned_range": a_ : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' """ for the UnCLIPScheduler.""" ) a_ : List[str] = variance * variance_noise a_ : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCamelCase_ , pred_original_sample=lowerCamelCase_ ) def UpperCAmelCase( self : Tuple , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples a_ : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) a_ : Union[str, Any] = timesteps.to(original_samples.device ) a_ : List[str] = alphas_cumprod[timesteps] ** 0.5 a_ : Tuple = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): a_ : Dict = sqrt_alpha_prod.unsqueeze(-1 ) a_ : int = (1 - alphas_cumprod[timesteps]) ** 0.5 a_ : Any = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): a_ : Tuple = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) a_ : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
478
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __lowercase( lowerCamelCase_ ): '''simple docstring''' __a : Optional[Any] = 'EncodecFeatureExtractor' __a : int = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self , __a , __a ): super().__init__(__a , __a ) __lowerCamelCase : Optional[int] = self.feature_extractor __lowerCamelCase : Optional[Any] = False def snake_case_ ( self , __a=None , __a=None , __a=True ): return self.tokenizer.get_decoder_prompt_ids(task=__a , language=__a , no_timestamps=__a ) def __call__( self , *__a , **__a ): if self._in_target_context_manager: return self.current_processor(*__a , **__a ) __lowerCamelCase : str = kwargs.pop('audio' , __a ) __lowerCamelCase : Optional[int] = kwargs.pop('sampling_rate' , __a ) __lowerCamelCase : Optional[int] = kwargs.pop('text' , __a ) if len(__a ) > 0: __lowerCamelCase : Optional[int] = args[0] __lowerCamelCase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: __lowerCamelCase : str = self.tokenizer(__a , **__a ) if audio is not None: __lowerCamelCase : Optional[Any] = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if audio is None: return inputs elif text is None: return audio_inputs else: __lowerCamelCase : Union[str, Any] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: __lowerCamelCase : str = audio_inputs["padding_mask"] return inputs def snake_case_ ( self , *__a , **__a ): __lowerCamelCase : int = kwargs.pop('audio' , __a ) __lowerCamelCase : Union[str, Any] = kwargs.pop('padding_mask' , __a ) if len(__a ) > 0: __lowerCamelCase : Optional[Any] = args[0] __lowerCamelCase : str = args[1:] if audio_values is not None: return self._decode_audio(__a , padding_mask=__a ) else: return self.tokenizer.batch_decode(*__a , **__a ) def snake_case_ ( self , *__a , **__a ): return self.tokenizer.decode(*__a , **__a ) def snake_case_ ( self , __a , __a = None ): __lowerCamelCase : int = to_numpy(__a ) __lowerCamelCase : List[Any] = audio_values.shape if padding_mask is None: return list(__a ) __lowerCamelCase : int = to_numpy(__a ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowerCamelCase : Union[str, Any] = seq_len - padding_mask.shape[-1] __lowerCamelCase : Dict = 1 - self.feature_extractor.padding_value __lowerCamelCase : str = np.pad(__a , ((0, 0), (0, difference)) , 'constant' , constant_values=__a ) __lowerCamelCase : List[str] = audio_values.tolist() for i in range(__a ): __lowerCamelCase : Tuple = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowerCamelCase : Dict = sliced_audio.reshape(__a , -1 ) return audio_values
594
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: '''simple docstring''' UpperCamelCase : Union[str, Any] = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) UpperCamelCase : List[Any] = VideoClassificationPipeline(model=lowerCamelCase , image_processor=lowerCamelCase , top_k=2 ) UpperCamelCase : List[str] = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase ) -> List[Any]: '''simple docstring''' for example in examples: UpperCamelCase : int = video_classifier(lowerCamelCase ) self.assertEqual( lowerCamelCase , [ {"score": ANY(lowerCamelCase ), "label": ANY(lowerCamelCase )}, {"score": ANY(lowerCamelCase ), "label": ANY(lowerCamelCase )}, ] , ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' UpperCamelCase : List[Any] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" UpperCamelCase : Any = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) UpperCamelCase : List[str] = pipeline( "video-classification" , model=lowerCamelCase , feature_extractor=lowerCamelCase , frame_sampling_rate=4 ) UpperCamelCase : int = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) UpperCamelCase : List[str] = video_classifier(lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}] , ) UpperCamelCase : List[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ] , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' pass
173
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class a__ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_: str = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCamelCase_: Tuple = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCamelCase_: Any = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCamelCase_: int = tf_top_k_top_p_filtering(A_ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) lowerCamelCase_: Optional[Any] = output[output != -float("""inf""" )] lowerCamelCase_: int = tf.cast( tf.where(tf.not_equal(A_ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(A_ , A_ , rtol=1e-12 ) tf.debugging.assert_equal(A_ , A_ ) @require_tf class a__ ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): _A = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def lowerCAmelCase ( self : int ) -> int: """simple docstring""" lowerCamelCase_: Optional[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCamelCase_: Dict = 2 lowerCamelCase_: List[Any] = 2 class a__ ( tf.Module ): def __init__( self : str , A_ : List[Any] ) -> Dict: """simple docstring""" super(A_ , self ).__init__() lowerCamelCase_: str = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=A_ , ) def lowerCAmelCase ( self : List[Any] , A_ : Dict , A_ : str ) -> Optional[Any]: """simple docstring""" lowerCamelCase_: List[Any] = self.model.generate( input_ids=A_ , attention_mask=A_ , max_new_tokens=A_ , return_dict_in_generate=A_ , ) return {"sequences": outputs["sequences"]} lowerCamelCase_: str = [[2, 0], [1_02, 1_03]] lowerCamelCase_: Dict = [[1, 0], [1, 1]] lowerCamelCase_: Any = DummyModel(model=A_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(A_ , A_ , signatures={"""serving_default""": dummy_model.serving} ) lowerCamelCase_: Optional[Any] = tf.saved_model.load(A_ ).signatures["""serving_default"""] for batch_size in range(1 , len(A_ ) + 1 ): lowerCamelCase_: Dict = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } lowerCamelCase_: List[str] = serving_func(**A_ )["""sequences"""] lowerCamelCase_: Dict = test_model.generate(**A_ , max_new_tokens=A_ ) tf.debugging.assert_equal(A_ , A_ ) @slow def lowerCAmelCase ( self : int ) -> int: """simple docstring""" lowerCamelCase_: Any = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCamelCase_: List[str] = 1 lowerCamelCase_: int = 2 class a__ ( tf.Module ): def __init__( self : Union[str, Any] , A_ : Any ) -> Optional[Any]: """simple docstring""" super(A_ , self ).__init__() lowerCamelCase_: int = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=A_ , ) def lowerCAmelCase ( self : Dict , A_ : Optional[Any] , A_ : int ) -> List[Any]: """simple docstring""" lowerCamelCase_: Dict = self.model.generate( input_ids=A_ , attention_mask=A_ , max_new_tokens=A_ , return_dict_in_generate=A_ , ) return {"sequences": outputs["sequences"]} lowerCamelCase_: Any = [[2], [1_02, 1_03]] lowerCamelCase_: Optional[int] = [[1], [1, 1]] lowerCamelCase_: Optional[int] = DummyModel(model=A_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(A_ , A_ , signatures={"""serving_default""": dummy_model.serving} ) lowerCamelCase_: List[Any] = tf.saved_model.load(A_ ).signatures["""serving_default"""] for input_row in range(len(A_ ) ): lowerCamelCase_: str = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } lowerCamelCase_: Optional[Any] = serving_func(**A_ )["""sequences"""] lowerCamelCase_: Optional[Any] = test_model.generate(**A_ , max_new_tokens=A_ ) tf.debugging.assert_equal(A_ , A_ ) @slow @require_tensorflow_text def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=A_ ) class a__ ( tf.keras.layers.Layer ): def __init__( self : Tuple ) -> Any: """simple docstring""" super().__init__() lowerCamelCase_: Union[str, Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(A_ , """spiece.model""" ) , """rb""" ).read() ) lowerCamelCase_: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowerCAmelCase ( self : Tuple , A_ : int , *A_ : Dict , **A_ : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_: List[Any] = self.tokenizer.tokenize(A_ ) lowerCamelCase_: Union[str, Any] = text.pad_model_inputs( A_ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) lowerCamelCase_: Tuple = self.model.generate(input_ids=A_ , attention_mask=A_ ) return self.tokenizer.detokenize(A_ ) lowerCamelCase_: Optional[int] = CompleteSentenceTransformer() lowerCamelCase_: Dict = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) lowerCamelCase_: Tuple = complete_model(A_ ) lowerCamelCase_: Tuple = tf.keras.Model(A_ , A_ ) keras_model.save(A_ ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_: Optional[int] = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } lowerCamelCase_: int = 14 lowerCamelCase_: Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCamelCase_: Dict = """Hello, my dog is cute and""" lowerCamelCase_: int = tokenizer(A_ , return_tensors="""tf""" ) lowerCamelCase_: List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCamelCase_: Union[str, Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowerCamelCase_: Optional[Any] = model.generate(**A_ , eos_token_id=A_ , **A_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCamelCase_: List[str] = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowerCamelCase_: Tuple = model.generate(**A_ , eos_token_id=A_ , **A_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_: Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowerCamelCase_: Optional[int] = """Hugging Face is a technology company based in New York and Paris.""" lowerCamelCase_: Dict = bart_tokenizer(A_ , return_tensors="""tf""" ).input_ids lowerCamelCase_: List[Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowerCamelCase_: Dict = bart_model.generate(A_ ).numpy() class a__ ( __SCREAMING_SNAKE_CASE ): def lowerCAmelCase ( self : List[str] , A_ : Union[str, Any] , A_ : int=None , **A_ : Dict ) -> List[Any]: """simple docstring""" return super().call(A_ , **A_ ) lowerCamelCase_: List[str] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowerCamelCase_: Optional[int] = bart_model.generate(A_ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(A_ , A_ ) ) class a__ ( bart_model.model.encoder.__class__ ): def lowerCAmelCase ( self : List[str] , A_ : Union[str, Any] , **A_ : Tuple ) -> List[str]: """simple docstring""" return super().call(A_ , **A_ ) lowerCamelCase_: List[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) lowerCamelCase_: Any = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCamelCase_: Union[str, Any] = bart_model.generate(A_ ).numpy() with self.assertRaises(A_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(A_ , foo="""bar""" )
707
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a__ : _A = 42 _A = 42 class a__ : def __init__( self : Optional[Any] , A_ : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_: list[list[Edge]] = [[] for _ in range(A_ )] lowerCamelCase_: Dict = size def __getitem__( self : Any , A_ : int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" return self._size def lowerCAmelCase ( self : Union[str, Any] , A_ : int , A_ : int , A_ : int ) -> Union[str, Any]: """simple docstring""" if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(A_ , A_ ) ) def lowerCAmelCase ( self : Any , A_ : int , A_ : int ) -> int | None: """simple docstring""" lowerCamelCase_: str = deque([start_vertex] ) lowerCamelCase_: list[int | None] = [None] * self.size lowerCamelCase_: int = 0 while queue: lowerCamelCase_: List[Any] = queue.popleft() lowerCamelCase_: Any = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCamelCase_: Dict = current_distance + edge.weight lowerCamelCase_: Dict = distances[edge.destination_vertex] if ( isinstance(A_ , A_ ) and new_distance >= dest_vertex_distance ): continue lowerCamelCase_: Dict = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
584
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ =AutoConfig.from_pretrained(A ) UpperCAmelCase__ =FlaxAutoModelForSeqaSeqLM.from_config(config=A ) UpperCAmelCase__ =checkpoints.load_tax_checkpoint(A ) UpperCAmelCase__ ="wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": UpperCAmelCase__ ="SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCAmelCase__ ="LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase__ ="TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): UpperCAmelCase__ =F"""layers_{str(A )}""" # Self-Attention UpperCAmelCase__ =tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] UpperCAmelCase__ =tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] UpperCAmelCase__ =tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] UpperCAmelCase__ =tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase__ =tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization UpperCAmelCase__ =tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: UpperCAmelCase__ =tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] UpperCAmelCase__ =tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: UpperCAmelCase__ =tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] UpperCAmelCase__ =tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization UpperCAmelCase__ =tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning UpperCAmelCase__ =flax_model.params["encoder"]["block"][str(A )]["layer"] UpperCAmelCase__ =tax_attention_key UpperCAmelCase__ =tax_attention_out UpperCAmelCase__ =tax_attention_query UpperCAmelCase__ =tax_attention_value UpperCAmelCase__ =tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase__ =tax_global_layer_norm if split_mlp_wi: UpperCAmelCase__ =tax_mlp_wi_a UpperCAmelCase__ =tax_mlp_wi_a else: UpperCAmelCase__ =tax_mlp_wi UpperCAmelCase__ =tax_mlp_wo UpperCAmelCase__ =tax_mlp_layer_norm UpperCAmelCase__ =flax_model_encoder_layer_block # Only for layer 0: UpperCAmelCase__ =tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T UpperCAmelCase__ =tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase__ =tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T UpperCAmelCase__ =tax_encoder_global_rel_embedding # Assigning UpperCAmelCase__ =tax_model["target"]["encoder"]["encoder_norm"]["scale"] UpperCAmelCase__ =tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCAmelCase__ =F"""layers_{str(A )}""" # Self-Attention UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] UpperCAmelCase__ =tax_enc_dec_attention_module["key"]["kernel"] UpperCAmelCase__ =tax_enc_dec_attention_module["out"]["kernel"] UpperCAmelCase__ =tax_enc_dec_attention_module["query"]["kernel"] UpperCAmelCase__ =tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization UpperCAmelCase__ =tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning UpperCAmelCase__ =flax_model.params["decoder"]["block"][str(A )]["layer"] UpperCAmelCase__ =tax_attention_key UpperCAmelCase__ =tax_attention_out UpperCAmelCase__ =tax_attention_query UpperCAmelCase__ =tax_attention_value UpperCAmelCase__ =tax_pre_attention_layer_norm UpperCAmelCase__ =tax_enc_dec_attention_key UpperCAmelCase__ =tax_enc_dec_attention_out UpperCAmelCase__ =tax_enc_dec_attention_query UpperCAmelCase__ =tax_enc_dec_attention_value UpperCAmelCase__ =tax_cross_layer_norm if split_mlp_wi: UpperCAmelCase__ =tax_mlp_wi_a UpperCAmelCase__ =tax_mlp_wi_a else: UpperCAmelCase__ =tax_mlp_wi UpperCAmelCase__ =tax_mlp_wo UpperCAmelCase__ =txa_mlp_layer_norm UpperCAmelCase__ =flax_model_decoder_layer_block # Decoder Normalization UpperCAmelCase__ =tax_model["target"]["decoder"]["decoder_norm"]["scale"] UpperCAmelCase__ =txa_decoder_norm # Only for layer 0: UpperCAmelCase__ =tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T UpperCAmelCase__ =tax_decoder_rel_embedding # Token Embeddings UpperCAmelCase__ =tax_model["target"]["token_embedder"]["embedding"] UpperCAmelCase__ =txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCAmelCase__ =tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(A ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) UpperCamelCase_ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
625
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'donut-swin' __UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self, A_=224, A_=4, A_=3, A_=96, A_=[2, 2, 6, 2], A_=[3, 6, 12, 24], A_=7, A_=4.0, A_=True, A_=0.0, A_=0.0, A_=0.1, A_="gelu", A_=False, A_=0.02, A_=1E-5, **A_, ) -> List[str]: super().__init__(**A_ ) UpperCAmelCase__ =image_size UpperCAmelCase__ =patch_size UpperCAmelCase__ =num_channels UpperCAmelCase__ =embed_dim UpperCAmelCase__ =depths UpperCAmelCase__ =len(A_ ) UpperCAmelCase__ =num_heads UpperCAmelCase__ =window_size UpperCAmelCase__ =mlp_ratio UpperCAmelCase__ =qkv_bias UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =drop_path_rate UpperCAmelCase__ =hidden_act UpperCAmelCase__ =use_absolute_embeddings UpperCAmelCase__ =layer_norm_eps UpperCAmelCase__ =initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase__ =int(embed_dim * 2 ** (len(A_ ) - 1) )
625
1
'''simple docstring''' def UpperCamelCase_ ( A__ : int ): '''simple docstring''' if not isinstance(A__ , A__ ): lowerCAmelCase_ : str = f'Input value of [number={number}] must be an integer' raise TypeError(A__ ) if number < 0: return False lowerCAmelCase_ : Optional[int] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
398
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : int=13 , lowerCamelCase : Tuple=7 , lowerCamelCase : List[Any]=True , lowerCamelCase : List[str]=True , lowerCamelCase : Any=False , lowerCamelCase : str=True , lowerCamelCase : int=99 , lowerCamelCase : str=32 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=4 , lowerCamelCase : List[Any]=37 , lowerCamelCase : str="gelu" , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : str=5_12 , lowerCamelCase : Optional[int]=16 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : Tuple=3 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : List[str]=None , ) -> int: lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Tuple = batch_size lowerCAmelCase_ : Union[str, Any] = seq_length lowerCAmelCase_ : Union[str, Any] = is_training lowerCAmelCase_ : Union[str, Any] = use_input_mask lowerCAmelCase_ : Dict = use_token_type_ids lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Optional[int] = intermediate_size lowerCAmelCase_ : Tuple = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Dict = type_vocab_size lowerCAmelCase_ : Dict = type_sequence_label_size lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : Union[str, Any] = num_labels lowerCAmelCase_ : Optional[Any] = num_choices lowerCAmelCase_ : Optional[Any] = scope def __lowercase ( self : str ) -> str: lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[Any] = None if self.use_input_mask: lowerCAmelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : int = None if self.use_labels: lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : Union[str, Any] ) -> str: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : Dict ) -> Tuple: lowerCAmelCase_ : List[Any] = DistilBertModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Optional[int] = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : str = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : Optional[int] ) -> List[Any]: lowerCAmelCase_ : Tuple = DistilBertForMaskedLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Tuple = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : str , lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Optional[int]: lowerCAmelCase_ : Optional[int] = DistilBertForQuestionAnswering(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Optional[int] = model( lowerCamelCase , attention_mask=lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ) -> Any: lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : List[Any] = DistilBertForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : str = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : Optional[int] ) -> int: lowerCAmelCase_ : Tuple = self.num_labels lowerCAmelCase_ : Optional[int] = DistilBertForTokenClassification(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Dict = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : str ) -> Union[str, Any]: lowerCAmelCase_ : List[Any] = self.num_choices lowerCAmelCase_ : Optional[Any] = DistilBertForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : str = model( lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self : Optional[int] ) -> Tuple: lowerCAmelCase_ : str = self.prepare_config_and_inputs() ((lowerCAmelCase_), (lowerCAmelCase_), (lowerCAmelCase_), (lowerCAmelCase_), (lowerCAmelCase_), (lowerCAmelCase_)) : Dict = config_and_inputs lowerCAmelCase_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowercase = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True lowercase = True lowercase = True lowercase = True def __lowercase ( self : str ) -> List[str]: lowerCAmelCase_ : List[str] = DistilBertModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=lowerCamelCase , dim=37 ) def __lowercase ( self : int ) -> str: self.config_tester.run_common_tests() def __lowercase ( self : Optional[int] ) -> List[str]: lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCamelCase ) def __lowercase ( self : Optional[Any] ) -> Tuple: lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCamelCase ) def __lowercase ( self : Optional[Any] ) -> int: lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCamelCase ) def __lowercase ( self : Optional[Any] ) -> Optional[Any]: lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> Any: lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCamelCase ) @slow def __lowercase ( self : Tuple ) -> Optional[int]: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Any = DistilBertModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @slow @require_torch_gpu def __lowercase ( self : Tuple ) -> List[Any]: lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : List[str] = model_class(config=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = torch.jit.trace( lowerCamelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCamelCase , os.path.join(lowerCamelCase , """traced_model.pt""" ) ) lowerCAmelCase_ : List[str] = torch.jit.load(os.path.join(lowerCamelCase , """traced_model.pt""" ) , map_location=lowerCamelCase ) loaded(inputs_dict["""input_ids"""].to(lowerCamelCase ) , inputs_dict["""attention_mask"""].to(lowerCamelCase ) ) @require_torch class __snake_case ( unittest.TestCase): """simple docstring""" @slow def __lowercase ( self : str ) -> str: lowerCAmelCase_ : int = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) lowerCAmelCase_ : str = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) lowerCAmelCase_ : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] lowerCAmelCase_ : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowerCamelCase ) lowerCAmelCase_ : Optional[int] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase , atol=1E-4 ) )
398
1
"""simple docstring""" import logging from transformers import PretrainedConfig SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'bertabs' def __init__( self , lowercase=30_522 , lowercase=512 , lowercase=6 , lowercase=512 , lowercase=8 , lowercase=512 , lowercase=0.2 , lowercase=6 , lowercase=768 , lowercase=8 , lowercase=2_048 , lowercase=0.2 , **lowercase , ) -> Optional[Any]: super().__init__(**lowercase ) lowerCAmelCase = vocab_size lowerCAmelCase = max_pos lowerCAmelCase = enc_layers lowerCAmelCase = enc_hidden_size lowerCAmelCase = enc_heads lowerCAmelCase = enc_ff_size lowerCAmelCase = enc_dropout lowerCAmelCase = dec_layers lowerCAmelCase = dec_hidden_size lowerCAmelCase = dec_heads lowerCAmelCase = dec_ff_size lowerCAmelCase = dec_dropout
532
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
532
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = CycleDiffusionPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } SCREAMING_SNAKE_CASE_ = PipelineTesterMixin.required_optional_params - {'latents'} SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) SCREAMING_SNAKE_CASE_ = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __lowerCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __lowerCamelCase = CLIPTextModel(_snake_case ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self , _snake_case , _snake_case=0 ): """simple docstring""" __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) __lowerCamelCase = image / 2 + 0.5 if str(_snake_case ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(_snake_case ) else: __lowerCamelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __lowerCamelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = CycleDiffusionPipeline(**_snake_case ) __lowerCamelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCamelCase = self.get_dummy_inputs(_snake_case ) __lowerCamelCase = pipe(**_snake_case ) __lowerCamelCase = output.images __lowerCamelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_snake_case , '''half''' ): __lowerCamelCase = module.half() __lowerCamelCase = CycleDiffusionPipeline(**_snake_case ) __lowerCamelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCamelCase = self.get_dummy_inputs(_snake_case ) __lowerCamelCase = pipe(**_snake_case ) __lowerCamelCase = output.images __lowerCamelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def _lowerCamelCase ( self ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __lowerCamelCase = init_image.resize((5_12, 5_12) ) __lowerCamelCase = '''CompVis/stable-diffusion-v1-4''' __lowerCamelCase = DDIMScheduler.from_pretrained(_snake_case , subfolder='''scheduler''' ) __lowerCamelCase = CycleDiffusionPipeline.from_pretrained( _snake_case , scheduler=_snake_case , safety_checker=_snake_case , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() __lowerCamelCase = '''A black colored car''' __lowerCamelCase = '''A blue colored car''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=_snake_case , source_prompt=_snake_case , image=_snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=_snake_case , output_type='''np''' , ) __lowerCamelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __lowerCamelCase = init_image.resize((5_12, 5_12) ) __lowerCamelCase = '''CompVis/stable-diffusion-v1-4''' __lowerCamelCase = DDIMScheduler.from_pretrained(_snake_case , subfolder='''scheduler''' ) __lowerCamelCase = CycleDiffusionPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() __lowerCamelCase = '''A black colored car''' __lowerCamelCase = '''A blue colored car''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=_snake_case , source_prompt=_snake_case , image=_snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=_snake_case , output_type='''np''' , ) __lowerCamelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
717
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = CycleDiffusionPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } SCREAMING_SNAKE_CASE_ = PipelineTesterMixin.required_optional_params - {'latents'} SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) SCREAMING_SNAKE_CASE_ = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __lowerCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __lowerCamelCase = CLIPTextModel(_snake_case ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self , _snake_case , _snake_case=0 ): """simple docstring""" __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) __lowerCamelCase = image / 2 + 0.5 if str(_snake_case ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(_snake_case ) else: __lowerCamelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __lowerCamelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = CycleDiffusionPipeline(**_snake_case ) __lowerCamelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCamelCase = self.get_dummy_inputs(_snake_case ) __lowerCamelCase = pipe(**_snake_case ) __lowerCamelCase = output.images __lowerCamelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_snake_case , '''half''' ): __lowerCamelCase = module.half() __lowerCamelCase = CycleDiffusionPipeline(**_snake_case ) __lowerCamelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCamelCase = self.get_dummy_inputs(_snake_case ) __lowerCamelCase = pipe(**_snake_case ) __lowerCamelCase = output.images __lowerCamelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def _lowerCamelCase ( self ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __lowerCamelCase = init_image.resize((5_12, 5_12) ) __lowerCamelCase = '''CompVis/stable-diffusion-v1-4''' __lowerCamelCase = DDIMScheduler.from_pretrained(_snake_case , subfolder='''scheduler''' ) __lowerCamelCase = CycleDiffusionPipeline.from_pretrained( _snake_case , scheduler=_snake_case , safety_checker=_snake_case , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() __lowerCamelCase = '''A black colored car''' __lowerCamelCase = '''A blue colored car''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=_snake_case , source_prompt=_snake_case , image=_snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=_snake_case , output_type='''np''' , ) __lowerCamelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __lowerCamelCase = init_image.resize((5_12, 5_12) ) __lowerCamelCase = '''CompVis/stable-diffusion-v1-4''' __lowerCamelCase = DDIMScheduler.from_pretrained(_snake_case , subfolder='''scheduler''' ) __lowerCamelCase = CycleDiffusionPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() __lowerCamelCase = '''A black colored car''' __lowerCamelCase = '''A blue colored car''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=_snake_case , source_prompt=_snake_case , image=_snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=_snake_case , output_type='''np''' , ) __lowerCamelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
575
0
'''simple docstring''' def __lowercase (_lowercase, _lowercase ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) __lowerCamelCase : Optional[int] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowercase ) ) return round(_lowercase, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
150
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __lowercase () -> str: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowerCamelCase : List[Any] = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching, """os.path.join""", _lowercase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __lowercase () -> str: """simple docstring""" assert _test_patching.open is open __lowerCamelCase : List[str] = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, """open""", _lowercase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __lowercase () -> Dict: """simple docstring""" # pandas.read_csv is not present in _test_patching __lowerCamelCase : List[str] = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching, """pandas.read_csv""", _lowercase ): pass def __lowercase () -> Union[str, Any]: """simple docstring""" # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __lowerCamelCase : Tuple = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, """len""", _lowercase ) is None with patch_submodule(_test_patching, """len""", _lowercase ): assert _test_patching.len is mock assert _test_patching.len is len def __lowercase () -> List[str]: """simple docstring""" __lowerCamelCase : Union[str, Any] = """__test_patch_submodule_start_and_stop_mock__""" __lowerCamelCase : Dict = patch_submodule(_test_patching, """open""", _lowercase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __lowercase () -> List[Any]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowerCamelCase : Dict = """__test_patch_submodule_successive_join__""" __lowerCamelCase : List[str] = """__test_patch_submodule_successive_dirname__""" __lowerCamelCase : Dict = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, """os.path.join""", _lowercase ): with patch_submodule(_test_patching, """os.rename""", _lowercase ): with patch_submodule(_test_patching, """os.path.dirname""", _lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, """os.rename""", _lowercase ): with patch_submodule(_test_patching, """os.path.join""", _lowercase ): with patch_submodule(_test_patching, """os.path.dirname""", _lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __lowercase () -> List[Any]: """simple docstring""" __lowerCamelCase : List[Any] = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching, """__module_that_doesn_exist__.__attribute_that_doesn_exist__""", _lowercase ): pass with patch_submodule(_test_patching, """os.__attribute_that_doesn_exist__""", _lowercase ): pass
150
1
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" UpperCamelCase__ : Union[str, Any] = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase__ : int = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Dict = logging.get_verbosity() UpperCamelCase__ : Union[str, Any] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) UpperCamelCase__ : Optional[int] = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(__SCREAMING_SNAKE_CASE ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase__ : Tuple = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) UpperCamelCase__ : Dict = os.getenv('''TRANSFORMERS_VERBOSITY''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = logging.log_levels[env_level_str] UpperCamelCase__ : Any = logging.get_verbosity() self.assertEqual( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase__ : Any = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" transformers.utils.logging._reset_library_root_logger() UpperCamelCase__ : List[Any] = logging.logging.getLogger() with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" transformers.utils.logging._reset_library_root_logger() UpperCamelCase__ : Optional[Any] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) UpperCamelCase__ : Any = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning_advice(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning_advice(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , msg + '''\n''' ) def SCREAMING_SNAKE_CASE_ ( ): disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
462
class _lowerCamelCase : """simple docstring""" def __init__( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Union[str, Any] = '''''' UpperCamelCase__ : int = '''''' UpperCamelCase__ : Optional[int] = [] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCamelCase__ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: UpperCamelCase__ : int = self.__min_dist_top_down_dp(__SCREAMING_SNAKE_CASE , n - 1 ) UpperCamelCase__ : Tuple = self.__min_dist_top_down_dp(m - 1 , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) UpperCamelCase__ : Optional[int] = 1 + min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self.dp[m][n] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ : Union[str, Any] = worda UpperCamelCase__ : Any = worda UpperCamelCase__ : List[str] = [[-1 for _ in range(len(__SCREAMING_SNAKE_CASE ) )] for _ in range(len(__SCREAMING_SNAKE_CASE ) )] return self.__min_dist_top_down_dp(len(__SCREAMING_SNAKE_CASE ) - 1 , len(__SCREAMING_SNAKE_CASE ) - 1 ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ : int = worda UpperCamelCase__ : List[str] = worda UpperCamelCase__ : int = len(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCamelCase__ : List[Any] = j elif j == 0: # second string is empty UpperCamelCase__ : Union[str, Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCamelCase__ : List[Any] = self.dp[i - 1][j - 1] else: UpperCamelCase__ : Union[str, Any] = self.dp[i][j - 1] UpperCamelCase__ : str = self.dp[i - 1][j] UpperCamelCase__ : Union[str, Any] = self.dp[i - 1][j - 1] UpperCamelCase__ : List[Any] = 1 + min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self.dp[m][n] if __name__ == "__main__": lowerCamelCase =EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() lowerCamelCase =input("Enter the first string: ").strip() lowerCamelCase =input("Enter the second string: ").strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
462
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase = logging.get_logger(__name__) def snake_case__ ( _A: Dict , _A: Any ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = b.T lowerCAmelCase = np.sum(np.square(_A ) , axis=1 ) lowerCAmelCase = np.sum(np.square(_A ) , axis=0 ) lowerCAmelCase = np.matmul(_A , _A ) lowerCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def snake_case__ ( _A: Dict , _A: Dict ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = x.reshape(-1 , 3 ) lowerCAmelCase = squared_euclidean_distance(_A , _A ) return np.argmin(_A , axis=1 ) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ['''pixel_values'''] def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BILINEAR , __lowerCAmelCase = True , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase) lowerCAmelCase = size if size is not None else {"""height""": 256, """width""": 256} lowerCAmelCase = get_size_dict(__lowerCAmelCase) lowerCAmelCase = np.array(__lowerCAmelCase) if clusters is not None else None lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_normalize lowerCAmelCase = do_color_quantize def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BILINEAR , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = get_size_dict(__lowerCAmelCase) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}") return resize( __lowerCAmelCase , size=(size["""height"""], size["""width"""]) , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None , ): """simple docstring""" lowerCAmelCase = rescale(image=__lowerCAmelCase , scale=1 / 127.5 , data_format=__lowerCAmelCase) lowerCAmelCase = image - 1 return image def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(__lowerCAmelCase) lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowerCAmelCase = clusters if clusters is not None else self.clusters lowerCAmelCase = np.array(__lowerCAmelCase) lowerCAmelCase = make_list_of_images(__lowerCAmelCase) if not valid_images(__lowerCAmelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""") # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(__lowerCAmelCase) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=__lowerCAmelCase) for image in images] if do_color_quantize: lowerCAmelCase = [to_channel_dimension_format(__lowerCAmelCase , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowerCAmelCase = np.array(__lowerCAmelCase) lowerCAmelCase = color_quantize(__lowerCAmelCase , __lowerCAmelCase).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) lowerCAmelCase = images.shape[0] lowerCAmelCase = images.reshape(__lowerCAmelCase , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. lowerCAmelCase = list(__lowerCAmelCase) else: lowerCAmelCase = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase) for image in images] lowerCAmelCase = {"""input_ids""": images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase)
370
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case__ ( _A: Dict ) -> str: '''simple docstring''' lowerCAmelCase = [False] * len(_A ) lowerCAmelCase = [-1] * len(_A ) def dfs(_A: Dict , _A: Tuple ): lowerCAmelCase = True lowerCAmelCase = c for u in graph[v]: if not visited[u]: dfs(_A , 1 - c ) for i in range(len(_A ) ): if not visited[i]: dfs(_A , 0 ) for i in range(len(_A ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __lowercase = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
370
1
'''simple docstring''' from math import pow def __UpperCamelCase( _A : int , _A : int , _A : int , _A : int , _A : int , ): '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count UpperCAmelCase__ : str = int(pow(_A , _A ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n UpperCAmelCase__ , UpperCAmelCase__ : Tuple = backtrack( _A , _A , current_number + 1 , _A , _A ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. UpperCAmelCase__ , UpperCAmelCase__ : Dict = backtrack( _A , _A , current_number + 1 , _A , _A ) return current_sum, solutions_count def __UpperCamelCase( _A : int , _A : int ): '''simple docstring''' if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(_A , _A , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
496
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __UpperCamelCase( _A : str ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def __UpperCamelCase( _A : int , _A : str ): '''simple docstring''' return (-y * np.log(_A ) - (1 - y) * np.log(1 - h )).mean() def __UpperCamelCase( _A : Optional[Any] , _A : Tuple , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = np.dot(_A , _A ) return np.sum(y * scores - np.log(1 + np.exp(_A ) ) ) def __UpperCamelCase( _A : Dict , _A : Optional[int] , _A : List[Any] , _A : str=7_00_00 ): '''simple docstring''' UpperCAmelCase__ : List[Any] = np.zeros(x.shape[1] ) for iterations in range(_A ): UpperCAmelCase__ : Tuple = np.dot(_A , _A ) UpperCAmelCase__ : Optional[Any] = sigmoid_function(_A ) UpperCAmelCase__ : Optional[int] = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : List[Any] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Tuple = np.dot(_A , _A ) UpperCAmelCase__ : Tuple = sigmoid_function(_A ) UpperCAmelCase__ : Optional[int] = cost_function(_A , _A ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ : str = datasets.load_iris() UpperCamelCase__ : Tuple = iris.data[:, :2] UpperCamelCase__ : str = (iris.target != 0) * 1 UpperCamelCase__ : Any = 0.1 UpperCamelCase__ : List[str] = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def __UpperCamelCase( _A : Any ): '''simple docstring''' return sigmoid_function( np.dot(_A , _A ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCamelCase__) , (UpperCamelCase__)) : Any = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) : Optional[Any] = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ : str = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ : Union[str, Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
496
1
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 UpperCAmelCase : int = get_tests_dir('fixtures') class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = mock.Mock() __UpperCAmelCase : Any = 500 __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Tuple = HTTPError __UpperCAmelCase : Dict = {} # Download this model to make sure it's in the cache. __UpperCAmelCase : int = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=UpperCamelCase ) as mock_head: __UpperCAmelCase : str = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' with self.assertRaises(UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder __UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) __UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(UpperCamelCase ) @is_staging_test class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCamelCase__ ( cls : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Dict = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCamelCase__ ( cls : Tuple ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = ViTImageProcessor.from_pretrained(UpperCamelCase ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) __UpperCAmelCase : List[str] = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(UpperCamelCase , UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCamelCase , repo_id="""test-image-processor""" , push_to_hub=UpperCamelCase , use_auth_token=self._token ) __UpperCAmelCase : Optional[Any] = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(UpperCamelCase , UpperCamelCase ) ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ViTImageProcessor.from_pretrained(UpperCamelCase ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) __UpperCAmelCase : List[str] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(UpperCamelCase , UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCamelCase , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=UpperCamelCase , use_auth_token=self._token ) __UpperCAmelCase : int = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(UpperCamelCase , UpperCamelCase ) ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() __UpperCAmelCase : Tuple = CustomImageProcessor.from_pretrained(UpperCamelCase ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) __UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
139
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def lowerCamelCase ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __UpperCAmelCase : Any = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(_UpperCamelCase ) # Let's go __UpperCAmelCase : int = parser.parse_args() if not hasattr(_UpperCamelCase , """func""" ): parser.print_help() exit(1 ) # Run __UpperCAmelCase : List[str] = args.func(_UpperCamelCase ) service.run() if __name__ == "__main__": main()
139
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: Any = logging.get_logger(__name__) A__: List[str] = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str = "xlm" __UpperCamelCase : List[str] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self :List[str] , SCREAMING_SNAKE_CASE :int=3_0_1_4_5 , SCREAMING_SNAKE_CASE :List[str]=2_0_4_8 , SCREAMING_SNAKE_CASE :str=1_2 , SCREAMING_SNAKE_CASE :Tuple=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[Any]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :str=False , SCREAMING_SNAKE_CASE :List[Any]=False , SCREAMING_SNAKE_CASE :Optional[int]=False , SCREAMING_SNAKE_CASE :str=1 , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :int=5_1_2 , SCREAMING_SNAKE_CASE :Any=2_0_4_8**-0.5 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :Dict=0 , SCREAMING_SNAKE_CASE :Tuple=1 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[int]=3 , SCREAMING_SNAKE_CASE :Dict=5 , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :List[Any]="first" , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Tuple=0.1 , SCREAMING_SNAKE_CASE :List[str]=5 , SCREAMING_SNAKE_CASE :List[str]=5 , SCREAMING_SNAKE_CASE :Tuple=0 , SCREAMING_SNAKE_CASE :Tuple=0 , SCREAMING_SNAKE_CASE :Any=2 , SCREAMING_SNAKE_CASE :Optional[int]=0 , **SCREAMING_SNAKE_CASE :Tuple , ) -> List[str]: '''simple docstring''' _a : Tuple =vocab_size _a : int =emb_dim _a : Dict =n_layers _a : List[Any] =n_heads _a : str =dropout _a : Tuple =attention_dropout _a : Dict =gelu_activation _a : Any =sinusoidal_embeddings _a : str =causal _a : str =asm _a : Tuple =n_langs _a : str =use_lang_emb _a : Dict =layer_norm_eps _a : Union[str, Any] =bos_index _a : int =eos_index _a : Optional[int] =pad_index _a : List[Any] =unk_index _a : int =mask_index _a : Any =is_encoder _a : Tuple =max_position_embeddings _a : Optional[Any] =embed_init_std _a : List[Any] =init_std _a : str =summary_type _a : Optional[int] =summary_use_proj _a : List[str] =summary_activation _a : Tuple =summary_proj_to_labels _a : List[Any] =summary_first_dropout _a : Union[str, Any] =start_n_top _a : Optional[int] =end_n_top _a : List[Any] =mask_token_id _a : List[Any] =lang_id if "n_words" in kwargs: _a : Dict =kwargs["""n_words"""] super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A__ ( UpperCAmelCase__ ): @property def __UpperCAmelCase ( self :Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _a : Optional[Any] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: _a : Tuple ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
506
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str = (DPMSolverSinglestepScheduler,) __UpperCamelCase : str = (("num_inference_steps", 25),) def __UpperCAmelCase ( self :Optional[Any] , **SCREAMING_SNAKE_CASE :int ) -> str: '''simple docstring''' _a : Optional[Any] ={ """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """prediction_type""": """epsilon""", """thresholding""": False, """sample_max_value""": 1.0, """algorithm_type""": """dpmsolver++""", """solver_type""": """midpoint""", """lambda_min_clipped""": -float("""inf""" ), """variance_type""": None, } config.update(**SCREAMING_SNAKE_CASE ) return config def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Optional[Any]=0 , **SCREAMING_SNAKE_CASE :str ) -> Any: '''simple docstring''' _a : Any =dict(self.forward_default_kwargs ) _a : Any =kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE ) _a : Tuple =self.dummy_sample _a : Optional[Any] =0.1 * sample _a : Dict =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a : Tuple =self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) _a : Optional[Any] =scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals _a : str =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) _a : Dict =scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals _a : List[str] =dummy_past_residuals[: new_scheduler.config.solver_order] _a , _a : str =sample, sample for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): _a : Optional[int] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample _a : Union[str, Any] =new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self :Optional[Any] ) -> List[str]: '''simple docstring''' pass def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Union[str, Any]=0 , **SCREAMING_SNAKE_CASE :str ) -> Union[str, Any]: '''simple docstring''' _a : List[str] =dict(self.forward_default_kwargs ) _a : Dict =kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =self.dummy_sample _a : int =0.1 * sample _a : Optional[int] =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a : Optional[int] =self.get_scheduler_config() _a : str =scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) _a : Union[str, Any] =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) _a : Any =dummy_past_residuals[: new_scheduler.config.solver_order] _a : Optional[int] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample _a : Tuple =new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :List[Any] ) -> Any: '''simple docstring''' if scheduler is None: _a : int =self.scheduler_classes[0] _a : int =self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) _a : int =scheduler_class(**SCREAMING_SNAKE_CASE ) _a : List[str] =self.scheduler_classes[0] _a : Union[str, Any] =self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) _a : Optional[Any] =scheduler_class(**SCREAMING_SNAKE_CASE ) _a : List[str] =1_0 _a : Optional[Any] =self.dummy_model() _a : int =self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): _a : str =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Dict =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __UpperCAmelCase ( self :List[Any] ) -> Tuple: '''simple docstring''' _a : int =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _a : List[Any] =5_0 _a : Optional[Any] =self.dummy_model() _a : List[Any] =self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _a : Union[str, Any] =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[int] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample _a : Optional[int] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_574 ) < 1e-3 def __UpperCAmelCase ( self :Any ) -> Optional[int]: '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Tuple ) -> int: '''simple docstring''' # make sure that iterating over schedulers with same config names gives same results # for defaults _a : List[str] =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _a : List[Any] =self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) _a : str =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 _a : Dict =DEISMultistepScheduler.from_config(scheduler.config ) _a : Union[str, Any] =DPMSolverMultistepScheduler.from_config(scheduler.config ) _a : str =UniPCMultistepScheduler.from_config(scheduler.config ) _a : Optional[Any] =DPMSolverSinglestepScheduler.from_config(scheduler.config ) _a : Dict =self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) _a : List[str] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def __UpperCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , algorithm_type="""dpmsolver++""" , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , ) def __UpperCAmelCase ( self :Tuple ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict ) -> str: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , algorithm_type=SCREAMING_SNAKE_CASE , ) _a : List[Any] =self.full_loop( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , algorithm_type=SCREAMING_SNAKE_CASE , ) assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __UpperCAmelCase ( self :Tuple ) -> Any: '''simple docstring''' self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict ) -> str: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def __UpperCAmelCase ( self :Dict ) -> Optional[int]: '''simple docstring''' self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE ) self.check_over_configs(variance_type="""learned_range""" ) def __UpperCAmelCase ( self :Dict ) -> Optional[int]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 ) def __UpperCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' _a : List[Any] =self.full_loop() _a : Any =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def __UpperCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' _a : Dict =self.full_loop(use_karras_sigmas=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_248 ) < 1e-3 def __UpperCAmelCase ( self :List[Any] ) -> Any: '''simple docstring''' _a : Optional[int] =self.full_loop(prediction_type="""v_prediction""" ) _a : Optional[Any] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_453 ) < 1e-3 def __UpperCAmelCase ( self :int ) -> str: '''simple docstring''' _a : List[Any] =self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=SCREAMING_SNAKE_CASE ) _a : Dict =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.0_649 ) < 1e-3 def __UpperCAmelCase ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _a : Dict =self.scheduler_classes[0] _a : str =self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) _a : Optional[int] =scheduler_class(**SCREAMING_SNAKE_CASE ) _a : Optional[Any] =1_0 _a : Any =self.dummy_model() _a : int =self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): _a : Tuple =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Dict =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa
506
1
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __A : Any = logging.get_logger(__name__) def lowercase ( __snake_case : Any , __snake_case : Union[str, Any] ): try: with open(UpperCAmelCase_ , '''rb''' ) as flax_state_f: lowercase_ : List[str] = from_bytes(UpperCAmelCase_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCAmelCase_ ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase_ : Optional[Any] = flatten_dict(jax.tree_util.tree_map(lambda __snake_case : x.dtype == jnp.bfloataa , UpperCAmelCase_ ) ).values() if any(UpperCAmelCase_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase_ : List[Any] = jax.tree_util.tree_map( lambda __snake_case : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCAmelCase_ ) lowercase_ : Optional[Any] = '''''' lowercase_ : Optional[int] = flatten_dict(UpperCAmelCase_ , sep='''.''' ) lowercase_ : str = pt_model.state_dict() # keep track of unexpected & missing keys lowercase_ : List[Any] = [] lowercase_ : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase_ : List[Any] = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase_ : Optional[int] = flax_key_tuple_array[:-1] + ['''weight'''] lowercase_ : List[str] = jnp.transpose(UpperCAmelCase_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase_ : str = flax_key_tuple_array[:-1] + ['''weight'''] lowercase_ : List[str] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase_ : Tuple = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCAmelCase_ ): lowercase_ : Optional[Any] = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) lowercase_ : Union[str, Any] = '''.'''.join(UpperCAmelCase_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict lowercase_ : List[Any] = np.asarray(UpperCAmelCase_ ) if not isinstance(UpperCAmelCase_ , np.ndarray ) else flax_tensor lowercase_ : int = torch.from_numpy(UpperCAmelCase_ ) # remove from missing keys missing_keys.remove(UpperCAmelCase_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCAmelCase_ ) pt_model.load_state_dict(UpperCAmelCase_ ) # re-transform missing_keys to list lowercase_ : str = list(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(UpperCAmelCase_ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ''' use it for predictions and inference.''' ) return pt_model
231
'''simple docstring''' import os def __lowerCamelCase ( UpperCAmelCase_ = "input.txt" ) ->int: with open(os.path.join(os.path.dirname(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) as input_file: snake_case__ = [ [int(UpperCAmelCase_ ) for element in line.split(',' )] for line in input_file.readlines() ] snake_case__ = len(UpperCAmelCase_ ) snake_case__ = len(matrix[0] ) snake_case__ = [[-1 for _ in range(UpperCAmelCase_ )] for _ in range(UpperCAmelCase_ )] for i in range(UpperCAmelCase_ ): snake_case__ = matrix[i][0] for j in range(1 , UpperCAmelCase_ ): for i in range(UpperCAmelCase_ ): snake_case__ = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCAmelCase_ ): snake_case__ = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): snake_case__ = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
368
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class lowercase ( lowercase__ ): '''simple docstring''' lowerCAmelCase__ = ["audio_values", "audio_mask"] def __init__( self : List[str] , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Optional[int]=[16, 16] , __lowerCamelCase : List[Any]=128 , __lowerCamelCase : List[Any]=44100 , __lowerCamelCase : Any=86 , __lowerCamelCase : Dict=2048 , __lowerCamelCase : List[Any]=0.0 , **__lowerCamelCase : Optional[int] , ) -> Any: '''simple docstring''' super().__init__( feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ = spectrogram_length lowerCamelCase__ = num_channels lowerCamelCase__ = patch_size lowerCamelCase__ = feature_size // self.patch_size[1] lowerCamelCase__ = n_fft lowerCamelCase__ = sampling_rate // hop_length_to_sampling_rate lowerCamelCase__ = sampling_rate lowerCamelCase__ = padding_value lowerCamelCase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCamelCase , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=__lowerCamelCase , norm="slaney" , mel_scale="slaney" , ).T def a__ ( self : str , __lowerCamelCase : np.array ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = spectrogram( __lowerCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) lowerCamelCase__ = log_spec[:, :-1] lowerCamelCase__ = log_spec - 20.0 lowerCamelCase__ = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Optional[int] , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = True , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , **__lowerCamelCase : Tuple , ) -> Tuple: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCamelCase__ = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase__ = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): lowerCamelCase__ = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __lowerCamelCase ): lowerCamelCase__ = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase__ = np.array(__lowerCamelCase ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase__ = np.ones([len(__lowerCamelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase__ = padded_audio_features * self.padding_value for i in range(len(__lowerCamelCase ) ): lowerCamelCase__ = audio_features[i] lowerCamelCase__ = feature # return as BatchFeature if return_attention_mask: lowerCamelCase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowerCamelCase__ = {"audio_values": padded_audio_features} lowerCamelCase__ = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) return encoded_inputs
705
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_ ( lowercase__): if not isinstance(lowercase__ , lowercase__): raise TypeError("Undefined for non-integers") elif precision < 1: raise ValueError("Undefined for non-natural numbers") lowerCamelCase__ = precision lowerCamelCase__ = ceil(precision / 14) lowerCamelCase__ = 426880 * Decimal(10005).sqrt() lowerCamelCase__ = 1 lowerCamelCase__ = 13591409 lowerCamelCase__ = Decimal(lowercase__) for k in range(1 , lowercase__): lowerCamelCase__ = factorial(6 * k) // (factorial(3 * k) * factorial(lowercase__) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term) / exponential_term return str(constant_term / partial_sum)[:-1] if __name__ == "__main__": __A : Dict = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
187
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = IFInpaintingPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self ): return self._get_dummy_components() def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('''mps''' ): __a : str = torch.manual_seed(_UpperCAmelCase ) else: __a : List[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __a : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) __a : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) __a : Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _lowerCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowerCamelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _lowerCamelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowerCamelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowerCamelCase ( self ): self._test_save_load_local() def _lowerCamelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
52
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
1
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 16 lowercase_ = 32 def lowerCAmelCase ( UpperCAmelCase : Tuple, UpperCAmelCase : Optional[int] = 16 ) ->Any: """simple docstring""" __magic_name__ : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __magic_name__ : Tuple = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(UpperCAmelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __magic_name__ : Any = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=UpperCAmelCase, max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __magic_name__ : Tuple = datasets.map( UpperCAmelCase, batched=UpperCAmelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ : str = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(UpperCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. __magic_name__ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __magic_name__ : Any = 16 elif accelerator.mixed_precision != "no": __magic_name__ : Union[str, Any] = 8 else: __magic_name__ : Optional[Any] = None return tokenizer.pad( UpperCAmelCase, padding='''longest''', max_length=UpperCAmelCase, pad_to_multiple_of=UpperCAmelCase, return_tensors='''pt''', ) # Instantiate dataloaders. __magic_name__ : List[Any] = DataLoader( tokenized_datasets['''train'''], shuffle=UpperCAmelCase, collate_fn=UpperCAmelCase, batch_size=UpperCAmelCase, drop_last=UpperCAmelCase ) __magic_name__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''], shuffle=UpperCAmelCase, collate_fn=UpperCAmelCase, batch_size=UpperCAmelCase, drop_last=(accelerator.mixed_precision == '''fp8'''), ) return train_dataloader, eval_dataloader def lowerCAmelCase ( UpperCAmelCase : Any, UpperCAmelCase : Optional[Any] ) ->Optional[Any]: """simple docstring""" __magic_name__ : Union[str, Any] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ : int = config['''lr'''] __magic_name__ : Any = int(config['''num_epochs'''] ) __magic_name__ : List[str] = int(config['''seed'''] ) __magic_name__ : Optional[int] = int(config['''batch_size'''] ) __magic_name__ : Optional[Any] = evaluate.load('''glue''', '''mrpc''' ) # If the batch size is too big we use gradient accumulation __magic_name__ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __magic_name__ : List[str] = batch_size // MAX_GPU_BATCH_SIZE __magic_name__ : str = MAX_GPU_BATCH_SIZE set_seed(UpperCAmelCase ) __magic_name__ : int = get_dataloaders(UpperCAmelCase, UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __magic_name__ : Any = model.to(accelerator.device ) # Instantiate optimizer __magic_name__ : int = AdamW(params=model.parameters(), lr=UpperCAmelCase ) # Instantiate scheduler __magic_name__ : Tuple = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase, num_warmup_steps=100, num_training_steps=(len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ : Optional[Any] = accelerator.prepare( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __magic_name__ : Dict = model(**UpperCAmelCase ) __magic_name__ : Tuple = outputs.loss __magic_name__ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ : Dict = model(**UpperCAmelCase ) __magic_name__ : List[str] = outputs.logits.argmax(dim=-1 ) __magic_name__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCAmelCase, references=UpperCAmelCase, ) __magic_name__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''', UpperCAmelCase ) def lowerCAmelCase ( ) ->Optional[Any]: """simple docstring""" __magic_name__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=UpperCAmelCase, default=UpperCAmelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) __magic_name__ : Dict = parser.parse_args() __magic_name__ : int = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCAmelCase, UpperCAmelCase ) if __name__ == "__main__": main()
712
def lowerCAmelCase ( UpperCAmelCase ) ->list[int]: """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) __magic_name__ : List[str] = [True] * (num + 1) __magic_name__ : List[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, UpperCAmelCase ): __magic_name__ : Any = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
336
0