code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( lowercase , lowercase = True , lowercase = math.inf , lowercase = -math.inf , lowercase = math.inf , lowercase = -math.inf , lowercase = False , lowercase = 100 , lowercase = 0.01 , lowercase = 1 , ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Tuple = search_prob SCREAMING_SNAKE_CASE : int = start_temperate SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Tuple = None while not search_end: SCREAMING_SNAKE_CASE : Tuple = current_state.score() if best_state is None or current_score > best_state.score(): SCREAMING_SNAKE_CASE : int = current_state scores.append(lowerCAmelCase_ ) iterations += 1 SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : int = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to SCREAMING_SNAKE_CASE : Any = random.randint(0 , len(lowerCAmelCase_ ) - 1 ) # picking a random neighbor SCREAMING_SNAKE_CASE : Optional[int] = neighbors.pop(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: SCREAMING_SNAKE_CASE : Optional[int] = change * -1 # in case we are finding minimum if change > 0: # improves the solution SCREAMING_SNAKE_CASE : int = picked_neighbor else: SCREAMING_SNAKE_CASE : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability SCREAMING_SNAKE_CASE : Dict = picked_neighbor SCREAMING_SNAKE_CASE : List[str] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor SCREAMING_SNAKE_CASE : Tuple = True else: SCREAMING_SNAKE_CASE : Dict = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase_ ) , lowerCAmelCase_ ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return (3 * x**2) - (6 * y) snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
62
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCamelCase : Any = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] __lowerCamelCase : Union[str, Any] = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } __lowerCamelCase : int = {f"funnel-transformer/{name}": 512 for name in _model_names} __lowerCamelCase : str = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names} class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : List[str] = FunnelTokenizer UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : int = 2 def __init__(self : Tuple , A__ : Optional[int]=None , A__ : List[Any]=None , A__ : Optional[int]=True , A__ : Optional[int]="<unk>" , A__ : List[Any]="<sep>" , A__ : Optional[int]="<pad>" , A__ : str="<cls>" , A__ : Any="<mask>" , A__ : int="<s>" , A__ : Union[str, Any]="</s>" , A__ : str=True , A__ : int=True , A__ : Dict=None , A__ : Union[str, Any]="##" , **A__ : str , ) -> Union[str, Any]: super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , bos_token=A__ , eos_token=A__ , clean_text=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , wordpieces_prefix=A__ , **A__ , ) lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , A__ ) != do_lower_case or normalizer_state.get("strip_accents" , A__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , A__ ) != tokenize_chinese_chars ): lowercase = getattr(A__ , normalizer_state.pop("type" ) ) lowercase = do_lower_case lowercase = strip_accents lowercase = tokenize_chinese_chars lowercase = normalizer_class(**A__ ) lowercase = do_lower_case def UpperCAmelCase__ (self : List[Any] , A__ : Optional[int] , A__ : Any=None ) -> Dict: lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ (self : Union[str, Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: lowercase = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
310
0
import numpy as np def _SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : float = 1E-12 , snake_case_ : int = 100 , ): assert np.shape(snake_case_ )[0] == np.shape(snake_case_ )[1] # Ensure proper dimensionality. assert np.shape(snake_case_ )[0] == np.shape(snake_case_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case_ ) == np.iscomplexobj(snake_case_ ) __magic_name__ = np.iscomplexobj(snake_case_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __magic_name__ = False __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = 1E12 while not convergence: # Multiple matrix by the vector. __magic_name__ = np.dot(snake_case_ , snake_case_ ) # Normalize the resulting output vector. __magic_name__ = w / np.linalg.norm(snake_case_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __magic_name__ = vector.conj().T if is_complex else vector.T __magic_name__ = np.dot(snake_case_ , np.dot(snake_case_ , snake_case_ ) ) # Check convergence. __magic_name__ = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __magic_name__ = True __magic_name__ = lambda_ if is_complex: __magic_name__ = np.real(lambda_ ) return lambda_, vector def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __magic_name__ = np.array([41, 4, 20] ) __magic_name__ = real_input_matrix.astype(np.complexaaa ) __magic_name__ = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __magic_name__ = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __magic_name__ = real_input_matrix __magic_name__ = real_vector elif problem_type == "complex": __magic_name__ = complex_input_matrix __magic_name__ = complex_vector # Our implementation. __magic_name__ , __magic_name__ = power_iteration(snake_case_ , snake_case_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __magic_name__ , __magic_name__ = np.linalg.eigh(snake_case_ ) # Last eigenvalue is the maximum one. __magic_name__ = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __magic_name__ = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case_ ) - np.abs(snake_case_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
713
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a_ : Optional[int] = 16 a_ : int = 32 def _SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" ): __magic_name__ = AutoTokenizer.from_pretrained(snake_case_ ) __magic_name__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case_ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __magic_name__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __magic_name__ = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __magic_name__ = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __magic_name__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : str ): model.eval() __magic_name__ = 0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __magic_name__ , __magic_name__ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case_ ) - 1: __magic_name__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] __magic_name__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) __magic_name__ = metric.compute() return eval_metric["accuracy"] def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Tuple ): # Initialize accelerator __magic_name__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ = config['''lr'''] __magic_name__ = int(config['''num_epochs'''] ) __magic_name__ = int(config['''seed'''] ) __magic_name__ = int(config['''batch_size'''] ) __magic_name__ = args.model_name_or_path set_seed(snake_case_ ) __magic_name__ , __magic_name__ = get_dataloaders(snake_case_ , snake_case_ , snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer __magic_name__ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __magic_name__ = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: __magic_name__ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __magic_name__ = 1 __magic_name__ = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __magic_name__ = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: __magic_name__ = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over __magic_name__ = 0 # We also need to keep track of the stating epoch so files are named properly __magic_name__ = 0 __magic_name__ = evaluate.load('''glue''' , '''mrpc''' ) __magic_name__ = num_epochs if args.partial_train_epoch is not None: __magic_name__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __magic_name__ = args.resume_from_checkpoint.split('''epoch_''' )[1] __magic_name__ = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __magic_name__ = int(snake_case_ ) + 1 __magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.print('''resumed checkpoint performance:''' , snake_case_ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , '''r''' ) as f: __magic_name__ = json.load(snake_case_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __magic_name__ = {} for epoch in range(snake_case_ , snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.loss __magic_name__ = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __magic_name__ = f'epoch_{epoch}' __magic_name__ = os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) __magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __magic_name__ = accuracy __magic_name__ = lr_scheduler.get_lr()[0] __magic_name__ = optimizer.param_groups[0]['''lr'''] __magic_name__ = epoch __magic_name__ = overall_step accelerator.print(f'epoch {epoch}:' , snake_case_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , ) parser.add_argument( '''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=snake_case_ , default=snake_case_ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=snake_case_ , default=snake_case_ , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case_ , default=2 , help='''Number of train epochs.''' , ) __magic_name__ = parser.parse_args() __magic_name__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
678
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def snake_case__ ( _A: Any ) -> int: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case__ ( _A: Any , _A: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCAmelCase = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowerCAmelCase = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowerCAmelCase = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowerCAmelCase = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowerCAmelCase = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowerCAmelCase = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowerCAmelCase = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowerCAmelCase = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowerCAmelCase = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowerCAmelCase = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowerCAmelCase = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowerCAmelCase = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowerCAmelCase = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowerCAmelCase = key.replace("""text_projection""" , """flava.text_projection""" ) lowerCAmelCase = key.replace("""image_projection""" , """flava.image_projection""" ) lowerCAmelCase = value.float() for key, value in codebook_state_dict.items(): lowerCAmelCase = value return upgrade @torch.no_grad() def snake_case__ ( _A: Dict , _A: Union[str, Any] , _A: Tuple , _A: int=None ) -> Optional[int]: '''simple docstring''' if config_path is not None: lowerCAmelCase = FlavaConfig.from_pretrained(_A ) else: lowerCAmelCase = FlavaConfig() lowerCAmelCase = FlavaForPreTraining(_A ).eval() lowerCAmelCase = convert_dalle_checkpoint(_A , _A , save_checkpoint=_A ) if os.path.exists(_A ): lowerCAmelCase = torch.load(_A , map_location="""cpu""" ) else: lowerCAmelCase = torch.hub.load_state_dict_from_url(_A , map_location="""cpu""" ) lowerCAmelCase = upgrade_state_dict(_A , _A ) hf_model.load_state_dict(_A ) lowerCAmelCase = hf_model.state_dict() lowerCAmelCase = count_parameters(_A ) lowerCAmelCase = count_parameters(_A ) + count_parameters(_A ) assert torch.allclose(_A , _A , atol=1e-3 ) hf_model.save_pretrained(_A ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') __lowercase = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
370
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''mobilenet_v1''' def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=224 , __lowerCAmelCase=1.0 , __lowerCAmelCase=8 , __lowerCAmelCase="relu6" , __lowerCAmelCase=True , __lowerCAmelCase=0.999 , __lowerCAmelCase=0.02 , __lowerCAmelCase=0.001 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""") lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = depth_multiplier lowerCAmelCase = min_depth lowerCAmelCase = hidden_act lowerCAmelCase = tf_padding lowerCAmelCase = classifier_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Dict = version.parse('''1.11''' ) @property def a_ ( self): """simple docstring""" return OrderedDict([("""pixel_values""", {0: """batch"""})]) @property def a_ ( self): """simple docstring""" if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})]) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})]) @property def a_ ( self): """simple docstring""" return 1E-4
370
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
487
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a__ ( unittest.TestCase ): def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Tuple = "laion/clap-htsat-unfused" __UpperCAmelCase : List[str] = tempfile.mkdtemp() def a_ ( self : Optional[Any] , **UpperCamelCase_ : Union[str, Any]): """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCamelCase_) def a_ ( self : Union[str, Any] , **UpperCamelCase_ : Optional[int]): """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCamelCase_) def a_ ( self : List[Any]): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : str = self.get_feature_extractor() __UpperCAmelCase : List[Any] = ClapProcessor(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_) processor.save_pretrained(self.tmpdirname) __UpperCAmelCase : Union[str, Any] = ClapProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCamelCase_) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , UpperCamelCase_) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) __UpperCAmelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") __UpperCAmelCase : Any = self.get_feature_extractor(do_normalize=UpperCamelCase_ , padding_value=1.0) __UpperCAmelCase : Tuple = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCamelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCamelCase_) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor , UpperCamelCase_) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Tuple = self.get_feature_extractor() __UpperCAmelCase : int = self.get_tokenizer() __UpperCAmelCase : Any = ClapProcessor(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_) __UpperCAmelCase : Optional[int] = floats_list((3, 1000)) __UpperCAmelCase : Tuple = feature_extractor(UpperCamelCase_ , return_tensors="np") __UpperCAmelCase : Any = processor(audios=UpperCamelCase_ , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.get_feature_extractor() __UpperCAmelCase : Optional[int] = self.get_tokenizer() __UpperCAmelCase : str = ClapProcessor(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_) __UpperCAmelCase : Any = "This is a test string" __UpperCAmelCase : List[Any] = processor(text=UpperCamelCase_) __UpperCAmelCase : Dict = tokenizer(UpperCamelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : int = self.get_feature_extractor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[str] = ClapProcessor(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : int = processor.batch_decode(UpperCamelCase_) __UpperCAmelCase : Tuple = tokenizer.batch_decode(UpperCamelCase_) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Any = self.get_feature_extractor() __UpperCAmelCase : int = self.get_tokenizer() __UpperCAmelCase : int = ClapProcessor(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
487
1
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase ) -> str: '''simple docstring''' lowerCamelCase__ =1 lowerCamelCase__ =2 while i * i <= n: lowerCamelCase__ =0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCamelCase_ ( ) -> str: '''simple docstring''' lowerCamelCase__ =1 lowerCamelCase__ =1 while True: i += 1 t_num += i if count_divisors(__a ) > 500: break return t_num if __name__ == "__main__": print(solution())
530
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _lowerCamelCase ( __a = "isbn/0140328726" ): SCREAMING_SNAKE_CASE_ = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: SCREAMING_SNAKE_CASE_ = F'{olid} is not a valid Open Library olid' raise ValueError(__a ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _lowerCamelCase ( __a ): SCREAMING_SNAKE_CASE_ = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } SCREAMING_SNAKE_CASE_ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} SCREAMING_SNAKE_CASE_ = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] SCREAMING_SNAKE_CASE_ = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(__a, __a ): SCREAMING_SNAKE_CASE_ = ''', '''.join(__a ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase__ = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCAmelCase__ = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
626
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : str = '''lxmert''' __lowercase : Any = {} def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=9_5_0_0 , lowerCAmelCase__=1_6_0_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=9 , lowerCAmelCase__=5 , lowerCAmelCase__=5 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4 , lowerCAmelCase__=6.67 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = num_qa_labels __SCREAMING_SNAKE_CASE = num_object_labels __SCREAMING_SNAKE_CASE = num_attr_labels __SCREAMING_SNAKE_CASE = l_layers __SCREAMING_SNAKE_CASE = x_layers __SCREAMING_SNAKE_CASE = r_layers __SCREAMING_SNAKE_CASE = visual_feat_dim __SCREAMING_SNAKE_CASE = visual_pos_dim __SCREAMING_SNAKE_CASE = visual_loss_normalizer __SCREAMING_SNAKE_CASE = task_matched __SCREAMING_SNAKE_CASE = task_mask_lm __SCREAMING_SNAKE_CASE = task_obj_predict __SCREAMING_SNAKE_CASE = task_qa __SCREAMING_SNAKE_CASE = visual_obj_loss __SCREAMING_SNAKE_CASE = visual_attr_loss __SCREAMING_SNAKE_CASE = visual_feat_loss __SCREAMING_SNAKE_CASE = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**lowerCAmelCase__)
248
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __magic_name__ = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __magic_name__ = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE = bs[:] __SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE = char return pairs class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = VOCAB_FILES_NAMES __lowercase : Any = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""") as vocab_handle: __SCREAMING_SNAKE_CASE = json.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE = bytes_to_unicode() __SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""") as merges_handle: __SCREAMING_SNAKE_CASE = merges_handle.read().split("""\n""")[1:-1] __SCREAMING_SNAKE_CASE = [tuple(merge.split()) for merge in bpe_merges] __SCREAMING_SNAKE_CASE = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def snake_case_ ( self): return len(self.encoder) def snake_case_ ( self): return dict(self.encoder , **self.added_tokens_encoder) def snake_case_ ( self , lowerCAmelCase__): if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE = tuple(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = get_pairs(lowerCAmelCase__) if not pairs: return token while True: __SCREAMING_SNAKE_CASE = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("""inf"""))) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = bigram __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 while i < len(lowerCAmelCase__): try: __SCREAMING_SNAKE_CASE = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __SCREAMING_SNAKE_CASE = tuple(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = new_word if len(lowerCAmelCase__) == 1: break else: __SCREAMING_SNAKE_CASE = get_pairs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """ """.join(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = word return word def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(""" """)) return bpe_tokens def snake_case_ ( self , lowerCAmelCase__): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def snake_case_ ( self , lowerCAmelCase__): return self.decoder.get(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """""".join(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text]).decode("""utf-8""" , errors=self.errors) return text def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): if not os.path.isdir(lowerCAmelCase__): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) __SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""]) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + """\n""") __SCREAMING_SNAKE_CASE = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""") as writer: writer.write("""#version: 0.2\n""") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""") __SCREAMING_SNAKE_CASE = token_index writer.write(""" """.join(lowerCAmelCase__) + """\n""") index += 1 return vocab_file, merge_file def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = kwargs.pop("""add_prefix_space""" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE = """ """ + text return (text, kwargs) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): return token_ids_a + [self.eos_token_id] def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """ """.join(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.encode(lowerCAmelCase__) if len(lowerCAmelCase__) > self.model_max_length: __SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens.") return input_ids
248
1
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "encodec" def __init__(self , _lowercase=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowercase=24000 , _lowercase=1 , _lowercase=False , _lowercase=None , _lowercase=None , _lowercase=128 , _lowercase=32 , _lowercase=1 , _lowercase=[8, 5, 4, 2] , _lowercase="weight_norm" , _lowercase=7 , _lowercase=7 , _lowercase=3 , _lowercase=2 , _lowercase=True , _lowercase="reflect" , _lowercase=2 , _lowercase=2 , _lowercase=1.0 , _lowercase=1024 , _lowercase=None , _lowercase=True , **_lowercase , ): '''simple docstring''' __a : List[str] = target_bandwidths __a : Optional[Any] = sampling_rate __a : List[Any] = audio_channels __a : Optional[Any] = normalize __a : Optional[Any] = chunk_length_s __a : Optional[int] = overlap __a : List[Any] = hidden_size __a : str = num_filters __a : Tuple = num_residual_layers __a : List[Any] = upsampling_ratios __a : List[Any] = norm_type __a : Optional[Any] = kernel_size __a : List[str] = last_kernel_size __a : Union[str, Any] = residual_kernel_size __a : str = dilation_growth_rate __a : List[Any] = use_causal_conv __a : Tuple = pad_mode __a : str = compress __a : Dict = num_lstm_layers __a : Optional[int] = trim_right_ratio __a : str = codebook_size __a : int = codebook_dim if codebook_dim is not None else hidden_size __a : Union[str, Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_lowercase ) @property def lowerCAmelCase__(self ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCAmelCase__(self ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowerCAmelCase__(self ): '''simple docstring''' __a : str = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowerCAmelCase__(self ): '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
581
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase__ = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
581
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class a ( __lowercase ): @staticmethod @abstractmethod def snake_case_ ( _lowerCAmelCase ): """simple docstring""" raise NotImplementedError() @abstractmethod def snake_case_ ( self ): """simple docstring""" raise NotImplementedError()
146
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( __lowercase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : int = MgpstrTokenizer SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Tuple = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = False def snake_case_ ( self ): """simple docstring""" super().setUp() # fmt: off __SCREAMING_SNAKE_CASE: Any = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __SCREAMING_SNAKE_CASE: Tuple = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __SCREAMING_SNAKE_CASE: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + '''\n''' ) def snake_case_ ( self , **_lowerCAmelCase ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = '''tester''' __SCREAMING_SNAKE_CASE: Tuple = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def snake_case_ ( self ): """simple docstring""" pass def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __SCREAMING_SNAKE_CASE: Any = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) __SCREAMING_SNAKE_CASE: int = tokenizer.encode([special_token] , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) __SCREAMING_SNAKE_CASE: Tuple = tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = self.get_input_output_texts(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = tokenizer.tokenize(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertNotEqual(len(_lowerCAmelCase ) , 0 ) __SCREAMING_SNAKE_CASE: List[str] = tokenizer.decode(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _lowerCAmelCase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def snake_case_ ( self ): """simple docstring""" pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def snake_case_ ( self ): """simple docstring""" pass
146
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ) -> str: """simple docstring""" lowerCAmelCase__ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase__ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase__ = F"{src_lang}-{tgt_lang}" lowerCAmelCase__ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "README.md" ) print(F"Generating {path}" ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(UpperCamelCase_ ) # make sure we are under the root of the project a_ = Path(__file__).resolve().parent.parent.parent a_ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_, a_, a_ = model_name.split('''-''') a_ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
339
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a_ = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowercase__ : a_ =PegasusConfig a_ ={} a_ ="""gelu""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , )-> Any: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = bos_token_id def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCAmelCase__ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase__ = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase__ = prepare_pegasus_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = 20 lowerCAmelCase__ = model_class_name(__UpperCAmelCase ) lowerCAmelCase__ = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase__ , lowerCAmelCase__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCAmelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, :-1] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , ) lowerCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, -1:] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCAmelCase , ) lowerCAmelCase__ = model.decode(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = 20 lowerCAmelCase__ = model_class_name(__UpperCAmelCase ) lowerCAmelCase__ = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase__ , lowerCAmelCase__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, :-1] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , ) lowerCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase__ = model.decode( decoder_input_ids[:, -1:] , __UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , ) lowerCAmelCase__ = model.decode(__UpperCAmelCase , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase ) lowerCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : List[str]=None , ) -> Tuple: """simple docstring""" if attention_mask is None: lowerCAmelCase__ = np.not_equal(UpperCamelCase_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCAmelCase__ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) a_ =(FlaxPegasusForConditionalGeneration,) if is_flax_available() else () a_ =True a_ =False a_ =False a_ =False def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = FlaxPegasusModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = model_class(__UpperCAmelCase ) @jax.jit def encode_jitted(__UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ): return model.encode(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) with self.subTest("JIT Enabled" ): lowerCAmelCase__ = encode_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase__ = encode_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ = model_class(__UpperCAmelCase ) lowerCAmelCase__ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) lowerCAmelCase__ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): return model.decode( decoder_input_ids=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , encoder_outputs=__UpperCAmelCase , ) with self.subTest("JIT Enabled" ): lowerCAmelCase__ = decode_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase__ = decode_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase__ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=__UpperCAmelCase ) lowerCAmelCase__ = np.ones((1, 1) ) lowerCAmelCase__ = model(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) lowerCAmelCase__ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) lowerCAmelCase__ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] lowerCAmelCase__ = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" , truncation=__UpperCAmelCase , max_length=512 , padding=__UpperCAmelCase ) lowerCAmelCase__ = model.generate(**__UpperCAmelCase , num_beams=2 ).sequences lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) assert tgt_text == decoded
339
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = (32, 32) SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def _snake_case ( self : List[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _snake_case ( self : Optional[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _snake_case ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCamelCase ) @property def _snake_case ( self : Any ): def extract(*__lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ): class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] ): SCREAMING_SNAKE_CASE = torch.ones([0] ) def _snake_case ( self : Any , __lowerCamelCase : Union[str, Any] ): self.pixel_values.to(__lowerCamelCase ) return self return Out() return extract def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.dummy_cond_unet SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.dummy_cond_unet SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert isinstance(pipe.scheduler , __lowerCamelCase ) assert pipe.safety_checker is None SCREAMING_SNAKE_CASE = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(__lowerCamelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None SCREAMING_SNAKE_CASE = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.dummy_cond_unet SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 SCREAMING_SNAKE_CASE = unet.half() SCREAMING_SNAKE_CASE = vae.half() SCREAMING_SNAKE_CASE = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) SCREAMING_SNAKE_CASE = 4003660346 SCREAMING_SNAKE_CASE = 7 # without safety guidance (sld_guidance_scale = 0) SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "padme amidala taking a bath artwork, safe for work, no nudity" SCREAMING_SNAKE_CASE = 2734971755 SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) SCREAMING_SNAKE_CASE = 1044355234 SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
705
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCAmelCase_ ( _a): lowerCamelCase_ = 'Wav2Vec2FeatureExtractor' lowerCamelCase_ = 'AutoTokenizer' def __init__( self : Tuple , __A : Dict , __A : Optional[Any] ) ->str: """simple docstring""" super().__init__(__A , __A ) a__ :Tuple = self.feature_extractor a__ :int = False @classmethod def _snake_case ( cls : List[str] , __A : Union[str, Any] , **__A : List[Any] ) ->Any: """simple docstring""" try: return super().from_pretrained(__A , **__A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , __A , ) a__ :List[str] = WavaVecaFeatureExtractor.from_pretrained(__A , **__A ) a__ :Optional[Any] = WavaVecaCTCTokenizer.from_pretrained(__A , **__A ) return cls(feature_extractor=__A , tokenizer=__A ) def __call__( self : Dict , *__A : Tuple , **__A : str ) ->List[str]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__A , **__A ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) a__ :Optional[int] = kwargs.pop("raw_speech" ) else: a__ :Optional[Any] = kwargs.pop("audio" , __A ) a__ :Tuple = kwargs.pop("sampling_rate" , __A ) a__ :List[str] = kwargs.pop("text" , __A ) if len(__A ) > 0: a__ :Optional[Any] = args[0] a__ :Optional[Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: a__ :List[Any] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if text is not None: a__ :int = self.tokenizer(__A , **__A ) if text is None: return inputs elif audio is None: return encodings else: a__ :str = encodings["input_ids"] return inputs def _snake_case ( self : Optional[int] , *__A : Optional[int] , **__A : Optional[int] ) ->List[str]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*__A , **__A ) a__ :str = kwargs.pop("input_features" , __A ) a__ :str = kwargs.pop("labels" , __A ) if len(__A ) > 0: a__ :Any = args[0] a__ :Optional[int] = args[1:] if input_features is not None: a__ :List[str] = self.feature_extractor.pad(__A , *__A , **__A ) if labels is not None: a__ :Any = self.tokenizer.pad(__A , **__A ) if labels is None: return input_features elif input_features is None: return labels else: a__ :int = labels["input_ids"] return input_features def _snake_case ( self : Optional[int] , *__A : Optional[Any] , **__A : List[Any] ) ->int: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self : Any , *__A : List[str] , **__A : Dict ) ->Optional[Any]: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @contextmanager def _snake_case ( self : str ) ->List[str]: """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) a__ :List[str] = True a__ :List[Any] = self.tokenizer yield a__ :Union[str, Any] = self.feature_extractor a__ :Optional[int] = False
395
import math snake_case__ = 10 snake_case__ = 7 snake_case__ = BALLS_PER_COLOUR * NUM_COLOURS def lowerCamelCase__ ( a : int = 20 ) -> str: """simple docstring""" a__ :List[str] = math.comb(a , a ) a__ :Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a ) a__ :Union[str, Any] = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
395
1
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Optional[int] = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def _a ( lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : List[str]=False , lowercase__ : List[Any]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) SCREAMING_SNAKE_CASE__ : List[str] = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: SCREAMING_SNAKE_CASE__ : List[str] = cached_file(lowercase__ , lowercase__ , force_download=not use_cached_models ) SCREAMING_SNAKE_CASE__ : Tuple = config_class.from_json_file(lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[Any] = True print(f'''Building TensorFlow model from configuration: {config}''' ) SCREAMING_SNAKE_CASE__ : str = model_class(lowercase__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): SCREAMING_SNAKE_CASE__ : Dict = cached_file( lowercase__ , lowercase__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: SCREAMING_SNAKE_CASE__ : Optional[int] = load_pytorch_checkpoint_in_tfa_model(lowercase__ , lowercase__ ) if compare_with_pt_model: SCREAMING_SNAKE_CASE__ : Tuple = tf_model(tf_model.dummy_inputs , training=lowercase__ ) # build the network SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(lowercase__ , map_location='cpu' ) SCREAMING_SNAKE_CASE__ : Optional[int] = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowercase__ , config=lowercase__ , state_dict=lowercase__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = pt_model(**pt_model.dummy_inputs ) SCREAMING_SNAKE_CASE__ : int = pto[0].numpy() SCREAMING_SNAKE_CASE__ : List[Any] = tfo[0].numpy() SCREAMING_SNAKE_CASE__ : Optional[int] = np.amax(np.abs(np_pt - np_tf ) ) print(f'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, f'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(f'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(lowercase__ , save_format='h5' ) def _a ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : Union[str, Any]=None , lowercase__ : List[str]=None , lowercase__ : Any=False , lowercase__ : Union[str, Any]=False , lowercase__ : Union[str, Any]=False , lowercase__ : int=False , ): '''simple docstring''' if args_model_type is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(MODEL_CLASSES.keys() ) else: SCREAMING_SNAKE_CASE__ : List[Any] = [args_model_type] for j, model_type in enumerate(lowercase__ , start=1 ): print('=' * 1_00 ) print(f''' Converting model type {j}/{len(lowercase__ )}: {model_type}''' ) print('=' * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) SCREAMING_SNAKE_CASE__ : Tuple = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: SCREAMING_SNAKE_CASE__ : List[str] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowercase__ , lowercase__ ) , start=1 ): print('-' * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue SCREAMING_SNAKE_CASE__ : int = model_shortcut_name elif only_convert_finetuned_models: print(f''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( f''' Converting checkpoint {i}/{len(lowercase__ )}: {model_shortcut_name} - model_type {model_type}''' ) print('-' * 1_00 ) if config_shortcut_name in aws_config_map: SCREAMING_SNAKE_CASE__ : List[Any] = cached_file(lowercase__ , lowercase__ , force_download=not use_cached_models ) else: SCREAMING_SNAKE_CASE__ : Any = config_shortcut_name if model_shortcut_name in aws_model_maps: SCREAMING_SNAKE_CASE__ : Tuple = cached_file(lowercase__ , lowercase__ , force_download=not use_cached_models ) else: SCREAMING_SNAKE_CASE__ : List[str] = model_shortcut_name if os.path.isfile(lowercase__ ): SCREAMING_SNAKE_CASE__ : int = 'converted_model' convert_pt_checkpoint_to_tf( model_type=lowercase__ , pytorch_checkpoint_path=lowercase__ , config_file=lowercase__ , tf_dump_path=os.path.join(lowercase__ , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=lowercase__ , ) if remove_cached_files: os.remove(lowercase__ ) os.remove(lowercase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
711
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : List[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = PegasusTokenizer lowercase_ = PegasusTokenizerFast lowercase_ = True lowercase_ = True def __lowercase( self : int )-> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : List[Any] = PegasusTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowercase( self : Optional[Any] )-> Optional[int]: """simple docstring""" return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def __lowercase( self : Any , **a_ : Optional[Any] )-> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **a_ ) def __lowercase( self : Union[str, Any] , a_ : List[Any] )-> Optional[int]: """simple docstring""" return ("This is a test", "This is a test") def __lowercase( self : Optional[int] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = '</s>' SCREAMING_SNAKE_CASE__ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def __lowercase( self : Dict )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(a_ ) , 1103 ) def __lowercase( self : Optional[Any] )-> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def __lowercase( self : List[Any] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Tuple = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE__ : List[str] = rust_tokenizer([raw_input_str] , return_tensors=a_ , add_special_tokens=a_ ).input_ids[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=a_ , add_special_tokens=a_ ).input_ids[0] self.assertListEqual(a_ , a_ ) def __lowercase( self : Any )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word SCREAMING_SNAKE_CASE__ : Any = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' SCREAMING_SNAKE_CASE__ : List[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer([raw_input_str] , return_tensors=a_ ).input_ids[0] self.assertListEqual(a_ , a_ ) def __lowercase( self : int )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 SCREAMING_SNAKE_CASE__ : int = 'To ensure a smooth flow of bank resolutions.' SCREAMING_SNAKE_CASE__ : List[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer([raw_input_str] , return_tensors=a_ ).input_ids[0] self.assertListEqual(a_ , a_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ['This is going to be way too long.' * 150, 'short example'] SCREAMING_SNAKE_CASE__ : int = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE__ : int = self._large_tokenizer(a_ , padding=a_ , truncation=a_ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._large_tokenizer( text_target=a_ , max_length=5 , padding=a_ , truncation=a_ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(a_ ) == 2 # input_ids, attention_mask. @slow def __lowercase( self : Any )-> str: """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE__ : Optional[int] = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = PegasusTokenizer lowercase_ = PegasusTokenizerFast lowercase_ = True lowercase_ = True def __lowercase( self : Any )-> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : Optional[int] = PegasusTokenizer(a_ , offset=0 , mask_token_sent=a_ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowercase( self : Optional[Any] )-> List[str]: """simple docstring""" return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def __lowercase( self : List[str] , **a_ : Optional[Any] )-> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **a_ ) def __lowercase( self : Optional[Any] , a_ : Tuple )-> str: """simple docstring""" return ("This is a test", "This is a test") def __lowercase( self : str )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Tuple = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE__ : str = rust_tokenizer([raw_input_str] , return_tensors=a_ , add_special_tokens=a_ ).input_ids[0] SCREAMING_SNAKE_CASE__ : str = py_tokenizer([raw_input_str] , return_tensors=a_ , add_special_tokens=a_ ).input_ids[0] self.assertListEqual(a_ , a_ ) @require_torch def __lowercase( self : List[str] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = ['This is going to be way too long.' * 1000, 'short example'] SCREAMING_SNAKE_CASE__ : Optional[int] = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE__ : str = self._large_tokenizer(a_ , padding=a_ , truncation=a_ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : int = self._large_tokenizer( text_target=a_ , max_length=5 , padding=a_ , truncation=a_ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(a_ ) == 2 # input_ids, attention_mask. def __lowercase( self : Dict )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._large_tokenizer(a_ ).input_ids self.assertListEqual( a_ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
636
0
'''simple docstring''' from collections import namedtuple _SCREAMING_SNAKE_CASE = namedtuple("from_to", "from_ to") _SCREAMING_SNAKE_CASE = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 10_00), "kilolitre": from_to(1, 1), "gallon": from_to(0.0_0454, 264.172), "cubicyard": from_to(0.7_6455, 1.3_0795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.0_0023_6588, 4226.75), } def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ", ".join(SCREAMING_SNAKE_CASE_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ", ".join(SCREAMING_SNAKE_CASE_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import os from datetime import datetime as dt from github import Github __snake_case : Union[str, Any] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def lowerCamelCase__ ( ): UpperCAmelCase_ = Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase_ = g.get_repo("huggingface/diffusers" ) UpperCAmelCase_ = repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase_ = sorted(issue.get_comments() , key=lambda A_ : i.created_at , reverse=A_ ) UpperCAmelCase_ = comments[0] if len(A_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
660
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A__ : Tuple =logging.get_logger(__name__) if is_vision_available(): import PIL class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase =['''pixel_values'''] def __init__( self : Union[str, Any] , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 2_55 , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : bool = True , **lowerCamelCase : str , ): """simple docstring""" super().__init__(**lowerCamelCase ) __A : str = size if size is not None else {"""shortest_edge""": 2_24} __A : Tuple = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __A : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __A : Union[str, Any] = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase , param_name="""crop_size""" ) __A : List[Any] = do_resize __A : int = size __A : int = resample __A : Dict = do_center_crop __A : int = crop_size __A : Optional[int] = do_rescale __A : Union[str, Any] = rescale_factor __A : Tuple = do_normalize __A : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __A : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD __A : int = do_convert_rgb def lowercase_( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Dict , ): """simple docstring""" __A : Dict = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __A : int = get_resize_output_image_size(lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=lowerCamelCase ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase_( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Union[str, Any] , ): """simple docstring""" __A : str = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase_( self : int , lowerCamelCase : np.ndarray , lowerCamelCase : Union[int, float] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : int , ): """simple docstring""" return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase_( self : Optional[Any] , lowerCamelCase : np.ndarray , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : List[Any] , ): """simple docstring""" return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase_( self : List[str] , lowerCamelCase : ImageInput , lowerCamelCase : bool = None , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : bool = None , lowerCamelCase : int = None , lowerCamelCase : bool = None , lowerCamelCase : float = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase : List[str] , ): """simple docstring""" __A : List[Any] = do_resize if do_resize is not None else self.do_resize __A : Dict = size if size is not None else self.size __A : List[str] = get_size_dict(lowerCamelCase , param_name="""size""" , default_to_square=lowerCamelCase ) __A : Optional[Any] = resample if resample is not None else self.resample __A : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __A : Tuple = crop_size if crop_size is not None else self.crop_size __A : Tuple = get_size_dict(lowerCamelCase , param_name="""crop_size""" , default_to_square=lowerCamelCase ) __A : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __A : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Tuple = do_normalize if do_normalize is not None else self.do_normalize __A : int = image_mean if image_mean is not None else self.image_mean __A : Any = image_std if image_std is not None else self.image_std __A : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __A : Optional[int] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __A : Dict = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. __A : List[str] = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: __A : Dict = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_center_crop: __A : int = [self.center_crop(image=lowerCamelCase , size=lowerCamelCase ) for image in images] if do_rescale: __A : List[str] = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: __A : Any = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] __A : Union[str, Any] = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __A : Any = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
499
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Any =logging.get_logger(__name__) A__ : Any ={ 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase ='''instructblip_vision_model''' def __init__( self : Tuple , lowerCamelCase : Optional[int]=14_08 , lowerCamelCase : str=61_44 , lowerCamelCase : List[Any]=39 , lowerCamelCase : Optional[Any]=16 , lowerCamelCase : Optional[int]=2_24 , lowerCamelCase : Any=14 , lowerCamelCase : str="gelu" , lowerCamelCase : str=1e-6 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Dict=1e-1_0 , lowerCamelCase : Optional[Any]=True , **lowerCamelCase : List[str] , ): """simple docstring""" super().__init__(**lowerCamelCase ) __A : int = hidden_size __A : List[str] = intermediate_size __A : Tuple = num_hidden_layers __A : str = num_attention_heads __A : str = patch_size __A : Dict = image_size __A : Any = initializer_range __A : int = attention_dropout __A : str = layer_norm_eps __A : Optional[Any] = hidden_act __A : List[str] = qkv_bias @classmethod def lowercase_( cls : Union[str, Any] , lowerCamelCase : Union[str, os.PathLike] , **lowerCamelCase : str ): """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase ) __A , __A : int = cls.get_config_dict(lowerCamelCase , **lowerCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __A : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCamelCase , **lowerCamelCase ) class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase ='''instructblip_qformer''' def __init__( self : Tuple , lowerCamelCase : int=3_05_22 , lowerCamelCase : Tuple=7_68 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : Tuple=12 , lowerCamelCase : str=30_72 , lowerCamelCase : int="gelu" , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int=5_12 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : List[str]=1e-1_2 , lowerCamelCase : int=0 , lowerCamelCase : List[str]="absolute" , lowerCamelCase : Optional[Any]=2 , lowerCamelCase : List[Any]=14_08 , **lowerCamelCase : List[Any] , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) __A : List[Any] = vocab_size __A : List[str] = hidden_size __A : str = num_hidden_layers __A : str = num_attention_heads __A : List[Any] = hidden_act __A : str = intermediate_size __A : List[Any] = hidden_dropout_prob __A : Tuple = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : List[Any] = position_embedding_type __A : List[str] = cross_attention_frequency __A : Dict = encoder_hidden_size @classmethod def lowercase_( cls : Any , lowerCamelCase : Union[str, os.PathLike] , **lowerCamelCase : Union[str, Any] ): """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase ) __A , __A : List[str] = cls.get_config_dict(lowerCamelCase , **lowerCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __A : Optional[int] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCamelCase , **lowerCamelCase ) class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase ='''instructblip''' lowerCamelCase =True def __init__( self : Any , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[str]=None , lowerCamelCase : Any=None , lowerCamelCase : Any=32 , **lowerCamelCase : int ): """simple docstring""" super().__init__(**lowerCamelCase ) if vision_config is None: __A : int = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: __A : Dict = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: __A : Any = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __A : List[Any] = InstructBlipVisionConfig(**lowerCamelCase ) __A : Union[str, Any] = InstructBlipQFormerConfig(**lowerCamelCase ) __A : Tuple = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __A : List[str] = CONFIG_MAPPING[text_model_type](**lowerCamelCase ) __A : Optional[int] = self.text_config.tie_word_embeddings __A : Dict = self.text_config.is_encoder_decoder __A : Optional[int] = num_query_tokens __A : int = self.vision_config.hidden_size __A : str = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __A : Optional[Any] = 1.0 __A : Optional[int] = 0.02 @classmethod def lowercase_( cls : List[str] , lowerCamelCase : InstructBlipVisionConfig , lowerCamelCase : InstructBlipQFormerConfig , lowerCamelCase : PretrainedConfig , **lowerCamelCase : Optional[int] , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCamelCase , ) def lowercase_( self : List[Any] ): """simple docstring""" __A : Tuple = copy.deepcopy(self.__dict__ ) __A : Optional[int] = self.vision_config.to_dict() __A : Optional[Any] = self.qformer_config.to_dict() __A : List[Any] = self.text_config.to_dict() __A : Optional[int] = self.__class__.model_type return output
499
1
def _A ( _lowercase = 1_00_00_00 ) -> int: """simple docstring""" __UpperCamelCase = set(range(3 , _lowercase , 2 ) ) primes.add(2 ) for p in range(3 , _lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowercase , _lowercase ) ) ) __UpperCamelCase = [float(_lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowercase , limit + 1 , _lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
1
def _A ( _lowercase ) -> int: """simple docstring""" assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(_lowercase ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCamelCase_ : '''simple docstring''' __UpperCAmelCase = None def A ( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , snake_case_ ) def A ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = os.path.join(snake_case_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(snake_case_ ) __lowercase = self.feature_extraction_class.from_json_file(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def A ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) __lowercase = self.feature_extraction_class.from_pretrained(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def A ( self ) -> int: '''simple docstring''' __lowercase = self.feature_extraction_class() self.assertIsNotNone(snake_case_ )
712
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowercase_ ( *_UpperCamelCase ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __lowercase = list(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): __lowercase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowercase_ ( _UpperCamelCase = None , _UpperCamelCase = 1_28 ): '''simple docstring''' if function is None: return functools.partial(_UpperCamelCase , starting_batch_size=_UpperCamelCase ) __lowercase = starting_batch_size def decorator(*_UpperCamelCase , **_UpperCamelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowercase = list(inspect.signature(_UpperCamelCase ).parameters.keys() ) # Guard against user error if len(_UpperCamelCase ) < (len(_UpperCamelCase ) + 1): __lowercase = ''', '''.join([F'{arg}={value}' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'Batch size was passed into `{function.__name__}` as the first argument when called.' F'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) except Exception as e: if should_reduce_batch_size(_UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
527
0
'''simple docstring''' def A ( UpperCamelCase_ : list[int] ) -> list[int]: '''simple docstring''' lowerCAmelCase__ = len(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): for j in range(i + 1 , UpperCamelCase_ ): if numbers[j] < numbers[i]: lowerCAmelCase__ ,lowerCAmelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ : str = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
48
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } UpperCAmelCase = { "roberta-base": 5_1_2, "roberta-large": 5_1_2, "roberta-large-mnli": 5_1_2, "distilroberta-base": 5_1_2, "roberta-base-openai-detector": 5_1_2, "roberta-large-openai-detector": 5_1_2, } class snake_case__ ( _UpperCamelCase ): _SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : int = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : List[str] = RobertaTokenizer def __init__( self : Optional[int] , A__ : List[Any]=None , A__ : Optional[int]=None , A__ : List[str]=None , A__ : Dict="replace" , A__ : List[str]="<s>" , A__ : Optional[Any]="</s>" , A__ : List[str]="</s>" , A__ : List[Any]="<s>" , A__ : int="<unk>" , A__ : int="<pad>" , A__ : List[Any]="<mask>" , A__ : Any=False , A__ : Optional[int]=True , **A__ : Union[str, Any] , ) -> int: '''simple docstring''' super().__init__( A__ , A__ , tokenizer_file=A__ , errors=A__ , bos_token=A__ , eos_token=A__ , sep_token=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , add_prefix_space=A__ , trim_offsets=A__ , **A__ , ) snake_case_ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , A__ ) != add_prefix_space: snake_case_ : List[Any] = getattr(A__ , pre_tok_state.pop("type" ) ) snake_case_ : Any = add_prefix_space snake_case_ : List[Any] = pre_tok_class(**A__ ) snake_case_ : Optional[int] = add_prefix_space snake_case_ : List[str] = "post_processor" snake_case_ : Tuple = getattr(self.backend_tokenizer , A__ , A__ ) if tokenizer_component_instance: snake_case_ : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ : str = tuple(state["sep"] ) if "cls" in state: snake_case_ : Tuple = tuple(state["cls"] ) snake_case_ : Tuple = False if state.get("add_prefix_space" , A__ ) != add_prefix_space: snake_case_ : Optional[Any] = add_prefix_space snake_case_ : str = True if state.get("trim_offsets" , A__ ) != trim_offsets: snake_case_ : Optional[int] = trim_offsets snake_case_ : List[Any] = True if changes_to_apply: snake_case_ : int = getattr(A__ , state.pop("type" ) ) snake_case_ : List[Any] = component_class(**A__ ) setattr(self.backend_tokenizer , A__ , A__ ) @property def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self : Tuple , A__ : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else value snake_case_ : Any = value def UpperCAmelCase__ ( self : int , *A__ : Optional[Any] , **A__ : int ) -> BatchEncoding: '''simple docstring''' snake_case_ : Optional[Any] = kwargs.get("is_split_into_words" , A__ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A__ , **A__ ) def UpperCAmelCase__ ( self : Union[str, Any] , *A__ : Any , **A__ : List[Any] ) -> BatchEncoding: '''simple docstring''' snake_case_ : Optional[int] = kwargs.get("is_split_into_words" , A__ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*A__ , **A__ ) def UpperCAmelCase__ ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : Optional[Any] = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ ) def UpperCAmelCase__ ( self : int , A__ : List[str] , A__ : Union[str, Any]=None ) -> Any: '''simple docstring''' snake_case_ : List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Dict , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case_ : str = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
666
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=_a ): """simple docstring""" UpperCAmelCase : Dict = ["""torch""", """transformers""", """onnx"""] def __init__( self : Tuple , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Union[str, Any]): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : Tuple , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str]): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : Optional[Any] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Optional[Any]): requires_backends(cls , ["torch", "transformers", "onnx"]) class _A ( metaclass=_a ): """simple docstring""" UpperCAmelCase : Dict = ["""torch""", """transformers""", """onnx"""] def __init__( self : Any , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : int): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : Optional[Any] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Any): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : List[Any] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any]): requires_backends(cls , ["torch", "transformers", "onnx"]) class _A ( metaclass=_a ): """simple docstring""" UpperCAmelCase : str = ["""torch""", """transformers""", """onnx"""] def __init__( self : List[str] , *__UpperCAmelCase : Any , **__UpperCAmelCase : List[Any]): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : Optional[Any] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : int): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : Optional[int] , *__UpperCAmelCase : int , **__UpperCAmelCase : Tuple): requires_backends(cls , ["torch", "transformers", "onnx"]) class _A ( metaclass=_a ): """simple docstring""" UpperCAmelCase : Dict = ["""torch""", """transformers""", """onnx"""] def __init__( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any]): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : Union[str, Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Any): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : Optional[Any] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[int]): requires_backends(cls , ["torch", "transformers", "onnx"]) class _A ( metaclass=_a ): """simple docstring""" UpperCAmelCase : Any = ["""torch""", """transformers""", """onnx"""] def __init__( self : Any , *__UpperCAmelCase : int , **__UpperCAmelCase : Optional[Any]): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : int , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : int): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any]): requires_backends(cls , ["torch", "transformers", "onnx"]) class _A ( metaclass=_a ): """simple docstring""" UpperCAmelCase : Optional[Any] = ["""torch""", """transformers""", """onnx"""] def __init__( self : Optional[Any] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : List[Any]): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : List[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Tuple): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __snake_case ( cls : Union[str, Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : List[str]): requires_backends(cls , ["torch", "transformers", "onnx"])
135
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def lowercase ( A_ , A_ , A_ )-> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(A_ , 2 ) - pow(A_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(A_ , 2 ) - pow(A_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(A_ , 2 ) + pow(A_ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
135
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCamelCase =datasets.utils.logging.get_logger(__name__) @dataclass class _lowerCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1_0000 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class _lowerCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ParquetConfig def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase__ : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): UpperCamelCase__ : Optional[Any] = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCamelCase__ : Optional[Any] = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] UpperCamelCase__ : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCamelCase__ : Optional[Any] = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as f: UpperCamelCase__ : Union[str, Any] = datasets.Features.from_arrow_schema(pq.read_schema(__SCREAMING_SNAKE_CASE ) ) break splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase__ : str = table_cast(__SCREAMING_SNAKE_CASE , self.info.features.arrow_schema ) return pa_table def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as f: UpperCamelCase__ : Union[str, Any] = pq.ParquetFile(__SCREAMING_SNAKE_CASE ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): UpperCamelCase__ : Tuple = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(__SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}''' ) raise
285
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCamelCase ={ "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowerCamelCase =logging.WARNING def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : int = os.getenv('''DATASETS_VERBOSITY''' , UpperCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def SCREAMING_SNAKE_CASE_ ( ): return __name__.split('''.''' )[0] def SCREAMING_SNAKE_CASE_ ( ): return logging.getLogger(_get_library_name() ) def SCREAMING_SNAKE_CASE_ ( ): # Apply our default configuration to the library root logger. UpperCamelCase__ : List[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : List[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ = None ): if name is None: UpperCamelCase__ : Union[str, Any] = _get_library_name() return logging.getLogger(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( ): return _get_library_root_logger().getEffectiveLevel() def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): _get_library_root_logger().setLevel(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( ): return set_verbosity(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( ): return set_verbosity(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( ): return set_verbosity(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( ): return set_verbosity(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : str = False def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : List[Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowerCamelCase : """simple docstring""" def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> int: # pylint: disable=unused-argument """simple docstring""" UpperCamelCase__ : Dict = args[0] if args else None def __iter__( self ) -> Dict: """simple docstring""" return iter(self._iterator ) def __getattr__( self , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" def empty_fn(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> Optional[int]: """simple docstring""" return self def __exit__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return lowerCamelCase =True class _lowerCamelCase : """simple docstring""" def __call__( self , *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) else: return EmptyTqdm(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase =_tqdm_cls() def SCREAMING_SNAKE_CASE_ ( ): global _tqdm_active return bool(_tqdm_active ) def SCREAMING_SNAKE_CASE_ ( ): global _tqdm_active UpperCamelCase__ : Dict = True def SCREAMING_SNAKE_CASE_ ( ): global _tqdm_active UpperCamelCase__ : Union[str, Any] = False
285
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) __magic_name__ = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _lowerCAmelCase ( A__: List[str] ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCAmelCase = k.replace(__snake_case , __snake_case ) if k.startswith('''encoder''' ): UpperCAmelCase = k.replace('''.attn''' , '''.self_attn''' ) UpperCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' ) UpperCAmelCase = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): UpperCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' ) UpperCAmelCase = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) UpperCAmelCase = k.replace('''norm3''' , '''final_layer_norm''' ) return k def _lowerCAmelCase ( A__: Optional[Any] ): '''simple docstring''' UpperCAmelCase = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: UpperCAmelCase = sd.pop(__snake_case ) UpperCAmelCase = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd UpperCAmelCase = v __magic_name__ = ["START"] @torch.no_grad() def _lowerCAmelCase ( A__: int , A__: Dict , A__: List[Any] ): '''simple docstring''' UpperCAmelCase = torch.load(__snake_case , map_location='''cpu''' ) UpperCAmelCase = model["model"] UpperCAmelCase = BlenderbotConfig.from_json_file(__snake_case ) UpperCAmelCase = BlenderbotForConditionalGeneration(__snake_case ) UpperCAmelCase = m.model.state_dict().keys() UpperCAmelCase = [] UpperCAmelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCAmelCase = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCAmelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __magic_name__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
713
from __future__ import annotations import typing from collections import Counter def _lowerCAmelCase ( A__: int ): '''simple docstring''' UpperCAmelCase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(A__ , max_perimeter + 1 ): UpperCAmelCase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(A__ ): UpperCAmelCase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _lowerCAmelCase ( A__: int = 1000 ): '''simple docstring''' UpperCAmelCase = pythagorean_triple(A__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
391
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: list[list[int]] = [] _lowercase: list[int] = [] _lowercase: Any = 0 _lowercase: int = sum(_UpperCamelCase ) create_state_space_tree(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return result def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): """simple docstring""" if sum(_UpperCamelCase ) > max_sum or (remaining_nums_sum + sum(_UpperCamelCase )) < max_sum: return if sum(_UpperCamelCase ) == max_sum: result.append(_UpperCamelCase ) return for index in range(_UpperCamelCase , len(_UpperCamelCase ) ): create_state_space_tree( _UpperCamelCase , _UpperCamelCase , index + 1 , [*path, nums[index]] , _UpperCamelCase , remaining_nums_sum - nums[index] , ) A__ : Dict = [3, 3_4, 4, 1_2, 5, 2] A__ : Union[str, Any] = 9 A__ : int = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
353
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A__ : List[Any] = random.Random() def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ): """simple docstring""" if rng is None: _lowercase: Any = global_rng _lowercase: List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __magic_name__ ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> List[Any]: """simple docstring""" _lowercase: str = parent _lowercase: int = batch_size _lowercase: Tuple = min_seq_length _lowercase: Any = max_seq_length _lowercase: List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowercase: Any = padding_value _lowercase: List[str] = sampling_rate _lowercase: Union[str, Any] = return_attention_mask _lowercase: Optional[Any] = do_normalize _lowercase: List[str] = feature_size _lowercase: Optional[Any] = chunk_length _lowercase: str = hop_length def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self , A_=False , A_=False ) -> List[Any]: """simple docstring""" def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: _lowercase: List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowercase: Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowercase: str = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __magic_name__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): UpperCamelCase_ = WhisperFeatureExtractor if is_speech_available() else None def lowercase_ ( self ) -> Dict: """simple docstring""" _lowercase: int = WhisperFeatureExtractionTester(self ) def lowercase_ ( self ) -> Tuple: """simple docstring""" _lowercase: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase: Any = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) _lowercase: str = self.feature_extraction_class.from_pretrained(A_ ) _lowercase: Dict = feat_extract_first.to_dict() _lowercase: List[str] = feat_extract_second.to_dict() _lowercase: List[str] = feat_extract_first.mel_filters _lowercase: str = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def lowercase_ ( self ) -> Optional[int]: """simple docstring""" _lowercase: Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase: Union[str, Any] = os.path.join(A_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(A_ ) _lowercase: Tuple = self.feature_extraction_class.from_json_file(A_ ) _lowercase: int = feat_extract_first.to_dict() _lowercase: Optional[int] = feat_extract_second.to_dict() _lowercase: Tuple = feat_extract_first.mel_filters _lowercase: Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def lowercase_ ( self ) -> Tuple: """simple docstring""" _lowercase: Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowercase: Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowercase: List[str] = [np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size _lowercase: Dict = feature_extractor(A_ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _lowercase: Dict = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features _lowercase: Dict = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched _lowercase: Union[str, Any] = feature_extractor(A_ , return_tensors='''np''' ).input_features _lowercase: List[Any] = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _lowercase: Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowercase: Any = np.asarray(A_ ) _lowercase: Tuple = feature_extractor(A_ , return_tensors='''np''' ).input_features _lowercase: Dict = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required _lowercase: List[str] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _lowercase: List[Any] = [np.asarray(A_ ) for speech_input in speech_inputs] _lowercase: Any = [x[: feature_extractor.n_samples] for x in speech_inputs] _lowercase: str = [np.asarray(A_ ) for speech_input in speech_inputs_truncated] _lowercase: Optional[Any] = feature_extractor(A_ , return_tensors='''np''' ).input_features _lowercase: List[str] = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" import torch _lowercase: List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowercase: List[Any] = np.random.rand(100 , 32 ).astype(np.floataa ) _lowercase: Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowercase: Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowercase: int = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self , A_ ) -> List[Any]: """simple docstring""" _lowercase: Optional[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _lowercase: List[str] = ds.sort('''id''' ).select(range(A_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowercase_ ( self ) -> Optional[int]: """simple docstring""" _lowercase: List[str] = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on _lowercase: Optional[Any] = self._load_datasamples(1 ) _lowercase: Optional[int] = WhisperFeatureExtractor() _lowercase: Dict = feature_extractor(A_ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowercase: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowercase: List[str] = self._load_datasamples(1 )[0] _lowercase: Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _lowercase: Any = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
353
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def _A ( _lowerCAmelCase = 1_000_000 , _lowerCAmelCase = 10 ): """simple docstring""" __lowercase =defaultdict(_lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __lowercase =max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __lowercase =1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
454
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart lowerCamelCase = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } lowerCamelCase = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ = BartTokenizer def __init__( self : Optional[int] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : str="replace" , _lowerCAmelCase : List[Any]="<s>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : Dict="</s>" , _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]="<pad>" , _lowerCAmelCase : Dict="<mask>" , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : str=True , **_lowerCAmelCase : Tuple , ): '''simple docstring''' super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , _lowerCAmelCase) != add_prefix_space: __lowercase =getattr(_lowerCAmelCase , pre_tok_state.pop('type')) __lowercase =add_prefix_space __lowercase =pre_tok_class(**_lowerCAmelCase) __lowercase =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowercase ='post_processor' __lowercase =getattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase) if tokenizer_component_instance: __lowercase =json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowercase =tuple(state['sep']) if "cls" in state: __lowercase =tuple(state['cls']) __lowercase =False if state.get('add_prefix_space' , _lowerCAmelCase) != add_prefix_space: __lowercase =add_prefix_space __lowercase =True if state.get('trim_offsets' , _lowerCAmelCase) != trim_offsets: __lowercase =trim_offsets __lowercase =True if changes_to_apply: __lowercase =getattr(_lowerCAmelCase , state.pop('type')) __lowercase =component_class(**_lowerCAmelCase) setattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase) @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase) if isinstance(_lowerCAmelCase , _lowerCAmelCase) else value __lowercase =value def __lowerCamelCase ( self : List[Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : str): '''simple docstring''' __lowercase =kwargs.get('is_split_into_words' , _lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : List[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =kwargs.get('is_split_into_words' , _lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.') return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' __lowercase =self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase) return tuple(_lowerCAmelCase) def __lowerCamelCase ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None): '''simple docstring''' __lowercase =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
454
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType A_ , A_ , A_ : Union[str, Any] = False, False, False @dataclass class __snake_case : '''simple docstring''' lowerCamelCase__ = None lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = None # Automatically constructed lowerCamelCase__ = "dict" lowerCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCamelCase__ = field(default='''Audio''' , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ): return self.pa_type def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return {"bytes": None, "path": value} elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes snake_case__ : Tuple = BytesIO() sf.write(__SCREAMING_SNAKE_CASE , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) snake_case__ : List[str] = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: snake_case__ : Tuple = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_2_7_6_7 snake_case__ : str = BytesIO(bytes() ) sf.write(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) snake_case__ , snake_case__ : str = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err snake_case__ : Optional[Any] = xsplitext(__SCREAMING_SNAKE_CASE )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: snake_case__ : str = token_per_repo_id or {} snake_case__ : Tuple = path.split("""::""" )[-1] try: snake_case__ : str = string_to_dict(__SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )["""repo_id"""] snake_case__ : int = token_per_repo_id[repo_id] except (ValueError, KeyError): snake_case__ : Dict = None with xopen(__SCREAMING_SNAKE_CASE , """rb""" , use_auth_token=__SCREAMING_SNAKE_CASE ) as f: snake_case__ , snake_case__ : Optional[int] = sf.read(__SCREAMING_SNAKE_CASE ) else: snake_case__ , snake_case__ : Tuple = sf.read(__SCREAMING_SNAKE_CASE ) snake_case__ : str = array.T if self.mono: snake_case__ : str = librosa.to_mono(__SCREAMING_SNAKE_CASE ) if self.sampling_rate and self.sampling_rate != sampling_rate: snake_case__ : List[Any] = librosa.resample(__SCREAMING_SNAKE_CASE , orig_sr=__SCREAMING_SNAKE_CASE , target_sr=self.sampling_rate ) snake_case__ : List[str] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __UpperCamelCase ( self ): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if pa.types.is_string(storage.type ): snake_case__ : List[str] = pa.array([None] * len(__SCREAMING_SNAKE_CASE ) , type=pa.binary() ) snake_case__ : Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): snake_case__ : List[str] = pa.array([None] * len(__SCREAMING_SNAKE_CASE ) , type=pa.string() ) snake_case__ : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): snake_case__ : Dict = pa.array([Audio().encode_example(__SCREAMING_SNAKE_CASE ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: snake_case__ : Tuple = storage.field("""bytes""" ) else: snake_case__ : Any = pa.array([None] * len(__SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: snake_case__ : List[Any] = storage.field("""path""" ) else: snake_case__ : Union[str, Any] = pa.array([None] * len(__SCREAMING_SNAKE_CASE ) , type=pa.string() ) snake_case__ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(__SCREAMING_SNAKE_CASE , self.pa_type ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): @no_op_if_value_is_null def path_to_bytes(__SCREAMING_SNAKE_CASE ): with xopen(__SCREAMING_SNAKE_CASE , """rb""" ) as f: snake_case__ : int = f.read() return bytes_ snake_case__ : Optional[int] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) snake_case__ : Optional[Any] = pa.array( [os.path.basename(__SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) snake_case__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__SCREAMING_SNAKE_CASE , self.pa_type )
38
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Dict = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''bit''' lowerCamelCase__ = ['''preactivation''', '''bottleneck'''] lowerCamelCase__ = ['''SAME''', '''VALID'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case__ : Tuple = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) snake_case__ : List[str] = num_channels snake_case__ : Tuple = embedding_size snake_case__ : str = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : List[Any] = layer_type snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = global_padding snake_case__ : List[str] = num_groups snake_case__ : str = drop_path_rate snake_case__ : List[Any] = embedding_dynamic_padding snake_case__ : List[str] = output_stride snake_case__ : Dict = width_factor snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
38
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): SCREAMING_SNAKE_CASE__ : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right SCREAMING_SNAKE_CASE__ : Optional[int] = 1_2_8_0_2_2 SCREAMING_SNAKE_CASE__ : List[Any] = 1_2_8_0_2_8 @require_sentencepiece class a__( snake_case__ , unittest.TestCase ): a_ : List[str] = MaMaaaTokenizer a_ : Dict = False a_ : Union[str, Any] = False a_ : Dict = True def _lowercase ( self ) -> str: super().setUp() snake_case__ =['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] snake_case__ =dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) snake_case__ =Path(self.tmpdirname ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) snake_case__ =MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self , **_UpperCAmelCase ) -> Optional[Any]: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowercase ( self , _UpperCAmelCase ) -> int: return ( "This is a test", "This is a test", ) def _lowercase ( self ) -> Dict: snake_case__ ='</s>' snake_case__ =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowercase ( self ) -> Optional[Any]: snake_case__ =self.get_tokenizer() snake_case__ =list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(_UpperCAmelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def _lowercase ( self ) -> int: pass def _lowercase ( self ) -> Any: snake_case__ =self.get_tokenizer() snake_case__ =tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2, 3, 4, 5, 6] , ) snake_case__ =tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) snake_case__ =tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , 'This is a test' ) @slow def _lowercase ( self ) -> Optional[int]: # fmt: off snake_case__ ={'input_ids': [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class a__( unittest.TestCase ): a_ : Optional[Any] = '''facebook/m2m100_418M''' a_ : List[Any] = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] a_ : Tuple = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off a_ : str = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def _lowercase ( cls ) -> int: snake_case__ =MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) snake_case__ =1 return cls def _lowercase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 12_8063 ) def _lowercase ( self ) -> Dict: snake_case__ =self.tokenizer.get_vocab() self.assertEqual(len(_UpperCAmelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , _UpperCAmelCase ) def _lowercase ( self ) -> Any: snake_case__ ='en' snake_case__ =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def _lowercase ( self ) -> str: self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) # fmt: off snake_case__ =[FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on snake_case__ =self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) snake_case__ =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def _lowercase ( self ) -> List[Any]: snake_case__ =tempfile.mkdtemp() snake_case__ =self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_UpperCAmelCase ) snake_case__ =MaMaaaTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.lang_token_to_id , _UpperCAmelCase ) @require_torch def _lowercase ( self ) -> Dict: snake_case__ ='en' snake_case__ ='fr' snake_case__ =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors='pt' ) snake_case__ =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case__ =batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _lowercase ( self ) -> Tuple: snake_case__ ='mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case__ ='zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _lowercase ( self ) -> List[Any]: snake_case__ ='mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case__ ='zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _lowercase ( self ) -> Optional[Any]: snake_case__ =self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # en_XX, A, test, EOS 'input_ids': [[12_8022, 58, 4183, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 12_8006, } , )
581
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class a__: def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=99 , _UpperCAmelCase=0 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase="last" , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=0 , ) -> Optional[int]: snake_case__ =parent snake_case__ =batch_size snake_case__ =seq_length snake_case__ =is_training snake_case__ =use_input_lengths snake_case__ =use_token_type_ids snake_case__ =use_labels snake_case__ =gelu_activation snake_case__ =sinusoidal_embeddings snake_case__ =causal snake_case__ =asm snake_case__ =n_langs snake_case__ =vocab_size snake_case__ =n_special snake_case__ =hidden_size snake_case__ =num_hidden_layers snake_case__ =num_attention_heads snake_case__ =hidden_dropout_prob snake_case__ =attention_probs_dropout_prob snake_case__ =max_position_embeddings snake_case__ =type_sequence_label_size snake_case__ =initializer_range snake_case__ =num_labels snake_case__ =num_choices snake_case__ =summary_type snake_case__ =use_proj snake_case__ =scope snake_case__ =bos_token_id def _lowercase ( self ) -> Any: snake_case__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ =random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ =None if self.use_input_lengths: snake_case__ =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case__ =None if self.use_token_type_ids: snake_case__ =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case__ =None snake_case__ =None snake_case__ =None if self.use_labels: snake_case__ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ =ids_tensor([self.batch_size] , 2 ).float() snake_case__ =ids_tensor([self.batch_size] , self.num_choices ) snake_case__ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowercase ( self ) -> Union[str, Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Tuple: snake_case__ =XLMModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) snake_case__ =model(_UpperCAmelCase , langs=_UpperCAmelCase ) snake_case__ =model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> str: snake_case__ =XLMWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> str: snake_case__ =XLMForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase ) snake_case__ =model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) snake_case__ =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Dict: snake_case__ =XLMForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase ) snake_case__ =model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) snake_case__ =model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((snake_case__) , ) =result_with_labels.to_tuple() snake_case__ =model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((snake_case__) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Any: snake_case__ =XLMForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase ) snake_case__ =model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[Any]: snake_case__ =self.num_labels snake_case__ =XLMForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> int: snake_case__ =self.num_choices snake_case__ =XLMForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ =model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self ) -> str: snake_case__ =self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) =config_and_inputs snake_case__ ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class a__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): a_ : Optional[int] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) a_ : Optional[Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a_ : Any = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> str: snake_case__ =super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case__ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) snake_case__ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _lowercase ( self ) -> Optional[int]: snake_case__ =XLMModelTester(self ) snake_case__ =ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def _lowercase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowercase ( self ) -> int: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_UpperCAmelCase ) def _lowercase ( self ) -> Dict: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_UpperCAmelCase ) def _lowercase ( self ) -> str: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_UpperCAmelCase ) def _lowercase ( self ) -> str: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_UpperCAmelCase ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=1 ) -> Dict: self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual( [isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(_UpperCAmelCase ) ) self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_UpperCAmelCase ): # adds PAD dummy token snake_case__ =min_length + idx + 1 snake_case__ =min_length + idx + 1 snake_case__ =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_UpperCAmelCase ) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=1 ) -> int: self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual( [isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(_UpperCAmelCase ) , ) self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_UpperCAmelCase ): # adds PAD dummy token snake_case__ =min_length + idx + 1 snake_case__ =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_UpperCAmelCase ) , ) pass @slow def _lowercase ( self ) -> Dict: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ =XLMModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class a__( unittest.TestCase ): @slow def _lowercase ( self ) -> str: snake_case__ =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(_UpperCAmelCase ) snake_case__ =torch.tensor([[14, 447]] , dtype=torch.long , device=_UpperCAmelCase ) # the president snake_case__ =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case__ =model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _UpperCAmelCase )
581
1
def UpperCamelCase ( _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' _lowercase : int = [] _lowercase : Optional[int] = set({"(", "[", "{"} ) _lowercase : str = set({")", "]", "}"} ) _lowercase : List[str] = {"{": "}", "[": "]", "(": ")"} for i in range(len(_UpperCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_UpperCAmelCase ) == 0 or (len(_UpperCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_UpperCAmelCase ) == 0 def UpperCamelCase ( ) -> int: '''simple docstring''' _lowercase : str = input("Enter sequence of brackets: " ) if is_balanced(_UpperCAmelCase ): print(_UpperCAmelCase , "is balanced" ) else: print(_UpperCAmelCase , "is not balanced" ) if __name__ == "__main__": main()
461
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __lowercase ( __snake_case ): def __init__(self : Dict , snake_case : str , snake_case : str=13 , snake_case : Union[str, Any]=7 , snake_case : int=True , snake_case : Any=True , snake_case : str=False , snake_case : Optional[Any]=True , snake_case : Optional[Any]=99 , snake_case : Dict=32 , snake_case : Union[str, Any]=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : Optional[int]="gelu" , snake_case : Optional[Any]=0.1 , snake_case : Optional[int]=0.1 , snake_case : List[Any]=512 , snake_case : List[Any]=16 , snake_case : Optional[int]=2 , snake_case : Tuple=0.02 , snake_case : Union[str, Any]=3 , snake_case : Any=4 , snake_case : Any=None , ) -> List[Any]: _lowercase : Dict = parent _lowercase : int = batch_size _lowercase : Optional[Any] = seq_length _lowercase : int = is_training _lowercase : Dict = use_input_mask _lowercase : Union[str, Any] = use_token_type_ids _lowercase : Tuple = use_labels _lowercase : int = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : int = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Dict = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : int = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : Optional[Any] = num_labels _lowercase : Optional[Any] = num_choices _lowercase : str = scope def _a(self : int ) -> Dict: _lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Tuple = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : Tuple = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a(self : Any ) -> Any: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _a(self : int , snake_case : Optional[Any] , snake_case : Tuple , snake_case : List[str] , snake_case : Tuple , snake_case : Any , snake_case : Dict ) -> Optional[int]: _lowercase : Optional[int] = DistilBertModel(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : List[Any] = model(snake_case , snake_case ) _lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a(self : int , snake_case : Optional[Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] ) -> Dict: _lowercase : Optional[int] = DistilBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a(self : Tuple , snake_case : List[str] , snake_case : Any , snake_case : List[str] , snake_case : Dict , snake_case : str , snake_case : str ) -> Any: _lowercase : Dict = DistilBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : List[str] = model( snake_case , attention_mask=snake_case , start_positions=snake_case , end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a(self : Union[str, Any] , snake_case : str , snake_case : Dict , snake_case : Dict , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Dict ) -> Dict: _lowercase : str = self.num_labels _lowercase : Any = DistilBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() _lowercase : Optional[Any] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a(self : int , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : str ) -> str: _lowercase : str = self.num_labels _lowercase : List[str] = DistilBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : str = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a(self : List[str] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : int , snake_case : Union[str, Any] ) -> Optional[Any]: _lowercase : str = self.num_choices _lowercase : Dict = DistilBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : Tuple = model( snake_case , attention_mask=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a(self : List[str] ) -> List[str]: _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Union[str, Any] = config_and_inputs _lowercase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): _A = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _A = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _A = True _A = True _A = True _A = True def _a(self : Dict ) -> List[Any]: _lowercase : Optional[Any] = DistilBertModelTester(self ) _lowercase : str = ConfigTester(self , config_class=snake_case , dim=37 ) def _a(self : int ) -> List[str]: self.config_tester.run_common_tests() def _a(self : Optional[Any] ) -> Optional[int]: _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*snake_case ) def _a(self : Any ) -> int: _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*snake_case ) def _a(self : Dict ) -> List[Any]: _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*snake_case ) def _a(self : str ) -> Tuple: _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*snake_case ) def _a(self : Any ) -> List[Any]: _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*snake_case ) def _a(self : Optional[int] ) -> Optional[int]: _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*snake_case ) @slow def _a(self : Optional[Any] ) -> Dict: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Tuple = DistilBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @slow @require_torch_gpu def _a(self : Optional[int] ) -> Optional[int]: _lowercase , _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _lowercase : str = True _lowercase : Tuple = model_class(config=snake_case ) _lowercase : str = self._prepare_for_class(snake_case , snake_case ) _lowercase : Optional[int] = torch.jit.trace( snake_case , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case , os.path.join(snake_case , "traced_model.pt" ) ) _lowercase : Dict = torch.jit.load(os.path.join(snake_case , "traced_model.pt" ) , map_location=snake_case ) loaded(inputs_dict["input_ids"].to(snake_case ) , inputs_dict["attention_mask"].to(snake_case ) ) @require_torch class __lowercase ( unittest.TestCase ): @slow def _a(self : int ) -> str: _lowercase : Any = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _lowercase : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowercase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowercase : Optional[int] = model(snake_case , attention_mask=snake_case )[0] _lowercase : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case ) _lowercase : Any = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1e-4 ) )
461
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Union[str, Any] =SwinConfig(image_size=192 ) if "base" in model_name: __magic_name__ : Tuple =6 __magic_name__ : List[str] =128 __magic_name__ : Any =(2, 2, 18, 2) __magic_name__ : Dict =(4, 8, 16, 32) elif "large" in model_name: __magic_name__ : Union[str, Any] =12 __magic_name__ : Tuple =192 __magic_name__ : int =(2, 2, 18, 2) __magic_name__ : Any =(6, 12, 24, 48) else: raise ValueError("""Model not supported, only supports base and large variants""" ) __magic_name__ : Union[str, Any] =window_size __magic_name__ : Optional[Any] =embed_dim __magic_name__ : Optional[int] =depths __magic_name__ : int =num_heads return config def lowerCAmelCase_ ( lowerCamelCase ): if "encoder.mask_token" in name: __magic_name__ : Union[str, Any] =name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: __magic_name__ : Tuple =name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: __magic_name__ : Tuple =name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: __magic_name__ : str =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __magic_name__ : Tuple =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __magic_name__ : Any =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __magic_name__ : Dict =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __magic_name__ : Dict =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __magic_name__ : Dict =name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": __magic_name__ : Any ="""layernorm.weight""" if name == "encoder.norm.bias": __magic_name__ : Any ="""layernorm.bias""" if "decoder" in name: pass else: __magic_name__ : str ="""swin.""" + name return name def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): for key in orig_state_dict.copy().keys(): __magic_name__ : str =orig_state_dict.pop(lowerCamelCase ) if "attn_mask" in key: pass elif "qkv" in key: __magic_name__ : Union[str, Any] =key.split(""".""" ) __magic_name__ : str =int(key_split[2] ) __magic_name__ : Optional[Any] =int(key_split[4] ) __magic_name__ : List[str] =model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __magic_name__ : Any =val[:dim, :] __magic_name__ : Dict =val[ dim : dim * 2, : ] __magic_name__ : Dict =val[-dim:, :] else: __magic_name__ : Any =val[ :dim ] __magic_name__ : Union[str, Any] =val[ dim : dim * 2 ] __magic_name__ : Optional[int] =val[ -dim: ] else: __magic_name__ : Union[str, Any] =val return orig_state_dict def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Dict =torch.load(lowerCamelCase , map_location="""cpu""" )["""model"""] __magic_name__ : Union[str, Any] =get_swin_config(lowerCamelCase ) __magic_name__ : List[Any] =SwinForMaskedImageModeling(lowerCamelCase ) model.eval() __magic_name__ : Union[str, Any] =convert_state_dict(lowerCamelCase , lowerCamelCase ) model.load_state_dict(lowerCamelCase ) __magic_name__ : List[str] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ : Dict =ViTImageProcessor(size={"""height""": 192, """width""": 192} ) __magic_name__ : Optional[Any] =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) __magic_name__ : Union[str, Any] =image_processor(images=lowerCamelCase , return_tensors="""pt""" ) with torch.no_grad(): __magic_name__ : List[str] =model(**lowerCamelCase ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print(F"Pushing model and image processor for {model_name} to hub" ) model.push_to_hub(F"microsoft/{model_name}" ) image_processor.push_to_hub(F"microsoft/{model_name}" ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCAmelCase_ : str = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
367
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , ): __magic_name__ : Optional[int] ={} if train_file is not None: __magic_name__ : Optional[int] =[train_file] if eval_file is not None: __magic_name__ : Any =[eval_file] if test_file is not None: __magic_name__ : int =[test_file] __magic_name__ : Any =datasets.load_dataset("""csv""" , data_files=lowerCamelCase ) __magic_name__ : Optional[Any] =list(ds[list(files.keys() )[0]].features.keys() ) __magic_name__ : Optional[Any] =features_name.pop(lowerCamelCase ) __magic_name__ : str =list(set(ds[list(files.keys() )[0]][label_name] ) ) __magic_name__ : Union[str, Any] ={label: i for i, label in enumerate(lowerCamelCase )} __magic_name__ : Dict =tokenizer.model_input_names __magic_name__ : Any ={} if len(lowerCamelCase ) == 1: for k in files.keys(): __magic_name__ : Dict =ds[k].map( lambda lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" ) , batched=lowerCamelCase , ) elif len(lowerCamelCase ) == 2: for k in files.keys(): __magic_name__ : Optional[Any] =ds[k].map( lambda lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" , ) , batched=lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __magic_name__ : Any ={k: v for k, v in ex.items() if k in input_names} __magic_name__ : Any =labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __magic_name__ : Dict ={k: v for k, v in ex.items() if k in input_names} __magic_name__ : str =labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __magic_name__ : Union[str, Any] ={k: v for k, v in ex.items() if k in input_names} __magic_name__ : Optional[int] =labelaid[ex[label_name]] yield (d, label) __magic_name__ : Union[str, Any] =( tf.data.Dataset.from_generator( lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __magic_name__ : Optional[Any] =train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __magic_name__ : Optional[Any] =( tf.data.Dataset.from_generator( lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __magic_name__ : Any =val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __magic_name__ : Any =( tf.data.Dataset.from_generator( lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __magic_name__ : Optional[int] =test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCAmelCase_ : int = logging.getLogger(__name__) @dataclass class __A : UpperCamelCase = field(metadata={"""help""": """Which column contains the label"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """The path of the training file"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """The path of the development file"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """The path of the test file"""} ) UpperCamelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class __A : UpperCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __magic_name__ : List[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " F"16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ : Dict =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __magic_name__ : Any =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCamelCase ) , labelaid=lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __magic_name__ : Any =TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCamelCase ) -> Dict: __magic_name__ : Tuple =np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __magic_name__ : int =TFTrainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __magic_name__ : List[str] ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __magic_name__ : List[str] =trainer.evaluate() __magic_name__ : Optional[Any] =os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) results.update(lowerCamelCase ) return results if __name__ == "__main__": main()
367
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCamelCase = logging.get_logger(__name__) def __magic_name__ ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class lowerCAmelCase_ : _UpperCamelCase : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) _UpperCamelCase : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) _UpperCamelCase : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) _UpperCamelCase : bool = field( default=__snake_case , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) _UpperCamelCase : bool = field( default=__snake_case , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) _UpperCamelCase : bool = field( default=__snake_case , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) _UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Use FP16 to accelerate inference."} ) _UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Benchmark training of model"} ) _UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Verbose memory tracing"} ) _UpperCamelCase : bool = field( default=__snake_case , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) _UpperCamelCase : bool = field( default=__snake_case , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) _UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Trace memory line by line"} ) _UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Save result to a CSV file"} ) _UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Save all print statements in a log file"} ) _UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Whether to print environment information"} ) _UpperCamelCase : bool = field( default=__snake_case , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) _UpperCamelCase : str = field( default=F"""inference_time_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving time results to csv."} , ) _UpperCamelCase : str = field( default=F"""inference_memory_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving memory results to csv."} , ) _UpperCamelCase : str = field( default=F"""train_time_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) _UpperCamelCase : str = field( default=F"""train_memory_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) _UpperCamelCase : str = field( default=F"""env_info_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving environment information."} , ) _UpperCamelCase : str = field( default=F"""log_{round(time() )}.csv""" , metadata={"help": "Log filename used if print statements are saved in log."} , ) _UpperCamelCase : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) _UpperCamelCase : bool = field( default=__snake_case , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def __a ( self ): warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , _lowerCAmelCase , ) def __a ( self ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __a ( self ): if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def __a ( self ): if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
66
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } SCREAMING_SNAKE_CASE__ = { "allenai/led-base-16384": 16_384, } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = LEDTokenizer _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ) -> Any: super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowercase ) != add_prefix_space: lowerCAmelCase = getattr(lowercase , pre_tok_state.pop("""type""" ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**lowercase ) lowerCAmelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase = """post_processor""" lowerCAmelCase = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state["""sep"""] ) if "cls" in state: lowerCAmelCase = tuple(state["""cls"""] ) lowerCAmelCase = False if state.get("""add_prefix_space""" , lowercase ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get("""trim_offsets""" , lowercase ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(lowercase , state.pop("""type""" ) ) lowerCAmelCase = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _snake_case ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _snake_case ( self , lowercase ) -> Optional[int]: lowerCAmelCase = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value lowerCAmelCase = value def _snake_case ( self , *lowercase , **lowercase ) -> BatchEncoding: lowerCAmelCase = kwargs.get("""is_split_into_words""" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*lowercase , **lowercase ) def _snake_case ( self , *lowercase , **lowercase ) -> BatchEncoding: lowerCAmelCase = kwargs.get("""is_split_into_words""" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*lowercase , **lowercase ) def _snake_case ( self , lowercase , lowercase = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def _snake_case ( self , lowercase , lowercase=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _snake_case ( self , lowercase , lowercase = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , lowercase , lowercase = None , lowercase = PaddingStrategy.DO_NOT_PAD , lowercase = None , lowercase = None , ) -> dict: lowerCAmelCase = super()._pad( encoded_inputs=lowercase , max_length=lowercase , padding_strategy=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowercase ) if needs_to_be_padded: lowerCAmelCase = len(lowercase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
532
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __UpperCAmelCase ( __lowercase ): """simple docstring""" _snake_case : int = 0 _snake_case : bool = False _snake_case : float = 3.0 class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Dict )-> Optional[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=__A ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def A ( self : Any )-> int: # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCamelCase = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , __A ) @require_multi_gpu def A ( self : List[str] )-> List[str]: __UpperCamelCase = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__A , env=os.environ.copy() ) if __name__ == "__main__": _A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _A = Accelerator(kwargs_handlers=[ddp_scaler]) _A = torch.nn.Linear(100, 200) _A = accelerator.prepare(model) # Check the values changed in kwargs _A = "" _A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
714
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self : List[str] , *A_ : Dict , **A_ : Any )-> Any: super().__init__(*A_ , **A_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A ( self : int , A_ : List[Any]=None )-> Tuple: __UpperCamelCase = {} if top_k is not None: __UpperCamelCase = top_k return {}, {}, postprocess_params def __call__( self : str , A_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **A_ : Tuple )-> str: return super().__call__(A_ , **A_ ) def A ( self : Union[str, Any] , A_ : int )-> Tuple: __UpperCamelCase = load_image(A_ ) __UpperCamelCase = self.image_processor(images=A_ , return_tensors=self.framework ) return model_inputs def A ( self : str , A_ : Union[str, Any] )-> Union[str, Any]: __UpperCamelCase = self.model(**A_ ) return model_outputs def A ( self : Union[str, Any] , A_ : Any , A_ : Tuple=5 )-> int: if top_k > self.model.config.num_labels: __UpperCamelCase = self.model.config.num_labels if self.framework == "pt": __UpperCamelCase = model_outputs.logits.softmax(-1 )[0] __UpperCamelCase , __UpperCamelCase = probs.topk(A_ ) elif self.framework == "tf": __UpperCamelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] __UpperCamelCase = tf.math.top_k(A_ , k=A_ ) __UpperCamelCase , __UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __UpperCamelCase = scores.tolist() __UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A_ , A_ )]
228
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Optional[Any] = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys a : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Tuple = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """autoformer""" __SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : List[Any] , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : str = "student_t" , a_ : str = "nll" , a_ : int = 1 , a_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , a_ : bool = True , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : Optional[List[int]] = None , a_ : Optional[List[int]] = None , a_ : int = 64 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 32 , a_ : int = 32 , a_ : str = "gelu" , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : int = 100 , a_ : float = 0.02 , a_ : bool = True , a_ : Union[str, Any]=True , a_ : int = 10 , a_ : int = 25 , a_ : int = 3 , **a_ : Tuple , ): """simple docstring""" __snake_case = prediction_length __snake_case = context_length if context_length is not None else prediction_length __snake_case = distribution_output __snake_case = loss __snake_case = input_size __snake_case = num_time_features __snake_case = lags_sequence __snake_case = scaling __snake_case = num_dynamic_real_features __snake_case = num_static_real_features __snake_case = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __snake_case = cardinality else: __snake_case = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __snake_case = embedding_dimension else: __snake_case = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __snake_case = num_parallel_samples # Transformer architecture configuration __snake_case = input_size * len(self.lags_sequence ) + self._number_of_features __snake_case = d_model __snake_case = encoder_attention_heads __snake_case = decoder_attention_heads __snake_case = encoder_ffn_dim __snake_case = decoder_ffn_dim __snake_case = encoder_layers __snake_case = decoder_layers __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = activation_function __snake_case = init_std __snake_case = use_cache # Autoformer __snake_case = label_length __snake_case = moving_average __snake_case = autocorrelation_factor super().__init__(is_encoder_decoder=a_ , **a_ ) @property def A ( self : Optional[int] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
69
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' A = MODEL_FOR_CAUSAL_LM_MAPPING A = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowerCamelCase__ ( self :Tuple ) -> Dict: """simple docstring""" UpperCamelCase__ = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ = text_generator("This is a test" , do_sample=__a ) self.assertEqual( __a , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) UpperCamelCase__ = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( __a , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) UpperCamelCase__ = text_generator("This is a test" , do_sample=__a , num_return_sequences=2 , return_tensors=__a ) self.assertEqual( __a , [ {"generated_token_ids": ANY(__a )}, {"generated_token_ids": ANY(__a )}, ] , ) UpperCamelCase__ = text_generator.model.config.eos_token_id UpperCamelCase__ = "<pad>" UpperCamelCase__ = text_generator( ["This is a test", "This is a second test"] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {"generated_token_ids": ANY(__a )}, {"generated_token_ids": ANY(__a )}, ], [ {"generated_token_ids": ANY(__a )}, {"generated_token_ids": ANY(__a )}, ], ] , ) @require_tf def lowerCamelCase__ ( self :Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase__ = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ = text_generator("This is a test" , do_sample=__a ) self.assertEqual( __a , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) UpperCamelCase__ = text_generator(["This is a test", "This is a second test"] , do_sample=__a ) self.assertEqual( __a , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def lowerCamelCase__ ( self :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = TextGenerationPipeline(model=__a , tokenizer=__a ) return text_generator, ["This is a test", "Another test"] def lowerCamelCase__ ( self :str ) -> Tuple: """simple docstring""" UpperCamelCase__ = "Hello I believe in" UpperCamelCase__ = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) UpperCamelCase__ = text_generator(__a ) self.assertEqual( __a , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) UpperCamelCase__ = text_generator(__a , stop_sequence=" fe" ) self.assertEqual(__a , [{"generated_text": "Hello I believe in fe"}] ) def lowerCamelCase__ ( self :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = text_generator.model UpperCamelCase__ = text_generator.tokenizer UpperCamelCase__ = text_generator("This is a test" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) UpperCamelCase__ = text_generator("This is a test" , return_full_text=__a ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) UpperCamelCase__ = pipeline(task="text-generation" , model=__a , tokenizer=__a , return_full_text=__a ) UpperCamelCase__ = text_generator("This is a test" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) UpperCamelCase__ = text_generator("This is a test" , return_full_text=__a ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) UpperCamelCase__ = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase__ = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) with self.assertRaises(__a ): UpperCamelCase__ = text_generator("test" , return_full_text=__a , return_text=__a ) with self.assertRaises(__a ): UpperCamelCase__ = text_generator("test" , return_full_text=__a , return_tensors=__a ) with self.assertRaises(__a ): UpperCamelCase__ = text_generator("test" , return_text=__a , return_tensors=__a ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase__ = text_generator("" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCamelCase__ = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase__ = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 5_0_0 , max_new_tokens=2_0 ) UpperCamelCase__ = text_generator("This is a test" * 5_0_0 , handle_long_generation="hole" , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(__a ): text_generator( "This is a test" * 5_0_0 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self :Optional[Any] ) -> str: """simple docstring""" import torch # Classic `model_kwargs` UpperCamelCase__ = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase__ = pipe("This is a test" ) self.assertEqual( __a , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase__ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase__ = pipe("This is a test" ) self.assertEqual( __a , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase__ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCamelCase__ = pipe("This is a test" ) self.assertEqual( __a , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def lowerCamelCase__ ( self :Any ) -> Union[str, Any]: """simple docstring""" import torch UpperCamelCase__ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self :int ) -> Union[str, Any]: """simple docstring""" import torch UpperCamelCase__ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=__a , top_p=0.5 ) def lowerCamelCase__ ( self :int ) -> Dict: """simple docstring""" UpperCamelCase__ = "Hello world" UpperCamelCase__ = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": UpperCamelCase__ = logging.get_logger("transformers.generation.tf_utils" ) else: UpperCamelCase__ = logging.get_logger("transformers.generation.utils" ) UpperCamelCase__ = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__a ) as cl: UpperCamelCase__ = text_generator(__a , max_length=1_0 , max_new_tokens=1 ) self.assertIn(__a , cl.out ) # The user only sets one -> no warning with CaptureLogger(__a ) as cl: UpperCamelCase__ = text_generator(__a , max_new_tokens=1 ) self.assertNotIn(__a , cl.out ) with CaptureLogger(__a ) as cl: UpperCamelCase__ = text_generator(__a , max_length=1_0 ) self.assertNotIn(__a , cl.out )
712
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( snake_case__ , unittest.TestCase ): '''simple docstring''' A = KandinskyVaaPipeline A = [ 'image_embeds', 'negative_image_embeds', ] A = ['image_embeds', 'negative_image_embeds'] A = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] A = False @property def lowerCamelCase__ ( self :Optional[Any] ) -> Union[str, Any]: """simple docstring""" return 3_2 @property def lowerCamelCase__ ( self :Union[str, Any] ) -> Optional[int]: """simple docstring""" return 3_2 @property def lowerCamelCase__ ( self :Any ) -> int: """simple docstring""" return self.time_input_dim @property def lowerCamelCase__ ( self :List[Any] ) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return 1_0_0 @property def lowerCamelCase__ ( self :Tuple ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase__ = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def lowerCamelCase__ ( self :str ) -> Optional[int]: """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self :Optional[int] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self :int ) -> str: """simple docstring""" UpperCamelCase__ = self.dummy_unet UpperCamelCase__ = self.dummy_movq UpperCamelCase__ = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCamelCase_ , ) UpperCamelCase__ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCamelCase__ ( self :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int]=0 ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) UpperCamelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith("mps" ): UpperCamelCase__ = torch.manual_seed(lowerCamelCase_ ) else: UpperCamelCase__ = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase__ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCamelCase__ ( self :Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = "cpu" UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase__ = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase__ = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) UpperCamelCase__ = output.images UpperCamelCase__ = pipe( **self.get_dummy_inputs(lowerCamelCase_ ) , return_dict=lowerCamelCase_ , )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase__ = np.array( [0.6_237_976, 1.0, 0.36_441_332, 1.0, 0.70_639_634, 0.29_877_186, 0.85_652_125, 0.5_216_843, 0.54_454_046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ ( self :str ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) UpperCamelCase__ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) UpperCamelCase__ = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCamelCase__ = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase__ = "red cat, 4k photo" UpperCamelCase__ = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase__ , UpperCamelCase__ = pipe_prior( lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase__ = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase__ = pipeline( image_embeds=lowerCamelCase_ , negative_image_embeds=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=1_0_0 , output_type="np" , ) UpperCamelCase__ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
304
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : UNetaDModel _SCREAMING_SNAKE_CASE : KarrasVeScheduler def __init__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" super().__init__() self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) @torch.no_grad() def __call__( self , _UpperCamelCase = 1 , _UpperCamelCase = 50 , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , **_UpperCamelCase , ): """simple docstring""" _lowercase : List[str] = self.unet.config.sample_size _lowercase : Optional[int] = (batch_size, 3, img_size, img_size) _lowercase : Dict = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _lowercase : List[Any] = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _lowercase : Tuple = self.scheduler.schedule[t] _lowercase : List[Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _lowercase , _lowercase : Union[str, Any] = self.scheduler.add_noise_to_input(_UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _lowercase : int = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _lowercase : List[str] = self.scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _lowercase : Optional[int] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _lowercase : Dict = self.scheduler.step_correct( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , step_output.prev_sample , step_output["derivative"] , ) _lowercase : int = step_output.prev_sample _lowercase : List[Any] = (sample / 2 + 0.5).clamp(0 , 1 ) _lowercase : int = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowercase : Optional[int] = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
245
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ReformerTokenizer _SCREAMING_SNAKE_CASE : str = ReformerTokenizerFast _SCREAMING_SNAKE_CASE : List[Any] = True _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Optional[Any] = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() _lowercase : int = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = "<s>" _lowercase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCamelCase ) , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowercase : str = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : Any = "I was born in 92000, and this is falsé." _lowercase : Dict = tokenizer.tokenize(_UpperCamelCase ) _lowercase : List[Any] = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : Union[str, Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _lowercase : int = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : Tuple = self.get_rust_tokenizer() _lowercase : Optional[Any] = tokenizer.encode(_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # Simple input _lowercase : int = "This is a simple input" _lowercase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _lowercase : str = ("This is a simple input", "This is a pair") _lowercase : int = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) _lowercase : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _lowercase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _lowercase : Dict = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowercase : List[Any] = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = "Hello World!" _lowercase : Optional[Any] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _lowercase : Optional[Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowercase : int = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowercase : Tuple = " ".join(_UpperCamelCase ) _lowercase : Tuple = self.big_tokenizer.encode_plus(_UpperCamelCase , return_tensors="pt" ) _lowercase : int = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) _lowercase : int = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowercase : Optional[int] = encoded_sequence["input_ids"].shape _lowercase : List[Any] = ReformerModel(_UpperCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCamelCase ) model(**_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowercase : Dict = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=_UpperCamelCase , sequences=_UpperCamelCase , )
245
1
"""simple docstring""" class a : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = name lowercase = value lowercase = weight def __repr__( self ): return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def UpperCamelCase_ ( self ): return self.value def UpperCamelCase_ ( self ): return self.name def UpperCamelCase_ ( self ): return self.weight def UpperCamelCase_ ( self ): return self.value / self.weight def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ): '''simple docstring''' lowercase = [] for i in range(len(__snake_case ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Any , __snake_case : Any ): '''simple docstring''' lowercase = sorted(__snake_case , key=__snake_case , reverse=__snake_case ) lowercase = [] lowercase , lowercase = 0.0, 0.0 for i in range(len(__snake_case ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
134
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class a : def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn='gelu' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = inputs['prompt'] lowercase = inputs['generator'] lowercase = inputs['num_inference_steps'] lowercase = inputs['output_type'] if "image" in inputs: lowercase = inputs['image'] else: lowercase = None if "mask_image" in inputs: lowercase = inputs['mask_image'] else: lowercase = None if "original_image" in inputs: lowercase = inputs['original_image'] else: lowercase = None lowercase , lowercase = pipe.encode_prompt(_lowerCamelCase ) # inputs with prompt converted to embeddings lowercase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) lowercase = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowerCamelCase , _lowerCamelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = inputs['generator'] lowercase = inputs['num_inference_steps'] lowercase = inputs['output_type'] # inputs with prompt converted to embeddings lowercase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image lowercase = pipe_loaded(**_lowerCamelCase )[0] lowercase = np.abs(to_np(_lowerCamelCase ) - to_np(_lowerCamelCase ) ).max() self.assertLess(_lowerCamelCase , 1e-4 ) def UpperCamelCase_ ( self ): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) lowercase = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = pipe_loaded(**_lowerCamelCase )[0] lowercase = np.abs(to_np(_lowerCamelCase ) - to_np(_lowerCamelCase ) ).max() self.assertLess(_lowerCamelCase , 1e-4 )
134
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Dict ,_UpperCamelCase : List[str] ): __lowerCamelCase = state_dict.pop(__snake_case ) __lowerCamelCase = val def a__ ( _UpperCamelCase : Any ): __lowerCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowerCamelCase = key.replace('''backbone.0.body''' ,'''backbone.conv_encoder.model''' ) __lowerCamelCase = value else: __lowerCamelCase = value return new_state_dict def a__ ( _UpperCamelCase : Dict ): __lowerCamelCase = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:2_56, :] __lowerCamelCase = in_proj_bias[:2_56] __lowerCamelCase = in_proj_weight[2_56:5_12, :] __lowerCamelCase = in_proj_bias[2_56:5_12] __lowerCamelCase = in_proj_weight[-2_56:, :] __lowerCamelCase = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:2_56, :] __lowerCamelCase = in_proj_bias[:2_56] __lowerCamelCase = in_proj_weight[2_56:5_12, :] __lowerCamelCase = in_proj_bias[2_56:5_12] __lowerCamelCase = in_proj_weight[-2_56:, :] __lowerCamelCase = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention __lowerCamelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowerCamelCase = in_proj_weight_cross_attn[:2_56, :] __lowerCamelCase = in_proj_bias_cross_attn[:2_56] __lowerCamelCase = in_proj_weight_cross_attn[2_56:5_12, :] __lowerCamelCase = in_proj_bias_cross_attn[2_56:5_12] __lowerCamelCase = in_proj_weight_cross_attn[-2_56:, :] __lowerCamelCase = in_proj_bias_cross_attn[-2_56:] def a__ ( _UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): __lowerCamelCase = image.size __lowerCamelCase = max(__snake_case ,__snake_case ) __lowerCamelCase = 8_00 if """detection""" in checkpoint_url else 10_00 __lowerCamelCase = target_max_size / current_max_size __lowerCamelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a__ ( _UpperCamelCase : List[str] ): __lowerCamelCase = F.to_tensor(__snake_case ) __lowerCamelCase = F.normalize(__snake_case ,mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def a__ ( _UpperCamelCase : Optional[Any] ,_UpperCamelCase : int ,_UpperCamelCase : List[str] ): logger.info('''Converting model...''' ) # load original state dict __lowerCamelCase = torch.hub.load_state_dict_from_url(__snake_case ,map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(__snake_case ,__snake_case ,__snake_case ) __lowerCamelCase = rename_backbone_keys(__snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(__snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCamelCase = """model.""" for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __lowerCamelCase = state_dict.pop(__snake_case ) __lowerCamelCase = val # create HuggingFace model and load state dict __lowerCamelCase = TableTransformerConfig( backbone='''resnet18''' ,mask_loss_coefficient=1 ,dice_loss_coefficient=1 ,ce_loss_coefficient=1 ,bbox_loss_coefficient=5 ,giou_loss_coefficient=2 ,eos_coefficient=0.4 ,class_cost=1 ,bbox_cost=5 ,giou_cost=2 ,) if "detection" in checkpoint_url: __lowerCamelCase = 15 __lowerCamelCase = 2 __lowerCamelCase = {0: """table""", 1: """table rotated"""} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} else: __lowerCamelCase = 1_25 __lowerCamelCase = 6 __lowerCamelCase = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = DetrImageProcessor( format='''coco_detection''' ,max_size=8_00 if '''detection''' in checkpoint_url else 10_00 ) __lowerCamelCase = TableTransformerForObjectDetection(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # verify our conversion __lowerCamelCase = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" __lowerCamelCase = hf_hub_download(repo_id='''nielsr/example-pdf''' ,repo_type='''dataset''' ,filename=__snake_case ) __lowerCamelCase = Image.open(__snake_case ).convert('''RGB''' ) __lowerCamelCase = normalize(resize(__snake_case ,__snake_case ) ).unsqueeze(0 ) __lowerCamelCase = model(__snake_case ) if "detection" in checkpoint_url: __lowerCamelCase = (1, 15, 3) __lowerCamelCase = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) __lowerCamelCase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: __lowerCamelCase = (1, 1_25, 7) __lowerCamelCase = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) __lowerCamelCase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] ,__snake_case ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] ,__snake_case ,atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) __lowerCamelCase = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(__snake_case ) image_processor.push_to_hub(__snake_case ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a_ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
175
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 __snake_case = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 __snake_case = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
215
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _A ( _lowerCamelCase ): _UpperCamelCase : Optional[Any] = '''blenderbot-small''' _UpperCamelCase : Any = ['''past_key_values'''] _UpperCamelCase : int = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , _A : List[Any]=50_265 , _A : str=512 , _A : Optional[int]=8 , _A : Dict=2_048 , _A : List[str]=16 , _A : Tuple=8 , _A : Optional[int]=2_048 , _A : List[Any]=16 , _A : int=0.0 , _A : Optional[int]=0.0 , _A : Optional[int]=True , _A : str=True , _A : Union[str, Any]="gelu" , _A : Union[str, Any]=512 , _A : List[Any]=0.1 , _A : Optional[Any]=0.0 , _A : Tuple=0.0 , _A : Union[str, Any]=0.02 , _A : List[Any]=1 , _A : Optional[int]=False , _A : str=0 , _A : Tuple=1 , _A : Dict=2 , _A : Union[str, Any]=2 , **_A : Tuple , ) -> List[str]: """simple docstring""" lowercase : Dict = vocab_size lowercase : List[str] = max_position_embeddings lowercase : Optional[Any] = d_model lowercase : Any = encoder_ffn_dim lowercase : Union[str, Any] = encoder_layers lowercase : List[str] = encoder_attention_heads lowercase : Tuple = decoder_ffn_dim lowercase : Union[str, Any] = decoder_layers lowercase : List[Any] = decoder_attention_heads lowercase : str = dropout lowercase : List[str] = attention_dropout lowercase : Optional[int] = activation_dropout lowercase : List[str] = activation_function lowercase : Optional[Any] = init_std lowercase : Union[str, Any] = encoder_layerdrop lowercase : List[str] = decoder_layerdrop lowercase : List[str] = use_cache lowercase : Union[str, Any] = encoder_layers lowercase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , forced_eos_token_id=_A , **_A , ) class _A ( _lowerCamelCase ): @property def __a ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase : Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase : int = {0: '''batch'''} lowercase : int = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} lowercase : int = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_A , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase : str = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase , lowercase : List[Any] = self.num_layers for i in range(_A ): lowercase : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: lowercase : List[str] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __a ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase : int = super().outputs else: lowercase : Union[str, Any] = super(_A , self ).outputs if self.use_past: lowercase , lowercase : int = self.num_layers for i in range(_A ): lowercase : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase : int = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __a ( self : Optional[Any] , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowercase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) # Generate decoder inputs lowercase : Dict = seq_length if not self.use_past else 1 lowercase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) lowercase : Any = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowercase : Tuple = dict(**_A , **_A ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase , lowercase : Optional[int] = common_inputs['''input_ids'''].shape lowercase : Optional[int] = common_inputs['''decoder_input_ids'''].shape[1] lowercase , lowercase : List[str] = self.num_attention_heads lowercase : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase : Any = decoder_seq_length + 3 lowercase : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase : Optional[int] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_A , _A )] , dim=1 ) lowercase : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase , lowercase : Any = self.num_layers lowercase : List[Any] = min(_A , _A ) lowercase : Union[str, Any] = max(_A , _A ) - min_num_layers lowercase : Union[str, Any] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_A ): common_inputs["past_key_values"].append( ( torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), ) ) # TODO: test this. lowercase : int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_A , _A ): common_inputs["past_key_values"].append((torch.zeros(_A ), torch.zeros(_A )) ) return common_inputs def __a ( self : str , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowercase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase , lowercase : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase : Optional[int] = seqlen + 2 lowercase , lowercase : int = self.num_layers lowercase , lowercase : List[str] = self.num_attention_heads lowercase : Dict = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase : List[Any] = common_inputs['''attention_mask'''].dtype lowercase : str = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_A , _A , dtype=_A )] , dim=1 ) lowercase : Union[str, Any] = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(_A ) ] return common_inputs def __a ( self : int , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowercase : int = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase : Any = tokenizer.num_special_tokens_to_add(_A ) lowercase : Any = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence lowercase : Tuple = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase : Optional[Any] = dict(tokenizer(_A , return_tensors=_A ) ) return common_inputs def __a ( self : int , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) elif self.task == "causal-lm": lowercase : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) else: lowercase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) return common_inputs def __a ( self : Union[str, Any] , _A : str , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[str] ) -> Dict: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase : Any = super()._flatten_past_key_values_(_A , _A , _A , _A ) else: lowercase : Any = super(_A , self )._flatten_past_key_values_( _A , _A , _A , _A )
596
import os lowerCAmelCase_ = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 1_00, 'D': 5_00, 'M': 10_00} def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Any = 0 lowercase : Any = 0 while index < len(__magic_name__ ) - 1: lowercase : List[Any] = SYMBOLS[numerals[index]] lowercase : Optional[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : List[Any] = '''''' lowercase : Tuple = num // 10_00 numerals += m_count * "M" num %= 10_00 lowercase : int = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 lowercase : Optional[Any] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def snake_case( __magic_name__ = "/p089_roman.txt" ) -> int: '''simple docstring''' lowercase : Union[str, Any] = 0 with open(os.path.dirname(__magic_name__ ) + roman_numerals_filename ) as filea: lowercase : List[str] = filea.readlines() for line in lines: lowercase : Dict = line.strip() lowercase : Optional[int] = parse_roman_numerals(__magic_name__ ) lowercase : List[Any] = generate_roman_numerals(__magic_name__ ) savings += len(__magic_name__ ) - len(__magic_name__ ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
596
1
"""simple docstring""" import numpy as np def A_ ( snake_case__ , snake_case__ , snake_case__ = 1E-12 , snake_case__ = 1_00 , ) -> tuple[float, np.ndarray]: assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[1] # Ensure proper dimensionality. assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case__ ) == np.iscomplexobj(snake_case__ ) _UpperCamelCase :Optional[int] = np.iscomplexobj(snake_case__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _UpperCamelCase :Optional[Any] = False _UpperCamelCase :Union[str, Any] = 0 _UpperCamelCase :Union[str, Any] = 0 _UpperCamelCase :Optional[Any] = 1E12 while not convergence: # Multiple matrix by the vector. _UpperCamelCase :Dict = np.dot(snake_case__ , snake_case__ ) # Normalize the resulting output vector. _UpperCamelCase :str = w / np.linalg.norm(snake_case__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _UpperCamelCase :int = vector.conj().T if is_complex else vector.T _UpperCamelCase :int = np.dot(snake_case__ , np.dot(snake_case__ , snake_case__ ) ) # Check convergence. _UpperCamelCase :Optional[int] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _UpperCamelCase :Union[str, Any] = True _UpperCamelCase :Optional[Any] = lambda_ if is_complex: _UpperCamelCase :Any = np.real(lambda_ ) return lambda_, vector def A_ ( ) -> None: _UpperCamelCase :Optional[Any] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _UpperCamelCase :int = np.array([41, 4, 20] ) _UpperCamelCase :Tuple = real_input_matrix.astype(np.complexaaa ) _UpperCamelCase :Optional[int] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _UpperCamelCase :List[str] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _UpperCamelCase :Tuple = real_input_matrix _UpperCamelCase :List[str] = real_vector elif problem_type == "complex": _UpperCamelCase :Optional[int] = complex_input_matrix _UpperCamelCase :int = complex_vector # Our implementation. _UpperCamelCase , _UpperCamelCase :Union[str, Any] = power_iteration(snake_case__ , snake_case__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _UpperCamelCase , _UpperCamelCase :Union[str, Any] = np.linalg.eigh(snake_case__ ) # Last eigenvalue is the maximum one. _UpperCamelCase :str = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _UpperCamelCase :Optional[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case__ ) - np.abs(snake_case__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
355
"""simple docstring""" from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class A( lowerCamelCase__ ): """simple docstring""" def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ ) -> float: """simple docstring""" return 0.0 def A_ ( snake_case__ , snake_case__ ) -> tuple[int | float, int | float]: _UpperCamelCase :Union[str, Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _UpperCamelCase :Optional[int] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A_ ( snake_case__ , snake_case__ ) -> None: _UpperCamelCase :List[str] = 5_12 _UpperCamelCase :int = [1] + [0] * (size - 1) _UpperCamelCase :Union[str, Any] = [filter_type.process(snake_case__ ) for item in inputs] _UpperCamelCase :Any = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCamelCase :int = np.abs(np.fft.fft(snake_case__ ) ) _UpperCamelCase :str = 20 * np.logaa(snake_case__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds _UpperCamelCase :Tuple = get_bounds(snake_case__ , snake_case__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(snake_case__ ) plt.show() def A_ ( snake_case__ , snake_case__ ) -> None: _UpperCamelCase :Tuple = 5_12 _UpperCamelCase :Union[str, Any] = [1] + [0] * (size - 1) _UpperCamelCase :List[Any] = [filter_type.process(snake_case__ ) for item in inputs] _UpperCamelCase :str = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCamelCase :Tuple = np.angle(np.fft.fft(snake_case__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(snake_case__ , -2 * pi ) ) plt.show()
355
1
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowercase__ : Tuple = PriorTransformer lowercase__ : Optional[Any] = """hidden_states""" @property def lowercase_ ( self ): '''simple docstring''' A__ = 4 A__ = 8 A__ = 7 A__ = floats_tensor((batch_size, embedding_dim) ).to(UpperCamelCase__ ) A__ = floats_tensor((batch_size, embedding_dim) ).to(UpperCamelCase__ ) A__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase_ ( self , UpperCamelCase__=0 ): '''simple docstring''' torch.manual_seed(UpperCamelCase__ ) A__ = 4 A__ = 8 A__ = 7 A__ = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase__ ) A__ = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase__ ) A__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowercase_ ( self ): '''simple docstring''' return (4, 8) @property def lowercase_ ( self ): '''simple docstring''' return (4, 8) def lowercase_ ( self ): '''simple docstring''' A__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } A__ = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self ): '''simple docstring''' A__ , A__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCamelCase__ ) A__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def lowercase_ ( self ): '''simple docstring''' A__ , A__ = self.prepare_init_args_and_inputs_for_common() A__ = self.model_class(**UpperCamelCase__ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) A__ = model.to(UpperCamelCase__ ) if hasattr(UpperCamelCase__ , "set_default_attn_processor" ): model.set_default_attn_processor() A__ = self.get_dummy_seed_input() with torch.no_grad(): A__ = model(**UpperCamelCase__ )[0] A__ = output[0, :5].flatten().cpu() print(UpperCamelCase__ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. A__ = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-2 ) ) @slow class lowerCAmelCase__ ( unittest.TestCase ): def lowercase_ ( self , UpperCamelCase__=1 , UpperCamelCase__=7_68 , UpperCamelCase__=77 , UpperCamelCase__=0 ): '''simple docstring''' torch.manual_seed(UpperCamelCase__ ) A__ = batch_size A__ = embedding_dim A__ = num_embeddings A__ = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase__ ) A__ = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase__ ) A__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" ) model.to(UpperCamelCase__ ) A__ = self.get_dummy_seed_input(seed=UpperCamelCase__ ) with torch.no_grad(): A__ = model(**UpperCamelCase__ )[0] assert list(sample.shape ) == [1, 7_68] A__ = sample[0, :8].flatten().cpu() print(UpperCamelCase__ ) A__ = torch.tensor(UpperCamelCase__ ) assert torch_all_close(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
261
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __UpperCAmelCase ="""base_with_context""" def __a ( A , A ) -> str: '''simple docstring''' A__ = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A ) for lyr_num, lyr in enumerate(model.encoders ): A__ = weights[f"""layers_{lyr_num}"""] A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) A__ = ly_weight["attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def __a ( A , A ) -> Dict: '''simple docstring''' A__ = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A ) for lyr_num, lyr in enumerate(model.encoders ): A__ = weights[f"""layers_{lyr_num}"""] A__ = ly_weight["attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def __a ( A , A ) -> Union[str, Any]: '''simple docstring''' A__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A ) A__ = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): A__ = weights[f"""layers_{lyr_num}"""] A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) A__ = ly_weight["self_attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = ly_weight["MultiHeadDotProductAttention_0"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def __a ( A ) -> str: '''simple docstring''' A__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) A__ = jnp.tree_util.tree_map(onp.array , A ) A__ = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] A__ = os.path.join(args.checkpoint_path , ".." , "config.gin" ) A__ = inference.parse_training_gin_file(A , A ) A__ = inference.InferenceModel(args.checkpoint_path , A ) A__ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) A__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) A__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) A__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) A__ = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , A ) A__ = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , A ) A__ = load_decoder(ta_checkpoint["target"]["decoder"] , A ) A__ = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) A__ = SpectrogramDiffusionPipeline( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) __UpperCAmelCase =parser.parse_args() main(args)
261
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase__ ( A_ ): '''simple docstring''' UpperCAmelCase_ = ['''image_processor''', '''tokenizer'''] UpperCAmelCase_ = '''BridgeTowerImageProcessor''' UpperCAmelCase_ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Dict ): """simple docstring""" super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : str , UpperCamelCase : List[str] , UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[bool, str, PaddingStrategy] = False , UpperCamelCase : Union[bool, str, TruncationStrategy] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : int = 0 , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[str, TensorType]] = None , **UpperCamelCase : Tuple , ): """simple docstring""" _lowercase : int = self.tokenizer( text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel_values + pixel_mask _lowercase : Union[str, Any] = self.image_processor( UpperCamelCase , return_tensors=UpperCamelCase , do_normalize=UpperCamelCase , do_center_crop=UpperCamelCase , **UpperCamelCase ) encoding.update(UpperCamelCase ) return encoding def lowerCAmelCase_ ( self : Any , *UpperCamelCase : int , **UpperCamelCase : int ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self : Optional[int] , *UpperCamelCase : Optional[int] , **UpperCamelCase : str ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _lowercase : Optional[Any] = self.tokenizer.model_input_names _lowercase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
322
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCamelCase__ = parser.parse_args() if args.model_type == "bert": UpperCamelCase__ = BertForMaskedLM.from_pretrained(args.model_name) UpperCamelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCamelCase__ = model.state_dict() UpperCamelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCamelCase__ = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] UpperCamelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] UpperCamelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 UpperCamelCase__ = state_dict['cls.predictions.decoder.weight'] UpperCamelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[F"""cls.predictions.transform.dense.{w}"""] UpperCamelCase__ = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
322
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def a ( __a , __a=1000 ) -> Optional[int]: '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCamelCase__ :Optional[Any] = n - 1 UpperCamelCase__ :Tuple = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCamelCase__ :int = 0 while count < prec: UpperCamelCase__ :Optional[int] = random.randint(2 , n - 1 ) UpperCamelCase__ :Optional[Any] = bin_exp_mod(A_ , A_ , A_ ) if b != 1: UpperCamelCase__ :int = True for _ in range(A_ ): if b == n - 1: UpperCamelCase__ :Dict = False break UpperCamelCase__ :Tuple = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": __snake_case = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
710
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=16 , UpperCamelCase_=[32, 64, 128] , UpperCamelCase_=[1, 2, 1] , UpperCamelCase_=[2, 2, 4] , UpperCamelCase_=2 , UpperCamelCase_=2.0 , UpperCamelCase_=True , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_="gelu" , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=0.02 , UpperCamelCase_=1e-5 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=10 , UpperCamelCase_=8 , UpperCamelCase_=["stage1", "stage2"] , UpperCamelCase_=[1, 2] , ): '''simple docstring''' UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :Dict = batch_size UpperCamelCase__ :Tuple = image_size UpperCamelCase__ :Any = patch_size UpperCamelCase__ :Tuple = num_channels UpperCamelCase__ :int = embed_dim UpperCamelCase__ :Optional[int] = hidden_sizes UpperCamelCase__ :List[str] = depths UpperCamelCase__ :List[str] = num_heads UpperCamelCase__ :Dict = window_size UpperCamelCase__ :str = mlp_ratio UpperCamelCase__ :List[str] = qkv_bias UpperCamelCase__ :Optional[Any] = hidden_dropout_prob UpperCamelCase__ :List[Any] = attention_probs_dropout_prob UpperCamelCase__ :List[str] = drop_path_rate UpperCamelCase__ :str = hidden_act UpperCamelCase__ :Optional[Any] = use_absolute_embeddings UpperCamelCase__ :str = patch_norm UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Dict = initializer_range UpperCamelCase__ :int = is_training UpperCamelCase__ :List[Any] = scope UpperCamelCase__ :Dict = use_labels UpperCamelCase__ :Dict = type_sequence_label_size UpperCamelCase__ :Tuple = encoder_stride UpperCamelCase__ :Optional[int] = out_features UpperCamelCase__ :Optional[int] = out_indices def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Any = None if self.use_labels: UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Tuple = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = FocalNetModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :str = model(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase__ :Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[int] = FocalNetBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Any = model(UpperCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCamelCase__ :Tuple = None UpperCamelCase__ :Optional[Any] = FocalNetBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :List[str] = model(UpperCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = FocalNetForMaskedImageModeling(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :List[Any] = model(UpperCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase__ :Optional[int] = 1 UpperCamelCase__ :Optional[Any] = FocalNetForMaskedImageModeling(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ :Optional[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = self.type_sequence_label_size UpperCamelCase__ :Optional[Any] = FocalNetForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :int = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ :Tuple = 1 UpperCamelCase__ :Tuple = FocalNetForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ :Dict = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[int] = config_and_inputs UpperCamelCase__ :Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( A__ , A__ , unittest.TestCase ): """simple docstring""" _a = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _a = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False _a = False def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = FocalNetModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=UpperCamelCase_ , embed_dim=37 , has_text_modality=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self ): '''simple docstring''' return def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :Optional[Any] = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ :Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :List[str] = model_class(UpperCamelCase_ ) UpperCamelCase__ :Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :Union[str, Any] = [*signature.parameters.keys()] UpperCamelCase__ :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase__ :str = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase__ :List[Any] = outputs.hidden_states UpperCamelCase__ :Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # FocalNet has a different seq_length UpperCamelCase__ :List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase__ :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase__ :List[Any] = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = reshaped_hidden_states[0].shape UpperCamelCase__ :List[str] = ( reshaped_hidden_states[0].view(UpperCamelCase_ , UpperCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :Union[str, Any] = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :List[Any] = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase__ :Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase__ :List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase__ :Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCamelCase__ :List[str] = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :List[str] = True self.check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , (padded_height, padded_width) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Union[str, Any] = FocalNetModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Dict = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: UpperCamelCase__ :int = model_class(config=UpperCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.default_image_processor UpperCamelCase__ :str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCamelCase__ :Any = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase__ :Tuple = model(**UpperCamelCase_ ) # verify the logits UpperCamelCase__ :Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) UpperCamelCase__ :List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = (FocalNetBackbone,) if is_torch_available() else () _a = FocalNetConfig _a = False def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = FocalNetModelTester(self )
280
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __lowercase : Dict ={ """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} state_dict.pop("pixel_mean" , lowercase__ ) state_dict.pop("pixel_std" , lowercase__ ) UpperCAmelCase_ =R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ =key.replace(lowercase__ , lowercase__ ) if re.match(lowercase__ , lowercase__ ): UpperCAmelCase_ =int(re.match(lowercase__ , lowercase__ ).group(2 ) ) if layer_nb == 0: UpperCAmelCase_ =key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: UpperCAmelCase_ =key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: UpperCAmelCase_ =key.replace("layers.2" , "proj_out" ) UpperCAmelCase_ =value UpperCAmelCase_ =model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__="ybelkada/segment-anything" ): '''simple docstring''' UpperCAmelCase_ =hf_hub_download(lowercase__ , F'checkpoints/{model_name}.pth' ) if "sam_vit_b" in model_name: UpperCAmelCase_ =SamConfig() elif "sam_vit_l" in model_name: UpperCAmelCase_ =SamVisionConfig( hidden_size=1_0_2_4 , num_hidden_layers=2_4 , num_attention_heads=1_6 , global_attn_indexes=[5, 1_1, 1_7, 2_3] , ) UpperCAmelCase_ =SamConfig( vision_config=lowercase__ , ) elif "sam_vit_h" in model_name: UpperCAmelCase_ =SamVisionConfig( hidden_size=1_2_8_0 , num_hidden_layers=3_2 , num_attention_heads=1_6 , global_attn_indexes=[7, 1_5, 2_3, 3_1] , ) UpperCAmelCase_ =SamConfig( vision_config=lowercase__ , ) UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) UpperCAmelCase_ =replace_keys(lowercase__ ) UpperCAmelCase_ =SamImageProcessor() UpperCAmelCase_ =SamProcessor(image_processor=lowercase__ ) UpperCAmelCase_ =SamModel(lowercase__ ) hf_model.load_state_dict(lowercase__ ) UpperCAmelCase_ =hf_model.to("cuda" ) UpperCAmelCase_ ="https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" UpperCAmelCase_ =Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert("RGB" ) UpperCAmelCase_ =[[[4_0_0, 6_5_0]]] UpperCAmelCase_ =[[1]] UpperCAmelCase_ =processor(images=np.array(lowercase__ ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ =hf_model(**lowercase__ ) UpperCAmelCase_ =output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 UpperCAmelCase_ =processor( images=np.array(lowercase__ ) , input_points=lowercase__ , input_labels=lowercase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ =hf_model(**lowercase__ ) UpperCAmelCase_ =output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 UpperCAmelCase_ =((7_5, 2_7_5, 1_7_2_5, 8_5_0),) UpperCAmelCase_ =processor(images=np.array(lowercase__ ) , input_boxes=lowercase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ =hf_model(**lowercase__ ) UpperCAmelCase_ =output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. UpperCAmelCase_ =[[[4_0_0, 6_5_0], [8_0_0, 6_5_0]]] UpperCAmelCase_ =[[1, 1]] UpperCAmelCase_ =processor( images=np.array(lowercase__ ) , input_points=lowercase__ , input_labels=lowercase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ =hf_model(**lowercase__ ) UpperCAmelCase_ =output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": __lowercase : Optional[Any] =argparse.ArgumentParser() __lowercase : List[Any] =["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) __lowercase : List[Any] =parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
54
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A__ : List[Any] = 1_6 A__ : Union[str, Any] = 3_2 def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase = 16 ): """simple docstring""" _lowercase: Any = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowercase: List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowercase: Union[str, Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase: Tuple = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase: Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase: Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase: int = 16 elif accelerator.mixed_precision != "no": _lowercase: Tuple = 8 else: _lowercase: str = None return tokenizer.pad( _UpperCamelCase , padding='''longest''' , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowercase: List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) _lowercase: int = DataLoader( tokenized_datasets['''validation'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A__ : List[Any] = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _UpperCamelCase ) == "1": _lowercase: Tuple = 2 # Initialize accelerator _lowercase: Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase: Optional[Any] = config['''lr'''] _lowercase: Tuple = int(config['''num_epochs'''] ) _lowercase: Any = int(config['''seed'''] ) _lowercase: List[Any] = int(config['''batch_size'''] ) _lowercase: Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCamelCase ) def inner_training_loop(_UpperCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase: Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase: List[Any] = model.to(accelerator.device ) # Instantiate optimizer _lowercase: List[str] = AdamW(params=model.parameters() , lr=_UpperCamelCase ) _lowercase , _lowercase: Tuple = get_dataloaders(_UpperCamelCase , _UpperCamelCase ) # Instantiate scheduler _lowercase: str = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase: Union[str, Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase: Tuple = model(**_UpperCamelCase ) _lowercase: Union[str, Any] = outputs.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase: str = model(**_UpperCamelCase ) _lowercase: int = outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase: List[str] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) _lowercase: int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Dict = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_UpperCamelCase , default=_UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _lowercase: Tuple = parser.parse_args() _lowercase: str = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
353
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __lowerCamelCase : int = '''<<<<<<< This should probably be modified because it mentions: ''' __lowerCamelCase : List[Any] = '''======= >>>>>>> ''' __lowerCamelCase : str = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] __lowerCamelCase : Optional[Any] = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def lowercase__ ( __A: Namespace ): '''simple docstring''' return ConvertCommand(args.tfds_path ,args.datasets_directory ) class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' @staticmethod def UpperCAmelCase__ ( lowerCamelCase_ : ArgumentParser ) -> Tuple: __magic_name__ : Dict = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=lowerCamelCase_ ) def __init__( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : str , *lowerCamelCase_ : str ) -> Any: __magic_name__ : Optional[Any] = get_logger('''datasets-cli/converting''' ) __magic_name__ : List[Any] = tfds_path __magic_name__ : Any = datasets_directory def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: if os.path.isdir(self._tfds_path ): __magic_name__ : Dict = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __magic_name__ : Optional[Any] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __magic_name__ : str = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) __magic_name__ : Dict = [] __magic_name__ : Tuple = [] __magic_name__ : Any = {} if os.path.isdir(self._tfds_path ): __magic_name__ : List[Any] = os.listdir(lowerCamelCase_ ) else: __magic_name__ : Optional[int] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) __magic_name__ : int = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ : List[Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not os.path.isfile(lowerCamelCase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: __magic_name__ : Optional[Any] = f.readlines() __magic_name__ : str = [] __magic_name__ : int = False __magic_name__ : Optional[int] = False __magic_name__ : str = [] for line in lines: __magic_name__ : Optional[int] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __magic_name__ : Optional[Any] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __magic_name__ : Tuple = '''''' continue elif "from absl import logging" in out_line: __magic_name__ : Dict = '''from datasets import logging\n''' elif "getLogger" in out_line: __magic_name__ : Any = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __magic_name__ : int = True __magic_name__ : Union[str, Any] = list(filter(lambda lowerCamelCase_ : e in out_line , lowerCamelCase_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCamelCase_ ) + '''\n''' ) out_lines.append(lowerCamelCase_ ) out_lines.append(lowerCamelCase_ ) continue else: for pattern, replacement in TO_CONVERT: __magic_name__ : Tuple = re.sub(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __magic_name__ : Tuple = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , lowerCamelCase_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __magic_name__ : Tuple = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __magic_name__ : Dict = True out_lines.append(lowerCamelCase_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __magic_name__ : Union[str, Any] = f_name.replace('''.py''' , '''''' ) __magic_name__ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ : List[str] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCamelCase_ ) if needs_manual_update: with_manual_update.append(lowerCamelCase_ ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(lowerCamelCase_ ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: __magic_name__ : Optional[Any] = os.path.basename(lowerCamelCase_ ) __magic_name__ : List[str] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowerCamelCase_ , lowerCamelCase_ ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
501
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase__ =None UpperCamelCase__ =None UpperCamelCase__ =None UpperCamelCase__ =None class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase_ : Optional[Any]=1 , lowerCamelCase_ : Any=0 , lowerCamelCase_ : Dict=2 , lowerCamelCase_ : Dict=512 , lowerCamelCase_ : int="cls" , lowerCamelCase_ : Dict=False , lowerCamelCase_ : List[Any]=True , **lowerCamelCase_ : Optional[Any] , ) -> Optional[int]: super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) __magic_name__ : Dict = project_dim __magic_name__ : int = pooler_fn __magic_name__ : str = learn_encoder __magic_name__ : Optional[int] = use_attention_mask class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase__ =[R'''pooler''', R'''logit_scale'''] UpperCamelCase__ =[R'''position_ids''', R'''predictions.decoder.bias'''] UpperCamelCase__ ='''roberta''' UpperCamelCase__ =RobertaSeriesConfig def __init__( self : str , lowerCamelCase_ : Optional[Any] ) -> Optional[Any]: super().__init__(lowerCamelCase_ ) __magic_name__ : Tuple = XLMRobertaModel(lowerCamelCase_ ) __magic_name__ : Any = nn.Linear(config.hidden_size , config.project_dim ) __magic_name__ : Optional[int] = getattr(lowerCamelCase_ , '''has_pre_transformation''' , lowerCamelCase_ ) if self.has_pre_transformation: __magic_name__ : List[Any] = nn.Linear(config.hidden_size , config.project_dim ) __magic_name__ : Union[str, Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , ) -> List[Any]: __magic_name__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __magic_name__ : Any = self.base_model( input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , position_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ , inputs_embeds=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_attentions=lowerCamelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCamelCase_ , ) if self.has_pre_transformation: __magic_name__ : Any = outputs['''hidden_states'''][-2] __magic_name__ : Dict = self.pre_LN(lowerCamelCase_ ) __magic_name__ : int = self.transformation_pre(lowerCamelCase_ ) return TransformationModelOutput( projection_state=lowerCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __magic_name__ : Union[str, Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
501
1
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _a ( lowercase__ : str , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = multiprocessing.Manager() SCREAMING_SNAKE_CASE__ : Tuple = manager.list() SCREAMING_SNAKE_CASE__ : Dict = multiprocessing.Process(target=lowercase__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _a ( lowercase__ : Tuple , lowercase__ : Any , lowercase__ : int ): '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil SCREAMING_SNAKE_CASE__ : Tuple = shutil.rmtree SCREAMING_SNAKE_CASE__ : Dict = os.rmdir SCREAMING_SNAKE_CASE__ : str = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: SCREAMING_SNAKE_CASE__ : Optional[int] = {} with swallow_io(): with time_limit(lowercase__ ): exec(lowercase__ , lowercase__ ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(f'''failed: {e}''' ) # Needed for cleaning up. SCREAMING_SNAKE_CASE__ : Optional[Any] = rmtree SCREAMING_SNAKE_CASE__ : Any = rmdir SCREAMING_SNAKE_CASE__ : Any = chdir @contextlib.contextmanager def _a ( lowercase__ : Optional[Any] ): '''simple docstring''' def signal_handler(lowercase__ : List[Any] , lowercase__ : Dict ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , lowercase__ ) signal.signal(signal.SIGALRM , lowercase__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = WriteOnlyStringIO() with contextlib.redirect_stdout(lowercase__ ): with contextlib.redirect_stderr(lowercase__ ): with redirect_stdin(lowercase__ ): yield @contextlib.contextmanager def _a ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(lowercase__ ): yield dirname class snake_case ( UpperCamelCase_ ): pass class snake_case ( io.StringIO ): def __lowercase( self : Union[str, Any] , *a_ : Union[str, Any] , **a_ : List[str] )-> int: """simple docstring""" raise OSError def __lowercase( self : Tuple , *a_ : Tuple , **a_ : Any )-> int: """simple docstring""" raise OSError def __lowercase( self : Union[str, Any] , *a_ : Union[str, Any] , **a_ : List[str] )-> Dict: """simple docstring""" raise OSError def __lowercase( self : Union[str, Any] , *a_ : Any , **a_ : Optional[int] )-> List[str]: """simple docstring""" return False class snake_case ( contextlib._RedirectStream ): # type: ignore lowercase_ = 'stdin' @contextlib.contextmanager def _a ( lowercase__ : Union[str, Any] ): '''simple docstring''' if root == ".": yield return SCREAMING_SNAKE_CASE__ : str = os.getcwd() os.chdir(lowercase__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowercase__ ) def _a ( lowercase__ : Optional[int]=None ): '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None import os SCREAMING_SNAKE_CASE__ : Optional[Any] = '1' SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : Optional[int] = None import shutil SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None import subprocess SCREAMING_SNAKE_CASE__ : Tuple = None # type: ignore SCREAMING_SNAKE_CASE__ : Union[str, Any] = None import sys SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : int = None
85
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( lowercase__ : int = 3 ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(lowercase__ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) SCREAMING_SNAKE_CASE__ : Tuple = QuantumRegister(lowercase__ , 'qr' ) SCREAMING_SNAKE_CASE__ : int = ClassicalRegister(lowercase__ , 'cr' ) SCREAMING_SNAKE_CASE__ : Tuple = QuantumCircuit(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = number_of_qubits for i in range(lowercase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowercase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowercase__ , lowercase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowercase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowercase__ , lowercase__ ) # simulate with 10000 shots SCREAMING_SNAKE_CASE__ : Optional[int] = Aer.get_backend('qasm_simulator' ) SCREAMING_SNAKE_CASE__ : Tuple = execute(lowercase__ , lowercase__ , shots=1_00_00 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
85
1
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str ) -> str: re.sub("""<n>""" , """""" , SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE ) )
720
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} _UpperCAmelCase = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } _UpperCAmelCase = { 'facebook/xglm-564M': 2048, } class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , _snake_case : Dict , _snake_case : List[Any]="<s>" , _snake_case : int="</s>" , _snake_case : List[str]="</s>" , _snake_case : Dict="<s>" , _snake_case : Tuple="<unk>" , _snake_case : List[str]="<pad>" , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : List[str] , )->None: '''simple docstring''' __lowerCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __lowerCAmelCase : Tuple = 7 __lowerCAmelCase : Any = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] __lowerCAmelCase : Tuple = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) __lowerCAmelCase : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase : Optional[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase : str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} __lowerCAmelCase : Union[str, Any] = len(self.sp_model ) __lowerCAmelCase : List[Any] = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) __lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple )->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.__dict__.copy() __lowerCAmelCase : Tuple = None __lowerCAmelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , _snake_case : List[Any] )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase : Tuple = {} __lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ ( self : int , _snake_case : List[int] , _snake_case : Optional[List[int]] = None )->List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __lowerCAmelCase : str = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__ ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False )->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase__ ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None )->List[int]: '''simple docstring''' __lowerCAmelCase : int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__ ( self : Optional[int] )->Dict: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__ ( self : Dict )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : List[Any] , _snake_case : str )->List[str]: '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def UpperCAmelCase__ ( self : List[Any] , _snake_case : Union[str, Any] )->Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase : Union[str, Any] = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Optional[int] )->Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Any )->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = """""".join(_snake_case ).replace(_snake_case , """ """ ).strip() return out_string def UpperCAmelCase__ ( self : List[str] , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : int = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , """wb""" ) as fi: __lowerCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
240
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[Any] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " f"""{test_file} instead.""" ) lowerCamelCase : Any = components[-1] if not test_fn.endswith("py" ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("test_modeling_" ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) lowerCamelCase : Optional[int] = components[:-1] + [test_fn.replace(".py" , "" )] lowerCamelCase : Dict = ".".join(SCREAMING_SNAKE_CASE_ ) return test_module_path def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[Any] = get_module_path(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] = importlib.import_module(SCREAMING_SNAKE_CASE_ ) return test_module def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : str = [] lowerCamelCase : List[Any] = get_test_module(SCREAMING_SNAKE_CASE_ ) for attr in dir(SCREAMING_SNAKE_CASE_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = [] lowerCamelCase : Optional[Any] = get_test_module(SCREAMING_SNAKE_CASE_ ) for attr in dir(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Any = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase : List[str] = getattr(SCREAMING_SNAKE_CASE_ , "all_model_classes" , [] ) if len(SCREAMING_SNAKE_CASE_ ) > 0: test_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Any = get_test_classes(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = test_class() if hasattr(SCREAMING_SNAKE_CASE_ , "setUp" ): test.setUp() lowerCamelCase : List[str] = None if hasattr(SCREAMING_SNAKE_CASE_ , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = get_test_classes(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = get_test_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = [] for test_class in test_classes: lowerCamelCase : Any = get_model_tester_from_test_class(SCREAMING_SNAKE_CASE_ ) if tester_class is not None: tester_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : str = get_test_classes(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = {test_class: get_model_tester_from_test_class(SCREAMING_SNAKE_CASE_ ) for test_class in test_classes} return test_tester_mapping def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = get_model_classes(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[int] = { model_class: get_test_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in model_classes } return model_test_mapping def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Tuple = get_model_classes(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Union[str, Any] = { model_class: get_tester_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return o elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return o.__name__ elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): return [to_json(SCREAMING_SNAKE_CASE_ ) for x in o] elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {to_json(SCREAMING_SNAKE_CASE_ ): to_json(SCREAMING_SNAKE_CASE_ ) for k, v in o.items()} else: return o
340
import copy import random from transformers import CLIPTokenizer class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , *__A , **__A ): """simple docstring""" super().__init__(*__A , **__A ) lowerCamelCase : Dict = {} def _snake_case ( self , __A , *__A , **__A ): """simple docstring""" lowerCamelCase : int = super().add_tokens(__A , *__A , **__A ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" " `placeholder_token` that is not already in the tokenizer." ) def _snake_case ( self , __A , *__A , __A=1 , **__A ): """simple docstring""" lowerCamelCase : Optional[Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(__A , *__A , **__A ) output.append(__A ) else: lowerCamelCase : Any = [] for i in range(__A ): lowerCamelCase : List[str] = placeholder_token + F"""_{i}""" self.try_adding_tokens(__A , *__A , **__A ) output.append(__A ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) lowerCamelCase : Tuple = output def _snake_case ( self , __A , __A=False , __A=1.0 ): """simple docstring""" if isinstance(__A , __A ): lowerCamelCase : Optional[Any] = [] for i in range(len(__A ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__A ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowerCamelCase : Optional[int] = self.token_map[placeholder_token] lowerCamelCase : str = tokens[: 1 + int(len(__A ) * prop_tokens_to_load )] if vector_shuffle: lowerCamelCase : List[str] = copy.copy(__A ) random.shuffle(__A ) lowerCamelCase : Any = text.replace(__A , " ".join(__A ) ) return text def __call__( self , __A , *__A , __A=False , __A=1.0 , **__A ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( __A , vector_shuffle=__A , prop_tokens_to_load=__A ) , *__A , **__A , ) def _snake_case ( self , __A , *__A , __A=False , __A=1.0 , **__A ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( __A , vector_shuffle=__A , prop_tokens_to_load=__A ) , *__A , **__A , )
340
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Any = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class __snake_case ( lowercase_ ): lowerCAmelCase_ = '''table-transformer''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Dict , _lowercase : Optional[Any]=True , _lowercase : Tuple=None , _lowercase : Optional[Any]=3 , _lowercase : Tuple=1_00 , _lowercase : Tuple=6 , _lowercase : Tuple=20_48 , _lowercase : List[Any]=8 , _lowercase : List[Any]=6 , _lowercase : Tuple=20_48 , _lowercase : Union[str, Any]=8 , _lowercase : Tuple=0.0 , _lowercase : Dict=0.0 , _lowercase : str=True , _lowercase : str="relu" , _lowercase : List[str]=2_56 , _lowercase : List[Any]=0.1 , _lowercase : Optional[Any]=0.0 , _lowercase : str=0.0 , _lowercase : List[Any]=0.02 , _lowercase : int=1.0 , _lowercase : Tuple=False , _lowercase : Tuple="sine" , _lowercase : str="resnet50" , _lowercase : List[Any]=True , _lowercase : str=False , _lowercase : Tuple=1 , _lowercase : Any=5 , _lowercase : List[Any]=2 , _lowercase : Dict=1 , _lowercase : Optional[Any]=1 , _lowercase : Any=5 , _lowercase : int=2 , _lowercase : Optional[Any]=0.1 , **_lowercase : Dict , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ = config_class.from_dict(UpperCamelCase__ ) # set timm attributes to None SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None, None, None SCREAMING_SNAKE_CASE__ = use_timm_backbone SCREAMING_SNAKE_CASE__ = backbone_config SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = num_queries SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = encoder_ffn_dim SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = encoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = init_xavier_std SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = auxiliary_loss SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = backbone SCREAMING_SNAKE_CASE__ = use_pretrained_backbone SCREAMING_SNAKE_CASE__ = dilation # Hungarian matcher SCREAMING_SNAKE_CASE__ = class_cost SCREAMING_SNAKE_CASE__ = bbox_cost SCREAMING_SNAKE_CASE__ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ = mask_loss_coefficient SCREAMING_SNAKE_CASE__ = dice_loss_coefficient SCREAMING_SNAKE_CASE__ = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ = giou_loss_coefficient SCREAMING_SNAKE_CASE__ = eos_coefficient super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __a ( self : str ): """simple docstring""" return self.encoder_attention_heads @property def __a ( self : Union[str, Any] ): """simple docstring""" return self.d_model class __snake_case ( lowercase_ ): lowerCAmelCase_ = version.parse("1.11" ) @property def __a ( self : Any ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __a ( self : List[str] ): """simple docstring""" return 1E-5 @property def __a ( self : Union[str, Any] ): """simple docstring""" return 12
711
from __future__ import annotations from collections.abc import Iterator from typing import Any class __snake_case : def __init__( self : Union[str, Any] , _lowercase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = data SCREAMING_SNAKE_CASE__ = None class __snake_case : def __init__( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None def __iter__( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.head while self.head: yield node.data SCREAMING_SNAKE_CASE__ = node.next if node == self.head: break def __len__( self : int ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self : Optional[int] ): """simple docstring""" return "->".join(str(_lowercase ) for item in iter(self ) ) def __a ( self : Optional[int] , _lowercase : Any ): """simple docstring""" self.insert_nth(len(self ) , _lowercase ) def __a ( self : Tuple , _lowercase : Any ): """simple docstring""" self.insert_nth(0 , _lowercase ) def __a ( self : Tuple , _lowercase : int , _lowercase : Any ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) SCREAMING_SNAKE_CASE__ = Node(_lowercase ) if self.head is None: SCREAMING_SNAKE_CASE__ = new_node # first node points itself SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = new_node elif index == 0: # insert at head SCREAMING_SNAKE_CASE__ = self.head SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = new_node else: SCREAMING_SNAKE_CASE__ = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = new_node if index == len(self ) - 1: # insert at tail SCREAMING_SNAKE_CASE__ = new_node def __a ( self : Dict ): """simple docstring""" return self.delete_nth(0 ) def __a ( self : str ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def __a ( self : str , _lowercase : int = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) SCREAMING_SNAKE_CASE__ = self.head if self.head == self.tail: # just one node SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = None elif index == 0: # delete head node SCREAMING_SNAKE_CASE__ = self.tail.next.next SCREAMING_SNAKE_CASE__ = self.head.next else: SCREAMING_SNAKE_CASE__ = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = temp.next.next if index == len(self ) - 1: # delete at tail SCREAMING_SNAKE_CASE__ = temp return delete_node.data def __a ( self : Optional[int] ): """simple docstring""" return len(self ) == 0 def __SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = CircularLinkedList() assert len(__UpperCamelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(__UpperCamelCase ) == i circular_linked_list.insert_nth(__UpperCamelCase , i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
379
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : int = logging.get_logger(__name__) __lowercase : Optional[Any] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class lowerCAmelCase ( snake_case_ ): """simple docstring""" __lowercase :List[Any] = "luke" def __init__( self , UpperCamelCase__=50_267 , UpperCamelCase__=500_000 , UpperCamelCase__=768 , UpperCamelCase__=256 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3_072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = entity_vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = entity_emb_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_entity_aware_attention lowerCamelCase_ = classifier_dropout
142
import enum import shutil import sys __A, __A =shutil.get_terminal_size() __A ={'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class _SCREAMING_SNAKE_CASE ( enum.Enum ): lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__="" ): sys.stdout.write(str(lowerCamelCase__ ) + end ) sys.stdout.flush() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="" ): forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCamelCase__ ) def lowerCamelCase_ ( ): forceWrite("\r" ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def lowerCamelCase_ ( ): forceWrite(" " * TERMINAL_WIDTH ) reset_cursor() def lowerCamelCase_ ( ): reset_cursor() forceWrite("-" * TERMINAL_WIDTH )
463
0
'''simple docstring''' from itertools import permutations def __UpperCAmelCase ( a_: tuple ) -> Optional[Any]: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase : int = [7, 11, 13, 17] for i, test in enumerate(a_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __UpperCAmelCase ( a_: int = 10 ) -> Dict: return sum( int("".join(map(a_, a_ ) ) ) for num in permutations(range(a_ ) ) if is_substring_divisible(a_ ) ) if __name__ == "__main__": print(f'{solution() = }')
707
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): _UpperCAmelCase : int = ArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=a_ ) _UpperCAmelCase : Union[str, Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=a_ ) env_command_parser(subparsers=a_ ) launch_command_parser(subparsers=a_ ) tpu_command_parser(subparsers=a_ ) test_command_parser(subparsers=a_ ) # Let's go _UpperCAmelCase : List[Any] = parser.parse_args() if not hasattr(a_, "func" ): parser.print_help() exit(1 ) # Run args.func(a_ ) if __name__ == "__main__": main()
257
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowercase__ : Tuple = logging.get_logger(__name__) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] , *__lowercase : Dict , **__lowercase : Dict ): """simple docstring""" warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
376
import numpy as np import qiskit def lowerCamelCase__ ( _A = 8 , _A = None ): '''simple docstring''' snake_case_ = np.random.default_rng(seed=_A ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. snake_case_ = 6 * key_len # Measurement basis for Alice's qubits. snake_case_ = rng.integers(2 , size=_A ) # The set of states Alice will prepare. snake_case_ = rng.integers(2 , size=_A ) # Measurement basis for Bob's qubits. snake_case_ = rng.integers(2 , size=_A ) # Quantum Circuit to simulate BB84 snake_case_ = qiskit.QuantumCircuit(_A , name="BB84" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_A ): if alice_state[index] == 1: bbaa_circ.x(_A ) if alice_basis[index] == 1: bbaa_circ.h(_A ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_A ): if bob_basis[index] == 1: bbaa_circ.h(_A ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. snake_case_ = qiskit.Aer.get_backend("aer_simulator" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. snake_case_ = qiskit.execute(_A , _A , shots=1 , seed_simulator=_A ) # Returns the result of measurement. snake_case_ = job.result().get_counts(_A ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. snake_case_ = "".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _A , _A , _A ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. snake_case_ = gen_key[:key_len] if len(_A ) >= key_len else gen_key.ljust(_A , "0" ) return key if __name__ == "__main__": print(f'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
376
1
'''simple docstring''' import argparse import copy def UpperCAmelCase_ ( __lowercase : List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {} with open(__lowercase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase_ ( __lowercase : int , __lowercase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' with open(__lowercase ) as f: _UpperCAmelCase = f.read(1 ) _UpperCAmelCase = start_node _UpperCAmelCase = [] _UpperCAmelCase = start_node _UpperCAmelCase = 0 while visiting not in first_solution: _UpperCAmelCase = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__lowercase ) and k[0] not in first_solution: _UpperCAmelCase = k[1] _UpperCAmelCase = k[0] first_solution.append(__lowercase ) _UpperCAmelCase = distance_of_first_solution + int(__lowercase ) _UpperCAmelCase = best_node first_solution.append(__lowercase ) _UpperCAmelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def UpperCAmelCase_ ( __lowercase : str , __lowercase : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = [] for n in solution[1:-1]: _UpperCAmelCase = solution.index(__lowercase ) for kn in solution[1:-1]: _UpperCAmelCase = solution.index(__lowercase ) if n == kn: continue _UpperCAmelCase = copy.deepcopy(__lowercase ) _UpperCAmelCase = kn _UpperCAmelCase = n _UpperCAmelCase = 0 for k in _tmp[:-1]: _UpperCAmelCase = _tmp[_tmp.index(__lowercase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase = distance + int(i[1] ) _tmp.append(__lowercase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __lowercase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : List[str] , __lowercase : List[str] , __lowercase : int , __lowercase : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = first_solution _UpperCAmelCase = [] _UpperCAmelCase = distance_of_first_solution _UpperCAmelCase = solution while count <= iters: _UpperCAmelCase = find_neighborhood(__lowercase , __lowercase ) _UpperCAmelCase = 0 _UpperCAmelCase = neighborhood[index_of_best_solution] _UpperCAmelCase = len(__lowercase ) - 1 _UpperCAmelCase = False while not found: _UpperCAmelCase = 0 while i < len(__lowercase ): if best_solution[i] != solution[i]: _UpperCAmelCase = best_solution[i] _UpperCAmelCase = solution[i] break _UpperCAmelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase = True _UpperCAmelCase = best_solution[:-1] _UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase = cost _UpperCAmelCase = solution else: _UpperCAmelCase = index_of_best_solution + 1 _UpperCAmelCase = neighborhood[index_of_best_solution] if len(__lowercase ) >= size: tabu_list.pop(0 ) _UpperCAmelCase = count + 1 return best_solution_ever, best_cost def UpperCAmelCase_ ( __lowercase : Optional[int]=None ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = generate_neighbours(args.File ) _UpperCAmelCase , _UpperCAmelCase = generate_first_solution( args.File , __lowercase ) _UpperCAmelCase , _UpperCAmelCase = tabu_search( __lowercase , __lowercase , __lowercase , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
717
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class A_ ( unittest.TestCase ): def lowercase ( self : List[str] ): _UpperCAmelCase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(snake_case_ ) , torch_builtin(snake_case_ ) ) ) self.assertFalse(torch.allclose(gelu_python(snake_case_ ) , gelu_new(snake_case_ ) ) ) def lowercase ( self : int ): _UpperCAmelCase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase = get_activation("gelu" ) _UpperCAmelCase = get_activation("gelu_10" ) _UpperCAmelCase = torch_builtin(snake_case_ ) _UpperCAmelCase = geluaa(snake_case_ ) _UpperCAmelCase = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(snake_case_ ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowercase ( self : Any ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(snake_case_ ): get_activation("bogus" ) with self.assertRaises(snake_case_ ): get_activation(snake_case_ ) def lowercase ( self : Dict ): _UpperCAmelCase = get_activation("gelu" ) _UpperCAmelCase = 1 _UpperCAmelCase = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(snake_case_ ): _UpperCAmelCase = acta.a
119
0
def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) SCREAMING_SNAKE_CASE : Union[str, Any] = (boundary[1] - boundary[0]) / steps SCREAMING_SNAKE_CASE : str = boundary[0] SCREAMING_SNAKE_CASE : Tuple = boundary[1] SCREAMING_SNAKE_CASE : Any = make_points(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : str = 0.0 y += (h / 2.0) * f(__lowerCAmelCase ) for i in x_i: # print(i) y += h * f(__lowerCAmelCase ) y += (h / 2.0) * f(__lowerCAmelCase ) return y def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE : Dict = a + h while x < (b - h): yield x SCREAMING_SNAKE_CASE : Union[str, Any] = x + h def __a ( __lowerCAmelCase ) -> Union[str, Any]: # enter your function here SCREAMING_SNAKE_CASE : Any = (x - 0) * (x - 0) return y def __a ( ) -> Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 # Lower bound of integration SCREAMING_SNAKE_CASE : int = 1.0 # Upper bound of integration SCREAMING_SNAKE_CASE : int = 10.0 # define number of steps or resolution SCREAMING_SNAKE_CASE : int = [a, b] # define boundary of integration SCREAMING_SNAKE_CASE : Tuple = method_a(__lowerCAmelCase , __lowerCAmelCase ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
352
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _lowerCamelCase : Dict = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowercase ( nn.Module): '''simple docstring''' def __init__( self : Optional[Any] , snake_case : int ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = torchvision.models.resnetaaa(pretrained=snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = list(model.children() )[:-2] SCREAMING_SNAKE_CASE : List[str] = nn.Sequential(*snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase_ ( self : Any , snake_case : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.pool(self.model(snake_case ) ) SCREAMING_SNAKE_CASE : Any = torch.flatten(snake_case , start_dim=2 ) SCREAMING_SNAKE_CASE : Union[str, Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' def __init__( self : str , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [json.loads(snake_case ) for l in open(snake_case )] SCREAMING_SNAKE_CASE : Optional[Any] = os.path.dirname(snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer SCREAMING_SNAKE_CASE : Dict = labels SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) SCREAMING_SNAKE_CASE : int = max_seq_length SCREAMING_SNAKE_CASE : List[Any] = transforms def __len__( self : str ): '''simple docstring''' return len(self.data ) def __getitem__( self : Dict , snake_case : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=snake_case ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = sentence[0], sentence[1:-1], sentence[-1] SCREAMING_SNAKE_CASE : str = sentence[: self.max_seq_length] SCREAMING_SNAKE_CASE : Optional[Any] = torch.zeros(self.n_classes ) SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) SCREAMING_SNAKE_CASE : Tuple = self.transforms(snake_case ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def __a ( __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = [len(row['sentence'] ) for row in batch] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = len(__lowerCAmelCase ), max(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase , dtype=torch.long ) SCREAMING_SNAKE_CASE : List[str] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): SCREAMING_SNAKE_CASE : Optional[Any] = input_row['sentence'] SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : List[str] = torch.stack([row['image'] for row in batch] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack([row['label'] for row in batch] ) SCREAMING_SNAKE_CASE : Tuple = torch.stack([row['image_start_token'] for row in batch] ) SCREAMING_SNAKE_CASE : Any = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __a ( ) -> str: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __a ( ) -> Union[str, Any]: return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
352
1
from queue import PriorityQueue from typing import Any import numpy as np def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> str: for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase__ : Optional[Any] = cst_fwd.get(__lowercase , np.inf ) lowerCamelCase__ : List[Any] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCamelCase__ : Optional[Any] = new_cost_f lowerCamelCase__ : Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase__ : List[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: lowerCamelCase__ : Union[str, Any] = -1 lowerCamelCase__ : int = set() lowerCamelCase__ : Optional[Any] = set() lowerCamelCase__ : Dict = {source: 0} lowerCamelCase__ : str = {destination: 0} lowerCamelCase__ : Any = {source: None} lowerCamelCase__ : List[Any] = {destination: None} lowerCamelCase__ : PriorityQueue[Any] = PriorityQueue() lowerCamelCase__ : PriorityQueue[Any] = PriorityQueue() lowerCamelCase__ : Optional[Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase__ : Optional[int] = queue_forward.get() visited_forward.add(__lowercase ) lowerCamelCase__ : List[Any] = queue_backward.get() visited_backward.add(__lowercase ) lowerCamelCase__ : int = pass_and_relaxation( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) lowerCamelCase__ : Any = pass_and_relaxation( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase__ : List[Any] = shortest_distance return shortest_path_distance _UpperCAmelCase : List[str] = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } _UpperCAmelCase : Optional[int] = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
704
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCAmelCase : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class lowerCAmelCase : UpperCAmelCase__ = field( default="""cifar10""", metadata={"""help""": """Name of a dataset from the datasets package"""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """The column name of the images in the files."""} ) UpperCAmelCase__ = field(default=__UpperCamelCase, metadata={"""help""": """A folder containing the training data."""} ) UpperCAmelCase__ = field(default=__UpperCamelCase, metadata={"""help""": """A folder containing the validation data."""} ) UpperCAmelCase__ = field( default=0.15, metadata={"""help""": """Percent to split off of train for validation."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) }, ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) }, ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = {} if self.train_dir is not None: lowerCamelCase__ : int = self.train_dir if self.validation_dir is not None: lowerCamelCase__ : Dict = self.validation_dir lowerCamelCase__ : Union[str, Any] = data_files if data_files else None @dataclass class lowerCAmelCase : UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) }, ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) }, ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) UpperCAmelCase__ = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) UpperCAmelCase__ = field(default=__UpperCamelCase, metadata={"""help""": """Name or path of preprocessor config."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) UpperCAmelCase__ = field( default=0.75, metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = field( default=1E-3, metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : str = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _UpperCAmelCase , _UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ : Optional[Any] = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase__ : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. lowerCamelCase__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase__ : List[Any] = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCAmelCase ) and data_args.train_val_split > 0.0: lowerCamelCase__ : Optional[int] = ds['train'].train_test_split(data_args.train_val_split ) lowerCamelCase__ : List[str] = split['train'] lowerCamelCase__ : List[str] = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Union[str, Any] = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase__ : Tuple = ViTMAEConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : Tuple = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: lowerCamelCase__ : List[Any] = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCamelCase__ : Optional[Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : Any = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: lowerCamelCase__ : List[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCamelCase__ : Dict = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) lowerCamelCase__ : Dict = ViTMAEForPreTraining(_UpperCAmelCase ) if training_args.do_train: lowerCamelCase__ : Union[str, Any] = ds['train'].column_names else: lowerCamelCase__ : Any = ds['validation'].column_names if data_args.image_column_name is not None: lowerCamelCase__ : str = data_args.image_column_name elif "image" in column_names: lowerCamelCase__ : Tuple = 'image' elif "img" in column_names: lowerCamelCase__ : int = 'img' else: lowerCamelCase__ : str = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCamelCase__ : List[Any] = image_processor.size['shortest_edge'] else: lowerCamelCase__ : Optional[int] = (image_processor.size['height'], image_processor.size['width']) lowerCamelCase__ : Optional[Any] = Compose( [ Lambda(lambda _UpperCAmelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_UpperCAmelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_UpperCAmelCase ): lowerCamelCase__ : Tuple = [transforms(_UpperCAmelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowerCamelCase__ : Optional[int] = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_UpperCAmelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowerCamelCase__ : List[str] = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_UpperCAmelCase ) # Compute absolute learning rate lowerCamelCase__ : Union[str, Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCamelCase__ : Tuple = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowerCamelCase__ : str = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: lowerCamelCase__ : List[str] = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ : Any = last_checkpoint lowerCamelCase__ : Optional[int] = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ : Dict = trainer.evaluate() trainer.log_metrics('eval' , _UpperCAmelCase ) trainer.save_metrics('eval' , _UpperCAmelCase ) # Write model card and (optionally) push to hub lowerCamelCase__ : Union[str, Any] = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
188
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off lowerCamelCase_ = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowerCamelCase_ = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class a_ ( a_ ): '''simple docstring''' __a: Tuple = '''whisper''' __a: Dict = ['''past_key_values'''] __a: List[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowercase_=5_1_8_6_5 , lowercase_=8_0 , lowercase_=6 , lowercase_=4 , lowercase_=6 , lowercase_=4 , lowercase_=1_5_3_6 , lowercase_=1_5_3_6 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=5_0_2_5_7 , lowercase_=True , lowercase_=True , lowercase_="gelu" , lowercase_=2_5_6 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=False , lowercase_=1_5_0_0 , lowercase_=4_4_8 , lowercase_=5_0_2_5_6 , lowercase_=5_0_2_5_6 , lowercase_=5_0_2_5_6 , lowercase_=None , lowercase_=[2_2_0, 5_0_2_5_6] , lowercase_=False , lowercase_=2_5_6 , lowercase_=False , lowercase_=0.05 , lowercase_=1_0 , lowercase_=2 , lowercase_=0.0 , lowercase_=1_0 , lowercase_=0 , lowercase_=7 , **lowercase_ , ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = vocab_size lowerCAmelCase_ = num_mel_bins lowerCAmelCase_ = d_model lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = encoder_attention_heads lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = encoder_ffn_dim lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = activation_function lowerCAmelCase_ = init_std lowerCAmelCase_ = encoder_layerdrop lowerCAmelCase_ = decoder_layerdrop lowerCAmelCase_ = use_cache lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ = max_source_positions lowerCAmelCase_ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCAmelCase_ = classifier_proj_size lowerCAmelCase_ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ = apply_spec_augment lowerCAmelCase_ = mask_time_prob lowerCAmelCase_ = mask_time_length lowerCAmelCase_ = mask_time_min_masks lowerCAmelCase_ = mask_feature_prob lowerCAmelCase_ = mask_feature_length lowerCAmelCase_ = mask_feature_min_masks lowerCAmelCase_ = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class a_ ( a_ ): '''simple docstring''' @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCAmelCase_ = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: lowerCAmelCase_ = {0: 'batch'} else: lowerCAmelCase_ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def _lowercase ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , lowercase_ = 2_2_0_5_0 , lowercase_ = 5.0 , lowercase_ = 2_2_0 , ) -> Mapping[str, Any]: '''simple docstring''' lowerCAmelCase_ = OrderedDict() lowerCAmelCase_ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) lowerCAmelCase_ = encoder_inputs['input_features'].shape[2] lowerCAmelCase_ = encoder_sequence_length // 2 if self.use_past else seq_length lowerCAmelCase_ = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ = encoder_inputs.pop('input_features' ) lowerCAmelCase_ = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: lowerCAmelCase_ = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def _lowercase ( self ) -> float: '''simple docstring''' return 1e-3
318
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class a_ ( a_ ): '''simple docstring''' __a: jnp.ndarray __a: jnp.ndarray class a_ ( nn.Module ): '''simple docstring''' __a: int __a: Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) __a: jnp.dtype = jnp.floataa def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase_ = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCAmelCase_ = self.block_out_channels[i] lowerCAmelCase_ = self.block_out_channels[i + 1] lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) lowerCAmelCase_ = blocks lowerCAmelCase_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = self.conv_in(lowercase_ ) lowerCAmelCase_ = nn.silu(lowercase_ ) for block in self.blocks: lowerCAmelCase_ = block(lowercase_ ) lowerCAmelCase_ = nn.silu(lowercase_ ) lowerCAmelCase_ = self.conv_out(lowercase_ ) return embedding @flax_register_to_config class a_ ( nn.Module , a_ , a_ ): '''simple docstring''' __a: int = 3_2 __a: int = 4 __a: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __a: Union[bool, Tuple[bool]] = False __a: Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) __a: int = 2 __a: Union[int, Tuple[int]] = 8 __a: Optional[Union[int, Tuple[int]]] = None __a: int = 1_2_8_0 __a: float = 0.0 __a: bool = False __a: jnp.dtype = jnp.floataa __a: bool = True __a: int = 0 __a: str = "rgb" __a: Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def _lowercase ( self , lowercase_ ) -> FrozenDict: '''simple docstring''' lowerCAmelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase_ = jnp.zeros(lowercase_ , dtype=jnp.floataa ) lowerCAmelCase_ = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase_ = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCAmelCase_ = jnp.zeros(lowercase_ , dtype=jnp.floataa ) lowerCAmelCase_ , lowerCAmelCase_ = jax.random.split(lowercase_ ) lowerCAmelCase_ = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )["params"] def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.block_out_channels lowerCAmelCase_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase_ = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase_ = FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype ) lowerCAmelCase_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCAmelCase_ = self.only_cross_attention if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = block_out_channels[0] lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase_ = output_channel lowerCAmelCase_ = block_out_channels[i] lowerCAmelCase_ = i == len(lowercase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase_ = FlaxCrossAttnDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCAmelCase_ = FlaxDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase_ ) for _ in range(self.layers_per_block ): lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) if not is_final_block: lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) lowerCAmelCase_ = down_blocks lowerCAmelCase_ = controlnet_down_blocks # mid lowerCAmelCase_ = block_out_channels[-1] lowerCAmelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1.0 , lowercase_ = True , lowercase_ = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' lowerCAmelCase_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCAmelCase_ = jnp.flip(lowercase_ , axis=1 ) # 1. time if not isinstance(lowercase_ , jnp.ndarray ): lowerCAmelCase_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowercase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase_ = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase_ = jnp.expand_dims(lowercase_ , 0 ) lowerCAmelCase_ = self.time_proj(lowercase_ ) lowerCAmelCase_ = self.time_embedding(lowercase_ ) # 2. pre-process lowerCAmelCase_ = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) lowerCAmelCase_ = self.conv_in(lowercase_ ) lowerCAmelCase_ = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) lowerCAmelCase_ = self.controlnet_cond_embedding(lowercase_ ) sample += controlnet_cond # 3. down lowerCAmelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ , lowerCAmelCase_ = down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) else: lowerCAmelCase_ , lowerCAmelCase_ = down_block(lowercase_ , lowercase_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCAmelCase_ = self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) # 5. contronet blocks lowerCAmelCase_ = () for down_block_res_sample, controlnet_block in zip(lowercase_ , self.controlnet_down_blocks ): lowerCAmelCase_ = controlnet_block(lowercase_ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase_ = controlnet_down_block_res_samples lowerCAmelCase_ = self.controlnet_mid_block(lowercase_ ) # 6. scaling lowerCAmelCase_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase_ , mid_block_res_sample=lowercase_ )
318
1
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : Any = 1 for i in range(1 , num + 1 ): fact *= i return fact def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : List[Any] = 0 while number > 0: _snake_case : Optional[Any] = number % 10 sum_of_digits += last_digit _snake_case : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def UpperCAmelCase__ (snake_case__ : int = 1_00 ): """simple docstring""" _snake_case : Optional[int] = factorial(snake_case__ ) _snake_case : List[str] = split_and_add(snake_case__ ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
711
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _snake_case : Any = [] for num in range(len(snake_case__ ) ): _snake_case : Optional[int] = 0 while 2 * i * i <= odd_composites[num]: _snake_case : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(snake_case__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case__ ) == n: return list_nums return [] def UpperCAmelCase__ (): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
28
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCamelCase : List[Any] = re.compile(r'''\s+''') def _a ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return {"hash": hashlib.mda(re.sub(SCREAMING_SNAKE_CASE__ , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def _a ( SCREAMING_SNAKE_CASE__ : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [len(SCREAMING_SNAKE_CASE__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(SCREAMING_SNAKE_CASE__ ), "line_max": max(SCREAMING_SNAKE_CASE__ )} def _a ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def _a ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> Any: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=5 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["auto-generated", "autogenerated", "automatically generated"] SCREAMING_SNAKE_CASE__ : int = example["content"].splitlines() for _, line in zip(range(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def _a ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str=5 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0_5 ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["unit tests", "test file", "configuration file"] SCREAMING_SNAKE_CASE__ : Tuple = example["content"].splitlines() SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : int = 0 # first test for _, line in zip(range(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test SCREAMING_SNAKE_CASE__ : Any = example["content"].count("\n" ) SCREAMING_SNAKE_CASE__ : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ["def ", "class ", "for ", "while "] SCREAMING_SNAKE_CASE__ : List[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = example["content"].splitlines() SCREAMING_SNAKE_CASE__ : List[str] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer(example["content"] , truncation=SCREAMING_SNAKE_CASE__ )["input_ids"] SCREAMING_SNAKE_CASE__ : List[str] = len(example["content"] ) / len(SCREAMING_SNAKE_CASE__ ) return {"ratio": ratio} def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = {} results.update(get_hash(SCREAMING_SNAKE_CASE__ ) ) results.update(line_stats(SCREAMING_SNAKE_CASE__ ) ) results.update(alpha_stats(SCREAMING_SNAKE_CASE__ ) ) results.update(char_token_ratio(SCREAMING_SNAKE_CASE__ ) ) results.update(is_autogenerated(SCREAMING_SNAKE_CASE__ ) ) results.update(is_config_or_test(SCREAMING_SNAKE_CASE__ ) ) results.update(has_no_keywords(SCREAMING_SNAKE_CASE__ ) ) results.update(has_few_assignments(SCREAMING_SNAKE_CASE__ ) ) return results def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if not check_uniques(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> Dict: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , "rb" ) as f_in: with gzip.open(str(SCREAMING_SNAKE_CASE__ ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) os.unlink(SCREAMING_SNAKE_CASE__ ) # Settings _lowerCamelCase : Tuple = HfArgumentParser(PreprocessingArguments) _lowerCamelCase : int = parser.parse_args() if args.num_workers is None: _lowerCamelCase : Optional[int] = multiprocessing.cpu_count() _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCamelCase : Dict = time.time() _lowerCamelCase : Union[str, Any] = load_dataset(args.dataset_name, split='''train''') print(f"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase : Dict = ds.map(preprocess, num_proc=args.num_workers) print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes _lowerCamelCase : Optional[Any] = set(ds.unique('''hash''')) _lowerCamelCase : Any = len(uniques) / len(ds) print(f"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics _lowerCamelCase : Optional[int] = time.time() _lowerCamelCase : Union[str, Any] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f"Time to filter dataset: {time.time()-t_start:.2f}") print(f"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCamelCase : Dict = time.time() _lowerCamelCase , _lowerCamelCase : Optional[int] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(f"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file _lowerCamelCase : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCamelCase : Union[str, Any] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCamelCase : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCamelCase : Tuple = str(data_dir / f"file-{file_number+1:012}.json") _lowerCamelCase : Dict = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"Time to save dataset: {time.time()-t_start:.2f}")
663
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Optional[Any] = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ['''MobileViTFeatureExtractor'''] _lowerCamelCase : List[str] = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
663
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: _UpperCAmelCase : List[Any] = state_dict.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : int = val def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> List[str]: _UpperCAmelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCAmelCase : Optional[int] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) _UpperCAmelCase : List[Any] = value else: _UpperCAmelCase : int = value return new_state_dict def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Tuple: _UpperCAmelCase : int = "" if is_panoptic: _UpperCAmelCase : Any = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase : Dict = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _UpperCAmelCase : Tuple = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : str = in_proj_weight[:2_5_6, :] _UpperCAmelCase : Tuple = in_proj_bias[:2_5_6] _UpperCAmelCase : Dict = in_proj_weight[2_5_6:5_1_2, :] _UpperCAmelCase : int = in_proj_bias[2_5_6:5_1_2] _UpperCAmelCase : Optional[int] = in_proj_weight[-2_5_6:, :] _UpperCAmelCase : Optional[Any] = in_proj_bias[-2_5_6:] def lowerCAmelCase_ ( ) -> List[Any]: _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : str = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: _UpperCAmelCase : Any = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _UpperCAmelCase : Optional[int] = "resnet101" if "dc5" in model_name: _UpperCAmelCase : Tuple = True _UpperCAmelCase : Union[str, Any] = "panoptic" in model_name if is_panoptic: _UpperCAmelCase : Optional[Any] = 2_5_0 else: _UpperCAmelCase : List[str] = 9_1 _UpperCAmelCase : List[str] = "huggingface/label-files" _UpperCAmelCase : str = "coco-detection-id2label.json" _UpperCAmelCase : int = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Optional[int] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCAmelCase : Dict = idalabel _UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} # load image processor _UpperCAmelCase : Optional[Any] = "coco_panoptic" if is_panoptic else "coco_detection" _UpperCAmelCase : str = ConditionalDetrImageProcessor(format=_SCREAMING_SNAKE_CASE ) # prepare image _UpperCAmelCase : Any = prepare_img() _UpperCAmelCase : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) _UpperCAmelCase : Optional[int] = encoding["pixel_values"] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub _UpperCAmelCase : Optional[Any] = torch.hub.load("DeppMeng/ConditionalDETR" , _SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase : str = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _UpperCAmelCase : Union[str, Any] = "conditional_detr." + src rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE , is_panoptic=_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase : Optional[int] = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): _UpperCAmelCase : Union[str, Any] = state_dict.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _UpperCAmelCase : List[Any] = state_dict.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[str] = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: _UpperCAmelCase : Any = state_dict.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : str = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): _UpperCAmelCase : Tuple = state_dict.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Dict = val # finally, create HuggingFace model and load state dict _UpperCAmelCase : List[str] = ConditionalDetrForSegmentation(_SCREAMING_SNAKE_CASE ) if is_panoptic else ConditionalDetrForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() model.push_to_hub(repo_id=_SCREAMING_SNAKE_CASE , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion _UpperCAmelCase : Tuple = conditional_detr(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __lowerCamelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
714
from __future__ import annotations def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> set[str]: """simple docstring""" _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = set(_SCREAMING_SNAKE_CASE ), [start] while stack: _UpperCAmelCase : Optional[Any] = stack.pop() explored.add(_SCREAMING_SNAKE_CASE ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_SCREAMING_SNAKE_CASE ) return explored __lowerCamelCase = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
328
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , ) -> List[Any]: UpperCamelCase :Any = parent UpperCamelCase :Union[str, Any] = 13 UpperCamelCase :Tuple = 7 UpperCamelCase :Dict = True UpperCamelCase :Union[str, Any] = True UpperCamelCase :Tuple = True UpperCamelCase :Optional[int] = True UpperCamelCase :List[str] = True UpperCamelCase :List[Any] = False UpperCamelCase :Optional[Any] = False UpperCamelCase :List[Any] = False UpperCamelCase :List[Any] = 2 UpperCamelCase :List[Any] = 99 UpperCamelCase :Union[str, Any] = 0 UpperCamelCase :Union[str, Any] = 32 UpperCamelCase :Union[str, Any] = 2 UpperCamelCase :Dict = 4 UpperCamelCase :Dict = 0.1 UpperCamelCase :Tuple = 0.1 UpperCamelCase :Optional[Any] = 512 UpperCamelCase :List[Any] = 16 UpperCamelCase :Dict = 2 UpperCamelCase :Any = 0.02 UpperCamelCase :str = 3 UpperCamelCase :str = 4 UpperCamelCase :Union[str, Any] = '''last''' UpperCamelCase :Optional[int] = True UpperCamelCase :Any = None UpperCamelCase :Optional[Any] = 0 def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase :Tuple = None if self.use_input_lengths: UpperCamelCase :List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase :Tuple = None if self.use_token_type_ids: UpperCamelCase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase :Any = None UpperCamelCase :Tuple = None UpperCamelCase :Tuple = None if self.use_labels: UpperCamelCase :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase :List[str] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase :Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase :Optional[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: UpperCamelCase :List[Any] = TFFlaubertModel(config=__lowercase ) UpperCamelCase :Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCamelCase :Optional[Any] = model(__lowercase ) UpperCamelCase :int = [input_ids, input_mask] UpperCamelCase :List[str] = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Any: UpperCamelCase :List[Any] = TFFlaubertWithLMHeadModel(__lowercase ) UpperCamelCase :Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCamelCase :Optional[Any] = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> int: UpperCamelCase :List[str] = TFFlaubertForQuestionAnsweringSimple(__lowercase ) UpperCamelCase :List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCamelCase :List[Any] = model(__lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> List[str]: UpperCamelCase :Union[str, Any] = TFFlaubertForSequenceClassification(__lowercase ) UpperCamelCase :Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCamelCase :Dict = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> int: UpperCamelCase :int = self.num_labels UpperCamelCase :Any = TFFlaubertForTokenClassification(config=__lowercase ) UpperCamelCase :Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase :Dict = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: UpperCamelCase :Any = self.num_choices UpperCamelCase :Optional[int] = TFFlaubertForMultipleChoice(config=__lowercase ) UpperCamelCase :Tuple = tf.tile(tf.expand_dims(__lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :List[Any] = tf.tile(tf.expand_dims(__lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :List[str] = tf.tile(tf.expand_dims(__lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :str = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCamelCase :str = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Optional[int] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) :List[str] = config_and_inputs UpperCamelCase :List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( lowercase, lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple =( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ : List[Any] =( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : Any =( { 'feature-extraction': TFFlaubertModel, 'fill-mask': TFFlaubertWithLMHeadModel, 'question-answering': TFFlaubertForQuestionAnsweringSimple, 'text-classification': TFFlaubertForSequenceClassification, 'token-classification': TFFlaubertForTokenClassification, 'zero-shot': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Dict =False def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :int = TFFlaubertModelTester(self ) UpperCamelCase :Dict = ConfigTester(self , config_class=__lowercase , emb_dim=37 ) def UpperCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowercase ) def UpperCAmelCase ( self ) -> int: UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowercase ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowercase ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowercase ) def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__lowercase ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__lowercase ) @slow def UpperCAmelCase ( self ) -> Any: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase :Dict = TFFlaubertModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :int = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) UpperCamelCase :Any = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase :Optional[int] = model(__lowercase )[0] UpperCamelCase :str = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __lowercase ) # compare the actual values for a slice. UpperCamelCase :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
658
'''simple docstring''' class lowerCAmelCase : def __init__( self : List[Any] , __lowercase : str , __lowercase : Any , __lowercase : str ): """simple docstring""" __lowercase =name __lowercase =value __lowercase =weight def __repr__( self : List[str] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def snake_case ( self : List[Any] ): """simple docstring""" return self.value def snake_case ( self : str ): """simple docstring""" return self.name def snake_case ( self : Optional[Any] ): """simple docstring""" return self.weight def snake_case ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCamelCase ( lowercase__ : Dict, lowercase__ : List[str], lowercase__ : str ): '''simple docstring''' __lowercase =[] for i in range(len(lowercase__ ) ): menu.append(Things(name[i], value[i], weight[i] ) ) return menu def __UpperCamelCase ( lowercase__ : List[Any], lowercase__ : List[Any], lowercase__ : str ): '''simple docstring''' __lowercase =sorted(lowercase__, key=lowercase__, reverse=lowercase__ ) __lowercase =[] __lowercase , __lowercase =0.0, 0.0 for i in range(len(lowercase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCamelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
119
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BlipaProcessor(_snake_case , _snake_case) processor.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : Optional[int] , **_snake_case : int): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_snake_case).tokenizer def lowerCamelCase ( self : str , **_snake_case : Optional[Any]): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_snake_case).image_processor def lowerCamelCase ( self : Optional[Any]): """simple docstring""" shutil.rmtree(self.tmpdirname) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1)) for x in image_inputs] return image_inputs def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0) UpperCAmelCase_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_snake_case , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _snake_case) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BlipaProcessor(tokenizer=_snake_case , image_processor=_snake_case) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_snake_case , return_tensors='''np''') UpperCAmelCase_ = processor(images=_snake_case , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BlipaProcessor(tokenizer=_snake_case , image_processor=_snake_case) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_snake_case) UpperCAmelCase_ = tokenizer(_snake_case , return_token_type_ids=_snake_case) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BlipaProcessor(tokenizer=_snake_case , image_processor=_snake_case) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_snake_case , images=_snake_case) self.assertListEqual(list(inputs.keys()) , ['''pixel_values''', '''input_ids''', '''attention_mask''']) # test if it raises when no input is passed with pytest.raises(_snake_case): processor() def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BlipaProcessor(tokenizer=_snake_case , image_processor=_snake_case) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_snake_case) UpperCAmelCase_ = tokenizer.batch_decode(_snake_case) self.assertListEqual(_snake_case , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BlipaProcessor(tokenizer=_snake_case , image_processor=_snake_case) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_snake_case , images=_snake_case) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['''pixel_values''', '''input_ids''', '''attention_mask'''])
169
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A (__A : int ) -> bool: """simple docstring""" UpperCAmelCase_ = int(number**0.5 ) return number == sq * sq def A (__A : int , __A : int , __A : int , __A : int , __A : int , __A : int ) -> tuple[int, int]: """simple docstring""" UpperCAmelCase_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase_ = x_den * y_den * z_den UpperCAmelCase_ = gcd(__A , __A ) top //= hcf bottom //= hcf return top, bottom def A (__A : int = 35 ) -> int: """simple docstring""" UpperCAmelCase_ = set() UpperCAmelCase_ = 42 UpperCAmelCase_ = Fraction(0 ) UpperCAmelCase_ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCAmelCase_ = x_num * y_den + x_den * y_num UpperCAmelCase_ = x_den * y_den UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) # n=2 UpperCAmelCase_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase_ = x_den * x_den * y_den * y_den if is_sq(__A ) and is_sq(__A ): UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) # n=-1 UpperCAmelCase_ = x_num * y_num UpperCAmelCase_ = x_den * y_num + x_num * y_den UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) # n=2 UpperCAmelCase_ = x_num * x_num * y_num * y_num UpperCAmelCase_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__A ) and is_sq(__A ): UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) for num, den in unique_s: total += Fraction(__A , __A ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
169
1
def a__ ( lowercase__ ): '''simple docstring''' if len(lowercase__ ) <= 1: return [tuple(lowercase__ )] UpperCAmelCase_ =[] def generate(lowercase__ , lowercase__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowercase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even UpperCAmelCase_ , UpperCAmelCase_ =arr[k - 1], arr[i] else: # k is odd UpperCAmelCase_ , UpperCAmelCase_ =arr[k - 1], arr[0] generate(k - 1 , lowercase__ ) generate(len(lowercase__ ) , lowercase__ ) return res if __name__ == "__main__": __lowercase : Dict =input("""Enter numbers separated by a comma:\n""").strip() __lowercase : List[str] =[int(item) for item in user_input.split(""",""")] print(heaps(arr))
54
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib a__ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } a__ = logging.WARNING def A__ () -> Any: __UpperCamelCase : Union[str, Any] = os.getenv("""DATASETS_VERBOSITY""" , snake_case ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def A__ () -> str: return __name__.split(""".""" )[0] def A__ () -> logging.Logger: return logging.getLogger(_get_library_name() ) def A__ () -> None: # Apply our default configuration to the library root logger. __UpperCamelCase : Any = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def A__ () -> None: __UpperCamelCase : List[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def A__ (snake_case : Optional[str] = None ) -> logging.Logger: if name is None: __UpperCamelCase : Optional[int] = _get_library_name() return logging.getLogger(snake_case ) def A__ () -> int: return _get_library_root_logger().getEffectiveLevel() def A__ (snake_case : int ) -> None: _get_library_root_logger().setLevel(snake_case ) def A__ () -> Dict: return set_verbosity(snake_case ) def A__ () -> Any: return set_verbosity(snake_case ) def A__ () -> Dict: return set_verbosity(snake_case ) def A__ () -> str: return set_verbosity(snake_case ) def A__ () -> None: __UpperCamelCase : str = False def A__ () -> None: __UpperCamelCase : List[str] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : List[str] ) -> Union[str, Any]: # pylint: disable=unused-argument """simple docstring""" __UpperCamelCase : List[str] = args[0] if args else None def __iter__( self : List[Any] ) -> List[Any]: """simple docstring""" return iter(self._iterator ) def __getattr__( self : int , lowerCAmelCase : List[str] ) -> Dict: """simple docstring""" def empty_fn(*lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ) -> Any: """simple docstring""" return self def __exit__( self : str , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ) -> Tuple: """simple docstring""" return a__ = True class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __call__( self : str , *lowerCAmelCase : List[Any] , lowerCAmelCase : Dict=False , **lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowerCAmelCase , **lowerCAmelCase ) else: return EmptyTqdm(*lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : str ) -> Dict: """simple docstring""" __UpperCamelCase : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() a__ = _tqdm_cls() def A__ () -> bool: global _tqdm_active return bool(_tqdm_active ) def A__ () -> List[str]: global _tqdm_active __UpperCamelCase : Tuple = True def A__ () -> int: global _tqdm_active __UpperCamelCase : Any = False
279
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) def __lowerCAmelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int=False ) -> List[str]: lowerCamelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCamelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]=False ) -> List[str]: for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase_ = """""" else: lowerCamelCase_ = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) lowerCamelCase_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> Union[str, Any]: lowerCamelCase_ = dct.pop(UpperCAmelCase__ ) lowerCamelCase_ = val def __lowerCAmelCase ( ) -> str: lowerCamelCase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase_ = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] ) -> Optional[Any]: lowerCamelCase_ = DeiTConfig() # all deit models have fine-tuned heads lowerCamelCase_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCamelCase_ = 1_0_0_0 lowerCamelCase_ = """huggingface/label-files""" lowerCamelCase_ = """imagenet-1k-id2label.json""" lowerCamelCase_ = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase_ = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = int(deit_name[-6:-4] ) lowerCamelCase_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 elif deit_name[9:].startswith("""small""" ): lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): lowerCamelCase_ = 1_0_2_4 lowerCamelCase_ = 4_0_9_6 lowerCamelCase_ = 2_4 lowerCamelCase_ = 1_6 # load original model from timm lowerCamelCase_ = timm.create_model(UpperCAmelCase__ , pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase_ = timm_model.state_dict() lowerCamelCase_ = create_rename_keys(UpperCAmelCase__ , UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # load HuggingFace model lowerCamelCase_ = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCamelCase_ = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCamelCase_ = DeiTImageProcessor(size=UpperCAmelCase__ , crop_size=config.image_size ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCamelCase_ = encoding["""pixel_values"""] lowerCamelCase_ = model(UpperCAmelCase__ ) lowerCamelCase_ = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__ , outputs.logits , atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
103
from abc import ABC, abstractmethod from argparse import ArgumentParser class __A( UpperCAmelCase ): @staticmethod @abstractmethod def lowercase__ ( __UpperCamelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowercase__ ( self : Any ): raise NotImplementedError()
103
1
def a_ ( _A , _A ) -> str: """simple docstring""" snake_case__ = len(_A ) snake_case__ = len(_A ) snake_case__ = ( first_str_length if first_str_length > second_str_length else second_str_length ) snake_case__ = [] for char_count in range(_A ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_A ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
328
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def a_ ( _A , _A ) -> List[Any]: """simple docstring""" snake_case__ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case__ = DatasetInfosDict.from_directory(_A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def a_ ( _A , _A ) -> Optional[int]: """simple docstring""" snake_case__ = str(_A ) dataset_info.write_to_directory(_A ) snake_case__ = DatasetInfo.from_directory(_A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_A , 'dataset_info.json' ) ) def a_ ( ) -> Optional[int]: """simple docstring""" snake_case__ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case__ = dataset_info._to_yaml_dict() assert sorted(_A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case__ = yaml.safe_dump(_A ) snake_case__ = yaml.safe_load(_A ) assert dataset_info_yaml_dict == reloaded def a_ ( ) -> Optional[Any]: """simple docstring""" snake_case__ = DatasetInfo() snake_case__ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def a_ ( _A , _A ) -> str: """simple docstring""" snake_case__ = str(_A ) dataset_infos_dict.write_to_directory(_A ) snake_case__ = DatasetInfosDict.from_directory(_A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case__ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case__ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_A , 'README.md' ) )
328
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_uncond_unet _SCREAMING_SNAKE_CASE : List[Any] = KarrasVeScheduler() _SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Dict = pipe(num_inference_steps=2 , generator=snake_case__ , output_type="numpy" ).images _SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : int = pipe(num_inference_steps=2 , generator=snake_case__ , output_type="numpy" , return_dict=snake_case__ )[0] _SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _SCREAMING_SNAKE_CASE : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = "google/ncsnpp-celebahq-256" _SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = KarrasVeScheduler() _SCREAMING_SNAKE_CASE : Optional[int] = KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=20 , generator=snake_case__ , output_type="numpy" ).images _SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
701
"""simple docstring""" import operator as op def _lowerCAmelCase ( lowerCamelCase__ : Tuple ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : str = lambda lowerCamelCase__, lowerCamelCase__ : int(x / y ) # noqa: E731 integer division operation _SCREAMING_SNAKE_CASE : Any = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ), "Action".center(1_2 ), "Stack", sep=" | " ) print("-" * (3_0 + len(lowerCamelCase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowerCamelCase__ ) # append x to stack # output in tabular format print(x.rjust(8 ), ("push(" + x + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) else: _SCREAMING_SNAKE_CASE : Dict = stack.pop() # pop stack # output in tabular format print("".rjust(8 ), ("pop(" + b + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) _SCREAMING_SNAKE_CASE : Any = stack.pop() # pop stack # output in tabular format print("".rjust(8 ), ("pop(" + a + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) stack.append( str(opr[x](int(lowerCamelCase__ ), int(lowerCamelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ("push(" + a + x + b + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | ", ) return int(stack[0] ) if __name__ == "__main__": lowercase_ : int = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
295
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor A : Any = logging.get_logger(__name__) class __A( a ): def __init__( self , *_snake_case , **_snake_case ) -> None: '''simple docstring''' warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
219
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __A( unittest.TestCase ): snake_case_ = MODEL_FOR_CAUSAL_LM_MAPPING snake_case_ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output __a = text_generator('''This is a test''' , do_sample=_snake_case ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) __a = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _snake_case , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) __a = text_generator('''This is a test''' , do_sample=_snake_case , num_return_sequences=2 , return_tensors=_snake_case ) self.assertEqual( _snake_case , [ {'''generated_token_ids''': ANY(_snake_case )}, {'''generated_token_ids''': ANY(_snake_case )}, ] , ) __a = text_generator.model.config.eos_token_id __a = '''<pad>''' __a = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=_snake_case , ) self.assertEqual( _snake_case , [ [ {'''generated_token_ids''': ANY(_snake_case )}, {'''generated_token_ids''': ANY(_snake_case )}, ], [ {'''generated_token_ids''': ANY(_snake_case )}, {'''generated_token_ids''': ANY(_snake_case )}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output __a = text_generator('''This is a test''' , do_sample=_snake_case ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) __a = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = TextGenerationPipeline(model=_snake_case , tokenizer=_snake_case ) return text_generator, ["This is a test", "Another test"] def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = '''Hello I believe in''' __a = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) __a = text_generator(_snake_case ) self.assertEqual( _snake_case , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) __a = text_generator(_snake_case , stop_sequence=''' fe''' ) self.assertEqual(_snake_case , [{'''generated_text''': '''Hello I believe in fe'''}] ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' __a = text_generator.model __a = text_generator.tokenizer __a = text_generator('''This is a test''' ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __a = text_generator('''This is a test''' , return_full_text=_snake_case ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __a = pipeline(task='''text-generation''' , model=_snake_case , tokenizer=_snake_case , return_full_text=_snake_case ) __a = text_generator('''This is a test''' ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __a = text_generator('''This is a test''' , return_full_text=_snake_case ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __a = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], ] , ) if text_generator.tokenizer.pad_token is not None: __a = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], [{'''generated_text''': ANY(_snake_case )}, {'''generated_text''': ANY(_snake_case )}], ] , ) with self.assertRaises(_snake_case ): __a = text_generator('''test''' , return_full_text=_snake_case , return_text=_snake_case ) with self.assertRaises(_snake_case ): __a = text_generator('''test''' , return_full_text=_snake_case , return_tensors=_snake_case ) with self.assertRaises(_snake_case ): __a = text_generator('''test''' , return_text=_snake_case , return_tensors=_snake_case ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __a = text_generator('''''' ) self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __a = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __a = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 10_000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) __a = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_snake_case ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' import torch # Classic `model_kwargs` __a = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __a = pipe('''This is a test''' ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __a = pipe('''This is a test''' ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __a = pipe('''This is a test''' ) self.assertEqual( _snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' import torch __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' import torch __a = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_snake_case , top_p=0.5 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = '''Hello world''' __a = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": __a = logging.get_logger('''transformers.generation.tf_utils''' ) else: __a = logging.get_logger('''transformers.generation.utils''' ) __a = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_snake_case ) as cl: __a = text_generator(_snake_case , max_length=10 , max_new_tokens=1 ) self.assertIn(_snake_case , cl.out ) # The user only sets one -> no warning with CaptureLogger(_snake_case ) as cl: __a = text_generator(_snake_case , max_new_tokens=1 ) self.assertNotIn(_snake_case , cl.out ) with CaptureLogger(_snake_case ) as cl: __a = text_generator(_snake_case , max_length=10 ) self.assertNotIn(_snake_case , cl.out )
219
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Any = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json"} a_ : str = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } a_ : Dict = {"mgp-str": 2_7} class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __magic_name__ , __magic_name__="[GO]" , __magic_name__="[GO]" , __magic_name__="[s]" , __magic_name__="[GO]" , **__magic_name__ ) -> List[Any]: super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , ) with open(__magic_name__ , encoding='utf-8' ) as vocab_handle: _a = json.load(__magic_name__ ) _a = {v: k for k, v in self.vocab.items()} @property def __UpperCAmelCase ( self ) -> List[Any]: return len(self.vocab ) def __UpperCAmelCase ( self ) -> Optional[Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __UpperCAmelCase ( self , __magic_name__ ) -> int: _a = [] for s in text: char_tokens.extend(__magic_name__ ) return char_tokens def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[Any]: return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __UpperCAmelCase ( self , __magic_name__ ) -> Tuple: return self.decoder.get(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: if not os.path.isdir(__magic_name__ ): logger.error('Vocabulary path ({}) should be a directory'.format(__magic_name__ ) ) return _a = os.path.join( __magic_name__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(__magic_name__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + '\n' ) return (vocab_file,)
719
'''simple docstring''' from functools import reduce a_ : Any = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def _A (lowerCAmelCase__ :str = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase__ , lowerCAmelCase__ : str(int(lowerCAmelCase__ ) * int(lowerCAmelCase__ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase__ ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
532
0
"""simple docstring""" # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ ) -> Dict: super().__init__() self.register_modules(unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self , snake_case_ = 1 , snake_case_ = None , snake_case_ = 50 , snake_case_ = "pil" , snake_case_ = True , **snake_case_ , ) -> Union[ImagePipelineOutput, Tuple]: _UpperCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=snake_case_ , ) _UpperCAmelCase = image.to(self.device ) # set step values self.scheduler.set_timesteps(snake_case_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase = self.unet(snake_case_ , snake_case_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=snake_case_ ), "This is a local test"
426
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers SCREAMING_SNAKE_CASE_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A__ ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(A__ ) ) _UpperCAmelCase = os.path.join(A__ , "words.txt" ) _UpperCAmelCase = "" with open(A__ ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] _UpperCAmelCase = [ word for word in [sum(ord(A__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(A__ ) if __name__ == "__main__": print(solution())
426
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCAmelCase = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class a : def __init__( self : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: list[Any] =[] SCREAMING_SNAKE_CASE_: int =0 SCREAMING_SNAKE_CASE_: int =0 def lowerCamelCase__ ( self : Optional[Any] ) -> bool: '''simple docstring''' return self.head == self.tail def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Any ) -> None: '''simple docstring''' self.data.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.tail + 1 def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.data[self.head] SCREAMING_SNAKE_CASE_: Optional[int] =self.head + 1 return ret def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.tail - self.head def lowerCamelCase__ ( self : str ) -> None: '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class a : def __init__( self : Union[str, Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =data SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: int =1 def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return self.data def lowerCamelCase__ ( self : List[Any] ) -> MyNode | None: '''simple docstring''' return self.left def lowerCamelCase__ ( self : Dict ) -> MyNode | None: '''simple docstring''' return self.right def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' return self.height def lowerCamelCase__ ( self : Any , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =data def lowerCamelCase__ ( self : Dict , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =node def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =node def lowerCamelCase__ ( self : int , lowerCAmelCase : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =height def __magic_name__ ( lowercase ): if node is None: return 0 return node.get_height() def __magic_name__ ( lowercase , lowercase ): if a > b: return a return b def __magic_name__ ( lowercase ): print("""left rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: int =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): print("""right rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =node.get_left() assert left_child is not None node.set_left(left_rotation(lowercase ) ) return right_rotation(lowercase ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =node.get_right() assert right_child is not None node.set_right(right_rotation(lowercase ) ) return left_rotation(lowercase ) def __magic_name__ ( lowercase , lowercase ): if node is None: return MyNode(lowercase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowercase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE_: Union[str, Any] =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE_: Any =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: List[Any] =lr_rotation(lowercase ) else: node.set_right(insert_node(node.get_right() , lowercase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE_: Tuple =node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[int] =left_rotation(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) return node def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: Dict =root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE_: str =right_child return root.get_data() def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: str =root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE_: Dict =left_child return root.get_data() def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str =root.get_left() SCREAMING_SNAKE_CASE_: List[Any] =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =get_left_most(lowercase ) root.set_data(lowercase ) root.set_right(del_node(lowercase , lowercase ) ) elif left_child is not None: SCREAMING_SNAKE_CASE_: Optional[int] =left_child elif right_child is not None: SCREAMING_SNAKE_CASE_: Any =right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowercase , lowercase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowercase , lowercase ) ) if get_height(lowercase ) - get_height(lowercase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE_: Tuple =left_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) elif get_height(lowercase ) - get_height(lowercase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE_: Optional[Any] =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: str =lr_rotation(lowercase ) SCREAMING_SNAKE_CASE_: str =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowercase ) return root class a : def __init__( self : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: MyNode | None =None def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return get_height(self.root ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""insert:""" + str(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple =insert_node(self.root , lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""delete:""" + str(lowerCAmelCase ) ) if self.root is None: print("""Tree is empty!""" ) return SCREAMING_SNAKE_CASE_: Union[str, Any] =del_node(self.root , lowerCAmelCase ) def __str__( self : List[str] , ) -> str: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] ="""""" SCREAMING_SNAKE_CASE_: str =MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE_: List[str] =self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE_: int =0 while not q.is_empty(): SCREAMING_SNAKE_CASE_: int =q.pop() SCREAMING_SNAKE_CASE_: List[Any] =""" """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase ) q.push(lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE_: List[Any] =cnt + 1 for i in range(100 ): if cnt == math.pow(2 , lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE_: int =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __magic_name__ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() _UpperCAmelCase = AVLtree() _UpperCAmelCase = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
36
0
class lowercase_ : def __init__( self , lowercase_ , lowercase_) -> str: a__ =name a__ =val def __str__( self) -> Tuple: return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , lowercase_) -> Any: return self.val < other.val class lowercase_ : def __init__( self , lowercase_) -> Any: a__ ={} a__ ={} a__ =self.build_heap(lowercase_) def __getitem__( self , lowercase_) -> List[str]: return self.get_value(lowercase_) def __UpperCamelCase ( self , lowercase_) -> Optional[int]: return (idx - 1) // 2 def __UpperCamelCase ( self , lowercase_) -> int: return idx * 2 + 1 def __UpperCamelCase ( self , lowercase_) -> List[Any]: return idx * 2 + 2 def __UpperCamelCase ( self , lowercase_) -> Any: return self.heap_dict[key] def __UpperCamelCase ( self , lowercase_) -> str: a__ =len(lowercase_) - 1 a__ =self.get_parent_idx(lowercase_) for idx, i in enumerate(lowercase_): a__ =idx a__ =i.val for i in range(lowercase_ , -1 , -1): self.sift_down(lowercase_ , lowercase_) return array def __UpperCamelCase ( self , lowercase_ , lowercase_) -> List[str]: while True: a__ =self.get_left_child_idx(lowercase_) # noqa: E741 a__ =self.get_right_child_idx(lowercase_) a__ =idx if l < len(lowercase_) and array[l] < array[idx]: a__ =l if r < len(lowercase_) and array[r] < array[smallest]: a__ =r if smallest != idx: a__ , a__ =array[smallest], array[idx] ( ( a__ ) , ( a__ ) , ) =( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) a__ =smallest else: break def __UpperCamelCase ( self , lowercase_) -> Dict: a__ =self.get_parent_idx(lowercase_) while p >= 0 and self.heap[p] > self.heap[idx]: a__ , a__ =self.heap[idx], self.heap[p] a__ , a__ =( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) a__ =p a__ =self.get_parent_idx(lowercase_) def __UpperCamelCase ( self) -> List[str]: return self.heap[0] def __UpperCamelCase ( self) -> Optional[int]: a__ , a__ =self.heap[-1], self.heap[0] a__ , a__ =( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) a__ =self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def __UpperCamelCase ( self , lowercase_) -> Tuple: self.heap.append(lowercase_) a__ =len(self.heap) - 1 a__ =node.val self.sift_up(len(self.heap) - 1) def __UpperCamelCase ( self) -> Union[str, Any]: return len(self.heap) == 0 def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" a__ =new_value a__ =new_value self.sift_up(self.idx_of_element[node]) _lowerCAmelCase: Tuple = Node('R', -1) _lowerCAmelCase: Optional[int] = Node('B', 6) _lowerCAmelCase: Tuple = Node('A', 3) _lowerCAmelCase: int = Node('X', 1) _lowerCAmelCase: List[str] = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _lowerCAmelCase: int = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
20
def __snake_case ( _UpperCamelCase ) -> int: _a = len(_UpperCamelCase ) _a = sum(_UpperCamelCase ) _a = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _a = True for i in range(1 , s + 1 ): _a = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _a = dp[i][j - 1] if arr[i - 1] <= j: _a = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _a = s - 2 * j break return diff
487
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def a_ ( ) -> List[str]: '''simple docstring''' UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=__snake_case , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=__snake_case , default=5 ) parser.add_argument('--batch_size' , type=__snake_case , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=__snake_case , default=1 ) parser.add_argument('--freeze' , type=__snake_case , default=__snake_case ) parser.add_argument('--learning_rate' , type=__snake_case , default=5E-4 ) parser.add_argument('--seed' , type=__snake_case , default=0 ) parser.add_argument('--lr_scheduler_type' , type=__snake_case , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=__snake_case , default=1_0 ) parser.add_argument('--weight_decay' , type=__snake_case , default=0.01 ) parser.add_argument('--output_dir' , type=__snake_case , default='./results' ) return parser.parse_args() __a : Optional[int] = load("""accuracy""") def a_ ( __snake_case ) -> List[str]: '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ = eval_pred UpperCamelCase_ = np.argmax(__snake_case , axis=1 ) return metric.compute(predictions=__snake_case , references=__snake_case ) class A ( lowerCamelCase_ ): def __init__( self : int , __UpperCAmelCase : str ) -> None: """simple docstring""" super().__init__() UpperCamelCase_ = trainer def lowercase__ ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , **__UpperCAmelCase : List[str] ) -> int: """simple docstring""" if control.should_evaluate: UpperCamelCase_ = deepcopy(__UpperCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train' ) return control_copy def a_ ( ) -> Tuple: '''simple docstring''' UpperCamelCase_ = get_args() set_seed(args.seed ) UpperCamelCase_ = load_dataset('codeparrot/codecomplex' , split='train' ) UpperCamelCase_ = dataset.train_test_split(test_size=0.2 ) UpperCamelCase_ = train_test['test'].train_test_split(test_size=0.5 ) UpperCamelCase_ = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) UpperCamelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCamelCase_ = tokenizer.eos_token UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) UpperCamelCase_ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): UpperCamelCase_ = False UpperCamelCase_ = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(__snake_case ): UpperCamelCase_ = tokenizer(example['src'] , truncation=__snake_case , max_length=1_0_2_4 ) UpperCamelCase_ = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } UpperCamelCase_ = train_test_validation.map( __snake_case , batched=__snake_case , remove_columns=train_test_validation['train'].column_names , ) UpperCamelCase_ = DataCollatorWithPadding(tokenizer=__snake_case ) UpperCamelCase_ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) UpperCamelCase_ = Trainer( model=__snake_case , args=__snake_case , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=__snake_case , data_collator=__snake_case , compute_metrics=__snake_case , ) print('Training...' ) trainer.add_callback(CustomCallback(__snake_case ) ) trainer.train() if __name__ == "__main__": main()
559
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any]=13 , __UpperCAmelCase : str=7 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : str=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Any=99 , __UpperCAmelCase : Union[str, Any]=16 , __UpperCAmelCase : Union[str, Any]=36 , __UpperCAmelCase : Optional[int]=6 , __UpperCAmelCase : Union[str, Any]=6 , __UpperCAmelCase : List[str]=6 , __UpperCAmelCase : Union[str, Any]=37 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : List[Any]=16 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : Optional[Any]=None , ) -> List[str]: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = embedding_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_hidden_groups UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowercase__ ( self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = AlbertModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCamelCase_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) UpperCamelCase_ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" UpperCamelCase_ = AlbertForPreTraining(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCamelCase_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , sentence_order_label=__UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowercase__ ( self : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ = AlbertForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCamelCase_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = AlbertForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCamelCase_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = AlbertForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCamelCase_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Any , __UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = AlbertForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCamelCase_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.num_choices UpperCamelCase_ = AlbertForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : int ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = config_and_inputs UpperCamelCase_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : int = True def lowercase__ ( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int=False ) -> List[Any]: """simple docstring""" UpperCamelCase_ = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): UpperCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCAmelCase ) UpperCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = AlbertModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> int: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowercase__ ( self : Any ) -> int: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowercase__ ( self : int ) -> Dict: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) @slow def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = AlbertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = AlbertModel.from_pretrained('albert-base-v2' ) UpperCamelCase_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCamelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] UpperCamelCase_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) )
559
1
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowercase_ = parser.parse_args() if args.model_type == "roberta": lowercase_ = RobertaForMaskedLM.from_pretrained(args.model_name) lowercase_ = 'roberta' elif args.model_type == "gpt2": lowercase_ = GPTaLMHeadModel.from_pretrained(args.model_name) lowercase_ = 'transformer' lowercase_ = model.state_dict() lowercase_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowercase_ = state_dict[f"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowercase_ = f"{prefix}.embeddings.{w}.weight" lowercase_ = state_dict[param_name] for w in ["weight", "bias"]: lowercase_ = f"{prefix}.embeddings.LayerNorm.{w}" lowercase_ = state_dict[param_name] # Transformer Blocks # lowercase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowercase_ = state_dict[ f"{prefix}.h.{teacher_idx}.{layer}.{w}" ] lowercase_ = state_dict[f"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowercase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowercase_ = state_dict[f"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: lowercase_ = state_dict[f"lm_head.dense.{w}"] lowercase_ = state_dict[f"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowercase_ = state_dict[f"{prefix}.ln_f.{w}"] lowercase_ = state_dict['lm_head.weight'] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
291
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase_ = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class __lowerCAmelCase ( unittest.TestCase , SCREAMING_SNAKE_CASE ): def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =load_tool('text-question-answering' ) self.tool.setup() _lowercase =load_tool('text-question-answering' , remote=lowerCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =self.tool(lowerCAmelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.remote_tool(lowerCAmelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' ) def A__ ( self ) -> Any: '''simple docstring''' _lowercase =self.tool(text=lowerCAmelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' ) def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =self.remote_tool(text=lowerCAmelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' )
291
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = None @staticmethod def UpperCamelCase_ ( ): raise NotImplementedError def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): raise NotImplementedError def UpperCamelCase_ ( self ,_lowerCAmelCase ): raise NotImplementedError def UpperCamelCase_ ( self ): if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def UpperCamelCase_ ( cls ): return F'''`pip install {cls.pip_package or cls.name}`''' class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'optuna' @staticmethod def UpperCamelCase_ ( ): return is_optuna_available() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return run_hp_search_optuna(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return default_hp_space_optuna(_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'ray' _UpperCamelCase = '\'ray[tune]\'' @staticmethod def UpperCamelCase_ ( ): return is_ray_available() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return run_hp_search_ray(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return default_hp_space_ray(_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'sigopt' @staticmethod def UpperCamelCase_ ( ): return is_sigopt_available() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return run_hp_search_sigopt(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return default_hp_space_sigopt(_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'wandb' @staticmethod def UpperCamelCase_ ( ): return is_wandb_available() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return run_hp_search_wandb(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return default_hp_space_wandb(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def A__ ( ): lowerCamelCase__ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = available_backends[0].name if len(__lowerCAmelCase ) > 1: logger.info( F'''{len(__lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
701
'''simple docstring''' from __future__ import annotations import math def A__ ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) lowerCamelCase__ = [] for num in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ = odd_composites[num] - 2 * i * i if is_prime(__lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__lowerCAmelCase ) == n: return list_nums return [] def A__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
9
0
def __lowercase ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' __lowercase = (n * (n + 1) // 2) ** 2 __lowercase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F"{solution() = }")
321
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=5 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=16 , A__=2 , A__=0.02 , A__=False , A__=True , A__="None" , A__=3 , A__=4 , A__=None , ) -> int: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self ) -> Optional[int]: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase ( self , A__ ) -> List[str]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = DebertaVaModel(config=A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ , attention_mask=A__ , token_type_ids=A__ )[0] _SCREAMING_SNAKE_CASE = model(A__ , token_type_ids=A__ )[0] _SCREAMING_SNAKE_CASE = model(A__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = DebertaVaForMaskedLM(config=A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = DebertaVaForSequenceClassification(A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(A__ ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = DebertaVaForTokenClassification(config=A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = DebertaVaForQuestionAnswering(config=A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model( A__ , attention_mask=A__ , token_type_ids=A__ , start_positions=A__ , end_positions=A__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = DebertaVaForMultipleChoice(config=A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': DebertaVaModel, 'fill-mask': DebertaVaForMaskedLM, 'question-answering': DebertaVaForQuestionAnswering, 'text-classification': DebertaVaForSequenceClassification, 'token-classification': DebertaVaForTokenClassification, 'zero-shot': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = DebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*A__ ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*A__ ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*A__ ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*A__ ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*A__ ) @slow def UpperCamelCase ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = DebertaVaModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @require_torch @require_sentencepiece @require_tokenizers class _a (unittest.TestCase): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self ) -> Union[str, Any]: pass @slow def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(A__ , attention_mask=A__ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A__ , atol=1E-4 ) , F"{output[:, 1:4, 1:4]}" )
591
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case ( snake_case__ :Optional[int]) -> List[Any]: _A = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _A = [144, 192, 240] _A = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _A = [96, 120, 144] _A = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _A = [64, 80, 96] _A = [16, 16, 24, 48, 64, 80, 320] _A = 0.05 _A = 2.0 if mobilevit_name.startswith("""deeplabv3_"""): _A = 512 _A = 16 _A = 21 _A = """pascal-voc-id2label.json""" else: _A = 1_000 _A = """imagenet-1k-id2label.json""" _A = """huggingface/label-files""" _A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""") , """r""")) _A = {int(snake_case__): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} return config def snake_case ( snake_case__ :Any , snake_case__ :Optional[Any]=False) -> List[Any]: for i in range(1 , 6): if F'''layer_{i}.''' in name: _A = name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''') if "conv_1." in name: _A = name.replace("""conv_1.""" , """conv_stem.""") if ".block." in name: _A = name.replace(""".block.""" , """.""") if "exp_1x1" in name: _A = name.replace("""exp_1x1""" , """expand_1x1""") if "red_1x1" in name: _A = name.replace("""red_1x1""" , """reduce_1x1""") if ".local_rep.conv_3x3." in name: _A = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""") if ".local_rep.conv_1x1." in name: _A = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""") if ".norm." in name: _A = name.replace(""".norm.""" , """.normalization.""") if ".conv." in name: _A = name.replace(""".conv.""" , """.convolution.""") if ".conv_proj." in name: _A = name.replace(""".conv_proj.""" , """.conv_projection.""") for i in range(0 , 2): for j in range(0 , 4): if F'''.{i}.{j}.''' in name: _A = name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''') for i in range(2 , 6): for j in range(0 , 4): if F'''.{i}.{j}.''' in name: _A = name.replace(F'''.{i}.{j}.''' , F'''.{i}.''') if "expand_1x1" in name: _A = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""") if "conv_3x3" in name: _A = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""") if "reduce_1x1" in name: _A = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""") for i in range(2 , 5): if F'''.global_rep.{i}.weight''' in name: _A = name.replace(F'''.global_rep.{i}.weight''' , """.layernorm.weight""") if F'''.global_rep.{i}.bias''' in name: _A = name.replace(F'''.global_rep.{i}.bias''' , """.layernorm.bias""") if ".global_rep." in name: _A = name.replace(""".global_rep.""" , """.transformer.""") if ".pre_norm_mha.0." in name: _A = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""") if ".pre_norm_mha.1.out_proj." in name: _A = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""") if ".pre_norm_ffn.0." in name: _A = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""") if ".pre_norm_ffn.1." in name: _A = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""") if ".pre_norm_ffn.4." in name: _A = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""") if ".transformer." in name: _A = name.replace(""".transformer.""" , """.transformer.layer.""") if ".aspp_layer." in name: _A = name.replace(""".aspp_layer.""" , """.""") if ".aspp_pool." in name: _A = name.replace(""".aspp_pool.""" , """.""") if "seg_head." in name: _A = name.replace("""seg_head.""" , """segmentation_head.""") if "segmentation_head.classifier.classifier." in name: _A = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""") if "classifier.fc." in name: _A = name.replace("""classifier.fc.""" , """classifier.""") elif (not base_model) and ("segmentation_head." not in name): _A = """mobilevit.""" + name return name def snake_case ( snake_case__ :Tuple , snake_case__ :int , snake_case__ :Union[str, Any]=False) -> Optional[Any]: if base_model: _A = """""" else: _A = """mobilevit.""" for key in orig_state_dict.copy().keys(): _A = orig_state_dict.pop(snake_case__) if key[:8] == "encoder.": _A = key[8:] if "qkv" in key: _A = key.split(""".""") _A = int(key_split[0][6:]) - 1 _A = int(key_split[3]) _A = model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''') _A = layer.transformer.layer[transformer_num].attention.attention.all_head_size _A = ( F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: _A = val[:dim, :] _A = val[dim : dim * 2, :] _A = val[-dim:, :] else: _A = val[:dim] _A = val[dim : dim * 2] _A = val[-dim:] else: _A = val return orig_state_dict def snake_case ( ) -> Optional[Any]: _A = """http://images.cocodataset.org/val2017/000000039769.jpg""" _A = Image.open(requests.get(snake_case__ , stream=snake_case__).raw) return im @torch.no_grad() def snake_case ( snake_case__ :str , snake_case__ :List[str] , snake_case__ :Optional[Any] , snake_case__ :int=False) -> Tuple: _A = get_mobilevit_config(snake_case__) # load original state_dict _A = torch.load(snake_case__ , map_location="""cpu""") # load 🤗 model if mobilevit_name.startswith("""deeplabv3_"""): _A = MobileViTForSemanticSegmentation(snake_case__).eval() else: _A = MobileViTForImageClassification(snake_case__).eval() _A = convert_state_dict(snake_case__ , snake_case__) model.load_state_dict(snake_case__) # Check outputs on an image, prepared by MobileViTImageProcessor _A = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32) _A = image_processor(images=prepare_img() , return_tensors="""pt""") _A = model(**snake_case__) _A = outputs.logits if mobilevit_name.startswith("""deeplabv3_"""): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _A = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xs": _A = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _A = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ]) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''') assert torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1E-4) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": _A = torch.tensor([-0.9866, 0.2392, -1.1241]) elif mobilevit_name == "mobilevit_xs": _A = torch.tensor([-2.4761, -0.9399, -1.9587]) elif mobilevit_name == "mobilevit_xxs": _A = torch.tensor([-1.9364, -1.2327, -0.4653]) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''') assert torch.allclose(logits[0, :3] , snake_case__ , atol=1E-4) Path(snake_case__).mkdir(exist_ok=snake_case__) print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''') model.save_pretrained(snake_case__) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(snake_case__) if push_to_hub: _A = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""") _A = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__ , organization="""apple""") model.push_to_hub(snake_case__ , organization="""apple""") if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
83
from __future__ import annotations from collections.abc import Callable def snake_case ( snake_case__ :Callable[[int | float], int | float] , snake_case__ :int | float , snake_case__ :int | float , snake_case__ :int = 100 , ) -> float: _A = x_start _A = fnc(snake_case__) _A = 0.0 for _ in range(snake_case__): # Approximates small segments of curve as linear and solve # for trapezoidal area _A = (x_end - x_start) / steps + xa _A = fnc(snake_case__) area += abs(fxa + fxa) * (xa - xa) / 2 # Increment step _A = xa _A = fxa return area if __name__ == "__main__": def snake_case ( snake_case__ :Tuple) -> List[str]: return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') _SCREAMING_SNAKE_CASE = 10 while i <= 100_000: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
83
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : int = num_heads __lowerCamelCase : Optional[Any] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = use_absolute_embeddings __lowerCamelCase : Any = patch_norm __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : Dict = is_training __lowerCamelCase : Optional[Any] = scope __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Dict = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : str = out_indices def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = ['stem'] __lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swin has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Tuple = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has' f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) __lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[str] = MaskFormerSwinConfig def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ ) backbone.to(SCREAMING_SNAKE_CASE_ ) backbone.eval() __lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.attentions )
13
1
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def lowerCamelCase__ ( *_snake_case : int , **_snake_case : Optional[Any] ) -> str: """simple docstring""" pass def A_ (__a ): '''simple docstring''' A_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ (__a ): '''simple docstring''' A_ = np.array(__a ) A_ = npimg.shape return {"hash": hashimage(__a ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) snake_case = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : List[Any] , _snake_case : List[str] , _snake_case : Dict , _snake_case : int ) -> str: """simple docstring""" A_ = MaskGenerationPipeline(model=_snake_case , image_processor=_snake_case ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : int , _snake_case : int , _snake_case : Optional[Any] ) -> Dict: """simple docstring""" pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ) -> int: """simple docstring""" A_ = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) A_ = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing A_ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_snake_case ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_2_1}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_0_5_3}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.9_9_6_7}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_9_3}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.9_9_0_9}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.9_8_7_9}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.9_8_3_4}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.9_7_1_6}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.9_6_1_2}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.9_5_9_9}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.9_5_5_2}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.9_5_3_2}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.9_5_1_6}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.9_4_9_9}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.9_4_8_3}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.9_4_6_4}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_4_3}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_4_3}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.9_4_0_8}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.9_3_3_5}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.9_3_2_6}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.9_2_6_2}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.8_9_9_9}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.8_9_8_6}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.8_9_8_4}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.8_8_7_3}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" A_ = "facebook/sam-vit-huge" A_ = pipeline("mask-generation" , model=_snake_case ) A_ = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing A_ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_snake_case ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_2_1_0}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_0_5_3}, ] , )
482
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase_ : Optional[Any] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase_ : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase_ : str = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') UpperCamelCase_ : Dict = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def A_ (__a ): '''simple docstring''' A_ = None # source code of `config_class` A_ = inspect.getsource(__a ) A_ = _re_checkpoint.findall(__a ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): A_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link A_ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: A_ = ckpt_name break return checkpoint def A_ (): '''simple docstring''' A_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue A_ = get_checkpoint_from_config_class(__a ) A_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: A_ = "\n".join(sorted(__a ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
482
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int]=100 , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[int]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : int=32 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Union[str, Any]=37 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Union[str, Any]=10 , lowerCamelCase__ : str=0.02 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=[0, 1, 2, 3] , ): a__ : Dict = parent a__ : Dict = 100 a__ : Optional[int] = batch_size a__ : Union[str, Any] = image_size a__ : Any = patch_size a__ : Optional[Any] = num_channels a__ : int = is_training a__ : List[str] = use_labels a__ : Optional[Any] = hidden_size a__ : List[Any] = num_hidden_layers a__ : str = num_attention_heads a__ : str = intermediate_size a__ : int = hidden_act a__ : List[Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = type_sequence_label_size a__ : Optional[Any] = initializer_range a__ : List[str] = scope a__ : int = out_indices a__ : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[int] = (image_size // patch_size) ** 2 a__ : Union[str, Any] = num_patches + 1 def _UpperCamelCase( self : int ): a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Optional[Any] = None a__ : Tuple = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCamelCase( self : Tuple ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any ): a__ : str = BeitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ): a__ : int = BeitForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _UpperCamelCase( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ): a__ : List[str] = self.type_sequence_label_size a__ : Optional[Any] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ : Optional[Any] = 1 a__ : List[str] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ : Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): a__ : int = self.num_labels a__ : List[str] = BeitForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Tuple = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _UpperCamelCase( self : Optional[int] ): a__ : Any = self.prepare_config_and_inputs() a__, a__, a__, a__ : Union[str, Any] = config_and_inputs a__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _lowercase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Any ): a__ : int = BeitModelTester(self ) a__ : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _UpperCamelCase( self : str ): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _UpperCamelCase( self : Dict ): pass def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : str ): a__, a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = model_class(lowerCamelCase__ ) a__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): if not self.model_tester.is_training: return a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling]: continue a__ : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() a__ : Any = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : Tuple = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : Tuple ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a__ : List[Any] = False a__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue a__ : Optional[Any] = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() a__ : Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : int = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : List[str] ): a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Dict = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: a__ : str = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _UpperCamelCase( self : Optional[int] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Tuple = BeitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _UpperCamelCase( self : str ): a__ : int = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(lowerCamelCase__ ) a__ : Optional[Any] = self.default_image_processor a__ : Dict = prepare_img() a__ : Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).pixel_values.to(lowerCamelCase__ ) # prepare bool_masked_pos a__ : Optional[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(pixel_values=lowerCamelCase__ , bool_masked_pos=lowerCamelCase__ ) a__ : Tuple = outputs.logits # verify the logits a__ : List[str] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[int] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCamelCase__ , atol=1E-2 ) ) @slow def _UpperCamelCase( self : Dict ): a__ : str = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(lowerCamelCase__ ) a__ : int = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Union[str, Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : Any ): a__ : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( lowerCamelCase__ ) a__ : str = self.default_image_processor a__ : List[str] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Dict = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Optional[int] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Optional[Any] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): a__ : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : Tuple = model.to(lowerCamelCase__ ) a__ : List[Any] = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : Union[str, Any] = Image.open(ds[0]["file"] ) a__ : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Tuple = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: a__ : Dict = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=lowerCamelCase__ , ) else: a__ : Dict = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _UpperCamelCase( self : Tuple ): a__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : List[Any] = model.to(lowerCamelCase__ ) a__ : int = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Optional[int] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : str = Image.open(ds[0]["file"] ) a__ : str = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : List[Any] = model(**lowerCamelCase__ ) a__ : Any = outputs.logits.detach().cpu() a__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(500, 300)] ) a__ : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) a__ : Any = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
37
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = CLIPTokenizer _lowercase = CLIPTokenizerFast _lowercase = True _lowercase = {} _lowercase = False def _UpperCamelCase( self : List[Any] ): super().setUp() # fmt: off a__ : Any = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) a__ : Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] a__ : Optional[Any] = {"unk_token": "<unk>"} a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) def _UpperCamelCase( self : Dict , **lowerCamelCase__ : int ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , **lowerCamelCase__ : Optional[int] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[Any] ): a__ : int = "lower newer" a__ : Optional[int] = "lower newer" return input_text, output_text def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a__ : int = "lower newer" a__ : List[str] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] a__ : Union[str, Any] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : int = tokens + [tokenizer.unk_token] a__ : Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @require_ftfy def _UpperCamelCase( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : List[str] = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : int = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." a__ : Optional[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : Dict = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a__ : Optional[Any] = "xa\u0303y" + " " + "x\xe3y" a__ : Optional[int] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of space type a__ : str = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a__ : Any = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of line break type a__ : Union[str, Any] = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a__ : List[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a__ : Tuple = f'''{text_of_1_token} {text_of_1_token}''' a__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Union[str, Any] = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) a__ : Optional[Any] = f''' {text}''' a__ : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Dict = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) def _UpperCamelCase( self : int ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCamelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def _UpperCamelCase( self : int ): super().test_tokenization_python_rust_equals() def _UpperCamelCase( self : str ): # CLIP always lower cases letters pass
37
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _lowerCAmelCase ( __lowerCamelCase:Optional[int] , __lowerCamelCase:Tuple ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _lowerCAmelCase ( __lowerCamelCase:Optional[Any] , __lowerCamelCase:Optional[Any] , __lowerCamelCase:Optional[int] ): '''simple docstring''' __magic_name__ = tmp_path / "cache" __magic_name__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _lowerCAmelCase ( __lowerCamelCase:Optional[Any] , __lowerCamelCase:Optional[Any] , __lowerCamelCase:Any ): '''simple docstring''' __magic_name__ = tmp_path / "cache" __magic_name__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __magic_name__ = features.copy() if features else default_expected_features __magic_name__ = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def _lowerCAmelCase ( __lowerCamelCase:List[str] , __lowerCamelCase:List[Any] , __lowerCamelCase:Dict ): '''simple docstring''' __magic_name__ = tmp_path / "cache" __magic_name__ = {"col_3": "float64", "col_1": "string", "col_2": "int64"} __magic_name__ = features.copy() if features else default_expected_features __magic_name__ = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _lowerCAmelCase ( __lowerCamelCase:Tuple , __lowerCamelCase:List[str] ): '''simple docstring''' __magic_name__ = {"col_2": "int64", "col_3": "float64", "col_1": "string"} __magic_name__ = features.copy() __magic_name__ = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ = tmp_path / "cache" __magic_name__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _lowerCAmelCase ( __lowerCamelCase:List[str] , __lowerCamelCase:int , __lowerCamelCase:Any ): '''simple docstring''' __magic_name__ = tmp_path / "cache" __magic_name__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __magic_name__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE ).read() _check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _lowerCAmelCase ( __lowerCamelCase:Optional[int] , __lowerCamelCase:Any , __lowerCamelCase:Any ): '''simple docstring''' if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __magic_name__ = jsonl_path elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __magic_name__ = [jsonl_path] __magic_name__ = tmp_path / "cache" __magic_name__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __magic_name__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( __lowerCamelCase:Union[str, Any] , __lowerCamelCase:Tuple , __lowerCamelCase:str=("train",) ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for split in splits: __magic_name__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _lowerCAmelCase ( __lowerCamelCase:List[str] , __lowerCamelCase:Optional[int] , __lowerCamelCase:Union[str, Any] ): '''simple docstring''' __magic_name__ = tmp_path / "cache" __magic_name__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ = JsonDatasetReader({"train": jsonl_path} , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _lowerCAmelCase ( __lowerCamelCase:Any , __lowerCamelCase:int , __lowerCamelCase:Tuple ): '''simple docstring''' __magic_name__ = tmp_path / "cache" __magic_name__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __magic_name__ = features.copy() if features else default_expected_features __magic_name__ = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ = JsonDatasetReader({"train": jsonl_path} , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _lowerCAmelCase ( __lowerCamelCase:Any , __lowerCamelCase:Optional[int] , __lowerCamelCase:List[Any] ): '''simple docstring''' if split: __magic_name__ = {split: jsonl_path} else: __magic_name__ = "train" __magic_name__ = {"train": jsonl_path, "test": jsonl_path} __magic_name__ = tmp_path / "cache" __magic_name__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __magic_name__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _lowerCAmelCase ( __lowerCamelCase:List[Any] ): '''simple docstring''' return json.load(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( __lowerCamelCase:int ): '''simple docstring''' return [json.loads(_SCREAMING_SNAKE_CASE ) for line in buffer] class A_ : @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def _snake_case ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase ).write() buffer.seek(0 ) __magic_name__ = load_json_function(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert isinstance(exported_content[0] , __lowerCamelCase ) assert len(__lowerCamelCase ) == 1_0 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def _snake_case ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Dict ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , orient=__lowerCamelCase ).write() buffer.seek(0 ) __magic_name__ = load_json(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCamelCase , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(__lowerCamelCase ) == 1_0 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def _snake_case ( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : str ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , num_proc=2 ).write() buffer.seek(0 ) __magic_name__ = load_json_function(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert isinstance(exported_content[0] , __lowerCamelCase ) assert len(__lowerCamelCase ) == 1_0 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : str ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , orient=__lowerCamelCase , num_proc=2 ).write() buffer.seek(0 ) __magic_name__ = load_json(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCamelCase , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(__lowerCamelCase ) == 1_0 def _snake_case ( self : int , __lowerCamelCase : int ) -> List[str]: with pytest.raises(__lowerCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def _snake_case ( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ) -> Dict: __magic_name__ = tmp_path_factory.mktemp("data" ) / f'''test.json.{extension}''' __magic_name__ = str(shared_datadir / f'''test_file.json.{extension}''' ) JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , compression=__lowerCamelCase ).write() with fsspec.open(__lowerCamelCase , "rb" , compression="infer" ) as f: __magic_name__ = f.read() with fsspec.open(__lowerCamelCase , "rb" , compression="infer" ) as f: __magic_name__ = f.read() assert exported_content == original_content
701
"""simple docstring""" def _lowerCAmelCase ( __lowerCamelCase:int ): '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
468
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __A = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __A = typing.Union[np.floataa, int, float] # noqa: UP007 def __A ( _lowercase , _lowercase ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(_lowercase ) - np.asarray(_lowercase )) ** 2 ) ) def __A ( _lowercase , _lowercase ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_lowercase , _lowercase ) ) ** (1 / 2) if __name__ == "__main__": def __A ( ): '''simple docstring''' from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) benchmark()
484
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "audio-spectrogram-transformer" def __init__( self: Optional[Any] , __A: int=7_68 , __A: Optional[Any]=12 , __A: Tuple=12 , __A: Union[str, Any]=30_72 , __A: str="gelu" , __A: str=0.0 , __A: List[Any]=0.0 , __A: List[str]=0.02 , __A: List[str]=1e-12 , __A: Any=16 , __A: Dict=True , __A: Optional[Any]=10 , __A: Union[str, Any]=10 , __A: str=10_24 , __A: Optional[int]=1_28 , **__A: Tuple , ) -> List[Any]: super().__init__(**__A ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = patch_size _A = qkv_bias _A = frequency_stride _A = time_stride _A = max_length _A = num_mel_bins
484
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase_ ( _A : Dict=None ): """simple docstring""" if subparsers is not None: lowerCamelCase__ : List[Any] = subparsers.add_parser("env" ) else: lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=_A , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def lowercase_ ( _A : Tuple ): """simple docstring""" lowerCamelCase__ : int = torch.__version__ lowerCamelCase__ : Optional[int] = torch.cuda.is_available() lowerCamelCase__ : Any = is_xpu_available() lowerCamelCase__ : Dict = is_npu_available() lowerCamelCase__ : str = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_A ): lowerCamelCase__ : Any = load_config_from_file(args.config_file ).to_dict() lowerCamelCase__ : List[str] = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F"{pt_version} ({pt_cuda_available})", "PyTorch XPU available": str(_A ), "PyTorch NPU available": str(_A ), "System RAM": F"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: lowerCamelCase__ : Dict = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F"- {prop}: {val}" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) lowerCamelCase__ : Optional[int] = ( "\n".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_A , _A ) else F"\t{accelerate_config}" ) print(_A ) lowerCamelCase__ : Tuple = accelerate_config return info def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = env_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() env_command(_A ) return 0 if __name__ == "__main__": raise SystemExit(main())
5
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A : Union[str, Any] = logging.get_logger(__name__) A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : """simple docstring""" A__ = field( default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)}) A__ = field( default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}) A__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ = field( default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) A__ = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) A__ = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) A__ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"}) A__ = field( default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}) A__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"}) class _lowercase ( lowercase__): """simple docstring""" A__ = "train" A__ = "dev" class _lowercase ( lowercase__): """simple docstring""" A__ = 42 A__ = 42 A__ = 42 A__ = 42 def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ): '''simple docstring''' lowerCamelCase__ : List[str] = args lowerCamelCase__ : Tuple = is_language_sensitive lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__lowerCamelCase , __lowerCamelCase ): try: lowerCamelCase__ : List[str] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase__ : str = mode # Load data features from cache or dataset file lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1" lowerCamelCase__ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : List[str] = cached_features_file + ".lock" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: lowerCamelCase__ : str = time.time() lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase__ : Optional[Any] = self.old_features["features"] lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run" ) else: if mode == Split.dev: lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir ) lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features( examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , ) lowerCamelCase__ : int = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : List[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.features[i] lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase__ : List[str] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
5
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _A ( unittest.TestCase): def __init__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = parent def UpperCAmelCase ( self ): """simple docstring""" return {} def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' SCREAMING_SNAKE_CASE_ : Optional[Any] = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class _A ( __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : str = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = MarkupLMFeatureExtractionTester(self ) @property def UpperCAmelCase ( self ): """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extraction_class() # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = get_html_strings()[0] SCREAMING_SNAKE_CASE_ : Optional[int] = feature_extractor(_SCREAMING_SNAKE_CASE ) # fmt: off SCREAMING_SNAKE_CASE_ : Union[str, Any] = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] SCREAMING_SNAKE_CASE_ : Dict = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , _SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.xpaths , _SCREAMING_SNAKE_CASE ) # Test batched SCREAMING_SNAKE_CASE_ : Tuple = get_html_strings() SCREAMING_SNAKE_CASE_ : str = feature_extractor(_SCREAMING_SNAKE_CASE ) # fmt: off SCREAMING_SNAKE_CASE_ : Union[str, Any] = expected_nodes + [['My First Heading', 'My first paragraph.']] SCREAMING_SNAKE_CASE_ : Any = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.xpaths , _SCREAMING_SNAKE_CASE )
511
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
511
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Optional[Any]= TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE__: Union[str, Any]= model(lowerCAmelCase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__: str= tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , lowerCAmelCase ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__: Union[str, Any]= tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
107
def A__ ( snake_case_ : list ): if len(snake_case_ ) < 2: return collection def circle_sort_util(snake_case_ : list , snake_case_ : int , snake_case_ : int ) -> bool: SCREAMING_SNAKE_CASE__: Dict= False if low == high: return swapped SCREAMING_SNAKE_CASE__: str= low SCREAMING_SNAKE_CASE__: Optional[int]= high while left < right: if collection[left] > collection[right]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Optional[int]= ( collection[right], collection[left], ) SCREAMING_SNAKE_CASE__: List[Any]= True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[str]= ( collection[right + 1], collection[left], ) SCREAMING_SNAKE_CASE__: List[str]= True SCREAMING_SNAKE_CASE__: Dict= low + int((high - low) / 2 ) SCREAMING_SNAKE_CASE__: str= circle_sort_util(snake_case_ , snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE__: List[Any]= circle_sort_util(snake_case_ , mid + 1 , snake_case_ ) return swapped or left_swap or right_swap SCREAMING_SNAKE_CASE__: Optional[int]= True while is_not_sorted is True: SCREAMING_SNAKE_CASE__: Tuple= circle_sort_util(snake_case_ , 0 , len(snake_case_ ) - 1 ) return collection if __name__ == "__main__": lowercase_ : Tuple = input('Enter numbers separated by a comma:\n').strip() lowercase_ : str = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
107
1
from __future__ import annotations import math def a_ ( UpperCamelCase_ : float , UpperCamelCase_ : int ) -> float: """simple docstring""" lowerCamelCase = u for i in range(1 , UpperCamelCase_ ): lowerCamelCase = temp * (u - i) return temp def a_ ( ) -> None: """simple docstring""" lowerCamelCase = int(input('enter the numbers of values: ' ) ) lowerCamelCase = [] for _ in range(UpperCamelCase_ ): y.append([] ) for i in range(UpperCamelCase_ ): for j in range(UpperCamelCase_ ): y[i].append(UpperCamelCase_ ) lowerCamelCase = 0 print('enter the values of parameters in a list: ' ) lowerCamelCase = list(map(UpperCamelCase_ , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(UpperCamelCase_ ): lowerCamelCase = float(input() ) lowerCamelCase = int(input('enter the value to interpolate: ' ) ) lowerCamelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase_ ): for j in range(n - i ): lowerCamelCase = y[j + 1][i - 1] - y[j][i - 1] lowerCamelCase = y[0][0] for i in range(1 , UpperCamelCase_ ): summ += (ucal(UpperCamelCase_ , UpperCamelCase_ ) * y[0][i]) / math.factorial(UpperCamelCase_ ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
246
from __future__ import annotations def a_ ( UpperCamelCase_ : int | str ) -> bool: """simple docstring""" lowerCamelCase = str(UpperCamelCase_ ) return n == n[::-1] def a_ ( UpperCamelCase_ : int = 1_0_0_0_0_0_0 ) -> Optional[int]: """simple docstring""" lowerCamelCase = 0 for i in range(1 , UpperCamelCase_ ): if is_palindrome(UpperCamelCase_ ) and is_palindrome(bin(UpperCamelCase_ ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
246
1
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE__ = logging.getLogger() def lowercase__ ( )-> List[Any]: UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""-f""" ) UpperCamelCase = parser.parse_args() return args.f def lowercase__ ( __UpperCamelCase )-> Tuple: UpperCamelCase = {} UpperCamelCase = os.path.join(__UpperCamelCase , """all_results.json""" ) if os.path.exists(__UpperCamelCase ): with open(__UpperCamelCase , """r""" ) as f: UpperCamelCase = json.load(__UpperCamelCase ) else: raise ValueError(F"can't find {path}" ) return results def lowercase__ ( )-> int: UpperCamelCase = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() SCREAMING_SNAKE_CASE__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class a_ ( lowerCamelCase ): @classmethod def A__ ( cls ) -> List[Any]: """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def A__ ( cls ) -> Optional[Any]: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 100 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = 7 if get_gpu_count() > 1 else 2 UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """translation_no_trainer""" ) ) ) @slow def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.1_0 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """image_classification_no_trainer""" ) ) )
35
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a_ ( lowerCamelCase ): def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """tf_padding""" ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """depth_multiplier""" ) ) class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=0.2_5 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE="relu6" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = depth_multiplier UpperCamelCase = min_depth UpperCamelCase = tf_padding UpperCamelCase = int(last_hidden_size * depth_multiplier ) UpperCamelCase = output_stride UpperCamelCase = hidden_act UpperCamelCase = classifier_dropout_prob UpperCamelCase = use_labels UpperCamelCase = is_training UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = scope def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def A__ ( self ) -> Optional[Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = MobileNetVaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowercase = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = MobileNetVaModelTester(self ) UpperCamelCase = MobileNetVaConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def A__ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def A__ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def A__ ( self ) -> Dict: """simple docstring""" pass def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = 26 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def A__ ( self ) -> Dict: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MobileNetVaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowercase__ ( )-> Optional[Any]: UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def A__ ( self ) -> Dict: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
35
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
391
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter a_ = 'Create a default config file for Accelerate with only a few flags set.' def __lowercase ( lowerCamelCase : str="no" , lowerCamelCase : str = default_json_config_file , lowerCamelCase : bool = False ): UpperCamelCase_ : Tuple = Path(lowerCamelCase ) path.parent.mkdir(parents=lowerCamelCase , exist_ok=lowerCamelCase ) if path.exists(): print( F"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False UpperCamelCase_ : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) UpperCamelCase_ : Optional[Any] = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCamelCase_ : Optional[Any] = torch.cuda.device_count() UpperCamelCase_ : Optional[Any] = num_gpus UpperCamelCase_ : List[Any] = False if num_gpus > 1: UpperCamelCase_ : Tuple = 'MULTI_GPU' else: UpperCamelCase_ : int = 'NO' elif is_xpu_available() and use_xpu: UpperCamelCase_ : List[str] = torch.xpu.device_count() UpperCamelCase_ : str = num_xpus UpperCamelCase_ : Tuple = False if num_xpus > 1: UpperCamelCase_ : Any = 'MULTI_XPU' else: UpperCamelCase_ : int = 'NO' elif is_npu_available(): UpperCamelCase_ : Tuple = torch.npu.device_count() UpperCamelCase_ : Dict = num_npus UpperCamelCase_ : Union[str, Any] = False if num_npus > 1: UpperCamelCase_ : Dict = 'MULTI_NPU' else: UpperCamelCase_ : Optional[Any] = 'NO' else: UpperCamelCase_ : Tuple = 0 UpperCamelCase_ : Any = True UpperCamelCase_ : List[str] = 1 UpperCamelCase_ : Optional[Any] = 'NO' UpperCamelCase_ : str = ClusterConfig(**lowerCamelCase ) config.to_json_file(lowerCamelCase ) return path def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : str ): UpperCamelCase_ : Optional[Any] = parser.add_parser('default' , parents=lowerCamelCase , help=lowerCamelCase , formatter_class=lowerCamelCase ) parser.add_argument( '--config_file' , default=lowerCamelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=lowerCamelCase , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=lowerCamelCase ) return parser def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : str = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"accelerate configuration saved at {config_file}" )
417
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : Dict = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowercase : List[str] = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowercase : List[Any] = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any]) -> Optional[int]: '''simple docstring''' __UpperCamelCase : str = numpy.dtype(numpy.uintaa).newbyteorder(">") return numpy.frombuffer(bytestream.read(4) , dtype=_lowerCamelCase)[0] @deprecated(_lowerCamelCase , "Please use tf.data to implement this functionality.") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> Any: '''simple docstring''' print("Extracting" , f.name) with gzip.GzipFile(fileobj=_lowerCamelCase) as bytestream: __UpperCamelCase : str = _readaa(_lowerCamelCase) if magic != 2_051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name)) __UpperCamelCase : List[str] = _readaa(_lowerCamelCase) __UpperCamelCase : Dict = _readaa(_lowerCamelCase) __UpperCamelCase : Optional[int] = _readaa(_lowerCamelCase) __UpperCamelCase : Dict = bytestream.read(rows * cols * num_images) __UpperCamelCase : Optional[int] = numpy.frombuffer(_lowerCamelCase , dtype=numpy.uinta) __UpperCamelCase : Dict = data.reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , 1) return data @deprecated(_lowerCamelCase , "Please use tf.one_hot on tensors.") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str]) -> str: '''simple docstring''' __UpperCamelCase : str = labels_dense.shape[0] __UpperCamelCase : str = numpy.arange(_lowerCamelCase) * num_classes __UpperCamelCase : str = numpy.zeros((num_labels, num_classes)) __UpperCamelCase : Tuple = 1 return labels_one_hot @deprecated(_lowerCamelCase , "Please use tf.data to implement this functionality.") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Optional[int]=10) -> Dict: '''simple docstring''' print("Extracting" , f.name) with gzip.GzipFile(fileobj=_lowerCamelCase) as bytestream: __UpperCamelCase : int = _readaa(_lowerCamelCase) if magic != 2_049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name)) __UpperCamelCase : Any = _readaa(_lowerCamelCase) __UpperCamelCase : List[Any] = bytestream.read(_lowerCamelCase) __UpperCamelCase : Dict = numpy.frombuffer(_lowerCamelCase , dtype=numpy.uinta) if one_hot: return _dense_to_one_hot(_lowerCamelCase , _lowerCamelCase) return labels class lowerCamelCase__ : '''simple docstring''' @deprecated( a , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self :int , a :Any , a :List[str] , a :Union[str, Any]=False , a :List[Any]=False , a :Dict=dtypes.floataa , a :int=True , a :Optional[int]=None , ) -> List[str]: __UpperCamelCase , __UpperCamelCase : Optional[int] = random_seed.get_seed(a ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __UpperCamelCase : Optional[Any] = dtypes.as_dtype(a ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: __UpperCamelCase : str = 1_0_0_0_0 __UpperCamelCase : Optional[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' __UpperCamelCase : Any = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __UpperCamelCase : Union[str, Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __UpperCamelCase : List[Any] = images.astype(numpy.floataa ) __UpperCamelCase : Optional[Any] = numpy.multiply(a , 1.0 / 255.0 ) __UpperCamelCase : Optional[Any] = images __UpperCamelCase : List[Any] = labels __UpperCamelCase : str = 0 __UpperCamelCase : Union[str, Any] = 0 @property def _lowerCamelCase ( self :Any ) -> Any: return self._images @property def _lowerCamelCase ( self :Any ) -> Dict: return self._labels @property def _lowerCamelCase ( self :List[str] ) -> str: return self._num_examples @property def _lowerCamelCase ( self :Tuple ) -> Dict: return self._epochs_completed def _lowerCamelCase ( self :Any , a :Optional[int] , a :Optional[int]=False , a :int=True ) -> Optional[int]: if fake_data: __UpperCamelCase : Any = [1] * 7_8_4 __UpperCamelCase : Union[str, Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(a )], [fake_label for _ in range(a )], ) __UpperCamelCase : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __UpperCamelCase : Any = numpy.arange(self._num_examples ) numpy.random.shuffle(a ) __UpperCamelCase : int = self.images[perma] __UpperCamelCase : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __UpperCamelCase : Optional[int] = self._num_examples - start __UpperCamelCase : Optional[int] = self._images[start : self._num_examples] __UpperCamelCase : int = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __UpperCamelCase : Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(a ) __UpperCamelCase : Optional[Any] = self.images[perm] __UpperCamelCase : Tuple = self.labels[perm] # Start next epoch __UpperCamelCase : Tuple = 0 __UpperCamelCase : Union[str, Any] = batch_size - rest_num_examples __UpperCamelCase : List[str] = self._index_in_epoch __UpperCamelCase : Dict = self._images[start:end] __UpperCamelCase : str = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __UpperCamelCase : Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_lowerCamelCase , "Please write your own downloading logic.") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any]) -> Tuple: '''simple docstring''' if not gfile.Exists(_lowerCamelCase): gfile.MakeDirs(_lowerCamelCase) __UpperCamelCase : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase) if not gfile.Exists(_lowerCamelCase): urllib.request.urlretrieve(_lowerCamelCase , _lowerCamelCase) # noqa: S310 with gfile.GFile(_lowerCamelCase) as f: __UpperCamelCase : Any = f.size() print("Successfully downloaded" , _lowerCamelCase , _lowerCamelCase , "bytes.") return filepath @deprecated( _lowerCamelCase , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : List[Any]=False , _lowerCamelCase : str=False , _lowerCamelCase : List[str]=dtypes.floataa , _lowerCamelCase : Any=True , _lowerCamelCase : Union[str, Any]=5_000 , _lowerCamelCase : str=None , _lowerCamelCase : Optional[int]=DEFAULT_SOURCE_URL , ) -> List[Any]: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_lowerCamelCase , one_hot=_lowerCamelCase , dtype=_lowerCamelCase , seed=_lowerCamelCase) __UpperCamelCase : Optional[int] = fake() __UpperCamelCase : Tuple = fake() __UpperCamelCase : List[str] = fake() return _Datasets(train=_lowerCamelCase , validation=_lowerCamelCase , test=_lowerCamelCase) if not source_url: # empty string check __UpperCamelCase : str = DEFAULT_SOURCE_URL __UpperCamelCase : Optional[int] = "train-images-idx3-ubyte.gz" __UpperCamelCase : Dict = "train-labels-idx1-ubyte.gz" __UpperCamelCase : List[str] = "t10k-images-idx3-ubyte.gz" __UpperCamelCase : List[str] = "t10k-labels-idx1-ubyte.gz" __UpperCamelCase : Optional[int] = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + train_images_file) with gfile.Open(_lowerCamelCase , "rb") as f: __UpperCamelCase : int = _extract_images(_lowerCamelCase) __UpperCamelCase : Optional[Any] = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + train_labels_file) with gfile.Open(_lowerCamelCase , "rb") as f: __UpperCamelCase : int = _extract_labels(_lowerCamelCase , one_hot=_lowerCamelCase) __UpperCamelCase : int = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + test_images_file) with gfile.Open(_lowerCamelCase , "rb") as f: __UpperCamelCase : Optional[int] = _extract_images(_lowerCamelCase) __UpperCamelCase : str = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + test_labels_file) with gfile.Open(_lowerCamelCase , "rb") as f: __UpperCamelCase : List[str] = _extract_labels(_lowerCamelCase , one_hot=_lowerCamelCase) if not 0 <= validation_size <= len(_lowerCamelCase): __UpperCamelCase : str = ( "Validation size should be between 0 and " F'{len(_lowerCamelCase)}. Received: {validation_size}.' ) raise ValueError(_lowerCamelCase) __UpperCamelCase : Any = train_images[:validation_size] __UpperCamelCase : Optional[Any] = train_labels[:validation_size] __UpperCamelCase : Optional[int] = train_images[validation_size:] __UpperCamelCase : Tuple = train_labels[validation_size:] __UpperCamelCase : List[str] = {"dtype": dtype, "reshape": reshape, "seed": seed} __UpperCamelCase : Union[str, Any] = _DataSet(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) __UpperCamelCase : str = _DataSet(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) __UpperCamelCase : Optional[Any] = _DataSet(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) return _Datasets(train=_lowerCamelCase , validation=_lowerCamelCase , test=_lowerCamelCase)
94
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : List[str] = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class a ( a__ ): snake_case__ = '''luke''' def __init__( self , _snake_case=5_02_67 , _snake_case=50_00_00 , _snake_case=7_68 , _snake_case=2_56 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=True , _snake_case=None , _snake_case=1 , _snake_case=0 , _snake_case=2 , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = entity_vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = entity_emb_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = use_entity_aware_attention lowerCAmelCase = classifier_dropout
4
def lowercase ( _a ) -> int: if not isinstance(_a ,_a ) or number < 0: raise ValueError("Input must be a non-negative integer" ) UpperCAmelCase_: List[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
137
0
def UpperCamelCase ( lowerCAmelCase__ = 100_0000 ): '''simple docstring''' lowercase = limit + 1 lowercase = [0] * limit for first_term in range(1 , lowerCAmelCase__ ): for n in range(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
717
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase__ :Optional[Any] = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase__ :List[str] = 10 lowercase__ :Tuple = 256 def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if len(lowerCAmelCase__ ) < MIN_NUM_TOKENS: return None lowercase = MinHash(num_perm=lowerCAmelCase__ ) for token in set(lowerCAmelCase__ ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return {t for t in NON_ALPHA.split(lowerCAmelCase__ ) if len(t.strip() ) > 0} class lowercase : def __init__( self ,*, A__ = 0.85 ,): lowercase = duplication_jaccard_threshold lowercase = NUM_PERM lowercase = MinHashLSH(threshold=self._duplication_jaccard_threshold ,num_perm=self._num_perm) lowercase = defaultdict(A__) def A__ ( self ,A__ ,A__): lowercase = self._index.query(A__) if code_key in self._index.keys: print(f'Duplicate key {code_key}') return self._index.insert(A__ ,A__) if len(A__) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A__) break else: self._duplicate_clusters[close_duplicates[0]].add(A__) def A__ ( self): lowercase = [] for base, duplicates in self._duplicate_clusters.items(): lowercase = [base] + list(A__) # reformat the cluster to be a list of dict lowercase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A__) return duplicate_clusters def A__ ( self ,A__): lowercase = self.get_duplicate_clusters() with open(A__ ,'''w''') as f: json.dump(A__ ,A__) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase , lowercase = element lowercase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase__ , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase__ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase__ , lowerCAmelCase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = get_tokens(lowerCAmelCase__ ) lowercase = get_tokens(lowerCAmelCase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowercase__ :List[Any] = None def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = [] for elementa in cluster: lowercase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: lowercase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(lowerCAmelCase__ , lowerCAmelCase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase = 1 extremes.append(lowerCAmelCase__ ) return extremes def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' global _shared_dataset lowercase = dataset lowercase = [] lowercase = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase__ , lowerCAmelCase__ , ) , total=len(lowerCAmelCase__ ) , ): extremes_list.append(lowerCAmelCase__ ) return extremes_list def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = 0.85 ): '''simple docstring''' lowercase = make_duplicate_clusters(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} lowercase = {} lowercase = find_extremes(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for extremes in extremes_clusters: for element in extremes: lowercase = element lowercase = duplicate_indices - set(extreme_dict.keys() ) lowercase = dataset.filter(lambda lowerCAmelCase__ , lowerCAmelCase__ : idx not in remove_indices , with_indices=lowerCAmelCase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase = element['''base_index'''] in extreme_dict if element["is_extreme"]: lowercase = extreme_dict[element['''base_index''']]['''copies'''] print(f'Original dataset size: {len(lowerCAmelCase__ )}' ) print(f'Number of duplicate clusters: {len(lowerCAmelCase__ )}' ) print(f'Files in duplicate cluster: {len(lowerCAmelCase__ )}' ) print(f'Unique files in duplicate cluster: {len(lowerCAmelCase__ )}' ) print(f'Filtered dataset size: {len(lowerCAmelCase__ )}' ) return ds_filter, duplicate_clusters
633
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self: Tuple , __UpperCamelCase: Any , __UpperCamelCase: str=7 , __UpperCamelCase: Tuple=3 , __UpperCamelCase: Dict=18 , __UpperCamelCase: str=30 , __UpperCamelCase: Optional[int]=400 , __UpperCamelCase: str=True , __UpperCamelCase: Tuple=None , __UpperCamelCase: int=True , ) -> str: __magic_name__ : Dict = size if size is not None else {"height": 18, "width": 18} __magic_name__ : Dict = parent __magic_name__ : Optional[int] = batch_size __magic_name__ : Optional[Any] = num_channels __magic_name__ : str = image_size __magic_name__ : Optional[int] = min_resolution __magic_name__ : Dict = max_resolution __magic_name__ : Optional[Any] = do_resize __magic_name__ : Optional[int] = size __magic_name__ : List[Any] = apply_ocr def lowerCAmelCase__ ( self: Optional[int] ) -> Dict: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( snake_case_ , unittest.TestCase ): '''simple docstring''' __snake_case = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase__ ( self: Dict ) -> Optional[int]: __magic_name__ : List[str] = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase__ ( self: Optional[int] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self: str ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "size" ) ) self.assertTrue(hasattr(__UpperCamelCase , "apply_ocr" ) ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: __magic_name__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) __magic_name__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> str: pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Any: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , __UpperCamelCase ) self.assertIsInstance(encoding.boxes , __UpperCamelCase ) # Test batched __magic_name__ : Dict = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase__ ( self: Tuple ) -> Any: # Initialize image_processing __magic_name__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __magic_name__ : int = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: # Initialize image_processing __magic_name__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input __magic_name__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __magic_name__ : List[Any] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase__ ( self: Optional[int] ) -> Union[str, Any]: # with apply_OCR = True __magic_name__ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset __magic_name__ : Optional[Any] = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) __magic_name__ : Tuple = Image.open(ds[0]["file"] ).convert("RGB" ) __magic_name__ : List[str] = image_processing(__UpperCamelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __magic_name__ : List[str] = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 __magic_name__ : str = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCamelCase ) self.assertListEqual(encoding.boxes , __UpperCamelCase ) # with apply_OCR = False __magic_name__ : List[Any] = LayoutLMvaImageProcessor(apply_ocr=__UpperCamelCase ) __magic_name__ : Optional[int] = image_processing(__UpperCamelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
436
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class _snake_case ( snake_case_ , snake_case_ ): '''simple docstring''' __snake_case = "resnet" __snake_case = ["basic", "bottleneck"] def __init__( self: List[Any] , __UpperCamelCase: Tuple=3 , __UpperCamelCase: List[str]=64 , __UpperCamelCase: int=[256, 512, 1024, 2048] , __UpperCamelCase: Union[str, Any]=[3, 4, 6, 3] , __UpperCamelCase: str="bottleneck" , __UpperCamelCase: List[Any]="relu" , __UpperCamelCase: List[str]=False , __UpperCamelCase: List[str]=None , __UpperCamelCase: Tuple=None , **__UpperCamelCase: Dict , ) -> Union[str, Any]: super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) __magic_name__ : int = num_channels __magic_name__ : Optional[Any] = embedding_size __magic_name__ : str = hidden_sizes __magic_name__ : Any = depths __magic_name__ : int = layer_type __magic_name__ : Any = hidden_act __magic_name__ : Optional[int] = downsample_in_first_stage __magic_name__ : List[Any] = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCamelCase ) + 1 )] __magic_name__ , __magic_name__ : int = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names ) class _snake_case ( snake_case_ ): '''simple docstring''' __snake_case = version.parse("1.11" ) @property def lowerCAmelCase__ ( self: Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self: Any ) -> float: return 1E-3
436
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor A__ = logging.get_logger(__name__) class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self: Any , *__UpperCamelCase: Dict , **__UpperCamelCase: List[Any] ): '''simple docstring''' warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
706
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' __magic_name__ = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=__UpperCamelCase ).to(__UpperCamelCase ) __magic_name__ = AutoTokenizer.from_pretrained('google/mt5-small' ) __magic_name__ = tokenizer('Hello there' , return_tensors='pt' ).input_ids __magic_name__ = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __magic_name__ = model(input_ids.to(__UpperCamelCase ) , labels=labels.to(__UpperCamelCase ) ).loss __magic_name__ = -(labels.shape[-1] * loss.item()) __magic_name__ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
184
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase ={ "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
333
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } __lowerCAmelCase ={ "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class __magic_name__ ( _a): _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] _UpperCAmelCase : List[Any] = DistilBertTokenizer def __init__( self : List[str] ,__SCREAMING_SNAKE_CASE : Union[str, Any]=None ,__SCREAMING_SNAKE_CASE : Tuple=None ,__SCREAMING_SNAKE_CASE : Dict=True ,__SCREAMING_SNAKE_CASE : List[Any]="[UNK]" ,__SCREAMING_SNAKE_CASE : List[Any]="[SEP]" ,__SCREAMING_SNAKE_CASE : Tuple="[PAD]" ,__SCREAMING_SNAKE_CASE : Union[str, Any]="[CLS]" ,__SCREAMING_SNAKE_CASE : Optional[Any]="[MASK]" ,__SCREAMING_SNAKE_CASE : str=True ,__SCREAMING_SNAKE_CASE : str=None ,**__SCREAMING_SNAKE_CASE : Union[str, Any] ,): super().__init__( __SCREAMING_SNAKE_CASE ,tokenizer_file=__SCREAMING_SNAKE_CASE ,do_lower_case=__SCREAMING_SNAKE_CASE ,unk_token=__SCREAMING_SNAKE_CASE ,sep_token=__SCREAMING_SNAKE_CASE ,pad_token=__SCREAMING_SNAKE_CASE ,cls_token=__SCREAMING_SNAKE_CASE ,mask_token=__SCREAMING_SNAKE_CASE ,tokenize_chinese_chars=__SCREAMING_SNAKE_CASE ,strip_accents=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,__SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("strip_accents" ,__SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,__SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(__SCREAMING_SNAKE_CASE ,normalizer_state.pop("type" ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase = do_lower_case def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : Any=None ): UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self : Optional[Any] ,__SCREAMING_SNAKE_CASE : List[int] ,__SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Optional[str] = None ): UpperCAmelCase = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE ,name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
333
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowerCAmelCase ( UpperCAmelCase ) ->Any: """simple docstring""" return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->Optional[Any]: """simple docstring""" __magic_name__ : List[Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __magic_name__ : int = key.replace('''heads.cmd.mim_head.cls.predictions''', '''mmm_image_head''' ) __magic_name__ : Any = key.replace('''heads.cmd.mlm_head.cls.predictions''', '''mmm_text_head''' ) __magic_name__ : str = key.replace('''heads.cmd.itm_head.cls''', '''itm_head''' ) __magic_name__ : Dict = key.replace('''heads.cmd.itm_head.pooler''', '''itm_head.pooler''' ) __magic_name__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''', '''flava.logit_scale''' ) __magic_name__ : Optional[int] = key.replace('''heads.fairseq_mlm.cls.predictions''', '''mlm_head''' ) __magic_name__ : int = key.replace('''heads.imagenet.mim_head.cls.predictions''', '''mim_head''' ) __magic_name__ : int = key.replace('''mm_text_projection''', '''flava.text_to_mm_projection''' ) __magic_name__ : List[Any] = key.replace('''mm_image_projection''', '''flava.image_to_mm_projection''' ) __magic_name__ : Any = key.replace('''image_encoder.module''', '''flava.image_model''' ) __magic_name__ : Optional[int] = key.replace('''text_encoder.module''', '''flava.text_model''' ) __magic_name__ : Dict = key.replace('''mm_encoder.module.encoder.cls_token''', '''flava.multimodal_model.cls_token''' ) __magic_name__ : Optional[Any] = key.replace('''mm_encoder.module''', '''flava.multimodal_model''' ) __magic_name__ : List[str] = key.replace('''text_projection''', '''flava.text_projection''' ) __magic_name__ : str = key.replace('''image_projection''', '''flava.image_projection''' ) __magic_name__ : List[Any] = value.float() for key, value in codebook_state_dict.items(): __magic_name__ : str = value return upgrade @torch.no_grad() def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase=None ) ->str: """simple docstring""" if config_path is not None: __magic_name__ : Tuple = FlavaConfig.from_pretrained(UpperCAmelCase ) else: __magic_name__ : Union[str, Any] = FlavaConfig() __magic_name__ : List[str] = FlavaForPreTraining(UpperCAmelCase ).eval() __magic_name__ : List[str] = convert_dalle_checkpoint(UpperCAmelCase, UpperCAmelCase, save_checkpoint=UpperCAmelCase ) if os.path.exists(UpperCAmelCase ): __magic_name__ : Tuple = torch.load(UpperCAmelCase, map_location='''cpu''' ) else: __magic_name__ : Optional[Any] = torch.hub.load_state_dict_from_url(UpperCAmelCase, map_location='''cpu''' ) __magic_name__ : List[str] = upgrade_state_dict(UpperCAmelCase, UpperCAmelCase ) hf_model.load_state_dict(UpperCAmelCase ) __magic_name__ : List[Any] = hf_model.state_dict() __magic_name__ : Any = count_parameters(UpperCAmelCase ) __magic_name__ : Tuple = count_parameters(UpperCAmelCase ) + count_parameters(UpperCAmelCase ) assert torch.allclose(UpperCAmelCase, UpperCAmelCase, atol=1E-3 ) hf_model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase_ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
721
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowercase_ = True except (ImportError, AttributeError): lowercase_ = object def lowerCAmelCase ( *UpperCAmelCase, **UpperCAmelCase ) ->Any: """simple docstring""" pass lowercase_ = False lowercase_ = logging.get_logger('''transformers-cli/serving''') def lowerCAmelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" __magic_name__ : Optional[int] = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(UpperCAmelCase, args.host, args.port, args.workers ) class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : dict class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : List[str] lowerCamelCase__ : Optional[List[int]] class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : str class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Any class A__ ( __SCREAMING_SNAKE_CASE ): @staticmethod def lowercase ( lowerCamelCase ) -> Dict: """simple docstring""" __magic_name__ : int = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=lowerCamelCase , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=lowerCamelCase , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=lowerCamelCase , default=8888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=lowerCamelCase , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=lowerCamelCase , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=lowerCamelCase , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=lowerCamelCase , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=lowerCamelCase , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=lowerCamelCase ) def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" __magic_name__ : List[str] = pipeline __magic_name__ : Union[str, Any] = host __magic_name__ : int = port __magic_name__ : Optional[int] = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F'''Serving model over {host}:{port}''' ) __magic_name__ : int = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), ] , timeout=600 , ) def lowercase ( self ) -> Dict: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowercase ( self ) -> str: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowercase ( self , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) ) -> Any: """simple docstring""" try: __magic_name__ : List[str] = self._pipeline.tokenizer.tokenize(lowerCamelCase ) if return_ids: __magic_name__ : int = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCamelCase ) return ServeTokenizeResult(tokens=lowerCamelCase , tokens_ids=lowerCamelCase ) else: return ServeTokenizeResult(tokens=lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCamelCase )} ) def lowercase ( self , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , ) -> Any: """simple docstring""" try: __magic_name__ : Any = self._pipeline.tokenizer.decode(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return ServeDeTokenizeResult(model='''''' , text=lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCamelCase )} ) async def lowercase ( self , lowerCamelCase=Body(lowerCamelCase , embed=lowerCamelCase ) ) -> Optional[int]: """simple docstring""" if len(lowerCamelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __magic_name__ : Optional[int] = self._pipeline(lowerCamelCase ) return ServeForwardResult(output=lowerCamelCase ) except Exception as e: raise HTTPException(500 , {'''error''': str(lowerCamelCase )} )
336
0
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline lowercase = '''path-to-your-trained-model''' lowercase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') lowercase = '''A photo of sks dog in a bucket''' lowercase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
573
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=10 , snake_case=18 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , snake_case=None , ) -> Optional[Any]: _UpperCAmelCase = size if size is not None else {'shortest_edge': 18} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_frames _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = crop_size def lowerCamelCase_ ( self ) -> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = VivitImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = VivitImageProcessingTester(self ) @property def lowerCamelCase_ ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCamelCase_ ( self ) -> List[str]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case ) for video in video_inputs: self.assertIsInstance(snake_case , snake_case ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase_ ( self ) -> Optional[Any]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for video in video_inputs: self.assertIsInstance(snake_case , snake_case ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase_ ( self ) -> str: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for video in video_inputs: self.assertIsInstance(snake_case , snake_case ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
573
1
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _snake_case ( _snake_case : Optional[int] , _snake_case : Union[str, Any]=() , _snake_case : List[str]=None , _snake_case : int="no" , _snake_case : Any="29500" ): lowerCAmelCase : List[str] = False lowerCAmelCase : Union[str, Any] = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): lowerCAmelCase : str = True elif "IPython" in sys.modules: lowerCAmelCase : Optional[int] = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: lowerCAmelCase : Union[str, Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , UpperCAmelCase__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: lowerCAmelCase : str = 8 lowerCAmelCase : List[str] = PrepareForLaunch(UpperCAmelCase__ , distributed_type='''TPU''' ) print(f'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*UpperCAmelCase__ ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase__ , master_addr='''127.0.01''' , master_port=UpperCAmelCase__ , mixed_precision=UpperCAmelCase__ ): lowerCAmelCase : str = PrepareForLaunch(UpperCAmelCase__ , distributed_type='''MULTI_GPU''' ) print(f'''Launching training on {num_processes} GPUs.''' ) try: start_processes(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCAmelCase : str = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*UpperCAmelCase__ ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[str]=() , _snake_case : Optional[int]=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase__ , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): lowerCAmelCase : Optional[Any] = PrepareForLaunch(UpperCAmelCase__ , debug=UpperCAmelCase__ ) start_processes(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='''fork''' )
714
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = 0 @slow def lowerCamelCase__ ( self : Dict ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) # Check that tokenizer_type ≠ model_type lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): with pytest.raises(UpperCamelCase_ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowerCamelCase__ ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCAmelCase : Dict = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowerCAmelCase : Any = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowerCamelCase__ ( self : Tuple ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCAmelCase : Optional[Any] = TOKENIZER_MAPPING.values() lowerCAmelCase : Optional[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Any ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = '''Hello, world. How are you?''' lowerCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): # Check we can load the tokenizer config of an online model. lowerCAmelCase : Any = get_tokenizer_config('''bert-base-cased''' ) lowerCAmelCase : Optional[int] = config.pop('''_commit_hash''' , UpperCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase_ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCAmelCase : Union[str, Any] = get_tokenizer_config(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Dict = get_tokenizer_config(UpperCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowerCamelCase__ ( self : Optional[int] ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = CustomTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase__ ( self : str ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained(UpperCamelCase_ ) bert_tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = CustomTokenizerFast.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): class snake_case_( a__ ): __UpperCamelCase = False class snake_case_( a__ ): __UpperCamelCase = NewTokenizer __UpperCamelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowerCamelCase__ ( self : str ): with self.assertRaisesRegex( UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''bert-base''' ) def lowerCamelCase__ ( self : int ): with self.assertRaisesRegex( UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' ) def lowerCamelCase__ ( self : Optional[int] ): # Make sure we have cached the tokenizer. lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
637
0
def snake_case (UpperCAmelCase__ ) -> str: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" UpperCamelCase_: Optional[Any] = False if num < 0: UpperCamelCase_: Tuple = True UpperCamelCase_: int = -num UpperCamelCase_: list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(UpperCAmelCase__ ) for e in binary ) return "0b" + "".join(str(UpperCAmelCase__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
57
'''simple docstring''' from collections.abc import Generator def UpperCAmelCase_ ( ): """simple docstring""" lowercase , lowercase = 0, 1 while True: lowercase , lowercase = b, a + b yield b def UpperCAmelCase_ ( lowerCAmelCase_ = 1000 ): """simple docstring""" lowercase = 1 lowercase = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
310
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) UpperCAmelCase_ : int = logging.getLogger(__name__) def _lowerCAmelCase ( _a : str ) -> Union[str, Any]: lowerCAmelCase_ : Tuple = git.Repo(search_parent_directories=_a ) lowerCAmelCase_ : Tuple = { """repo_id""": str(_a ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(_a , """git_log.json""" ) , """w""" ) as f: json.dump(_a , _a , indent=4 ) def _lowerCAmelCase ( _a : Tuple ) -> Optional[int]: if params.n_gpu <= 0: lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Tuple = -1 lowerCAmelCase_ : int = True lowerCAmelCase_ : Any = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase_ : List[Any] = int(os.environ["""WORLD_SIZE"""] ) lowerCAmelCase_ : Tuple = int(os.environ["""N_GPU_NODE"""] ) lowerCAmelCase_ : Dict = int(os.environ["""RANK"""] ) # number of nodes / node ID lowerCAmelCase_ : Tuple = params.world_size // params.n_gpu_per_node lowerCAmelCase_ : Union[str, Any] = params.global_rank // params.n_gpu_per_node lowerCAmelCase_ : Union[str, Any] = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase_ : str = 1 lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Dict = 1 lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : List[str] = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase_ : Optional[Any] = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase_ : str = params.n_nodes > 1 # summary lowerCAmelCase_ : Optional[int] = F'--- Global rank: {params.global_rank} - ' logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def _lowerCAmelCase ( _a : Optional[int] ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
440
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCAmelCase_ : str = logging.get_logger(__name__) @dataclass class lowercase__ : __UpperCamelCase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) __UpperCamelCase = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __UpperCamelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase = field( default=__A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : List[str] = self.task_name.lower() class lowercase__ ( __A ): __UpperCamelCase = """train""" __UpperCamelCase = """dev""" __UpperCamelCase = """test""" class lowercase__ ( __A ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = None , ): warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowercase , ) lowerCAmelCase_ : Any = args lowerCAmelCase_ : List[str] = glue_processors[args.task_name]() lowerCAmelCase_ : Tuple = glue_output_modes[args.task_name] if isinstance(_lowercase , _lowercase ): try: lowerCAmelCase_ : Dict = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file lowerCAmelCase_ : Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase_ : List[str] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = label_list[2], label_list[1] lowerCAmelCase_ : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase_ : Optional[int] = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: lowerCAmelCase_ : Dict = time.time() lowerCAmelCase_ : str = torch.load(_lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase_ : List[Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase_ : Dict = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase_ : List[str] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase_ : Optional[int] = examples[:limit_length] lowerCAmelCase_ : Any = glue_convert_examples_to_features( _lowercase , _lowercase , max_length=args.max_seq_length , label_list=_lowercase , output_mode=self.output_mode , ) lowerCAmelCase_ : str = time.time() torch.save(self.features , _lowercase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): return len(self.features ) def __getitem__( self , _lowercase ): return self.features[i] def UpperCAmelCase__ ( self ): return self.label_list
440
1
def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' return abs(lowerCAmelCase_) if a == 0 else greatest_common_divisor(b % a , lowerCAmelCase_) def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCamelCase_ ,lowerCamelCase_ : Optional[int] = y, x % y return abs(lowerCAmelCase_) def __magic_name__ ( ): '''simple docstring''' try: lowerCamelCase_ : Dict = input("Enter two integers separated by comma (,): ").split(",") lowerCamelCase_ : Tuple = int(nums[0]) lowerCamelCase_ : Any = int(nums[1]) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(lowerCAmelCase_ , lowerCAmelCase_)}""") print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowerCAmelCase_ , lowerCAmelCase_)}""") except (IndexError, UnboundLocalError, ValueError): print("Wrong input") if __name__ == "__main__": main()
250
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = CanineTokenizer __UpperCAmelCase : int = False def _UpperCamelCase ( self ): super().setUp() lowerCamelCase_ : int = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): return CanineTokenizer.from_pretrained("google/canine-s" ) def _UpperCamelCase ( self , **a_ ): lowerCamelCase_ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) lowerCamelCase_ : Dict = 1024 return tokenizer @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.canine_tokenizer lowerCamelCase_ : str = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off lowerCamelCase_ : Dict = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on lowerCamelCase_ : List[Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) self.assertIsInstance(a_ , a_ ) lowerCamelCase_ : List[str] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(a_ , a_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Any = self.canine_tokenizer lowerCamelCase_ : Tuple = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] lowerCamelCase_ : Union[str, Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , a_ ) self.assertIn("attention_mask" , a_ ) self.assertIn("token_type_ids" , a_ ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : int = self.canine_tokenizer lowerCamelCase_ : Tuple = [ "What's the weater?", "It's about 25 degrees.", ] lowerCamelCase_ : Optional[Any] = tokenizer( text_target=a_ , max_length=32 , padding="max_length" , truncation=a_ , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _UpperCamelCase ( self ): # safety check on max_len default value so we are sure the test works lowerCamelCase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : Optional[int] = tempfile.mkdtemp() lowerCamelCase_ : Dict = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Optional[int] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Union[str, Any] = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : List[Any] = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) shutil.rmtree(a_ ) lowerCamelCase_ : List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : List[Any] = tempfile.mkdtemp() lowerCamelCase_ : Tuple = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Dict = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCamelCase_ : List[str] = chr(0Xe007 ) additional_special_tokens.append(a_ ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Any = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : Any = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) self.assertIn(a_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase_ : int = tokenizer.__class__.from_pretrained(a_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ ,lowerCamelCase_ : str = self.get_clean_sequence(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Tuple = 0Xe005 lowerCamelCase_ : Dict = chr(a_ ) tokenizer.add_special_tokens({"cls_token": special_token} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(len(a_ ) , 1 ) lowerCamelCase_ : List[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=a_ ) lowerCamelCase_ : List[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(a_ , input_encoded + special_token_id ) lowerCamelCase_ : Optional[int] = tokenizer.decode(a_ , skip_special_tokens=a_ ) self.assertTrue(special_token not in decoded ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Optional[int] = chr(0Xe005 ) lowerCamelCase_ : str = chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=a_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) lowerCamelCase_ : Tuple = tokenizer.tokenize(a_ ) lowerCamelCase_ : List[Any] = tokenizer.tokenize(a_ ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(token_a[0] , a_ ) self.assertEqual(token_a[0] , a_ ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: lowerCamelCase_ : List[str] = 0Xe006 lowerCamelCase_ : Any = chr(a_ ) lowerCamelCase_ : str = AddedToken(a_ , lstrip=a_ ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(a_ ) tokenizer.from_pretrained(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : List[Any] = json.load(a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : int = json.load(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Any = 0Xe006 lowerCamelCase_ : List[Any] = chr(a_ ) lowerCamelCase_ : Any = [new_token_a] lowerCamelCase_ : Optional[Any] = [new_token_a] with open(os.path.join(a_ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase_ : str = tokenizer_class.from_pretrained(a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCamelCase_ : Optional[int] = 0Xe007 lowerCamelCase_ : List[str] = chr(a_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase_ : int = [AddedToken(a_ , lstrip=a_ )] lowerCamelCase_ : Dict = tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Union[str, Any] = "hello world" if self.space_between_special_tokens: lowerCamelCase_ : int = "[CLS] hello world [SEP]" else: lowerCamelCase_ : int = input lowerCamelCase_ : Optional[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.decode(a_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(a_ , [output, output.lower()] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Tuple = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowerCamelCase_ : Optional[int] = "a" lowerCamelCase_ : Dict = ord(a_ ) for attr in attributes_list: setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [] ) lowerCamelCase_ : Optional[int] = 0Xe006 lowerCamelCase_ : List[str] = chr(a_ ) setattr(a_ , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass
250
1
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : def __init__( self : int , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple=0.2 , _lowerCamelCase : List[Any]=0.2 ): _snake_case = bp_numa _snake_case = bp_numa _snake_case = bp_numa _snake_case = conva_get[:2] _snake_case = conva_get[2] _snake_case = size_pa _snake_case = rate_w _snake_case = rate_t _snake_case = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _snake_case = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _snake_case = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _snake_case = -2 * np.random.rand(self.conva[1] ) + 1 _snake_case = -2 * np.random.rand(self.num_bpa ) + 1 _snake_case = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase ( self : Optional[int] , _lowerCamelCase : Any ): # save model dict with pickle _snake_case = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowercase , '''wb''' ) as f: pickle.dump(_lowercase , _lowercase ) print(f'''Model saved: {save_path}''' ) @classmethod def lowercase ( cls : Union[str, Any] , _lowerCamelCase : Any ): # read saved model with open(_lowercase , '''rb''' ) as f: _snake_case = pickle.load(_lowercase ) # noqa: S301 _snake_case = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) _snake_case = model_dic.get('''size_pooling1''' ) _snake_case = model_dic.get('''num_bp1''' ) _snake_case = model_dic.get('''num_bp2''' ) _snake_case = model_dic.get('''num_bp3''' ) _snake_case = model_dic.get('''rate_weight''' ) _snake_case = model_dic.get('''rate_thre''' ) # create model instance _snake_case = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter _snake_case = model_dic.get('''w_conv1''' ) _snake_case = model_dic.get('''wkj''' ) _snake_case = model_dic.get('''vji''' ) _snake_case = model_dic.get('''thre_conv1''' ) _snake_case = model_dic.get('''thre_bp2''' ) _snake_case = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase ( self : Tuple , _lowerCamelCase : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def lowercase ( self : List[Any] , _lowerCamelCase : Dict ): return round(_lowercase , 3 ) def lowercase ( self : List[str] , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] ): # convolution process _snake_case = convs[0] _snake_case = convs[1] _snake_case = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus _snake_case = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): _snake_case = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix _snake_case = [] _snake_case = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): _snake_case = [] for i_focus in range(len(_lowercase ) ): _snake_case = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) _snake_case = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion _snake_case = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) _snake_case = np.asarray(_lowercase ) return focus_list, data_featuremap def lowercase ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[Any]="average_pool" ): # pooling process _snake_case = len(featuremaps[0] ) _snake_case = int(size_map / size_pooling ) _snake_case = [] for i_map in range(len(_lowercase ) ): _snake_case = featuremaps[i_map] _snake_case = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): _snake_case = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) _snake_case = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def lowercase ( self : Any , _lowerCamelCase : Tuple ): # expanding three dimension data to one dimension list _snake_case = [] for i in range(len(_lowercase ) ): _snake_case = np.shape(data[i] ) _snake_case = data[i].reshape(1 , shapes[0] * shapes[1] ) _snake_case = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) _snake_case = np.asarray(_lowercase ) return data_expanded def lowercase ( self : Tuple , _lowerCamelCase : str ): # expanding matrix to one dimension list _snake_case = np.asarray(_lowercase ) _snake_case = np.shape(_lowercase ) _snake_case = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase ( self : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : List[Any] ): _snake_case = [] _snake_case = 0 for i_map in range(_lowercase ): _snake_case = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): _snake_case = pd_pool[ i_pool ] _snake_case = i_pool + 1 _snake_case = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def lowercase ( self : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowercase )) ) _snake_case = 0 _snake_case = [] _snake_case = 10000 while rp < n_repeat and mse >= error_accuracy: _snake_case = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) _snake_case = np.asmatrix(datas_train[p] ) _snake_case = np.asarray(datas_teach[p] ) _snake_case , _snake_case = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _snake_case = self.pooling(_lowercase , self.size_poolinga ) _snake_case = np.shape(_lowercase ) _snake_case = self._expand(_lowercase ) _snake_case = data_bp_input _snake_case = np.dot(_lowercase , self.vji.T ) - self.thre_bpa _snake_case = self.sig(_lowercase ) _snake_case = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa _snake_case = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _snake_case = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) _snake_case = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) _snake_case = np.dot(_lowercase , self.vji ) _snake_case = pd_i_all / (self.size_poolinga * self.size_poolinga) _snake_case = pd_conva_pooled.T.getA().tolist() _snake_case = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _snake_case = self._expand_mat(pd_conva_all[k_conv] ) _snake_case = self.rate_weight * np.dot(_lowercase , _lowercase ) _snake_case = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _snake_case = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _snake_case = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _snake_case = self.vji + pd_j_all.T * bp_outa * self.rate_weight _snake_case = self.thre_bpa - pd_k_all * self.rate_thre _snake_case = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _snake_case = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _snake_case = rp + 1 _snake_case = error_count / patterns all_mse.append(_lowercase ) def draw_error(): _snake_case = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '''+-''' ) plt.plot(_lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def lowercase ( self : str , _lowerCamelCase : Optional[int] ): # model predict _snake_case = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): _snake_case = np.asmatrix(datas_test[p] ) _snake_case , _snake_case = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _snake_case = self.pooling(_lowercase , self.size_poolinga ) _snake_case = self._expand(_lowercase ) _snake_case = data_bp_input _snake_case = bp_outa * self.vji.T - self.thre_bpa _snake_case = self.sig(_lowercase ) _snake_case = bp_outa * self.wkj.T - self.thre_bpa _snake_case = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) _snake_case = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def lowercase ( self : Optional[Any] , _lowerCamelCase : int ): # return the data of image after convoluting process so we can check it out _snake_case = np.asmatrix(_lowercase ) _snake_case , _snake_case = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _snake_case = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
703
"""simple docstring""" import os def _UpperCAmelCase ( __lowerCamelCase : Optional[int] ) -> Union[str, Any]: _snake_case = len(grid[0] ) _snake_case = len(__lowerCamelCase ) _snake_case = 0 _snake_case = 0 _snake_case = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__lowerCamelCase ): for j in range(n_rows - 3 ): _snake_case = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _snake_case = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _snake_case = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _snake_case = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _snake_case = max( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if max_product > largest: _snake_case = max_product return largest def _UpperCAmelCase ( ) -> str: _snake_case = [] with open(os.path.dirname(__lowerCamelCase ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) _snake_case = [[int(__lowerCamelCase ) for i in grid[j]] for j in range(len(__lowerCamelCase ) )] return largest_product(__lowerCamelCase ) if __name__ == "__main__": print(solution())
430
0
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Union[str, Any] = (DPMSolverSDEScheduler,) _snake_case : List[Any] = 1_0 def A ( self : int , **A_ : int )-> Dict: __UpperCamelCase = { "num_train_timesteps": 11_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**A_ ) return config def A ( self : Union[str, Any] )-> Optional[Any]: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A_ ) def A ( self : Any )-> List[str]: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def A ( self : Optional[int] )-> Optional[int]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def A ( self : Union[str, Any] )-> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def A ( self : Any )-> List[Any]: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(A_ , A_ ) __UpperCamelCase = model(A_ , A_ ) __UpperCamelCase = scheduler.step(A_ , A_ , A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1e-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def A ( self : str )-> Any: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(prediction_type="v_prediction" ) __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(A_ , A_ ) __UpperCamelCase = model(A_ , A_ ) __UpperCamelCase = scheduler.step(A_ , A_ , A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1e-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1e-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1e-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1e-3 def A ( self : str )-> Optional[int]: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter.to(A_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __UpperCamelCase = scheduler.scale_model_input(A_ , A_ ) __UpperCamelCase = model(A_ , A_ ) __UpperCamelCase = scheduler.step(A_ , A_ , A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1e-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def A ( self : Optional[int] )-> Dict: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_ , use_karras_sigmas=A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter.to(A_ ) * scheduler.init_noise_sigma __UpperCamelCase = sample.to(A_ ) for t in scheduler.timesteps: __UpperCamelCase = scheduler.scale_model_input(A_ , A_ ) __UpperCamelCase = model(A_ , A_ ) __UpperCamelCase = scheduler.step(A_ , A_ , A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
505
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = KandinskyInpaintPipeline _snake_case : int = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _snake_case : str = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _snake_case : Optional[int] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _snake_case : Optional[Any] = False @property def A ( self : int )-> Tuple: return 32 @property def A ( self : int )-> List[Any]: return 32 @property def A ( self : Dict )-> Tuple: return self.time_input_dim @property def A ( self : Union[str, Any] )-> Tuple: return self.time_input_dim * 4 @property def A ( self : Dict )-> str: return 1_00 @property def A ( self : int )-> Dict: __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def A ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def A ( self : int )-> str: torch.manual_seed(0 ) __UpperCamelCase = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def A ( self : Optional[int] )-> Union[str, Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self : List[str] )-> Tuple: torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : str )-> List[Any]: __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type="epsilon" , thresholding=A_ , ) __UpperCamelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def A ( self : Union[str, Any] , A_ : Optional[Any] , A_ : Optional[Any]=0 )-> Dict: __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((2_56, 2_56) ) # create mask __UpperCamelCase = np.ones((64, 64) , dtype=np.floataa ) __UpperCamelCase = 0 if str(A_ ).startswith("mps" ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def A ( self : Optional[int] )-> Dict: __UpperCamelCase = "cpu" __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def A ( self : Union[str, Any] )-> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : str )-> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Any )-> str: __UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) __UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __UpperCamelCase = np.ones((7_68, 7_68) , dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = "a hat" __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __UpperCamelCase = pipeline( A_ , image=A_ , mask_image=A_ , image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="np" , ) __UpperCamelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(A_ , A_ )
505
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class A_ : _A :int _A :int class A_ : def __init__( self : List[str] , snake_case__ : int ): lowercase = [[] for _ in range(snake_case__ )] lowercase = size def __getitem__( self : Optional[int] , snake_case__ : int ): return iter(self._graph[vertex] ) @property def SCREAMING_SNAKE_CASE__ ( self : int ): return self._size def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int ): if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(snake_case__ , snake_case__ ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : int , snake_case__ : int ): lowercase = deque([start_vertex] ) lowercase = [None] * self.size lowercase = 0 while queue: lowercase = queue.popleft() lowercase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase = current_distance + edge.weight lowercase = distances[edge.destination_vertex] if ( isinstance(snake_case__ , snake_case__ ) and new_distance >= dest_vertex_distance ): continue lowercase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
72
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str ={ '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A_ ( __a ): _A :Tuple = '''data2vec-audio''' def __init__( self : Optional[Any] , snake_case__ : List[Any]=32 , snake_case__ : List[Any]=7_68 , snake_case__ : int=12 , snake_case__ : Dict=12 , snake_case__ : List[str]=30_72 , snake_case__ : List[str]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : Tuple=0.0 , snake_case__ : Tuple=0.1 , snake_case__ : Any=0.1 , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-5 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__ : List[str]=(5, 2, 2, 2, 2, 2, 2) , snake_case__ : str=(10, 3, 3, 3, 3, 2, 2) , snake_case__ : Any=False , snake_case__ : List[str]=16 , snake_case__ : Any=19 , snake_case__ : Optional[Any]=5 , snake_case__ : str=0.05 , snake_case__ : Tuple=10 , snake_case__ : Optional[Any]=2 , snake_case__ : Dict=0.0 , snake_case__ : int=10 , snake_case__ : Any=0 , snake_case__ : int="sum" , snake_case__ : str=False , snake_case__ : str=False , snake_case__ : Optional[int]=2_56 , snake_case__ : List[str]=(5_12, 5_12, 5_12, 5_12, 15_00) , snake_case__ : List[str]=(5, 3, 3, 1, 1) , snake_case__ : int=(1, 2, 3, 1, 1) , snake_case__ : Optional[Any]=5_12 , snake_case__ : Dict=0 , snake_case__ : Optional[Any]=1 , snake_case__ : Tuple=2 , snake_case__ : Tuple=False , snake_case__ : List[str]=3 , snake_case__ : List[str]=2 , snake_case__ : Tuple=3 , snake_case__ : List[str]=None , **snake_case__ : str , ): super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) lowercase = hidden_size lowercase = feat_extract_activation lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = conv_bias lowercase = num_conv_pos_embeddings lowercase = num_conv_pos_embedding_groups lowercase = conv_pos_kernel_size lowercase = len(self.conv_dim ) lowercase = num_hidden_layers lowercase = intermediate_size lowercase = hidden_act lowercase = num_attention_heads lowercase = hidden_dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = feat_proj_dropout lowercase = final_dropout lowercase = layerdrop lowercase = layer_norm_eps lowercase = initializer_range lowercase = vocab_size lowercase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase = mask_time_prob lowercase = mask_time_length lowercase = mask_time_min_masks lowercase = mask_feature_prob lowercase = mask_feature_length lowercase = mask_feature_min_masks # ctc loss lowercase = ctc_loss_reduction lowercase = ctc_zero_infinity # adapter lowercase = add_adapter lowercase = adapter_kernel_size lowercase = adapter_stride lowercase = num_adapter_layers lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return math.prod(self.conv_stride )
72
1
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( a, a, a, a, a ): """simple docstring""" with open(a ) as metadata_file: _a = json.load(a ) _a = LukeConfig(use_entity_aware_attention=a, **metadata["model_config"] ) # Load in the weights from the checkpoint_path _a = torch.load(a, map_location="cpu" ) # Load the entity vocab file _a = load_entity_vocab(a ) _a = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _a = AddedToken("<ent>", lstrip=a, rstrip=a ) _a = AddedToken("<ent2>", lstrip=a, rstrip=a ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(a ) with open(os.path.join(a, LukeTokenizer.vocab_files_names["entity_vocab_file"] ), "w" ) as f: json.dump(a, a ) _a = LukeTokenizer.from_pretrained(a ) # Initialize the embeddings of the special tokens _a = state_dict["embeddings.word_embeddings.weight"] _a = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) _a = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) _a = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a = F'encoder.layer.{layer_index}.attention.self.' _a = state_dict[prefix + matrix_name] _a = state_dict[prefix + matrix_name] _a = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a = state_dict["entity_embeddings.entity_embeddings.weight"] _a = entity_emb[entity_vocab["[MASK]"]] _a = LukeModel(config=a ).eval() _a , _a = model.load_state_dict(a, strict=a ) if not (len(a ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(a )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs _a = LukeTokenizer.from_pretrained(a, task="entity_classification" ) _a = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) _a = (3_9, 4_2) _a = tokenizer(a, entity_spans=[span], add_prefix_space=a, return_tensors="pt" ) _a = model(**a ) # Verify word hidden states if model_size == "large": _a = torch.Size((1, 4_2, 1_0_2_4) ) _a = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base _a = torch.Size((1, 4_2, 7_6_8) ) _a = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], a, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _a = torch.Size((1, 1, 1_0_2_4) ) _a = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base _a = torch.Size((1, 1, 7_6_8) ) _a = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], a, atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(a ) ) model.save_pretrained(a ) def __a ( a ): """simple docstring""" _a = {} with open(a, "r", encoding="utf-8" ) as f: for index, line in enumerate(a ): _a , _a = line.rstrip().split("\t" ) _a = index return entity_vocab if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
388
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] def __init__( self :Any , UpperCamelCase__ :Tuple="</s>" , UpperCamelCase__ :str="<unk>" , UpperCamelCase__ :List[Any]="<pad>" , UpperCamelCase__ :Optional[int]=125 , UpperCamelCase__ :Union[str, Any]=None , **UpperCamelCase__ :List[Any] , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _a = [f'<extra_id_{i}>' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _a = len(set(filter(lambda UpperCamelCase__ : bool("extra_id" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) _a = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token _a = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token _a = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) _a = extra_ids _a = 2**8 # utf is 8 bits # define special tokens dict _a = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _a = len(self.special_tokens_encoder ) _a = len(UpperCamelCase__ ) for i, token in enumerate(UpperCamelCase__ ): _a = self.vocab_size + i - n _a = {v: k for k, v in self.special_tokens_encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self :Any ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None , UpperCamelCase__ :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase__ )) + [1] return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :List[int] ): if len(UpperCamelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None ): _a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None ): _a = self._add_eos_if_not_present(UpperCamelCase__ ) if token_ids_a is None: return token_ids_a else: _a = self._add_eos_if_not_present(UpperCamelCase__ ) return token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :str ): _a = [chr(UpperCamelCase__ ) for i in text.encode("utf-8" )] return tokens def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :List[Any] ): if token in self.special_tokens_encoder: _a = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _a = self.added_tokens_encoder[token] elif len(UpperCamelCase__ ) != 1: _a = self.unk_token_id else: _a = ord(UpperCamelCase__ ) + self._num_special_tokens return token_id def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :List[str] ): if index in self.special_tokens_decoder: _a = self.special_tokens_decoder[index] else: _a = chr(index - self._num_special_tokens ) return token def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :Any ): _a = B"" for token in tokens: if token in self.special_tokens_decoder: _a = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: _a = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: _a = token.encode("utf-8" ) elif token in self.added_tokens_encoder: _a = token.encode("utf-8" ) else: _a = bytes([ord(UpperCamelCase__ )] ) bstring += tok_string _a = bstring.decode("utf-8" , errors="ignore" ) return string def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :str , UpperCamelCase__ :Optional[str] = None ): return ()
388
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Tuple = logging.get_logger(__name__) A_ :Any = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class __A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase__ : Union[str, Any] ='''transfo-xl''' UpperCamelCase__ : List[Any] =['''mems'''] UpperCamelCase__ : List[str] ={ '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowerCamelCase__=267735 , lowerCamelCase__=[20000, 40000, 200000] , lowerCamelCase__=1024 , lowerCamelCase__=1024 , lowerCamelCase__=16 , lowerCamelCase__=64 , lowerCamelCase__=4096 , lowerCamelCase__=4 , lowerCamelCase__=False , lowerCamelCase__=18 , lowerCamelCase__=1600 , lowerCamelCase__=1000 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=0 , lowerCamelCase__=-1 , lowerCamelCase__=True , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__="normal" , lowerCamelCase__=0.01 , lowerCamelCase__=0.01 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-5 , lowerCamelCase__=0 , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : List[Any] =vocab_size __UpperCamelCase : Optional[Any] =[] self.cutoffs.extend(A_ ) if proj_share_all_but_first: __UpperCamelCase : List[str] =[False] + [True] * len(self.cutoffs ) else: __UpperCamelCase : int =[False] + [False] * len(self.cutoffs ) __UpperCamelCase : int =d_model __UpperCamelCase : Optional[int] =d_embed __UpperCamelCase : List[str] =d_head __UpperCamelCase : List[Any] =d_inner __UpperCamelCase : Optional[Any] =div_val __UpperCamelCase : str =pre_lnorm __UpperCamelCase : Union[str, Any] =n_layer __UpperCamelCase : Any =n_head __UpperCamelCase : List[str] =mem_len __UpperCamelCase : Optional[Any] =same_length __UpperCamelCase : Optional[int] =attn_type __UpperCamelCase : Optional[Any] =clamp_len __UpperCamelCase : int =sample_softmax __UpperCamelCase : List[str] =adaptive __UpperCamelCase : Tuple =dropout __UpperCamelCase : Dict =dropatt __UpperCamelCase : Optional[Any] =untie_r __UpperCamelCase : Dict =init __UpperCamelCase : Optional[Any] =init_range __UpperCamelCase : List[Any] =proj_init_std __UpperCamelCase : Dict =init_std __UpperCamelCase : List[Any] =layer_norm_epsilon super().__init__(eos_token_id=A_ , **A_ ) @property def __lowercase ( self ): """simple docstring""" logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
705
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset A_ :int = pd.read_csv( '''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/''' '''position_salaries.csv''' ) A_ :str = dataset.iloc[:, 1:2].values A_ :int = dataset.iloc[:, 2].values A_ ,A_ ,A_ ,A_ :str = train_test_split(X, y, test_size=0.2, random_state=0) A_ :Optional[int] = PolynomialFeatures(degree=4) A_ :Optional[int] = poly_reg.fit_transform(X) A_ :Tuple = LinearRegression() pol_reg.fit(X_poly, y) def A ( ) -> List[str]: plt.scatter(a_ ,a_ ,color='red' ) plt.plot(a_ ,pol_reg.predict(poly_reg.fit_transform(a_ ) ) ,color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
154
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : str): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future.") SCREAMING_SNAKE_CASE_: Union[str, Any] = model SCREAMING_SNAKE_CASE_: Any = kwargs.get("model_save_dir" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = kwargs.get("latest_model_name" , lowerCAmelCase__) def __call__( self : Any , **lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: Any = {k: np.array(lowerCAmelCase__) for k, v in kwargs.items()} return self.model.run(lowerCAmelCase__ , lowerCAmelCase__) @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Union[str, Path] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=None): if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider") SCREAMING_SNAKE_CASE_: Any = "CPUExecutionProvider" return ort.InferenceSession(lowerCAmelCase__ , providers=[provider] , sess_options=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Path] , lowerCAmelCase__ : Optional[str] = None , **lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: int = file_name if file_name is not None else ONNX_WEIGHTS_NAME SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name) SCREAMING_SNAKE_CASE_: str = Path(lowerCAmelCase__).joinpath(lowerCAmelCase__) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__) except shutil.SameFileError: pass # copy external weights (for models >2GB) SCREAMING_SNAKE_CASE_: int = self.model_save_dir.joinpath(lowerCAmelCase__) if src_path.exists(): SCREAMING_SNAKE_CASE_: int = Path(lowerCAmelCase__).joinpath(lowerCAmelCase__) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__) except shutil.SameFileError: pass def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : List[Any] , ): if os.path.isfile(lowerCAmelCase__): logger.error(F"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) # saving model weights/files self._save_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , lowerCAmelCase__ : Union[str, Path] , lowerCAmelCase__ : Optional[Union[bool, str, None]] = None , lowerCAmelCase__ : Optional[Union[str, None]] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional["ort.SessionOptions"] = None , **lowerCAmelCase__ : str , ): SCREAMING_SNAKE_CASE_: Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = OnnxRuntimeModel.load_model( os.path.join(lowerCAmelCase__ , lowerCAmelCase__) , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = Path(lowerCAmelCase__) # load model from hub else: # download model SCREAMING_SNAKE_CASE_: Optional[Any] = hf_hub_download( repo_id=lowerCAmelCase__ , filename=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: List[Any] = Path(lowerCAmelCase__).parent SCREAMING_SNAKE_CASE_: str = Path(lowerCAmelCase__).name SCREAMING_SNAKE_CASE_: int = OnnxRuntimeModel.load_model(lowerCAmelCase__ , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__) return cls(model=lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , lowerCAmelCase__ : Union[str, Path] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[str] = None , **lowerCAmelCase__ : List[Any] , ): SCREAMING_SNAKE_CASE_: Tuple = None if len(str(lowerCAmelCase__).split("@")) == 2: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = model_id.split("@") return cls._from_pretrained( model_id=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
671
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[Any] = '''upernet''' def __init__( self : Any , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : str=[1, 2, 3, 6] , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Dict=0.4 , lowerCAmelCase__ : int=384 , lowerCAmelCase__ : Union[str, Any]=256 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[str]=255 , **lowerCAmelCase__ : List[str] , ): super().__init__(**lowerCAmelCase__) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") SCREAMING_SNAKE_CASE_: Dict = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = backbone_config.get("model_type") SCREAMING_SNAKE_CASE_: str = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_: Tuple = config_class.from_dict(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = backbone_config SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Any = pool_scales SCREAMING_SNAKE_CASE_: Optional[Any] = use_auxiliary_head SCREAMING_SNAKE_CASE_: str = auxiliary_loss_weight SCREAMING_SNAKE_CASE_: List[Any] = auxiliary_in_channels SCREAMING_SNAKE_CASE_: Union[str, Any] = auxiliary_channels SCREAMING_SNAKE_CASE_: Dict = auxiliary_num_convs SCREAMING_SNAKE_CASE_: str = auxiliary_concat_input SCREAMING_SNAKE_CASE_: Dict = loss_ignore_index def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self.__dict__) SCREAMING_SNAKE_CASE_: int = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_: Optional[int] = self.__class__.model_type return output
671
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __UpperCAmelCase : Tuple = data_utils.TransfoXLTokenizer __UpperCAmelCase : Union[str, Any] = data_utils.TransfoXLCorpus __UpperCAmelCase : Optional[Any] = data_utils __UpperCAmelCase : Optional[Any] = data_utils def lowercase_ ( __snake_case : List[str] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__snake_case , "rb" ) as fp: snake_case__ :Optional[int] = pickle.load(__snake_case , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) snake_case__ :Tuple = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) snake_case__ :Union[str, Any] = corpus.vocab.__dict__ torch.save(__snake_case , __snake_case ) snake_case__ :str = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , __snake_case ) snake_case__ :str = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(__snake_case , __snake_case ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model snake_case__ :Tuple = os.path.abspath(__snake_case ) snake_case__ :int = os.path.abspath(__snake_case ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": snake_case__ :Dict = TransfoXLConfig() else: snake_case__ :List[Any] = TransfoXLConfig.from_json_file(__snake_case ) print(F'Building PyTorch model from configuration: {config}' ) snake_case__ :str = TransfoXLLMHeadModel(__snake_case ) snake_case__ :Any = load_tf_weights_in_transfo_xl(__snake_case , __snake_case , __snake_case ) # Save pytorch-model snake_case__ :Dict = os.path.join(__snake_case , __snake_case ) snake_case__ :int = os.path.join(__snake_case , __snake_case ) print(F'Save PyTorch model to {os.path.abspath(__snake_case )}' ) torch.save(model.state_dict() , __snake_case ) print(F'Save configuration file to {os.path.abspath(__snake_case )}' ) with open(__snake_case , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __UpperCAmelCase : Tuple = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
701
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
0