code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = "▁" SCREAMING_SNAKE_CASE : int = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } SCREAMING_SNAKE_CASE : str = { "google/reformer-crime-and-punishment": 524288, } class _lowerCamelCase( _a ): lowercase_ : Optional[Any] = VOCAB_FILES_NAMES lowercase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : int = ["""input_ids""", """attention_mask"""] def __init__( self, lowerCamelCase, lowerCamelCase="</s>", lowerCamelCase="<unk>", lowerCamelCase=[], lowerCamelCase = None, **lowerCamelCase, ) -> None: """simple docstring""" _lowercase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCamelCase, unk_token=lowerCamelCase, additional_special_tokens=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) _lowercase : List[str] = vocab_file _lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase) @property def UpperCamelCase ( self) -> Dict: """simple docstring""" return self.sp_model.get_piece_size() def UpperCamelCase ( self) -> Dict[str, int]: """simple docstring""" _lowercase : str = {self.convert_ids_to_tokens(lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = self.__dict__.copy() _lowercase : Tuple = None return state def __setstate__( self, lowerCamelCase) -> int: """simple docstring""" _lowercase : Union[str, Any] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): _lowercase : Dict = {} _lowercase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> List[Any]: """simple docstring""" return self.sp_model.piece_to_id(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Tuple: """simple docstring""" if index < self.sp_model.get_piece_size(): _lowercase : Any = self.sp_model.IdToPiece(lowerCamelCase) return token def UpperCamelCase ( self, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Tuple = [] _lowercase : Optional[Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase) + token _lowercase : Tuple = [] else: current_sub_tokens.append(lowerCamelCase) out_string += self.sp_model.decode(lowerCamelCase) return out_string.strip() def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _lowercase : Optional[Any] = os.path.join( lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase, 'wb') as fi: _lowercase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase) return (out_vocab_file,)
89
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> float: if not nums: raise ValueError('List is empty' ) return sum(lowerCamelCase_ ) / len(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
89
1
import collections import os import re from pathlib import Path UpperCamelCase__ = "src/transformers" # Matches is_xxx_available() UpperCamelCase__ = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} UpperCamelCase__ = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCamelCase__ = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available UpperCamelCase__ = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") UpperCamelCase__ = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCamelCase__ = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", UpperCamelCase__ = re.compile(r"^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCamelCase__ = re.compile(r"^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo UpperCamelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: UpperCamelCase__ = re.compile(r"^\s*try:") # Catches a line with else: UpperCamelCase__ = re.compile(r"^\s*else:") def _UpperCamelCase (a__ :Dict ): """simple docstring""" if _re_test_backend.search(a__ ) is None: return None UpperCamelCase__ = [b[0] for b in _re_backend.findall(a__ )] backends.sort() return "_and_".join(a__ ) def _UpperCamelCase (a__ :Any ): """simple docstring""" with open(a__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = 0 while line_index < len(a__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(a__ ): return None # First grab the objects without a specific backend in _import_structure UpperCamelCase__ = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: UpperCamelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(a__ ): UpperCamelCase__ = _re_one_line_import_struct.search(a__ ).groups()[0] UpperCamelCase__ = re.findall(r"""\[([^\]]+)\]""" , a__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue UpperCamelCase__ = _re_import_struct_key_value.search(a__ ) if single_line_import_search is not None: UpperCamelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(a__ ) > 0] objects.extend(a__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 UpperCamelCase__ = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCamelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): UpperCamelCase__ = lines[line_index] if _re_import_struct_add_one.search(a__ ) is not None: objects.append(_re_import_struct_add_one.search(a__ ).groups()[0] ) elif _re_import_struct_add_many.search(a__ ) is not None: UpperCamelCase__ = _re_import_struct_add_many.search(a__ ).groups()[0].split(""", """ ) UpperCamelCase__ = [obj[1:-1] for obj in imports if len(a__ ) > 0] objects.extend(a__ ) elif _re_between_brackets.search(a__ ) is not None: UpperCamelCase__ = _re_between_brackets.search(a__ ).groups()[0].split(""", """ ) UpperCamelCase__ = [obj[1:-1] for obj in imports if len(a__ ) > 0] objects.extend(a__ ) elif _re_quote_object.search(a__ ) is not None: objects.append(_re_quote_object.search(a__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 UpperCamelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCamelCase__ = [] while ( line_index < len(a__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_import.search(a__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCamelCase__ = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(a__ ): # If the line is an if is_backend_available, we grab all objects associated. UpperCamelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_import.search(a__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCamelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _UpperCamelCase (a__ :List[str] , a__ :Union[str, Any] ): """simple docstring""" def find_duplicates(a__ :List[Any] ): return [k for k, v in collections.Counter(a__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCamelCase__ = [] for key in import_dict_objects.keys(): UpperCamelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) UpperCamelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCamelCase__ = """base imports""" if key == """none""" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = [] for root, _, files in os.walk(a__ ): if "__init__.py" in files: UpperCamelCase__ = os.path.join(a__ , """__init__.py""" ) UpperCamelCase__ = parse_init(a__ ) if objects is not None: UpperCamelCase__ = analyze_results(*a__ ) if len(a__ ) > 0: UpperCamelCase__ = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(a__ ) ) if len(a__ ) > 0: raise ValueError("""\n\n""".join(a__ ) ) def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = [] for path, directories, files in os.walk(a__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(a__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(a__ ) / folder).glob("""*.py""" ) ) ) == 0: continue UpperCamelCase__ = str((Path(a__ ) / folder).relative_to(a__ ) ) UpperCamelCase__ = short_path.replace(os.path.sep , """.""" ) submodules.append(a__ ) for fname in files: if fname == "__init__.py": continue UpperCamelCase__ = str((Path(a__ ) / fname).relative_to(a__ ) ) UpperCamelCase__ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(a__ ) return submodules UpperCamelCase__ = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def _UpperCamelCase (): """simple docstring""" from transformers.utils import direct_transformers_import UpperCamelCase__ = direct_transformers_import(a__ ) UpperCamelCase__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(a__ , """__init__.py""" ) , """r""" ) as f: UpperCamelCase__ = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , a__ ) ) ) UpperCamelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(a__ ) > 0: UpperCamelCase__ = """\n""".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
548
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
548
1
from timeit import timeit def a ( snake_case__: int ): '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) lowercase_ = 0 while number: number &= number - 1 result += 1 return result def a ( snake_case__: int ): '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) lowercase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a ( ): '''simple docstring''' def do_benchmark(snake_case__: int ) -> None: lowercase_ = '''import __main__ as z''' print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(snake_case__ ) = }''' ) lowercase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=snake_case__ ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(snake_case__ ) = }''' ) lowercase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=snake_case__ , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(snake_case__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
97
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Dict = 1 __lowerCamelCase : str = 2 while i * i <= n: __lowerCamelCase : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def UpperCamelCase__ ( ): __lowerCamelCase : str = 1 __lowerCamelCase : List[str] = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE__ ) > 500: break return t_num if __name__ == "__main__": print(solution())
669
0
def _a ( UpperCamelCase_ : int = 1_000 ) -> int: """simple docstring""" lowerCAmelCase__ = 3 lowerCAmelCase__ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"{solution() = }")
115
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase__ ( nn.Module ): a_ =42 a_ =42 a_ =0.0 a_ =1 a_ =1 a_ =True a_ =False a_ =False a_ =False a_ =jnp.floataa def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(self.num_layers ): lowerCAmelCase__ = self.in_channels if i == 0 else self.out_channels lowerCAmelCase__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) lowerCAmelCase__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) lowerCAmelCase__ = resnets lowerCAmelCase__ = attentions if self.add_downsample: lowerCAmelCase__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True )-> str: '''simple docstring''' lowerCAmelCase__ = () for resnet, attn in zip(self.resnets , self.attentions ): lowerCAmelCase__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) lowerCAmelCase__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase__ ( nn.Module ): a_ =42 a_ =42 a_ =0.0 a_ =1 a_ =True a_ =jnp.floataa def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = [] for i in range(self.num_layers ): lowerCAmelCase__ = self.in_channels if i == 0 else self.out_channels lowerCAmelCase__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) lowerCAmelCase__ = resnets if self.add_downsample: lowerCAmelCase__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True )-> int: '''simple docstring''' lowerCAmelCase__ = () for resnet in self.resnets: lowerCAmelCase__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase__ ( nn.Module ): a_ =42 a_ =42 a_ =42 a_ =0.0 a_ =1 a_ =1 a_ =True a_ =False a_ =False a_ =False a_ =jnp.floataa def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(self.num_layers ): lowerCAmelCase__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase__ = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) lowerCAmelCase__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) lowerCAmelCase__ = resnets lowerCAmelCase__ = attentions if self.add_upsample: lowerCAmelCase__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True )-> Dict: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowerCAmelCase__ = res_hidden_states_tuple[-1] lowerCAmelCase__ = res_hidden_states_tuple[:-1] lowerCAmelCase__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) lowerCAmelCase__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: lowerCAmelCase__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowercase__ ( nn.Module ): a_ =42 a_ =42 a_ =42 a_ =0.0 a_ =1 a_ =True a_ =jnp.floataa def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [] for i in range(self.num_layers ): lowerCAmelCase__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase__ = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) lowerCAmelCase__ = resnets if self.add_upsample: lowerCAmelCase__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True )-> int: '''simple docstring''' for resnet in self.resnets: # pop res hidden states lowerCAmelCase__ = res_hidden_states_tuple[-1] lowerCAmelCase__ = res_hidden_states_tuple[:-1] lowerCAmelCase__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: lowerCAmelCase__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowercase__ ( nn.Module ): a_ =42 a_ =0.0 a_ =1 a_ =1 a_ =False a_ =False a_ =jnp.floataa def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowerCAmelCase__ = [] for _ in range(self.num_layers ): lowerCAmelCase__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) lowerCAmelCase__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) lowerCAmelCase__ = resnets lowerCAmelCase__ = attentions def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = self.resnets[0](__UpperCAmelCase , __UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowerCAmelCase__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) lowerCAmelCase__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) return hidden_states
115
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Tuple = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" _snake_case : List[str] = 'time_series_transformer' _snake_case : str = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 32 , lowerCAmelCase__ : int = 32 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 64 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 100 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : List[str]=True , **lowerCAmelCase__ : List[Any] , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = prediction_length _UpperCamelCase = context_length or prediction_length _UpperCamelCase = distribution_output _UpperCamelCase = loss _UpperCamelCase = input_size _UpperCamelCase = num_time_features _UpperCamelCase = lags_sequence _UpperCamelCase = scaling _UpperCamelCase = num_dynamic_real_features _UpperCamelCase = num_static_real_features _UpperCamelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A__ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) _UpperCamelCase = cardinality else: _UpperCamelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A__ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) _UpperCamelCase = embedding_dimension else: _UpperCamelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCamelCase = num_parallel_samples # Transformer architecture configuration _UpperCamelCase = input_size * len(A__ ) + self._number_of_features _UpperCamelCase = d_model _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_attention_heads _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = decoder_layers _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = use_cache super().__init__(is_encoder_decoder=A__ , **A__ ) @property def snake_case__ ( self : List[Any] ) -> Dict: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
98
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ :Any = 16 UpperCAmelCase__ :List[str] = 32 def __lowercase (_lowercase, _lowercase = 16 ) -> int: """simple docstring""" __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCamelCase : str = load_dataset("""glue""", """mrpc""" ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase : int = tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=_lowercase, max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase : int = datasets.map( _lowercase, batched=_lowercase, remove_columns=["""idx""", """sentence1""", """sentence2"""], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase : Optional[Any] = tokenized_datasets.rename_column("""label""", """labels""" ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase : Dict = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase : List[str] = 8 else: __lowerCamelCase : int = None return tokenizer.pad( _lowercase, padding="""longest""", max_length=_lowercase, pad_to_multiple_of=_lowercase, return_tensors="""pt""", ) # Instantiate dataloaders. __lowerCamelCase : List[Any] = DataLoader( tokenized_datasets["""train"""], shuffle=_lowercase, collate_fn=_lowercase, batch_size=_lowercase ) __lowerCamelCase : str = DataLoader( tokenized_datasets["""validation"""], shuffle=_lowercase, collate_fn=_lowercase, batch_size=_lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ :int = mocked_dataloaders # noqa: F811 def __lowercase (_lowercase, _lowercase ) -> Optional[int]: """simple docstring""" # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", _lowercase ) == "1": __lowerCamelCase : Union[str, Any] = 2 # Initialize accelerator __lowerCamelCase : List[str] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase : Union[str, Any] = config["""lr"""] __lowerCamelCase : Any = int(config["""num_epochs"""] ) __lowerCamelCase : Optional[Any] = int(config["""seed"""] ) __lowerCamelCase : Dict = int(config["""batch_size"""] ) __lowerCamelCase : Any = evaluate.load("""glue""", """mrpc""" ) # If the batch size is too big we use gradient accumulation __lowerCamelCase : Tuple = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCamelCase : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE __lowerCamelCase : Optional[Any] = MAX_GPU_BATCH_SIZE set_seed(_lowercase ) __lowerCamelCase , __lowerCamelCase : Dict = get_dataloaders(_lowercase, _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""", return_dict=_lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase : List[str] = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase : Tuple = AdamW(params=model.parameters(), lr=_lowercase ) # Instantiate scheduler __lowerCamelCase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_lowercase, num_warmup_steps=100, num_training_steps=(len(_lowercase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = accelerator.prepare( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) # Now we train the model for epoch in range(_lowercase ): model.train() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase : Any = model(**_lowercase ) __lowerCamelCase : str = outputs.loss __lowerCamelCase : Any = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __lowerCamelCase : Optional[int] = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase : List[Any] = model(**_lowercase ) __lowerCamelCase : Union[str, Any] = outputs.logits.argmax(dim=-1 ) __lowerCamelCase , __lowerCamelCase : List[str] = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_lowercase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __lowerCamelCase : int = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_lowercase, references=_lowercase, ) __lowerCamelCase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", _lowercase ) def __lowercase () -> int: """simple docstring""" __lowerCamelCase : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""", type=_lowercase, default=_lowercase, choices=["""no""", """fp16""", """bf16""", """fp8"""], help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""", ) parser.add_argument("""--cpu""", action="""store_true""", help="""If passed, will train on the CPU.""" ) __lowerCamelCase : int = parser.parse_args() __lowerCamelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowercase, _lowercase ) if __name__ == "__main__": main()
150
0
'''simple docstring''' import argparse import datetime def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> str: UpperCAmelCase_ : List[str] = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } UpperCAmelCase_ : Optional[Any] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(SCREAMING_SNAKE_CASE__ ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month UpperCAmelCase_ : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) UpperCAmelCase_ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day UpperCAmelCase_ : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator UpperCAmelCase_ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year UpperCAmelCase_ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation UpperCAmelCase_ : Union[str, Any] = datetime.date(int(SCREAMING_SNAKE_CASE__ ), int(SCREAMING_SNAKE_CASE__ ), int(SCREAMING_SNAKE_CASE__ ) ) # Start math if m <= 2: UpperCAmelCase_ : Optional[int] = y - 1 UpperCAmelCase_ : Dict = m + 12 # maths var UpperCAmelCase_ : int = int(str(SCREAMING_SNAKE_CASE__ )[:2] ) UpperCAmelCase_ : int = int(str(SCREAMING_SNAKE_CASE__ )[2:] ) UpperCAmelCase_ : int = int(2.6 * m - 5.39 ) UpperCAmelCase_ : int = int(c / 4 ) UpperCAmelCase_ : int = int(k / 4 ) UpperCAmelCase_ : int = int(d + k ) UpperCAmelCase_ : int = int(t + u + v + x ) UpperCAmelCase_ : int = int(z - (2 * c) ) UpperCAmelCase_ : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response UpperCAmelCase_ : str = F"""Your date {date_input}, is a {days[str(SCREAMING_SNAKE_CASE__ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Optional[Any] = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) snake_case_ : Tuple = parser.parse_args() zeller(args.date_input)
644
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]: UpperCAmelCase_ : int = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : List[Any] = nums.pop(0 ) UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start] backtrack(start + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack UpperCAmelCase_ : Optional[int] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function snake_case_ : Tuple = permutea([1, 2, 3]) print(res) doctest.testmod()
644
1
from __future__ import annotations class lowerCamelCase_ : def __init__( self , lowerCamelCase_=None ) -> List[Any]: """simple docstring""" _UpperCamelCase = data _UpperCamelCase = None def __repr__( self ) -> int: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = self while temp: string_rep.append(f'''{temp.data}''' ) _UpperCamelCase = temp.next return "->".join(lowerCamelCase_ ) def _lowercase ( a__ : list ) -> Dict: """simple docstring""" if not elements_list: raise Exception("The Elements List is empty" ) _UpperCamelCase = _UpperCamelCase = Node(elements_list[0] ) for i in range(1 , len(a__ ) ): _UpperCamelCase = Node(elements_list[i] ) _UpperCamelCase = current.next return head def _lowercase ( a__ : Node ) -> None: """simple docstring""" if head_node is not None and isinstance(a__ , a__ ): print_reverse(head_node.next ) print(head_node.data ) def _lowercase ( ) -> int: """simple docstring""" from doctest import testmod testmod() _UpperCamelCase = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(a__ ) print("Elements in Reverse:" ) print_reverse(a__ ) if __name__ == "__main__": main()
147
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt"""} __lowerCAmelCase = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } __lowerCAmelCase = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def _lowercase ( a__ : Dict ) -> int: """simple docstring""" with open(a__ , "r" ) as f: _UpperCamelCase = f.read().splitlines() return [l.strip() for l in lines] class lowerCamelCase_ ( lowercase ): __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ["input_ids", "attention_mask"] def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<mask>" , lowerCamelCase_="<eos>" , **lowerCamelCase_ , ) -> List[Any]: """simple docstring""" super().__init__(**lowerCamelCase_ ) _UpperCamelCase = load_vocab_file(lowerCamelCase_ ) _UpperCamelCase = dict(enumerate(self.all_tokens ) ) _UpperCamelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} _UpperCamelCase = unk_token _UpperCamelCase = cls_token _UpperCamelCase = pad_token _UpperCamelCase = mask_token _UpperCamelCase = eos_token _UpperCamelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowercase ( self , lowerCamelCase_ ) -> str: """simple docstring""" return self._id_to_token.get(lowerCamelCase_ , self.unk_token ) def lowercase ( self , lowerCamelCase_ ) -> int: """simple docstring""" return self._token_to_id.get(lowerCamelCase_ , self._token_to_id.get(self.unk_token ) ) def lowercase ( self , lowerCamelCase_ , **lowerCamelCase_ ) -> List[Any]: """simple docstring""" return text.split() def lowercase ( self , lowerCamelCase_=False ) -> Any: """simple docstring""" return len(self._id_to_token ) def lowercase ( self ) -> Tuple: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def lowercase ( self , lowerCamelCase_ ) -> int: """simple docstring""" return self._token_to_id.get(lowerCamelCase_ , self._token_to_id.get(self.unk_token ) ) def lowercase ( self , lowerCamelCase_ ) -> str: """simple docstring""" return self._id_to_token.get(lowerCamelCase_ , self.unk_token ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: """simple docstring""" _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _UpperCamelCase = [1] + ([0] * len(lowerCamelCase_ )) + [1] if token_ids_a is not None: mask += [0] * len(lowerCamelCase_ ) + [1] return mask def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase = os.path.join(lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(lowerCamelCase_ , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def lowercase ( self ) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ = False ) -> int: """simple docstring""" return super()._add_tokens(lowerCamelCase_ , special_tokens=lowerCamelCase_ )
147
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowerCamelCase : List[str] = logging.getLogger(__name__) lowerCamelCase : Dict = tf.data.AUTOTUNE def SCREAMING_SNAKE_CASE__ ( ) -> Dict: snake_case : Optional[int] = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" ,type=lowercase ,default="""roberta-base""" ,help="""The model config to use. Note that we don't copy the model's weights, only the config!""" ,) parser.add_argument( """--tokenizer""" ,type=lowercase ,default="""unigram-tokenizer-wikitext""" ,help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" ,) parser.add_argument( """--per_replica_batch_size""" ,type=lowercase ,default=8 ,help="""Batch size per TPU core.""" ,) parser.add_argument( """--no_tpu""" ,action="""store_true""" ,help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" ,) parser.add_argument( """--tpu_name""" ,type=lowercase ,help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" ,default="""local""" ,) parser.add_argument( """--tpu_zone""" ,type=lowercase ,help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" ,) parser.add_argument( """--gcp_project""" ,type=lowercase ,help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" ,action="""store_true""" ,help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" ,) parser.add_argument( """--train_dataset""" ,type=lowercase ,help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" ,) parser.add_argument( """--shuffle_buffer_size""" ,type=lowercase ,default=2**18 ,help="""Size of the shuffle buffer (in samples)""" ,) parser.add_argument( """--eval_dataset""" ,type=lowercase ,help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" ,) parser.add_argument( """--num_epochs""" ,type=lowercase ,default=1 ,help="""Number of epochs to train for.""" ,) parser.add_argument( """--learning_rate""" ,type=lowercase ,default=1E-4 ,help="""Learning rate to use for training.""" ,) parser.add_argument( """--weight_decay_rate""" ,type=lowercase ,default=1E-3 ,help="""Weight decay rate to use for training.""" ,) parser.add_argument( """--max_length""" ,type=lowercase ,default=512 ,help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" ,) parser.add_argument( """--mlm_probability""" ,type=lowercase ,default=0.15 ,help="""Fraction of tokens to mask during training.""" ,) parser.add_argument("""--output_dir""" ,type=lowercase ,required=lowercase ,help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" ,type=lowercase ,help="""Model ID to upload to on the Hugging Face Hub.""" ) snake_case : List[Any] = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: try: if args.tpu_name: snake_case : Any = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name ,zone=args.tpu_zone ,project=args.gcp_project ) else: snake_case : Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowercase ) tf.tpu.experimental.initialize_tpu_system(lowercase ) return tpu def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: snake_case : int = 0 for file in file_list: snake_case : List[str] = file.split("""/""" )[-1] snake_case : Any = re.search(R"""-\d+-(\d+)\.tfrecord""" ,lowercase ).group(1 ) snake_case : int = int(lowercase ) num_samples += sample_count return num_samples def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase=None ) -> int: snake_case : Optional[Any] = count_samples(lowercase ) snake_case : Union[str, Any] = tf.data.Dataset.from_tensor_slices(lowercase ) if shuffle: snake_case : Union[str, Any] = dataset.shuffle(len(lowercase ) ) snake_case : Tuple = tf.data.TFRecordDataset(lowercase ,num_parallel_reads=lowercase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case : str = dataset.apply(tf.data.experimental.assert_cardinality(lowercase ) ) snake_case : List[str] = dataset.map(lowercase ,num_parallel_calls=lowercase ) if shuffle: assert shuffle_buffer_size is not None snake_case : Tuple = dataset.shuffle(args.shuffle_buffer_size ) snake_case : Any = dataset.batch(lowercase ,drop_remainder=lowercase ) snake_case : List[str] = dataset.map(lowercase ,num_parallel_calls=lowercase ) snake_case : Union[str, Any] = dataset.prefetch(lowercase ) return dataset def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: if not args.no_tpu: snake_case : List[str] = initialize_tpu(lowercase ) snake_case : Tuple = tf.distribute.TPUStrategy(lowercase ) else: snake_case : Optional[Any] = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) snake_case : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case : List[Any] = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case : Tuple = tokenizer.vocab_size snake_case : List[str] = tf.io.gfile.glob(os.path.join(args.train_dataset ,"""*.tfrecord""" ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) snake_case : Optional[int] = tf.io.gfile.glob(os.path.join(args.eval_dataset ,"""*.tfrecord""" ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) snake_case : Dict = count_samples(lowercase ) snake_case : str = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case : Optional[int] = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case : Any = TFAutoModelForMaskedLM.from_config(lowercase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case , snake_case : List[Any] = create_optimizer( num_train_steps=lowercase ,num_warmup_steps=total_train_steps // 20 ,init_lr=args.learning_rate ,weight_decay_rate=args.weight_decay_rate ,) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase ,metrics=["""accuracy"""] ) def decode_fn(lowercase ): snake_case : Dict = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa ,shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa ,shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase ,lowercase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case : Optional[Any] = DataCollatorForLanguageModeling( tokenizer=lowercase ,mlm_probability=args.mlm_probability ,mlm=lowercase ,return_tensors="""tf""" ) def mask_with_collator(lowercase ): # TF really needs an isin() function snake_case : Dict = ( ~tf.cast(batch["""attention_mask"""] ,tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) snake_case , snake_case : Dict = data_collator.tf_mask_tokens( batch["""input_ids"""] ,vocab_size=len(lowercase ) ,mask_token_id=tokenizer.mask_token_id ,special_tokens_mask=lowercase ,) return batch snake_case : Union[str, Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case : Union[str, Any] = prepare_dataset( lowercase ,decode_fn=lowercase ,mask_fn=lowercase ,batch_size=lowercase ,shuffle=lowercase ,shuffle_buffer_size=args.shuffle_buffer_size ,) snake_case : List[str] = prepare_dataset( lowercase ,decode_fn=lowercase ,mask_fn=lowercase ,batch_size=lowercase ,shuffle=lowercase ,) snake_case : Union[str, Any] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir ,hub_model_id=args.hub_model_id ,tokenizer=lowercase ) ) model.fit( lowercase ,validation_data=lowercase ,epochs=args.num_epochs ,callbacks=lowercase ,) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowerCamelCase : int = parse_args() main(args)
684
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
1
'''simple docstring''' def A (): _lowerCAmelCase = [] _lowerCAmelCase = 1 while len(__lowerCamelCase ) < 1e6: constant.append(str(__lowerCamelCase ) ) i += 1 _lowerCAmelCase = """""".join(__lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
5
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = XGLMTokenizer _lowercase = XGLMTokenizerFast _lowercase = True _lowercase = True def _UpperCamelCase( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase( self : List[Any] ): a__ : int = "<pad>" a__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCamelCase__ ) , 1_008 ) def _UpperCamelCase( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def _UpperCamelCase( self : Optional[int] ): a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) a__ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a__ : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a__ : List[str] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) a__ : Dict = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _UpperCamelCase( self : Dict ): return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _UpperCamelCase( self : Union[str, Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__ , f.name ) a__ : Any = XGLMTokenizer(f.name , keep_accents=lowerCamelCase__ ) a__ : List[str] = pickle.dumps(lowerCamelCase__ ) pickle.loads(lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): if not self.test_rust_tokenizer: return a__ : Any = self.get_tokenizer() a__ : Optional[Any] = self.get_rust_tokenizer() a__ : Tuple = "I was born in 92000, and this is falsé." a__ : List[str] = tokenizer.tokenize(lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Optional[int] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : Tuple = tokenizer.encode(lowerCamelCase__ ) a__ : Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = "Hello World!" a__ : List[str] = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : Union[str, Any] ): a__ : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off a__ : Union[str, Any] = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : List[Any] ): # fmt: off a__ : Optional[int] = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="facebook/xglm-564M" , padding=lowerCamelCase__ , )
37
0
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> float: __UpperCAmelCase = sorted(numsa + numsa ) __UpperCAmelCase , __UpperCAmelCase = divmod(len(_lowerCAmelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _A: Optional[int] = [float(x) for x in input("""Enter the elements of first array: """).split()] _A: Dict = [float(x) for x in input("""Enter the elements of second array: """).split()] print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
617
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _A: Union[str, Any] = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: _A: Optional[Any] = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def __lowerCamelCase ( self , __A ): return FSMTTokenizer.from_pretrained(__A ) def __lowerCamelCase ( self , __A ): __UpperCAmelCase = FSMTForConditionalGeneration.from_pretrained(__A ).to(__A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def __lowerCamelCase ( self , __A , __A ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __UpperCAmelCase = f'facebook/wmt19-{pair}' __UpperCAmelCase = self.get_tokenizer(__A ) __UpperCAmelCase = self.get_model(__A ) __UpperCAmelCase = bleu_data[pair]['src'] __UpperCAmelCase = bleu_data[pair]['tgt'] __UpperCAmelCase = tokenizer(__A , return_tensors='pt' , truncation=__A , padding='longest' ).to(__A ) __UpperCAmelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __UpperCAmelCase = tokenizer.batch_decode( __A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A ) __UpperCAmelCase = calculate_bleu(__A , __A ) print(__A ) self.assertGreaterEqual(scores['bleu'] , __A )
617
1
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = (UnCLIPScheduler,) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): lowerCamelCase__ = { """num_train_timesteps""": 10_00, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def UpperCamelCase_ ( self ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase ,prev_timestep=_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowerCamelCase__ = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5 def UpperCamelCase_ ( self ): lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config(variance_type="""learned_range""" ) lowerCamelCase__ = scheduler_class(**_lowerCAmelCase ) lowerCamelCase__ = 0.5 assert scheduler._get_variance(1 ,predicted_variance=_lowerCAmelCase ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_87 ,predicted_variance=_lowerCAmelCase ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_99 ,predicted_variance=_lowerCAmelCase ) - -0.001_0011 < 1E-5 def UpperCamelCase_ ( self ): lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**_lowerCAmelCase ) lowerCamelCase__ = scheduler.timesteps lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter lowerCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ = scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,generator=_lowerCAmelCase ).prev_sample lowerCamelCase__ = pred_prev_sample lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def UpperCamelCase_ ( self ): lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) lowerCamelCase__ = scheduler.timesteps lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter lowerCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase ) if i + 1 == timesteps.shape[0]: lowerCamelCase__ = None else: lowerCamelCase__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCamelCase__ = scheduler.step( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,prev_timestep=_lowerCAmelCase ,generator=_lowerCAmelCase ).prev_sample lowerCamelCase__ = pred_prev_sample lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): pass
50
'''simple docstring''' import operator def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ): lowerCamelCase__ = operator.lt if reverse else operator.gt lowerCamelCase__ = solution or [] if not arr: return solution lowerCamelCase__ = [arr.pop(0 )] for i, item in enumerate(__lowerCAmelCase ): if _operator(__lowerCAmelCase , sublist[-1] ): sublist.append(__lowerCAmelCase ) arr.pop(__lowerCAmelCase ) # merging sublist into solution list if not solution: solution.extend(__lowerCAmelCase ) else: while sublist: lowerCamelCase__ = sublist.pop(0 ) for i, xx in enumerate(__lowerCAmelCase ): if not _operator(__lowerCAmelCase , __lowerCAmelCase ): solution.insert(__lowerCAmelCase , __lowerCAmelCase ) break else: solution.append(__lowerCAmelCase ) strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
50
1
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float , ) -> tuple[str, float]: '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
505
"""simple docstring""" a = 256 # Modulus to hash a string a = 1_000_003 def _snake_case ( _snake_case : str , _snake_case : str ) -> bool: '''simple docstring''' _A = len(_snake_case ) _A = len(_snake_case ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _snake_case ( ) -> None: '''simple docstring''' _A = 'abc1abc12' _A = 'alskfjaldsabc1abc1abc12k23adsfabcabc' _A = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) _A = 'ABABX' _A = 'ABABZABABYABABX' assert rabin_karp(_snake_case , _snake_case ) # Test 3) _A = 'AAAB' _A = 'ABAAAAAB' assert rabin_karp(_snake_case , _snake_case ) # Test 4) _A = 'abcdabcy' _A = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_snake_case , _snake_case ) # Test 5) _A = 'Lü' _A = 'Lüsai' assert rabin_karp(_snake_case , _snake_case ) _A = 'Lue' assert not rabin_karp(_snake_case , _snake_case ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
505
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _snake_case = logging.get_logger(__name__) class lowerCAmelCase ( lowercase_ ): def __init__( self :Any , *_lowercase :Dict , **_lowercase :List[str] ): '''simple docstring''' warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
655
from __future__ import annotations class lowerCAmelCase : def __init__( self :Union[str, Any] , _lowercase :List[Any]=None ): '''simple docstring''' lowercase__ = data lowercase__ = None def __repr__( self :Dict ): '''simple docstring''' lowercase__ = [] lowercase__ = self while temp: string_rep.append(f'''{temp.data}''' ) lowercase__ = temp.next return "->".join(_lowercase ) def _A ( __magic_name__ ): if not elements_list: raise Exception("The Elements List is empty" ) lowercase__ = lowercase__ = Node(elements_list[0] ) for i in range(1 , len(__magic_name__ ) ): lowercase__ = Node(elements_list[i] ) lowercase__ = current.next return head def _A ( __magic_name__ ): if head_node is not None and isinstance(__magic_name__ , __magic_name__ ): print_reverse(head_node.next ) print(head_node.data ) def _A ( ): from doctest import testmod testmod() lowercase__ = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(__magic_name__ ) print("Elements in Reverse:" ) print_reverse(__magic_name__ ) if __name__ == "__main__": main()
655
1
def __lowerCAmelCase ( _UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [0] * len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [1] * len(_UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCamelCase ) ): if indegree[i] == 0: queue.append(_UpperCamelCase ) while queue: SCREAMING_SNAKE_CASE = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: SCREAMING_SNAKE_CASE = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_UpperCamelCase ) print(max(_UpperCamelCase ) ) # Adjacency list of Graph a_ : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
673
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
1
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase ( lowercase_ : Dict , lowercase_ : List[Any] ) -> Any: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCamelCase ( lowercase_ : str , lowercase_ : int , lowercase_ : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase =tmp_path / '''cache''' lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase =ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Any ) -> int: '''simple docstring''' lowercase =tmp_path / '''cache''' lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase =features.copy() if features else default_expected_features lowercase =( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase =ParquetDatasetReader(lowercase_ , features=lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def UpperCamelCase ( lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase =tmp_path / '''cache''' lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase =ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , split=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def UpperCamelCase ( lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Optional[Any] ) -> Any: '''simple docstring''' if issubclass(lowercase_ , lowercase_ ): lowercase =parquet_path elif issubclass(lowercase_ , lowercase_ ): lowercase =[parquet_path] lowercase =tmp_path / '''cache''' lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase =ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) def UpperCamelCase ( lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Any=("train",) ) -> Optional[Any]: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) for split in splits: lowercase =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCamelCase ( lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[int] ) -> int: '''simple docstring''' lowercase =tmp_path / '''cache''' lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase =ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] ) -> List[str]: '''simple docstring''' lowercase =tmp_path / '''cache''' lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase =features.copy() if features else default_expected_features lowercase =( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase =ParquetDatasetReader({'''train''': parquet_path} , features=lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def UpperCamelCase ( lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Tuple ) -> Optional[int]: '''simple docstring''' if split: lowercase ={split: parquet_path} else: lowercase ='''train''' lowercase ={'''train''': parquet_path, '''test''': parquet_path} lowercase =tmp_path / '''cache''' lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase =ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCamelCase ( lowercase_ : Optional[int] , lowercase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase =ParquetDatasetWriter(lowercase_ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 lowercase =pq.ParquetFile(tmp_path / '''foo.parquet''' ) lowercase =pf.read() assert dataset.data.table == output_table def UpperCamelCase ( lowercase_ : Tuple , lowercase_ : List[str] ) -> str: '''simple docstring''' lowercase =str(shared_datadir / '''test_image_rgb.jpg''' ) lowercase ={'''image''': [image_path]} lowercase =Features({'''image''': Image()} ) lowercase =Dataset.from_dict(lowercase_ , features=lowercase_ ) lowercase =ParquetDatasetWriter(lowercase_ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 lowercase =Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features lowercase =ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=lowercase_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCamelCase ( lowercase_ : str , lowercase_ : List[Any] ) -> List[Any]: '''simple docstring''' assert get_writer_batch_size(lowercase_ ) == expected
72
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case ( metaclass=__lowercase ): UpperCAmelCase__ = ['''note_seq'''] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def _lowercase (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def _lowercase (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" requires_backends(cls , ['''note_seq'''] )
626
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase__ : """simple docstring""" def __init__( self , _A = "cpu" , _A = "openai/clip-vit-large-patch14" ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = device SCREAMING_SNAKE_CASE_ = CLIPTokenizerFast.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = [0.4814_5466, 0.457_8275, 0.4082_1073] SCREAMING_SNAKE_CASE_ = [0.2686_2954, 0.2613_0258, 0.2757_7711] SCREAMING_SNAKE_CASE_ = torchvision.transforms.Normalize(self.image_mean , self.image_std ) SCREAMING_SNAKE_CASE_ = torchvision.transforms.Resize(224 ) SCREAMING_SNAKE_CASE_ = torchvision.transforms.CenterCrop(224 ) def _UpperCamelCase ( self , _A ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.resize(_A ) SCREAMING_SNAKE_CASE_ = self.center_crop(_A ) SCREAMING_SNAKE_CASE_ = self.normalize(_A ) return images def __call__( self , _A=None , _A=None , **_A ) -> Dict: SCREAMING_SNAKE_CASE_ = self.tokenizer(text=_A , **_A ) SCREAMING_SNAKE_CASE_ = self.preprocess_img(_A ) SCREAMING_SNAKE_CASE_ = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , _A=10 , _A=0.01 , _A=None , _A=None , _A=None , _A=None , _A=None , _A=None , _A=False , _A=True , _A="image" , _A=True , _A=False , _A=False , _A=False , ) -> Optional[int]: super().__init__() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = device if device else get_device() if vqgan: SCREAMING_SNAKE_CASE_ = vqgan else: SCREAMING_SNAKE_CASE_ = load_vqgan(self.device , conf_path=_A , ckpt_path=_A ) self.vqgan.eval() if clip: SCREAMING_SNAKE_CASE_ = clip else: SCREAMING_SNAKE_CASE_ = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) SCREAMING_SNAKE_CASE_ = ProcessorGradientFlow(device=self.device ) SCREAMING_SNAKE_CASE_ = iterations SCREAMING_SNAKE_CASE_ = lr SCREAMING_SNAKE_CASE_ = log SCREAMING_SNAKE_CASE_ = make_grid SCREAMING_SNAKE_CASE_ = return_val SCREAMING_SNAKE_CASE_ = quantize SCREAMING_SNAKE_CASE_ = self.vqgan.decoder.z_shape def _UpperCamelCase ( self , _A=None , _A=None , _A=5 , _A=True ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = [] if output_path is None: SCREAMING_SNAKE_CASE_ = './animation.gif' if input_path is None: SCREAMING_SNAKE_CASE_ = self.save_path SCREAMING_SNAKE_CASE_ = sorted(glob(input_path + '''/*''' ) ) if not len(_A ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(_A ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) SCREAMING_SNAKE_CASE_ = total_duration / len(_A ) SCREAMING_SNAKE_CASE_ = [frame_duration] * len(_A ) if extend_frames: SCREAMING_SNAKE_CASE_ = 1.5 SCREAMING_SNAKE_CASE_ = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(_A ) ) imageio.mimsave(_A , _A , duration=_A ) print(F'''gif saved to {output_path}''' ) def _UpperCamelCase ( self , _A=None , _A=None ) -> Optional[Any]: if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError SCREAMING_SNAKE_CASE_ = preprocess(Image.open(_A ) , target_image_size=256 ).to(self.device ) SCREAMING_SNAKE_CASE_ = preprocess_vqgan(_A ) SCREAMING_SNAKE_CASE_ = self.vqgan.encode(_A ) return z def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.latent.detach().requires_grad_() SCREAMING_SNAKE_CASE_ = base_latent + transform_vector if self.quantize: SCREAMING_SNAKE_CASE_ = self.vqgan.quantize(_A ) else: SCREAMING_SNAKE_CASE_ = trans_latent return self.vqgan.decode(_A ) def _UpperCamelCase ( self , _A , _A , _A=None ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.clip_preprocessor(text=_A , images=_A , return_tensors='''pt''' , padding=_A ) SCREAMING_SNAKE_CASE_ = self.clip(**_A ) SCREAMING_SNAKE_CASE_ = clip_outputs.logits_per_image if weights is not None: SCREAMING_SNAKE_CASE_ = similarity_logits * weights return similarity_logits.sum() def _UpperCamelCase ( self , _A , _A , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self._get_clip_similarity(pos_prompts['''prompts'''] , _A , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: SCREAMING_SNAKE_CASE_ = self._get_clip_similarity(neg_prompts['''prompts'''] , _A , weights=neg_prompts['''weights'''] ) else: SCREAMING_SNAKE_CASE_ = torch.tensor([1] , device=self.device ) SCREAMING_SNAKE_CASE_ = -torch.log(_A ) + torch.log(_A ) return loss def _UpperCamelCase ( self , _A , _A , _A ) -> str: SCREAMING_SNAKE_CASE_ = torch.randn_like(self.latent , requires_grad=_A , device=self.device ) SCREAMING_SNAKE_CASE_ = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() SCREAMING_SNAKE_CASE_ = self._add_vector(_A ) SCREAMING_SNAKE_CASE_ = loop_post_process(_A ) SCREAMING_SNAKE_CASE_ = self._get_CLIP_loss(_A , _A , _A ) print('''CLIP loss''' , _A ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=_A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _UpperCamelCase ( self , _A , _A , _A ) -> List[str]: wandb.init(reinit=_A , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: SCREAMING_SNAKE_CASE_ = Image.open(_A ) SCREAMING_SNAKE_CASE_ = image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(_A ) ) def _UpperCamelCase ( self , _A ) -> Tuple: if not prompts: return [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(_A , (tuple, list) ): SCREAMING_SNAKE_CASE_ = prompt[0] SCREAMING_SNAKE_CASE_ = float(prompt[1] ) elif ":" in prompt: SCREAMING_SNAKE_CASE_ = prompt.split(''':''' ) SCREAMING_SNAKE_CASE_ = float(_A ) else: SCREAMING_SNAKE_CASE_ = prompt SCREAMING_SNAKE_CASE_ = 1.0 processed_prompts.append(_A ) weights.append(_A ) return { "prompts": processed_prompts, "weights": torch.tensor(_A , device=self.device ), } def _UpperCamelCase ( self , _A , _A=None , _A=None , _A=True , _A=False , _A=True , _A=True , _A=None , ) -> Tuple: if image_path: SCREAMING_SNAKE_CASE_ = self._get_latent(_A ) else: SCREAMING_SNAKE_CASE_ = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(_A , _A , _A ) assert pos_prompts, "You must provide at least one positive prompt." SCREAMING_SNAKE_CASE_ = self.process_prompts(_A ) SCREAMING_SNAKE_CASE_ = self.process_prompts(_A ) if save_final and save_path is None: SCREAMING_SNAKE_CASE_ = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(_A ): os.makedirs(_A ) else: SCREAMING_SNAKE_CASE_ = save_path + '_' + get_timestamp() os.makedirs(_A ) SCREAMING_SNAKE_CASE_ = save_path SCREAMING_SNAKE_CASE_ = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(_A ) ) SCREAMING_SNAKE_CASE_ = loop_post_process(_A ) for iter, transformed_img in enumerate(self._optimize_CLIP(_A , _A , _A ) ): if show_intermediate: show_pil(_A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'''Image''': wandb.Image(_A )} ) if show_final: show_pil(_A ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
703
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A__ ( __lowerCamelCase = "laptop" ): SCREAMING_SNAKE_CASE_ = F'''https://www.amazon.in/laptop/s?k={product}''' SCREAMING_SNAKE_CASE_ = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } SCREAMING_SNAKE_CASE_ = BeautifulSoup(requests.get(__lowerCamelCase, headers=__lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles SCREAMING_SNAKE_CASE_ = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''', attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''}, ), soup.find_all('''div''', attrs={'''class''': '''a-row a-size-base a-color-base'''} ), ): try: SCREAMING_SNAKE_CASE_ = item.ha.text SCREAMING_SNAKE_CASE_ = '''https://www.amazon.in/''' + item.ha.a['''href'''] SCREAMING_SNAKE_CASE_ = item.find('''span''', attrs={'''class''': '''a-offscreen'''} ).text try: SCREAMING_SNAKE_CASE_ = item.find('''span''', attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: SCREAMING_SNAKE_CASE_ = '''Not available''' try: SCREAMING_SNAKE_CASE_ = ( '''₹''' + item.find( '''span''', attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: SCREAMING_SNAKE_CASE_ = '''''' try: SCREAMING_SNAKE_CASE_ = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''', '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) ) * 1_00 ) except ValueError: SCREAMING_SNAKE_CASE_ = float('''nan''' ) except AttributeError: pass SCREAMING_SNAKE_CASE_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] SCREAMING_SNAKE_CASE_ = ''' ''' SCREAMING_SNAKE_CASE_ = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": __UpperCAmelCase = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
597
0
def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ = " " ): _a : List[str] = [] _a : Union[str, Any] = 0 for index, char in enumerate(UpperCamelCase_ ): if char == separator: split_words.append(string[last_index:index] ) _a : Any = index + 1 elif index + 1 == len(UpperCamelCase_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
471
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : List[str] = logging.get_logger(__name__) __UpperCAmelCase : Dict = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : Dict = 'timesformer' def __init__( self : Union[str, Any] , __snake_case : str=224 , __snake_case : List[str]=16 , __snake_case : Dict=3 , __snake_case : int=8 , __snake_case : Dict=768 , __snake_case : str=12 , __snake_case : Any=12 , __snake_case : int=3072 , __snake_case : Union[str, Any]="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Optional[int]=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : Dict=True , __snake_case : Any="divided_space_time" , __snake_case : List[Any]=0 , **__snake_case : List[str] , ) -> Optional[int]: super().__init__(**__snake_case ) _a : List[Any] = image_size _a : str = patch_size _a : Optional[int] = num_channels _a : List[str] = num_frames _a : Optional[Any] = hidden_size _a : Dict = num_hidden_layers _a : Any = num_attention_heads _a : Optional[int] = intermediate_size _a : Tuple = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : int = initializer_range _a : Optional[int] = layer_norm_eps _a : Dict = qkv_bias _a : str = attention_type _a : Optional[int] = drop_path_rate
471
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable A : List[Any] = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
from __future__ import annotations def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ): """simple docstring""" lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase__ : Dict = { "a": 0.08_497, "b": 0.01_492, "c": 0.02_202, "d": 0.04_253, "e": 0.11_162, "f": 0.02_228, "g": 0.02_015, "h": 0.06_094, "i": 0.07_546, "j": 0.00_153, "k": 0.01_292, "l": 0.04_025, "m": 0.02_406, "n": 0.06_749, "o": 0.07_507, "p": 0.01_929, "q": 0.00_095, "r": 0.07_587, "s": 0.06_327, "t": 0.09_356, "u": 0.02_758, "v": 0.00_978, "w": 0.02_560, "x": 0.00_150, "y": 0.01_994, "z": 0.00_077, } else: # Custom frequencies dictionary lowerCamelCase__ : Optional[int] = frequencies_dict if not case_sensitive: lowerCamelCase__ : str = ciphertext.lower() # Chi squared statistic values lowerCamelCase__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_A ) ): lowerCamelCase__ : Optional[Any] = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( _A ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase__ : str = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase__ : List[str] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : Any = decrypted_with_shift.count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase__ : Optional[int] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase__ : int = min( _A , key=_A , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
5
0
"""simple docstring""" def __UpperCamelCase ( snake_case__ = 100 ): A_ : Any = 0 A_ : Optional[int] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
180
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( snake_case__ , snake_case__ ): if len(snake_case__ ) == 0: return False A_ : Union[str, Any] = len(snake_case__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case__ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = input("Enter numbers separated by comma:\n").strip() _lowerCAmelCase = [int(item.strip()) for item in user_input.split(",")] _lowerCAmelCase = int(input("Enter the number to be found in the list:\n").strip()) _lowerCAmelCase = "" if binary_search(sequence, target) else "not " print(F'{target} was {not_str}found in {sequence}')
180
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __lowerCAmelCase = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Union[str, Any] = """AutoTokenizer""" __SCREAMING_SNAKE_CASE : Dict = ["""tokenizer"""] __SCREAMING_SNAKE_CASE : Union[str, Any] = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any]=None ): super().__init__(__UpperCamelCase ) _UpperCAmelCase = speaker_embeddings @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any]="speaker_embeddings_path.json" , **__UpperCamelCase : Union[str, Any] ): if speaker_embeddings_dict_path is not None: _UpperCAmelCase = get_file_from_repo( __UpperCamelCase , __UpperCamelCase , subfolder=kwargs.pop("subfolder" , __UpperCamelCase ) , cache_dir=kwargs.pop("cache_dir" , __UpperCamelCase ) , force_download=kwargs.pop("force_download" , __UpperCamelCase ) , proxies=kwargs.pop("proxies" , __UpperCamelCase ) , resume_download=kwargs.pop("resume_download" , __UpperCamelCase ) , local_files_only=kwargs.pop("local_files_only" , __UpperCamelCase ) , use_auth_token=kwargs.pop("use_auth_token" , __UpperCamelCase ) , revision=kwargs.pop("revision" , __UpperCamelCase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(__UpperCamelCase , __UpperCamelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _UpperCAmelCase = None else: with open(__UpperCamelCase ) as speaker_embeddings_json: _UpperCAmelCase = json.load(__UpperCamelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) return cls(tokenizer=__UpperCamelCase , speaker_embeddings=__UpperCamelCase ) def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Any="speaker_embeddings_path.json" , __UpperCamelCase : List[str]="speaker_embeddings" , __UpperCamelCase : bool = False , **__UpperCamelCase : Dict , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(__UpperCamelCase , __UpperCamelCase , "v2" ) , exist_ok=__UpperCamelCase ) _UpperCAmelCase = {} _UpperCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase = self._load_voice_preset(__UpperCamelCase ) _UpperCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , __UpperCamelCase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=__UpperCamelCase , ) _UpperCAmelCase = os.path.join(__UpperCamelCase , F'''{prompt_key}_{key}.npy''' ) _UpperCAmelCase = tmp_dict with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , "w" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) super().save_pretrained(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : Any , __UpperCamelCase : str = None , **__UpperCamelCase : int ): _UpperCAmelCase = self.speaker_embeddings[voice_preset] _UpperCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _UpperCAmelCase = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , __UpperCamelCase ) , cache_dir=kwargs.pop("cache_dir" , __UpperCamelCase ) , force_download=kwargs.pop("force_download" , __UpperCamelCase ) , proxies=kwargs.pop("proxies" , __UpperCamelCase ) , resume_download=kwargs.pop("resume_download" , __UpperCamelCase ) , local_files_only=kwargs.pop("local_files_only" , __UpperCamelCase ) , use_auth_token=kwargs.pop("use_auth_token" , __UpperCamelCase ) , revision=kwargs.pop("revision" , __UpperCamelCase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _UpperCAmelCase = np.load(__UpperCamelCase ) return voice_preset_dict def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[dict] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : Any , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Any="pt" , __UpperCamelCase : int=256 , __UpperCamelCase : Dict=False , __UpperCamelCase : Dict=True , __UpperCamelCase : Tuple=False , **__UpperCamelCase : Any , ): if voice_preset is not None and not isinstance(__UpperCamelCase , __UpperCamelCase ): if ( isinstance(__UpperCamelCase , __UpperCamelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase = self._load_voice_preset(__UpperCamelCase ) else: if isinstance(__UpperCamelCase , __UpperCamelCase ) and not voice_preset.endswith(".npz" ): _UpperCAmelCase = voice_preset + ".npz" _UpperCAmelCase = np.load(__UpperCamelCase ) if voice_preset is not None: self._validate_voice_preset_dict(__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase ) _UpperCAmelCase = self.tokenizer( __UpperCamelCase , return_tensors=__UpperCamelCase , padding="max_length" , max_length=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , add_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) if voice_preset is not None: _UpperCAmelCase = voice_preset return encoded_text
703
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
129
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase :List[Any] = logging.get_logger(__name__) def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : str=False ): _UpperCAmelCase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _UpperCAmelCase : int = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=False ): for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase : List[str] = "" else: _UpperCAmelCase : Any = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : List[str] = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _UpperCAmelCase : Dict = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Optional[Any] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ (UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): _UpperCAmelCase : Tuple = dct.pop(UpperCamelCase__ ) _UpperCAmelCase : Tuple = val def lowerCamelCase_ (): _UpperCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] ): _UpperCAmelCase : Tuple = DeiTConfig() # all deit models have fine-tuned heads _UpperCAmelCase : List[str] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _UpperCAmelCase : List[str] = 1000 _UpperCAmelCase : List[Any] = "huggingface/label-files" _UpperCAmelCase : Optional[Any] = "imagenet-1k-id2label.json" _UpperCAmelCase : Any = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) _UpperCAmelCase : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _UpperCAmelCase : Optional[int] = idalabel _UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Optional[Any] = int(deit_name[-6:-4] ) _UpperCAmelCase : Any = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): _UpperCAmelCase : List[str] = 192 _UpperCAmelCase : Optional[int] = 768 _UpperCAmelCase : Optional[Any] = 12 _UpperCAmelCase : Optional[int] = 3 elif deit_name[9:].startswith('''small''' ): _UpperCAmelCase : Optional[Any] = 384 _UpperCAmelCase : List[Any] = 1536 _UpperCAmelCase : int = 12 _UpperCAmelCase : List[str] = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): _UpperCAmelCase : Any = 1024 _UpperCAmelCase : List[Any] = 4096 _UpperCAmelCase : Optional[int] = 24 _UpperCAmelCase : Optional[int] = 16 # load original model from timm _UpperCAmelCase : Tuple = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase : Union[str, Any] = timm_model.state_dict() _UpperCAmelCase : List[str] = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model _UpperCAmelCase : Optional[Any] = DeiTForImageClassificationWithTeacher(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor _UpperCAmelCase : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _UpperCAmelCase : int = DeiTImageProcessor(size=UpperCamelCase__ , crop_size=config.image_size ) _UpperCAmelCase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) _UpperCAmelCase : Optional[Any] = encoding["pixel_values"] _UpperCAmelCase : Tuple = model(UpperCamelCase__ ) _UpperCAmelCase : Dict = timm_model(UpperCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase__ , outputs.logits , atol=1E-3 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase :List[str] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
506
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _A ( A ,A ,A ,A ) -> List[Any]: lowercase : Optional[int] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase : Optional[int] = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } lowercase : Dict = F'''{src_lang}-{tgt_lang}''' lowercase : Union[str, Any] = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=A ,exist_ok=A ) lowercase : str = os.path.join(A ,"README.md" ) print(F'''Generating {path}''' ) with open(A ,"w" ,encoding="utf-8" ) as f: f.write(A ) # make sure we are under the root of the project lowerCAmelCase : Union[str, Any] = Path(__file__).resolve().parent.parent.parent lowerCAmelCase : Union[str, Any] = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowerCAmelCase : Optional[Any] = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
372
0
"""simple docstring""" def _snake_case ( _snake_case : Tuple ) -> Union[str, Any]: '''simple docstring''' _A = len(__A ) _A = len(matrix[0] ) _A = min(__A , __A ) for row in range(__A ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , __A ): _A = matrix[col][row] / matrix[row][row] for i in range(__A , __A ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows _A = True for i in range(row + 1 , __A ): if matrix[i][row] != 0: _A , _A = matrix[i], matrix[row] _A = False break if reduce: rank -= 1 for i in range(__A ): _A = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : list ) -> float: '''simple docstring''' _validate_point(_snake_case ) _validate_point(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(_snake_case , _snake_case ) ) ) def _snake_case ( _snake_case : list[float] ) -> None: '''simple docstring''' if point: if isinstance(_snake_case , _snake_case ): for item in point: if not isinstance(_snake_case , (int, float) ): _A = ( 'Expected a list of numbers as input, found ' F'''{type(_snake_case ).__name__}''' ) raise TypeError(_snake_case ) else: _A = F'''Expected a list of numbers as input, found {type(_snake_case ).__name__}''' raise TypeError(_snake_case ) else: raise ValueError('Missing an input' ) def _snake_case ( _snake_case : list , _snake_case : list ) -> float: '''simple docstring''' _validate_point(_snake_case ) _validate_point(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(_snake_case , _snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
505
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _snake_case : Tuple = logging.get_logger(__name__) _snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : List[Any] = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } _snake_case : Union[str, Any] = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } _snake_case : Tuple = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class A ( _a ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = SqueezeBertTokenizer def __init__( self : str , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : Any="[CLS]" , lowerCAmelCase_ : List[str]="[MASK]" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Optional[int] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _a = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) ) _a = do_lower_case _a = strip_accents _a = tokenize_chinese_chars _a = normalizer_class(**lowerCAmelCase_ ) _a = do_lower_case def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None ) -> List[str]: """simple docstring""" _a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" _a = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
22
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Union[str, Any] =VideoToVideoSDPipeline __A : Tuple =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"}) - {"image", "width", "height"} __A : Union[str, Any] =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"}) - {"image"} __A : str =PipelineTesterMixin.required_optional_params - {"latents"} __A : Dict =False # No `output_type`. __A : Optional[int] =frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ]) def UpperCamelCase__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") ,up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") ,cross_attention_dim=32 ,attention_head_dim=4 ,) UpperCAmelCase_ : int = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) UpperCAmelCase_ : Dict = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,sample_size=1_28 ,) torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act="gelu" ,projection_dim=5_12 ,) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_snake_case ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ : Optional[int] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def UpperCamelCase__ ( self ,_snake_case ,_snake_case=0 ): # 3 frames UpperCAmelCase_ : Dict = floats_tensor((1, 3, 3, 32, 32) ,rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith("mps" ): UpperCAmelCase_ : Tuple = torch.manual_seed(_snake_case ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) UpperCAmelCase_ : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.get_dummy_components() UpperCAmelCase_ : str = VideoToVideoSDPipeline(**_snake_case ) UpperCAmelCase_ : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : str = "np" UpperCAmelCase_ : Dict = sd_pipe(**_snake_case ).frames UpperCAmelCase_ : Tuple = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCAmelCase_ : Dict = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,) def UpperCamelCase__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ,expected_max_diff=5E-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): return super().test_progress_bar() @slow @skip_mps class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" ,torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCAmelCase_ : str = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ : int = torch.randn((1, 10, 3, 10_24, 5_76) ,generator=_snake_case ) UpperCAmelCase_ : List[Any] = video.to("cuda" ) UpperCAmelCase_ : List[Any] = "Spiderman is surfing" UpperCAmelCase_ : Optional[Any] = pipe(_snake_case ,video=_snake_case ,generator=_snake_case ,num_inference_steps=3 ,output_type="pt" ).frames UpperCAmelCase_ : Any = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
71
0
"""simple docstring""" from __future__ import annotations def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = list(range(len(lowerCAmelCase__ ) ) ) A__ = [v / w for v, w in zip(lowerCAmelCase__ ,lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] ,reverse=lowerCAmelCase__ ) A__ = 0 A__ = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
554
"""simple docstring""" import torch from transformers import AutoModel class snake_case_ ( torch.nn.Module ): """simple docstring""" def __init__( self , __a="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__a , self ).__init__() A__ = AutoModel.from_pretrained(__a , return_dict=__a ) A__ = torch.nn.CosineSimilarity(3 , 1E-08 ) A__ = torch.nn.Softmax(dim=1 ) def _UpperCAmelCase ( self , **__a ): """simple docstring""" return self.bert(**__a ).last_hidden_state def _UpperCAmelCase ( self , __a ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__a ) def _UpperCAmelCase ( self , __a , __a , __a=1 ): """simple docstring""" return self.softmax(T * self.cos(__a , __a ) ) def _UpperCAmelCase ( self , __a , __a ): """simple docstring""" A__ = W_supports['sizes'].tolist() A__ = W_supports['start_token_id'].item() A__ = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] A__ = self.BERT(**__a ) A__ = self.BERT(**__a ) A__ = None A__ = None A__ = W_supports['input_ids'] == start_token_id A__ = W_supports['input_ids'] == end_token_id for i, size in enumerate(__a ): if i == 0: A__ = 0 else: A__ = support_sizes[i - 1] A__ = S[s : s + size][start_token_masks[s : s + size]] A__ = S[s : s + size][end_token_masks[s : s + size]] A__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) A__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: A__ = torch.vstack((p_starts, p_start) ) A__ = torch.vstack((p_ends, p_end) ) else: A__ = p_start A__ = p_end return p_starts, p_ends
554
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[str] , _a:pyspark.sql.DataFrame , _a:Optional[NamedSplit] = None , _a:Optional[Features] = None , _a:bool = True , _a:str = None , _a:bool = False , _a:str = None , _a:bool = True , _a:str = "arrow" , **_a:List[str] , ): super().__init__( split=_a , features=_a , cache_dir=_a , keep_in_memory=_a , streaming=_a , **_a , ) snake_case__ = load_from_cache_file snake_case__ = file_format snake_case__ = Spark( df=_a , features=_a , cache_dir=_a , working_dir=_a , **_a , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_a , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
33
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = 1 snake_case__ = 3 snake_case__ = (3_2, 3_2) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(__snake_case) return image @property def __magic_name__ ( self : Tuple): '''simple docstring''' torch.manual_seed(0) snake_case__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) return model @property def __magic_name__ ( self : List[Any]): '''simple docstring''' torch.manual_seed(0) snake_case__ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __magic_name__ ( self : str): '''simple docstring''' torch.manual_seed(0) snake_case__ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(__snake_case) @property def __magic_name__ ( self : List[Any]): '''simple docstring''' def extract(*UpperCamelCase__ : Dict , **UpperCamelCase__ : Optional[Any]): class _lowerCAmelCase : """simple docstring""" def __init__( self : List[str]): '''simple docstring''' snake_case__ = torch.ones([0]) def __magic_name__ ( self : Tuple , UpperCamelCase__ : Any): '''simple docstring''' self.pixel_values.to(__snake_case) return self return Out() return extract def __magic_name__ ( self : str): '''simple docstring''' snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.dummy_cond_unet snake_case__ = PNDMScheduler(skip_prk_steps=__snake_case) snake_case__ = self.dummy_vae snake_case__ = self.dummy_text_encoder snake_case__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""") snake_case__ = 7_7 snake_case__ = self.dummy_image.to(__snake_case) snake_case__ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case__ = AltDiffusionImgaImgPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) snake_case__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__snake_case) snake_case__ = alt_pipe.to(__snake_case) alt_pipe.set_progress_bar_config(disable=__snake_case) snake_case__ = '''A painting of a squirrel eating a burger''' snake_case__ = torch.Generator(device=__snake_case).manual_seed(0) snake_case__ = alt_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__snake_case , ) snake_case__ = output.images snake_case__ = torch.Generator(device=__snake_case).manual_seed(0) snake_case__ = alt_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__snake_case , return_dict=__snake_case , )[0] snake_case__ = image[0, -3:, -3:, -1] snake_case__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""") def __magic_name__ ( self : Optional[Any]): '''simple docstring''' snake_case__ = self.dummy_cond_unet snake_case__ = PNDMScheduler(skip_prk_steps=__snake_case) snake_case__ = self.dummy_vae snake_case__ = self.dummy_text_encoder snake_case__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""") snake_case__ = 7_7 snake_case__ = self.dummy_image.to(__snake_case) # put models in fp16 snake_case__ = unet.half() snake_case__ = vae.half() snake_case__ = bert.half() # make sure here that pndm scheduler skips prk snake_case__ = AltDiffusionImgaImgPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) snake_case__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__snake_case) snake_case__ = alt_pipe.to(__snake_case) alt_pipe.set_progress_bar_config(disable=__snake_case) snake_case__ = '''A painting of a squirrel eating a burger''' snake_case__ = torch.manual_seed(0) snake_case__ = alt_pipe( [prompt] , generator=__snake_case , num_inference_steps=2 , output_type="""np""" , image=__snake_case , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""") def __magic_name__ ( self : List[Any]): '''simple docstring''' snake_case__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""") # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ = init_image.resize((7_6_0, 5_0_4)) snake_case__ = '''BAAI/AltDiffusion''' snake_case__ = AltDiffusionImgaImgPipeline.from_pretrained( __snake_case , safety_checker=__snake_case , ) pipe.to(__snake_case) pipe.set_progress_bar_config(disable=__snake_case) pipe.enable_attention_slicing() snake_case__ = '''A fantasy landscape, trending on artstation''' snake_case__ = torch.manual_seed(0) snake_case__ = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , generator=__snake_case , output_type="""np""" , ) snake_case__ = output.images[0] snake_case__ = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) snake_case__ = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self : Optional[Any]): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""") snake_case__ = init_image.resize((7_6_8, 5_1_2)) snake_case__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""") snake_case__ = '''BAAI/AltDiffusion''' snake_case__ = AltDiffusionImgaImgPipeline.from_pretrained( __snake_case , safety_checker=__snake_case , ) pipe.to(__snake_case) pipe.set_progress_bar_config(disable=__snake_case) pipe.enable_attention_slicing() snake_case__ = '''A fantasy landscape, trending on artstation''' snake_case__ = torch.manual_seed(0) snake_case__ = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , generator=__snake_case , output_type="""np""" , ) snake_case__ = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1E-2
705
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _UpperCAmelCase ( a : List[Any] ): snake_case__ = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ = 0.01 with locka.acquire(): with pytest.raises(a ): snake_case__ = time.time() locka.acquire(a ) assert time.time() - _start > timeout def _UpperCAmelCase ( a : str ): snake_case__ = """a""" * 1000 + """.lock""" snake_case__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(a ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(a ): locka.acquire(0 )
99
0
from collections.abc import Sequence def snake_case ( snake_case__ :Sequence[float] , snake_case__ :float) -> float: return sum(c * (x**i) for i, c in enumerate(snake_case__)) def snake_case ( snake_case__ :Sequence[float] , snake_case__ :float) -> float: _A = 0.0 for coeff in reversed(snake_case__): _A = result * x + coeff return result if __name__ == "__main__": _SCREAMING_SNAKE_CASE = (0.0, 0.0, 5.0, 9.3, 7.0) _SCREAMING_SNAKE_CASE = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
401
from __future__ import annotations def snake_case ( snake_case__ :list[int]) -> int: if not nums: return 0 _A = nums[0] _A = 0 for num in nums[1:]: _A , _A = ( max_excluding + num, max(snake_case__ , snake_case__), ) return max(snake_case__ , snake_case__) if __name__ == "__main__": import doctest doctest.testmod()
401
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase : str =random.Random() def _lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple=1.0 , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : List[str]=None ) -> str: '''simple docstring''' if rng is None: __A : Optional[Any] = global_rng __A : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __snake_case( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=7 , __lowerCamelCase=400 , __lowerCamelCase=2000 , __lowerCamelCase=1 , __lowerCamelCase=0.0 , __lowerCamelCase=16000 , __lowerCamelCase=True , __lowerCamelCase=80 , __lowerCamelCase=16 , __lowerCamelCase=64 , __lowerCamelCase="hann_window" , __lowerCamelCase=80 , __lowerCamelCase=7600 , __lowerCamelCase=1e-10 , __lowerCamelCase=True , ): '''simple docstring''' __A : Union[str, Any] = parent __A : str = batch_size __A : List[Any] = min_seq_length __A : Any = max_seq_length __A : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __A : Optional[int] = feature_size __A : Dict = padding_value __A : List[Any] = sampling_rate __A : Union[str, Any] = do_normalize __A : Union[str, Any] = num_mel_bins __A : Tuple = hop_length __A : int = win_length __A : Dict = win_function __A : List[Any] = fmin __A : List[str] = fmax __A : Any = mel_floor __A : str = return_attention_mask def _a ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _a ( self , __lowerCamelCase=False , __lowerCamelCase=False ): '''simple docstring''' def _flatten(__lowerCamelCase ): return list(itertools.chain(*__lowerCamelCase ) ) if equal_length: __A : List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __A : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __A : Optional[Any] = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs def _a ( self , __lowerCamelCase=False , __lowerCamelCase=False ): '''simple docstring''' if equal_length: __A : Optional[Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __A : Optional[int] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __A : Tuple = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class __snake_case( A_ , unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = SpeechTaFeatureExtractor def _a ( self ): '''simple docstring''' __A : Any = SpeechTaFeatureExtractionTester(self ) def _a ( self , __lowerCamelCase ): '''simple docstring''' self.assertTrue(np.all(np.mean(__lowerCamelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCamelCase , axis=0 ) - 1 ) < 1e-3 ) ) def _a ( self ): '''simple docstring''' __A : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __A : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __A : str = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __A : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values __A : Any = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test batched __A : int = feat_extract(__lowerCamelCase , return_tensors='np' ).input_values __A : Optional[Any] = feat_extract(__lowerCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def _a ( self ): '''simple docstring''' __A : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __A : List[str] = ['longest', 'max_length', 'do_not_pad'] __A : List[str] = [None, 1600, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): __A : int = feat_extract(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors='np' ) __A : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _a ( self ): '''simple docstring''' __A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : Optional[Any] = range(800 , 1400 , 200 ) __A : Union[str, Any] = [floats_list((1, x) )[0] for x in lengths] __A : Any = ['longest', 'max_length', 'do_not_pad'] __A : List[Any] = [None, 1600, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): __A : Optional[Any] = feat_extract(__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase ) __A : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _a ( self ): '''simple docstring''' __A : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __A : Union[str, Any] = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=1000 , padding='max_length' , return_tensors='np' ) __A : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _a ( self ): '''simple docstring''' __A : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __A : Any = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=1000 , padding='longest' , return_tensors='np' ) __A : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) __A : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __A : Dict = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=2000 , padding='longest' , return_tensors='np' ) __A : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def _a ( self ): '''simple docstring''' __A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : Union[str, Any] = np.random.rand(100 ).astype(np.floataa ) __A : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __A : Any = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __A : int = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _a ( self ): '''simple docstring''' __A : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __A : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __A : str = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test feature size __A : str = feature_extractor(audio_target=__lowerCamelCase , padding=__lowerCamelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input __A : Union[str, Any] = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values __A : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test batched __A : List[str] = feature_extractor(__lowerCamelCase , return_tensors='np' ).input_values __A : Any = feature_extractor(__lowerCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __A : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] __A : str = np.asarray(__lowerCamelCase ) __A : int = feature_extractor(__lowerCamelCase , return_tensors='np' ).input_values __A : Tuple = feature_extractor(__lowerCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def _a ( self ): '''simple docstring''' __A : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() __A : str = self.feature_extraction_class(**self.feat_extract_dict ) __A : Union[str, Any] = feat_extract.model_input_names[0] __A : List[str] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__lowerCamelCase ) == len(__lowerCamelCase ) for x, y in zip(__lowerCamelCase , processed_features[input_name] ) ) ) __A : str = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCamelCase ) __A : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) __A : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: __A : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _a ( self ): '''simple docstring''' __A : List[Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCamelCase ) __A : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) __A : List[Any] = feat_extract.model_input_names[0] __A : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) __A : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: __A : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _a ( self ): '''simple docstring''' __A : str = self.feature_extraction_class(**self.feat_extract_dict ) __A : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() __A : Union[str, Any] = feat_extract.model_input_names[0] __A : List[Any] = BatchFeature({input_name: speech_inputs} ) __A : Optional[int] = feat_extract.num_mel_bins # hack! __A : int = feat_extract.pad(__lowerCamelCase , padding='longest' , return_tensors='np' )[input_name] __A : List[Any] = feat_extract.pad(__lowerCamelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _a ( self ): '''simple docstring''' __A : str = self.feat_extract_dict __A : str = True __A : Any = self.feature_extraction_class(**__lowerCamelCase ) __A : Dict = self.feat_extract_tester.prepare_inputs_for_target() __A : int = [len(__lowerCamelCase ) for x in speech_inputs] __A : Tuple = feat_extract.model_input_names[0] __A : Dict = BatchFeature({input_name: speech_inputs} ) __A : List[Any] = feat_extract.num_mel_bins # hack! __A : Union[str, Any] = feat_extract.pad(__lowerCamelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , __lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __lowerCamelCase ) def _a ( self ): '''simple docstring''' __A : List[Any] = self.feat_extract_dict __A : Tuple = True __A : List[str] = self.feature_extraction_class(**__lowerCamelCase ) __A : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() __A : Any = [len(__lowerCamelCase ) for x in speech_inputs] __A : Any = feat_extract.model_input_names[0] __A : List[str] = BatchFeature({input_name: speech_inputs} ) __A : str = min(__lowerCamelCase ) __A : Optional[Any] = feat_extract.num_mel_bins # hack! __A : Tuple = feat_extract.pad( __lowerCamelCase , padding='max_length' , max_length=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors='np' ) self.assertIn('attention_mask' , __lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _a ( self , __lowerCamelCase ): '''simple docstring''' from datasets import load_dataset __A : int = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __A : List[str] = ds.sort('id' ).select(range(__lowerCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ): '''simple docstring''' __A : Optional[int] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on __A : Dict = self._load_datasamples(1 ) __A : Union[str, Any] = SpeechTaFeatureExtractor() __A : Any = feature_extractor(__lowerCamelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , __lowerCamelCase , atol=1e-6 ) ) def _a ( self ): '''simple docstring''' __A : List[str] = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on __A : Dict = self._load_datasamples(1 ) __A : Optional[Any] = SpeechTaFeatureExtractor() __A : str = feature_extractor(audio_target=__lowerCamelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __lowerCamelCase , atol=1e-4 ) )
237
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : List[str] =logging.get_logger(__name__) lowerCamelCase : str ={'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCamelCase : Any ={ '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } lowerCamelCase : Any ={ '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } lowerCamelCase : Tuple ='''▁''' class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' __A : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token __A : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) __A : Any = vocab_file __A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) __A : Optional[int] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __A : Any = len(self.sp_model ) - 1 __A : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _a ( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : int = [self.cls_token_id] __A : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _a ( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : int = [self.sep_token_id] __A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _a ( self ): '''simple docstring''' return len(self.sp_model ) def _a ( self ): '''simple docstring''' __A : List[Any] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self , __lowerCamelCase ): '''simple docstring''' return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _a ( self , __lowerCamelCase ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __A : int = self.sp_model.PieceToId(__lowerCamelCase ) return spm_id if spm_id else self.unk_token_id def _a ( self , __lowerCamelCase ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowerCamelCase ) def _a ( self , __lowerCamelCase ): '''simple docstring''' __A : str = [] __A : str = '' __A : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token __A : Any = True __A : Union[str, Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) __A : Any = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __getstate__( self ): '''simple docstring''' __A : int = self.__dict__.copy() __A : Optional[int] = None return state def __setstate__( self , __lowerCamelCase ): '''simple docstring''' __A : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __A : str = {} __A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __A : Tuple = os.path.join( __lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , 'wb' ) as fi: __A : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
237
1
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a__ : Dict = HfApi() a__ : List[str] = {} # fmt: off a__ : Dict = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) a__ : Dict = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) a__ : str = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) a__ : Dict = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) a__ : Any = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) a__ : Optional[int] = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) a__ : Optional[int] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) a__ : str = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) a__ : Union[str, Any] = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) a__ : int = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) a__ : List[str] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) a__ : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) a__ : Any = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) a__ : List[Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) a__ : List[Any] = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on a__ : Optional[Any] = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a__ : Tuple = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): a__ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: a__ : List[Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a__ : Tuple = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a__ : int = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a__ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1e-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
51
import math import random def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float: UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase : int = (expected / 100) - layer_a # Error delta UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('''Expected value: ''')) __UpperCAmelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
40
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class a ( __lowercase ): @staticmethod @abstractmethod def snake_case_ ( _lowerCAmelCase ): """simple docstring""" raise NotImplementedError() @abstractmethod def snake_case_ ( self ): """simple docstring""" raise NotImplementedError()
702
from __future__ import annotations from math import pow, sqrt def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> dict[str, float]: """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(UpperCamelCase__ , 2 ) - pow(UpperCamelCase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCamelCase__ , 2 ) - pow(UpperCamelCase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCamelCase__ , 2 ) + pow(UpperCamelCase__ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
146
0
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _UpperCamelCase : Dict = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class _snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None ): '''simple docstring''' lowerCAmelCase = None lowerCAmelCase = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) lowerCAmelCase = os.path.abspath('examples' ) for item in os.listdir(_SCREAMING_SNAKE_CASE ): if item not in EXCLUDE_EXAMPLES: lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if os.path.isfile(_SCREAMING_SNAKE_CASE ) and ".py" in item_path: with self.subTest( tested_script=_SCREAMING_SNAKE_CASE , feature_script=_SCREAMING_SNAKE_CASE , tested_section='main()' if parser_only else 'training_function()' , ): lowerCAmelCase = compare_against_test( os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = '\n'.join(_SCREAMING_SNAKE_CASE ) if special_strings is not None: for string in special_strings: lowerCAmelCase = diff.replace(_SCREAMING_SNAKE_CASE , '' ) self.assertEqual(_SCREAMING_SNAKE_CASE , '' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.one_complete_example('complete_nlp_example.py' , _SCREAMING_SNAKE_CASE ) self.one_complete_example('complete_nlp_example.py' , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) lowerCAmelCase = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.one_complete_example('complete_cv_example.py' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : List[str] = False @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' super().setUpClass() lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() lowerCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=_SCREAMING_SNAKE_CASE ) self.assertNotIn('epoch 0:' , _SCREAMING_SNAKE_CASE ) self.assertIn('epoch 1:' , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=_SCREAMING_SNAKE_CASE ) if torch.cuda.is_available(): lowerCAmelCase = torch.cuda.device_count() else: lowerCAmelCase = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , _SCREAMING_SNAKE_CASE ) self.assertIn('epoch 1:' , _SCREAMING_SNAKE_CASE ) else: self.assertIn('epoch 0:' , _SCREAMING_SNAKE_CASE ) self.assertIn('epoch 1:' , _SCREAMING_SNAKE_CASE ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = re.findall('({.+})' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = [r for r in results if 'accuracy' in r][-1] lowerCAmelCase = ast.literal_eval(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: lowerCAmelCase = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'tracking' ) ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
284
'''simple docstring''' def snake_case ( snake_case : list , snake_case : list , snake_case : int , snake_case : int , snake_case : int ) -> int: """simple docstring""" if index == number_of_items: return 0 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = knapsack(snake_case , snake_case , snake_case , snake_case , index + 1 ) if weights[index] <= max_weight: lowerCAmelCase = values[index] + knapsack( snake_case , snake_case , snake_case , max_weight - weights[index] , index + 1 ) return max(snake_case , snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
284
1
from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Optional[int] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" a = "tapas" def __init__( self : List[str] , __lowerCamelCase : Any=3_0522 , __lowerCamelCase : str=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : int=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=1024 , __lowerCamelCase : Tuple=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : Optional[int]=1e-12 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Any=10.0 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Any=None , __lowerCamelCase : Any=1.0 , __lowerCamelCase : Any=False , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=1.0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Dict=False , __lowerCamelCase : str=False , __lowerCamelCase : Optional[Any]="ratio" , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[str]=64 , __lowerCamelCase : str=32 , __lowerCamelCase : str=False , __lowerCamelCase : Dict=True , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : List[str]=None , __lowerCamelCase : Dict=None , **__lowerCamelCase : Any , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE__ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in aggregation_labels.items()}
720
import math class UpperCAmelCase__ : """simple docstring""" def lowercase_ ( self : int , __lowerCamelCase : list[list[float]] , __lowerCamelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE__ = 0.0 SCREAMING_SNAKE_CASE__ = 0.0 for i in range(len(__lowerCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowercase_ ( self : Optional[int] , __lowerCamelCase : list[list[int | float]] , __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : float ) -> list[list[int | float]]: for i in range(len(__lowerCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) SCREAMING_SNAKE_CASE__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training SCREAMING_SNAKE_CASE__ = SelfOrganizingMap() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 0.5 for _ in range(_A ): for j in range(len(_A ) ): # training sample SCREAMING_SNAKE_CASE__ = training_samples[j] # Compute the winning vector SCREAMING_SNAKE_CASE__ = self_organizing_map.get_winner(_A , _A ) # Update the winning vector SCREAMING_SNAKE_CASE__ = self_organizing_map.update(_A , _A , _A , _A ) # classify test sample SCREAMING_SNAKE_CASE__ = [0, 0, 0, 1] SCREAMING_SNAKE_CASE__ = self_organizing_map.get_winner(_A , _A ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
472
0
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) UpperCamelCase = str(bin(UpperCamelCase_ ) )[2:] # remove the leading "0b" UpperCamelCase = str(bin(UpperCamelCase_ ) )[2:] # remove the leading "0b" UpperCamelCase = max(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase_ ) , b_binary.zfill(UpperCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
537
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = 3 UpperCamelCase = 250 UpperCamelCase = ids_tensor((batch_size, length) , lowerCamelCase_ ) UpperCamelCase = torch.ones((batch_size, length) , device=lowerCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = MaxLengthCriteria(max_length=10 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCamelCase_ ) , 1 )
537
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def _UpperCAmelCase ( a : int , a : str=False ): snake_case__ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): snake_case__ = """segformer.encoder.""" + key if key.startswith("""backbone""" ): snake_case__ = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case__ = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] snake_case__ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a )-1}''' ) if "norm" in key: snake_case__ = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case__ = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] snake_case__ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a )-1}''' ) if "layer_norm1" in key: snake_case__ = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: snake_case__ = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 snake_case__ = key[key.find("""block""" ) + len("""block""" )] snake_case__ = key.replace(F'''block{idx}''' , F'''block.{int(a )-1}''' ) if "attn.q" in key: snake_case__ = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: snake_case__ = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: snake_case__ = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: snake_case__ = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: snake_case__ = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: snake_case__ = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: snake_case__ = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) snake_case__ = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case__ = key[key.find("""linear_c""" ) + len("""linear_c""" )] snake_case__ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a )-1}''' ) if key.startswith("""head""" ): snake_case__ = key.replace("""head""" , """classifier""" ) snake_case__ = value return new_state_dict def _UpperCAmelCase ( a : List[str] , a : Any ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case__ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) snake_case__ = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict snake_case__ = kv_weight[ : config.hidden_sizes[i], : ] snake_case__ = kv_bias[: config.hidden_sizes[i]] snake_case__ = kv_weight[ config.hidden_sizes[i] :, : ] snake_case__ = kv_bias[ config.hidden_sizes[i] : ] def _UpperCAmelCase ( ): snake_case__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ = Image.open(requests.get(a , stream=a ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( a : Optional[Any] , a : Optional[Any] , a : Any ): snake_case__ = SegformerConfig() snake_case__ = False # set attributes based on model_name snake_case__ = """huggingface/label-files""" if "segformer" in model_name: snake_case__ = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: snake_case__ = 150 snake_case__ = """ade20k-id2label.json""" snake_case__ = (1, 150, 128, 128) elif "city" in model_name: snake_case__ = 19 snake_case__ = """cityscapes-id2label.json""" snake_case__ = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: snake_case__ = True snake_case__ = model_name[4:6] snake_case__ = 1000 snake_case__ = """imagenet-1k-id2label.json""" snake_case__ = (1, 1000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes snake_case__ = json.load(open(hf_hub_download(a , a , repo_type="""dataset""" ) , """r""" ) ) snake_case__ = {int(a ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": snake_case__ = [64, 128, 320, 512] snake_case__ = 256 elif size == "b2": snake_case__ = [64, 128, 320, 512] snake_case__ = 768 snake_case__ = [3, 4, 6, 3] elif size == "b3": snake_case__ = [64, 128, 320, 512] snake_case__ = 768 snake_case__ = [3, 4, 18, 3] elif size == "b4": snake_case__ = [64, 128, 320, 512] snake_case__ = 768 snake_case__ = [3, 8, 27, 3] elif size == "b5": snake_case__ = [64, 128, 320, 512] snake_case__ = 768 snake_case__ = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) snake_case__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a , align=a , do_random_crop=a ) # prepare image snake_case__ = prepare_img() snake_case__ = image_processor(images=a , return_tensors="""pt""" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: snake_case__ = torch.load(a , map_location=torch.device("""cpu""" ) ) else: snake_case__ = torch.load(a , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys snake_case__ = rename_keys(a , encoder_only=a ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a , a ) # create HuggingFace model and load state dict if encoder_only: snake_case__ = False snake_case__ = SegformerForImageClassification(a ) else: snake_case__ = SegformerForSemanticSegmentation(a ) model.load_state_dict(a ) model.eval() # forward pass snake_case__ = model(a ) snake_case__ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": snake_case__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": snake_case__ = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": snake_case__ = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": snake_case__ = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": snake_case__ = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": snake_case__ = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": snake_case__ = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": snake_case__ = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": snake_case__ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": snake_case__ = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": snake_case__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": snake_case__ = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": snake_case__ = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": snake_case__ = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": snake_case__ = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: snake_case__ = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a__ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
99
from math import factorial a__ = {str(digit): factorial(digit) for digit in range(1_0)} def _UpperCAmelCase ( a : int ): if not isinstance(a , a ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(a ) ) def _UpperCAmelCase ( a : int = 60 , a : int = 100_0000 ): if not isinstance(a , a ) or not isinstance(a , a ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length snake_case__ = 0 # the cached sizes of the previous chains snake_case__ = {} for start_chain_element in range(1 , a ): # The temporary set will contain the elements of the chain snake_case__ = set() snake_case__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. snake_case__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(a ) chain_set_length += 1 snake_case__ = digit_factorial_sum(a ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] snake_case__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
99
1
def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : str = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCamelCase_ ( _UpperCamelCase ) -> dict[str, str]: """simple docstring""" snake_case_ : Tuple = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key snake_case_ : Optional[Any] = remove_duplicates(key.upper() ) snake_case_ : str = len(_UpperCamelCase ) # First fill cipher with key characters snake_case_ : Any = {alphabet[i]: char for i, char in enumerate(_UpperCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_UpperCamelCase ) , 26 ): snake_case_ : str = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 snake_case_ : Union[str, Any] = alphabet[i - offset] snake_case_ : Optional[Any] = char return cipher_alphabet def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" return "".join(cipher_map.get(_UpperCamelCase , _UpperCamelCase ) for ch in message.upper() ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : List[Any] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_UpperCamelCase , _UpperCamelCase ) for ch in message.upper() ) def lowerCamelCase_ ( ) -> None: """simple docstring""" snake_case_ : str = input('''Enter message to encode or decode: ''' ).strip() snake_case_ : int = input('''Enter keyword: ''' ).strip() snake_case_ : Optional[Any] = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: snake_case_ : Optional[int] = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) snake_case_ : Optional[int] = create_cipher_map(_UpperCamelCase ) print(func(_UpperCamelCase , _UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
from __future__ import annotations def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = 2 lowerCamelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCAmelCase__ ) if n > 1: factors.append(UpperCAmelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
623
0
'''simple docstring''' def a_ ( __UpperCAmelCase ) -> list: """simple docstring""" snake_case: List[Any] =len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: snake_case , snake_case: int =arr[i + 1], arr[i] return arr if __name__ == "__main__": a = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
347
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a = logging.getLogger(__name__) class a_ ( snake_case ): UpperCAmelCase : Any = """sequence-classification""" def __init__( self : int , a_ : str ) -> str: if type(a_ ) == dict: snake_case: List[Any] =Namespace(**a_ ) snake_case: Tuple =glue_output_modes[hparams.task] snake_case: Any =glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def UpperCamelCase ( self : Tuple , **a_ : Tuple ) -> Union[str, Any]: return self.model(**a_ ) def UpperCamelCase ( self : int , a_ : Union[str, Any] , a_ : Optional[int] ) -> Optional[int]: snake_case: Any ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case: Optional[int] =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None snake_case: Optional[int] =self(**a_ ) snake_case: Any =outputs[0] snake_case: Union[str, Any] =self.trainer.lr_schedulers[0]['scheduler'] snake_case: str ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase ( self : str ) -> Tuple: snake_case: int =self.hparams snake_case: Union[str, Any] =processors[args.task]() snake_case: Union[str, Any] =processor.get_labels() for mode in ["train", "dev"]: snake_case: Optional[Any] =self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , a_ ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) snake_case: int =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) snake_case: Tuple =convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , a_ ) torch.save(a_ , a_ ) def UpperCamelCase ( self : List[Any] , a_ : str , a_ : int , a_ : bool = False ) -> DataLoader: snake_case: List[Any] ='dev' if mode == 'test' else mode snake_case: Union[str, Any] =self._feature_file(a_ ) logger.info('Loading features from cached file %s' , a_ ) snake_case: Dict =torch.load(a_ ) snake_case: Union[str, Any] =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) snake_case: List[Any] =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) snake_case: str =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": snake_case: Optional[Any] =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": snake_case: Union[str, Any] =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def UpperCamelCase ( self : List[str] , a_ : Optional[int] , a_ : Any ) -> Dict: snake_case: int ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case: Tuple =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None snake_case: List[str] =self(**a_ ) snake_case , snake_case: str =outputs[:2] snake_case: Any =logits.detach().cpu().numpy() snake_case: Union[str, Any] =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase ( self : int , a_ : Union[str, Any] ) -> tuple: snake_case: Optional[Any] =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() snake_case: str =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": snake_case: Union[str, Any] =np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": snake_case: Optional[Any] =np.squeeze(a_ ) snake_case: Tuple =np.concatenate([x['target'] for x in outputs] , axis=0 ) snake_case: Any =[[] for _ in range(out_label_ids.shape[0] )] snake_case: str =[[] for _ in range(out_label_ids.shape[0] )] snake_case: int ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} snake_case: Union[str, Any] =dict(results.items() ) snake_case: Dict =results return ret, preds_list, out_label_list def UpperCamelCase ( self : str , a_ : list ) -> dict: snake_case , snake_case , snake_case: Union[str, Any] =self._eval_end(a_ ) snake_case: Optional[Any] =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase ( self : Tuple , a_ : Tuple ) -> dict: snake_case , snake_case , snake_case: int =self._eval_end(a_ ) snake_case: List[Any] =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase ( a_ : Optional[int] , a_ : Dict ) -> Tuple: BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=a_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=a_ , required=a_ , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=a_ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Any: """simple docstring""" snake_case: Tuple =argparse.ArgumentParser() add_generic_args(__UpperCAmelCase , os.getcwd() ) snake_case: List[Any] =GLUETransformer.add_model_specific_args(__UpperCAmelCase , os.getcwd() ) snake_case: Optional[int] =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: snake_case: Optional[int] =os.path.join( './results' , f'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) snake_case: str =GLUETransformer(__UpperCAmelCase ) snake_case: Tuple =generic_train(__UpperCAmelCase , __UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: snake_case: str =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__UpperCAmelCase ) ) snake_case: int =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCAmelCase ) if __name__ == "__main__": main()
347
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
328
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
328
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : Tuple , *_lowercase : Optional[int] , **_lowercase : int ): warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
709
"""simple docstring""" def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" while b: A , A = b, a % b return a def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(UpperCamelCase__ , a % b ) def __snake_case ( ) -> List[Any]: """simple docstring""" print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
91
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase__( UpperCamelCase__ : str )->Any: A__ = [False] * len(UpperCamelCase__ ) A__ = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ): A__ = True A__ = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph a__: Optional[Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
190
def UpperCamelCase__( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , )->bool: A__ = set() # Replace all the whitespace in our sentence A__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCamelCase__ ) == 26 def UpperCamelCase__( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , )->bool: A__ = [False] * 26 for char in input_str: if char.islower(): A__ = True elif char.isupper(): A__ = True return all(UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , )->bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase__( )->None: from timeit import timeit A__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=UpperCamelCase__ ) ) print(timeit('''is_pangram_faster()''' , setup=UpperCamelCase__ ) ) print(timeit('''is_pangram_fastest()''' , setup=UpperCamelCase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
190
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : Optional[int] = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
715
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowercase__ = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 5_0_2_5_7 , lowerCAmelCase_ : int = 1_0_2_4 , lowerCAmelCase_ : int = 7_6_8 , lowerCAmelCase_ : int = 1_2 , lowerCAmelCase_ : int = 1_2 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "gelu_new" , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 1E-5 , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , ): """simple docstring""" super().__init__() lowercase_ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''') lowercase_ = prefix_inner_dim lowercase_ = prefix_hidden_dim lowercase_ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase_ = ( nn.Linear(self.prefix_hidden_dim , lowerCAmelCase_) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase_ = GPTaConfig( vocab_size=lowerCAmelCase_ , n_positions=lowerCAmelCase_ , n_embd=lowerCAmelCase_ , n_layer=lowerCAmelCase_ , n_head=lowerCAmelCase_ , n_inner=lowerCAmelCase_ , activation_function=lowerCAmelCase_ , resid_pdrop=lowerCAmelCase_ , embd_pdrop=lowerCAmelCase_ , attn_pdrop=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , initializer_range=lowerCAmelCase_ , scale_attn_weights=lowerCAmelCase_ , use_cache=lowerCAmelCase_ , scale_attn_by_inverse_layer_idx=lowerCAmelCase_ , reorder_and_upcast_attn=lowerCAmelCase_ , ) lowercase_ = GPTaLMHeadModel(lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[torch.Tensor] = None , ): """simple docstring""" lowercase_ = self.transformer.transformer.wte(lowerCAmelCase_) lowercase_ = self.encode_prefix(lowerCAmelCase_) lowercase_ = self.decode_prefix(lowerCAmelCase_) lowercase_ = torch.cat((prefix_embeds, embedding_text) , dim=1) if labels is not None: lowercase_ = self.get_dummy_token(input_ids.shape[0] , input_ids.device) lowercase_ = torch.cat((dummy_token, input_ids) , dim=1) lowercase_ = self.transformer(inputs_embeds=lowerCAmelCase_ , labels=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.device): """simple docstring""" return torch.zeros(lowerCAmelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[Any]): """simple docstring""" return self.encode_prefix(lowerCAmelCase_) @torch.no_grad() def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = torch.split(lowerCAmelCase_ , 1 , dim=0) lowercase_ = [] lowercase_ = [] for feature in features: lowercase_ = self.decode_prefix(feature.to(lowerCAmelCase_)) # back to the clip feature # Only support beam search for now lowercase_ , lowercase_ = self.generate_beam( input_embeds=lowerCAmelCase_ , device=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) lowercase_ = torch.stack(lowerCAmelCase_) lowercase_ = torch.stack(lowerCAmelCase_) return generated_tokens, generated_seq_lengths @torch.no_grad() def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int = 5 , lowerCAmelCase_ : int = 6_7 , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" lowercase_ = eos_token_id lowercase_ = None lowercase_ = None lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.int) lowercase_ = torch.zeros(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.bool) if input_embeds is not None: lowercase_ = input_embeds else: lowercase_ = self.transformer.transformer.wte(lowerCAmelCase_) for i in range(lowerCAmelCase_): lowercase_ = self.transformer(inputs_embeds=lowerCAmelCase_) lowercase_ = outputs.logits lowercase_ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowercase_ = logits.softmax(-1).log() if scores is None: lowercase_ , lowercase_ = logits.topk(lowerCAmelCase_ , -1) lowercase_ = generated.expand(lowerCAmelCase_ , *generated.shape[1:]) lowercase_ , lowercase_ = next_tokens.permute(1 , 0), scores.squeeze(0) if tokens is None: lowercase_ = next_tokens else: lowercase_ = tokens.expand(lowerCAmelCase_ , *tokens.shape[1:]) lowercase_ = torch.cat((tokens, next_tokens) , dim=1) else: lowercase_ = -float(np.inf) lowercase_ = 0 lowercase_ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowercase_ = scores_sum / seq_lengths[:, None] lowercase_ , lowercase_ = scores_sum_average.view(-1).topk(lowerCAmelCase_ , -1) lowercase_ = next_tokens // scores_sum.shape[1] lowercase_ = seq_lengths[next_tokens_source] lowercase_ = next_tokens % scores_sum.shape[1] lowercase_ = next_tokens.unsqueeze(1) lowercase_ = tokens[next_tokens_source] lowercase_ = torch.cat((tokens, next_tokens) , dim=1) lowercase_ = generated[next_tokens_source] lowercase_ = scores_sum_average * seq_lengths lowercase_ = is_stopped[next_tokens_source] lowercase_ = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0] , 1 , -1) lowercase_ = torch.cat((generated, next_token_embed) , dim=1) lowercase_ = is_stopped + next_tokens.eq(lowerCAmelCase_).squeeze() if is_stopped.all(): break lowercase_ = scores / seq_lengths lowercase_ = scores.argsort(descending=lowerCAmelCase_) # tokens tensors are already padded to max_seq_length lowercase_ = [tokens[i] for i in order] lowercase_ = torch.stack(lowerCAmelCase_ , dim=0) lowercase_ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype) return output_texts, seq_lengths
100
0
from __future__ import annotations def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : int = str(lowerCAmelCase_) return n == n[::-1] def __magic_name__ ( lowerCAmelCase_ = 100_0000): '''simple docstring''' lowerCamelCase_ : Dict = 0 for i in range(1 , lowerCAmelCase_): if is_palindrome(lowerCAmelCase_) and is_palindrome(bin(lowerCAmelCase_).split("b")[1]): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
250
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __magic_name__ = 1.054_571_817E-34 # unit of ℏ : J * s __magic_name__ = 3E8 # unit of c : m * s^-1 def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' if (force, area, distance).count(0) != 1: raise ValueError("One and only one argument must be 0") if force < 0: raise ValueError("Magnitude of force can not be negative") if distance < 0: raise ValueError("Distance can not be negative") if area < 0: raise ValueError("Area can not be negative") if force == 0: lowerCamelCase_ : Dict = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCamelCase_ : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCamelCase_ : Any = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0") # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
250
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Dict = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : Tuple , *__lowerCamelCase : List[str] , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Optional[int] ) -> List[str]: super().__init__(*__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = eval_examples SCREAMING_SNAKE_CASE__ = post_process_function def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Dict=None , __lowerCamelCase : int=None , __lowerCamelCase : str=None , __lowerCamelCase : str = "eval" ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE__ = self.get_eval_dataloader(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE__ = self.compute_metrics SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop SCREAMING_SNAKE_CASE__ = time.time() try: SCREAMING_SNAKE_CASE__ = eval_loop( __lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE__ = compute_metrics SCREAMING_SNAKE_CASE__ = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE__ = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions ) SCREAMING_SNAKE_CASE__ = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): SCREAMING_SNAKE_CASE__ = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase ) return metrics def lowercase_ ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : str=None , __lowerCamelCase : str = "test" ) -> Any: SCREAMING_SNAKE_CASE__ = self.get_test_dataloader(__lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE__ = self.compute_metrics SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop SCREAMING_SNAKE_CASE__ = time.time() try: SCREAMING_SNAKE_CASE__ = eval_loop( __lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE__ = compute_metrics SCREAMING_SNAKE_CASE__ = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE__ = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions , '''predict''' ) SCREAMING_SNAKE_CASE__ = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): SCREAMING_SNAKE_CASE__ = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase )
472
0
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase__ : List[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model lowerCamelCase__ : Dict = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names lowerCamelCase__ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ : List[str] = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: lowerCamelCase__ : Optional[Any] = """allenai""" def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : Any = dict((re.sub(R"""@@$""" , """""" , lowercase_ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , lowercase_ ), v) for k, v in d.items() ) lowercase__ : List[str] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] lowercase__ : int = d[k] # restore return da def UpperCamelCase ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' assert os.path.exists(lowercase_ ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowercase__ : int = basename(lowercase_ ) lowercase__ : List[Any] = dirname(lowercase_ ) lowercase__ : List[str] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowercase__ : int = cls.hub_models() lowercase__ : Tuple = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} lowercase__ : Optional[Any] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'using checkpoint {checkpoint_file}' ) lowercase__ : Optional[int] = hub_utils.from_pretrained( lowercase_ , lowercase_ , lowercase_ , archive_map=lowercase_ , **lowercase_ ) lowercase__ : Tuple = vars(chkpt["""args"""]["""model"""] ) lowercase__ : List[Any] = args["""source_lang"""] lowercase__ : Dict = args["""target_lang"""] lowercase__ : Optional[Any] = dirname(lowercase_ ) lowercase__ : int = basename(lowercase_ ) # dicts lowercase__ : Union[str, Any] = os.path.join(lowercase_ , F'dict.{src_lang}.txt' ) lowercase__ : Optional[int] = os.path.join(lowercase_ , F'dict.{tgt_lang}.txt' ) lowercase__ : Optional[int] = Dictionary.load(lowercase_ ) lowercase__ : Union[str, Any] = rewrite_dict_keys(src_dict.indices ) lowercase__ : str = len(lowercase_ ) lowercase__ : Any = os.path.join(lowercase_ , """vocab-src.json""" ) print(F'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowercase__ : Any = True for k in src_vocab.keys(): if not k.islower(): lowercase__ : List[str] = False break lowercase__ : Tuple = Dictionary.load(lowercase_ ) lowercase__ : Any = rewrite_dict_keys(tgt_dict.indices ) lowercase__ : Any = len(lowercase_ ) lowercase__ : Any = os.path.join(lowercase_ , """vocab-tgt.json""" ) print(F'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # merges_file (bpecodes) lowercase__ : Union[str, Any] = os.path.join(lowercase_ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowercase__ : Optional[int] = os.path.join(lowercase_ , lowercase_ ) if os.path.exists(lowercase_ ): break with open(lowercase_ , encoding="""utf-8""" ) as fin: lowercase__ : List[Any] = fin.read() lowercase__ : Optional[Any] = re.sub(R""" \d+$""" , """""" , lowercase_ , 0 , re.M ) # remove frequency number print(F'Generating {merges_file}' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as fout: fout.write(lowercase_ ) # model config lowercase__ : Tuple = os.path.join(lowercase_ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", F'need to extend tokenizer to support bpe={args["tokenizer"]}' lowercase__ : List[str] = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with lowercase__ : Optional[int] = 5 lowercase__ : List[str] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowercase__ : Optional[int] = best_score_hparams[model_dir]["""length_penalty"""] else: lowercase__ : Union[str, Any] = 1.0 print(F'Generating {fsmt_model_config_file}' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # tokenizer config lowercase__ : Optional[int] = os.path.join(lowercase_ , lowercase_ ) lowercase__ : int = { """langs""": [src_lang, tgt_lang], """model_max_length""": 10_24, """do_lower_case""": do_lower_case, } print(F'Generating {fsmt_tokenizer_config_file}' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # model lowercase__ : Dict = chkpt["""models"""][0] lowercase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowercase__ : Any = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowercase__ : List[Any] = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(lowercase_ , lowercase_ ) lowercase__ : str = FSMTConfig.from_pretrained(lowercase_ ) lowercase__ : List[str] = FSMTForConditionalGeneration(lowercase_ ) # check that it loads ok model_new.load_state_dict(lowercase_ , strict=lowercase_ ) # save lowercase__ : str = os.path.join(lowercase_ , lowercase_ ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase_ , lowercase_ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F'cd {data_root}' ) print(F'transformers-cli upload {model_dir}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase__ : List[str] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
12
from __future__ import annotations class snake_case__ : def __init__( self , UpperCamelCase_ ) -> None: """simple docstring""" a_ : Dict = order # a_{0} ... a_{k} a_ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} a_ : str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] a_ : Tuple = [0.0] * self.order # y[n-1] ... y[n-k] a_ : List[Any] = [0.0] * self.order def A ( self , UpperCamelCase_ , UpperCamelCase_ ) -> None: """simple docstring""" if len(UpperCamelCase_ ) < self.order: a_ : Optional[int] = [1.0, *a_coeffs] if len(UpperCamelCase_ ) != self.order + 1: a_ : Optional[Any] = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(UpperCamelCase_ )}""" ) raise ValueError(UpperCamelCase_ ) if len(UpperCamelCase_ ) != self.order + 1: a_ : Tuple = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(UpperCamelCase_ )}""" ) raise ValueError(UpperCamelCase_ ) a_ : Any = a_coeffs a_ : Tuple = b_coeffs def A ( self , UpperCamelCase_ ) -> float: """simple docstring""" a_ : List[str] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) a_ : Any = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] a_ : Union[str, Any] = self.input_history[:-1] a_ : Dict = self.output_history[:-1] a_ : List[str] = sample a_ : int = result return result
419
0
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
"""simple docstring""" import cva import numpy as np class a__ : def __init__( self :Optional[int] , _lowerCamelCase :Dict , _lowerCamelCase :int ): '''simple docstring''' if k in (0.04, 0.06): UpperCamelCase_ : Optional[Any] =k UpperCamelCase_ : Optional[Any] =window_size else: raise ValueError('invalid k value' ) def __str__( self :Tuple ): '''simple docstring''' return str(self.k ) def lowerCamelCase_ ( self :str , _lowerCamelCase :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : Optional[int] =cva.imread(lowercase_ , 0 ) UpperCamelCase_ , UpperCamelCase_ : List[Any] =img.shape UpperCamelCase_ : Union[str, Any] =[] UpperCamelCase_ : Union[str, Any] =img.copy() UpperCamelCase_ : Any =cva.cvtColor(lowercase_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_ , UpperCamelCase_ : Dict =np.gradient(lowercase_ ) UpperCamelCase_ : Any =dx**2 UpperCamelCase_ : Tuple =dy**2 UpperCamelCase_ : Union[str, Any] =dx * dy UpperCamelCase_ : List[str] =0.04 UpperCamelCase_ : Any =self.window_size // 2 for y in range(lowercase_ , h - offset ): for x in range(lowercase_ , w - offset ): UpperCamelCase_ : List[str] =ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_ : List[str] =iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_ : List[Any] =ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_ : Optional[int] =(wxx * wyy) - (wxy**2) UpperCamelCase_ : List[Any] =wxx + wyy UpperCamelCase_ : int =det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __SCREAMING_SNAKE_CASE = HarrisCorner(0.04, 3) __SCREAMING_SNAKE_CASE = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
357
from ...processing_utils import ProcessorMixin class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''SpeechT5FeatureExtractor''' __UpperCAmelCase = '''SpeechT5Tokenizer''' def __init__( self , lowercase_ , lowercase_) -> Optional[int]: super().__init__(lowercase_ , lowercase_) def __call__( self , *lowercase_ , **lowercase_) -> int: __snake_case = kwargs.pop('audio' , lowercase_) __snake_case = kwargs.pop('text' , lowercase_) __snake_case = kwargs.pop('text_target' , lowercase_) __snake_case = kwargs.pop('audio_target' , lowercase_) __snake_case = kwargs.pop('sampling_rate' , lowercase_) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?') if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.') if audio is not None: __snake_case = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) elif text is not None: __snake_case = self.tokenizer(lowercase_ , **lowercase_) else: __snake_case = None if audio_target is not None: __snake_case = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) __snake_case = targets['input_values'] elif text_target is not None: __snake_case = self.tokenizer(lowercase_ , **lowercase_) __snake_case = targets['input_ids'] else: __snake_case = None if inputs is None: return targets if targets is not None: __snake_case = labels __snake_case = targets.get('attention_mask') if decoder_attention_mask is not None: __snake_case = decoder_attention_mask return inputs def _a ( self , *lowercase_ , **lowercase_) -> int: __snake_case = kwargs.pop('input_values' , lowercase_) __snake_case = kwargs.pop('input_ids' , lowercase_) __snake_case = kwargs.pop('labels' , lowercase_) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.') if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.') if input_values is not None: __snake_case = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_) elif input_ids is not None: __snake_case = self.tokenizer.pad(lowercase_ , **lowercase_) else: __snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(lowercase_ , lowercase_) and "input_ids" in labels[0]): __snake_case = self.tokenizer.pad(lowercase_ , **lowercase_) __snake_case = targets['input_ids'] else: __snake_case = self.feature_extractor.feature_size __snake_case = self.feature_extractor.num_mel_bins __snake_case = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_) __snake_case = feature_size_hack __snake_case = targets['input_values'] else: __snake_case = None if inputs is None: return targets if targets is not None: __snake_case = labels __snake_case = targets.get('attention_mask') if decoder_attention_mask is not None: __snake_case = decoder_attention_mask return inputs def _a ( self , *lowercase_ , **lowercase_) -> List[str]: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> List[Any]: return self.tokenizer.decode(*lowercase_ , **lowercase_)
313
0
import math import tensorflow as tf from packaging import version def lowercase_ (A : Optional[int] ): snake_case__ : Optional[Any] = tf.convert_to_tensor(A ) snake_case__ : Any = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowercase_ (A : Any ): snake_case__ : Optional[int] = tf.convert_to_tensor(A ) snake_case__ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case__ : int = tf.cast(0.044715 , x.dtype ) snake_case__ : Union[str, Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(A , 3 )) )) return x * cdf def lowercase_ (A : str ): snake_case__ : str = tf.convert_to_tensor(A ) return x * tf.tanh(tf.math.softplus(A ) ) def lowercase_ (A : List[Any] ): snake_case__ : Tuple = tf.convert_to_tensor(A ) snake_case__ : str = tf.cast(0.044715 , x.dtype ) snake_case__ : List[Any] = tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowercase_ (A : Tuple ): snake_case__ : int = tf.convert_to_tensor(A ) snake_case__ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowercase_ (A : Any ): return tf.clip_by_value(_gelu(A ) , -1_0 , 1_0 ) def lowercase_ (A : str , A : Dict=-1 ): snake_case__ : Optional[int] = tf.split(A , 2 , axis=A ) return a * tf.math.sigmoid(A ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowercase_ (A : List[str] ): return tf.keras.activations.gelu(A , approximate=A ) a_ :Any = tf.keras.activations.gelu a_ :Optional[Any] = approximate_gelu_wrap else: a_ :Any = _gelu a_ :Union[str, Any] = _gelu_new a_ :Dict = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowercase_ (A : Dict ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
705
def lowercase_ (A : list[int] ): snake_case__ : Tuple = [] if len(A ) == 1: return [nums.copy()] for _ in range(len(A ) ): snake_case__ : str = nums.pop(0 ) snake_case__ : Optional[int] = permute(A ) for perm in permutations: perm.append(A ) result.extend(A ) nums.append(A ) return result def lowercase_ (A : Any ): def backtrack(A : List[Any] ): if start == len(A ) - 1: output.append(nums[:] ) else: for i in range(A , len(A ) ): snake_case__ , snake_case__ : Optional[Any] = nums[i], nums[start] backtrack(start + 1 ) snake_case__ , snake_case__ : Union[str, Any] = nums[i], nums[start] # backtrack snake_case__ : Any = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function a_ :List[str] = permutea([1, 2, 3]) print(res) doctest.testmod()
243
0
'''simple docstring''' import copy import re class a__: a_ : Any = '''hp''' a_ : Optional[Any] = {} a_ : str = None @classmethod def _lowercase ( cls , _UpperCAmelCase , _UpperCAmelCase ) -> str: snake_case__ =prefix snake_case__ =defaults cls.build_naming_info() @staticmethod def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: if len(_UpperCAmelCase ) == 0: return "" snake_case__ =None if any(char.isdigit() for char in word ): raise Exception(f"""Parameters should not contain numbers: '{word}' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_UpperCAmelCase ) + 1 ): snake_case__ =word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case__ =prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_UpperCAmelCase ): snake_case__ ='' while integer != 0: snake_case__ =chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s snake_case__ =0 while True: snake_case__ =word + '#' + int_to_alphabetic(_UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: snake_case__ =sword break snake_case__ =short_word snake_case__ =word return short_word @staticmethod def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: snake_case__ =param_name.split('_' ) snake_case__ =[TrialShortNamer.shortname_for_word(_UpperCAmelCase , _UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case__ =['', '_'] for separator in separators: snake_case__ =separator.join(_UpperCAmelCase ) if shortname not in info["reverse_short_param"]: snake_case__ =shortname snake_case__ =param_name return shortname return param_name @staticmethod def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: snake_case__ =TrialShortNamer.shortname_for_key(_UpperCAmelCase , _UpperCAmelCase ) snake_case__ =short_name snake_case__ =param_name @classmethod def _lowercase ( cls ) -> str: if cls.NAMING_INFO is not None: return snake_case__ ={ 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case__ =list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCAmelCase , _UpperCAmelCase ) snake_case__ =info @classmethod def _lowercase ( cls , _UpperCAmelCase ) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case__ =[copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case__ =cls.NAMING_INFO['short_param'][k] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case__ =1 if v else 0 snake_case__ ='' if isinstance(_UpperCAmelCase , (int, float) ) else '-' snake_case__ =f"""{key}{sep}{v}""" name.append(_UpperCAmelCase ) return "_".join(_UpperCAmelCase ) @classmethod def _lowercase ( cls , _UpperCAmelCase ) -> Optional[Any]: snake_case__ =repr[len(cls.PREFIX ) + 1 :] if repr == "": snake_case__ =[] else: snake_case__ =repr.split('_' ) snake_case__ ={} for value in values: if "-" in value: snake_case__ , snake_case__ =value.split('-' ) else: snake_case__ =re.sub('[0-9.]' , '' , _UpperCAmelCase ) snake_case__ =float(re.sub('[^0-9.]' , '' , _UpperCAmelCase ) ) snake_case__ =cls.NAMING_INFO['reverse_short_param'][p_k] snake_case__ =p_v for k in cls.DEFAULTS: if k not in parameters: snake_case__ =cls.DEFAULTS[k] return parameters
538
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 SCREAMING_SNAKE_CASE__ : Optional[int] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') SCREAMING_SNAKE_CASE__ : Any = get_tests_dir('''fixtures/vocab.json''') SCREAMING_SNAKE_CASE__ : Optional[Any] = get_tests_dir('''fixtures''') class a__( unittest.TestCase ): a_ : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def _lowercase ( self ) -> Dict: snake_case__ =0 def _lowercase ( self ) -> List[Any]: snake_case__ =AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ =WavaVecaConfig() snake_case__ =AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) snake_case__ =AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'vocab.json' ) ) snake_case__ =AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ =WavaVecaFeatureExtractor() snake_case__ =AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) snake_case__ =WavaVecaProcessor(_UpperCAmelCase , _UpperCAmelCase ) # save in new folder processor.save_pretrained(_UpperCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'r' ) as f: snake_case__ =json.load(_UpperCAmelCase ) config_dict.pop('processor_class' ) with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'w' ) as f: f.write(json.dumps(_UpperCAmelCase ) ) snake_case__ =AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ =WavaVecaFeatureExtractor() snake_case__ =AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) snake_case__ =WavaVecaProcessor(_UpperCAmelCase , _UpperCAmelCase ) # save in new folder processor.save_pretrained(_UpperCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'r' ) as f: snake_case__ =json.load(_UpperCAmelCase ) config_dict.pop('processor_class' ) with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'w' ) as f: f.write(json.dumps(_UpperCAmelCase ) ) snake_case__ =AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ =WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(_UpperCAmelCase ) # copy relevant files copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'w' ) as f: f.write('{}' ) snake_case__ =AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( self ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_UpperCAmelCase ): snake_case__ =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase ): snake_case__ =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=_UpperCAmelCase ) snake_case__ =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=_UpperCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) snake_case__ =processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) snake_case__ =processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version snake_case__ =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase ) snake_case__ =new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def _lowercase ( self ) -> Optional[Any]: try: AutoConfig.register('custom' , _UpperCAmelCase ) AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase ) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase ): AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case__ =CustomFeatureExtractor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ =os.path.join(_UpperCAmelCase , 'vocab.txt' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case__ =CustomTokenizer(_UpperCAmelCase ) snake_case__ =CustomProcessor(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_UpperCAmelCase ) snake_case__ =AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase ( self ) -> Union[str, Any]: class a__( snake_case__ ): a_ : Optional[int] = False class a__( snake_case__ ): a_ : List[Any] = False class a__( snake_case__ ): a_ : int = '''AutoFeatureExtractor''' a_ : int = '''AutoTokenizer''' a_ : List[str] = False try: AutoConfig.register('custom' , _UpperCAmelCase ) AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase ) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # If remote code is not set, the default is to use local classes. snake_case__ =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case__ =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case__ =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase ( self ) -> Union[str, Any]: snake_case__ =AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def _lowercase ( self ) -> List[Any]: snake_case__ =AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class a__( unittest.TestCase ): a_ : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _lowercase ( cls ) -> str: snake_case__ =TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def _lowercase ( cls ) -> int: try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def _lowercase ( self ) -> int: snake_case__ =WavaVecaProcessor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_UpperCAmelCase , 'test-processor' ) , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) snake_case__ =WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(new_processor.feature_extractor , _UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _lowercase ( self ) -> List[str]: snake_case__ =WavaVecaProcessor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_UpperCAmelCase , 'test-processor-org' ) , push_to_hub=_UpperCAmelCase , use_auth_token=self._token , organization='valid_org' , ) snake_case__ =WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(new_processor.feature_extractor , _UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _lowercase ( self ) -> Any: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case__ =CustomFeatureExtractor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ =os.path.join(_UpperCAmelCase , 'vocab.txt' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case__ =CustomTokenizer(_UpperCAmelCase ) snake_case__ =CustomProcessor(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token ) snake_case__ =Repository(_UpperCAmelCase , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(_UpperCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) ) as f: snake_case__ =json.load(_UpperCAmelCase ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , 'custom_processing.py' ) ) ) repo.push_to_hub() snake_case__ =AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
538
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __lowerCAmelCase = logging.get_logger(__name__) def snake_case_ ( snake_case , snake_case ) -> Dict: lowercase__: Any = set() lowercase__: Tuple = [] def parse_line(snake_case ): for line in fp: if isinstance(snake_case , snake_case ): lowercase__: int = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(snake_case ) > 0: lowercase__: Optional[Any] = '\n'.join(snake_case ) # Only keep the warnings specified in `targets` if any(f': {x}: ' in warning for x in targets ): selected_warnings.add(snake_case ) buffer.clear() continue else: lowercase__: Dict = line.strip() buffer.append(snake_case ) if from_gh: for filename in os.listdir(snake_case ): lowercase__: str = os.path.join(snake_case , snake_case ) if not os.path.isdir(snake_case ): # read the file if filename != "warnings.txt": continue with open(snake_case ) as fp: parse_line(snake_case ) else: try: with zipfile.ZipFile(snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case ): # read the file if filename != "warnings.txt": continue with z.open(snake_case ) as fp: parse_line(snake_case ) except Exception: logger.warning( f'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case_ ( snake_case , snake_case ) -> Union[str, Any]: lowercase__: Union[str, Any] = set() lowercase__: Optional[Any] = [os.path.join(snake_case , snake_case ) for p in os.listdir(snake_case ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(snake_case , snake_case ) ) return selected_warnings if __name__ == "__main__": def snake_case_ ( snake_case ) -> str: return values.split(',' ) __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __lowerCAmelCase = extract_warnings(args.output_dir, args.targets) __lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
704
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __lowerCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' __lowerCAmelCase = '''======= >>>>>>> ''' __lowerCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] __lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def snake_case_ ( snake_case ) -> Union[str, Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __a ( __UpperCamelCase ): @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: List[str] = parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Tuple = get_logger('datasets-cli/converting' ) lowercase__: Any = tfds_path lowercase__: str = datasets_directory def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' if os.path.isdir(self._tfds_path ): lowercase__: int = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) lowercase__: str = os.path.abspath(self._datasets_directory ) self._logger.info(F'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) lowercase__: Union[str, Any] = [] lowercase__: List[str] = [] lowercase__: str = {} if os.path.isdir(self._tfds_path ): lowercase__: List[Any] = os.listdir(lowerCAmelCase__ ) else: lowercase__: Optional[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'Looking at file {f_name}' ) lowercase__: List[str] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: int = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if not os.path.isfile(lowerCAmelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase__ , encoding='utf-8' ) as f: lowercase__: Any = f.readlines() lowercase__: List[str] = [] lowercase__: List[Any] = False lowercase__: Any = False lowercase__: Dict = [] for line in lines: lowercase__: Tuple = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: List[Any] = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here lowercase__: Optional[Any] = '' continue elif "from absl import logging" in out_line: lowercase__: str = 'from datasets import logging\n' elif "getLogger" in out_line: lowercase__: Dict = out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Tuple = True lowercase__: int = list(filter(lambda lowerCAmelCase__ : e in out_line , lowerCAmelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase__ ) + '\n' ) out_lines.append(lowerCAmelCase__ ) out_lines.append(lowerCAmelCase__ ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: Any = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Tuple = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) lowercase__: Dict = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: List[str] = True out_lines.append(lowerCAmelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('.py' , '' ) lowercase__: Optional[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Any = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) self._logger.info(F'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase__ ) if needs_manual_update: with_manual_update.append(lowerCAmelCase__ ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase__ ) self._logger.info(F'Converted in {output_file}' ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(lowerCAmelCase__ ) lowercase__: int = imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(F'Moving {dest_folder} to {utils_file}' ) shutil.copy(lowerCAmelCase__ , lowerCAmelCase__ ) except KeyError: self._logger.error(F'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
335
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure)
109
"""simple docstring""" import numpy as np def A_ ( snake_case_ : Tuple ,snake_case_ : Any ,snake_case_ : str ,snake_case_ : Optional[int] ,snake_case_ : List[str] ): '''simple docstring''' UpperCamelCase : int = int(np.ceil((x_end - xa) / h ) ) UpperCamelCase : Dict = np.zeros((n + 1,) ) UpperCamelCase : Optional[int] = ya UpperCamelCase : Optional[Any] = xa for k in range(snake_case_ ): UpperCamelCase : Optional[Any] = f(snake_case_ ,y[k] ) UpperCamelCase : Optional[Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCamelCase : Optional[Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCamelCase : Optional[int] = f(x + h ,y[k] + h * ka ) UpperCamelCase : Tuple = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
499
0
"""simple docstring""" from scipy.stats import spearmanr import datasets lowerCAmelCase_ = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' lowerCAmelCase_ = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' lowerCAmelCase_ = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) ,reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] ,) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Tuple ,_snake_case : int ,_snake_case : Optional[Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = spearmanr(_snake_case ,_snake_case ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
122
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = field(default="language-modeling" ,metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase : ClassVar[Features] = Features({"text": Value("string" )} ) lowerCAmelCase : ClassVar[Features] = Features({} ) lowerCAmelCase : str = "text" @property def UpperCAmelCase ( self : Tuple ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
122
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''google/electra-small-generator''': 512, '''google/electra-base-generator''': 512, '''google/electra-large-generator''': 512, '''google/electra-small-discriminator''': 512, '''google/electra-base-discriminator''': 512, '''google/electra-large-discriminator''': 512, } SCREAMING_SNAKE_CASE_ = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : Any = VOCAB_FILES_NAMES A__ : int = PRETRAINED_VOCAB_FILES_MAP A__ : Dict = PRETRAINED_INIT_CONFIGURATION A__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ElectraTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case_ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case_ ) != tokenize_chinese_chars ): _UpperCAmelCase = getattr(snake_case_ , normalizer_state.pop("type" ) ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = tokenize_chinese_chars _UpperCAmelCase = normalizer_class(**snake_case_ ) _UpperCAmelCase = do_lower_case def __A ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , snake_case_ , snake_case_ = None ) -> List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _UpperCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
426
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class a : """simple docstring""" def __init__( self , snake_case_ ) -> Union[str, Any]: _UpperCAmelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _UpperCAmelCase = len(snake_case_ ) - 1 def __A ( self , snake_case_ ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCAmelCase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , snake_case_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(snake_case_ ) , 5 ) == 1 return output_values def __A ( self , snake_case_ ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCAmelCase = self.basis_function(snake_case_ ) _UpperCAmelCase = 0.0 _UpperCAmelCase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __A ( self , snake_case_ = 0.01 ) -> int: from matplotlib import pyplot as plt # type: ignore _UpperCAmelCase = [] # x coordinates of points to plot _UpperCAmelCase = [] # y coordinates of points to plot _UpperCAmelCase = 0.0 while t <= 1: _UpperCAmelCase = self.bezier_curve_function(snake_case_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _UpperCAmelCase = [i[0] for i in self.list_of_points] _UpperCAmelCase = [i[1] for i in self.list_of_points] plt.plot( snake_case_ , snake_case_ , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(snake_case_ , snake_case_ , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
426
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
703
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class _snake_case ( __snake_case ): """simple docstring""" a = "sew" def __init__( self : List[Any] , _A : Tuple=3_2 , _A : str=7_6_8 , _A : Dict=1_2 , _A : Tuple=1_2 , _A : Optional[Any]=3_0_7_2 , _A : List[str]=2 , _A : Dict="gelu" , _A : Union[str, Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[int]=0.1 , _A : Optional[int]=0.0 , _A : str=0.1 , _A : Tuple=0.1 , _A : Optional[int]=0.02 , _A : Dict=1e-5 , _A : str="group" , _A : Tuple="gelu" , _A : Union[str, Any]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _A : Optional[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _A : Any=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _A : Tuple=False , _A : Tuple=1_2_8 , _A : int=1_6 , _A : Union[str, Any]=True , _A : Optional[Any]=0.05 , _A : List[Any]=1_0 , _A : Union[str, Any]=2 , _A : Tuple=0.0 , _A : Union[str, Any]=1_0 , _A : Optional[int]=0 , _A : Union[str, Any]="mean" , _A : Optional[int]=False , _A : List[Any]=False , _A : int=2_5_6 , _A : str=0 , _A : Optional[int]=1 , _A : List[Any]=2 , **_A : Dict , ): """simple docstring""" super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A) _SCREAMING_SNAKE_CASE : str = hidden_size _SCREAMING_SNAKE_CASE : Optional[int] = feat_extract_norm _SCREAMING_SNAKE_CASE : Optional[int] = feat_extract_activation _SCREAMING_SNAKE_CASE : Dict = list(_A) _SCREAMING_SNAKE_CASE : int = list(_A) _SCREAMING_SNAKE_CASE : int = list(_A) _SCREAMING_SNAKE_CASE : str = conv_bias _SCREAMING_SNAKE_CASE : Tuple = num_conv_pos_embeddings _SCREAMING_SNAKE_CASE : List[str] = num_conv_pos_embedding_groups _SCREAMING_SNAKE_CASE : Tuple = len(self.conv_dim) _SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers _SCREAMING_SNAKE_CASE : List[str] = intermediate_size _SCREAMING_SNAKE_CASE : str = squeeze_factor _SCREAMING_SNAKE_CASE : Dict = hidden_act _SCREAMING_SNAKE_CASE : str = num_attention_heads _SCREAMING_SNAKE_CASE : Dict = hidden_dropout _SCREAMING_SNAKE_CASE : Tuple = attention_dropout _SCREAMING_SNAKE_CASE : int = activation_dropout _SCREAMING_SNAKE_CASE : Any = feat_proj_dropout _SCREAMING_SNAKE_CASE : str = final_dropout _SCREAMING_SNAKE_CASE : Union[str, Any] = layerdrop _SCREAMING_SNAKE_CASE : Any = layer_norm_eps _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[Any] = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _SCREAMING_SNAKE_CASE : List[Any] = apply_spec_augment _SCREAMING_SNAKE_CASE : List[Any] = mask_time_prob _SCREAMING_SNAKE_CASE : List[str] = mask_time_length _SCREAMING_SNAKE_CASE : List[Any] = mask_time_min_masks _SCREAMING_SNAKE_CASE : List[Any] = mask_feature_prob _SCREAMING_SNAKE_CASE : int = mask_feature_length _SCREAMING_SNAKE_CASE : List[Any] = mask_feature_min_masks # ctc loss _SCREAMING_SNAKE_CASE : int = ctc_loss_reduction _SCREAMING_SNAKE_CASE : Optional[int] = ctc_zero_infinity # sequence classification _SCREAMING_SNAKE_CASE : Dict = use_weighted_layer_sum _SCREAMING_SNAKE_CASE : List[str] = classifier_proj_size @property def _lowerCAmelCase ( self : Any): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1)
635
0
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version __lowerCamelCase : Any = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize __lowerCamelCase : Tuple = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' __lowerCamelCase : List[Any] = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' __lowerCamelCase : Optional[Any] = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase ( datasets.Metric): """simple docstring""" def UpperCamelCase__ ( self : List[Any] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def UpperCamelCase__ ( self : List[str] , UpperCamelCase__ : List[Any] ) -> Dict: import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCamelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=0.9 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : str=0.5 ) -> Dict: if NLTK_VERSION >= version.Version('''3.6.5''' ): _UpperCamelCase =[ meteor_score.single_meteor_score( word_tokenize(UpperCamelCase__ ) , word_tokenize(UpperCamelCase__ ) , alpha=UpperCamelCase__ , beta=UpperCamelCase__ , gamma=UpperCamelCase__ ) for ref, pred in zip(UpperCamelCase__ , UpperCamelCase__ ) ] else: _UpperCamelCase =[ meteor_score.single_meteor_score(UpperCamelCase__ , UpperCamelCase__ , alpha=UpperCamelCase__ , beta=UpperCamelCase__ , gamma=UpperCamelCase__ ) for ref, pred in zip(UpperCamelCase__ , UpperCamelCase__ ) ] return {"meteor": np.mean(UpperCamelCase__ )}
404
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = (UnCLIPScheduler,) def UpperCamelCase__ ( self : Union[str, Any] , **UpperCamelCase__ : Dict ) -> Optional[Any]: _UpperCamelCase ={ '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**UpperCamelCase__ ) return config def UpperCamelCase__ ( self : str ) -> Tuple: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCamelCase__ ( self : List[str] ) -> int: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCamelCase__ ( self : List[str] ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCamelCase__ ( self : List[Any] ) -> List[str]: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCamelCase__ ( self : List[Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCamelCase__ ( self : Optional[Any] ) -> Tuple: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCamelCase__ ( self : List[str] ) -> Dict: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config(variance_type='''fixed_small_log''' ) _UpperCamelCase =scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1E-5 def UpperCamelCase__ ( self : Any ) -> Tuple: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config(variance_type='''learned_range''' ) _UpperCamelCase =scheduler_class(**UpperCamelCase__ ) _UpperCamelCase =0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1712790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7998052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0010011 < 1E-5 def UpperCamelCase__ ( self : str ) -> Optional[int]: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config() _UpperCamelCase =scheduler_class(**UpperCamelCase__ ) _UpperCamelCase =scheduler.timesteps _UpperCamelCase =self.dummy_model() _UpperCamelCase =self.dummy_sample_deter _UpperCamelCase =torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual _UpperCamelCase =model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 _UpperCamelCase =scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample _UpperCamelCase =pred_prev_sample _UpperCamelCase =torch.sum(torch.abs(UpperCamelCase__ ) ) _UpperCamelCase =torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2682495 ) < 1E-2 assert abs(result_mean.item() - 0.3284743 ) < 1E-3 def UpperCamelCase__ ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config() _UpperCamelCase =scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) _UpperCamelCase =scheduler.timesteps _UpperCamelCase =self.dummy_model() _UpperCamelCase =self.dummy_sample_deter _UpperCamelCase =torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual _UpperCamelCase =model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: _UpperCamelCase =None else: _UpperCamelCase =timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _UpperCamelCase =scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample _UpperCamelCase =pred_prev_sample _UpperCamelCase =torch.sum(torch.abs(UpperCamelCase__ ) ) _UpperCamelCase =torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2044983 ) < 1E-2 assert abs(result_mean.item() - 0.3362038 ) < 1E-3 def UpperCamelCase__ ( self : str ) -> Any: pass def UpperCamelCase__ ( self : List[str] ) -> str: pass
404
1
def snake_case ( UpperCAmelCase : int ): A = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def snake_case ( UpperCAmelCase : int = 1_00 ): A = 1 A = 2 for i in range(2, max_n + 1 ): A = pre_numerator A = 2 * i // 3 if i % 3 == 0 else 1 A = cur_numerator A = e_cont * pre_numerator + temp return sum_digits(UpperCAmelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
110
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase_ = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def snake_case ( UpperCAmelCase : str = "mumbai" ): A = BeautifulSoup(requests.get(url + location ).content, 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div', attrs={'data-tn-component': 'organicJob'} ): A = job.find('a', attrs={'data-tn-element': 'jobTitle'} ).text.strip() A = job.find('span', {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
110
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowerCAmelCase ( unittest.TestCase ): def __magic_name__( self ): lowerCAmelCase__ : List[Any] = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() lowerCAmelCase__ : List[str] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : str = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } lowerCAmelCase__ : int = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_6000, '''return_attention_mask''': False, '''do_normalize''': True, } lowerCAmelCase__ : str = tempfile.mkdtemp() lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) # load decoder from hub lowerCAmelCase__ : Optional[Any] = '''hf-internal-testing/ngram-beam-search-decoder''' def __magic_name__( self , **__UpperCAmelCase ): lowerCAmelCase__ : List[Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__UpperCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __magic_name__( self , **__UpperCAmelCase ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __magic_name__( self , **__UpperCAmelCase ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__UpperCAmelCase ) def __magic_name__( self ): shutil.rmtree(self.tmpdirname ) def __magic_name__( self ): lowerCAmelCase__ : List[str] = self.get_tokenizer() lowerCAmelCase__ : Dict = self.get_feature_extractor() lowerCAmelCase__ : Union[str, Any] = self.get_decoder() lowerCAmelCase__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __UpperCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : str = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match lowerCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __magic_name__( self ): lowerCAmelCase__ : Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(__UpperCAmelCase , '''include''' ): WavaVecaProcessorWithLM( tokenizer=__UpperCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __magic_name__( self ): lowerCAmelCase__ : Optional[Any] = self.get_feature_extractor() lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : str = self.get_decoder() lowerCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = floats_list((3, 1000) ) lowerCAmelCase__ : Tuple = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ) lowerCAmelCase__ : Tuple = processor(__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__( self ): lowerCAmelCase__ : str = self.get_feature_extractor() lowerCAmelCase__ : Any = self.get_tokenizer() lowerCAmelCase__ : str = self.get_decoder() lowerCAmelCase__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = '''This is a test string''' lowerCAmelCase__ : Optional[Any] = processor(text=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__( self , __UpperCAmelCase=(2, 10, 16) , __UpperCAmelCase=77 ): np.random.seed(__UpperCAmelCase ) return np.random.rand(*__UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : Any = self.get_feature_extractor() lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : int = self.get_decoder() lowerCAmelCase__ : List[str] = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) lowerCAmelCase__ : Any = self._get_dummy_logits(shape=(10, 16) , seed=13 ) lowerCAmelCase__ : Any = processor.decode(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = decoder.decode_beams(__UpperCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : List[Any] = self.get_feature_extractor() lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : List[str] = self.get_decoder() lowerCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) lowerCAmelCase__ : str = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowerCAmelCase__ : Optional[Any] = processor.batch_decode(__UpperCAmelCase ) else: with get_context(__UpperCAmelCase ).Pool() as pool: lowerCAmelCase__ : Dict = processor.batch_decode(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : int = list(__UpperCAmelCase ) with get_context('''fork''' ).Pool() as p: lowerCAmelCase__ : List[Any] = decoder.decode_beams_batch(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__UpperCAmelCase , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(__UpperCAmelCase , decoded_processor.logit_score ) self.assertListEqual(__UpperCAmelCase , decoded_processor.lm_score ) def __magic_name__( self ): lowerCAmelCase__ : int = self.get_feature_extractor() lowerCAmelCase__ : int = self.get_tokenizer() lowerCAmelCase__ : List[Any] = self.get_decoder() lowerCAmelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = self._get_dummy_logits() lowerCAmelCase__ : Tuple = 15 lowerCAmelCase__ : str = -20.0 lowerCAmelCase__ : Tuple = -4.0 lowerCAmelCase__ : Dict = processor.batch_decode( __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) lowerCAmelCase__ : List[Any] = decoded_processor_out.text lowerCAmelCase__ : Dict = list(__UpperCAmelCase ) with get_context('''fork''' ).Pool() as pool: lowerCAmelCase__ : List[Any] = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) lowerCAmelCase__ : Any = [d[0][0] for d in decoded_decoder_out] lowerCAmelCase__ : str = [d[0][2] for d in decoded_decoder_out] lowerCAmelCase__ : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , __UpperCAmelCase ) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __UpperCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __UpperCAmelCase , atol=1e-3 ) ) def __magic_name__( self ): lowerCAmelCase__ : int = self.get_feature_extractor() lowerCAmelCase__ : List[Any] = self.get_tokenizer() lowerCAmelCase__ : Optional[int] = self.get_decoder() lowerCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = self._get_dummy_logits() lowerCAmelCase__ : Optional[Any] = 2.0 lowerCAmelCase__ : List[Any] = 5.0 lowerCAmelCase__ : Tuple = -20.0 lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : int = processor.batch_decode( __UpperCAmelCase , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) lowerCAmelCase__ : Any = decoded_processor_out.text lowerCAmelCase__ : int = list(__UpperCAmelCase ) decoder.reset_params( alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) with get_context('''fork''' ).Pool() as pool: lowerCAmelCase__ : Union[str, Any] = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , ) lowerCAmelCase__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , __UpperCAmelCase ) lowerCAmelCase__ : int = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] lowerCAmelCase__ : List[str] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() lowerCAmelCase__ : Optional[int] = os.listdir(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : List[Any] = snapshot_download('''hf-internal-testing/processor_with_lm''' ) lowerCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = processor.decoder.model_container[processor.decoder._model_key] lowerCAmelCase__ : Optional[Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() lowerCAmelCase__ : List[Any] = os.listdir(__UpperCAmelCase ) lowerCAmelCase__ : Dict = os.listdir(__UpperCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCAmelCase__ : List[str] = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCAmelCase__ : Union[str, Any] = floats_list((3, 1000) ) lowerCAmelCase__ : Optional[int] = processor_wavaveca(__UpperCAmelCase , return_tensors='''np''' ) lowerCAmelCase__ : int = processor_auto(__UpperCAmelCase , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) lowerCAmelCase__ : Union[str, Any] = self._get_dummy_logits() lowerCAmelCase__ : List[str] = processor_wavaveca.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = processor_auto.batch_decode(__UpperCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __magic_name__( self ): lowerCAmelCase__ : List[Any] = self.get_feature_extractor() lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : Any = self.get_decoder() lowerCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Tuple = [d[key] for d in offsets] return retrieved_list def __magic_name__( self ): lowerCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCAmelCase__ : Any = self._get_dummy_logits()[0] lowerCAmelCase__ : Tuple = processor.decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __magic_name__( self ): lowerCAmelCase__ : int = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCAmelCase__ : Optional[int] = self._get_dummy_logits() lowerCAmelCase__ : Dict = processor.batch_decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(__UpperCAmelCase , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __magic_name__( self ): import torch lowerCAmelCase__ : Tuple = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_6000 ) ) lowerCAmelCase__ : Dict = iter(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = next(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) lowerCAmelCase__ : str = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowerCAmelCase__ : int = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(__UpperCAmelCase ).logits.cpu().numpy() lowerCAmelCase__ : Optional[int] = processor.decode(logits[0] , output_word_offsets=__UpperCAmelCase ) lowerCAmelCase__ : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowerCAmelCase__ : Union[str, Any] = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] lowerCAmelCase__ : List[Any] = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(__UpperCAmelCase , '''word''' ) ) , __UpperCAmelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(__UpperCAmelCase , '''word''' ) ) , output.text ) # output times lowerCAmelCase__ : List[str] = torch.tensor(self.get_from_offsets(__UpperCAmelCase , '''start_time''' ) ) lowerCAmelCase__ : List[str] = torch.tensor(self.get_from_offsets(__UpperCAmelCase , '''end_time''' ) ) # fmt: off lowerCAmelCase__ : Tuple = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) lowerCAmelCase__ : List[Any] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01 ) )
678
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _lowerCAmelCase ( unittest.TestCase ): A__ = MODEL_FOR_CAUSAL_LM_MAPPING A__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __magic_name__( self ): lowerCAmelCase__ : Tuple = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ : Optional[int] = text_generator('''This is a test''' , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) lowerCAmelCase__ : List[str] = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( __UpperCAmelCase , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) lowerCAmelCase__ : str = text_generator('''This is a test''' , do_sample=__UpperCAmelCase , num_return_sequences=2 , return_tensors=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ] , ) lowerCAmelCase__ : List[Any] = text_generator.model.config.eos_token_id lowerCAmelCase__ : List[Any] = '''<pad>''' lowerCAmelCase__ : List[Any] = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=__UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__UpperCAmelCase , ) self.assertEqual( __UpperCAmelCase , [ [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ], [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ], ] , ) @require_tf def __magic_name__( self ): lowerCAmelCase__ : int = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ : List[Any] = text_generator('''This is a test''' , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) lowerCAmelCase__ : List[str] = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Dict = TextGenerationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_generator, ["This is a test", "Another test"] def __magic_name__( self ): lowerCAmelCase__ : Any = '''Hello I believe in''' lowerCAmelCase__ : List[Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase__ : Optional[int] = text_generator(__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) lowerCAmelCase__ : List[str] = text_generator(__UpperCAmelCase , stop_sequence=''' fe''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': '''Hello I believe in fe'''}] ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : str = text_generator.model lowerCAmelCase__ : Optional[int] = text_generator.tokenizer lowerCAmelCase__ : Tuple = text_generator('''This is a test''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ : Optional[int] = text_generator('''This is a test''' , return_full_text=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ : Dict = pipeline(task='''text-generation''' , model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , return_full_text=__UpperCAmelCase ) lowerCAmelCase__ : Dict = text_generator('''This is a test''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ : List[str] = text_generator('''This is a test''' , return_full_text=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ : Optional[int] = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCAmelCase__ : List[str] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], ] , ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : Any = text_generator('''test''' , return_full_text=__UpperCAmelCase , return_text=__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = text_generator('''test''' , return_full_text=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : str = text_generator('''test''' , return_text=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCAmelCase__ : str = text_generator('''''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCAmelCase__ : List[str] = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCAmelCase__ : Optional[Any] = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) lowerCAmelCase__ : Optional[Any] = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__UpperCAmelCase ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __magic_name__( self ): import torch # Classic `model_kwargs` lowerCAmelCase__ : List[str] = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ : Any = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCAmelCase__ : Dict = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ : Union[str, Any] = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCAmelCase__ : str = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCAmelCase__ : Any = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def __magic_name__( self ): import torch lowerCAmelCase__ : List[str] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def __magic_name__( self ): import torch lowerCAmelCase__ : Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=__UpperCAmelCase , top_p=0.5 ) def __magic_name__( self ): lowerCAmelCase__ : int = '''Hello world''' lowerCAmelCase__ : Union[str, Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": lowerCAmelCase__ : List[Any] = logging.get_logger('''transformers.generation.tf_utils''' ) else: lowerCAmelCase__ : Dict = logging.get_logger('''transformers.generation.utils''' ) lowerCAmelCase__ : Optional[Any] = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : List[str] = text_generator(__UpperCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(__UpperCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : Any = text_generator(__UpperCAmelCase , max_new_tokens=1 ) self.assertNotIn(__UpperCAmelCase , cl.out ) with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : Union[str, Any] = text_generator(__UpperCAmelCase , max_length=10 ) self.assertNotIn(__UpperCAmelCase , cl.out )
678
1
'''simple docstring''' from __future__ import annotations from typing import TypedDict class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 def __A ( lowerCamelCase_ ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(lowerCamelCase_ ) )] def __A ( lowerCamelCase_ ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) SCREAMING_SNAKE_CASE : Tuple = all_rotations(lowerCamelCase_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowerCamelCase_ ), } return response def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: SCREAMING_SNAKE_CASE : List[Any] = int(lowerCamelCase_ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(lowerCamelCase_ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) SCREAMING_SNAKE_CASE : List[str] = [""""""] * len(lowerCamelCase_ ) for _ in range(len(lowerCamelCase_ ) ): for i in range(len(lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE : Optional[Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __UpperCAmelCase = """Provide a string that I will generate its BWT transform: """ __UpperCAmelCase = input(entry_msg).strip() __UpperCAmelCase = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) __UpperCAmelCase = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
713
'''simple docstring''' def __A ( lowerCamelCase_ ): """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : List[str] = number while duplicate > 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = divmod(lowerCamelCase_ , 10 ) fact_sum += factorial(lowerCamelCase_ ) return fact_sum == number if __name__ == "__main__": print("""Program to check whether a number is a Krisnamurthy Number or not.""") __UpperCAmelCase = int(input("""Enter number: """).strip()) print( f'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
79
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand a__ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(SCREAMING_SNAKE_CASE__ ): return ext raise Exception( F'''Unable to determine file format from file extension {path}. ''' F'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> int: _snake_case : str = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _snake_case : Optional[Any] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format _snake_case : Any = PipelineDataFormat.from_str( format=SCREAMING_SNAKE_CASE__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Pipeline , lowerCAmelCase : PipelineDataFormat) -> Dict: """simple docstring""" _snake_case : int = nlp _snake_case : Dict = reader @staticmethod def UpperCamelCase_ ( lowerCAmelCase : ArgumentParser) -> Any: """simple docstring""" _snake_case : Any = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""") run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""") run_parser.add_argument("""--input""" , type=lowerCAmelCase , help="""Path to the file to use for inference""") run_parser.add_argument("""--output""" , type=lowerCAmelCase , help="""Path to the file that will be used post to write results.""") run_parser.add_argument("""--model""" , type=lowerCAmelCase , help="""Name or path to the model to instantiate.""") run_parser.add_argument("""--config""" , type=lowerCAmelCase , help="""Name or path to the model's config to instantiate.""") run_parser.add_argument( """--tokenizer""" , type=lowerCAmelCase , help="""Name of the tokenizer to use. (default: same as the model name)""") run_parser.add_argument( """--column""" , type=lowerCAmelCase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=lowerCAmelCase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=lowerCAmelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""") run_parser.set_defaults(func=lowerCAmelCase) def UpperCamelCase_ ( self : Optional[int]) -> Tuple: """simple docstring""" _snake_case , _snake_case : int = self._nlp, [] for entry in self._reader: _snake_case : List[Any] = nlp(**lowerCAmelCase) if self._reader.is_multi_columns else nlp(lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase): outputs.append(lowerCAmelCase) else: outputs += output # Saving data if self._nlp.binary_output: _snake_case : Any = self._reader.save_binary(lowerCAmelCase) logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''') else: self._reader.save(lowerCAmelCase)
477
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a__ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } a__ = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } a__ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = VOCAB_FILES_NAMES snake_case_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Any = PRETRAINED_INIT_CONFIGURATION snake_case_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : Dict = RealmTokenizer def __init__( self : int , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Union[str, Any]="[UNK]" , lowerCAmelCase : List[str]="[SEP]" , lowerCAmelCase : Optional[int]="[PAD]" , lowerCAmelCase : List[Any]="[CLS]" , lowerCAmelCase : Any="[MASK]" , lowerCAmelCase : Dict=True , lowerCAmelCase : int=None , **lowerCAmelCase : Tuple , ) -> List[str]: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : str = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase) != tokenize_chinese_chars ): _snake_case : Tuple = getattr(lowerCAmelCase , normalizer_state.pop("""type""")) _snake_case : Any = do_lower_case _snake_case : Optional[int] = strip_accents _snake_case : str = tokenize_chinese_chars _snake_case : List[str] = normalizer_class(**lowerCAmelCase) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : Dict , lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[Any] = kwargs.pop("""text_pair""" , lowerCAmelCase) _snake_case : Union[str, Any] = kwargs.pop("""return_tensors""" , lowerCAmelCase) _snake_case : Optional[Any] = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(lowerCAmelCase): if batch_text_pair is not None: _snake_case : Dict = batch_text_pair[idx] else: _snake_case : List[str] = None _snake_case : Optional[int] = super().__call__(lowerCAmelCase , lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) _snake_case : str = encoded_candidates.get("""input_ids""") _snake_case : Union[str, Any] = encoded_candidates.get("""attention_mask""") _snake_case : Any = encoded_candidates.get("""token_type_ids""") if encoded_input_ids is not None: output_data["input_ids"].append(lowerCAmelCase) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowerCAmelCase) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowerCAmelCase) _snake_case : str = {key: item for key, item in output_data.items() if len(lowerCAmelCase) != 0} return BatchEncoding(lowerCAmelCase , tensor_type=lowerCAmelCase) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=None) -> List[str]: """simple docstring""" _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : List[Any] = [self.sep_token_id] _snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" _snake_case : Dict = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase)
477
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig UpperCAmelCase_ : List[Any] = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class __A ( snake_case_ ): UpperCamelCase = """albert""" def __init__( self :Optional[Any] , __snake_case :Optional[Any]=3_00_00 , __snake_case :Dict=1_28 , __snake_case :Union[str, Any]=40_96 , __snake_case :List[Any]=12 , __snake_case :int=1 , __snake_case :str=64 , __snake_case :Any=1_63_84 , __snake_case :str=1 , __snake_case :List[str]="gelu_new" , __snake_case :Optional[int]=0 , __snake_case :Dict=0 , __snake_case :Optional[int]=5_12 , __snake_case :Any=2 , __snake_case :Optional[Any]=0.02 , __snake_case :Optional[Any]=1E-12 , __snake_case :Optional[int]=0.1 , __snake_case :Tuple="absolute" , __snake_case :Union[str, Any]=0 , __snake_case :Tuple=2 , __snake_case :int=3 , **__snake_case :List[str] , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : Optional[int] =vocab_size __magic_name__ : Dict =embedding_size __magic_name__ : Any =hidden_size __magic_name__ : str =num_hidden_layers __magic_name__ : Dict =num_hidden_groups __magic_name__ : Dict =num_attention_heads __magic_name__ : Optional[Any] =inner_group_num __magic_name__ : Union[str, Any] =hidden_act __magic_name__ : str =intermediate_size __magic_name__ : Optional[Any] =hidden_dropout_prob __magic_name__ : List[str] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : int =type_vocab_size __magic_name__ : Optional[int] =initializer_range __magic_name__ : str =layer_norm_eps __magic_name__ : Tuple =classifier_dropout_prob __magic_name__ : List[str] =position_embedding_type class __A ( snake_case_ ): @property def A__ ( self :List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : List[Any] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Tuple ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
701
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __A ( UpperCamelCase__ ): UpperCamelCase = """Speech2TextFeatureExtractor""" UpperCamelCase = """Speech2TextTokenizer""" def __init__( self :Any , __snake_case :int , __snake_case :Any ): '''simple docstring''' super().__init__(__snake_case , __snake_case ) __magic_name__ : Optional[int] =self.feature_extractor __magic_name__ : Any =False def __call__( self :Tuple , *__snake_case :List[str] , **__snake_case :List[str] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __magic_name__ : Tuple =kwargs.pop("""raw_speech""" ) else: __magic_name__ : List[Any] =kwargs.pop("""audio""" , __snake_case ) __magic_name__ : Union[str, Any] =kwargs.pop("""sampling_rate""" , __snake_case ) __magic_name__ : Dict =kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: __magic_name__ : Union[str, Any] =args[0] __magic_name__ : int =args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __magic_name__ : List[str] =self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: __magic_name__ : Any =self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: __magic_name__ : List[str] =encodings["""input_ids"""] return inputs def A__ ( self :List[Any] , *__snake_case :str , **__snake_case :List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A__ ( self :int , *__snake_case :int , **__snake_case :Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def A__ ( self :int ): '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __magic_name__ : int =True __magic_name__ : List[Any] =self.tokenizer yield __magic_name__ : List[Any] =self.feature_extractor __magic_name__ : str =False
367
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED _UpperCamelCase = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } _UpperCamelCase = { '''allenai/led-base-16384''': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCamelCase_( ) -> Any: UpperCAmelCase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCAmelCase__ = bs[:] UpperCAmelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ = [chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def UpperCamelCase_( snake_case__: Dict ) -> str: UpperCAmelCase__ = set() UpperCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ = char return pairs class lowercase ( snake_case__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__(self , __a , __a , __a="replace" , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=False , **__a , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token UpperCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token UpperCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token UpperCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token UpperCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token UpperCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token super().__init__( errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding='utf-8' ) as vocab_handle: UpperCAmelCase__ = json.load(_UpperCamelCase ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ = errors # how to handle errors in decoding UpperCAmelCase__ = bytes_to_unicode() UpperCAmelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCamelCase , encoding='utf-8' ) as merges_handle: UpperCAmelCase__ = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) UpperCAmelCase__ = {} UpperCAmelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" return len(self.encoder ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] UpperCAmelCase__ = tuple(_UpperCamelCase ) UpperCAmelCase__ = get_pairs(_UpperCamelCase ) if not pairs: return token while True: UpperCAmelCase__ = min(_UpperCamelCase , key=lambda __a : self.bpe_ranks.get(_UpperCamelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ = bigram UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while i < len(_UpperCamelCase ): try: UpperCAmelCase__ = word.index(_UpperCamelCase , _UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ = j if word[i] == first and i < len(_UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ = tuple(_UpperCamelCase ) UpperCAmelCase__ = new_word if len(_UpperCamelCase ) == 1: break else: UpperCAmelCase__ = get_pairs(_UpperCamelCase ) UpperCAmelCase__ = ' '.join(_UpperCamelCase ) UpperCAmelCase__ = word return word def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = [] for token in re.findall(self.pat , _UpperCamelCase ): UpperCAmelCase__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCamelCase ).split(' ' ) ) return bpe_tokens def UpperCamelCase__ (self , __a ) -> Optional[Any]: """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" return self.decoder.get(_UpperCamelCase ) def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" UpperCAmelCase__ = ''.join(_UpperCamelCase ) UpperCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase ) + '\n' ) UpperCAmelCase__ = 0 with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase__ = token_index writer.write(' '.join(_UpperCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ (self , __a , __a = None , __a = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ (self , __a , __a=False , **__a ) -> List[str]: """simple docstring""" UpperCAmelCase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCamelCase ) > 0 and not text[0].isspace()): UpperCAmelCase__ = ' ' + text return (text, kwargs) def UpperCamelCase__ (self , __a , __a = None , __a = PaddingStrategy.DO_NOT_PAD , __a = None , __a = None , ) -> dict: """simple docstring""" UpperCAmelCase__ = super()._pad( encoded_inputs=_UpperCamelCase , max_length=_UpperCamelCase , padding_strategy=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: UpperCAmelCase__ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase__ = len(encoded_inputs['global_attention_mask'] ) != len(_UpperCamelCase ) if needs_to_be_padded: UpperCAmelCase__ = len(_UpperCamelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase__ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase__ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
146
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( __A :Optional[int] ): """simple docstring""" return DownloadCommand(args.model ,args.cache_dir ,args.force ,args.trust_remote_code ) class __snake_case ( snake_case__ ): """simple docstring""" @staticmethod def a ( _UpperCamelCase ) -> Any: """simple docstring""" __snake_case = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=_UpperCamelCase , default=_UpperCamelCase , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=_UpperCamelCase , help="""Name of the model to download""" ) download_parser.set_defaults(func=_UpperCamelCase ) def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" __snake_case = model __snake_case = cache __snake_case = force __snake_case = trust_remote_code def a ( self ) -> List[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
268
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
117
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __snake_case = NewType("""DataClass""", Any) __snake_case = NewType("""DataClassType""", Any) def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Tuple: """simple docstring""" if isinstance(lowercase , lowercase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def __lowerCAmelCase ( lowercase : list ) -> Callable[[str], Any]: """simple docstring""" snake_case : Any = {str(lowercase ): choice for choice in choices} return lambda lowercase : str_to_choice.get(lowercase , lowercase ) def __lowerCAmelCase ( *, lowercase : Union[str, List[str]] = None , lowercase : str = None , lowercase : Any = dataclasses.MISSING , lowercase : Callable[[], Any] = dataclasses.MISSING , lowercase : dict = None , **lowercase : Tuple , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls snake_case : Any = {} if aliases is not None: snake_case : List[str] = aliases if help is not None: snake_case : Union[str, Any] = help return dataclasses.field(metadata=lowercase , default=lowercase , default_factory=lowercase , **lowercase ) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Iterable[DataClassType] def __init__( self , UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' if "formatter_class" not in kwargs: snake_case : List[Any] = ArgumentDefaultsHelpFormatter super().__init__(**UpperCamelCase__ ) if dataclasses.is_dataclass(UpperCamelCase__ ): snake_case : str = [dataclass_types] snake_case : Any = list(UpperCamelCase__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCamelCase__ ) @staticmethod def lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' snake_case : Tuple = F'--{field.name}' snake_case : Optional[Any] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCamelCase__ ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) snake_case : int = kwargs.pop("aliases" , [] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Tuple = [aliases] snake_case : Tuple = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(UpperCamelCase__ , "UnionType" ) and isinstance(UpperCamelCase__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCamelCase__ ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F' Problem encountered in field \'{field.name}\'.' ) if type(UpperCamelCase__ ) not in field.type.__args__: # filter `str` in Union snake_case : Union[str, Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] snake_case : str = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) snake_case : List[Any] = ( field.type.__args__[0] if isinstance(UpperCamelCase__ , field.type.__args__[1] ) else field.type.__args__[1] ) snake_case : Tuple = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) snake_case : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , UpperCamelCase__ ) and issubclass(field.type , UpperCamelCase__ )): if origin_type is Literal: snake_case : Any = field.type.__args__ else: snake_case : Dict = [x.value for x in field.type] snake_case : List[str] = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: snake_case : Any = field.default else: snake_case : List[Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument snake_case : Optional[Any] = copy(UpperCamelCase__ ) # Hack because type=bool in argparse does not behave as we want. snake_case : Optional[Any] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. snake_case : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way snake_case : Any = default # This tells argparse we accept 0 or 1 value after --field_name snake_case : Optional[int] = "?" # This is the value that will get picked if we do --field_name (without value) snake_case : Any = True elif isclass(UpperCamelCase__ ) and issubclass(UpperCamelCase__ , UpperCamelCase__ ): snake_case : List[Any] = field.type.__args__[0] snake_case : Tuple = "+" if field.default_factory is not dataclasses.MISSING: snake_case : Union[str, Any] = field.default_factory() elif field.default is dataclasses.MISSING: snake_case : Dict = True else: snake_case : List[str] = field.type if field.default is not dataclasses.MISSING: snake_case : List[Any] = field.default elif field.default_factory is not dataclasses.MISSING: snake_case : Optional[Any] = field.default_factory() else: snake_case : Any = True parser.add_argument(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): snake_case : Optional[Any] = False parser.add_argument(F'--no_{field.name}' , action="store_false" , dest=field.name , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> int: '''simple docstring''' if hasattr(UpperCamelCase__ , "_argument_group_name" ): snake_case : Optional[Any] = self.add_argument_group(dtype._argument_group_name ) else: snake_case : int = self try: snake_case : Dict[str, type] = get_type_hints(UpperCamelCase__ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCamelCase__ ): snake_case : Dict = ".".join(map(UpperCamelCase__ , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(UpperCamelCase__ ): if not field.init: continue snake_case : Optional[int] = type_hints[field.name] self._parse_dataclass_field(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=None , ) -> Tuple[DataClass, ...]: '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): snake_case : Optional[int] = [] if args_filename: args_files.append(Path(UpperCamelCase__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values snake_case : str = ArgumentParser() args_file_parser.add_argument(UpperCamelCase__ , type=UpperCamelCase__ , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) snake_case ,snake_case : Dict = args_file_parser.parse_known_args(args=UpperCamelCase__ ) snake_case : int = vars(UpperCamelCase__ ).get(args_file_flag.lstrip("-" ) , UpperCamelCase__ ) if cmd_args_file_paths: args_files.extend([Path(UpperCamelCase__ ) for p in cmd_args_file_paths] ) snake_case : Optional[Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last snake_case : Dict = file_args + args if args is not None else file_args + sys.argv[1:] snake_case ,snake_case : Any = self.parse_known_args(args=UpperCamelCase__ ) snake_case : List[str] = [] for dtype in self.dataclass_types: snake_case : Optional[int] = {f.name for f in dataclasses.fields(UpperCamelCase__ ) if f.init} snake_case : Optional[int] = {k: v for k, v in vars(UpperCamelCase__ ).items() if k in keys} for k in keys: delattr(UpperCamelCase__ , UpperCamelCase__ ) snake_case : List[str] = dtype(**UpperCamelCase__ ) outputs.append(UpperCamelCase__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCamelCase__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = False ) -> Tuple[DataClass, ...]: '''simple docstring''' snake_case : int = set(args.keys() ) snake_case : int = [] for dtype in self.dataclass_types: snake_case : Tuple = {f.name for f in dataclasses.fields(UpperCamelCase__ ) if f.init} snake_case : Dict = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) snake_case : Optional[Any] = dtype(**UpperCamelCase__ ) outputs.append(UpperCamelCase__ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(UpperCamelCase__ )}' ) return tuple(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = False ) -> Tuple[DataClass, ...]: '''simple docstring''' with open(Path(UpperCamelCase__ ) , encoding="utf-8" ) as open_json_file: snake_case : Optional[Any] = json.loads(open_json_file.read() ) snake_case : int = self.parse_dict(UpperCamelCase__ , allow_extra_keys=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = False ) -> Tuple[DataClass, ...]: '''simple docstring''' snake_case : Optional[int] = self.parse_dict(yaml.safe_load(Path(UpperCamelCase__ ).read_text() ) , allow_extra_keys=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
117
1
import math def UpperCAmelCase ( UpperCAmelCase )-> bool: '''simple docstring''' SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase = 1 / 12345 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = int(UpperCAmelCase ) total_partitions += 1 if check_partition_perfect(UpperCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(UpperCAmelCase ) integer += 1 if __name__ == "__main__": print(F'{solution() = }')
393
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" __snake_case = Mock() __snake_case = conn, Mock() __snake_case = iter([1, None] ) __snake_case = lambda SCREAMING_SNAKE_CASE : next(SCREAMING_SNAKE_CASE ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=SCREAMING_SNAKE_CASE ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
163
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None # sigma(t_i) @classmethod def UpperCamelCase_ ( cls ): return cls() @dataclass class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 42 class UpperCamelCase__ (a ,a ): '''simple docstring''' @property def UpperCamelCase_ ( self ): return True @register_to_config def __init__( self ,_lowerCAmelCase = 0.02 ,_lowerCAmelCase = 1_00 ,_lowerCAmelCase = 1.007 ,_lowerCAmelCase = 80 ,_lowerCAmelCase = 0.05 ,_lowerCAmelCase = 50 ,): pass def UpperCamelCase_ ( self ): return KarrasVeSchedulerState.create() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = () ): lowerCamelCase__ = jnp.arange(0 ,_lowerCAmelCase )[::-1].copy() lowerCamelCase__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_lowerCAmelCase ,schedule=jnp.array(_lowerCAmelCase ,dtype=jnp.floataa ) ,timesteps=_lowerCAmelCase ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): if self.config.s_min <= sigma <= self.config.s_max: lowerCamelCase__ = min(self.config.s_churn / state.num_inference_steps ,2**0.5 - 1 ) else: lowerCamelCase__ = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCamelCase__ = random.split(_lowerCAmelCase ,num=1 ) lowerCamelCase__ = self.config.s_noise * random.normal(key=_lowerCAmelCase ,shape=sample.shape ) lowerCamelCase__ = sigma + gamma * sigma lowerCamelCase__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = True ,): lowerCamelCase__ = sample_hat + sigma_hat * model_output lowerCamelCase__ = (sample_hat - pred_original_sample) / sigma_hat lowerCamelCase__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase ,derivative=_lowerCAmelCase ,state=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = True ,): lowerCamelCase__ = sample_prev + sigma_prev * model_output lowerCamelCase__ = (sample_prev - pred_original_sample) / sigma_prev lowerCamelCase__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase ,derivative=_lowerCAmelCase ,state=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): raise NotImplementedError()
710
'''simple docstring''' UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCamelCase : list[bool | None] = [None] * 10_00_00_00 UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = False def A__ ( __lowerCAmelCase : int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) ) lowerCamelCase__ = number_chain while number < 1000_0000: lowerCamelCase__ = number_chain number *= 10 return number_chain def A__ ( __lowerCAmelCase : int = 1000_0000 ): for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
9
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A__ ): a__ : Optional[Any] = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : Optional[int] = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : Union[str, Any] = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : int = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : int = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : List[str] = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : Tuple = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : Tuple = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : Optional[int] = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : str = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : str = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : int = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=A__ ): a__ : Optional[int] = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ["flax"] )
134
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE : Optional[Any] = get_tests_dir('''fixtures''') class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Any ) -> Any: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE__ = mock.Mock() SCREAMING_SNAKE_CASE__ = 500 SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = HTTPError SCREAMING_SNAKE_CASE__ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=__lowerCamelCase ) as mock_head: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def lowercase_ ( self : int ) -> Dict: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def lowercase_ ( cls : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = TOKEN HfFolder.save_token(__lowerCamelCase ) @classmethod def lowercase_ ( cls : Optional[int] ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def lowercase_ ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCamelCase , repo_id='''test-feature-extractor''' , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) def lowercase_ ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCamelCase , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) def lowercase_ ( self : int ) -> int: CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
493
0
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowercase__ : str = logging.get_logger(__name__) lowercase__ : Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowercase__ : int = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : List[Any] ): '''simple docstring''' for attribute in key.split('''.''' ): UpperCAmelCase_ = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: UpperCAmelCase_ = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase_ = None for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase_ = True elif name.split('''.''' )[0] == "proj": UpperCAmelCase_ = fairseq_model.proj UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(_UpperCamelCase )[0].split('''.''' )[-2] UpperCAmelCase_ = mapped_key.replace('''*''' , _UpperCamelCase ) if "weight_g" in name: UpperCAmelCase_ = '''weight_g''' elif "weight_v" in name: UpperCAmelCase_ = '''weight_v''' elif "bias" in name: UpperCAmelCase_ = '''bias''' elif "weight" in name: UpperCAmelCase_ = '''weight''' else: UpperCAmelCase_ = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] ): '''simple docstring''' UpperCAmelCase_ = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase_ = name.split('''.''' ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) def __lowerCamelCase ( _UpperCamelCase : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = emb.weight.shape UpperCAmelCase_ = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) UpperCAmelCase_ = emb.weight.data return lin_layer def __lowerCamelCase ( _UpperCamelCase : Dict ): '''simple docstring''' with open(_UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [line.split(''' ''' )[0] for line in lines] UpperCAmelCase_ = len(_UpperCamelCase ) UpperCAmelCase_ = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(_UpperCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int , ): '''simple docstring''' UpperCAmelCase_ = WavaVecaConfig.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ = SpeechaTextaConfig.from_pretrained( _UpperCamelCase , vocab_size=_UpperCamelCase , decoder_layers=_UpperCamelCase , do_stable_layer_norm=_UpperCamelCase ) UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase_ = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase_ = WavaVecaModel(_UpperCamelCase ) UpperCAmelCase_ = recursively_load_weights_wavaveca(model.encoder , _UpperCamelCase ) UpperCAmelCase_ = SpeechaTextaForCausalLM(_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_UpperCamelCase ) # set output linear layer unexpected_keys.remove('''embed_out''' ) UpperCAmelCase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase_ = SpeechEncoderDecoderModel(encoder=_UpperCamelCase , decoder=_UpperCamelCase ) UpperCAmelCase_ = False # add projection layer UpperCAmelCase_ = nn.Parameter(projection_layer.weight ) UpperCAmelCase_ = nn.Parameter(projection_layer.bias ) UpperCAmelCase_ = create_vocab_dict(_UpperCamelCase ) with open(os.path.join(_UpperCamelCase , '''vocab.json''' ) , '''w''' ) as fp: json.dump(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ = SpeechaTextaTokenizer(os.path.join(_UpperCamelCase , '''vocab.json''' ) ) tokenizer.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ = hf_wavavec.config.to_dict() UpperCAmelCase_ = tokenizer.pad_token_id UpperCAmelCase_ = tokenizer.bos_token_id UpperCAmelCase_ = tokenizer.eos_token_id UpperCAmelCase_ = '''speech_to_text_2''' UpperCAmelCase_ = '''wav2vec2''' UpperCAmelCase_ = SpeechEncoderDecoderConfig.from_dict(_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) feature_extractor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") lowercase__ : List[str] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
710
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase__ : Tuple = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def __lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int ): '''simple docstring''' inspect_dataset(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ = path + '''.py''' assert script_name in os.listdir(_UpperCamelCase ) assert "__pycache__" not in os.listdir(_UpperCamelCase ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def __lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] ): '''simple docstring''' inspect_metric(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ = path + '''.py''' assert script_name in os.listdir(_UpperCamelCase ) assert "__pycache__" not in os.listdir(_UpperCamelCase ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : int ): '''simple docstring''' UpperCAmelCase_ = get_dataset_config_info(_UpperCamelCase , config_name=_UpperCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] ): '''simple docstring''' with pytest.raises(_UpperCamelCase ): get_dataset_config_info(_UpperCamelCase , config_name=_UpperCamelCase ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def __lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = get_dataset_config_names(_UpperCamelCase ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : int ): '''simple docstring''' UpperCAmelCase_ = get_dataset_infos(_UpperCamelCase ) assert list(infos.keys() ) == expected_configs UpperCAmelCase_ = expected_configs[0] assert expected_config in infos UpperCAmelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : str ): '''simple docstring''' UpperCAmelCase_ = get_dataset_infos(_UpperCamelCase ) assert expected_config in infos UpperCAmelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ): '''simple docstring''' with pytest.raises(_UpperCamelCase ): get_dataset_split_names(_UpperCamelCase , config_name=_UpperCamelCase )
43
0
import re def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )] def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' try: A_ = split_input(SCREAMING_SNAKE_CASE ) if upper: A_ = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: A_ = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return to_simple_case(SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' try: A_ = to_simple_case(SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return to_complex_case(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''_''' ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return to_complex_case(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''-''' ) if __name__ == "__main__": __import__("""doctest""").testmod()
203
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowercase = """pt""" elif is_tf_available(): __lowercase = """tf""" else: __lowercase = """jax""" class _lowercase ( __lowerCamelCase,unittest.TestCase ): _lowercase : Dict = PerceiverTokenizer _lowercase : Dict = False def UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" super().setUp() A_ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def UpperCamelCase ( self : List[str] , **lowerCamelCase__ : str ) -> PerceiverTokenizer: """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCamelCase ( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : List[str]=2_0 , lowerCamelCase__ : Union[str, Any]=5 ) -> Tuple[str, list]: """simple docstring""" A_ = [] for i in range(len(lowerCamelCase__ ) ): try: A_ = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) A_ = list(filter(lambda lowerCamelCase__ : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowerCamelCase__ ) ) A_ = list(filter(lambda lowerCamelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCamelCase__ ) , lowerCamelCase__ ) ) if max_length is not None and len(lowerCamelCase__ ) > max_length: A_ = toks[:max_length] if min_length is not None and len(lowerCamelCase__ ) < min_length and len(lowerCamelCase__ ) > 0: while len(lowerCamelCase__ ) < min_length: A_ = toks + toks # toks_str = [t[1] for t in toks] A_ = [t[0] for t in toks] # Ensure consistency A_ = tokenizer.decode(lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) if " " not in output_txt and len(lowerCamelCase__ ) > 1: A_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase__ ) ) if with_prefix_space: A_ = ''' ''' + output_txt A_ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) return output_txt, output_ids def UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" A_ = self.perceiver_tokenizer A_ = '''Unicode €.''' A_ = tokenizer(lowerCamelCase__ ) A_ = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , lowerCamelCase__ ) # decoding A_ = tokenizer.decode(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , '''[CLS]Unicode €.[SEP]''' ) A_ = tokenizer('''e è é ê ë''' ) A_ = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , lowerCamelCase__ ) # decoding A_ = tokenizer.decode(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A_ = self.perceiver_tokenizer A_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off A_ = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on A_ = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) if FRAMEWORK != "jax": A_ = list(batch.input_ids.numpy()[0] ) else: A_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" A_ = self.perceiver_tokenizer A_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] A_ = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCamelCase__ ) self.assertIn('''attention_mask''' , lowerCamelCase__ ) self.assertNotIn('''decoder_input_ids''' , lowerCamelCase__ ) self.assertNotIn('''decoder_attention_mask''' , lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" A_ = self.perceiver_tokenizer A_ = [ '''Summary of the text.''', '''Another summary.''', ] A_ = tokenizer( text_target=lowerCamelCase__ , max_length=3_2 , padding='''max_length''' , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" A_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test A_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc A_ = tempfile.mkdtemp() A_ = ''' He is very happy, UNwant\u00E9d,running''' A_ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) A_ = tokenizer.__class__.from_pretrained(lowerCamelCase__ ) A_ = after_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) shutil.rmtree(lowerCamelCase__ ) A_ = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc A_ = tempfile.mkdtemp() A_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) A_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) A_ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) A_ = tokenizer.__class__.from_pretrained(lowerCamelCase__ ) A_ = after_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) A_ = tokenizer.__class__.from_pretrained(lowerCamelCase__ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" A_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: A_ = json.load(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: A_ = json.load(lowerCamelCase__ ) A_ = [F"<extra_id_{i}>" for i in range(1_2_5 )] A_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] A_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCamelCase__ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase__ , lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase__ , lowerCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A_ = tokenizer_class.from_pretrained( lowerCamelCase__ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCamelCase__ )] A_ = tokenizer_class.from_pretrained( lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" A_ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def UpperCamelCase ( self : int ) -> Any: """simple docstring""" pass def UpperCamelCase ( self : int ) -> int: """simple docstring""" pass def UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" pass def UpperCamelCase ( self : int ) -> Any: """simple docstring""" pass def UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" A_ = self.get_tokenizers(fast=lowerCamelCase__ , do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): A_ = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] A_ = tokenizer.convert_tokens_to_string(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
203
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Tuple = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class _UpperCAmelCase ( _snake_case ): """simple docstring""" A = """pix2struct_text_model""" A = ["""past_key_values"""] A = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , _lowerCAmelCase=50_244 , _lowerCAmelCase=768 , _lowerCAmelCase=64 , _lowerCAmelCase=2_048 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=32 , _lowerCAmelCase=128 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1e-6 , _lowerCAmelCase=1.0 , _lowerCAmelCase="gelu_new" , _lowerCAmelCase=0 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = vocab_size lowerCAmelCase__ :List[str] = hidden_size lowerCAmelCase__ :int = d_kv lowerCAmelCase__ :Any = d_ff lowerCAmelCase__ :int = num_layers lowerCAmelCase__ :List[str] = num_heads lowerCAmelCase__ :Any = relative_attention_num_buckets lowerCAmelCase__ :Union[str, Any] = relative_attention_max_distance lowerCAmelCase__ :str = dropout_rate lowerCAmelCase__ :str = layer_norm_epsilon lowerCAmelCase__ :Optional[Any] = initializer_factor lowerCAmelCase__ :Any = use_cache lowerCAmelCase__ :Dict = eos_token_id lowerCAmelCase__ :Dict = decoder_start_token_id # for backwards compatibility lowerCAmelCase__ :List[str] = dense_act_fn super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , tie_word_embeddings=snake_case_ , is_decoder=snake_case_ , **snake_case_ , ) @classmethod def snake_case_ ( cls , _lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' cls._set_token_in_kwargs(snake_case_ ) lowerCAmelCase__ :Dict = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": lowerCAmelCase__ :int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case_ , **snake_case_ ) class _UpperCAmelCase ( _snake_case ): """simple docstring""" A = """pix2struct_vision_model""" def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=768 , _lowerCAmelCase=2_048 , _lowerCAmelCase=64 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase="gelu_new" , _lowerCAmelCase=1e-6 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=1e-10 , _lowerCAmelCase=1.0 , _lowerCAmelCase=4_096 , _lowerCAmelCase=32 , _lowerCAmelCase=128 , **_lowerCAmelCase , ): '''simple docstring''' super().__init__(**snake_case_ ) lowerCAmelCase__ :Optional[Any] = hidden_size lowerCAmelCase__ :Dict = patch_embed_hidden_size lowerCAmelCase__ :Tuple = d_ff lowerCAmelCase__ :Tuple = dropout_rate lowerCAmelCase__ :int = num_hidden_layers lowerCAmelCase__ :Optional[int] = num_attention_heads lowerCAmelCase__ :Any = initializer_range lowerCAmelCase__ :List[str] = initializer_factor lowerCAmelCase__ :Tuple = attention_dropout lowerCAmelCase__ :Optional[int] = layer_norm_eps lowerCAmelCase__ :int = dense_act_fn lowerCAmelCase__ :int = seq_len lowerCAmelCase__ :Optional[Any] = relative_attention_num_buckets lowerCAmelCase__ :str = relative_attention_max_distance lowerCAmelCase__ :List[Any] = d_kv @classmethod def snake_case_ ( cls , _lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' cls._set_token_in_kwargs(snake_case_ ) lowerCAmelCase__ :str = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": lowerCAmelCase__ :Optional[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case_ , **snake_case_ ) class _UpperCAmelCase ( _snake_case ): """simple docstring""" A = """pix2struct""" A = True def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=1.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ): '''simple docstring''' super().__init__(tie_word_embeddings=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ ) if text_config is None: lowerCAmelCase__ :List[str] = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: lowerCAmelCase__ :Optional[Any] = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) lowerCAmelCase__ :Tuple = PixaStructTextConfig(**snake_case_ ) lowerCAmelCase__ :Optional[int] = PixaStructVisionConfig(**snake_case_ ) lowerCAmelCase__ :List[str] = self.text_config.decoder_start_token_id lowerCAmelCase__ :List[str] = self.text_config.pad_token_id lowerCAmelCase__ :Dict = self.text_config.eos_token_id lowerCAmelCase__ :Union[str, Any] = initializer_factor lowerCAmelCase__ :str = initializer_range lowerCAmelCase__ :Any = self.initializer_range lowerCAmelCase__ :Optional[int] = self.initializer_range lowerCAmelCase__ :List[str] = is_vqa @classmethod def snake_case_ ( cls , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ :str = self.text_config.to_dict() lowerCAmelCase__ :Optional[int] = self.vision_config.to_dict() lowerCAmelCase__ :Optional[int] = self.__class__.model_type return output
721
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=32 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=[10, 20, 30, 40] , _lowerCAmelCase=[2, 2, 3, 2] , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=10 , _lowerCAmelCase=0.02 , _lowerCAmelCase=["stage2", "stage3", "stage4"] , _lowerCAmelCase=3 , _lowerCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :str = parent lowerCAmelCase__ :Dict = batch_size lowerCAmelCase__ :str = image_size lowerCAmelCase__ :int = num_channels lowerCAmelCase__ :Tuple = num_stages lowerCAmelCase__ :Optional[int] = hidden_sizes lowerCAmelCase__ :Tuple = depths lowerCAmelCase__ :Tuple = is_training lowerCAmelCase__ :str = use_labels lowerCAmelCase__ :int = intermediate_size lowerCAmelCase__ :List[str] = hidden_act lowerCAmelCase__ :Dict = type_sequence_label_size lowerCAmelCase__ :Any = initializer_range lowerCAmelCase__ :List[str] = out_features lowerCAmelCase__ :List[Any] = num_labels lowerCAmelCase__ :str = scope lowerCAmelCase__ :Dict = num_stages def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ :List[str] = None if self.use_labels: lowerCAmelCase__ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :Optional[Any] = self.get_config() return config, pixel_values, labels def snake_case_ ( self ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def snake_case_ ( self ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = UperNetForSemanticSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) :Dict = config_and_inputs lowerCAmelCase__ :Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _A , _A , unittest.TestCase ): """simple docstring""" A = (UperNetForSemanticSegmentation,) if is_torch_available() else () A = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} A = False A = False A = False A = False A = False A = False def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = UperNetModelTester(self ) lowerCAmelCase__ :Any = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self ): '''simple docstring''' return def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ ,lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :Optional[int] = model_class(_lowerCAmelCase ) lowerCAmelCase__ :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ :Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase__ :Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def snake_case_ ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case_ ( self ): '''simple docstring''' pass def snake_case_ ( self ): '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCAmelCase__ :int = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ :Dict = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowerCAmelCase__ :int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ :Tuple = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ ,lowerCAmelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :str = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ :str = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ ,lowerCAmelCase__ :Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :str = _config_zero_init(_lowerCAmelCase ) lowerCAmelCase__ :List[Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowerCAmelCase__ :List[Any] = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="UperNet does not have tied weights" ) def snake_case_ ( self ): '''simple docstring''' pass @slow def snake_case_ ( self ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :List[str] = UperNetForSemanticSegmentation.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def snake_case__ ( ): lowerCAmelCase__ :int = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) lowerCAmelCase__ :Union[str, Any] = Image.open(UpperCAmelCase ).convert("RGB" ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) lowerCAmelCase__ :Dict = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(_lowerCAmelCase ) lowerCAmelCase__ :str = prepare_img() lowerCAmelCase__ :str = processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :int = model(**_lowerCAmelCase ) lowerCAmelCase__ :str = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowerCAmelCase__ :Tuple = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Any = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) lowerCAmelCase__ :Optional[int] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(_lowerCAmelCase ) lowerCAmelCase__ :List[Any] = prepare_img() lowerCAmelCase__ :Tuple = processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Union[str, Any] = model(**_lowerCAmelCase ) lowerCAmelCase__ :str = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowerCAmelCase__ :str = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
111
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class A ( unittest.TestCase ): def __init__(self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=3_0 , lowerCAmelCase=4_0_0 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=True , lowerCAmelCase=1 / 2_5_5 , lowerCAmelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __lowercase= size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} __lowercase= parent __lowercase= batch_size __lowercase= num_channels __lowercase= min_resolution __lowercase= max_resolution __lowercase= do_resize __lowercase= size __lowercase= do_normalize __lowercase= image_mean __lowercase= image_std __lowercase= do_rescale __lowercase= rescale_factor __lowercase= do_pad def _A (self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _A (self , lowerCAmelCase , lowerCAmelCase=False ): if not batched: __lowercase= image_inputs[0] if isinstance(lowerCAmelCase , Image.Image ): __lowercase, __lowercase= image.size else: __lowercase, __lowercase= image.shape[1], image.shape[2] if w < h: __lowercase= int(self.size['shortest_edge'] * h / w ) __lowercase= self.size['shortest_edge'] elif w > h: __lowercase= self.size['shortest_edge'] __lowercase= int(self.size['shortest_edge'] * w / h ) else: __lowercase= self.size['shortest_edge'] __lowercase= self.size['shortest_edge'] else: __lowercase= [] for image in image_inputs: __lowercase, __lowercase= self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase= max(lowerCAmelCase , key=lambda lowerCAmelCase : item[0] )[0] __lowercase= max(lowerCAmelCase , key=lambda lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A ( A_ , unittest.TestCase ): UpperCamelCase_ : List[str] =DeformableDetrImageProcessor if is_vision_available() else None def _A (self ): __lowercase= DeformableDetrImageProcessingTester(self ) @property def _A (self ): return self.image_processor_tester.prepare_image_processor_dict() def _A (self ): __lowercase= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_rescale' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_pad' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'size' ) ) def _A (self ): __lowercase= self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase ) __lowercase= self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowerCAmelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase ) def _A (self ): pass def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowercase, __lowercase= self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase, __lowercase= self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) __lowercase= image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowercase, __lowercase= self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase= image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values __lowercase, __lowercase= self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowercase, __lowercase= self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase= image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values __lowercase, __lowercase= self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _A (self ): # prepare image and target __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __lowercase= json.loads(f.read() ) __lowercase= {'image_id': 3_9_7_6_9, 'annotations': target} # encode them __lowercase= DeformableDetrImageProcessor() __lowercase= image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , return_tensors='pt' ) # verify pixel values __lowercase= torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , lowerCAmelCase ) __lowercase= torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowerCAmelCase , atol=1E-4 ) ) # verify area __lowercase= torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowerCAmelCase ) ) # verify boxes __lowercase= torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowerCAmelCase ) __lowercase= torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowerCAmelCase , atol=1E-3 ) ) # verify image_id __lowercase= torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowerCAmelCase ) ) # verify is_crowd __lowercase= torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowerCAmelCase ) ) # verify class_labels __lowercase= torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowerCAmelCase ) ) # verify orig_size __lowercase= torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowerCAmelCase ) ) # verify size __lowercase= torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowerCAmelCase ) ) @slow def _A (self ): # prepare image, target and masks_path __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __lowercase= json.loads(f.read() ) __lowercase= {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} __lowercase= pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __lowercase= DeformableDetrImageProcessor(format='coco_panoptic' ) __lowercase= image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , masks_path=lowerCAmelCase , return_tensors='pt' ) # verify pixel values __lowercase= torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , lowerCAmelCase ) __lowercase= torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowerCAmelCase , atol=1E-4 ) ) # verify area __lowercase= torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowerCAmelCase ) ) # verify boxes __lowercase= torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowerCAmelCase ) __lowercase= torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowerCAmelCase , atol=1E-3 ) ) # verify image_id __lowercase= torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowerCAmelCase ) ) # verify is_crowd __lowercase= torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowerCAmelCase ) ) # verify class_labels __lowercase= torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowerCAmelCase ) ) # verify masks __lowercase= 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowerCAmelCase ) # verify orig_size __lowercase= torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowerCAmelCase ) ) # verify size __lowercase= torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowerCAmelCase ) )
230
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCAmelCase = logging.get_logger(__name__) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Tuple: '''simple docstring''' __lowercase= set() __lowercase= [] def parse_line(lowercase__ ): for line in fp: if isinstance(lowercase__ , lowercase__ ): __lowercase= line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(lowercase__ ) > 0: __lowercase= '\n'.join(lowercase__ ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowercase__ ) buffer.clear() continue else: __lowercase= line.strip() buffer.append(lowercase__ ) if from_gh: for filename in os.listdir(lowercase__ ): __lowercase= os.path.join(lowercase__ , lowercase__ ) if not os.path.isdir(lowercase__ ): # read the file if filename != "warnings.txt": continue with open(lowercase__ ) as fp: parse_line(lowercase__ ) else: try: with zipfile.ZipFile(lowercase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase__ ): # read the file if filename != "warnings.txt": continue with z.open(lowercase__ ) as fp: parse_line(lowercase__ ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[Any]: '''simple docstring''' __lowercase= set() __lowercase= [os.path.join(lowercase__ , lowercase__ ) for p in os.listdir(lowercase__ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowercase__ , lowercase__ ) ) return selected_warnings if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return values.split(',' ) lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCAmelCase = extract_warnings(args.output_dir, args.targets) lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
230
1
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def snake_case_ (): UpperCAmelCase = 9 UpperCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] UpperCAmelCase = kruskal(_a , _a ) UpperCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_a ) == sorted(_a )
358
'''simple docstring''' def snake_case_ (_a : list[list[int]] , _a : int , _a : int , _a : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case_ (_a : list[list[int]] , _a : list[int] , _a : int ): # Base Case if curr_ind == len(_a ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_a ) ): if valid_connection(_a , _a , _a , _a ): # Insert current vertex into path as next transition UpperCAmelCase = next_ver # Validate created path if util_hamilton_cycle(_a , _a , curr_ind + 1 ): return True # Backtrack UpperCAmelCase = -1 return False def snake_case_ (_a : list[list[int]] , _a : int = 0 ): UpperCAmelCase = [-1] * (len(_a ) + 1) # initialize start and end of path with starting index UpperCAmelCase = UpperCAmelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_a , _a , 1 ) else []
358
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase_ = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') UpperCAmelCase_ = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('utf-8').split() ) UpperCAmelCase_ = '|'.join(sys.argv[1:]) UpperCAmelCase_ = re.compile(RF'''^({joined_dirs}).*?\.py$''') UpperCAmelCase_ = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
253
def lowerCAmelCase_ ( __UpperCAmelCase: float ) -> float: return 10 - x * x def lowerCAmelCase_ ( __UpperCAmelCase: float , __UpperCAmelCase: float ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(__UpperCAmelCase ) * equation(__UpperCAmelCase ) >= 0: raise ValueError('''Wrong space!''' ) UpperCamelCase__ : Optional[int] = a while (b - a) >= 0.01: # Find middle point UpperCamelCase__ : int = (a + b) / 2 # Check if middle point is root if equation(__UpperCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__UpperCAmelCase ) * equation(__UpperCAmelCase ) < 0: UpperCamelCase__ : str = c else: UpperCamelCase__ : Optional[int] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
253
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCamelCase : """simple docstring""" pass
707
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def snake_case ( UpperCAmelCase : List[Any] ): A = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase, UpperCAmelCase ) def snake_case ( UpperCAmelCase : Union[str, Any] ): A = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A = s_dict.pop(UpperCAmelCase ) elif "subsample" in key: A = s_dict.pop(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Union[str, Any] ): A , A = emb.weight.shape A = nn.Linear(UpperCAmelCase, UpperCAmelCase, bias=UpperCAmelCase ) A = emb.weight.data return lin_layer def snake_case ( UpperCAmelCase : str, UpperCAmelCase : str ): A = torch.load(UpperCAmelCase, map_location='cpu' ) A = mam_aaa['args'] A = mam_aaa['model'] A = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(UpperCAmelCase ) rename_keys(UpperCAmelCase ) A = state_dict['decoder.embed_tokens.weight'].shape[0] A = args.share_decoder_input_output_embed A = [int(UpperCAmelCase ) for i in args.conv_kernel_sizes.split(',' )] A = SpeechaTextConfig( vocab_size=UpperCAmelCase, max_source_positions=args.max_source_positions, max_target_positions=args.max_target_positions, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='relu', num_conv_layers=len(UpperCAmelCase ), conv_channels=args.conv_channels, conv_kernel_sizes=UpperCAmelCase, input_feat_per_channel=args.input_feat_per_channel, input_channels=args.input_channels, tie_word_embeddings=UpperCAmelCase, num_beams=5, max_length=2_00, use_cache=UpperCAmelCase, decoder_start_token_id=2, early_stopping=UpperCAmelCase, ) A = SpeechaTextForConditionalGeneration(UpperCAmelCase ) A , A = model.model.load_state_dict(UpperCAmelCase, strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0 and not set(UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f' but all the following weights are missing {missing}' ) if tie_embeds: A = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A = lm_head_weights model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
110
0
def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: __UpperCAmelCase : Dict = [] if len(snake_case__ ) == 1: return [nums.copy()] for _ in range(len(snake_case__ ) ): __UpperCAmelCase : List[Any] = nums.pop(0 ) __UpperCAmelCase : Dict = permute(snake_case__ ) for perm in permutations: perm.append(snake_case__ ) result.extend(snake_case__ ) nums.append(snake_case__ ) return result def _UpperCamelCase ( snake_case__ ) -> Optional[int]: def backtrack(snake_case__ ): if start == len(snake_case__ ) - 1: output.append(nums[:] ) else: for i in range(snake_case__, len(snake_case__ ) ): __UpperCAmelCase : Any = nums[i], nums[start] backtrack(start + 1 ) __UpperCAmelCase : Tuple = nums[i], nums[start] # backtrack __UpperCAmelCase : Optional[int] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _snake_case = permutea([1, 2, 3]) print(res) doctest.testmod()
382
from __future__ import annotations def lowercase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : list[str] | None = None ): """simple docstring""" snake_case__ : Optional[int] =word_bank or [] # create a table snake_case__ : int =len(SCREAMING_SNAKE_CASE ) + 1 snake_case__ : list[list[list[str]]] =[] for _ in range(SCREAMING_SNAKE_CASE ): table.append([] ) # seed value snake_case__ : Dict =[[]] # because empty string has empty combination # iterate through the indices for i in range(SCREAMING_SNAKE_CASE ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(SCREAMING_SNAKE_CASE )] == word: snake_case__ : list[list[str]] =[ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(SCREAMING_SNAKE_CASE )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(SCREAMING_SNAKE_CASE )]: combination.reverse() return table[len(SCREAMING_SNAKE_CASE )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
381
0
import math def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): assert isinstance(__UpperCamelCase , __UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowercase_ = range(3 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: List[Any]=1 , **__lowerCamelCase: str ): lowercase_ = factor * value lowercase_ = value while not is_prime(__UpperCamelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__UpperCamelCase ) return value
711
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): SCREAMING_SNAKE_CASE__ = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Whether to log verbose messages or not."} , ) lowerCAmelCase__ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.999_995 , metadata={"help": "Decay of gumbel temperature during training."} ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: ModelArguments , __lowerCamelCase: TrainingArguments ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase_ = logging.WARNING if model_args.verbose_logging: lowercase_ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowercase_ = logging.INFO logger.setLevel(__lowerCamelCase ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowerCAmelCase__ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowerCAmelCase__ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCAmelCase__ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCAmelCase__ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = "longest" lowerCAmelCase__ = None lowerCAmelCase__ = None def __call__( self , UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowercase_ = self.feature_extractor.pad( UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) lowercase_ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowercase_ = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowercase_ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowercase_ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowercase_ = 1 lowercase_ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowercase_ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCAmelCase , min_masks=2 , ) return batch class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , *UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=1.0 , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(*UpperCAmelCase , **UpperCAmelCase ) lowercase_ = 0 lowercase_ = max_gumbel_temp lowercase_ = min_gumbel_temp lowercase_ = gumbel_temp_decay def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' model.train() lowercase_ = self._prepare_inputs(UpperCAmelCase ) if self.use_amp: with autocast(): lowercase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) else: lowercase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowercase_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase_ = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: lowercase_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() configure_logger(__lowerCamelCase , __lowerCamelCase ) # Downloading and loading a dataset from the hub. lowercase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowercase_ = DatasetDict() lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowercase_ = DatasetDict() lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowercase_ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__lowerCamelCase ) def prepare_dataset(__lowerCamelCase: Dict ): # check that all files have the correct sampling rate lowercase_ , lowercase_ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowercase_ = datasets.map( __lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long lowercase_ = vectorized_datasets.filter( lambda __lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowerCamelCase: Optional[Any] ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowercase_ = vectorized_datasets.map( __lowerCamelCase , batched=__lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowercase_ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) lowercase_ = WavaVecaForPreTraining(__lowerCamelCase ) lowercase_ = DataCollatorForWavaVecaPretraining(model=__lowerCamelCase , feature_extractor=__lowerCamelCase ) lowercase_ = WavaVecaPreTrainer( model=__lowerCamelCase , data_collator=__lowerCamelCase , args=__lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=__lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
601
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """sentencepiece.model"""} UpperCamelCase_ = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } UpperCamelCase_ = { """google/rembert""": 2_56, } class a_ (_a ): __lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case_ , snake_case_=False , snake_case_=True , snake_case_=True , snake_case_="[CLS]" , snake_case_="[SEP]" , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , **snake_case_ , ): super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) _lowerCAmelCase : List[Any] = do_lower_case _lowerCAmelCase : Optional[int] = remove_space _lowerCAmelCase : List[Any] = keep_accents _lowerCAmelCase : Tuple = vocab_file _lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor() self.sp_model.Load(snake_case_ ) @property def __UpperCamelCase ( self ): return len(self.sp_model ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : str = self.__dict__.copy() _lowerCAmelCase : int = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : Optional[int] = d _lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self , snake_case_ , snake_case_=False ): _lowerCAmelCase : Any = self.sp_model.EncodeAsPieces(snake_case_ ) return pieces def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.PieceToId(snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.IdToPiece(snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[int] = self.sp_model.decode_pieces(snake_case_ ) return out_string def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[int] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(snake_case_ ): logger.error("""Vocabulary path ({}) should be a directory""".format(snake_case_ ) ) return _lowerCAmelCase : Optional[Any] = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
384
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _UpperCAmelCase ( _lowerCamelCase : NDArray[floataa] , _lowerCamelCase : NDArray[floataa] , _lowerCamelCase : list[int] , _lowerCamelCase : int , ) -> list[float]: _lowerCAmelCase , _lowerCAmelCase : Dict = coefficient_matrix.shape _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = constant_matrix.shape if rowsa != colsa: _lowerCAmelCase : Any = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_lowerCamelCase ) if colsa != 1: _lowerCAmelCase : List[str] = f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_lowerCamelCase ) if rowsa != rowsa: _lowerCAmelCase : Tuple = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != rowsa: _lowerCAmelCase : int = ( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(_lowerCamelCase )} and {rowsa}' ) raise ValueError(_lowerCamelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) _lowerCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _lowerCAmelCase , _lowerCAmelCase : Any = table.shape strictly_diagonally_dominant(_lowerCamelCase ) # Iterates the whole matrix for given number of times for _ in range(_lowerCamelCase ): _lowerCAmelCase : int = [] for row in range(_lowerCamelCase ): _lowerCAmelCase : Any = 0 for col in range(_lowerCamelCase ): if col == row: _lowerCAmelCase : List[Any] = table[row][col] elif col == cols - 1: _lowerCAmelCase : Tuple = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _lowerCAmelCase : str = (temp + val) / denom new_val.append(_lowerCamelCase ) _lowerCAmelCase : int = new_val return [float(_lowerCamelCase ) for i in new_val] def _UpperCAmelCase ( _lowerCamelCase : NDArray[floataa] ) -> bool: _lowerCAmelCase , _lowerCAmelCase : str = table.shape _lowerCAmelCase : int = True for i in range(0 , _lowerCamelCase ): _lowerCAmelCase : Any = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
384
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = '▁' snake_case_ : Optional[int] = {'vocab_file': 'spiece.model'} snake_case_ : int = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } snake_case_ : List[str] = { 'google/reformer-crime-and-punishment': 524_288, } class lowercase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__="</s>" , lowerCamelCase__="<unk>" , lowerCamelCase__=[] , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.sp_model.get_piece_size() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.piece_to_id(UpperCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' if index < self.sp_model.get_piece_size(): UpperCamelCase = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = [] UpperCamelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token UpperCamelCase = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , '''wb''' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
711
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _UpperCAmelCase : Optional[int], _UpperCAmelCase : Tuple, _UpperCAmelCase : Any): UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) count += _in_place_quick_sort(_UpperCAmelCase, _UpperCAmelCase, p - 1) count += _in_place_quick_sort(_UpperCAmelCase, p + 1, _UpperCAmelCase) return count def __snake_case ( _UpperCAmelCase : Dict, _UpperCAmelCase : Tuple, _UpperCAmelCase : Any): UpperCamelCase = 0 UpperCamelCase = randint(_UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_UpperCAmelCase, _UpperCAmelCase): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count snake_case_ : List[Any] = TemporaryFile() snake_case_ : Optional[Any] = 100 # 1000 elements are to be sorted snake_case_ , snake_case_ : List[str] = 0, 1 # mean and standard deviation snake_case_ : Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array snake_case_ : Optional[int] = np.load(outfile) snake_case_ : Optional[int] = len(M) - 1 snake_case_ : List[str] = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
350
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
146
import os import jsonlines import numpy as np from tqdm import tqdm _UpperCamelCase = 2048 _UpperCamelCase = 4096 _UpperCamelCase = 42 _UpperCamelCase = os.environ.pop('''PROCESS_TRAIN''', '''false''') _UpperCamelCase = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def UpperCamelCase_( snake_case__: Any ) -> List[Any]: def choose_first(snake_case__: List[Any] , snake_case__: Any=False ): assert isinstance(snake_case__ , snake_case__ ) if len(snake_case__ ) == 1: UpperCAmelCase__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCAmelCase__ = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a UpperCAmelCase__ = {'id': example['id']} UpperCAmelCase__ = example['annotations'] UpperCAmelCase__ = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCAmelCase__ = ['yes'] if 1 in yes_no_answer else ['no'] UpperCAmelCase__ = UpperCAmelCase__ = [] UpperCAmelCase__ = UpperCAmelCase__ = [] UpperCAmelCase__ = ['<cls>'] else: UpperCAmelCase__ = ['short'] UpperCAmelCase__ = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available UpperCAmelCase__ = ['long'] UpperCAmelCase__ = choose_first(annotation['long_answer'] , is_long_answer=snake_case__ ) UpperCAmelCase__ = [] answer.update(snake_case__ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCAmelCase__ = True else: UpperCAmelCase__ = False UpperCAmelCase__ = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , snake_case__ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def UpperCamelCase_( snake_case__: Any , snake_case__: Optional[int]=False ) -> Dict: UpperCAmelCase__ = _get_single_answer(snake_case__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase__ = example['document']['tokens'] UpperCAmelCase__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(snake_case__ ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCAmelCase__ = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCAmelCase__ = example['document']['tokens'] UpperCAmelCase__ = answer['start_token'] UpperCAmelCase__ = answer['end_token'] UpperCAmelCase__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCAmelCase__ = ' '.join(context[start_token:end_token] ) # checking above code if assertion: UpperCAmelCase__ = doc['is_html'][answer['start_token'] : answer['end_token']] UpperCAmelCase__ = doc['token'][answer['start_token'] : answer['end_token']] UpperCAmelCase__ = ' '.join([old[i] for i in range(len(snake_case__ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , snake_case__ , end='\n' ) print('Old:' , snake_case__ , end='\n\n' ) return { "context": " ".join(snake_case__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: Optional[Any] , snake_case__: List[Any]=20_48 , snake_case__: Optional[int]=40_96 , snake_case__: Union[str, Any]=True ) -> Dict: # overlap will be of doc_stride - q_len UpperCAmelCase__ = get_context_and_ans(snake_case__ , assertion=snake_case__ ) UpperCAmelCase__ = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCAmelCase__ = tokenizer(example['question']['text'] , out['context'] ).input_ids UpperCAmelCase__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = input_ids[:q_len] UpperCAmelCase__ = range(snake_case__ , len(snake_case__ ) , max_length - doc_stride ) for i in doc_start_indices: UpperCAmelCase__ = i + max_length - q_len UpperCAmelCase__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(snake_case__ ), "end_token": [-1_00] * len(snake_case__ ), "category": category, }, } UpperCAmelCase__ = out['context'].split() UpperCAmelCase__ = splitted_context[answer['end_token']] UpperCAmelCase__ = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=snake_case__ , ).input_ids ) UpperCAmelCase__ = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=snake_case__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCAmelCase__ = len(tokenizer(snake_case__ , add_special_tokens=snake_case__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCAmelCase__ = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive UpperCAmelCase__ = answer['start_token'] UpperCAmelCase__ = answer['end_token'] if assertion: UpperCAmelCase__ = tokenizer.decode(snake_case__ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , snake_case__ , end='\n\n' ) if len(snake_case__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCAmelCase__ = input_ids[:q_len] UpperCAmelCase__ = range(snake_case__ , len(snake_case__ ) , max_length - doc_stride ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] # null, yes, no, long, short for i in doc_start_indices: UpperCAmelCase__ = i + max_length - q_len UpperCAmelCase__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCAmelCase__ = start_token - i + q_len UpperCAmelCase__ = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: UpperCAmelCase__ = -1_00 UpperCAmelCase__ = -1_00 answers_category.append('null' ) UpperCAmelCase__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(snake_case__ ) answers_end_token.append(snake_case__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(snake_case__ ) ) print('Old:' , tokenizer.decode(snake_case__ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Optional[int] , snake_case__: List[Any]=20_48 , snake_case__: Tuple=40_96 , snake_case__: Optional[int]=False ) -> str: UpperCAmelCase__ = get_strided_contexts_and_ans( snake_case__ , snake_case__ , doc_stride=snake_case__ , max_length=snake_case__ , assertion=snake_case__ , ) return example def UpperCamelCase_( snake_case__: List[Any] , snake_case__: str ) -> Tuple: with jsonlines.open(snake_case__ , 'a' ) as writer: for example in tqdm(snake_case__ , total=len(snake_case__ ) , desc='Saving samples ... ' ): UpperCAmelCase__ = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _UpperCamelCase = load_dataset('''natural_questions''') _UpperCamelCase = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') _UpperCamelCase = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] _UpperCamelCase = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } _UpperCamelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _UpperCamelCase = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) _UpperCamelCase = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
146
1
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__ ( _A ): '''simple docstring''' def __init__( self : str , __A : CLIPSegForImageSegmentation , __A : CLIPSegProcessor , __A : AutoencoderKL , __A : CLIPTextModel , __A : CLIPTokenizer , __A : UNetaDConditionModel , __A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __A : StableDiffusionSafetyChecker , __A : CLIPImageProcessor , ) -> Tuple: '''simple docstring''' super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: lowerCAmelCase__ = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , __A , standard_warn=__A ) lowerCAmelCase__ = dict(scheduler.config ) lowerCAmelCase__ = 1 lowerCAmelCase__ = FrozenDict(__A ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: lowerCAmelCase__ = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , __A , standard_warn=__A ) lowerCAmelCase__ = dict(scheduler.config ) lowerCAmelCase__ = True lowerCAmelCase__ = FrozenDict(__A ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=__A , segmentation_processor=__A , vae=__A , text_encoder=__A , tokenizer=__A , unet=__A , scheduler=__A , safety_checker=__A , feature_extractor=__A , ) def lowercase__ ( self : Optional[int] , __A : Optional[Union[str, int]] = "auto" ) -> Optional[int]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__A ) def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' self.enable_attention_slicing(__A ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase__ = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__A , __A ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : str , __A : Union[str, List[str]] , __A : Union[torch.FloatTensor, PIL.Image.Image] , __A : str , __A : int = 512 , __A : int = 512 , __A : int = 50 , __A : float = 7.5 , __A : Optional[Union[str, List[str]]] = None , __A : Optional[int] = 1 , __A : float = 0.0 , __A : Optional[torch.Generator] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[str] = "pil" , __A : bool = True , __A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A : int = 1 , **__A : List[str] , ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) lowerCAmelCase__ = self.segmentation_model(**__A ) lowerCAmelCase__ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCAmelCase__ = self.numpy_to_pil(__A )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCAmelCase__ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__A , image=__A , mask_image=__A , height=__A , width=__A , num_inference_steps=__A , guidance_scale=__A , negative_prompt=__A , num_images_per_prompt=__A , eta=__A , generator=__A , latents=__A , output_type=__A , return_dict=__A , callback=__A , callback_steps=__A , )
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
211
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__snake_case, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__snake_case, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__snake_case ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BILINEAR , __a = True , __a = None , __a = True , __a = 1 / 2_55 , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a , default_to_square=__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size['''shortest_edge'''] , default_to_square=__a) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> Dict: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. _UpperCamelCase = to_numpy_array(__a) if do_resize: _UpperCamelCase = self.resize(image=__a , size=__a , resample=__a) if do_center_crop: _UpperCamelCase = self.center_crop(__a , size=__a) if do_rescale: _UpperCamelCase = self.rescale(image=__a , scale=__a) if do_normalize: _UpperCamelCase = self.normalize(image=__a , mean=__a , std=__a) _UpperCamelCase = to_channel_dimension_format(__a , __a) return image def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> PIL.Image.Image: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a , default_to_square=__a) _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''') if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') _UpperCamelCase = make_batched(__a) _UpperCamelCase = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase = {'''pixel_values''': videos} return BatchFeature(data=__a , tensor_type=__a)
19
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowerCAmelCase ( ) -> str: """simple docstring""" A = HfArgumentParser(UpperCamelCase__ ) A = parser.parse_args_into_dataclasses()[0] A = TensorFlowBenchmark(args=UpperCamelCase__ ) try: A = parser.parse_args_into_dataclasses()[0] except ValueError as e: A = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" A = """ """.join(str(UpperCamelCase__ ).split(""" """ )[:-1] ) A = """""" A = eval(str(UpperCamelCase__ ).split(""" """ )[-1] ) A = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: A = full_error_msg + begin_error_msg + str(UpperCamelCase__ ) raise ValueError(UpperCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
641
0
from torch import nn class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : str = class_size _snake_case : Any = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _snake_case : Any = nn.Linear(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Any = self.mlp(UpperCamelCase ) return logits
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : int = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ): lowerCAmelCase = set() lowerCAmelCase = [] def parse_line(_UpperCAmelCase : str ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCAmelCase = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCAmelCase = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): lowerCAmelCase = set() lowerCAmelCase = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ): return values.split(',' ) __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Optional[Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Optional[Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Any = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Tuple = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
4
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase = logging.getLogger(__name__) @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field(default=UpperCamelCase__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) snake_case__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _A ( ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) lowerCAmelCase__ = import_module("tasks" ) try: lowerCAmelCase__ = getattr(lowerCAmelCase_ , model_args.task_type ) lowerCAmelCase__ = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowerCAmelCase__ = token_classification_task.get_labels(data_args.labels ) lowerCAmelCase__ = dict(enumerate(lowerCAmelCase_ ) ) lowerCAmelCase__ = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid={label: i for i, label in enumerate(lowerCAmelCase_ )} , cache_dir=model_args.cache_dir , ) lowerCAmelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowerCAmelCase__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase__ = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase__ = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray ) -> Tuple[List[int], List[int]]: lowerCAmelCase__ = np.argmax(lowerCAmelCase_ , axis=2 ) lowerCAmelCase__ , lowerCAmelCase__ = preds.shape lowerCAmelCase__ = [[] for _ in range(lowerCAmelCase_ )] lowerCAmelCase__ = [[] for _ in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowerCAmelCase_ : EvalPrediction ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowerCAmelCase_ , lowerCAmelCase_ ), "precision": precision_score(lowerCAmelCase_ , lowerCAmelCase_ ), "recall": recall_score(lowerCAmelCase_ , lowerCAmelCase_ ), "f1": fa_score(lowerCAmelCase_ , lowerCAmelCase_ ), } # Data collator lowerCAmelCase__ = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase__ = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase__ = trainer.evaluate() lowerCAmelCase__ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowerCAmelCase_ ) # Predict if training_args.do_predict: lowerCAmelCase__ = TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = trainer.predict(lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = align_predictions(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions lowerCAmelCase__ = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return results def _A ( lowerCAmelCase_ : Tuple ): """simple docstring""" main() if __name__ == "__main__": main()
61
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
714
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A : Any , _A : Tuple , _A : Dict )-> List[str]: """simple docstring""" return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def UpperCamelCase ( _A : Union[str, Any] , _A : Optional[int] , _A : Union[str, Any] , _A : str="attention" )-> Optional[int]: """simple docstring""" A__ = A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) A__ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) A__ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) A__ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) A__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) A__ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def UpperCamelCase ( _A : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Tuple=False )-> List[Any]: """simple docstring""" if split_mlp_wi: A__ = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] A__ = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] A__ = (wi_a, wi_a) else: A__ = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] A__ = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def UpperCamelCase ( _A : int , _A : Union[str, Any] , _A : Dict , _A : List[Any] )-> Any: """simple docstring""" return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def UpperCamelCase ( _A : dict , *, _A : int , _A : bool , _A : bool = False )-> List[Any]: """simple docstring""" A__ = traverse_util.flatten_dict(variables["target"] ) A__ = {"/".join(_A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A__ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , _A ) A__ = collections.OrderedDict() # Shared embeddings. A__ = old["token_embedder/embedding"] # Encoder. for i in range(_A ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(_A , _A , "encoder" , "pre_attention_layer_norm" ) A__ , A__ , A__ , A__ = tax_attention_lookup(_A , _A , "encoder" , "attention" ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (MLP). A__ = tax_layer_norm_lookup(_A , _A , "encoder" , "pre_mlp_layer_norm" ) A__ , A__ = tax_mlp_lookup(_A , _A , "encoder" , _A ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T if scalable_attention: # convert the rel_embedding of each layer A__ = tax_relpos_bias_lookup( _A , _A , "encoder" ).T A__ = old["encoder/encoder_norm/scale"] if not scalable_attention: A__ = tax_relpos_bias_lookup( _A , 0 , "encoder" ).T A__ = tax_relpos_bias_lookup( _A , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(_A ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(_A , _A , "decoder" , "pre_self_attention_layer_norm" ) A__ , A__ , A__ , A__ = tax_attention_lookup(_A , _A , "decoder" , "self_attention" ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (Cross Attention). A__ = tax_layer_norm_lookup(_A , _A , "decoder" , "pre_cross_attention_layer_norm" ) A__ , A__ , A__ , A__ = tax_attention_lookup(_A , _A , "decoder" , "encoder_decoder_attention" ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 2 (MLP). A__ = tax_layer_norm_lookup(_A , _A , "decoder" , "pre_mlp_layer_norm" ) A__ , A__ = tax_mlp_lookup(_A , _A , "decoder" , _A ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T if scalable_attention: # convert the rel_embedding of each layer A__ = tax_relpos_bias_lookup(_A , _A , "decoder" ).T A__ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A__ = old["decoder/logits_dense/kernel"].T return new def UpperCamelCase ( _A : Any , _A : bool )-> Optional[Any]: """simple docstring""" A__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A__ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A__ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) A__ = state_dict["shared.weight"] return state_dict def UpperCamelCase ( _A : str , _A : List[Any] , _A : Optional[int] , _A : List[str] , _A : Dict )-> str: """simple docstring""" A__ = checkpoints.load_tax_checkpoint(_A ) A__ = convert_tax_to_pytorch( _A , num_layers=config.num_layers , is_encoder_only=_A , scalable_attention=_A ) A__ = make_state_dict(_A , _A ) model.load_state_dict(_A , strict=_A ) def UpperCamelCase ( _A : List[Any] , _A : int , _A : List[Any] , _A : bool = False , _A : bool = False , )-> int: """simple docstring""" A__ = MTaConfig.from_json_file(_A ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A__ = UMTaEncoderModel(_A ) else: A__ = UMTaForConditionalGeneration(_A ) # Load weights from tf checkpoint load_tax_weights_in_ta(_A , _A , _A , _A , _A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_A ) # Verify that we can load the checkpoint. model.from_pretrained(_A ) print("Done" ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
491
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=768 ): super().__init__(UpperCAmelCase__ ) A__ = proj_size A__ = CLIPVisionModel(UpperCAmelCase__ ) A__ = PaintByExampleMapper(UpperCAmelCase__ ) A__ = nn.LayerNorm(config.hidden_size ) A__ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling A__ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=False ): A__ = self.model(pixel_values=UpperCAmelCase__ ) A__ = clip_output.pooler_output A__ = self.mapper(latent_states[:, None] ) A__ = self.final_layer_norm(UpperCAmelCase__ ) A__ = self.proj_out(UpperCAmelCase__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class UpperCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase__ ): super().__init__() A__ = (config.num_hidden_layers + 1) // 5 A__ = config.hidden_size A__ = 1 A__ = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , activation_fn="gelu" , attention_bias=UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ) ] ) def __A ( self , UpperCAmelCase__ ): for block in self.blocks: A__ = block(UpperCAmelCase__ ) return hidden_states
491
1
'''simple docstring''' from collections import deque def snake_case_ (UpperCamelCase : List[str] ): '''simple docstring''' _a = len(UpperCamelCase ) _a = deque() _a = [False for _ in range(UpperCamelCase )] _a = [-1 for _ in range(UpperCamelCase )] _a = index_of[:] def strong_connect(UpperCamelCase : List[str] , UpperCamelCase : int , UpperCamelCase : Tuple ): _a = index # the number when this node is seen _a = index # lowest rank node reachable from here index += 1 stack.append(UpperCamelCase ) _a = True for w in g[v]: if index_of[w] == -1: _a = strong_connect(UpperCamelCase , UpperCamelCase , UpperCamelCase ) _a = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _a = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _a = [] _a = stack.pop() _a = False component.append(UpperCamelCase ) while w != v: _a = stack.pop() _a = False component.append(UpperCamelCase ) components.append(UpperCamelCase ) return index _a = [] for v in range(UpperCamelCase ): if index_of[v] == -1: strong_connect(UpperCamelCase , 0 , UpperCamelCase ) return components def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' _a = [[] for _ in range(UpperCamelCase )] for u, v in edges: g[u].append(UpperCamelCase ) return g if __name__ == "__main__": # Test _snake_case : Optional[Any] = 7 _snake_case : List[Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] _snake_case : Any = [1, 3, 2, 0, 1, 4, 5, 6, 5] _snake_case : Optional[Any] = [(u, v) for u, v in zip(source, target)] _snake_case : Dict = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
377
'''simple docstring''' _snake_case : Any = tuple[float, float, float] _snake_case : Optional[int] = tuple[float, float, float] def snake_case_ (UpperCamelCase : Pointad , UpperCamelCase : Pointad ): '''simple docstring''' _a = end_pointa[0] - end_pointa[0] _a = end_pointa[1] - end_pointa[1] _a = end_pointa[2] - end_pointa[2] return (x, y, z) def snake_case_ (UpperCamelCase : Vectorad , UpperCamelCase : Vectorad ): '''simple docstring''' _a = ab[1] * ac[2] - ab[2] * ac[1] # *i _a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _a = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def snake_case_ (UpperCamelCase : Vectorad , UpperCamelCase : int ): '''simple docstring''' return tuple(round(UpperCamelCase , UpperCamelCase ) for x in vector ) == (0, 0, 0) def snake_case_ (UpperCamelCase : Pointad , UpperCamelCase : Pointad , UpperCamelCase : Pointad , UpperCamelCase : int = 10 ): '''simple docstring''' _a = create_vector(UpperCamelCase , UpperCamelCase ) _a = create_vector(UpperCamelCase , UpperCamelCase ) return is_zero_vector(get_ad_vectors_cross(UpperCamelCase , UpperCamelCase ) , UpperCamelCase )
377
1
import numpy as np import qiskit def __SCREAMING_SNAKE_CASE ( lowercase_ = 8 , lowercase_ = None ) -> Any: '''simple docstring''' __UpperCAmelCase : int = np.random.default_rng(seed=lowerCAmelCase__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __UpperCAmelCase : Any = 6 * key_len # Measurement basis for Alice's qubits. __UpperCAmelCase : List[Any] = rng.integers(2 , size=lowerCAmelCase__ ) # The set of states Alice will prepare. __UpperCAmelCase : List[str] = rng.integers(2 , size=lowerCAmelCase__ ) # Measurement basis for Bob's qubits. __UpperCAmelCase : Dict = rng.integers(2 , size=lowerCAmelCase__ ) # Quantum Circuit to simulate BB84 __UpperCAmelCase : Dict = qiskit.QuantumCircuit(lowerCAmelCase__ , name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(lowerCAmelCase__ ): if alice_state[index] == 1: bbaa_circ.x(lowerCAmelCase__ ) if alice_basis[index] == 1: bbaa_circ.h(lowerCAmelCase__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(lowerCAmelCase__ ): if bob_basis[index] == 1: bbaa_circ.h(lowerCAmelCase__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __UpperCAmelCase : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __UpperCAmelCase : str = qiskit.execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=1 , seed_simulator=lowerCAmelCase__ ) # Returns the result of measurement. __UpperCAmelCase : Dict = job.result().get_counts(lowerCAmelCase__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __UpperCAmelCase : int = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __UpperCAmelCase : Union[str, Any] = gen_key[:key_len] if len(lowerCAmelCase__ ) >= key_len else gen_key.ljust(lowerCAmelCase__ , '''0''' ) return key if __name__ == "__main__": print(F'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
462
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( __a , unittest.TestCase ): _A :Tuple = KandinskyVaaInpaintPipeline _A :Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _A :Optional[int] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _A :Optional[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _A :Union[str, Any] = False @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return 1_00 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**snake_case__ ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=snake_case__ , ) lowercase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any]=0 ): lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(snake_case__ ).startswith("""mps""" ): lowercase = torch.manual_seed(snake_case__ ) else: lowercase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**snake_case__ ) lowercase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def SCREAMING_SNAKE_CASE__ ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((7_68, 7_68) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowercase = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
428
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizerFast SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : List[Any] = False def lowerCamelCase__ ( self : List[str] ) -> Tuple: super().setUp() # fmt: off __UpperCAmelCase : str = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __UpperCAmelCase : Any = dict(zip(snake_case , range(len(snake_case ) ) ) ) __UpperCAmelCase : List[str] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] __UpperCAmelCase : Dict = {'''unk_token''': '''<unk>'''} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(snake_case ) ) def lowerCamelCase__ ( self : Union[str, Any] , **snake_case : Union[str, Any] ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase__ ( self : List[Any] , **snake_case : int ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase__ ( self : Optional[int] , snake_case : Any ) -> Any: __UpperCAmelCase : int = '''lower newer''' __UpperCAmelCase : List[Any] = '''lower newer''' return input_text, output_text def lowerCamelCase__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase : str = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase : int = '''lower newer''' __UpperCAmelCase : Optional[int] = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] __UpperCAmelCase : Any = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) __UpperCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token] __UpperCAmelCase : Any = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , snake_case ) @require_ftfy def lowerCamelCase__ ( self : str ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(snake_case , **snake_case ) __UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) __UpperCAmelCase : Optional[int] = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' __UpperCAmelCase : int = tokenizer_s.tokenize(snake_case ) __UpperCAmelCase : Optional[int] = tokenizer_r.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __UpperCAmelCase : Any = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' __UpperCAmelCase : Optional[Any] = tokenizer_s.tokenize(snake_case ) __UpperCAmelCase : Optional[int] = tokenizer_r.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) # Test that the tokenization is identical on unicode of space type __UpperCAmelCase : List[Any] = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __UpperCAmelCase : Dict = tokenizer_s.tokenize(snake_case ) __UpperCAmelCase : List[str] = tokenizer_r.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) # Test that the tokenization is identical on unicode of line break type __UpperCAmelCase : Optional[int] = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __UpperCAmelCase : Union[str, Any] = tokenizer_s.tokenize(snake_case ) __UpperCAmelCase : Optional[Any] = tokenizer_r.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCAmelCase : Optional[int] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase : Optional[int] = f'{text_of_1_token} {text_of_1_token}' __UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( snake_case , use_fast=snake_case , ) __UpperCAmelCase : List[str] = tokenizer_r(snake_case , return_offsets_mapping=snake_case , add_special_tokens=snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case ) + 1, len(snake_case ) + 1 + len(snake_case )) , ) __UpperCAmelCase : int = f' {text}' __UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( snake_case , use_fast=snake_case , ) __UpperCAmelCase : Union[str, Any] = tokenizer_r(snake_case , return_offsets_mapping=snake_case , add_special_tokens=snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(snake_case ) + 1, 1 + len(snake_case ) + 1 + len(snake_case )) , ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def lowerCamelCase__ ( self : Optional[Any] ) -> str: super().test_tokenization_python_rust_equals() def lowerCamelCase__ ( self : Any ) -> Tuple: # CLIP always lower cases letters pass
266
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _a ( _lowercase : Optional[Any] , _lowercase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = k_size // 2 __UpperCAmelCase , __UpperCAmelCase : Any = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCAmelCase : Optional[int] = 1 / (2 * pi * sigma) * exp(-(square(_lowercase ) + square(_lowercase )) / (2 * square(_lowercase )) ) return g def _a ( _lowercase : str , _lowercase : List[str] , _lowercase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = image.shape[0], image.shape[1] # dst image height and width __UpperCAmelCase : Any = height - k_size + 1 __UpperCAmelCase : str = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCAmelCase : Optional[int] = zeros((dst_height * dst_width, k_size * k_size) ) __UpperCAmelCase : Optional[Any] = 0 for i, j in product(range(_lowercase ) , range(_lowercase ) ): __UpperCAmelCase : List[Any] = ravel(image[i : i + k_size, j : j + k_size] ) __UpperCAmelCase : Optional[int] = window row += 1 # turn the kernel into shape(k*k, 1) __UpperCAmelCase : str = gen_gaussian_kernel(_lowercase , _lowercase ) __UpperCAmelCase : Union[str, Any] = ravel(_lowercase ) # reshape and get the dst image __UpperCAmelCase : Optional[int] = dot(_lowercase , _lowercase ).reshape(_lowercase , _lowercase ).astype(_lowercase ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase :Dict = imread(r"../image_data/lena.jpg") # turn image in gray scale value __UpperCAmelCase :Tuple = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase :Tuple = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase :Optional[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
266
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class __SCREAMING_SNAKE_CASE ( lowercase__ ): def __init__( self : str ): '''simple docstring''' # test for the above condition self.test() def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : int =0 lowercase : List[Any] =False while not completed: if counter == 1: self.reset() lowercase : Dict =self.advance() if not self.does_advance(UpperCAmelCase__ ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) lowercase , lowercase , lowercase : str =self.update(UpperCAmelCase__ ) counter += 1 if counter > 10000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def lowerCamelCase_ ( self : Any ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : int ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : int ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=False ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __SCREAMING_SNAKE_CASE ( lowercase__ ): def __init__( self : int , UpperCAmelCase__ : List[int] ): '''simple docstring''' super(UpperCAmelCase__ , self ).__init__() if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or len(UpperCAmelCase__ ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) lowercase : Union[str, Any] =token_ids lowercase : Tuple =len(self.token_ids ) lowercase : Tuple =-1 # the index of the currently fulfilled step lowercase : int =False def lowerCamelCase_ ( self : int ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase_ ( self : str , UpperCAmelCase__ : int ): '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase_ ( self : str , UpperCAmelCase__ : int ): '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) lowercase : Any =False lowercase : Optional[int] =False lowercase : int =False if self.does_advance(UpperCAmelCase__ ): self.fulfilled_idx += 1 lowercase : Any =True if self.fulfilled_idx == (self.seqlen - 1): lowercase : List[str] =True lowercase : List[Any] =completed else: # failed to make progress. lowercase : Union[str, Any] =True self.reset() return stepped, completed, reset def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : int =False lowercase : Tuple =0 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase_ ( self : int , UpperCAmelCase__ : int=False ): '''simple docstring''' lowercase : Dict =PhrasalConstraint(self.token_ids ) if stateful: lowercase : Union[str, Any] =self.seqlen lowercase : Optional[Any] =self.fulfilled_idx lowercase : List[str] =self.completed return new_constraint class __SCREAMING_SNAKE_CASE : def __init__( self : Any , UpperCAmelCase__ : List[List[int]] , UpperCAmelCase__ : Dict=True ): '''simple docstring''' lowercase : str =max([len(UpperCAmelCase__ ) for one in nested_token_ids] ) lowercase : Any ={} for token_ids in nested_token_ids: lowercase : Any =root for tidx, token_id in enumerate(UpperCAmelCase__ ): if token_id not in level: lowercase : int ={} lowercase : Union[str, Any] =level[token_id] if no_subsets and self.has_subsets(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F''' {nested_token_ids}.''' ) lowercase : Dict =root def lowerCamelCase_ ( self : int , UpperCAmelCase__ : Dict ): '''simple docstring''' lowercase : Any =self.trie for current_token in current_seq: lowercase : List[str] =start[current_token] lowercase : Optional[Any] =list(start.keys() ) return next_tokens def lowerCamelCase_ ( self : str , UpperCAmelCase__ : List[str] ): '''simple docstring''' lowercase : Union[str, Any] =self.next_tokens(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) == 0 def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Optional[int] ): '''simple docstring''' lowercase : Any =list(root.values() ) if len(UpperCAmelCase__ ) == 0: return 1 else: return sum([self.count_leaves(UpperCAmelCase__ ) for nn in next_nodes] ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict ): '''simple docstring''' lowercase : List[str] =self.count_leaves(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) != leaf_count class __SCREAMING_SNAKE_CASE ( lowercase__ ): def __init__( self : List[str] , UpperCAmelCase__ : List[List[int]] ): '''simple docstring''' super(UpperCAmelCase__ , self ).__init__() if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or len(UpperCAmelCase__ ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) lowercase : Any =DisjunctiveTrie(UpperCAmelCase__ ) lowercase : Tuple =nested_token_ids lowercase : Dict =self.trie.max_height lowercase : List[str] =[] lowercase : str =False def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : Any =self.trie.next_tokens(self.current_seq ) if len(UpperCAmelCase__ ) == 0: return None else: return token_list def lowerCamelCase_ ( self : int , UpperCAmelCase__ : int ): '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) lowercase : Union[str, Any] =self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : int ): '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) lowercase : Any =False lowercase : Any =False lowercase : Optional[Any] =False if self.does_advance(UpperCAmelCase__ ): self.current_seq.append(UpperCAmelCase__ ) lowercase : Dict =True else: lowercase : Tuple =True self.reset() lowercase : Union[str, Any] =self.trie.reached_leaf(self.current_seq ) lowercase : int =completed return stepped, completed, reset def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : int =False lowercase : Tuple =[] def lowerCamelCase_ ( self : Dict ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : Any=False ): '''simple docstring''' lowercase : Dict =DisjunctiveConstraint(self.token_ids ) if stateful: lowercase : Union[str, Any] =self.seqlen lowercase : int =self.current_seq lowercase : Dict =self.completed return new_constraint class __SCREAMING_SNAKE_CASE : def __init__( self : int , UpperCAmelCase__ : List[Constraint] ): '''simple docstring''' lowercase : List[str] =constraints # max # of steps required to fulfill a given constraint lowercase : str =max([c.seqlen for c in constraints] ) lowercase : Any =len(UpperCAmelCase__ ) lowercase : Union[str, Any] =False self.init_state() def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : List[str] =[] lowercase : Optional[Any] =None lowercase : List[Any] =[constraint.copy(stateful=UpperCAmelCase__ ) for constraint in self.constraints] def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : List[Any] =0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : int =[] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowercase : List[str] =constraint.advance() if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.append(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.extend(UpperCAmelCase__ ) else: lowercase : str =self.inprogress_constraint.advance() if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.append(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.extend(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) == 0: return None else: return token_list def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Optional[List[int]] ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowercase , lowercase : Optional[Any] =self.add(UpperCAmelCase__ ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : int ): '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) lowercase , lowercase : List[Any] =False, False if self.completed: lowercase : Tuple =True lowercase : Union[str, Any] =False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowercase , lowercase , lowercase : Union[str, Any] =self.inprogress_constraint.update(UpperCAmelCase__ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase__ ) ) lowercase : List[str] =None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowercase : Optional[Any] =None if len(self.pending_constraints ) == 0: # we're done! lowercase : int =True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCAmelCase__ ): lowercase , lowercase , lowercase : List[Any] =pending_constraint.update(UpperCAmelCase__ ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(UpperCAmelCase__ ) lowercase : Union[str, Any] =None if not complete and stepped: lowercase : Any =pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowercase : int =( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowercase : List[Any] =True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase_ ( self : int , UpperCAmelCase__ : Optional[int]=True ): '''simple docstring''' lowercase : int =ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowercase : Tuple =[ constraint.copy(stateful=UpperCAmelCase__ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowercase : Dict =self.inprogress_constraint.copy(stateful=UpperCAmelCase__ ) lowercase : int =[constraint.copy() for constraint in self.pending_constraints] return new_state
92
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : int = 600851475143 ) -> int: try: lowercase : Any =int(__magic_name__ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =2 lowercase : Dict =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowercase : Union[str, Any] =i while n % i == 0: lowercase : Optional[int] =n // i i += 1 return int(__magic_name__ ) if __name__ == "__main__": print(f'''{solution() = }''')
92
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A =logging.get_logger(__name__) __A ={ 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _snake_case ( a__ , a__ ): lowerCAmelCase :Dict = '''nat''' lowerCAmelCase :Tuple = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowerCamelCase=4 , _lowerCamelCase=3 , _lowerCamelCase=64 , _lowerCamelCase=[3, 4, 6, 5] , _lowerCamelCase=[2, 4, 8, 16] , _lowerCamelCase=7 , _lowerCamelCase=3.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0 , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase) UpperCAmelCase__ : List[str] = patch_size UpperCAmelCase__ : Any = num_channels UpperCAmelCase__ : str = embed_dim UpperCAmelCase__ : Tuple = depths UpperCAmelCase__ : Union[str, Any] = len(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = num_heads UpperCAmelCase__ : Tuple = kernel_size UpperCAmelCase__ : Any = mlp_ratio UpperCAmelCase__ : Optional[int] = qkv_bias UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = drop_path_rate UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[Any] = layer_norm_eps UpperCAmelCase__ : List[str] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase__ : int = int(embed_dim * 2 ** (len(_lowerCamelCase) - 1)) UpperCAmelCase__ : Optional[int] = layer_scale_init_value UpperCAmelCase__ : Tuple = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase) + 1)] UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names)
113
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
113
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowercase ( _SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def UpperCamelCase ( lowerCamelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" raise NotImplementedError()
203
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase ( _A ): def __init__( self : str , __lowerCamelCase : TransformeraDModel , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : KarrasDiffusionSchedulers , __lowerCamelCase : Optional[Dict[int, str]] = None , ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules(transformer=__lowerCamelCase , vae=__lowerCamelCase , scheduler=__lowerCamelCase ) # create a imagenet -> id dictionary for easier use lowercase = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): lowercase = int(__lowerCamelCase ) lowercase = dict(sorted(self.labels.items() ) ) def __a ( self : Union[str, Any] , __lowerCamelCase : Union[str, List[str]] ) -> List[int]: '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase = list(__lowerCamelCase ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : float = 4.0 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' lowercase = len(__lowerCamelCase ) lowercase = self.transformer.config.sample_size lowercase = self.transformer.config.in_channels lowercase = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__lowerCamelCase , device=self.device , dtype=self.transformer.dtype , ) lowercase = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowercase = torch.tensor(__lowerCamelCase , device=self.device ).reshape(-1 ) lowercase = torch.tensor([10_00] * batch_size , device=self.device ) lowercase = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowercase = latent_model_input[: len(__lowerCamelCase ) // 2] lowercase = torch.cat([half, half] , dim=0 ) lowercase = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) lowercase = t if not torch.is_tensor(__lowerCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowercase = latent_model_input.device.type == '''mps''' if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase = torch.floataa if is_mps else torch.floataa else: lowercase = torch.intaa if is_mps else torch.intaa lowercase = torch.tensor([timesteps] , dtype=__lowerCamelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowercase = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowercase = self.transformer( __lowerCamelCase , timestep=__lowerCamelCase , class_labels=__lowerCamelCase ).sample # perform guidance if guidance_scale > 1: lowercase ,lowercase = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowercase ,lowercase = torch.split(__lowerCamelCase , len(__lowerCamelCase ) // 2 , dim=0 ) lowercase = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowercase = torch.cat([half_eps, half_eps] , dim=0 ) lowercase = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowercase ,lowercase = torch.split(__lowerCamelCase , __lowerCamelCase , dim=1 ) else: lowercase = noise_pred # compute previous image: x_t -> x_t-1 lowercase = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample if guidance_scale > 1: lowercase ,lowercase = latent_model_input.chunk(2 , dim=0 ) else: lowercase = latent_model_input lowercase = 1 / self.vae.config.scaling_factor * latents lowercase = self.vae.decode(__lowerCamelCase ).sample lowercase = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__lowerCamelCase )
479
from __future__ import annotations from collections.abc import MutableSequence class __lowercase : def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : MutableSequence[float] ) -> None: '''simple docstring''' if len(__lowerCamelCase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) lowercase = list(__lowerCamelCase ) lowercase = degree def __add__( self : Any , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' if self.degree > polynomial_a.degree: lowercase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __lowerCamelCase ) else: lowercase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __lowerCamelCase ) def __sub__( self : str , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : str ) -> Polynomial: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : List[str] , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' lowercase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __lowerCamelCase ) def __a ( self : List[str] , __lowerCamelCase : int | float ) -> int | float: '''simple docstring''' lowercase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : str ) -> str: '''simple docstring''' lowercase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__lowerCamelCase ) return polynomial def __repr__( self : Tuple ) -> str: '''simple docstring''' return self.__str__() def __a ( self : Union[str, Any] ) -> Polynomial: '''simple docstring''' lowercase = [0] * self.degree for i in range(self.degree ): lowercase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __lowerCamelCase ) def __a ( self : Union[str, Any] , __lowerCamelCase : int | float = 0 ) -> Polynomial: '''simple docstring''' lowercase = [0] * (self.degree + 2) lowercase = constant for i in range(self.degree + 1 ): lowercase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __lowerCamelCase ) def __eq__( self : Tuple , __lowerCamelCase : object ) -> bool: '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , __lowerCamelCase : object ) -> bool: '''simple docstring''' return not self.__eq__(__lowerCamelCase )
479
1
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } _lowercase = { '''Salesforce/codegen-350M-mono''': 2048, } class UpperCAmelCase_ ( A__ ): '''simple docstring''' _lowercase : int = VOCAB_FILES_NAMES _lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : str = ['''input_ids''', '''attention_mask'''] _lowercase : Tuple = CodeGenTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="<|endoftext|>" , _lowercase="<|endoftext|>" , _lowercase="<|endoftext|>" , _lowercase=False , **_lowercase , ): """simple docstring""" super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) if kwargs.pop("""add_bos_token""" , __lowerCamelCase ): _lowerCAmelCase = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n""" F'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' F'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) _lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowerCamelCase ) != add_prefix_space: _lowerCAmelCase = getattr(__lowerCamelCase , pre_tok_state.pop("""type""" ) ) _lowerCAmelCase = add_prefix_space _lowerCAmelCase = pre_tok_class(**__lowerCamelCase ) _lowerCAmelCase = add_prefix_space def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" _lowerCAmelCase = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" _lowerCAmelCase = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def _lowercase ( self , _lowercase , _lowercase = False , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" _lowerCAmelCase = super().decode( token_ids=__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase , **__lowerCamelCase , ) if truncate_before_pattern is not None and len(__lowerCamelCase ) > 0: _lowerCAmelCase = self.truncate(__lowerCamelCase , __lowerCamelCase ) return decoded_text def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" def find_re(_lowercase , _lowercase , _lowercase ): _lowerCAmelCase = pattern.search(__lowerCamelCase , __lowerCamelCase ) return m.start() if m else -1 _lowerCAmelCase = [re.compile(__lowerCamelCase , re.MULTILINE ) for pattern in truncate_before_pattern] _lowerCAmelCase = list(re.finditer("""^print""" , __lowerCamelCase , re.MULTILINE ) ) if len(__lowerCamelCase ) > 1: _lowerCAmelCase = completion[: prints[1].start()] _lowerCAmelCase = list(re.finditer("""^def""" , __lowerCamelCase , re.MULTILINE ) ) if len(__lowerCamelCase ) > 1: _lowerCAmelCase = completion[: defs[1].start()] _lowerCAmelCase = 0 _lowerCAmelCase = [ pos for pos in [find_re(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for terminal in terminals] if pos != -1 ] if len(__lowerCamelCase ) > 0: return completion[: min(__lowerCamelCase )] else: return completion
5
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : """simple docstring""" a = PegasusConfig a = {} a = "gelu" def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=13 , __lowerCamelCase : int=7 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : str=99 , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : Dict=2 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : List[Any]=37 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=40 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : int=1 , __lowerCamelCase : str=0 , ) -> List[str]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = bos_token_id def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE__ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE__ = prepare_pegasus_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def lowercase_ ( self : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = TFPegasusModel(config=__lowerCamelCase ).get_decoder() SCREAMING_SNAKE_CASE__ = inputs_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids[:1, :] SCREAMING_SNAKE_CASE__ = inputs_dict['''attention_mask'''][:1, :] SCREAMING_SNAKE_CASE__ = inputs_dict['''head_mask'''] SCREAMING_SNAKE_CASE__ = 1 # first forward pass SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 ) def UpperCAmelCase_ ( _A , _A , _A , _A=None , _A=None , _A=None , _A=None , _A=None , ): '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ = tf.cast(tf.math.not_equal(_A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" a = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a = (TFPegasusForConditionalGeneration,) if is_tf_available() else () a = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a = True a = False a = False def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFPegasusModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] a = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers a = "google/pegasus-xsum" @cached_property def lowercase_ ( self : Optional[Any] ) -> str: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowercase_ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowercase_ ( self : str , **__lowerCamelCase : str ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.translate_src_text(**__lowerCamelCase ) assert self.expected_text == generated_words def lowercase_ ( self : Dict , **__lowerCamelCase : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.tokenizer(self.src_text , **__lowerCamelCase , padding=__lowerCamelCase , return_tensors='''tf''' ) SCREAMING_SNAKE_CASE__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCamelCase ) return generated_words @slow def lowercase_ ( self : List[Any] ) -> int: self._assert_generated_batch_equal_expected()
493
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = (DEISMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 2_5),) def _a ( self , **__lowerCamelCase ): '''simple docstring''' __A : List[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**__lowerCamelCase ) return config def _a ( self , __lowerCamelCase=0 , **__lowerCamelCase ): '''simple docstring''' __A : str = dict(self.forward_default_kwargs ) __A : List[Any] = kwargs.pop('num_inference_steps' , __lowerCamelCase ) __A : str = self.dummy_sample __A : List[Any] = 0.1 * sample __A : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __A : str = self.get_scheduler_config(**__lowerCamelCase ) __A : int = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals __A : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) __A : Dict = scheduler_class.from_pretrained(__lowerCamelCase ) new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals __A : Any = dummy_past_residuals[: new_scheduler.config.solver_order] __A , __A : List[str] = sample, sample for t in range(__lowerCamelCase , time_step + scheduler.config.solver_order + 1 ): __A : List[str] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample __A : Any = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _a ( self ): '''simple docstring''' pass def _a ( self , __lowerCamelCase=0 , **__lowerCamelCase ): '''simple docstring''' __A : Dict = dict(self.forward_default_kwargs ) __A : int = kwargs.pop('num_inference_steps' , __lowerCamelCase ) __A : List[str] = self.dummy_sample __A : Optional[Any] = 0.1 * sample __A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __A : Tuple = self.get_scheduler_config() __A : int = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) __A : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) __A : List[Any] = scheduler_class.from_pretrained(__lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) __A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] __A : Optional[Any] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample __A : List[Any] = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _a ( self , __lowerCamelCase=None , **__lowerCamelCase ): '''simple docstring''' if scheduler is None: __A : Any = self.scheduler_classes[0] __A : int = self.get_scheduler_config(**__lowerCamelCase ) __A : List[Any] = scheduler_class(**__lowerCamelCase ) __A : Dict = self.scheduler_classes[0] __A : Union[str, Any] = self.get_scheduler_config(**__lowerCamelCase ) __A : Dict = scheduler_class(**__lowerCamelCase ) __A : str = 10 __A : Dict = self.dummy_model() __A : str = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): __A : Optional[int] = model(__lowerCamelCase , __lowerCamelCase ) __A : Tuple = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def _a ( self ): '''simple docstring''' __A : Optional[Any] = dict(self.forward_default_kwargs ) __A : List[str] = kwargs.pop('num_inference_steps' , __lowerCamelCase ) for scheduler_class in self.scheduler_classes: __A : Any = self.get_scheduler_config() __A : Optional[Any] = scheduler_class(**__lowerCamelCase ) __A : Tuple = self.dummy_sample __A : str = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCamelCase , 'set_timesteps' ): scheduler.set_timesteps(__lowerCamelCase ) elif num_inference_steps is not None and not hasattr(__lowerCamelCase , 'set_timesteps' ): __A : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __A : Any = [residual + 0.2, residual + 0.15, residual + 0.10] __A : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] __A : Union[str, Any] = scheduler.timesteps[5] __A : Tuple = scheduler.timesteps[6] __A : Tuple = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample __A : Optional[int] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _a ( self ): '''simple docstring''' __A : List[Any] = DEISMultistepScheduler(**self.get_scheduler_config() ) __A : Tuple = self.full_loop(scheduler=__lowerCamelCase ) __A : Union[str, Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 __A : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __A : Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) __A : str = DEISMultistepScheduler.from_config(scheduler.config ) __A : str = self.full_loop(scheduler=__lowerCamelCase ) __A : List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 def _a ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def _a ( self ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , algorithm_type='deis' , solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , ) def _a ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def _a ( self ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , algorithm_type=__lowerCamelCase , ) __A : str = self.full_loop( solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , algorithm_type=__lowerCamelCase , ) assert not torch.isnan(__lowerCamelCase ).any(), "Samples have nan numbers" def _a ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=__lowerCamelCase ) self.check_over_configs(lower_order_final=__lowerCamelCase ) def _a ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCamelCase , time_step=0 ) def _a ( self ): '''simple docstring''' __A : int = self.full_loop() __A : Any = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 def _a ( self ): '''simple docstring''' __A : Any = self.full_loop(prediction_type='v_prediction' ) __A : Any = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.0_91 ) < 1e-3 def _a ( self ): '''simple docstring''' __A : List[str] = self.scheduler_classes[0] __A : Dict = self.get_scheduler_config(thresholding=__lowerCamelCase , dynamic_thresholding_ratio=0 ) __A : Any = scheduler_class(**__lowerCamelCase ) __A : Dict = 10 __A : List[str] = self.dummy_model() __A : List[str] = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): __A : Union[str, Any] = model(__lowerCamelCase , __lowerCamelCase ) __A : List[str] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa
237
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCamelCase : Optional[Any] ={ '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = "tapas" def __init__( self , __lowerCamelCase=30522 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=1024 , __lowerCamelCase=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase=0.02 , __lowerCamelCase=1e-12 , __lowerCamelCase=0 , __lowerCamelCase=10.0 , __lowerCamelCase=0 , __lowerCamelCase=1.0 , __lowerCamelCase=None , __lowerCamelCase=1.0 , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase=1.0 , __lowerCamelCase=1.0 , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase="ratio" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=64 , __lowerCamelCase=32 , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : int = vocab_size __A : int = hidden_size __A : Tuple = num_hidden_layers __A : Tuple = num_attention_heads __A : Union[str, Any] = hidden_act __A : str = intermediate_size __A : Any = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : List[str] = type_vocab_sizes __A : Tuple = initializer_range __A : List[Any] = layer_norm_eps # Fine-tuning task hyperparameters __A : Union[str, Any] = positive_label_weight __A : Optional[int] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : List[Any] = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Dict = use_normalized_answer_loss __A : Dict = huber_loss_delta __A : Union[str, Any] = temperature __A : List[str] = aggregation_temperature __A : Optional[int] = use_gumbel_for_cells __A : Optional[int] = use_gumbel_for_aggregation __A : Optional[int] = average_approximation_function __A : List[Any] = cell_selection_preference __A : Optional[int] = answer_loss_cutoff __A : Tuple = max_num_rows __A : List[str] = max_num_columns __A : Optional[int] = average_logits_per_cell __A : Tuple = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : List[Any] = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Any = aggregation_labels __A : Optional[int] = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): __A : Optional[int] = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
237
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = (DDPMScheduler,) def _lowercase ( self , **UpperCAmelCase_ ): snake_case_ = { "num_train_timesteps": 10_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_ ) return config def _lowercase ( self ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def _lowercase ( self ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_ ) def _lowercase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_ ) def _lowercase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_ ) def _lowercase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_ ) def _lowercase ( self ): self.check_over_configs(thresholding=UpperCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def _lowercase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def _lowercase ( self ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**UpperCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**UpperCAmelCase_ ) snake_case_ = len(UpperCAmelCase_ ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter snake_case_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase_ ) ): # 1. predict noise residual snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict previous mean of sample x_t-1 snake_case_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case_ = pred_prev_sample snake_case_ = torch.sum(torch.abs(UpperCAmelCase_ ) ) snake_case_ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def _lowercase ( self ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(prediction_type="v_prediction" ) snake_case_ = scheduler_class(**UpperCAmelCase_ ) snake_case_ = len(UpperCAmelCase_ ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter snake_case_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase_ ) ): # 1. predict noise residual snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict previous mean of sample x_t-1 snake_case_ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case_ = pred_prev_sample snake_case_ = torch.sum(torch.abs(UpperCAmelCase_ ) ) snake_case_ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def _lowercase ( self ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**UpperCAmelCase_ ) snake_case_ = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) snake_case_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_ ): if i == len(UpperCAmelCase_ ) - 1: snake_case_ = -1 else: snake_case_ = timesteps[i + 1] snake_case_ = scheduler.previous_timestep(UpperCAmelCase_ ) snake_case_ = prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**UpperCAmelCase_ ) snake_case_ = [1_00, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**UpperCAmelCase_ ) snake_case_ = [1_00, 87, 50, 1, 0] snake_case_ = len(UpperCAmelCase_ ) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**UpperCAmelCase_ ) snake_case_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ )
508
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase__ = HfApi() lowercase__ = {} # fmt: off lowercase__ = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) lowercase__ = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) lowercase__ = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) lowercase__ = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) lowercase__ = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) lowercase__ = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) lowercase__ = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) lowercase__ = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) lowercase__ = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) lowercase__ = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) lowercase__ = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) lowercase__ = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) lowercase__ = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) lowercase__ = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) lowercase__ = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on lowercase__ = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase__ = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('''CompVis'''): lowercase__ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowercase__ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase__ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase__ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowercase__ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
508
1
"""simple docstring""" UpperCamelCase_ : int = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
482
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset UpperCamelCase_ : Union[str, Any] = random.Random() def A_ (__a , __a=1.0 , __a=None , __a=None ): '''simple docstring''' if rng is None: A_ = global_rng A_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , _snake_case : str , _snake_case : Union[str, Any]=7 , _snake_case : Any=400 , _snake_case : Tuple=2_000 , _snake_case : str=2_048 , _snake_case : List[Any]=128 , _snake_case : List[Any]=1 , _snake_case : Union[str, Any]=512 , _snake_case : List[str]=30 , _snake_case : List[str]=44_100 , ) -> Optional[int]: """simple docstring""" A_ = parent A_ = batch_size A_ = min_seq_length A_ = max_seq_length A_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ = spectrogram_length A_ = feature_size A_ = num_audio_channels A_ = hop_length A_ = chunk_length A_ = sampling_rate def lowerCamelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCamelCase__ ( self : Dict , _snake_case : str=False , _snake_case : Optional[Any]=False ) -> List[str]: """simple docstring""" def _flatten(_snake_case : List[Any] ): return list(itertools.chain(*_snake_case ) ) if equal_length: A_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = TvltFeatureExtractor def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" A_ = TvltFeatureExtractionTester(self ) def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" A_ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_snake_case , "spectrogram_length" ) ) self.assertTrue(hasattr(_snake_case , "feature_size" ) ) self.assertTrue(hasattr(_snake_case , "num_audio_channels" ) ) self.assertTrue(hasattr(_snake_case , "hop_length" ) ) self.assertTrue(hasattr(_snake_case , "chunk_length" ) ) self.assertTrue(hasattr(_snake_case , "sampling_rate" ) ) def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" A_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ = feat_extract_first.save_pretrained(_snake_case )[0] check_json_file_has_correct_format(_snake_case ) A_ = self.feature_extraction_class.from_pretrained(_snake_case ) A_ = feat_extract_first.to_dict() A_ = feat_extract_second.to_dict() A_ = dict_first.pop("mel_filters" ) A_ = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(_snake_case , _snake_case ) ) self.assertEqual(_snake_case , _snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" A_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(_snake_case , "feat_extract.json" ) feat_extract_first.to_json_file(_snake_case ) A_ = self.feature_extraction_class.from_json_file(_snake_case ) A_ = feat_extract_first.to_dict() A_ = feat_extract_second.to_dict() A_ = dict_first.pop("mel_filters" ) A_ = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(_snake_case , _snake_case ) ) self.assertEqual(_snake_case , _snake_case ) def lowerCamelCase__ ( self : int ) -> List[Any]: """simple docstring""" # Initialize feature_extractor A_ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A_ = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test not batched input A_ = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A_ = feature_extractor(_snake_case , return_tensors="np" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A_ = feature_extractor( _snake_case , return_tensors="np" , sampling_rate=44_100 , mask_audio=_snake_case ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] A_ = np.asarray(_snake_case ) A_ = feature_extractor(_snake_case , return_tensors="np" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCamelCase__ ( self : Dict , _snake_case : int ) -> List[str]: """simple docstring""" A_ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech A_ = ds.sort("id" ).select(range(_snake_case ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowerCamelCase__ ( self : List[str] ) -> int: """simple docstring""" A_ = self._load_datasamples(1 ) A_ = TvltFeatureExtractor() A_ = feature_extractor(_snake_case , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) A_ = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _snake_case , atol=1e-4 ) )
482
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Any = ['''model.decoder.embed_positions.weights'''] def SCREAMING_SNAKE_CASE ( snake_case ) -> int: if "emb" in name: __lowercase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowercase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowercase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowercase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowercase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowercase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowercase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowercase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowercase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowercase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowercase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Tuple[Dict, Dict]: __lowercase = list(state_dict.keys() ) __lowercase = {} for key in keys: __lowercase = state_dict.pop(snake_case ) __lowercase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __lowercase = val[:hidden_size, :] __lowercase = val[hidden_size : 2 * hidden_size, :] __lowercase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowercase = val else: __lowercase = val return state_dict, enc_dec_proj_state_dict def SCREAMING_SNAKE_CASE ( snake_case ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowercase = 1_024 __lowercase = 24 __lowercase = 16 elif checkpoint == "medium": __lowercase = 1_536 __lowercase = 48 __lowercase = 24 elif checkpoint == "large": __lowercase = 2_048 __lowercase = 48 __lowercase = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __lowercase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case , snake_case=None , snake_case=None , snake_case="cpu" ) -> Optional[int]: __lowercase = MusicGen.get_pretrained(snake_case , device=snake_case ) __lowercase = decoder_config_from_checkpoint(snake_case ) __lowercase = fairseq_model.lm.state_dict() __lowercase , __lowercase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __lowercase = TaEncoderModel.from_pretrained('t5-base' ) __lowercase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowercase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowercase , __lowercase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __lowercase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __lowercase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowercase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowercase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2_048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowercase = AutoTokenizer.from_pretrained('t5-base' ) __lowercase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowercase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __lowercase = 2_048 __lowercase = 2_048 # set other default generation config params __lowercase = int(30 * audio_encoder.config.frame_rate ) __lowercase = True __lowercase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) SCREAMING_SNAKE_CASE_ : Any = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
375
0
def lowerCAmelCase_ ( lowercase: int ) -> int: '''simple docstring''' _UpperCamelCase: str = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCAmelCase_ ( lowercase: int ) -> int: '''simple docstring''' _UpperCamelCase: Optional[Any] = 0 while number > 0: _UpperCamelCase: Optional[Any] = number % 10 sum_of_digits += last_digit _UpperCamelCase: int = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCAmelCase_ ( lowercase: int = 100 ) -> int: '''simple docstring''' _UpperCamelCase: str = factorial(lowercase ) _UpperCamelCase: List[Any] = split_and_add(lowercase ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
264
def lowerCAmelCase_ ( lowercase: int = 10**9 ) -> int: '''simple docstring''' _UpperCamelCase: List[Any] = 1 _UpperCamelCase: Dict = 2 _UpperCamelCase: Tuple = 0 _UpperCamelCase: int = 0 _UpperCamelCase: Dict = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _UpperCamelCase: str = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
264
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Optional[int]) ->Dict: '''simple docstring''' super().tearDown() gc.collect() def _lowerCAmelCase ( self: str) ->Optional[int]: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "bird" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png") a_ = pipe.prepare_image_inputs([canny_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def _lowerCAmelCase ( self: Union[str, Any]) ->str: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "Chef in the kitchen" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png") a_ = pipe.prepare_image_inputs([pose_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
685
0
_lowercase : Any ='''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def A__ ( ) -> None: A : Dict =input('Enter message: ' ) A : Union[str, Any] =input('Enter key [alphanumeric]: ' ) A : Any =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): A : List[str] ='encrypt' A : str =encrypt_message(lowercase, lowercase ) elif mode.lower().startswith('d' ): A : List[Any] ='decrypt' A : Optional[Any] =decrypt_message(lowercase, lowercase ) print(F'\n{mode.title()}ed message:' ) print(lowercase ) def A__ ( lowercase: str, lowercase: str ) -> str: return translate_message(lowercase, lowercase, 'encrypt' ) def A__ ( lowercase: str, lowercase: str ) -> str: return translate_message(lowercase, lowercase, 'decrypt' ) def A__ ( lowercase: str, lowercase: str, lowercase: str ) -> str: A : str =[] A : Dict =0 A : List[str] =key.upper() for symbol in message: A : List[Any] =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowercase ): A : Union[str, Any] =0 else: translated.append(lowercase ) return "".join(lowercase ) if __name__ == "__main__": main()
661
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} A : Union[str, Any] =parent A : Union[str, Any] =batch_size A : Union[str, Any] =num_channels A : int =min_resolution A : List[Any] =max_resolution A : Dict =do_resize A : Tuple =size A : List[str] =do_normalize A : List[Any] =image_mean A : Dict =image_std A : Any =do_rescale A : List[str] =rescale_factor A : Optional[Any] =do_pad def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict: if not batched: A : Any =image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ): A , A : Union[str, Any] =image.size else: A , A : Tuple =image.shape[1], image.shape[2] if w < h: A : Any =int(self.size['shortest_edge'] * h / w ) A : Any =self.size['shortest_edge'] elif w > h: A : Dict =self.size['shortest_edge'] A : Dict =int(self.size['shortest_edge'] * w / h ) else: A : List[str] =self.size['shortest_edge'] A : Dict =self.size['shortest_edge'] else: A : List[Any] =[] for image in image_inputs: A , A : int =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0] A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple: A : str =ConditionalDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: A : Tuple =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: A : int =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ ) A : str =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: # Initialize image_processing A : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]: # Initialize image_processing A : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]: # prepare image and target A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: A : List[Any] =json.loads(f.read() ) A : Any ={'image_id': 3_97_69, 'annotations': target} # encode them A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) # verify pixel values A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ ) A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) # verify area A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) ) # verify boxes A : str =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) # verify image_id A : Dict =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) ) # verify is_crowd A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) ) # verify class_labels A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) ) # verify orig_size A : List[Any] =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) ) # verify size A : int =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: # prepare image, target and masks_path A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: A : Optional[int] =json.loads(f.read() ) A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' ) A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) # verify pixel values A : Dict =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ ) A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) # verify area A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) ) # verify boxes A : List[Any] =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ ) A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) # verify image_id A : List[Any] =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) ) # verify is_crowd A : Any =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) ) # verify class_labels A : str =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) ) # verify masks A : int =82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ ) # verify orig_size A : Any =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) ) # verify size A : str =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
661
1
import numpy as np def lowercase__ ( A_: np.ndarray ) -> np.ndarray: """simple docstring""" return 1 / (1 + np.exp(-vector )) def lowercase__ ( A_: np.ndarray ) -> np.ndarray: """simple docstring""" return vector * sigmoid(A_ ) if __name__ == "__main__": import doctest doctest.testmod()
68
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Any ) -> str: torch.manual_seed(0 ) _lowercase = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) return model def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: _lowercase = self.dummy_uncond_unet _lowercase = KarrasVeScheduler() _lowercase = KarrasVePipeline(unet=__A ,scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowercase = torch.manual_seed(0 ) _lowercase = pipe(num_inference_steps=2 ,generator=__A ,output_type='numpy' ).images _lowercase = torch.manual_seed(0 ) _lowercase = pipe(num_inference_steps=2 ,generator=__A ,output_type='numpy' ,return_dict=__A )[0] _lowercase = image[0, -3:, -3:, -1] _lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class A_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: _lowercase = 'google/ncsnpp-celebahq-256' _lowercase = UNetaDModel.from_pretrained(__A ) _lowercase = KarrasVeScheduler() _lowercase = KarrasVePipeline(unet=__A ,scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowercase = torch.manual_seed(0 ) _lowercase = pipe(num_inference_steps=20 ,generator=__A ,output_type='numpy' ).images _lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowercase = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
67
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase_ = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowerCAmelCase_ ( lowercase: List[Any] ) -> Any: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def lowerCAmelCase_ ( lowercase: Any ) -> Dict: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase ) def lowerCAmelCase_ ( lowercase: Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase: List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowercase , id=lowercase ) def lowerCAmelCase_ ( lowercase: Optional[Any] , lowercase: Dict ) -> Union[str, Any]: '''simple docstring''' if exitstatus == 5: _UpperCamelCase: List[Any] = 0 # Doctest custom flag to ignore output. UpperCAmelCase_ = doctest.register_optionflag('''IGNORE_RESULT''') UpperCAmelCase_ = doctest.OutputChecker class __magic_name__ ( __lowerCAmelCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase_ = CustomOutputChecker UpperCAmelCase_ = HfDoctestModule UpperCAmelCase_ = HfDocTestParser
718
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
264
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : Any = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class UpperCamelCase ( __a , unittest.TestCase ): a__ :Tuple = GPTSwaTokenizer a__ :Optional[int] = False a__ :Union[str, Any] = True a__ :Any = False def A_ (self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ : List[Any] = GPTSwaTokenizer(__UpperCamelCase , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A_ (self , __UpperCamelCase ) -> Any: UpperCamelCase_ : str = """This is a test""" UpperCamelCase_ : Dict = """This is a test""" return input_text, output_text def A_ (self ) -> List[str]: UpperCamelCase_ : Union[str, Any] = """<s>""" UpperCamelCase_ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def A_ (self ) -> Optional[Any]: UpperCamelCase_ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__UpperCamelCase ) , 2_000 ) def A_ (self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 2_000 ) def A_ (self ) -> Optional[int]: UpperCamelCase_ : Tuple = GPTSwaTokenizer(__UpperCamelCase ) UpperCamelCase_ : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [465, 287, 265, 631, 842] ) UpperCamelCase_ : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( __UpperCamelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on UpperCamelCase_ : Any = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCamelCase_ : Dict = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) # fmt: off self.assertListEqual( __UpperCamelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def A_ (self ) -> List[str]: UpperCamelCase_ : List[Any] = GPTSwaTokenizer(__UpperCamelCase ) UpperCamelCase_ : int = ["""This is a test""", """I was born in 92000, and this is falsé."""] UpperCamelCase_ : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__UpperCamelCase , __UpperCamelCase ): self.assertListEqual(tokenizer.encode_fast(__UpperCamelCase ) , __UpperCamelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(tokenizer.decode_fast(__UpperCamelCase ) , __UpperCamelCase ) @slow def A_ (self ) -> List[Any]: UpperCamelCase_ : List[str] = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off UpperCamelCase_ : str = {"""input_ids""": [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=__UpperCamelCase , )
635
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE : Union[str, Any] = { "configuration_bridgetower": [ "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP", "BridgeTowerConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", ], "processing_bridgetower": ["BridgeTowerProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ["BridgeTowerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST", "BridgeTowerForContrastiveLearning", "BridgeTowerForImageAndTextRetrieval", "BridgeTowerForMaskedLM", "BridgeTowerModel", "BridgeTowerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
635
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class A_ ( lowercase__ ): '''simple docstring''' _UpperCamelCase : List[str] = ["""pixel_values"""] def __init__( self , snake_case = True , snake_case = None , snake_case = PILImageResampling.BICUBIC , snake_case = True , snake_case = None , snake_case = True , snake_case = 1 / 255 , snake_case = True , snake_case = None , snake_case = None , snake_case = True , **snake_case , ): super().__init__(**snake_case ) lowercase = size if size is not None else {"shortest_edge": 224} lowercase = get_size_dict(snake_case , default_to_square=snake_case ) lowercase = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase = get_size_dict(snake_case , default_to_square=snake_case , param_name='crop_size' ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase = image_std if image_std is not None else OPENAI_CLIP_STD lowercase = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = PILImageResampling.BICUBIC , snake_case = None , **snake_case , ): lowercase = get_size_dict(snake_case , default_to_square=snake_case ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase = get_resize_output_image_size(snake_case , size=size['shortest_edge'] , default_to_square=snake_case ) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = None , **snake_case , ): lowercase = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(snake_case , size=(size['height'], size['width']) , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = None , **snake_case , ): return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case = None , **snake_case , ): return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(snake_case , param_name='size' , default_to_square=snake_case ) lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(snake_case , param_name='crop_size' , default_to_square=snake_case ) lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase = [convert_to_rgb(snake_case ) for image in images] # All transformations expect numpy arrays. lowercase = [to_numpy_array(snake_case ) for image in images] if do_resize: lowercase = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=snake_case , size=snake_case ) for image in images] if do_rescale: lowercase = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: lowercase = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] lowercase = [to_channel_dimension_format(snake_case , snake_case ) for image in images] lowercase = {"pixel_values": images} return BatchFeature(data=snake_case , tensor_type=snake_case )
704
from bisect import bisect from itertools import accumulate def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=__SCREAMING_SNAKE_CASE ) lowercase , lowercase = [i[0] for i in r], [i[1] for i in r] lowercase = list(accumulate(__SCREAMING_SNAKE_CASE ) ) lowercase = bisect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
565
0