code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = image.size lowercase_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase_ = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) lowercase_ = np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) / 255.0 lowercase_ = image[None].transpose(0 , 3 , 1 , 2 ) lowercase_ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) return 2.0 * image - 1.0 class SCREAMING_SNAKE_CASE__ ( snake_case_ ): def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__() self.register_modules(vqvae=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_) @torch.no_grad() def __call__( self : List[Any] , lowerCAmelCase_ : Union[str, Any] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : List[str] = 0.0 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : List[str] = "pil" , lowerCAmelCase_ : Dict = True , ): """simple docstring""" if isinstance(lowerCAmelCase_ , PIL.Image.Image): lowercase_ = 1 elif isinstance(lowerCAmelCase_ , torch.Tensor): lowercase_ = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase_)}''') if isinstance(lowerCAmelCase_ , PIL.Image.Image): lowercase_ = preprocess(lowerCAmelCase_) lowercase_ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowercase_ = (batch_size, self.unet.config.in_channels // 2, height, width) lowercase_ = next(self.unet.parameters()).dtype lowercase_ = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_) lowercase_ = image.to(device=self.device , dtype=lowerCAmelCase_) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase_ , device=self.device) lowercase_ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowercase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase_ = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) lowercase_ = {} if accepts_eta: lowercase_ = eta for t in self.progress_bar(lowerCAmelCase_): # concat latents and low resolution image in the channel dimension. lowercase_ = torch.cat([latents, image] , dim=1) lowercase_ = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_) # predict the noise residual lowercase_ = self.unet(lowerCAmelCase_ , lowerCAmelCase_).sample # compute the previous noisy sample x_t -> x_t-1 lowercase_ = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_).prev_sample # decode the image latents with the VQVAE lowercase_ = self.vqvae.decode(lowerCAmelCase_).sample lowercase_ = torch.clamp(lowerCAmelCase_ , -1.0 , 1.0) lowercase_ = image / 2 + 0.5 lowercase_ = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": lowercase_ = self.numpy_to_pil(lowerCAmelCase_) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_)
567
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __a : Optional[int] = pytest.mark.integration __a : List[str] = {'''comet'''} __a : Union[str, Any] = importlib.util.find_spec('''fairseq''') is not None __a : Tuple = {'''code_eval'''} __a : Any = os.name == '''nt''' __a : Dict = {'''bertscore''', '''frugalscore''', '''perplexity'''} __a : Optional[int] = importlib.util.find_spec('''transformers''') is not None def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self ,SCREAMING_SNAKE_CASE_ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self ,SCREAMING_SNAKE_CASE_ ) return wrapper def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self ,SCREAMING_SNAKE_CASE_ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self ,SCREAMING_SNAKE_CASE_ ) return wrapper def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self ,SCREAMING_SNAKE_CASE_ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self ,SCREAMING_SNAKE_CASE_ ) return wrapper def snake_case_ ( ) -> str: lowercase__ : Optional[int] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( snake_case_ , snake_case_ , snake_case_ ) @local class UpperCAmelCase( parameterized.TestCase ): """simple docstring""" a : List[str] = {} a : List[Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def __a ( self , lowerCamelCase ) -> Any: """simple docstring""" lowercase__ : int = "[...]" lowercase__ : Any = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , lowerCamelCase ) ).module_path ) lowercase__ : List[Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCamelCase ) # check parameters lowercase__ : int = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCamelCase , metric_module.__name__ ): with self.use_local_metrics(): try: lowercase__ : str = doctest.testmod(lowerCamelCase , verbose=lowerCamelCase , raise_on_error=lowerCamelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __a ( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = "[...]" lowercase__ : List[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , lowerCamelCase ) ).module_path ) # run doctest with self.use_local_metrics(): lowercase__ : List[str] = doctest.testmod(lowerCamelCase , verbose=lowerCamelCase , raise_on_error=lowerCamelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __a ( self , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCamelCase ): yield else: yield @contextmanager def __a ( self ) -> int: """simple docstring""" def load_local_metric(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ): return load_metric(os.path.join("metrics" , lowerCamelCase ) , *lowerCamelCase , **lowerCamelCase ) with patch("datasets.load_metric" ) as mock_load_metric: lowercase__ : Any = load_local_metric yield @classmethod def __a ( cls , lowerCamelCase ) -> Optional[int]: """simple docstring""" def wrapper(lowerCamelCase ): lowercase__ : Dict = contextmanager(lowerCamelCase ) lowercase__ : Tuple = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" ,"" ,"" ) # handle pytest cli flags class UpperCAmelCase( snake_case_ ): """simple docstring""" def __a ( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: lowercase__ : Tuple = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: import torch def bert_cos_score_idf(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(SCREAMING_SNAKE_CASE_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: lowercase__ : Tuple = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Any: def load_from_checkpoint(SCREAMING_SNAKE_CASE_ ): class UpperCAmelCase: """simple docstring""" def __a ( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) -> Dict: """simple docstring""" assert len(lowerCamelCase ) == 2 lowercase__ : List[Any] = [0.19, 0.92] return scores, sum(lowerCamelCase ) / len(lowerCamelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: lowercase__ : int = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: lowercase__ : Optional[int] = load_from_checkpoint yield def snake_case_ ( ) -> Tuple: lowercase__ : Dict = load_metric(os.path.join("metrics" ,"seqeval" ) ) lowercase__ : str = "ERROR" lowercase__ : Union[str, Any] = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(SCREAMING_SNAKE_CASE_ ,match=re.escape(SCREAMING_SNAKE_CASE_ ) ): metric.compute(predictions=[] ,references=[] ,scheme=SCREAMING_SNAKE_CASE_ )
397
0
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Union[str, Any] = ConsistencyModelPipeline __UpperCamelCase : List[str] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : Dict = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=80.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(_lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(_lowercase ) else: __lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**_lowercase ) __lowerCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __lowerCAmelCase = self.get_dummy_inputs(_lowercase ) __lowerCAmelCase = pipe(**_lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=_lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**_lowercase ) __lowerCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __lowerCAmelCase = self.get_dummy_inputs(_lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**_lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**_lowercase ) __lowerCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __lowerCAmelCase = self.get_dummy_inputs(_lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**_lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=_lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**_lowercase ) __lowerCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __lowerCAmelCase = self.get_dummy_inputs(_lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**_lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(_lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=_lowercase , device=_lowercase , dtype=_lowercase , shape=_lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(_lowercase ) == str: __lowerCAmelCase = torch.device(_lowercase ) __lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __lowerCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=80.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=_lowercase , scheduler=_lowercase ) pipe.to(torch_device=_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**_lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=80.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=_lowercase , scheduler=_lowercase ) pipe.to(torch_device=_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**_lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=80.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=_lowercase , scheduler=_lowercase ) pipe.to(torch_device=_lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=_lowercase , device=_lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_lowercase , enable_math=_lowercase , enable_mem_efficient=_lowercase ): __lowerCAmelCase = pipe(**_lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=80.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=_lowercase , scheduler=_lowercase ) pipe.to(torch_device=_lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=_lowercase , device=_lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_lowercase , enable_math=_lowercase , enable_mem_efficient=_lowercase ): __lowerCAmelCase = pipe(**_lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
703
'''simple docstring''' from manim import * class a__ ( __A ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) __lowerCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = VGroup(__lowercase , __lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = Text('''CPU''' , font_size=24 ) __lowerCAmelCase = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowercase ) __lowerCAmelCase = [mem.copy() for i in range(1 )] __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = Text('''GPU''' , font_size=24 ) __lowerCAmelCase = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) gpu.align_to(__lowercase , __lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(__lowercase ) __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = Text('''Model''' , font_size=24 ) __lowerCAmelCase = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(__lowercase , run_time=1 ) , Create(__lowercase , run_time=1 ) , Create(__lowercase , run_time=1 ) , ) __lowerCAmelCase = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) __lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowerCAmelCase = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase , run_time=2.5 ) , Write(__lowercase ) , Write(__lowercase ) ) self.add(__lowercase ) __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for i, rect in enumerate(__lowercase ): __lowerCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(__lowercase , opacity=0.7 ) cpu_target.move_to(__lowercase ) cpu_target.generate_target() __lowerCAmelCase = 0.4_6 / 4 __lowerCAmelCase = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__lowercase , buff=0.0 ) cpu_targs.append(__lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__lowercase ) ) second_animations.append(MoveToTarget(__lowercase , run_time=1.5 ) ) self.play(*__lowercase ) self.play(*__lowercase ) self.wait()
474
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowercase_ ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: A__ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = TFAutoModel.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = AutoModel.from_pretrained(UpperCamelCase__ , from_tf=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: A__ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = TFAutoModelForPreTraining.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = AutoModelForPreTraining.from_pretrained(UpperCamelCase__ , from_tf=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = TFAutoModelForCausalLM.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) A__ , A__ = TFAutoModelForCausalLM.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ , from_pt=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = AutoModelForCausalLM.from_pretrained(UpperCamelCase__ , from_tf=UpperCamelCase__ ) A__ , A__ = AutoModelForCausalLM.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ , from_tf=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = AutoModelWithLMHead.from_pretrained(UpperCamelCase__ , from_tf=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = TFAutoModelForMaskedLM.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) A__ , A__ = TFAutoModelForMaskedLM.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ , from_pt=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = AutoModelForMaskedLM.from_pretrained(UpperCamelCase__ , from_tf=UpperCamelCase__ ) A__ , A__ = AutoModelForMaskedLM.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ , from_tf=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) A__ , A__ = TFAutoModelForSeqaSeqLM.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ , from_pt=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ , from_tf=UpperCamelCase__ ) A__ , A__ = AutoModelForSeqaSeqLM.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ , from_tf=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: A__ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = TFAutoModelForSequenceClassification.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase__ , from_tf=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: A__ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = TFAutoModelForQuestionAnswering.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ = AutoModelForQuestionAnswering.from_pretrained(UpperCamelCase__ , from_tf=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase__ ) , 1_44_10 ) A__ = AutoModelWithLMHead.from_pretrained(UpperCamelCase__ , from_tf=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase__ ) , 1_44_10 ) def lowercase_ ( self ): '''simple docstring''' A__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase__ , from_pt=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase__ ) , 1_44_10 ) A__ = AutoModelWithLMHead.from_pretrained(UpperCamelCase__ , from_tf=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase__ ) , 1_44_10 )
337
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __UpperCAmelCase =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase__ ( UpperCAmelCase_ ): def __init__( self , *UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ): '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) A__ = eval_examples A__ = post_process_function A__ = quant_trainer_args A__ = 1_28 # default number of calibration samples def lowercase_ ( self , UpperCamelCase__=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) A__ = calib_dataset if calib_dataset is not None else self.calib_dataset A__ = self._remove_unused_columns(UpperCamelCase__ , description="Calibration" ) return DataLoader( UpperCamelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCamelCase__ , ) def lowercase_ ( self , UpperCamelCase__=None ): '''simple docstring''' A__ = self.train_dataset if calib_dataset is None else calib_dataset A__ = self.get_calib_dataloader(UpperCamelCase__ ) A__ = self.model quant_trainer.configure_model(UpperCamelCase__ , self.quant_trainer_args , calib=UpperCamelCase__ ) model.eval() quant_trainer.enable_calibration(UpperCamelCase__ ) logger.info("***** Running calibration *****" ) logger.info(f""" Num examples = {self.calib_num}""" ) logger.info(f""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(UpperCamelCase__ ): # Prediction step A__ , A__ , A__ = self.prediction_step(UpperCamelCase__ , UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCamelCase__ , self.quant_trainer_args ) A__ = model def lowercase_ ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = "eval" ): '''simple docstring''' A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase__ ) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , ) finally: A__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: A__ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions ) A__ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase__ ) self.log(UpperCamelCase__ ) else: A__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase__ ) return metrics def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__ = "test" ): '''simple docstring''' A__ = self.get_test_dataloader(UpperCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , ) finally: A__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions , "predict" ) A__ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__="./" ): '''simple docstring''' A__ = self.eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase__ ) A__ = next(iter(UpperCamelCase__ ) ) # saving device - to make it consistent A__ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple A__ = tuple(v.to(UpperCamelCase__ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer A__ = True A__ = self.model.to(UpperCamelCase__ ) model.eval() model.float() A__ = model.module if hasattr(UpperCamelCase__ , "module" ) else model quant_trainer.configure_model(UpperCamelCase__ , self.quant_trainer_args ) A__ = os.path.join(UpperCamelCase__ , "model.onnx" ) logger.info(f"""exporting model to {output_model_file}""" ) A__ = {0: "batch_size", 1: "seq_len"} torch.onnx.export( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , export_params=UpperCamelCase__ , opset_version=13 , do_constant_folding=UpperCamelCase__ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=UpperCamelCase__ , ) logger.info("onnx export finished" )
337
1
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def __magic_name__( _A ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __magic_name__( _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_A ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_A ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_A , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_A , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__( _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_A ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_A ) - column_reshape(_A ) , (column_reshape(_A ) - column_reshape(_A )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_A ) - column_reshape(_A ) , (column_reshape(_A ) - column_reshape(_A )).T , ) return covariance_sum / features.shape[1] def __magic_name__( _A , _A ): '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_A , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_A , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_A ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _A ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=_A ) logging.error("""Dataset empty""" ) raise AssertionError def __magic_name__( _A , _A , _A , _A ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_A , _A , _A ) , covariance_within_classes(_A , _A , _A ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_A ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _A ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=_A ) logging.error("""Dataset empty""" ) raise AssertionError def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_A ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _A , _A , _A , _A ) if isinstance(_A , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_A ) as error_info: UpperCamelCase__ = principal_component_analysis(_A , _A ) if not np.allclose(_A , _A ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
265
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : bool = True , lowercase : bool = False ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = scheduler UpperCamelCase__ = optimizers if isinstance(lowercase , (list, tuple) ) else [optimizers] UpperCamelCase__ = split_batches UpperCamelCase__ = step_with_optimizer UpperCamelCase__ = GradientState() def A ( self : int , *lowercase : int , **lowercase : str ) -> str: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowercase , **lowercase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowercase , **lowercase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCamelCase__ = AcceleratorState().num_processes for _ in range(lowercase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowercase , **lowercase ) else: self.scheduler.step(*lowercase , **lowercase ) def A ( self : List[str] ) -> Optional[Any]: '''simple docstring''' return self.scheduler.get_last_lr() def A ( self : Any ) -> int: '''simple docstring''' return self.scheduler.state_dict() def A ( self : Any , lowercase : int ) -> Optional[int]: '''simple docstring''' self.scheduler.load_state_dict(lowercase ) def A ( self : str ) -> int: '''simple docstring''' return self.scheduler.get_lr() def A ( self : Union[str, Any] , *lowercase : List[Any] , **lowercase : str ) -> str: '''simple docstring''' return self.scheduler.print_lr(*lowercase , **lowercase )
265
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) # TODO Update this __A = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "esm" def __init__( self: Optional[int] , __A: str=None , __A: str=None , __A: Dict=None , __A: List[Any]=7_68 , __A: Union[str, Any]=12 , __A: Any=12 , __A: Optional[int]=30_72 , __A: Optional[Any]=0.1 , __A: str=0.1 , __A: str=10_26 , __A: List[str]=0.02 , __A: Any=1e-12 , __A: List[Any]="absolute" , __A: Optional[Any]=True , __A: int=None , __A: List[str]=False , __A: List[Any]=False , __A: List[Any]=None , __A: Dict=None , **__A: Optional[Any] , ) -> List[Any]: super().__init__(pad_token_id=__A , mask_token_id=__A , **__A ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = emb_layer_norm_before _A = token_dropout _A = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _A = EsmFoldConfig() elif isinstance(__A , __A ): _A = EsmFoldConfig(**__A ) _A = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _A = get_default_vocab_list() else: _A = vocab_list else: _A = None _A = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , __A ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A ( self: Dict ) -> Optional[Any]: _A = super().to_dict() if isinstance(self.esmfold_config , __A ): _A = self.esmfold_config.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = None A_ = True A_ = False A_ = False A_ = False A_ = 0 A_ = True A_ = False A_ = 128 A_ = None def __A ( self: Optional[Any] ) -> List[Any]: if self.trunk is None: _A = TrunkConfig() elif isinstance(self.trunk , __A ): _A = TrunkConfig(**self.trunk ) def __A ( self: Dict ) -> Dict: _A = asdict(self ) _A = self.trunk.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = 48 A_ = 1_024 A_ = 128 A_ = 32 A_ = 32 A_ = 32 A_ = 0 A_ = 0 A_ = False A_ = 4 A_ = 128 A_ = None def __A ( self: Tuple ) -> Any: if self.structure_module is None: _A = StructureModuleConfig() elif isinstance(self.structure_module , __A ): _A = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _A = self.sequence_state_dim // self.sequence_head_width _A = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def __A ( self: List[str] ) -> Optional[int]: _A = asdict(self ) _A = self.structure_module.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = 384 A_ = 128 A_ = 16 A_ = 128 A_ = 12 A_ = 4 A_ = 8 A_ = 0.1 A_ = 8 A_ = 1 A_ = 2 A_ = 7 A_ = 10 A_ = 1e-8 A_ = 1e5 def __A ( self: Optional[Any] ) -> str: return asdict(self ) def __A ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
484
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( _snake_case ): """simple docstring""" UpperCAmelCase_ =["pixel_values"] def __init__( self , _A = True , _A = None , _A = PILImageResampling.BILINEAR , _A = True , _A = None , _A = True , _A = 1 / 255 , _A = True , _A = None , _A = None , **_A , ) -> None: super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = size if size is not None else {'''shortest_edge''': 256} SCREAMING_SNAKE_CASE_ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} SCREAMING_SNAKE_CASE_ = get_size_dict(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = resample SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCamelCase ( self , _A , _A , _A = PILImageResampling.BICUBIC , _A = None , **_A , ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE_ = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self , _A , _A , _A = None , **_A , ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = get_size_dict(lowerCAmelCase__ ) return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self , _A , _A , _A = None , **_A ) -> np.ndarray: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self , _A , _A , _A , _A = None , **_A , ) -> np.ndarray: return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , **_A , ) -> Dict: SCREAMING_SNAKE_CASE_ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ = size if size is not None else self.size SCREAMING_SNAKE_CASE_ = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ = get_size_dict(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE_ = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE_ = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
701
from pathlib import Path import fire def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = Path(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(__lowerCamelCase ) dest_dir.mkdir(exist_ok=__lowerCamelCase ) for path in src_dir.iterdir(): SCREAMING_SNAKE_CASE_ = [x.rstrip() for x in list(path.open().readlines() )][:n] SCREAMING_SNAKE_CASE_ = dest_dir.joinpath(path.name ) print(__lowerCamelCase ) dest_path.open('''w''' ).write('''\n'''.join(__lowerCamelCase ) ) if __name__ == "__main__": fire.Fire(minify)
597
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a : List[str] = 16 _a : Any = 32 def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Accelerator , SCREAMING_SNAKE_CASE : int = 16 ): UpperCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCAmelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE : Optional[int] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE : str ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( UpperCamelCase_ , padding='longest' , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) UpperCAmelCase = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a : Dict = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCamelCase_ ) == "1": UpperCAmelCase = 2 # Initialize accelerator UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["""lr"""] UpperCAmelCase = int(config['num_epochs'] ) UpperCAmelCase = int(config['seed'] ) UpperCAmelCase = int(config['batch_size'] ) UpperCAmelCase = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=UpperCamelCase_ ) def inner_training_loop(SCREAMING_SNAKE_CASE : List[Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(UpperCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) UpperCAmelCase = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**UpperCamelCase_ ) UpperCAmelCase = outputs.loss accelerator.backward(UpperCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**UpperCamelCase_ ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , UpperCamelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowerCamelCase__ ( ): UpperCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
447
import requests from bsa import BeautifulSoup def _UpperCAmelCase (UpperCamelCase_ : str = "AAPL" ): '''simple docstring''' _lowerCAmelCase : Any = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(UpperCamelCase_ ).text , """html.parser""" ) _lowerCAmelCase : Tuple = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
429
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = JukeboxTokenizer lowerCAmelCase_ = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def lowerCamelCase_ ( self : Optional[Any] ): import torch _lowerCamelCase : Tuple = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) _lowerCamelCase : Optional[int] = tokenizer(**self.metas )["input_ids"] # fmt: off _lowerCamelCase : List[str] = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0],EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1],EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2],EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase_ ( self : Optional[Any] ): import torch _lowerCamelCase : Tuple = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) _lowerCamelCase : List[str] = tokenizer(**self.metas )["input_ids"] # fmt: off _lowerCamelCase : int = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0],EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1],EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2],EXPECTED_OUTPUT[2] ) )
11
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
1
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
433
'''simple docstring''' import requests _SCREAMING_SNAKE_CASE = '''YOUR API KEY''' def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str = giphy_api_key ): __lowercase = '''+'''.join(query.split() ) __lowercase = f"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}" __lowercase = requests.get(lowerCamelCase_ ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
502
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : Tuple = logging.get_logger(__name__) lowercase : Tuple = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class a__ ( __SCREAMING_SNAKE_CASE ): _A = "blip_2_vision_model" def __init__( self : str , A_ : List[str]=14_08 , A_ : Tuple=61_44 , A_ : str=39 , A_ : Optional[Any]=16 , A_ : Tuple=2_24 , A_ : List[Any]=14 , A_ : Optional[int]="gelu" , A_ : Optional[Any]=0.00001 , A_ : List[Any]=0.0 , A_ : int=1e-10 , A_ : List[str]=True , **A_ : Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_: Dict = hidden_size lowerCamelCase_: Optional[Any] = intermediate_size lowerCamelCase_: Optional[Any] = num_hidden_layers lowerCamelCase_: Dict = num_attention_heads lowerCamelCase_: List[str] = patch_size lowerCamelCase_: List[Any] = image_size lowerCamelCase_: Optional[int] = initializer_range lowerCamelCase_: List[str] = attention_dropout lowerCamelCase_: Tuple = layer_norm_eps lowerCamelCase_: List[Any] = hidden_act lowerCamelCase_: int = qkv_bias @classmethod def lowerCAmelCase ( cls : Optional[Any] , A_ : Union[str, os.PathLike] , **A_ : Dict ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A_ ) lowerCamelCase_ , lowerCamelCase_: List[str] = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCamelCase_: Union[str, Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_ , **A_ ) class a__ ( __SCREAMING_SNAKE_CASE ): _A = "blip_2_qformer" def __init__( self : Any , A_ : int=3_05_22 , A_ : Union[str, Any]=7_68 , A_ : Any=12 , A_ : Optional[int]=12 , A_ : str=30_72 , A_ : Optional[int]="gelu" , A_ : str=0.1 , A_ : List[str]=0.1 , A_ : Any=5_12 , A_ : str=0.02 , A_ : str=1e-12 , A_ : Optional[int]=0 , A_ : Any="absolute" , A_ : int=2 , A_ : Optional[Any]=14_08 , **A_ : Union[str, Any] , ) -> int: """simple docstring""" super().__init__(pad_token_id=A_ , **A_ ) lowerCamelCase_: Tuple = vocab_size lowerCamelCase_: List[str] = hidden_size lowerCamelCase_: int = num_hidden_layers lowerCamelCase_: Dict = num_attention_heads lowerCamelCase_: Union[str, Any] = hidden_act lowerCamelCase_: Tuple = intermediate_size lowerCamelCase_: List[str] = hidden_dropout_prob lowerCamelCase_: List[str] = attention_probs_dropout_prob lowerCamelCase_: Dict = max_position_embeddings lowerCamelCase_: Optional[Any] = initializer_range lowerCamelCase_: Dict = layer_norm_eps lowerCamelCase_: Tuple = position_embedding_type lowerCamelCase_: str = cross_attention_frequency lowerCamelCase_: int = encoder_hidden_size @classmethod def lowerCAmelCase ( cls : Any , A_ : Union[str, os.PathLike] , **A_ : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A_ ) lowerCamelCase_ , lowerCamelCase_: List[Any] = cls.get_config_dict(A_ , **A_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCamelCase_: Dict = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_ , **A_ ) class a__ ( __SCREAMING_SNAKE_CASE ): _A = "blip-2" _A = True def __init__( self : Optional[int] , A_ : Tuple=None , A_ : Union[str, Any]=None , A_ : List[Any]=None , A_ : Tuple=32 , **A_ : Any ) -> Any: """simple docstring""" super().__init__(**A_ ) if vision_config is None: lowerCamelCase_: Dict = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: lowerCamelCase_: Optional[int] = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: lowerCamelCase_: Any = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowerCamelCase_: Any = BlipaVisionConfig(**A_ ) lowerCamelCase_: Optional[int] = BlipaQFormerConfig(**A_ ) lowerCamelCase_: List[Any] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowerCamelCase_: Optional[int] = CONFIG_MAPPING[text_model_type](**A_ ) lowerCamelCase_: List[str] = self.text_config.tie_word_embeddings lowerCamelCase_: int = self.text_config.is_encoder_decoder lowerCamelCase_: Any = num_query_tokens lowerCamelCase_: Tuple = self.vision_config.hidden_size lowerCamelCase_: str = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase_: int = 1.0 lowerCamelCase_: Dict = 0.02 @classmethod def lowerCAmelCase ( cls : Union[str, Any] , A_ : BlipaVisionConfig , A_ : BlipaQFormerConfig , A_ : PretrainedConfig , **A_ : Dict , ) -> Tuple: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A_ , ) def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" lowerCamelCase_: Tuple = copy.deepcopy(self.__dict__ ) lowerCamelCase_: Any = self.vision_config.to_dict() lowerCamelCase_: Optional[Any] = self.qformer_config.to_dict() lowerCamelCase_: List[str] = self.text_config.to_dict() lowerCamelCase_: Optional[Any] = self.__class__.model_type return output
584
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a__ ( __SCREAMING_SNAKE_CASE ): _A = (EulerDiscreteScheduler,) _A = 10 def lowerCAmelCase ( self : Optional[Any] , **A_ : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_: Tuple = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**A_ ) return config def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A_ ) def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_: Any = self.scheduler_classes[0] lowerCamelCase_: Optional[int] = self.get_scheduler_config() lowerCamelCase_: Tuple = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_: Optional[Any] = torch.manual_seed(0 ) lowerCamelCase_: Optional[Any] = self.dummy_model() lowerCamelCase_: List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_: Optional[int] = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_: Dict = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: Tuple = model(A_ , A_ ) lowerCamelCase_: int = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: Union[str, Any] = output.prev_sample lowerCamelCase_: int = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: int = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: Optional[int] = self.scheduler_classes[0] lowerCamelCase_: Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCamelCase_: Any = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_: Any = torch.manual_seed(0 ) lowerCamelCase_: Dict = self.dummy_model() lowerCamelCase_: Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_: Any = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_: int = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: Optional[Any] = model(A_ , A_ ) lowerCamelCase_: List[str] = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: str = output.prev_sample lowerCamelCase_: int = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: List[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def lowerCAmelCase ( self : int ) -> int: """simple docstring""" lowerCamelCase_: Any = self.scheduler_classes[0] lowerCamelCase_: Optional[Any] = self.get_scheduler_config() lowerCamelCase_: int = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) lowerCamelCase_: Dict = torch.manual_seed(0 ) lowerCamelCase_: Union[str, Any] = self.dummy_model() lowerCamelCase_: str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase_: str = sample.to(A_ ) for t in scheduler.timesteps: lowerCamelCase_: str = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: str = model(A_ , A_ ) lowerCamelCase_: List[Any] = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: int = output.prev_sample lowerCamelCase_: List[Any] = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" lowerCamelCase_: Any = self.scheduler_classes[0] lowerCamelCase_: Dict = self.get_scheduler_config() lowerCamelCase_: int = scheduler_class(**A_ , use_karras_sigmas=A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) lowerCamelCase_: List[str] = torch.manual_seed(0 ) lowerCamelCase_: Union[str, Any] = self.dummy_model() lowerCamelCase_: Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase_: List[str] = sample.to(A_ ) for t in scheduler.timesteps: lowerCamelCase_: int = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: int = model(A_ , A_ ) lowerCamelCase_: List[Any] = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: List[Any] = output.prev_sample lowerCamelCase_: Optional[int] = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: int = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
584
1
"""simple docstring""" # using dfs for finding eulerian path traversal def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = True, True UpperCAmelCase__ : Any = dfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return path def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Union[str, Any] = -1 for i in range(__UpperCamelCase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 UpperCAmelCase__ : str = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] UpperCAmelCase__ , UpperCAmelCase__ : int = check_circuit_or_path(__UpperCamelCase , __UpperCamelCase ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return UpperCAmelCase__ : Dict = 1 if check == 2: UpperCAmelCase__ : List[str] = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) UpperCAmelCase__ : str = dfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) print(__UpperCamelCase ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : str = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} UpperCAmelCase__ : List[str] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} UpperCAmelCase__ : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} UpperCAmelCase__ : Optional[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} UpperCAmelCase__ : List[str] = { 1: [], 2: [] # all degree is zero } UpperCAmelCase__ : Dict = 10 check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
65
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] ,A : Optional[int] ,A : int=13 ,A : Tuple=7 ,A : Dict=True ,A : Optional[int]=True ,A : Tuple=True ,A : str=True ,A : Any=99 ,A : Tuple=32 ,A : Dict=5 ,A : Optional[int]=4 ,A : Dict=37 ,A : Any="gelu" ,A : Any=0.1 ,A : Optional[int]=0.1 ,A : Union[str, Any]=512 ,A : Any=16 ,A : List[str]=2 ,A : List[Any]=0.0_2 ,A : Optional[int]=4 ,): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : List[Any] = seq_length UpperCAmelCase__ : Optional[int] = is_training UpperCAmelCase__ : Optional[Any] = use_attention_mask UpperCAmelCase__ : int = use_token_type_ids UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : Any = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : List[Any] = type_vocab_size UpperCAmelCase__ : List[str] = type_sequence_label_size UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = num_choices def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : List[str] = None if self.use_attention_mask: UpperCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : int = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=A ,) return config, input_ids, attention_mask def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = config_and_inputs UpperCAmelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = FlaxDistilBertModelTester(self ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase__ : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __lowercase ( unittest.TestCase ): @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase__ : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase__ : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase__ : Dict = model(A ,attention_mask=A )[0] UpperCAmelCase__ : List[Any] = (1, 11, 768) self.assertEqual(output.shape ,A ) UpperCAmelCase__ : Any = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,A ,atol=1e-4 ) )
65
1
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device snake_case_ = False class a__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class a__ ( unittest.TestCase ): def lowercase__ (self : List[str] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ (self : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''', torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe.dual_guided( prompt='''first prompt''', image=__UpperCAmelCase, text_to_image_strength=0.75, generator=__UpperCAmelCase, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''', ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = VersatileDiffusionPipeline.from_pretrained(__UpperCAmelCase, torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = generator.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = pipe.dual_guided( prompt='''first prompt''', image=__UpperCAmelCase, text_to_image_strength=0.75, generator=__UpperCAmelCase, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''', ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''', torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = '''cyberpunk 2077''' SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe.dual_guided( prompt=__UpperCAmelCase, image=__UpperCAmelCase, text_to_image_strength=0.75, generator=__UpperCAmelCase, guidance_scale=7.5, num_inference_steps=50, output_type='''numpy''', ).images SCREAMING_SNAKE_CASE : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 SCREAMING_SNAKE_CASE : Optional[int] = '''A painting of a squirrel eating a burger ''' SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = pipe.text_to_image( prompt=__UpperCAmelCase, generator=__UpperCAmelCase, guidance_scale=7.5, num_inference_steps=50, output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 SCREAMING_SNAKE_CASE : Optional[Any] = pipe.image_variation(__UpperCAmelCase, generator=__UpperCAmelCase, output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
507
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __lowercase (_SCREAMING_SNAKE_CASE :str = "laptop" ): SCREAMING_SNAKE_CASE : str = F'''https://www.amazon.in/laptop/s?k={product}''' SCREAMING_SNAKE_CASE : int = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } SCREAMING_SNAKE_CASE : Dict = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).text ) # Initialize a Pandas dataframe with the column titles SCREAMING_SNAKE_CASE : str = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: SCREAMING_SNAKE_CASE : Optional[int] = item.ha.text SCREAMING_SNAKE_CASE : Tuple = '''https://www.amazon.in/''' + item.ha.a['''href'''] SCREAMING_SNAKE_CASE : Any = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: SCREAMING_SNAKE_CASE : Optional[int] = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: SCREAMING_SNAKE_CASE : Any = '''Not available''' try: SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: SCREAMING_SNAKE_CASE : List[str] = '''''' try: SCREAMING_SNAKE_CASE : Optional[Any] = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 1_00 ) except ValueError: SCREAMING_SNAKE_CASE : Optional[Any] = float('''nan''' ) except AttributeError: pass SCREAMING_SNAKE_CASE : int = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] SCREAMING_SNAKE_CASE : int = ''' ''' SCREAMING_SNAKE_CASE : List[str] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": snake_case_ = """headphones""" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
507
1
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] = ["vqvae"] def __init__( self , a__ , a__ , a__ , a__ , ): super().__init__() self.register_modules(unet=a__ , scheduler=a__ , mel=a__ , vqvae=a__ ) def snake_case_ ( self ): return 50 if isinstance(self.scheduler , a__ ) else 10_00 @torch.no_grad() def __call__( self , a__ = 1 , a__ = None , a__ = None , a__ = 0 , a__ = 0 , a__ = None , a__ = None , a__ = 0 , a__ = 0 , a__ = None , a__ = 0 , a__ = None , a__ = None , a__=True , ): _lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(a__ ) _lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=a__ , device=self.device , ) _lowerCamelCase = noise _lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(a__ , a__ ) _lowerCamelCase = self.mel.audio_slice_to_image(a__ ) _lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase = (input_image / 2_55) * 2 - 1 _lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase = self.vqvae.encode(torch.unsqueeze(a__ , 0 ) ).latent_dist.sample( generator=a__ )[0] _lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase = self.scheduler.add_noise(a__ , a__ , self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase = int(mask_start_secs * pixels_per_second ) _lowerCamelCase = int(mask_end_secs * pixels_per_second ) _lowerCamelCase = self.scheduler.add_noise(a__ , a__ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , a__ ): _lowerCamelCase = self.unet(a__ , a__ , a__ )['sample'] else: _lowerCamelCase = self.unet(a__ , a__ )['sample'] if isinstance(self.scheduler , a__ ): _lowerCamelCase = self.scheduler.step( model_output=a__ , timestep=a__ , sample=a__ , eta=a__ , generator=a__ , )['prev_sample'] else: _lowerCamelCase = self.scheduler.step( model_output=a__ , timestep=a__ , sample=a__ , generator=a__ , )['prev_sample'] if mask is not None: if mask_start > 0: _lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase = self.vqvae.decode(a__ )['sample'] _lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCamelCase = (images * 2_55).round().astype('uint8' ) _lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(a__ , mode='RGB' ).convert('L' ) for _ in images) ) _lowerCamelCase = [self.mel.image_to_audio(a__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(a__ )[:, np.newaxis, :] ) , **ImagePipelineOutput(a__ ) ) @torch.no_grad() def snake_case_ ( self , a__ , a__ = 50 ): assert isinstance(self.scheduler , a__ ) self.scheduler.set_timesteps(a__ ) _lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase = (sample / 2_55) * 2 - 1 _lowerCamelCase = torch.Tensor(a__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase = self.scheduler.alphas_cumprod[t] _lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase = 1 - alpha_prod_t _lowerCamelCase = self.unet(a__ , a__ )['sample'] _lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def snake_case_ ( a__ , a__ , a__ ): _lowerCamelCase = acos(torch.dot(torch.flatten(a__ ) , torch.flatten(a__ ) ) / torch.norm(a__ ) / torch.norm(a__ ) ) return sin((1 - alpha) * theta ) * xa / sin(a__ ) + sin(alpha * theta ) * xa / sin(a__ )
222
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int =logging.get_logger(__name__) A_ : Union[str, Any] ={"""tokenizer_file""": """tokenizer.json"""} A_ : Dict ={ """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE__ : Optional[Any] = None def __init__( self , a__=None , a__=None , a__=None , a__="<unk>" , a__="<s>" , a__="</s>" , a__="<pad>" , a__=False , a__=False , **a__ , ): super().__init__( a__ , a__ , tokenizer_file=a__ , unk_token=a__ , bos_token=a__ , eos_token=a__ , pad_token=a__ , add_prefix_space=a__ , clean_up_tokenization_spaces=a__ , **a__ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , a__ ) != add_prefix_space: _lowerCamelCase = getattr(a__ , pre_tok_state.pop('type' ) ) _lowerCamelCase = add_prefix_space _lowerCamelCase = pre_tok_class(**a__ ) _lowerCamelCase = add_prefix_space def snake_case_ ( self , *a__ , **a__ ): _lowerCamelCase = kwargs.get('is_split_into_words' , a__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' ' pretokenized inputs.' ) return super()._batch_encode_plus(*a__ , **a__ ) def snake_case_ ( self , *a__ , **a__ ): _lowerCamelCase = kwargs.get('is_split_into_words' , a__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' ' pretokenized inputs.' ) return super()._encode_plus(*a__ , **a__ ) def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def snake_case_ ( self , a__ ): _lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__ , add_special_tokens=a__ ) + [self.eos_token_id] ) if len(a__ ) > self.model_max_length: _lowerCamelCase = input_ids[-self.model_max_length :] return input_ids
222
1
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase_ : Any = 6_378_137.0 lowerCAmelCase_ : List[str] = 6_356_752.314_245 lowerCAmelCase_ : Any = 6_37_81_37 def _lowerCamelCase ( lowercase : float , lowercase : float , lowercase : float , lowercase : float ) -> float: _a = (AXIS_A - AXIS_B) / AXIS_A _a = atan((1 - flattening) * tan(radians(lowercase ) ) ) _a = atan((1 - flattening) * tan(radians(lowercase ) ) ) _a = radians(lowercase ) _a = radians(lowercase ) # Equation _a = sin((phi_a - phi_a) / 2 ) _a = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _a = sqrt(sin_sq_phi + (cos(lowercase ) * cos(lowercase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
1
from collections import defaultdict def __UpperCamelCase ( _A : str , _A : str ) ->bool: """simple docstring""" lowerCamelCase_ =first_str.lower().strip() lowerCamelCase_ =second_str.lower().strip() # Remove whitespace lowerCamelCase_ =first_str.replace(""" """ , """""" ) lowerCamelCase_ =second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(_A ) != len(_A ): return False # Default values for count should be 0 lowerCamelCase_ =defaultdict(_A ) # For each character in input strings, # increment count in the corresponding for i in range(len(_A ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A : Optional[int] = input('Enter the first string ').strip() __A : str = input('Enter the second string ').strip() __A : Union[str, Any] = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
701
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __A : int = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Any = "albert" def __init__( self , _SCREAMING_SNAKE_CASE=3_0000 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=1_6384 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , **_SCREAMING_SNAKE_CASE , )-> Optional[int]: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =vocab_size lowerCamelCase_ =embedding_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_hidden_groups lowerCamelCase_ =num_attention_heads lowerCamelCase_ =inner_group_num lowerCamelCase_ =hidden_act lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =classifier_dropout_prob lowerCamelCase_ =position_embedding_type class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): @property def _snake_case ( self )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase_ ={0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase_ ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
75
0
from collections.abc import Callable def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : float = a _lowerCAmelCase : float = b if function(_lowerCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_lowerCamelCase ) == 0: return b elif ( function(_lowerCamelCase ) * function(_lowerCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: _lowerCAmelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_lowerCamelCase ) == 0: return mid elif function(_lowerCamelCase ) * function(_lowerCamelCase ) < 0: _lowerCAmelCase : Any = mid else: _lowerCAmelCase : Optional[int] = mid _lowerCAmelCase : List[str] = start + (end - start) / 2.0 return mid def A ( _lowerCamelCase ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
500
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : str = "" else: _lowerCAmelCase : Optional[int] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Union[str, Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Any = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Dict = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : str = val def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads _lowerCAmelCase : Dict = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _lowerCAmelCase : Optional[int] = 1_000 _lowerCAmelCase : Optional[Any] = "huggingface/label-files" _lowerCAmelCase : Tuple = "imagenet-1k-id2label.json" _lowerCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Union[str, Any] = idalabel _lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()} _lowerCAmelCase : Dict = int(deit_name[-6:-4] ) _lowerCAmelCase : Any = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): _lowerCAmelCase : List[str] = 192 _lowerCAmelCase : int = 768 _lowerCAmelCase : int = 12 _lowerCAmelCase : Any = 3 elif deit_name[9:].startswith("small" ): _lowerCAmelCase : int = 384 _lowerCAmelCase : Tuple = 1_536 _lowerCAmelCase : Dict = 12 _lowerCAmelCase : Any = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): _lowerCAmelCase : List[str] = 1_024 _lowerCAmelCase : Tuple = 4_096 _lowerCAmelCase : Optional[Any] = 24 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : Any = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : Optional[Any] = timm_model.state_dict() _lowerCAmelCase : Optional[int] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model _lowerCAmelCase : Any = DeiTForImageClassificationWithTeacher(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor _lowerCAmelCase : Optional[int] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _lowerCAmelCase : Any = DeiTImageProcessor(size=_lowerCamelCase , crop_size=config.image_size ) _lowerCAmelCase : str = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : int = encoding["pixel_values"] _lowerCAmelCase : int = model(_lowerCamelCase ) _lowerCAmelCase : Tuple = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
500
1
def _A ( __magic_name__ , __magic_name__ ): lowercase__ = len(__magic_name__ ) lowercase__ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowercase__ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowercase__ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowercase__ = subset[i - 1][j] if arr[i - 1] <= j: lowercase__ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
611
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase : def __init__( self :Union[str, Any] , _lowercase :Dict , _lowercase :int=13 , _lowercase :Dict=32 , _lowercase :List[Any]=2 , _lowercase :Any=3 , _lowercase :Optional[Any]=16 , _lowercase :str=[1, 2, 1] , _lowercase :Tuple=[2, 2, 4] , _lowercase :int=2 , _lowercase :Optional[Any]=2.0 , _lowercase :List[Any]=True , _lowercase :Tuple=0.0 , _lowercase :List[str]=0.0 , _lowercase :List[str]=0.1 , _lowercase :Optional[int]="gelu" , _lowercase :Dict=False , _lowercase :Union[str, Any]=True , _lowercase :str=0.02 , _lowercase :str=1e-5 , _lowercase :Optional[Any]=True , _lowercase :Any=None , _lowercase :int=True , _lowercase :Any=10 , _lowercase :Optional[int]=8 , _lowercase :List[str]=["stage1", "stage2", "stage3"] , _lowercase :int=[1, 2, 3] , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = patch_norm lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = is_training lowercase__ = scope lowercase__ = use_labels lowercase__ = type_sequence_label_size lowercase__ = encoder_stride lowercase__ = out_features lowercase__ = out_indices def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase ( self :Any , _lowercase :List[Any] , _lowercase :List[str] , _lowercase :Optional[Any] ): '''simple docstring''' lowercase__ = MaskFormerSwinModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase ) lowercase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self :Tuple , _lowercase :int , _lowercase :Union[str, Any] , _lowercase :Any ): '''simple docstring''' lowercase__ = MaskFormerSwinBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowercase ): lowercase__ = ["stem"] lowercase__ = MaskFormerSwinBackbone(config=_lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __lowerCamelCase = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = MaskFormerSwinModelTester(self ) lowercase__ = ConfigTester(self , config_class=_lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' pass def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self :str ): '''simple docstring''' return def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) @unittest.skip("Swin does not use inputs_embeds" ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' pass @unittest.skip("Swin does not support feedforward chunking" ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' pass def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' pass def UpperCAmelCase ( self :int , _lowercase :List[Any] , _lowercase :Dict , _lowercase :str , _lowercase :str ): '''simple docstring''' lowercase__ = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_lowercase , _lowercase ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # Swin has a different seq_length lowercase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' pass def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowercase :Optional[Any] ): lowercase__ = 0 return t def check_equivalence(_lowercase :Optional[int] , _lowercase :List[str] , _lowercase :Optional[Any] , _lowercase :str={} ): with torch.no_grad(): lowercase__ = model(**_lowercase , return_dict=_lowercase , **_lowercase ) lowercase__ = model(**_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(_lowercase :int , _lowercase :Dict ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif isinstance(_lowercase , _lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowercase ) , set_nan_tensor_to_zero(_lowercase ) , atol=1e-5 ) , msg=( "Tuple and dict output are not equal. Difference:" f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}. Dict has''' f''' `nan`: {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}.''' ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: lowercase__ = model_class(_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = self._prepare_for_class(_lowercase , _lowercase ) lowercase__ = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) lowercase__ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) lowercase__ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) lowercase__ = self._prepare_for_class(_lowercase , _lowercase ) lowercase__ = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {"output_hidden_states": True} ) lowercase__ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) lowercase__ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {"output_hidden_states": True} ) @require_torch class lowerCAmelCase ( unittest.TestCase , lowercase_ ): __lowerCamelCase = (MaskFormerSwinBackbone,) if is_torch_available() else () __lowerCamelCase = MaskFormerSwinConfig def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = MaskFormerSwinModelTester(self ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: lowercase__ = backbone_class(_lowercase ) backbone.to(_lowercase ) backbone.eval() lowercase__ = backbone(**_lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ = backbone(**_lowercase , output_hidden_states=_lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ = backbone(**_lowercase , output_attentions=_lowercase ) self.assertIsNotNone(outputs.attentions )
611
1
"""simple docstring""" from typing import Any class __magic_name__ : '''simple docstring''' def __init__( self , _a ): """simple docstring""" lowerCamelCase = data lowerCamelCase = None def __repr__( self ): """simple docstring""" return f'Node({self.data})' class __magic_name__ : '''simple docstring''' def __init__( self ): """simple docstring""" lowerCamelCase = None def __iter__( self ): """simple docstring""" lowerCamelCase = self.head while node: yield node.data lowerCamelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_UpperCamelCase ) for item in self] ) def __getitem__( self , _a ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _a , _a ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) lowerCamelCase = self.head for _ in range(_UpperCamelCase ): lowerCamelCase = current.next lowerCamelCase = data def _lowerCAmelCase ( self , _a ): """simple docstring""" self.insert_nth(len(self ) , _UpperCamelCase ) def _lowerCAmelCase ( self , _a ): """simple docstring""" self.insert_nth(0 , _UpperCamelCase ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) lowerCamelCase = Node(_UpperCamelCase ) if self.head is None: lowerCamelCase = new_node elif index == 0: lowerCamelCase = self.head # link new_node to head lowerCamelCase = new_node else: lowerCamelCase = self.head for _ in range(index - 1 ): lowerCamelCase = temp.next lowerCamelCase = temp.next lowerCamelCase = new_node def _lowerCAmelCase ( self ): # print every node data """simple docstring""" print(self ) def _lowerCAmelCase ( self ): """simple docstring""" return self.delete_nth(0 ) def _lowerCAmelCase ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def _lowerCAmelCase ( self , _a = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) lowerCamelCase = self.head # default first node if index == 0: lowerCamelCase = self.head.next else: lowerCamelCase = self.head for _ in range(index - 1 ): lowerCamelCase = temp.next lowerCamelCase = temp.next lowerCamelCase = temp.next.next return delete_node.data def _lowerCAmelCase ( self ): """simple docstring""" return self.head is None def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = None lowerCamelCase = self.head while current: # Store the current node's next node. lowerCamelCase = current.next # Make the current node's next point backwards lowerCamelCase = prev # Make the previous node be the current node lowerCamelCase = current # Make the current node the next node (to progress iteration) lowerCamelCase = next_node # Return prev in order to put the head at the end lowerCamelCase = prev def a__ ( ) -> None: lowerCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase , i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 , 1 ) ) def a__ ( ) -> None: lowerCamelCase = [ -9, 1_00, Node(77_34_51_12 ), """dlrow olleH""", 7, 55_55, 0, -1_92.5_55_55, """Hello, world!""", 77.9, Node(10 ), None, None, 12.20, ] lowerCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCamelCase = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ) -> Dict: from doctest import testmod testmod() lowerCamelCase = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(__UpperCamelCase ) print("""\nReading/changing Node data using indexing:""" ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCamelCase = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(__UpperCamelCase ) print(F'length of linked_list is : {len(__UpperCamelCase )}' ) if __name__ == "__main__": main()
543
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): __UpperCAmelCase =CycleDiffusionPipeline __UpperCAmelCase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } __UpperCAmelCase =PipelineTesterMixin.required_optional_params - {'latents'} __UpperCAmelCase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) __UpperCAmelCase =IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase =IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self )-> Dict: torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _A = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A = CLIPTextModel(_UpperCamelCase ) _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase ( self , _UpperCamelCase , _UpperCamelCase=0 )-> List[Any]: _A = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _A = image / 2 + 0.5 if str(_UpperCamelCase ).startswith('mps' ): _A = torch.manual_seed(_UpperCamelCase ) else: _A = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _A = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self )-> Any: _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = CycleDiffusionPipeline(**_UpperCamelCase ) _A = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _A = self.get_dummy_inputs(_UpperCamelCase ) _A = pipe(**_UpperCamelCase ) _A = output.images _A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _A = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCamelCase ( self )-> List[Any]: _A = self.get_dummy_components() for name, module in components.items(): if hasattr(_UpperCamelCase , 'half' ): _A = module.half() _A = CycleDiffusionPipeline(**_UpperCamelCase ) _A = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _A = self.get_dummy_inputs(_UpperCamelCase ) _A = pipe(**_UpperCamelCase ) _A = output.images _A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _A = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase ( self )-> Any: return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def UpperCamelCase ( self )-> List[Any]: return super().test_inference_batch_single_identical() @skip_mps def UpperCamelCase ( self )-> int: return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCamelCase ( self )-> Tuple: return super().test_save_load_optional_components() @skip_mps def UpperCamelCase ( self )-> Optional[Any]: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase ( self )-> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self )-> int: _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) _A = init_image.resize((512, 512) ) _A = 'CompVis/stable-diffusion-v1-4' _A = DDIMScheduler.from_pretrained(_UpperCamelCase , subfolder='scheduler' ) _A = CycleDiffusionPipeline.from_pretrained( _UpperCamelCase , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() _A = 'A black colored car' _A = 'A blue colored car' _A = torch.manual_seed(0 ) _A = pipe( prompt=_UpperCamelCase , source_prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_UpperCamelCase , output_type='np' , ) _A = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def UpperCamelCase ( self )-> Union[str, Any]: _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) _A = init_image.resize((512, 512) ) _A = 'CompVis/stable-diffusion-v1-4' _A = DDIMScheduler.from_pretrained(_UpperCamelCase , subfolder='scheduler' ) _A = CycleDiffusionPipeline.from_pretrained(_UpperCamelCase , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() _A = 'A black colored car' _A = 'A blue colored car' _A = torch.manual_seed(0 ) _A = pipe( prompt=_UpperCamelCase , source_prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_UpperCamelCase , output_type='np' , ) _A = output.images assert np.abs(image - expected_image ).max() < 2e-2
292
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCAmelCase ( __snake_case ): a: torch.FloatTensor class UpperCAmelCase ( __snake_case , __snake_case ): @register_to_config def __init__( self: str , __UpperCamelCase: int = 6_5536 , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: int = 2 , __UpperCamelCase: int = 2 , __UpperCamelCase: int = 0 , __UpperCamelCase: str = "fourier" , __UpperCamelCase: bool = True , __UpperCamelCase: bool = False , __UpperCamelCase: float = 0.0 , __UpperCamelCase: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __UpperCamelCase: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __UpperCamelCase: Tuple[str] = "UNetMidBlock1D" , __UpperCamelCase: str = None , __UpperCamelCase: Tuple[int] = (32, 32, 64) , __UpperCamelCase: str = None , __UpperCamelCase: int = 8 , __UpperCamelCase: int = 1 , __UpperCamelCase: bool = False , ): super().__init__() _a = sample_size # time if time_embedding_type == "fourier": _a = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__UpperCamelCase , log=__UpperCamelCase , flip_sin_to_cos=__UpperCamelCase ) _a = 2 * block_out_channels[0] elif time_embedding_type == "positional": _a = Timesteps( block_out_channels[0] , flip_sin_to_cos=__UpperCamelCase , downscale_freq_shift=__UpperCamelCase ) _a = block_out_channels[0] if use_timestep_embedding: _a = block_out_channels[0] * 4 _a = TimestepEmbedding( in_channels=__UpperCamelCase , time_embed_dim=__UpperCamelCase , act_fn=__UpperCamelCase , out_dim=block_out_channels[0] , ) _a = nn.ModuleList([] ) _a = None _a = nn.ModuleList([] ) _a = None # down _a = in_channels for i, down_block_type in enumerate(__UpperCamelCase ): _a = output_channel _a = block_out_channels[i] if i == 0: input_channel += extra_in_channels _a = i == len(__UpperCamelCase ) - 1 _a = get_down_block( __UpperCamelCase , num_layers=__UpperCamelCase , in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__UpperCamelCase ) # mid _a = get_mid_block( __UpperCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__UpperCamelCase , add_downsample=__UpperCamelCase , ) # up _a = list(reversed(__UpperCamelCase ) ) _a = reversed_block_out_channels[0] if out_block_type is None: _a = out_channels else: _a = block_out_channels[0] for i, up_block_type in enumerate(__UpperCamelCase ): _a = output_channel _a = ( reversed_block_out_channels[i + 1] if i < len(__UpperCamelCase ) - 1 else final_upsample_channels ) _a = i == len(__UpperCamelCase ) - 1 _a = get_up_block( __UpperCamelCase , num_layers=__UpperCamelCase , in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__UpperCamelCase ) _a = output_channel # out _a = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _a = get_out_block( out_block_type=__UpperCamelCase , num_groups_out=__UpperCamelCase , embed_dim=block_out_channels[0] , out_channels=__UpperCamelCase , act_fn=__UpperCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def _A ( self: List[Any] , __UpperCamelCase: torch.FloatTensor , __UpperCamelCase: Union[torch.Tensor, float, int] , __UpperCamelCase: bool = True , ): _a = timestep if not torch.is_tensor(__UpperCamelCase ): _a = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__UpperCamelCase ) and len(timesteps.shape ) == 0: _a = timesteps[None].to(sample.device ) _a = self.time_proj(__UpperCamelCase ) if self.config.use_timestep_embedding: _a = self.time_mlp(__UpperCamelCase ) else: _a = timestep_embed[..., None] _a = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _a = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _a = () for downsample_block in self.down_blocks: _a , _a = downsample_block(hidden_states=__UpperCamelCase , temb=__UpperCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _a = self.mid_block(__UpperCamelCase , __UpperCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _a = down_block_res_samples[-1:] _a = down_block_res_samples[:-1] _a = upsample_block(__UpperCamelCase , res_hidden_states_tuple=__UpperCamelCase , temb=__UpperCamelCase ) # 5. post-process if self.out_block: _a = self.out_block(__UpperCamelCase , __UpperCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=__UpperCamelCase )
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase :List[Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :str = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCamelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
346
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool a_ :Dict = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class lowercase ( _UpperCAmelCase ): lowerCamelCase : str = '''facebook/nllb-200-distilled-600M''' lowerCamelCase : Optional[int] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowerCamelCase : int = '''translator''' lowerCamelCase : List[Any] = AutoTokenizer lowerCamelCase : Dict = AutoModelForSeqaSeqLM lowerCamelCase : Union[str, Any] = LANGUAGE_CODES lowerCamelCase : Optional[int] = ['''text''', '''text''', '''text'''] lowerCamelCase : Union[str, Any] = ['''text'''] def lowercase__ ( self : Any , _lowercase : Any , _lowercase : List[str] , _lowercase : Optional[Any] ): if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) SCREAMING_SNAKE_CASE__ : int = self.lang_to_code[src_lang] SCREAMING_SNAKE_CASE__ : List[str] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( _lowercase , return_tensors='''pt''' , src_lang=_lowercase , tgt_lang=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : List[Any] ): return self.model.generate(**_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=_lowercase )
35
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowerCAmelCase ( A_ : Optional[int] ) -> Optional[int]: return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowerCAmelCase ( ) -> Dict: __UpperCAmelCase = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=A_ ) __UpperCAmelCase = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(A_ ) EnvironmentCommand.register_subcommand(A_ ) TestCommand.register_subcommand(A_ ) RunBeamCommand.register_subcommand(A_ ) DummyDataCommand.register_subcommand(A_ ) # Parse args __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() if not hasattr(A_ , "func" ): parser.print_help() exit(1 ) __UpperCAmelCase = parse_unknown_args(A_ ) # Run __UpperCAmelCase = args.func(A_ , **A_ ) service.run() if __name__ == "__main__": main()
221
0
'''simple docstring''' from __future__ import annotations A : str = 8.988e9 # units = N * m^s * C^-2 def lowercase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) ->dict[str, float]: _snake_case: Union[str, Any] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: _snake_case: Union[str, Any] = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _snake_case: Dict = abs(lowercase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _snake_case: Dict = abs(lowercase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _snake_case: Dict = (COULOMBS_CONSTANT * charge_product / abs(lowercase__ )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A : Tuple = ['bert-base-uncased', 'bert-base-cased'] A : str = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class lowerCamelCase ( tf.keras.Model ): def __init__( self : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' super().__init__() _snake_case: List[Any] = tokenizer _snake_case: str = AutoConfig.from_pretrained(__snake_case ) _snake_case: List[Any] = TFAutoModel.from_config(__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : str , __snake_case : List[str] ): '''simple docstring''' _snake_case: Optional[int] = self.tokenizer(__snake_case ) _snake_case: Tuple = self.bert(**__snake_case ) return out["pooler_output"] @require_tf @require_tensorflow_text class lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case: List[Any] = [ BertTokenizer.from_pretrained(__snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _snake_case: List[Any] = [TFBertTokenizer.from_pretrained(__snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case: int = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case: str = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): _snake_case: List[Any] = tokenizer(__snake_case , return_tensors='tf' , padding='longest' ) _snake_case: Optional[Any] = tf_tokenizer(__snake_case ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case: str = tf_tokenizer(self.paired_sentences ) _snake_case: Any = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case: List[str] = tf.function(__snake_case ) for test_inputs in (self.test_sentences, self.paired_sentences): _snake_case: Union[str, Any] = tf.constant(__snake_case ) _snake_case: Any = compiled_tokenizer(__snake_case ) _snake_case: Union[str, Any] = tf_tokenizer(__snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case: Optional[Any] = ModelToSave(tokenizer=__snake_case ) _snake_case: Tuple = tf.convert_to_tensor(self.test_sentences ) _snake_case: List[str] = model(__snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case: List[str] = Path(__snake_case ) / 'saved.model' model.save(__snake_case ) _snake_case: int = tf.keras.models.load_model(__snake_case ) _snake_case: int = loaded_model(__snake_case ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
273
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : List[str] = 16 a__ : int = 32 def __snake_case ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 ) -> int: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE_ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ : Optional[Any] = mocked_dataloaders # noqa: F811 def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , SCREAMING_SNAKE_CASE_ ) == "1": UpperCAmelCase = 2 # Initialize accelerator UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = outputs.loss UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() UpperCAmelCase = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase, UpperCAmelCase = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(SCREAMING_SNAKE_CASE_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples UpperCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , SCREAMING_SNAKE_CASE_ ) def __snake_case ( ) -> Optional[int]: """simple docstring""" UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
51
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ): pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str: """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict: """simple docstring""" UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ): UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __snake_case ( self : int , a__ : Dict , a__ : Tuple ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def __snake_case ( self : str ): pass @slow @require_torch def __snake_case ( self : Optional[Any] ): UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871} ] , ) # fmt: on @require_torch @slow def __snake_case ( self : Dict ): UpperCAmelCase = '''facebook/sam-vit-huge''' UpperCAmelCase = pipeline('''mask-generation''' , model=a__ ) UpperCAmelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, ] , )
51
1
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=_lowerCAmelCase ): a_ : Dict = ['''torch''', '''transformers''', '''onnx'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx''']) class _SCREAMING_SNAKE_CASE ( metaclass=_lowerCAmelCase ): a_ : Dict = ['''torch''', '''transformers''', '''onnx'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx''']) class _SCREAMING_SNAKE_CASE ( metaclass=_lowerCAmelCase ): a_ : List[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx''']) class _SCREAMING_SNAKE_CASE ( metaclass=_lowerCAmelCase ): a_ : str = ['''torch''', '''transformers''', '''onnx'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx''']) class _SCREAMING_SNAKE_CASE ( metaclass=_lowerCAmelCase ): a_ : List[str] = ['''torch''', '''transformers''', '''onnx'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx''']) class _SCREAMING_SNAKE_CASE ( metaclass=_lowerCAmelCase ): a_ : List[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx''']) @classmethod def A__ (cls , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''])
142
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCamelCase_ = get_logger() UpperCamelCase_ = None class _SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase): '''simple docstring''' super().__init__(features=UpperCAmelCase) import jax from jaxlib.xla_client import Device if isinstance(UpperCAmelCase , UpperCAmelCase): raise ValueError( f"""Expected {device} to be a `str` not {type(UpperCAmelCase)}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''') __UpperCAmelCase =device if isinstance(UpperCAmelCase , UpperCAmelCase) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase =self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default """ f"""device: {str(jax.devices()[0])}.""") __UpperCAmelCase =str(jax.devices()[0]) __UpperCAmelCase =jnp_array_kwargs @staticmethod def A__ (): '''simple docstring''' import jax return {str(UpperCAmelCase): device for device in jax.devices()} def A__ (self , UpperCAmelCase): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , UpperCAmelCase) and column: if all( isinstance(UpperCAmelCase , jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(UpperCAmelCase , axis=0) return column def A__ (self , UpperCAmelCase): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase))): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() __UpperCAmelCase ={} if isinstance(UpperCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: __UpperCAmelCase ={'''dtype''': jnp.intaa} else: __UpperCAmelCase ={'''dtype''': jnp.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): __UpperCAmelCase ={'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image): __UpperCAmelCase =np.asarray(UpperCAmelCase) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase =self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs}) def A__ (self , UpperCAmelCase): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCAmelCase , torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(UpperCAmelCase , '''__array__''') and not isinstance(UpperCAmelCase , jax.Array): __UpperCAmelCase =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase) for substruct in data_struct]) elif isinstance(UpperCAmelCase , (list, tuple)): return self._consolidate([self.recursive_tensorize(UpperCAmelCase) for substruct in data_struct]) return self._tensorize(UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_row(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_row(UpperCAmelCase) return self.recursive_tensorize(UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_column(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0]) __UpperCAmelCase =self.recursive_tensorize(UpperCAmelCase) __UpperCAmelCase =self._consolidate(UpperCAmelCase) return column def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_batch(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_batch(UpperCAmelCase) __UpperCAmelCase =self.recursive_tensorize(UpperCAmelCase) for column_name in batch: __UpperCAmelCase =self._consolidate(batch[column_name]) return batch
142
1
'''simple docstring''' import math def UpperCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[str]): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__lowercase) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen') if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. A = '''Enter the base and the power separated by a comma: ''' A = map(int, input(prompt).split(',')) A = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. A = res(xa, ya) A = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
320
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _UpperCAmelCase : Union[str, Any] = LEDConfig _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = "gelu" def __init__( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict=13 , lowercase : Dict=7 , lowercase : Tuple=True , lowercase : Dict=False , lowercase : Dict=99 , lowercase : Any=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[str]=37 , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : List[Any]=20 , lowercase : int=2 , lowercase : Optional[Any]=1 , lowercase : List[str]=0 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id _snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) _snake_case = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) _snake_case = global_attention_mask return config, inputs_dict def A ( self : str , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = TFLEDModel(config=lowercase ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = 1 # first forward pass _snake_case = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a_ ( __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase : Optional[int] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase : Tuple = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False def A ( self : Any ): '''simple docstring''' _snake_case = TFLEDModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = tf.zeros_like(inputs_dict['attention_mask'] ) _snake_case = 2 _snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _snake_case = True _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase : List[str] ): _snake_case = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase : List[str] ): _snake_case = [t.numpy() for t in outputs.encoder_attentions] _snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = False _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) _snake_case = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowercase ) _snake_case = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def A ( self : List[Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def a_ ( __lowercase : str ) -> Optional[Any]: return tf.constant(__lowercase , dtype=tf.intaa ) _lowerCamelCase : List[Any] = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 ) def A ( self : str ): '''simple docstring''' _snake_case = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _snake_case = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case = prepare_led_inputs_dict(model.config , lowercase , lowercase ) _snake_case = model(**lowercase )[0] _snake_case = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here _snake_case = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-3 , rtol=1E-3 )
686
0
def UpperCamelCase_( _A :int , _A :int )-> str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) UpperCamelCase__ = str(bin(_A ) ) binary_number += "0" * shift_amount return binary_number def UpperCamelCase_( _A :int , _A :int )-> str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) UpperCamelCase__ = str(bin(_A ) )[2:] if shift_amount >= len(_A ): return "0b0" UpperCamelCase__ = binary_number[: len(_A ) - shift_amount] return "0b" + shifted_binary_number def UpperCamelCase_( _A :int , _A :int )-> str: if number >= 0: # Get binary representation of positive number UpperCamelCase__ = "0" + str(bin(_A ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number UpperCamelCase__ = len(bin(_A )[3:] ) # Find 2's complement of number UpperCamelCase__ = bin(abs(_A ) - (1 << binary_number_length) )[3:] UpperCamelCase__ = ( "1" + "0" * (binary_number_length - len(_A )) + binary_number ) if shift_amount >= len(_A ): return "0b" + binary_number[0] * len(_A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(_A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
710
from collections import deque def UpperCamelCase_( _A :Union[str, Any] )-> List[Any]: UpperCamelCase__ = len(_A ) UpperCamelCase__ = deque() UpperCamelCase__ = [False for _ in range(_A )] UpperCamelCase__ = [-1 for _ in range(_A )] UpperCamelCase__ = index_of[:] def strong_connect(_A :Optional[int] , _A :Optional[int] , _A :List[Any] ): UpperCamelCase__ = index # the number when this node is seen UpperCamelCase__ = index # lowest rank node reachable from here index += 1 stack.append(_A ) UpperCamelCase__ = True for w in g[v]: if index_of[w] == -1: UpperCamelCase__ = strong_connect(_A , _A , _A ) UpperCamelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCamelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCamelCase__ = [] UpperCamelCase__ = stack.pop() UpperCamelCase__ = False component.append(_A ) while w != v: UpperCamelCase__ = stack.pop() UpperCamelCase__ = False component.append(_A ) components.append(_A ) return index UpperCamelCase__ = [] for v in range(_A ): if index_of[v] == -1: strong_connect(_A , 0 , _A ) return components def UpperCamelCase_( _A :Optional[Any] , _A :Any )-> Union[str, Any]: UpperCamelCase__ = [[] for _ in range(_A )] for u, v in edges: g[u].append(_A ) return g if __name__ == "__main__": # Test __UpperCamelCase = 7 __UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] __UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] __UpperCamelCase = [(u, v) for u, v in zip(source, target)] __UpperCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
185
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCamelCase : Tuple ='''true''' def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=82 , __lowerCAmelCase=16 ) -> Optional[int]: set_seed(42 ) UpperCamelCase__ : Union[str, Any] = RegressionModel() UpperCamelCase__ : Optional[Any] = deepcopy(__lowerCAmelCase ) UpperCamelCase__ : str = RegressionDataset(length=__lowerCAmelCase ) UpperCamelCase__ : int = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase ) model.to(accelerator.device ) UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: UpperCamelCase__ : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) UpperCamelCase__ : Optional[Any] = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(__lowerCAmelCase ): UpperCamelCase__ : Dict = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs with accelerator.main_process_first(): UpperCamelCase__ : Optional[int] = dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) UpperCamelCase__ : str = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__lowerCAmelCase ): if use_longest: return tokenizer.pad(__lowerCAmelCase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(__lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=16 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: UpperCamelCase__ : int = Accelerator(dispatch_batches=__lowerCAmelCase , split_batches=__lowerCAmelCase ) UpperCamelCase__ : int = get_dataloader(__lowerCAmelCase , not dispatch_batches ) UpperCamelCase__ : Any = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: UpperCamelCase__ : List[Any] = [] for batch in dataloader: UpperCamelCase__ , UpperCamelCase__ : str = batch.values() with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ : Tuple = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCamelCase__ , UpperCamelCase__ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowerCAmelCase ) targs.append(__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ : int = torch.cat(__lowerCAmelCase ), torch.cat(__lowerCAmelCase ) return logits, targs def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=82 , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=16 ) -> Any: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = get_basic_setup(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ : List[Any] = generate_predictions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert ( len(__lowerCAmelCase ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowerCAmelCase )}' def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = False , __lowerCAmelCase = False ) -> List[Any]: UpperCamelCase__ : str = evaluate.load("glue" , "mrpc" ) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = get_mrpc_setup(__lowerCAmelCase , __lowerCAmelCase ) # First do baseline UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : int = setup["no"] model.to(__lowerCAmelCase ) model.eval() for batch in dataloader: batch.to(__lowerCAmelCase ) with torch.inference_mode(): UpperCamelCase__ : Optional[Any] = model(**__lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowerCAmelCase , references=batch["labels"] ) UpperCamelCase__ : Optional[int] = metric.compute() # Then do distributed UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCamelCase__ : Optional[Any] = model(**__lowerCAmelCase ) UpperCamelCase__ : Optional[Any] = outputs.logits.argmax(dim=-1 ) UpperCamelCase__ : Dict = batch["labels"] UpperCamelCase__ , UpperCamelCase__ : List[Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) UpperCamelCase__ : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: UpperCamelCase__ : Optional[int] = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(__lowerCAmelCase , __lowerCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCamelCase__ : Optional[int] = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(__lowerCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) UpperCamelCase__ : Union[str, Any] = Accelerator() test_torch_metrics(__lowerCAmelCase , 512 ) accelerator.state._reset_state() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
228
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a ( unittest.TestCase ): @property def __lowercase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : List[str] = self.dummy_uncond_unet UpperCamelCase__ : List[str] = ScoreSdeVeScheduler() UpperCamelCase__ : Union[str, Any] = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) sde_ve.to(SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE ).images UpperCamelCase__ : str = torch.manual_seed(0 ) UpperCamelCase__ : Any = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE )[ 0 ] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __a ( unittest.TestCase ): def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = "google/ncsnpp-church-256" UpperCamelCase__ : Tuple = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) sde_ve.to(SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = torch.manual_seed(0 ) UpperCamelCase__ : Tuple = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE ).images UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCamelCase__ : Any = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
228
1
from collections.abc import Callable import numpy as np def lowerCAmelCase_ ( __UpperCAmelCase: Callable , __UpperCAmelCase: float , __UpperCAmelCase: float , __UpperCAmelCase: float , __UpperCAmelCase: float ) -> np.array: UpperCamelCase__ : Any = int(np.ceil((x_end - xa) / step_size ) ) UpperCamelCase__ : Optional[int] = np.zeros((n + 1,) ) UpperCamelCase__ : Union[str, Any] = ya UpperCamelCase__ : List[str] = xa for k in range(__UpperCAmelCase ): UpperCamelCase__ : List[str] = y[k] + step_size * ode_func(__UpperCAmelCase , y[k] ) UpperCamelCase__ : List[str] = y[k] + ( (step_size / 2) * (ode_func(__UpperCAmelCase , y[k] ) + ode_func(x + step_size , __UpperCAmelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
369
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: str ) -> bool: UpperCamelCase__ : List[str] = get_failure_array(__UpperCAmelCase ) # 2) Step through text searching for pattern UpperCamelCase__ ,UpperCamelCase__ : Dict = 0, 0 # index into text, pattern while i < len(__UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(__UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase__ : Optional[int] = failure[j - 1] continue i += 1 return False def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> list[int]: UpperCamelCase__ : Union[str, Any] = [0] UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Tuple = 1 while j < len(__UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase__ : str = failure[i - 1] continue j += 1 failure.append(__UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase_ = 'abc1abc12' UpperCAmelCase_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' UpperCAmelCase_ = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase_ = 'ABABX' UpperCAmelCase_ = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) UpperCAmelCase_ = 'AAAB' UpperCAmelCase_ = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) UpperCAmelCase_ = 'abcdabcy' UpperCAmelCase_ = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) UpperCAmelCase_ = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
369
1
def lowerCamelCase__ ( ): """simple docstring""" return 1 def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowercase ) def lowerCamelCase__ ( lowercase = 200 ): """simple docstring""" return two_pound(lowercase ) if __name__ == "__main__": print(solution(int(input().strip())))
62
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : int = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = ['''PoolFormerFeatureExtractor'''] UpperCamelCase__ : Tuple = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
578
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : CommonSchedulerState # setable values __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : Optional[int] = None @classmethod def snake_case ( cls : int , lowercase__ : CommonSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray ): return cls(common=lowercase__ , init_noise_sigma=lowercase__ , timesteps=lowercase__ ) @dataclass class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCAmelCase : DDPMSchedulerState class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [e.name for e in FlaxKarrasDiffusionSchedulers] __UpperCAmelCase : jnp.dtype @property def snake_case ( self : Optional[Any] ): return True @register_to_config def __init__( self : Optional[int] , lowercase__ : int = 1_0_0_0 , lowercase__ : float = 0.0_0_0_1 , lowercase__ : float = 0.0_2 , lowercase__ : str = "linear" , lowercase__ : Optional[jnp.ndarray] = None , lowercase__ : str = "fixed_small" , lowercase__ : bool = True , lowercase__ : str = "epsilon" , lowercase__ : jnp.dtype = jnp.floataa , ): __lowercase : List[Any] = dtype def snake_case ( self : List[Any] , lowercase__ : Optional[CommonSchedulerState] = None ): if common is None: __lowercase : Optional[Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __lowercase : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) __lowercase : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowercase__ , init_noise_sigma=lowercase__ , timesteps=lowercase__ , ) def snake_case ( self : str , lowercase__ : DDPMSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : Optional[int] = None ): return sample def snake_case ( self : Tuple , lowercase__ : DDPMSchedulerState , lowercase__ : int , lowercase__ : Tuple = () ): __lowercase : int = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowercase : List[Any] = (jnp.arange(0 , lowercase__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowercase__ , timesteps=lowercase__ , ) def snake_case ( self : Union[str, Any] , lowercase__ : DDPMSchedulerState , lowercase__ : Optional[int] , lowercase__ : Dict=None , lowercase__ : str=None ): __lowercase : Optional[int] = state.common.alphas_cumprod[t] __lowercase : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowercase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowercase : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowercase : Union[str, Any] = jnp.clip(lowercase__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowercase : List[str] = jnp.log(jnp.clip(lowercase__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": __lowercase : int = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowercase : Dict = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowercase : Tuple = variance __lowercase : Dict = state.common.betas[t] __lowercase : List[Any] = (predicted_variance + 1) / 2 __lowercase : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def snake_case ( self : Dict , lowercase__ : DDPMSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : int , lowercase__ : jnp.ndarray , lowercase__ : Optional[jax.random.KeyArray] = None , lowercase__ : bool = True , ): __lowercase : int = timestep if key is None: __lowercase : Union[str, Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowercase ,__lowercase : Union[str, Any] = jnp.split(lowercase__ , sample.shape[1] , axis=1 ) else: __lowercase : Dict = None # 1. compute alphas, betas __lowercase : Dict = state.common.alphas_cumprod[t] __lowercase : Dict = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __lowercase : Dict = 1 - alpha_prod_t __lowercase : List[Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowercase : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowercase : str = model_output elif self.config.prediction_type == "v_prediction": __lowercase : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowercase : Dict = jnp.clip(lowercase__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase : Any = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowercase : Union[str, Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase : Optional[int] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowercase : int = jax.random.split(lowercase__ , num=1 ) __lowercase : List[str] = jax.random.normal(lowercase__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowercase__ , lowercase__ , predicted_variance=lowercase__ ) ** 0.5) * noise __lowercase : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __lowercase : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowercase__ , state=lowercase__ ) def snake_case ( self : Any , lowercase__ : DDPMSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , ): return add_noise_common(state.common , lowercase__ , lowercase__ , lowercase__ ) def snake_case ( self : Optional[int] , lowercase__ : DDPMSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , ): return get_velocity_common(state.common , lowercase__ , lowercase__ , lowercase__ ) def __len__( self : Dict ): return self.config.num_train_timesteps
281
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def snake_case__ ( _lowerCamelCase ) ->Dict: """simple docstring""" return x + 2 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case ( self : List[str] ): __lowercase : List[Any] = "x = 3" __lowercase : Optional[int] = {} __lowercase : List[Any] = evaluate(lowercase__ , {} , state=lowercase__ ) assert result == 3 self.assertDictEqual(lowercase__ , {"x": 3} ) __lowercase : Optional[int] = "x = y" __lowercase : Union[str, Any] = {"y": 5} __lowercase : str = evaluate(lowercase__ , {} , state=lowercase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase__ , {"x": 5, "y": 5} ) def snake_case ( self : Dict ): __lowercase : Dict = "y = add_two(x)" __lowercase : List[Any] = {"x": 3} __lowercase : Optional[int] = evaluate(lowercase__ , {"add_two": add_two} , state=lowercase__ ) assert result == 5 self.assertDictEqual(lowercase__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: __lowercase : Any = evaluate(lowercase__ , {} , state=lowercase__ ) assert result is None assert "tried to execute add_two" in out.out def snake_case ( self : Any ): __lowercase : Optional[Any] = "x = 3" __lowercase : List[Any] = {} __lowercase : Dict = evaluate(lowercase__ , {} , state=lowercase__ ) assert result == 3 self.assertDictEqual(lowercase__ , {"x": 3} ) def snake_case ( self : str ): __lowercase : Optional[int] = "test_dict = {'x': x, 'y': add_two(x)}" __lowercase : List[str] = {"x": 3} __lowercase : Tuple = evaluate(lowercase__ , {"add_two": add_two} , state=lowercase__ ) self.assertDictEqual(lowercase__ , {"x": 3, "y": 5} ) self.assertDictEqual(lowercase__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def snake_case ( self : int ): __lowercase : Tuple = "x = 3\ny = 5" __lowercase : Optional[Any] = {} __lowercase : List[Any] = evaluate(lowercase__ , {} , state=lowercase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase__ , {"x": 3, "y": 5} ) def snake_case ( self : Any ): __lowercase : str = "text = f'This is x: {x}.'" __lowercase : Any = {"x": 3} __lowercase : List[Any] = evaluate(lowercase__ , {} , state=lowercase__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowercase__ , {"x": 3, "text": "This is x: 3."} ) def snake_case ( self : str ): __lowercase : Optional[Any] = "if x <= 3:\n y = 2\nelse:\n y = 5" __lowercase : int = {"x": 3} __lowercase : Optional[int] = evaluate(lowercase__ , {} , state=lowercase__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowercase__ , {"x": 3, "y": 2} ) __lowercase : Optional[int] = {"x": 8} __lowercase : Union[str, Any] = evaluate(lowercase__ , {} , state=lowercase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase__ , {"x": 8, "y": 5} ) def snake_case ( self : Dict ): __lowercase : Optional[Any] = "test_list = [x, add_two(x)]" __lowercase : str = {"x": 3} __lowercase : Any = evaluate(lowercase__ , {"add_two": add_two} , state=lowercase__ ) self.assertListEqual(lowercase__ , [3, 5] ) self.assertDictEqual(lowercase__ , {"x": 3, "test_list": [3, 5]} ) def snake_case ( self : Optional[int] ): __lowercase : str = "y = x" __lowercase : str = {"x": 3} __lowercase : int = evaluate(lowercase__ , {} , state=lowercase__ ) assert result == 3 self.assertDictEqual(lowercase__ , {"x": 3, "y": 3} ) def snake_case ( self : Optional[int] ): __lowercase : str = "test_list = [x, add_two(x)]\ntest_list[1]" __lowercase : Optional[Any] = {"x": 3} __lowercase : Any = evaluate(lowercase__ , {"add_two": add_two} , state=lowercase__ ) assert result == 5 self.assertDictEqual(lowercase__ , {"x": 3, "test_list": [3, 5]} ) __lowercase : Tuple = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" __lowercase : Union[str, Any] = {"x": 3} __lowercase : Tuple = evaluate(lowercase__ , {"add_two": add_two} , state=lowercase__ ) assert result == 5 self.assertDictEqual(lowercase__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def snake_case ( self : Dict ): __lowercase : Dict = "x = 0\nfor i in range(3):\n x = i" __lowercase : str = {} __lowercase : int = evaluate(lowercase__ , {"range": range} , state=lowercase__ ) assert result == 2 self.assertDictEqual(lowercase__ , {"x": 2, "i": 2} )
281
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=lowercase__ ): _SCREAMING_SNAKE_CASE : Any = ['keras_nlp'] def __init__( self : List[Any] , *snake_case_ : Union[str, Any] , **snake_case_ : Optional[int] ): requires_backends(self , ["keras_nlp"] )
163
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" __snake_case = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" ) __snake_case = chkpt["model"] # We have the base model one level deeper than the original XLM repository __snake_case = {} for k, v in state_dict.items(): if "pred_layer" in k: __snake_case = v else: __snake_case = v __snake_case = chkpt["params"] __snake_case = {n: v for n, v in config.items() if not isinstance(SCREAMING_SNAKE_CASE , (torch.FloatTensor, numpy.ndarray) )} __snake_case = chkpt["dico_word2id"] __snake_case = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model __snake_case = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __snake_case = pytorch_dump_folder_path + "/" + CONFIG_NAME __snake_case = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE , indent=2 ) + "\n" ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE , indent=2 ) + "\n" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
163
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class a : def __init__( self : Dict, SCREAMING_SNAKE_CASE_ : List[Any], SCREAMING_SNAKE_CASE_ : Optional[int]=12, SCREAMING_SNAKE_CASE_ : Optional[Any]=7, SCREAMING_SNAKE_CASE_ : str=True, SCREAMING_SNAKE_CASE_ : str=True, SCREAMING_SNAKE_CASE_ : Optional[int]=True, SCREAMING_SNAKE_CASE_ : List[Any]=99, SCREAMING_SNAKE_CASE_ : Tuple=32, SCREAMING_SNAKE_CASE_ : List[str]=32, SCREAMING_SNAKE_CASE_ : Any=2, SCREAMING_SNAKE_CASE_ : Dict=4, SCREAMING_SNAKE_CASE_ : int=37, SCREAMING_SNAKE_CASE_ : int=0.1, SCREAMING_SNAKE_CASE_ : List[str]=0.1, SCREAMING_SNAKE_CASE_ : int=5_12, SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02, SCREAMING_SNAKE_CASE_ : Tuple=0, SCREAMING_SNAKE_CASE_ : List[str]=None, ): snake_case : str = parent snake_case : List[Any] = batch_size snake_case : Optional[Any] = seq_length snake_case : Optional[Any] = is_training snake_case : List[str] = use_input_mask snake_case : List[Any] = use_labels snake_case : List[Any] = vocab_size snake_case : Optional[int] = hidden_size snake_case : int = projection_dim snake_case : Tuple = num_hidden_layers snake_case : Dict = num_attention_heads snake_case : Any = intermediate_size snake_case : Dict = dropout snake_case : Any = attention_dropout snake_case : Any = max_position_embeddings snake_case : List[str] = initializer_range snake_case : Dict = scope snake_case : List[Any] = bos_token_id def __snake_case ( self : str ): snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case : Union[str, Any] = None if self.use_input_mask: snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case : Optional[Any] = input_mask.numpy() snake_case : Any = input_mask.shape snake_case : str = np.random.randint(1, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_ ): snake_case : List[Any] = 1 snake_case : Union[str, Any] = 0 snake_case : Optional[Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Dict ): return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def __snake_case ( self : int, SCREAMING_SNAKE_CASE_ : int, SCREAMING_SNAKE_CASE_ : Tuple, SCREAMING_SNAKE_CASE_ : Optional[Any] ): snake_case : Optional[int] = TFBlipTextModel(config=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, training=SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE_, training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def __snake_case ( self : int ): snake_case : Optional[Any] = self.prepare_config_and_inputs() snake_case : Dict = config_and_inputs snake_case : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class a ( __magic_name__ ,unittest.TestCase ): _snake_case = (TFBlipTextModel,) if is_tf_available() else () _snake_case = False _snake_case = False _snake_case = False def __snake_case ( self : str ): snake_case : List[Any] = BlipTextModelTester(self ) snake_case : int = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case ( self : Dict ): self.config_tester.run_common_tests() def __snake_case ( self : List[str] ): snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Dict ): pass def __snake_case ( self : Dict ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def __snake_case ( self : Optional[int] ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def __snake_case ( self : Any ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def __snake_case ( self : List[str] ): pass @slow def __snake_case ( self : int ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : int = TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : str, SCREAMING_SNAKE_CASE_ : Union[str, Any]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE_ )
704
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def A ( A_ : List[Any] , A_ : int=None ): snake_case : Optional[int] = None if token is not None: snake_case : List[Any] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} snake_case : str = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case : List[Any] = requests.get(A_ , headers=A_ ).json() snake_case : List[Any] = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) snake_case : Optional[Any] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(A_ ): snake_case : Optional[Any] = requests.get(url + F"""&page={i + 2}""" , headers=A_ ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def A ( A_ : int , A_ : Optional[int]=None ): snake_case : Any = None if token is not None: snake_case : str = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} snake_case : Tuple = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" snake_case : List[Any] = requests.get(A_ , headers=A_ ).json() snake_case : List[Any] = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) snake_case : Dict = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(A_ ): snake_case : List[Any] = requests.get(url + F"""&page={i + 2}""" , headers=A_ ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def A ( A_ : List[Any] , A_ : List[Any] , A_ : Any , A_ : str ): snake_case : Any = None if token is not None: snake_case : int = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} snake_case : Any = requests.get(A_ , headers=A_ , allow_redirects=A_ ) snake_case : Union[str, Any] = result.headers['''Location'''] snake_case : str = requests.get(A_ , allow_redirects=A_ ) snake_case : int = os.path.join(A_ , F"""{artifact_name}.zip""" ) with open(A_ , '''wb''' ) as fp: fp.write(response.content ) def A ( A_ : int , A_ : Any=None ): snake_case : Optional[int] = [] snake_case : Any = [] snake_case : str = None with zipfile.ZipFile(A_ ) as z: for filename in z.namelist(): if not os.path.isdir(A_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A_ ) as f: for line in f: snake_case : Optional[int] = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case : List[str] = line[: line.index(''': ''' )] snake_case : List[Any] = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed snake_case : List[Any] = line[len('''FAILED ''' ) :] failed_tests.append(A_ ) elif filename == "job_name.txt": snake_case : Optional[int] = line if len(A_ ) != len(A_ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(A_ )} for `errors` """ F"""and {len(A_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ''' problem.''' ) snake_case : int = None if job_name and job_links: snake_case : int = job_links.get(A_ , A_ ) # A list with elements of the form (line of error, error, failed test) snake_case : Tuple = [x + [y] + [job_link] for x, y in zip(A_ , A_ )] return result def A ( A_ : Optional[Any] , A_ : List[str]=None ): snake_case : str = [] snake_case : str = [os.path.join(A_ , A_ ) for p in os.listdir(A_ ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(A_ , job_links=A_ ) ) return errors def A ( A_ : Dict , A_ : Optional[Any]=None ): snake_case : Any = Counter() counter.update([x[1] for x in logs] ) snake_case : Optional[Any] = counter.most_common() snake_case : Dict = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case : str = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} snake_case : Dict = dict(sorted(r.items() , key=lambda A_ : item[1]["count"] , reverse=A_ ) ) return r def A ( A_ : Tuple ): snake_case : Tuple = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): snake_case : Optional[int] = test.split('''/''' )[2] else: snake_case : int = None return test def A ( A_ : Optional[Any] , A_ : Dict=None ): snake_case : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case : int = [x for x in logs if x[2] is not None] snake_case : int = {x[2] for x in logs} snake_case : List[str] = {} for test in tests: snake_case : Dict = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case : Optional[Any] = counter.most_common() snake_case : str = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case : List[Any] = sum(error_counts.values() ) if n_errors > 0: snake_case : Optional[Any] = {'''count''': n_errors, '''errors''': error_counts} snake_case : Optional[int] = dict(sorted(r.items() , key=lambda A_ : item[1]["count"] , reverse=A_ ) ) return r def A ( A_ : Optional[Any] ): snake_case : Dict = '''| no. | error | status |''' snake_case : Union[str, Any] = '''|-:|:-|:-|''' snake_case : List[Any] = [header, sep] for error in reduced_by_error: snake_case : Optional[int] = reduced_by_error[error]['''count'''] snake_case : List[str] = F"""| {count} | {error[:100]} | |""" lines.append(A_ ) return "\n".join(A_ ) def A ( A_ : Optional[int] ): snake_case : Union[str, Any] = '''| model | no. of errors | major error | count |''' snake_case : Dict = '''|-:|-:|-:|-:|''' snake_case : Optional[Any] = [header, sep] for model in reduced_by_model: snake_case : str = reduced_by_model[model]['''count'''] snake_case, snake_case : Tuple = list(reduced_by_model[model]['''errors'''].items() )[0] snake_case : Dict = F"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(A_ ) return "\n".join(A_ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") UpperCAmelCase = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCAmelCase = get_job_links(args.workflow_run_id, token=args.token) UpperCAmelCase = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCAmelCase = k.find(" / ") UpperCAmelCase = k[index + len(" / ") :] UpperCAmelCase = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCAmelCase = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCAmelCase = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCAmelCase = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCAmelCase = reduce_by_error(errors) UpperCAmelCase = reduce_by_model(errors) UpperCAmelCase = make_github_table(reduced_by_error) UpperCAmelCase = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
555
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" for char in word: __magic_name__ : Optional[int] = ord(lowerCamelCase_ ) if not _is_chinese_char(lowerCamelCase_ ): return 0 return 1 def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" __magic_name__ : Union[str, Any] = set() for token in tokens: __magic_name__ : Any = len(lowerCamelCase_ ) > 1 and is_chinese(lowerCamelCase_ ) if chinese_word: word_set.add(lowerCamelCase_ ) __magic_name__ : str = list(lowerCamelCase_ ) return word_list def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if not chinese_word_set: return bert_tokens __magic_name__ : Tuple = max([len(lowerCamelCase_ ) for w in chinese_word_set] ) __magic_name__ : List[str] = bert_tokens __magic_name__ : Tuple = 0, len(lowerCamelCase_ ) while start < end: __magic_name__ : List[str] = True if is_chinese(bert_word[start] ): __magic_name__ : List[str] = min(end - start , lowerCamelCase_ ) for i in range(lowerCamelCase_ , 1 , -1 ): __magic_name__ : Optional[int] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __magic_name__ : Optional[Any] = '##' + bert_word[j] __magic_name__ : List[Any] = start + i __magic_name__ : Tuple = False break if single_word: start += 1 return bert_word def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : Union[str, Any] = [] for i in range(0 , len(lowerCamelCase_ ) , 100 ): __magic_name__ : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws __magic_name__ : Optional[int] = [get_chinese_word(lowerCamelCase_ ) for r in res] ltp_res.extend(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) __magic_name__ : Optional[Any] = [] for i in range(0 , len(lowerCamelCase_ ) , 100 ): __magic_name__ : Union[str, Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) __magic_name__ : Union[str, Any] = [] for input_ids, chinese_word in zip(lowerCamelCase_ , lowerCamelCase_ ): __magic_name__ : str = [] for id in input_ids: __magic_name__ : Optional[int] = bert_tokenizer._convert_id_to_token(lowerCamelCase_ ) input_tokens.append(lowerCamelCase_ ) __magic_name__ : int = add_sub_symbol(lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ : List[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase_ ): if token[:2] == "##": __magic_name__ : Dict = token[2:] # save chinese tokens' pos if len(lowerCamelCase_ ) == 1 and _is_chinese_char(ord(lowerCamelCase_ ) ): ref_id.append(lowerCamelCase_ ) ref_ids.append(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) return ref_ids def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: __magic_name__ : int = f.readlines() __magic_name__ : Optional[Any] = [line.strip() for line in data if len(lowerCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __magic_name__ : int = LTP(args.ltp ) # faster in GPU device __magic_name__ : Dict = BertTokenizer.from_pretrained(args.bert ) __magic_name__ : Union[str, Any] = prepare_ref(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: __magic_name__ : Union[str, Any] = [json.dumps(lowerCamelCase_ ) + '\n' for ref in ref_ids] f.writelines(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() main(args)
436
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _UpperCamelCase( __lowerCamelCase ): def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : List[Any] = tempfile.mkdtemp() __a : int = 8 # DPR tok __a : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __a : int = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __a : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __a : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : List[str] = {'unk_token': '<unk>'} __a : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['vocab_file'] ) __a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowerCAmelCase ( self : str ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : Tuple = os.path.join(self.tmpdirname , 'rag_tokenizer' ) __a : Optional[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __a : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) rag_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) __a : List[Any] = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , SCREAMING_SNAKE_CASE__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , SCREAMING_SNAKE_CASE__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : Optional[Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) __a : List[Any] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __a : Tuple = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @slow def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Any = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) __a : Union[str, Any] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __a : str = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
47
0
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () A_ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). A_ = [0, 25, 50] A_ = [25, 50, 75] A_ = fuzz.membership.trimf(X, abca) A_ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. A_ = np.ones(75) A_ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) A_ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) A_ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) A_ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) A_ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] A_ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) A_ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] A_ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] A_ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
718
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging A_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = ['input_values', 'attention_mask'] def __init__( self : Union[str, Any] , snake_case : int = 1 , snake_case : int = 1_6000 , snake_case : float = 0.0 , snake_case : bool = False , snake_case : int = 80 , snake_case : int = 16 , snake_case : int = 64 , snake_case : str = "hann_window" , snake_case : float = 1.0 , snake_case : float = 80 , snake_case : float = 7600 , snake_case : float = 1e-10 , snake_case : int = 2 , snake_case : bool = True , **snake_case : Dict , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A__ : Optional[int] = do_normalize A__ : List[Any] = return_attention_mask A__ : Tuple = num_mel_bins A__ : Optional[int] = hop_length A__ : List[str] = win_length A__ : List[Any] = win_function A__ : Tuple = frame_signal_scale A__ : Optional[Any] = fmin A__ : str = fmax A__ : str = mel_floor A__ : Dict = reduction_factor A__ : int = win_length * sampling_rate // 1000 A__ : Optional[Any] = hop_length * sampling_rate // 1000 A__ : Optional[int] = optimal_fft_length(self.sample_size ) A__ : List[Any] = (self.n_fft // 2) + 1 A__ : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) A__ : Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , snake_case , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _UpperCamelCase ( snake_case : List[np.ndarray] , snake_case : List[np.ndarray] , snake_case : float = 0.0 ): '''simple docstring''' if attention_mask is not None: A__ : Tuple = np.array(snake_case , np.intaa ) A__ : List[Any] = [] for vector, length in zip(snake_case , attention_mask.sum(-1 ) ): A__ : str = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: A__ : int = padding_value normed_input_values.append(snake_case ) else: A__ : List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def _UpperCamelCase ( self : Optional[int] , snake_case : np.ndarray , ): '''simple docstring''' A__ : List[Any] = spectrogram( snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self : str , snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , snake_case : Union[bool, str, PaddingStrategy] = False , snake_case : Optional[int] = None , snake_case : bool = False , snake_case : Optional[int] = None , snake_case : Optional[bool] = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Optional[int] = None , **snake_case : Union[str, Any] , ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: A__ : Dict = self._process_audio( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case , ) else: A__ : Dict = None if audio_target is not None: A__ : Union[str, Any] = self._process_audio( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case , ) if inputs is None: return inputs_target else: A__ : Union[str, Any] = inputs_target["""input_values"""] A__ : str = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: A__ : List[str] = decoder_attention_mask return inputs def _UpperCamelCase ( self : str , snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case : bool = False , snake_case : Union[bool, str, PaddingStrategy] = False , snake_case : Optional[int] = None , snake_case : bool = False , snake_case : Optional[int] = None , snake_case : Optional[bool] = None , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : Union[str, Any] , ): '''simple docstring''' A__ : List[str] = isinstance(snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) A__ : Tuple = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ : Tuple = [np.asarray(snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A__ : Tuple = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ : str = speech.astype(np.floataa ) # always return batch if not is_batched: A__ : Optional[Any] = [speech] # needed to make pad() work on spectrogram inputs A__ : str = self.feature_size # convert into correct format for padding if is_target: A__ : str = [self._extract_mel_features(snake_case ) for waveform in speech] A__ : List[str] = BatchFeature({"""input_values""": features} ) A__ : Dict = self.num_mel_bins else: A__ : Tuple = BatchFeature({"""input_values""": speech} ) A__ : List[str] = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) A__ : List[str] = feature_size_hack # convert input values to correct format A__ : str = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): A__ : Tuple = [np.asarray(snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ : Dict = [array.astype(np.floataa ) for array in input_values] elif isinstance(snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ : Any = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ : List[Any] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: A__ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ : Optional[int] = ( attention_mask if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ : Optional[int] = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ : Any = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ : Dict = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
498
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) UpperCamelCase : Tuple = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class A__ ( A__ ): """simple docstring""" _lowercase = 'donut-swin' _lowercase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , lowerCamelCase__ : Optional[Any]=224 , lowerCamelCase__ : Tuple=4 , lowerCamelCase__ : str=3 , lowerCamelCase__ : Union[str, Any]=96 , lowerCamelCase__ : Optional[int]=[2, 2, 6, 2] , lowerCamelCase__ : str=[3, 6, 12, 24] , lowerCamelCase__ : List[str]=7 , lowerCamelCase__ : int=4.0 , lowerCamelCase__ : Any=True , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Optional[int]=0.02 , lowerCamelCase__ : Dict=1E-5 , **lowerCamelCase__ : Optional[int] , ): super().__init__(**lowerCamelCase__ ) a__ : Tuple = image_size a__ : str = patch_size a__ : Tuple = num_channels a__ : Any = embed_dim a__ : int = depths a__ : List[str] = len(lowerCamelCase__ ) a__ : Optional[Any] = num_heads a__ : Dict = window_size a__ : Optional[int] = mlp_ratio a__ : List[Any] = qkv_bias a__ : Tuple = hidden_dropout_prob a__ : int = attention_probs_dropout_prob a__ : Union[str, Any] = drop_path_rate a__ : List[str] = hidden_act a__ : Optional[Any] = use_absolute_embeddings a__ : Union[str, Any] = layer_norm_eps a__ : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a__ : Any = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) )
37
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping __lowerCAmelCase = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False return input_list if __name__ == "__main__": print("Enter list to be sorted") A : Tuple = [int(x) for x in input().split()] # inputing elements of the list in one line A : Dict = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
636
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _lowerCAmelCase ( A__ ): lowercase__ = int(number**0.5 ) return number == sq * sq def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ ): lowercase__ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowercase__ = x_den * y_den * z_den lowercase__ = gcd(lowerCAmelCase_ , lowerCAmelCase_ ) top //= hcf bottom //= hcf return top, bottom def _lowerCAmelCase ( A__ = 35 ): lowercase__ = set() lowercase__ = 42 lowercase__ = Fraction(0 ) lowercase__ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowercase__ = x_num * y_den + x_den * y_num lowercase__ = x_den * y_den lowercase__ = gcd(lowerCAmelCase_ , lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase__ = add_three( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) # n=2 lowercase__ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowercase__ = x_den * x_den * y_den * y_den if is_sq(lowerCAmelCase_ ) and is_sq(lowerCAmelCase_ ): lowercase__ = int(sqrt(lowerCAmelCase_ ) ) lowercase__ = int(sqrt(lowerCAmelCase_ ) ) lowercase__ = gcd(lowerCAmelCase_ , lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase__ = add_three( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) # n=-1 lowercase__ = x_num * y_num lowercase__ = x_den * y_num + x_num * y_den lowercase__ = gcd(lowerCAmelCase_ , lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase__ = add_three( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) # n=2 lowercase__ = x_num * x_num * y_num * y_num lowercase__ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCAmelCase_ ) and is_sq(lowerCAmelCase_ ): lowercase__ = int(sqrt(lowerCAmelCase_ ) ) lowercase__ = int(sqrt(lowerCAmelCase_ ) ) lowercase__ = gcd(lowerCAmelCase_ , lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase__ = add_three( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) for num, den in unique_s: total += Fraction(lowerCAmelCase_ , lowerCAmelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
0
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(_UpperCAmelCase , n - 1 , _UpperCAmelCase ) * a) % mod else: a_ = binary_exponentiation(_UpperCAmelCase , n / 2 , _UpperCAmelCase ) return (b * b) % mod # a prime number __lowerCAmelCase =701 __lowerCAmelCase =10_0000_0000 __lowerCAmelCase =10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
697
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) a_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
697
1
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __lowercase : """simple docstring""" SCREAMING_SNAKE_CASE__ = None def lowerCAmelCase ( self ): __UpperCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCamelCase : str = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _lowerCamelCase ) def lowerCAmelCase ( self ): __UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : Any = os.path.join(_lowerCamelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(_lowerCamelCase ) __UpperCamelCase : Optional[Any] = self.feature_extraction_class.from_json_file(_lowerCamelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase ( self ): __UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : Optional[int] = feat_extract_first.save_pretrained(_lowerCamelCase )[0] check_json_file_has_correct_format(_lowerCamelCase ) __UpperCamelCase : int = self.feature_extraction_class.from_pretrained(_lowerCamelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase ( self ): __UpperCamelCase : Optional[Any] = self.feature_extraction_class() self.assertIsNotNone(_lowerCamelCase )
287
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a= logging.get_logger(__name__) a= { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a= { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } a= {'''facebook/blenderbot-3B''': 1_2_8} class __lowercase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ = BlenderbotTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) __UpperCamelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _lowerCamelCase ) != add_prefix_space: __UpperCamelCase : Any = getattr(_lowerCamelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase : Dict = add_prefix_space __UpperCamelCase : Optional[Any] = pre_tok_class(**_lowerCamelCase ) __UpperCamelCase : str = add_prefix_space __UpperCamelCase : Optional[int] = 'post_processor' __UpperCamelCase : Tuple = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: __UpperCamelCase : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase : List[Any] = tuple(state['sep'] ) if "cls" in state: __UpperCamelCase : str = tuple(state['cls'] ) __UpperCamelCase : Tuple = False if state.get('add_prefix_space' , _lowerCamelCase ) != add_prefix_space: __UpperCamelCase : Dict = add_prefix_space __UpperCamelCase : str = True if state.get('trim_offsets' , _lowerCamelCase ) != trim_offsets: __UpperCamelCase : int = trim_offsets __UpperCamelCase : Any = True if changes_to_apply: __UpperCamelCase : Dict = getattr(_lowerCamelCase , state.pop('type' ) ) __UpperCamelCase : Any = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCAmelCase ( self ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : int = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value __UpperCamelCase : Optional[Any] = value def lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ): __UpperCamelCase : Dict = kwargs.get('is_split_into_words' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ): __UpperCamelCase : Dict = kwargs.get('is_split_into_words' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ): __UpperCamelCase : List[str] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ): __UpperCamelCase : Union[str, Any] = [self.sep_token_id] __UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ): return token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_lowerCamelCase ) __UpperCamelCase : Union[str, Any] = ' '.join(_lowerCamelCase ) __UpperCamelCase : Union[str, Any] = self.encode(_lowerCamelCase ) if len(_lowerCamelCase ) > self.model_max_length: __UpperCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
287
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase : Dict = _symbol_database.Default() lowerCAmelCase : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase : Optional[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase : Optional[int] = None lowerCAmelCase : str = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase : Optional[int] = 45 lowerCAmelCase : Tuple = 15_81 lowerCAmelCase : Tuple = 15_17 lowerCAmelCase : Tuple = 15_70 lowerCAmelCase : Union[str, Any] = 15_84 lowerCAmelCase : Optional[int] = 17_93 lowerCAmelCase : int = 17_95 lowerCAmelCase : Dict = 19_16 lowerCAmelCase : List[Any] = 18_64 lowerCAmelCase : Any = 19_05 lowerCAmelCase : Any = 19_19 lowerCAmelCase : str = 24_29 lowerCAmelCase : str = 22_08 lowerCAmelCase : Any = 24_18 lowerCAmelCase : Dict = 23_23 lowerCAmelCase : Optional[int] = 24_07 # @@protoc_insertion_point(module_scope)
3
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class lowerCAmelCase__ : '''simple docstring''' pass
630
0
"""simple docstring""" import argparse A_ = "docs/source/_static/js/custom.js" def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Dict: with open(UpperCAmelCase__, encoding="""utf-8""", newline="""\n""" ) as f: A__ : Optional[int] = f.readlines() A__ : Tuple = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 A__ : Optional[Any] = f'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f' "v{version}": "v{version}",\n' with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') A_ = parser.parse_args() update_custom_js(args.version)
708
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging A_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE : snake_case_ = 42 snake_case_ = None @staticmethod def _UpperCamelCase ( ): '''simple docstring''' raise NotImplementedError def _UpperCamelCase ( self : str , snake_case : int , snake_case : int , snake_case : str , **snake_case : Any ): '''simple docstring''' raise NotImplementedError def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] ): '''simple docstring''' raise NotImplementedError def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def _UpperCamelCase ( cls : Optional[int] ): '''simple docstring''' return F'`pip install {cls.pip_package or cls.name}`' class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'optuna' @staticmethod def _UpperCamelCase ( ): '''simple docstring''' return is_optuna_available() def _UpperCamelCase ( self : str , snake_case : str , snake_case : int , snake_case : str , **snake_case : Any ): '''simple docstring''' return run_hp_search_optuna(snake_case , snake_case , snake_case , **snake_case ) def _UpperCamelCase ( self : Optional[Any] , snake_case : int ): '''simple docstring''' return default_hp_space_optuna(snake_case ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'ray' snake_case_ = '\'ray[tune]\'' @staticmethod def _UpperCamelCase ( ): '''simple docstring''' return is_ray_available() def _UpperCamelCase ( self : Any , snake_case : Tuple , snake_case : int , snake_case : str , **snake_case : List[Any] ): '''simple docstring''' return run_hp_search_ray(snake_case , snake_case , snake_case , **snake_case ) def _UpperCamelCase ( self : Dict , snake_case : Dict ): '''simple docstring''' return default_hp_space_ray(snake_case ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'sigopt' @staticmethod def _UpperCamelCase ( ): '''simple docstring''' return is_sigopt_available() def _UpperCamelCase ( self : str , snake_case : str , snake_case : int , snake_case : str , **snake_case : Union[str, Any] ): '''simple docstring''' return run_hp_search_sigopt(snake_case , snake_case , snake_case , **snake_case ) def _UpperCamelCase ( self : List[str] , snake_case : Any ): '''simple docstring''' return default_hp_space_sigopt(snake_case ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'wandb' @staticmethod def _UpperCamelCase ( ): '''simple docstring''' return is_wandb_available() def _UpperCamelCase ( self : int , snake_case : int , snake_case : int , snake_case : str , **snake_case : Any ): '''simple docstring''' return run_hp_search_wandb(snake_case , snake_case , snake_case , **snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Union[str, Any] ): '''simple docstring''' return default_hp_space_wandb(snake_case ) A_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _lowerCAmelCase ( ) ->str: A__ : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(UpperCAmelCase__ ) > 0: A__ : Dict = available_backends[0].name if len(UpperCAmelCase__ ) > 1: logger.info( f'{len(UpperCAmelCase__ )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
498
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowerCamelCase : Optional[int] = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def A__ ( __A : Any , __A : Optional[Any] ) ->Dict: inspect_dataset(__A , __A ) __A =path + '''.py''' assert script_name in os.listdir(__A ) assert "__pycache__" not in os.listdir(__A ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def A__ ( __A : List[Any] , __A : Optional[Any] ) ->Optional[Any]: inspect_metric(__A , __A ) __A =path + '''.py''' assert script_name in os.listdir(__A ) assert "__pycache__" not in os.listdir(__A ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def A__ ( __A : Any , __A : Union[str, Any] , __A : Union[str, Any] ) ->Union[str, Any]: __A =get_dataset_config_info(__A , config_name=__A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def A__ ( __A : Any , __A : Tuple , __A : Dict ) ->Tuple: with pytest.raises(__A ): get_dataset_config_info(__A , config_name=__A ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def A__ ( __A : List[str] , __A : Any ) ->Any: __A =get_dataset_config_names(__A ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def A__ ( __A : List[Any] , __A : Tuple , __A : int ) ->Optional[Any]: __A =get_dataset_infos(__A ) assert list(infos.keys() ) == expected_configs __A =expected_configs[0] assert expected_config in infos __A =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def A__ ( __A : List[str] , __A : Optional[int] , __A : Any ) ->Dict: __A =get_dataset_infos(__A ) assert expected_config in infos __A =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def A__ ( __A : Any , __A : Dict , __A : str ) ->List[str]: with pytest.raises(__A ): get_dataset_split_names(__A , config_name=__A )
184
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCamelCase : List[Any] = logging.getLogger(__name__) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , lowercase__=-1 ): '''simple docstring''' __A =label_idx def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): __A =mode.value __A =os.path.join(lowercase__ , f'''{mode}.txt''' ) __A =1 __A =[] with open(lowercase__ , encoding='''utf-8''' ) as f: __A =[] __A =[] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 __A =[] __A =[] else: __A =line.split(''' ''' ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' __A =0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __A =line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(lowercase__ ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if path: with open(lowercase__ , '''r''' ) as f: __A =f.read().splitlines() if "O" not in labels: __A =['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if path: with open(lowercase__ , '''r''' ) as f: __A =f.read().splitlines() if "O" not in labels: __A =['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): __A =mode.value __A =os.path.join(lowercase__ , f'''{mode}.txt''' ) __A =1 __A =[] with open(lowercase__ , encoding='''utf-8''' ) as f: for sentence in parse_incr(lowercase__ ): __A =[] __A =[] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' __A =0 for sentence in parse_incr(lowercase__ ): __A =preds_list[example_id] __A ='''''' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if path: with open(lowercase__ , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
184
1
from collections.abc import Callable class lowercase_ : def __init__( self: int, _lowercase: Callable | None = None): '''simple docstring''' __lowerCAmelCase = [] # Stores indexes of each item for supporting updates and deletion. __lowerCAmelCase = {} # Stores current size of heap. __lowerCAmelCase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowerCAmelCase = key or (lambda _lowercase: x) def _lowercase ( self: Tuple, _lowercase: int): '''simple docstring''' return int((i - 1) / 2) if i > 0 else None def _lowercase ( self: List[str], _lowercase: int): '''simple docstring''' __lowerCAmelCase = int(2 * i + 1) return left if 0 < left < self.size else None def _lowercase ( self: Tuple, _lowercase: int): '''simple docstring''' __lowerCAmelCase = int(2 * i + 2) return right if 0 < right < self.size else None def _lowercase ( self: Optional[Any], _lowercase: int, _lowercase: int): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowerCAmelCase , __lowerCAmelCase = self.arr[j], self.arr[i] def _lowercase ( self: Optional[int], _lowercase: int, _lowercase: int): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def _lowercase ( self: Dict, _lowercase: int): '''simple docstring''' __lowerCAmelCase = self._left(_lowercase) __lowerCAmelCase = self._right(_lowercase) __lowerCAmelCase = i if left is not None and not self._cmp(_lowercase, _lowercase): __lowerCAmelCase = left if right is not None and not self._cmp(_lowercase, _lowercase): __lowerCAmelCase = right return valid_parent def _lowercase ( self: Union[str, Any], _lowercase: int): '''simple docstring''' __lowerCAmelCase = self._parent(_lowercase) while parent is not None and not self._cmp(_lowercase, _lowercase): self._swap(_lowercase, _lowercase) __lowerCAmelCase , __lowerCAmelCase = parent, self._parent(_lowercase) def _lowercase ( self: Union[str, Any], _lowercase: int): '''simple docstring''' __lowerCAmelCase = self._get_valid_parent(_lowercase) while valid_parent != index: self._swap(_lowercase, _lowercase) __lowerCAmelCase , __lowerCAmelCase = valid_parent, self._get_valid_parent(_lowercase) def _lowercase ( self: Optional[Any], _lowercase: int, _lowercase: int): '''simple docstring''' if item not in self.pos_map: return __lowerCAmelCase = self.pos_map[item] __lowerCAmelCase = [item, self.key(_lowercase)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_lowercase) self._heapify_down(_lowercase) def _lowercase ( self: Optional[int], _lowercase: int): '''simple docstring''' if item not in self.pos_map: return __lowerCAmelCase = self.pos_map[item] del self.pos_map[item] __lowerCAmelCase = self.arr[self.size - 1] __lowerCAmelCase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_lowercase) self._heapify_down(_lowercase) def _lowercase ( self: List[Any], _lowercase: int, _lowercase: int): '''simple docstring''' __lowerCAmelCase = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(_lowercase)]) else: __lowerCAmelCase = [item, self.key(_lowercase)] __lowerCAmelCase = self.size self.size += 1 self._heapify_up(self.size - 1) def _lowercase ( self: List[str]): '''simple docstring''' return self.arr[0] if self.size else None def _lowercase ( self: Optional[int]): '''simple docstring''' __lowerCAmelCase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def UpperCAmelCase ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
334
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __A : Tuple = False __A : Optional[int] = True __A : Optional[Any] = False if __name__ == "__main__": __A : Any = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __A : List[str] = parser.parse_args() __A : List[Any] = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } __A : Optional[int] = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } __A : List[str] = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: __A : List[str] = reader.read() __A : int = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): __A : List[str] = UNetaDModel(**config) else: __A : Dict = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel __A : Optional[int] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __A : List[Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __A : Optional[Any] = config[key] del config[key] __A : Dict = [k.replace("UNetRes", "") for k in config["down_block_types"]] __A : Tuple = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: __A : Dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) __A : Tuple = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue __A : Dict = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: __A : List[Any] = param_value __A : Optional[Any] = True if not has_changed: __A : List[Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
334
1
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') _SCREAMING_SNAKE_CASE : Optional[int] = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) _SCREAMING_SNAKE_CASE : Any = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) _SCREAMING_SNAKE_CASE : Any = BeautifulSoup(res.text, '''html.parser''') _SCREAMING_SNAKE_CASE : int = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F'''https://google.com{link.get('href')}''')
549
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) class a ( __snake_case ): SCREAMING_SNAKE_CASE : Optional[Any] = """summarization""" SCREAMING_SNAKE_CASE : Any = ["""loss"""] SCREAMING_SNAKE_CASE : Optional[int] = ROUGE_KEYS SCREAMING_SNAKE_CASE : Optional[int] = """rouge2""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: lowerCamelCase_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , mode=self.mode , **__SCREAMING_SNAKE_CASE ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) lowerCamelCase_ = Path(self.output_dir ) / 'metrics.json' lowerCamelCase_ = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) lowerCamelCase_ = 0 lowerCamelCase_ = defaultdict(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.config.model_type lowerCamelCase_ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size lowerCamelCase_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } lowerCamelCase_ = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } lowerCamelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCamelCase_ = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCamelCase_ = get_git_info()['repo_sha'] lowerCamelCase_ = hparams.num_workers lowerCamelCase_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCamelCase_ = self.decoder_start_token_id lowerCamelCase_ = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) lowerCamelCase_ = False lowerCamelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCamelCase_ = self.hparams.eval_max_gen_length else: lowerCamelCase_ = self.model.config.max_length lowerCamelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: lowerCamelCase_ = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(__SCREAMING_SNAKE_CASE , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) lowerCamelCase_ = True return readable_batch def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: return self.model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] ) -> int: lowerCamelCase_ = self.tokenizer.batch_decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) return lmap(str.strip , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : dict ) -> Tuple: lowerCamelCase_ = self.tokenizer.pad_token_id lowerCamelCase_ , lowerCamelCase_ = batch['input_ids'], batch['attention_mask'] lowerCamelCase_ = batch['labels'] if isinstance(self.model , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = self.model._shift_right(__SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ = shift_tokens_right(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCamelCase_ = decoder_input_ids self.save_readable_batch(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCamelCase_ = nn.CrossEntropyLoss(ignore_index=__SCREAMING_SNAKE_CASE ) assert lm_logits.shape[-1] == self.vocab_size lowerCamelCase_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: lowerCamelCase_ = nn.functional.log_softmax(__SCREAMING_SNAKE_CASE , dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = label_smoothed_nll_loss( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=__SCREAMING_SNAKE_CASE ) return (loss,) @property def UpperCamelCase ( self : Optional[Any] ) -> int: return self.tokenizer.pad_token_id def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Dict: lowerCamelCase_ = self._step(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) # tokens per batch lowerCamelCase_ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() lowerCamelCase_ = batch['input_ids'].shape[0] lowerCamelCase_ = batch['input_ids'].eq(self.pad ).sum() lowerCamelCase_ = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int ) -> Dict: return self._generative_step(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]="val" ) -> Dict: self.step_count += 1 lowerCamelCase_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCamelCase_ = losses['loss'] lowerCamelCase_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } lowerCamelCase_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCamelCase_ = torch.tensor(__SCREAMING_SNAKE_CASE ).type_as(__SCREAMING_SNAKE_CASE ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} lowerCamelCase_ = self.step_count self.metrics[prefix].append(__SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path lowerCamelCase_ = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Dict: return calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : dict ) -> dict: lowerCamelCase_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCamelCase_ = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=__SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) lowerCamelCase_ = (time.time() - ta) / batch['input_ids'].shape[0] lowerCamelCase_ = self.ids_to_clean_text(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.ids_to_clean_text(batch['labels'] ) lowerCamelCase_ = self._step(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = self.calc_generative_metrics(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = np.mean(lmap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) base_metrics.update(gen_time=__SCREAMING_SNAKE_CASE , gen_len=__SCREAMING_SNAKE_CASE , preds=__SCREAMING_SNAKE_CASE , target=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return base_metrics def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int ) -> Any: return self._generative_step(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: return self.validation_epoch_end(__SCREAMING_SNAKE_CASE , prefix='test' ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> SeqaSeqDataset: lowerCamelCase_ = self.n_obs[type_path] lowerCamelCase_ = self.target_lens[type_path] lowerCamelCase_ = self.dataset_class( self.tokenizer , type_path=__SCREAMING_SNAKE_CASE , n_obs=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , **self.dataset_kwargs , ) return dataset def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> DataLoader: lowerCamelCase_ = self.get_dataset(__SCREAMING_SNAKE_CASE ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCamelCase_ = dataset.make_sortish_sampler(__SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCamelCase_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_sampler=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) def UpperCamelCase ( self : Dict ) -> DataLoader: lowerCamelCase_ = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) return dataloader def UpperCamelCase ( self : int ) -> DataLoader: return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase ( self : int ) -> DataLoader: return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: BaseTransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) add_generic_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) parser.add_argument( '--max_source_length' , default=1024 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--max_tokens_per_batch' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--logger_name' , type=__SCREAMING_SNAKE_CASE , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=__SCREAMING_SNAKE_CASE , default=500 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=__SCREAMING_SNAKE_CASE , default='summarization' , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=__SCREAMING_SNAKE_CASE , default=0.0 , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--src_lang' , type=__SCREAMING_SNAKE_CASE , default='' , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--tgt_lang' , type=__SCREAMING_SNAKE_CASE , default='' , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--eval_beams' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) parser.add_argument( '--val_metric' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=__SCREAMING_SNAKE_CASE , default=1 , required=__SCREAMING_SNAKE_CASE , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class a ( __snake_case ): SCREAMING_SNAKE_CASE : Union[str, Any] = """translation""" SCREAMING_SNAKE_CASE : List[str] = ["""loss"""] SCREAMING_SNAKE_CASE : str = ["""bleu"""] SCREAMING_SNAKE_CASE : Optional[int] = """bleu""" def __init__( self : str , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = hparams.src_lang lowerCamelCase_ = hparams.tgt_lang def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> dict: return calculate_bleu(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=_lowerCamelCase ) check_output_dir(_lowerCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCamelCase_ = SummarizationModule(_lowerCamelCase ) else: lowerCamelCase_ = TranslationModule(_lowerCamelCase ) lowerCamelCase_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): lowerCamelCase_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCamelCase_ = os.environ.get('WANDB_PROJECT' , _lowerCamelCase ) lowerCamelCase_ = WandbLogger(name=model.output_dir.name , project=_lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCamelCase_ = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: lowerCamelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCamelCase_ = False lowerCamelCase_ = args.val_metric == 'loss' lowerCamelCase_ = generic_train( _lowerCamelCase , _lowerCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowerCamelCase ) , early_stopping_callback=_lowerCamelCase , logger=_lowerCamelCase , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model lowerCamelCase_ = '' lowerCamelCase_ = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=_lowerCamelCase ) ) if checkpoints: lowerCamelCase_ = checkpoints[-1] lowerCamelCase_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() _SCREAMING_SNAKE_CASE : Any = pl.Trainer.add_argparse_args(parser) _SCREAMING_SNAKE_CASE : Any = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() main(args)
549
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : int = logging.get_logger(__name__) lowerCAmelCase__ : Tuple = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''dpr''' def __init__( self : Optional[int] , UpperCAmelCase_ : int=30_522 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Dict=3_072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : int=1e-12 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : List[Any]="absolute" , UpperCAmelCase_ : int = 0 , **UpperCAmelCase_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : str = projection_dim __UpperCAmelCase : int = position_embedding_type
712
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ : List[str] = TypeVar("KEY") lowerCAmelCase__ : str = TypeVar("VAL") @dataclass(frozen=snake_case__ ,slots=snake_case__ ) class SCREAMING_SNAKE_CASE__ ( Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 class SCREAMING_SNAKE_CASE__ ( _Item ): """simple docstring""" def __init__( self : Tuple ): """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __bool__( self : Dict ): """simple docstring""" return False lowerCAmelCase__ : str = _DeletedItem() class SCREAMING_SNAKE_CASE__ ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : float = 0.75 ): """simple docstring""" __UpperCAmelCase : List[Any] = initial_block_size __UpperCAmelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCAmelCase : int = capacity_factor __UpperCAmelCase : int = 0 def lowerCamelCase_ ( self : str , UpperCAmelCase_ : KEY ): """simple docstring""" return hash(UpperCAmelCase_ ) % len(self._buckets ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : int ): """simple docstring""" return (ind + 1) % len(self._buckets ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : KEY , UpperCAmelCase_ : VAL ): """simple docstring""" __UpperCAmelCase : Tuple = self._buckets[ind] if not stored: __UpperCAmelCase : str = _Item(UpperCAmelCase_ , UpperCAmelCase_ ) self._len += 1 return True elif stored.key == key: __UpperCAmelCase : List[Any] = _Item(UpperCAmelCase_ , UpperCAmelCase_ ) return True else: return False def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : List[Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False __UpperCAmelCase : Dict = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowerCamelCase_ ( self : int , UpperCAmelCase_ : int ): """simple docstring""" __UpperCAmelCase : List[Any] = self._buckets __UpperCAmelCase : str = [None] * new_size __UpperCAmelCase : Any = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def lowerCamelCase_ ( self : int ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase_ : KEY ): """simple docstring""" __UpperCAmelCase : str = self._get_bucket_index(UpperCAmelCase_ ) for _ in range(len(self._buckets ) ): yield ind __UpperCAmelCase : Optional[Any] = self._get_next_ind(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : KEY , UpperCAmelCase_ : VAL ): """simple docstring""" for ind in self._iterate_buckets(UpperCAmelCase_ ): if self._try_set(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): break def __setitem__( self : Tuple , UpperCAmelCase_ : KEY , UpperCAmelCase_ : VAL ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(UpperCAmelCase_ , UpperCAmelCase_ ) def __delitem__( self : Optional[int] , UpperCAmelCase_ : KEY ): """simple docstring""" for ind in self._iterate_buckets(UpperCAmelCase_ ): __UpperCAmelCase : Optional[int] = self._buckets[ind] if item is None: raise KeyError(UpperCAmelCase_ ) if item is _deleted: continue if item.key == key: __UpperCAmelCase : Optional[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Any , UpperCAmelCase_ : KEY ): """simple docstring""" for ind in self._iterate_buckets(UpperCAmelCase_ ): __UpperCAmelCase : str = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(UpperCAmelCase_ ) def __len__( self : List[Any] ): """simple docstring""" return self._len def __iter__( self : Optional[int] ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ): """simple docstring""" __UpperCAmelCase : Any = " ,".join( f"{item.key}: {item.val}" for item in self._buckets if item ) return f"HashMap({val_string})"
329
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def _A ( A ) -> List[Any]: monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" ,set() ) @pytest.fixture def _A ( A ) -> Tuple: class _UpperCamelCase : '''simple docstring''' def __init__( self , a_ ) -> Tuple: lowercase : Dict = metric_id class _UpperCamelCase : '''simple docstring''' _snake_case = [MetricMock(__snake_case) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def a__ ( self ) -> Union[str, Any]: return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" ,HfhMock() ) @pytest.mark.parametrize( "func, args" ,[(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def _A ( A ,A ,A ,A ,A ) -> List[Any]: if "tmp_path" in args: lowercase : Dict = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(_A ,match="https://huggingface.co/docs/evaluate" ): func(*_A )
372
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCAmelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=3_05_22, type=int) _lowerCAmelCase = parser.parse_args() logger.info(F'Loading data from {args.data_file}') with open(args.data_file, 'rb') as fp: _lowerCAmelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCAmelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCAmelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCAmelCase = v logger.info(F'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
264
0
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) snake_case_ : Union[str, Any] = str(bin(__magic_name__ ) )[2:] # remove the leading "0b" snake_case_ : Optional[Any] = str(bin(__magic_name__ ) )[2:] # remove the leading "0b" snake_case_ : Any = max(len(__magic_name__ ) ,len(__magic_name__ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(__magic_name__ ) ,b_binary.zfill(__magic_name__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase : str = 128022 __lowerCamelCase : List[Any] = 128028 @require_sentencepiece class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MaMaaaTokenizer a__ = False a__ = False a__ = True def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Optional[int] = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = "</s>" snake_case_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def _A ( self :Optional[int] ) -> int: '''simple docstring''' snake_case_ : int = self.get_tokenizer() snake_case_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , "This is a test" ) @slow def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): """simple docstring""" a__ = '''facebook/m2m100_418M''' a__ = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] a__ = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def _A ( cls :str ) -> int: '''simple docstring''' snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) snake_case_ : List[str] = 1 return cls def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def _A ( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.tokenizer.get_vocab() self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ ) def _A ( self :Any ) -> Dict: '''simple docstring''' snake_case_ : List[str] = "en" snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _A ( self :Tuple ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : int = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ ) @require_torch def _A ( self :Optional[Any] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = "en" snake_case_ : Tuple = "fr" snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" ) snake_case_ : Dict = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case_ : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case_ : int = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _A ( self :str ) -> int: '''simple docstring''' snake_case_ : Dict = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case_ : Tuple = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
656
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> Union[str, Any]: a__ : List[Any] = DPTConfig() if "large" in checkpoint_url: a__ : Any = 10_24 a__ : Tuple = 40_96 a__ : Dict = 24 a__ : Union[str, Any] = 16 a__ : Any = [5, 11, 17, 23] a__ : Optional[Any] = [2_56, 5_12, 10_24, 10_24] a__ : Tuple = (1, 3_84, 3_84) if "ade" in checkpoint_url: a__ : Optional[Any] = True a__ : Dict = 1_50 a__ : Tuple = "huggingface/label-files" a__ : Union[str, Any] = "ade20k-id2label.json" a__ : Any = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="dataset" ) ) , "r" ) ) a__ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} a__ : Any = idalabel a__ : Optional[Any] = {v: k for k, v in idalabel.items()} a__ : Union[str, Any] = [1, 1_50, 4_80, 4_80] return config, expected_shape def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> Tuple: a__ : Any = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> str: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): a__ : List[Any] = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: a__ : Dict = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: a__ : List[Any] = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: a__ : Optional[Any] = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: a__ : Dict = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: a__ : List[Any] = name.replace("proj" , "projection" ) if "blocks" in name: a__ : List[str] = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: a__ : Any = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a__ : List[Any] = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: a__ : Tuple = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a__ : Tuple = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: a__ : Optional[Any] = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: a__ : List[Any] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: a__ : str = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: a__ : Optional[int] = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: a__ : Optional[Any] = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: a__ : int = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: a__ : List[str] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 a__ : Tuple = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: a__ : str = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: a__ : Optional[Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: a__ : Optional[int] = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: a__ : List[Any] = name.replace("conv1" , "convolution1" ) if "conv2" in name: a__ : Optional[int] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: a__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: a__ : List[Any] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: a__ : Dict = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: a__ : Union[str, Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: a__ : Dict = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: a__ : List[str] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: a__ : Optional[Any] = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: a__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: a__ : Tuple = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: a__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: a__ : Any = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: a__ : List[Any] = name.replace("pretrained" , "dpt" ) if "bn" in name: a__ : List[str] = name.replace("bn" , "batch_norm" ) if "head" in name: a__ : Tuple = name.replace("head" , "head.head" ) if "encoder.norm" in name: a__ : int = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: a__ : Tuple = name.replace("auxlayer" , "auxiliary_head.head" ) return name def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ : Optional[Any] = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) a__ : str = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a__ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] a__ : Tuple = in_proj_bias[: config.hidden_size] a__ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ : Any = in_proj_weight[ -config.hidden_size :, : ] a__ : str = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE( ) -> List[Any]: a__ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" a__ : List[str] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: a__ , a__ : List[str] = get_dpt_config(__UpperCamelCase ) # load original state_dict from URL a__ : Tuple = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): a__ : Union[str, Any] = state_dict.pop(__UpperCamelCase ) a__ : List[Any] = val # read in qkv matrices read_in_q_k_v(__UpperCamelCase , __UpperCamelCase ) # load HuggingFace model a__ : Optional[int] = DPTForSemanticSegmentation(__UpperCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Check outputs on an image a__ : Optional[Any] = 4_80 if "ade" in checkpoint_url else 3_84 a__ : Any = DPTImageProcessor(size=__UpperCamelCase ) a__ : List[str] = prepare_img() a__ : Any = image_processor(__UpperCamelCase , return_tensors="pt" ) # forward pass a__ : List[Any] = model(**__UpperCamelCase ).logits if "ade" in checkpoint_url else model(**__UpperCamelCase ).predicted_depth # Assert logits a__ : List[str] = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: a__ : Optional[int] = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__UpperCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __UpperCamelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __UpperCamelCase ) ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__UpperCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__UpperCamelCase , ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) lowerCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
191
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer a__ : List[str] = flax_key_tuple[:-1] + ("weight",) a__ : Optional[int] = torch.permute(__UpperCamelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__UpperCamelCase ): # linear layer a__ : Tuple = flax_key_tuple[:-1] + ("weight",) a__ : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: a__ : str = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if "metadata" in layer: a__ : Union[str, Any] = layer.split("metadata" ) a__ : Any = "".join(split_layer[0] )[:-1] a__ : Optional[int] = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: a__ : Optional[int] = layer.split("kvstore" ) a__ : Union[str, Any] = "".join(split_layer[0] )[:-1] a__ : Optional[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: a__ : Any = layer.split("/" ) a__ : Union[str, Any] = "/".join(split_layer[:-1] ) a__ : Tuple = (split_layer[-1],) if "kvstore/path" in layer: a__ : Tuple = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: a__ : int = "file" else: a__ : List[str] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: a__ : List[Any] = rename_keys(__UpperCamelCase ) a__ : Tuple = {} for k, v in current_block.items(): a__ : str = v a__ : Optional[int] = new_current_block torch.save(__UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = WEIGHTS_NAME ) -> Any: a__ : Optional[Any] = convert_file_size_to_int(__UpperCamelCase ) a__ : Tuple = [] a__ : Dict = {} a__ : str = 0 a__ : Tuple = 0 os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: a__ : Any = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] a__ : Tuple = flatten_dict(__UpperCamelCase , sep="/" ) a__ : Any = {} for layer in checkpoint_info.keys(): a__ , a__ , a__ : Optional[Any] = get_key_and_tensorstore_dict( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if curr_real_layer_name in all_layers: a__ : int = content else: a__ : List[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file a__ : Tuple = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() a__ : Tuple = torch.tensor(__UpperCamelCase ) a__ : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts a__ , a__ : int = rename_base_flax_keys(tuple(key.split("/" ) ) , __UpperCamelCase ) a__ : Union[str, Any] = "/".join(__UpperCamelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: a__ : int = os.path.join( __UpperCamelCase , weights_name.replace(".bin" , F'-{len(__UpperCamelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block a__ : int = {} a__ : Optional[int] = 0 a__ : List[str] = raw_weights.to(getattr(__UpperCamelCase , __UpperCamelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block a__ : Optional[int] = os.path.join(__UpperCamelCase , weights_name.replace(".bin" , F'-{len(__UpperCamelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__UpperCamelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index a__ : int = {} a__ : Tuple = {} for idx, shard in enumerate(__UpperCamelCase ): a__ : Tuple = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(__UpperCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} a__ : Optional[int] = os.path.join(__UpperCamelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(__UpperCamelCase , os.path.join(__UpperCamelCase , __UpperCamelCase ) ) a__ : List[str] = shard for key in shard: a__ : Tuple = shard_file # Add the metadata a__ : int = {"total_size": total_size} a__ : List[str] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , "w" , encoding="utf-8" ) as f: a__ : List[str] = json.dumps(__UpperCamelCase , indent=2 , sort_keys=__UpperCamelCase ) + "\n" f.write(__UpperCamelCase ) return metadata, index if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCamelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def SCREAMING_SNAKE_CASE( ) -> int: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer a__ : Any = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) a__ : List[str] = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) a__ : str = TaTokenizer.from_pretrained("t5-small" ) a__ : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." a__ : Optional[int] = tokenizer(__UpperCamelCase , return_tensors="pt" ).input_ids a__ : Optional[Any] = model.generate(__UpperCamelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
191
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] = ["flax"] def __init__( self : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ) -> int: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ) -> int: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] = ["flax"] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple ) -> int: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : int , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] = ["flax"] def __init__( self : Any , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ) -> List[Any]: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int ) -> Tuple: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] = ["flax"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Tuple , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ) -> Any: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ) -> List[Any]: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] = ["flax"] def __init__( self : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any] ) -> List[Any]: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : int , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any ) -> Dict: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Any ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] = ["flax"] def __init__( self : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ) -> Any: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ) -> Any: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] = ["flax"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) -> Dict: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int ) -> Tuple: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Any = ["flax"] def __init__( self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any] ) -> List[Any]: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple ) -> Dict: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: str = ["flax"] def __init__( self : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ) -> Any: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ) -> List[Any]: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple = ["flax"] def __init__( self : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple ) -> str: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ) -> List[Any]: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ) -> List[str]: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: str = ["flax"] def __init__( self : int , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ) -> List[str]: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] = ["flax"] def __init__( self : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ) -> Any: """simple docstring""" requires_backends(cls , ['flax'] ) class _SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] = ["flax"] def __init__( self : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ) -> Any: """simple docstring""" requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any ) -> Dict: """simple docstring""" requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls : Any , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ) -> int: """simple docstring""" requires_backends(cls , ['flax'] )
720
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _lowerCAmelCase = 10 def __lowerCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = [1, 2, 3, 4] _lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase_ , self.block_size , 0 ) , UpperCAmelCase_ ) def __lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase_ , self.block_size , 0 ) , UpperCAmelCase_ ) def __lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase_ , self.block_size , 0 ) , UpperCAmelCase_ ) def __lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase = process_story(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , [] ) def __lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = '' _lowerCAmelCase , _lowerCAmelCase = process_story(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , [] ) self.assertEqual(UpperCAmelCase_ , [] ) def __lowerCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _lowerCAmelCase = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase = process_story(UpperCAmelCase_ ) _lowerCAmelCase = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase = ['It was the best of times.'] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( self : List[str] ) -> int: """simple docstring""" _lowerCAmelCase = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase_ , 0 ).numpy() , expected.numpy() ) def __lowerCamelCase ( self : int ) -> str: """simple docstring""" _lowerCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase_ , 23 ).numpy() , expected.numpy() ) def __lowerCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase_ , 1 ).numpy() , expected.numpy() ) def __lowerCamelCase ( self : str ) -> int: """simple docstring""" _lowerCAmelCase = 101 _lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase = compute_token_type_ids(UpperCAmelCase_ , UpperCAmelCase_ ) np.testing.assert_array_equal(UpperCAmelCase_ , UpperCAmelCase_ )
491
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ :Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ :Any = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : Union[str, Any] = 'blip_2_vision_model' def __init__( self : Tuple , A__ : Union[str, Any]=1408 , A__ : Dict=6144 , A__ : Optional[int]=39 , A__ : List[Any]=16 , A__ : str=224 , A__ : Tuple=14 , A__ : Any="gelu" , A__ : str=0.0_0001 , A__ : List[Any]=0.0 , A__ : str=1e-1_0 , A__ : Any=True , **A__ : List[Any] , ): """simple docstring""" super().__init__(**_a ) __lowerCamelCase : Any = hidden_size __lowerCamelCase : int = intermediate_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : Tuple = patch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Optional[Any] = attention_dropout __lowerCamelCase : Tuple = layer_norm_eps __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Tuple = qkv_bias @classmethod def a_ ( cls : Tuple , A__ : Tuple , **A__ : Optional[Any] ): """simple docstring""" cls._set_token_in_kwargs(_a ) __lowerCamelCase : List[str] = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __lowerCamelCase : Optional[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_a , **_a ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : Dict = 'blip_2_qformer' def __init__( self : str , A__ : Any=30522 , A__ : int=768 , A__ : str=12 , A__ : Union[str, Any]=12 , A__ : int=3072 , A__ : str="gelu" , A__ : Union[str, Any]=0.1 , A__ : Union[str, Any]=0.1 , A__ : Optional[int]=512 , A__ : Union[str, Any]=0.02 , A__ : Optional[int]=1e-1_2 , A__ : List[Any]=0 , A__ : str="absolute" , A__ : Tuple=2 , A__ : Optional[int]=1408 , **A__ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_a , **_a ) __lowerCamelCase : str = vocab_size __lowerCamelCase : int = hidden_size __lowerCamelCase : Union[str, Any] = num_hidden_layers __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : Optional[Any] = hidden_act __lowerCamelCase : List[Any] = intermediate_size __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : str = max_position_embeddings __lowerCamelCase : int = initializer_range __lowerCamelCase : str = layer_norm_eps __lowerCamelCase : Union[str, Any] = position_embedding_type __lowerCamelCase : Any = cross_attention_frequency __lowerCamelCase : Optional[Any] = encoder_hidden_size @classmethod def a_ ( cls : Any , A__ : List[str] , **A__ : Tuple ): """simple docstring""" cls._set_token_in_kwargs(_a ) __lowerCamelCase : Optional[Any] = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __lowerCamelCase : str = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_a , **_a ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : str = 'blip-2' snake_case__ : List[Any] = True def __init__( self : List[str] , A__ : Union[str, Any]=None , A__ : Dict=None , A__ : List[Any]=None , A__ : Optional[int]=32 , **A__ : Optional[Any] ): """simple docstring""" super().__init__(**_a ) if vision_config is None: __lowerCamelCase : int = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: __lowerCamelCase : List[Any] = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: __lowerCamelCase : List[str] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __lowerCamelCase : Optional[int] = BlipaVisionConfig(**_a ) __lowerCamelCase : Dict = BlipaQFormerConfig(**_a ) __lowerCamelCase : Optional[int] = text_config["model_type"] if "model_type" in text_config else "opt" __lowerCamelCase : Tuple = CONFIG_MAPPING[text_model_type](**_a ) __lowerCamelCase : List[Any] = self.text_config.tie_word_embeddings __lowerCamelCase : int = self.text_config.is_encoder_decoder __lowerCamelCase : Tuple = num_query_tokens __lowerCamelCase : Union[str, Any] = self.vision_config.hidden_size __lowerCamelCase : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowerCamelCase : Tuple = 1.0 __lowerCamelCase : Tuple = 0.02 @classmethod def a_ ( cls : Union[str, Any] , A__ : List[Any] , A__ : int , A__ : str , **A__ : Optional[int] , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def a_ ( self : str ): """simple docstring""" __lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) __lowerCamelCase : List[str] = self.vision_config.to_dict() __lowerCamelCase : Tuple = self.qformer_config.to_dict() __lowerCamelCase : Union[str, Any] = self.text_config.to_dict() __lowerCamelCase : Optional[int] = self.__class__.model_type return output
150
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP snake_case : str = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case : Optional[int] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Any , _snake_case : Optional[Any]=8 ) -> Tuple: '''simple docstring''' __magic_name__ : List[str] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __magic_name__ : Dict = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _snake_case ( snake_case ): def __init__( self , _a , _a , _a , _a , _a , ): super().__init__() self.register_modules( text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , movq=_a , ) __magic_name__ : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a ): if latents is None: __magic_name__ : List[Any] = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) __magic_name__ : Optional[Any] = latents.to(_a ) __magic_name__ : Optional[Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a=None , ): __magic_name__ : List[str] = len(_a ) if isinstance(_a , _a ) else 1 # get prompt text embeddings __magic_name__ : str = self.tokenizer( _a , padding="max_length" , truncation=_a , max_length=77 , return_attention_mask=_a , add_special_tokens=_a , return_tensors="pt" , ) __magic_name__ : Optional[Any] = text_inputs.input_ids __magic_name__ : Union[str, Any] = self.tokenizer(_a , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_a , _a ): __magic_name__ : Any = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __magic_name__ : Union[str, Any] = text_input_ids.to(_a ) __magic_name__ : str = text_inputs.attention_mask.to(_a ) __magic_name__ , __magic_name__ : Any = self.text_encoder( input_ids=_a , attention_mask=_a ) __magic_name__ : List[Any] = prompt_embeds.repeat_interleave(_a , dim=0 ) __magic_name__ : Any = text_encoder_hidden_states.repeat_interleave(_a , dim=0 ) __magic_name__ : Optional[int] = text_mask.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: __magic_name__ : List[str] if negative_prompt is None: __magic_name__ : Optional[int] = [""] * batch_size elif type(_a ) is not type(_a ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_a )} !=''' f''' {type(_a )}.''' ) elif isinstance(_a , _a ): __magic_name__ : Tuple = [negative_prompt] elif batch_size != len(_a ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_a )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: __magic_name__ : Union[str, Any] = negative_prompt __magic_name__ : List[Any] = self.tokenizer( _a , padding="max_length" , max_length=77 , truncation=_a , return_attention_mask=_a , add_special_tokens=_a , return_tensors="pt" , ) __magic_name__ : str = uncond_input.input_ids.to(_a ) __magic_name__ : Any = uncond_input.attention_mask.to(_a ) __magic_name__ , __magic_name__ : str = self.text_encoder( input_ids=_a , attention_mask=_a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __magic_name__ : Tuple = negative_prompt_embeds.shape[1] __magic_name__ : Union[str, Any] = negative_prompt_embeds.repeat(1 , _a ) __magic_name__ : str = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _a ) __magic_name__ : Tuple = uncond_text_encoder_hidden_states.shape[1] __magic_name__ : str = uncond_text_encoder_hidden_states.repeat(1 , _a , 1 ) __magic_name__ : int = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _a , -1 ) __magic_name__ : Optional[int] = uncond_text_mask.repeat_interleave(_a , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : List[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) __magic_name__ : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __magic_name__ : Optional[int] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def SCREAMING_SNAKE_CASE ( self , _a=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __magic_name__ : Tuple = torch.device(f'''cuda:{gpu_id}''' ) __magic_name__ : Union[str, Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) def SCREAMING_SNAKE_CASE ( self , _a=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) __magic_name__ : int = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=_a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __magic_name__ : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __magic_name__ , __magic_name__ : Any = cpu_offload_with_hook(_a , _a , prev_module_hook=_a ) if self.safety_checker is not None: __magic_name__ , __magic_name__ : Optional[int] = cpu_offload_with_hook(self.safety_checker , _a , prev_module_hook=_a ) # We'll offload the last model manually. __magic_name__ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(_a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a , _a , _a = None , _a = 512 , _a = 512 , _a = 100 , _a = 4.0 , _a = 1 , _a = None , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , _a ): __magic_name__ : Dict = 1 elif isinstance(_a , _a ): __magic_name__ : Union[str, Any] = len(_a ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_a )}''' ) __magic_name__ : Dict = self._execution_device __magic_name__ : List[str] = batch_size * num_images_per_prompt __magic_name__ : Tuple = guidance_scale > 1.0 __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = self._encode_prompt( _a , _a , _a , _a , _a ) if isinstance(_a , _a ): __magic_name__ : Any = torch.cat(_a , dim=0 ) if isinstance(_a , _a ): __magic_name__ : str = torch.cat(_a , dim=0 ) if do_classifier_free_guidance: __magic_name__ : str = image_embeds.repeat_interleave(_a , dim=0 ) __magic_name__ : Tuple = negative_image_embeds.repeat_interleave(_a , dim=0 ) __magic_name__ : List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_a ) self.scheduler.set_timesteps(_a , device=_a ) __magic_name__ : str = self.scheduler.timesteps __magic_name__ : Union[str, Any] = self.unet.config.in_channels __magic_name__ , __magic_name__ : str = get_new_h_w(_a , _a , self.movq_scale_factor ) # create initial latent __magic_name__ : Optional[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _a , _a , _a , self.scheduler , ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance __magic_name__ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ : Any = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} __magic_name__ : Optional[Any] = self.unet( sample=_a , timestep=_a , encoder_hidden_states=_a , added_cond_kwargs=_a , return_dict=_a , )[0] if do_classifier_free_guidance: __magic_name__ , __magic_name__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) __magic_name__ , __magic_name__ : Optional[int] = noise_pred.chunk(2 ) __magic_name__ , __magic_name__ : int = variance_pred.chunk(2 ) __magic_name__ : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __magic_name__ : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __magic_name__ , __magic_name__ : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : str = self.scheduler.step( _a , _a , _a , generator=_a , ).prev_sample # post-processing __magic_name__ : Optional[int] = self.movq.decode(_a , force_not_quantize=_a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __magic_name__ : str = image * 0.5 + 0.5 __magic_name__ : Optional[int] = image.clamp(0 , 1 ) __magic_name__ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __magic_name__ : Any = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
124
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCAmelCase_ = logging.get_logger(__name__) def UpperCamelCase ( lowerCAmelCase_=None , lowerCAmelCase_=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=lowerCAmelCase_ ) @dataclass class lowerCAmelCase : _SCREAMING_SNAKE_CASE : List[str] =list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) _SCREAMING_SNAKE_CASE : List[int] =list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) _SCREAMING_SNAKE_CASE : List[int] =list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) _SCREAMING_SNAKE_CASE : bool =field( default=_a , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) _SCREAMING_SNAKE_CASE : bool =field( default=_a , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) _SCREAMING_SNAKE_CASE : bool =field( default=_a , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) _SCREAMING_SNAKE_CASE : bool =field(default=_a , metadata={"""help""": """Use FP16 to accelerate inference."""} ) _SCREAMING_SNAKE_CASE : bool =field(default=_a , metadata={"""help""": """Benchmark training of model"""} ) _SCREAMING_SNAKE_CASE : bool =field(default=_a , metadata={"""help""": """Verbose memory tracing"""} ) _SCREAMING_SNAKE_CASE : bool =field( default=_a , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) _SCREAMING_SNAKE_CASE : bool =field( default=_a , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) _SCREAMING_SNAKE_CASE : bool =field(default=_a , metadata={"""help""": """Trace memory line by line"""} ) _SCREAMING_SNAKE_CASE : bool =field(default=_a , metadata={"""help""": """Save result to a CSV file"""} ) _SCREAMING_SNAKE_CASE : bool =field(default=_a , metadata={"""help""": """Save all print statements in a log file"""} ) _SCREAMING_SNAKE_CASE : bool =field(default=_a , metadata={"""help""": """Whether to print environment information"""} ) _SCREAMING_SNAKE_CASE : bool =field( default=_a , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) _SCREAMING_SNAKE_CASE : str =field( default=F'inference_time_{round(time() )}.csv' , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) _SCREAMING_SNAKE_CASE : str =field( default=F'inference_memory_{round(time() )}.csv' , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) _SCREAMING_SNAKE_CASE : str =field( default=F'train_time_{round(time() )}.csv' , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) _SCREAMING_SNAKE_CASE : str =field( default=F'train_memory_{round(time() )}.csv' , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) _SCREAMING_SNAKE_CASE : str =field( default=F'env_info_{round(time() )}.csv' , metadata={"""help""": """CSV filename used if saving environment information."""} , ) _SCREAMING_SNAKE_CASE : str =field( default=F'log_{round(time() )}.csv' , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) _SCREAMING_SNAKE_CASE : int =field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) _SCREAMING_SNAKE_CASE : bool =field( default=_a , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def a__ ( self ): warnings.warn( f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , lowerCAmelCase__ , ) def a__ ( self ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def a__ ( self ): if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def a__ ( self ): if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
476
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : Tuple ="""segformer""" def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[2, 2, 2, 2] , lowerCAmelCase__=[8, 4, 2, 1] , lowerCAmelCase__=[32, 64, 160, 256] , lowerCAmelCase__=[7, 3, 3, 3] , lowerCAmelCase__=[4, 2, 2, 2] , lowerCAmelCase__=[1, 2, 5, 8] , lowerCAmelCase__=[4, 4, 4, 4] , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1E-6 , lowerCAmelCase__=256 , lowerCAmelCase__=255 , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , lowerCAmelCase__ , ) _A= num_channels _A= num_encoder_blocks _A= depths _A= sr_ratios _A= hidden_sizes _A= patch_sizes _A= strides _A= mlp_ratios _A= num_attention_heads _A= hidden_act _A= hidden_dropout_prob _A= attention_probs_dropout_prob _A= classifier_dropout_prob _A= initializer_range _A= drop_path_rate _A= layer_norm_eps _A= decoder_hidden_size _A= kwargs.get('reshape_last_stage' , lowerCAmelCase__ ) _A= semantic_loss_ignore_index class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : List[str] =version.parse("""1.11""" ) @property def a__ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a__ ( self ): return 1E-4 @property def a__ ( self ): return 12
476
1
from __future__ import annotations import time lowerCamelCase =list[tuple[int, int]] lowerCamelCase =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _lowerCamelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = pos_x UpperCamelCase__ : int = pos_y UpperCamelCase__ : Union[str, Any] = (pos_y, pos_x) UpperCamelCase__ : Optional[int] = goal_x UpperCamelCase__ : Tuple = goal_y UpperCamelCase__ : List[str] = parent class _lowerCamelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = [self.start] UpperCamelCase__ : int = False def __SCREAMING_SNAKE_CASE ( self ) -> Path | None: """simple docstring""" while self.node_queue: UpperCamelCase__ : Union[str, Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCamelCase__ : Tuple = True return self.retrace_path(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = self.get_successors(__SCREAMING_SNAKE_CASE ) for node in successors: self.node_queue.append(__SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> list[Node]: """simple docstring""" UpperCamelCase__ : Optional[Any] = [] for action in delta: UpperCamelCase__ : Optional[int] = parent.pos_x + action[1] UpperCamelCase__ : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , __SCREAMING_SNAKE_CASE ) ) return successors def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Path: """simple docstring""" UpperCamelCase__ : Tuple = node UpperCamelCase__ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase__ : Any = current_node.parent path.reverse() return path class _lowerCamelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : int = BreadthFirstSearch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = BreadthFirstSearch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = False def __SCREAMING_SNAKE_CASE ( self ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCamelCase__ : List[str] = self.fwd_bfs.node_queue.pop(0 ) UpperCamelCase__ : str = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCamelCase__ : Optional[int] = True return self.retrace_bidirectional_path( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = current_bwd_node UpperCamelCase__ : Tuple = current_fwd_node UpperCamelCase__ : int = { self.fwd_bfs: self.fwd_bfs.get_successors(__SCREAMING_SNAKE_CASE ), self.bwd_bfs: self.bwd_bfs.get_successors(__SCREAMING_SNAKE_CASE ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__SCREAMING_SNAKE_CASE ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Path: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.fwd_bfs.retrace_path(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = self.bwd_bfs.retrace_path(__SCREAMING_SNAKE_CASE ) bwd_path.pop() bwd_path.reverse() UpperCamelCase__ : int = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCamelCase =(0, 0) lowerCamelCase =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase =time.time() lowerCamelCase =BreadthFirstSearch(init, goal) lowerCamelCase =bfs.search() lowerCamelCase =time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) lowerCamelCase =time.time() lowerCamelCase =BidirectionalBreadthFirstSearch(init, goal) lowerCamelCase =bd_bfs.search() lowerCamelCase =time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
285
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase =logging.get_logger(__name__) lowerCamelCase ={ "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''wav2vec2''' def __init__( self , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=3_0_7_2 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE="group" , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) , __SCREAMING_SNAKE_CASE=(1_0, 3, 3, 3, 3, 2, 2) , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1_2_8 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.05 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=3_2_0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1_0_0 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="sum" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) , __SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = hidden_size UpperCamelCase__ : List[Any] = feat_extract_norm UpperCamelCase__ : Union[str, Any] = feat_extract_activation UpperCamelCase__ : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = conv_bias UpperCamelCase__ : Optional[Any] = num_conv_pos_embeddings UpperCamelCase__ : Tuple = num_conv_pos_embedding_groups UpperCamelCase__ : Tuple = len(self.conv_dim ) UpperCamelCase__ : Optional[Any] = num_hidden_layers UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : List[Any] = num_attention_heads UpperCamelCase__ : Optional[int] = hidden_dropout UpperCamelCase__ : Tuple = attention_dropout UpperCamelCase__ : List[Any] = activation_dropout UpperCamelCase__ : Optional[int] = feat_proj_dropout UpperCamelCase__ : int = final_dropout UpperCamelCase__ : str = layerdrop UpperCamelCase__ : Dict = layer_norm_eps UpperCamelCase__ : str = initializer_range UpperCamelCase__ : List[Any] = vocab_size UpperCamelCase__ : Dict = do_stable_layer_norm UpperCamelCase__ : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ : Tuple = apply_spec_augment UpperCamelCase__ : str = mask_time_prob UpperCamelCase__ : Tuple = mask_time_length UpperCamelCase__ : Optional[Any] = mask_time_min_masks UpperCamelCase__ : str = mask_feature_prob UpperCamelCase__ : List[str] = mask_feature_length UpperCamelCase__ : Optional[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase__ : Dict = num_codevectors_per_group UpperCamelCase__ : Optional[int] = num_codevector_groups UpperCamelCase__ : Dict = contrastive_logits_temperature UpperCamelCase__ : List[Any] = feat_quantizer_dropout UpperCamelCase__ : List[Any] = num_negatives UpperCamelCase__ : Tuple = codevector_dim UpperCamelCase__ : List[str] = proj_codevector_dim UpperCamelCase__ : Tuple = diversity_loss_weight # ctc loss UpperCamelCase__ : List[str] = ctc_loss_reduction UpperCamelCase__ : Optional[Any] = ctc_zero_infinity # adapter UpperCamelCase__ : List[Any] = add_adapter UpperCamelCase__ : Any = adapter_kernel_size UpperCamelCase__ : Tuple = adapter_stride UpperCamelCase__ : Tuple = num_adapter_layers UpperCamelCase__ : Optional[Any] = output_hidden_size or hidden_size UpperCamelCase__ : Union[str, Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = xvector_output_dim @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
285
1
'''simple docstring''' __UpperCamelCase : List[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def lowercase ( lowerCAmelCase : bytes): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase): _A : List[Any] = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(lowerCAmelCase) _A : List[Any] = ''''''.join(bin(lowerCAmelCase)[2:].zfill(8) for byte in data) _A : List[str] = len(lowerCAmelCase) % 6 != 0 if padding_needed: # The padding that will be added later _A : Any = B'''=''' * ((6 - len(lowerCAmelCase) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowerCAmelCase) % 6) else: _A : Optional[Any] = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2)] for index in range(0 , len(lowerCAmelCase) , 6)).encode() + padding ) def lowercase ( lowerCAmelCase : str): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase) and not isinstance(lowerCAmelCase , lowerCAmelCase): _A : Union[str, Any] = ( '''argument should be a bytes-like object or ASCII string, ''' f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(lowerCAmelCase) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowerCAmelCase , lowerCAmelCase): try: _A : Optional[int] = encoded_data.decode('''utf-8''') except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''') _A : Optional[int] = encoded_data.count('''=''') # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding]), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data), "Invalid base64 character(s) found." # Check the padding assert len(lowerCAmelCase) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _A : int = encoded_data[:-padding] _A : Any = ''''''.join( bin(B64_CHARSET.index(lowerCAmelCase))[2:].zfill(6) for char in encoded_data)[: -padding * 2] else: _A : Optional[int] = ''''''.join( bin(B64_CHARSET.index(lowerCAmelCase))[2:].zfill(6) for char in encoded_data) _A : Tuple = [ int(binary_stream[index : index + 8] , 2) for index in range(0 , len(lowerCAmelCase) , 8) ] return bytes(lowerCAmelCase) if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase : Optional[Any] = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase : Tuple = { '''RUCAIBox/mvp''': 1024, } class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["""input_ids""", """attention_mask"""] __magic_name__ = MvpTokenizer def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="replace" , UpperCAmelCase__="<s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="<s>" , UpperCAmelCase__="<unk>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__="<mask>" , UpperCAmelCase__=False , UpperCAmelCase__=True , **UpperCAmelCase__ , ) -> List[Any]: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) _A : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase__ ) != add_prefix_space: _A : Dict = getattr(UpperCAmelCase__ , pre_tok_state.pop('''type''' ) ) _A : List[Any] = add_prefix_space _A : Tuple = pre_tok_class(**UpperCAmelCase__ ) _A : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _A : Any = '''post_processor''' _A : Union[str, Any] = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: _A : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _A : int = tuple(state['''sep'''] ) if "cls" in state: _A : Union[str, Any] = tuple(state['''cls'''] ) _A : int = False if state.get('''add_prefix_space''' , UpperCAmelCase__ ) != add_prefix_space: _A : Optional[int] = add_prefix_space _A : Union[str, Any] = True if state.get('''trim_offsets''' , UpperCAmelCase__ ) != trim_offsets: _A : List[str] = trim_offsets _A : int = True if changes_to_apply: _A : Optional[int] = getattr(UpperCAmelCase__ , state.pop('''type''' ) ) _A : str = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self , UpperCAmelCase__ ) -> Tuple: _A : Any = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value _A : Any = value def _lowerCamelCase ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ) -> BatchEncoding: _A : Optional[int] = kwargs.get('''is_split_into_words''' , UpperCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ) -> BatchEncoding: _A : int = kwargs.get('''is_split_into_words''' , UpperCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: _A : List[Any] = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Tuple: _A : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: _A : str = [self.sep_token_id] _A : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
417
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : Optional[int] = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
257
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self ): lowercase_ :int = 1 lowercase_ :Optional[int] = 3 lowercase_ :Optional[int] = (32, 32) lowercase_ :str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCamelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :str = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ :Optional[int] = self.dummy_cond_unet_upscale lowercase_ :str = DDPMScheduler() lowercase_ :Optional[int] = DDIMScheduler(prediction_type='''v_prediction''' ) lowercase_ :Any = self.dummy_vae lowercase_ :Optional[Any] = self.dummy_text_encoder lowercase_ :Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase_ :List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ :Any = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowercase_ :Optional[Any] = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) lowercase_ :Dict = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :str = '''A painting of a squirrel eating a burger''' lowercase_ :List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :List[Any] = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase_ :Tuple = output.images lowercase_ :Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCamelCase_ , )[0] lowercase_ :Dict = image[0, -3:, -3:, -1] lowercase_ :Any = image_from_tuple[0, -3:, -3:, -1] lowercase_ :str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowercase_ :Tuple = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ :List[str] = self.dummy_cond_unet_upscale lowercase_ :int = DDPMScheduler() lowercase_ :Union[str, Any] = DDIMScheduler(prediction_type='''v_prediction''' ) lowercase_ :List[Any] = self.dummy_vae lowercase_ :int = self.dummy_text_encoder lowercase_ :Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase_ :Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ :Any = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowercase_ :List[str] = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) lowercase_ :Dict = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :Optional[Any] = '''A painting of a squirrel eating a burger''' lowercase_ :Any = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase_ :Dict = output.images assert image.shape[0] == 2 lowercase_ :Union[str, Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Dict = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase_ :Tuple = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase ( self ): lowercase_ :int = self.dummy_cond_unet_upscale lowercase_ :str = DDPMScheduler() lowercase_ :List[str] = DDIMScheduler(prediction_type='''v_prediction''' ) lowercase_ :Optional[int] = self.dummy_vae lowercase_ :List[Any] = self.dummy_text_encoder lowercase_ :Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase_ :str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ :Tuple = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowercase_ :Any = unet.half() lowercase_ :Tuple = text_encoder.half() # make sure here that pndm scheduler skips prk lowercase_ :str = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) lowercase_ :Any = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :Dict = '''A painting of a squirrel eating a burger''' lowercase_ :str = torch.manual_seed(0 ) lowercase_ :Union[str, Any] = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' , ).images lowercase_ :int = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): lowercase_ :Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase_ :Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) lowercase_ :Optional[int] = '''stabilityai/stable-diffusion-x4-upscaler''' lowercase_ :int = StableDiffusionUpscalePipeline.from_pretrained(UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() lowercase_ :List[Any] = '''a cat sitting on a park bench''' lowercase_ :int = torch.manual_seed(0 ) lowercase_ :Optional[Any] = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='''np''' , ) lowercase_ :str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def UpperCamelCase ( self ): lowercase_ :Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase_ :Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) lowercase_ :List[Any] = '''stabilityai/stable-diffusion-x4-upscaler''' lowercase_ :Tuple = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() lowercase_ :Dict = '''a cat sitting on a park bench''' lowercase_ :Union[str, Any] = torch.manual_seed(0 ) lowercase_ :Dict = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='''np''' , ) lowercase_ :Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ :int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase_ :Optional[int] = '''stabilityai/stable-diffusion-x4-upscaler''' lowercase_ :Dict = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase_ :int = '''a cat sitting on a park bench''' lowercase_ :int = torch.manual_seed(0 ) lowercase_ :Union[str, Any] = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , output_type='''np''' , ) lowercase_ :str = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
257
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __magic_name__ : '''simple docstring''' def __init__( self: str , _lowerCamelCase: Optional[Any] , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = 99 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 37 SCREAMING_SNAKE_CASE_ = '''gelu''' SCREAMING_SNAKE_CASE_ = 0.1 SCREAMING_SNAKE_CASE_ = 0.1 SCREAMING_SNAKE_CASE_ = 5_12 SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 0.02 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = None def _A ( self: str ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self: Optional[int] ): ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _A ( self: Optional[int] , _lowerCamelCase: Dict , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Tuple , _lowerCamelCase: int , _lowerCamelCase: Dict , _lowerCamelCase: Optional[Any] ): SCREAMING_SNAKE_CASE_ = TFEsmModel(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self: str , _lowerCamelCase: List[Any] , _lowerCamelCase: str , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Dict , _lowerCamelCase: Any , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: str , ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = TFEsmModel(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , encoder_hidden_states=_lowerCamelCase ) # Also check the case where encoder outputs are not passed SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self: str , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: List[str] , _lowerCamelCase: List[str] , _lowerCamelCase: List[Any] , _lowerCamelCase: str , _lowerCamelCase: Dict ): SCREAMING_SNAKE_CASE_ = TFEsmForMaskedLM(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self: Dict , _lowerCamelCase: Dict , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Any , _lowerCamelCase: Optional[int] , _lowerCamelCase: Tuple , _lowerCamelCase: int ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = TFEsmForTokenClassification(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self: Dict ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Any = False def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = TFEsmModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def _A ( self: Optional[Any] ): self.config_tester.run_common_tests() def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _A ( self: Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCamelCase ) def _A ( self: Dict ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def _A ( self: Union[str, Any] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = TFEsmModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def _A ( self: Optional[int] ): pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def _A ( self: Any ): pass def _A ( self: List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer SCREAMING_SNAKE_CASE_ = model.get_bias() assert isinstance(_lowerCamelCase , _lowerCamelCase ) for k, v in name.items(): assert isinstance(_lowerCamelCase , tf.Variable ) else: SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() assert x is None SCREAMING_SNAKE_CASE_ = model.get_bias() assert name is None @require_tf class __magic_name__ ( unittest.TestCase): '''simple docstring''' @slow def _A ( self: List[Any] ): SCREAMING_SNAKE_CASE_ = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) SCREAMING_SNAKE_CASE_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase )[0] SCREAMING_SNAKE_CASE_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _lowerCamelCase ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE_ = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def _A ( self: Union[str, Any] ): SCREAMING_SNAKE_CASE_ = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) SCREAMING_SNAKE_CASE_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE_ = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
703
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = "swin2sr" SCREAMING_SNAKE_CASE__ : str = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Optional[int] , _lowerCamelCase: Dict=64 , _lowerCamelCase: str=1 , _lowerCamelCase: Optional[int]=3 , _lowerCamelCase: List[Any]=1_80 , _lowerCamelCase: Optional[int]=[6, 6, 6, 6, 6, 6] , _lowerCamelCase: Union[str, Any]=[6, 6, 6, 6, 6, 6] , _lowerCamelCase: Tuple=8 , _lowerCamelCase: List[Any]=2.0 , _lowerCamelCase: Dict=True , _lowerCamelCase: Dict=0.0 , _lowerCamelCase: int=0.0 , _lowerCamelCase: Optional[int]=0.1 , _lowerCamelCase: Any="gelu" , _lowerCamelCase: int=False , _lowerCamelCase: Tuple=0.02 , _lowerCamelCase: List[str]=1E-5 , _lowerCamelCase: List[Any]=2 , _lowerCamelCase: str=1.0 , _lowerCamelCase: List[Any]="1conv" , _lowerCamelCase: str="pixelshuffle" , **_lowerCamelCase: List[str] , ): super().__init__(**_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = upscale SCREAMING_SNAKE_CASE_ = img_range SCREAMING_SNAKE_CASE_ = resi_connection SCREAMING_SNAKE_CASE_ = upsampler
89
0
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase ) -> int: """simple docstring""" lowerCAmelCase_ : List[str] = [0] * len(__UpperCamelCase ) lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : List[Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: lowerCAmelCase_ : Union[str, Any] = queue.pop(0 ) cnt += 1 topo.append(__UpperCamelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) if cnt != len(__UpperCamelCase ): print("Cycle exists" ) else: print(__UpperCamelCase ) # Adjacency List of Graph lowercase__ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
610
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : str = DebertaTokenizer a_ : List[Any] = True a_ : Optional[int] = DebertaTokenizerFast def lowerCamelCase ( self : Dict ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] lowerCAmelCase_ : Union[str, Any] = dict(zip(a_ , range(len(a_ ) ) ) ) lowerCAmelCase_ : List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "[UNK]"} lowerCAmelCase_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowerCamelCase ( self : Any , **a_ : Any ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : Tuple , a_ : List[Any] ): lowerCAmelCase_ : List[str] = "lower newer" lowerCAmelCase_ : int = "lower newer" return input_text, output_text def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : List[Any] = self.get_tokenizer() lowerCAmelCase_ : Union[str, Any] = "lower newer" lowerCAmelCase_ : Union[str, Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) lowerCAmelCase_ : Optional[int] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Optional[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Any = self.get_tokenizer() lowerCAmelCase_ : List[Any] = tokenizer("Hello" , "World" ) lowerCAmelCase_ : Dict = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , a_ ) @slow def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Any = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase_ : int = tokenizer.encode("sequence builders" , add_special_tokens=a_ ) lowerCAmelCase_ : int = tokenizer.encode("multi-sequence build" , add_special_tokens=a_ ) lowerCAmelCase_ : str = tokenizer.encode( "sequence builders" , add_special_tokens=a_ , add_prefix_space=a_ ) lowerCAmelCase_ : int = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=a_ , add_prefix_space=a_ ) lowerCAmelCase_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(a_ ) lowerCAmelCase_ : List[str] = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCamelCase ( self : str ): lowerCAmelCase_ : str = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCAmelCase_ : Union[str, Any] = tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase_ : Dict = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] lowerCAmelCase_ : int = tokenizer(a_ , padding=a_ ) lowerCAmelCase_ : Tuple = [tokenizer.decode(a_ , skip_special_tokens=a_ ) for seq in encoding["input_ids"]] # fmt: off lowerCAmelCase_ : Optional[int] = { "input_ids": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCAmelCase_ : Tuple = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , a_ ) for expected, decoded in zip(a_ , a_ ): self.assertEqual(a_ , a_ )
610
1
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : Dict ='src/transformers' # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : Optional[Any] =direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : Any =re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __lowerCAmelCase : Union[str, Any] =re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : Optional[int] =re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : List[str] =[ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , lowercase__ ) return [m.group(0 ) for m in matches] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : List[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __SCREAMING_SNAKE_CASE : List[str] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __SCREAMING_SNAKE_CASE : int = collections.defaultdict(lowercase__ ) __SCREAMING_SNAKE_CASE : int = collections.defaultdict(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = collections.defaultdict(lowercase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = None if _re_tf_models.match(lowercase__ ) is not None: __SCREAMING_SNAKE_CASE : Any = tf_models __SCREAMING_SNAKE_CASE : Optional[Any] = _re_tf_models.match(lowercase__ ).groups()[0] elif _re_flax_models.match(lowercase__ ) is not None: __SCREAMING_SNAKE_CASE : List[str] = flax_models __SCREAMING_SNAKE_CASE : str = _re_flax_models.match(lowercase__ ).groups()[0] elif _re_pt_models.match(lowercase__ ) is not None: __SCREAMING_SNAKE_CASE : int = pt_models __SCREAMING_SNAKE_CASE : List[str] = _re_pt_models.match(lowercase__ ).groups()[0] if lookup_dict is not None: while len(lowercase__ ) > 0: if attr_name in model_prefix_to_model_type: __SCREAMING_SNAKE_CASE : Any = True break # Try again after removing the last word in the name __SCREAMING_SNAKE_CASE : List[Any] = ''''''.join(camel_case_split(lowercase__ )[:-1] ) __SCREAMING_SNAKE_CASE : Dict = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = list(lowercase__ ) all_models.sort() __SCREAMING_SNAKE_CASE : Tuple = {'''model_type''': all_models} __SCREAMING_SNAKE_CASE : str = [pt_models[t] for t in all_models] __SCREAMING_SNAKE_CASE : Optional[int] = [tf_models[t] for t in all_models] __SCREAMING_SNAKE_CASE : Any = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __SCREAMING_SNAKE_CASE : List[Any] = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __SCREAMING_SNAKE_CASE : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __SCREAMING_SNAKE_CASE : Dict = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __SCREAMING_SNAKE_CASE : Any = '''AutoTokenizer''' __SCREAMING_SNAKE_CASE : List[str] = [processors[t] for t in all_models] return pd.DataFrame(lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __SCREAMING_SNAKE_CASE : List[Any] = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}'''] __SCREAMING_SNAKE_CASE : List[Any] = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}'''] # Loop through all three frameworks for module, cls, mapping in zip(lowercase__ , lowercase__ , lowercase__ ): # The type of pipeline may not exist in this framework if not hasattr(lowercase__ , lowercase__ ): continue # First extract all model_names __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for name in getattr(lowercase__ , lowercase__ ).values(): if isinstance(lowercase__ , lowercase__ ): model_names.append(lowercase__ ) else: model_names.extend(list(lowercase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = get_frameworks_table() __SCREAMING_SNAKE_CASE : Any = Dataset.from_pandas(lowercase__ ) __SCREAMING_SNAKE_CASE : int = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=lowercase__ ) __SCREAMING_SNAKE_CASE : Any = Dataset.from_json(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(lowercase__ ) ) } __SCREAMING_SNAKE_CASE : Optional[Any] = update_pipeline_and_auto_class_table(lowercase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __SCREAMING_SNAKE_CASE : List[str] = sorted(table.keys() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __SCREAMING_SNAKE_CASE : List[str] = Dataset.from_pandas(lowercase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowercase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(lowercase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __SCREAMING_SNAKE_CASE : Any = ( F'''Update with commit {commit_sha}\n\nSee: ''' F'''https://github.com/huggingface/transformers/commit/{commit_sha}''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=lowercase__ , repo_type='''dataset''' , token=lowercase__ , commit_message=lowercase__ , ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __SCREAMING_SNAKE_CASE : Any = transformers_module.pipelines.SUPPORTED_TASKS __SCREAMING_SNAKE_CASE : List[Any] = [] for key in pipeline_tasks: if key not in in_table: __SCREAMING_SNAKE_CASE : Any = pipeline_tasks[key]['''pt'''] if isinstance(lowercase__ , (list, tuple) ): __SCREAMING_SNAKE_CASE : Dict = model[0] __SCREAMING_SNAKE_CASE : Any = model.__name__ if model not in in_table.values(): missing.append(lowercase__ ) if len(lowercase__ ) > 0: __SCREAMING_SNAKE_CASE : Dict = ''', '''.join(lowercase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F'''`utils/update_metadata.py`: {msg}. Please add them!''' ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') __lowerCAmelCase : Tuple =parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
260
class _lowercase : '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :list[int] ) -> None: __SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = [0] * len_array if len_array > 0: __SCREAMING_SNAKE_CASE : List[Any] = array[0] for i in range(1 , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[str] = self.prefix_sum[i - 1] + array[i] def __magic_name__( self :Any , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __magic_name__( self :List[Any] , lowerCAmelCase__ :int ) -> bool: __SCREAMING_SNAKE_CASE : Optional[Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
260
1
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCAmelCase : Optional[Any] = input("""Enter image url: """).strip() print(F'''Downloading image from {url} ...''') lowerCAmelCase : str = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image lowerCAmelCase : Any = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] lowerCAmelCase : Optional[Any] = requests.get(image_url).content lowerCAmelCase : Tuple = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
372
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Dict = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _A ( A ,A ,A ,A ,A ) -> Tuple: for attribute in key.split("." ): lowercase : Dict = getattr(A ,A ) if weight_type is not None: lowercase : List[str] = getattr(A ,A ).shape else: lowercase : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase : List[Any] = value elif weight_type == "weight_g": lowercase : List[Any] = value elif weight_type == "weight_v": lowercase : int = value elif weight_type == "bias": lowercase : Any = value elif weight_type == "running_mean": lowercase : Tuple = value elif weight_type == "running_var": lowercase : Dict = value elif weight_type == "num_batches_tracked": lowercase : Optional[int] = value elif weight_type == "inv_freq": lowercase : List[Any] = value else: lowercase : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( A ,A ,A ) -> int: lowercase : Optional[int] = [] lowercase : Tuple = fairseq_model.state_dict() lowercase : Optional[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowercase : str = False if "conv_layers" in name: load_conv_layer( A ,A ,A ,A ,hf_model.config.feat_extract_norm == "group" ,) lowercase : Dict = True else: for key, mapped_key in MAPPING.items(): lowercase : List[str] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase : List[str] = True if "*" in mapped_key: lowercase : int = name.split(A )[0].split("." )[-2] lowercase : Optional[Any] = mapped_key.replace("*" ,A ) if "pos_bias_u" in name: lowercase : str = None elif "pos_bias_v" in name: lowercase : Optional[int] = None elif "weight_g" in name: lowercase : int = "weight_g" elif "weight_v" in name: lowercase : Dict = "weight_v" elif "bias" in name: lowercase : List[str] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase : Optional[int] = "weight" elif "running_mean" in name: lowercase : Optional[int] = "running_mean" elif "inv_freq" in name: lowercase : Dict = "inv_freq" elif "running_var" in name: lowercase : int = "running_var" elif "num_batches_tracked" in name: lowercase : Optional[Any] = "num_batches_tracked" else: lowercase : int = None set_recursively(A ,A ,A ,A ,A ) continue if not is_used: unused_weights.append(A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _A ( A ,A ,A ,A ,A ) -> List[str]: lowercase : Tuple = full_name.split("conv_layers." )[-1] lowercase : Optional[Any] = name.split("." ) lowercase : str = int(items[0] ) lowercase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) @torch.no_grad() def _A ( A ,A ,A=None ,A=None ,A=True ) -> Optional[Any]: if config_path is not None: lowercase : Tuple = WavaVecaConformerConfig.from_pretrained(A ,hidden_act="swish" ) else: lowercase : Any = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowercase : str = "rotary" if is_finetuned: if dict_path: lowercase : List[str] = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase : Optional[int] = target_dict.pad_index lowercase : Optional[int] = target_dict.bos_index lowercase : Optional[Any] = target_dict.eos_index lowercase : str = len(target_dict.symbols ) lowercase : List[Any] = os.path.join(A ,"vocab.json" ) if not os.path.isdir(A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(A ) ) return os.makedirs(A ,exist_ok=A ) lowercase : Any = target_dict.indices # fairseq has the <pad> and <s> switched lowercase : Any = 0 lowercase : Tuple = 1 with open(A ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(A ,A ) lowercase : Tuple = WavaVecaCTCTokenizer( A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=A ,) lowercase : Dict = True if config.feat_extract_norm == "layer" else False lowercase : List[str] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_6_0_0_0 ,padding_value=0 ,do_normalize=A ,return_attention_mask=A ,) lowercase : List[str] = WavaVecaProcessor(feature_extractor=A ,tokenizer=A ) processor.save_pretrained(A ) lowercase : Any = WavaVecaConformerForCTC(A ) else: lowercase : str = WavaVecaConformerForPreTraining(A ) if is_finetuned: lowercase , lowercase , lowercase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowercase : List[str] = argparse.Namespace(task="audio_pretraining" ) lowercase : Union[str, Any] = fairseq.tasks.setup_task(A ) lowercase , lowercase , lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=A ) lowercase : List[str] = model[0].eval() recursively_load_weights(A ,A ,not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCAmelCase : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
372
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_1_2, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[Any] ) -> Dict: if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) snake_case = parser.parse_args() snake_case = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
535
snake_case = 8.3_144_598 def SCREAMING_SNAKE_CASE__ ( snake_case__ :float , snake_case__ :float ) -> float: if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example snake_case = 3_0_0 snake_case = 2_8 snake_case = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
535
1
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed A : int = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCamelCase ( __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCamelCase ( __magic_name__ : int , __magic_name__ : str ) -> Optional[int]: """simple docstring""" if args.student_type == "roberta": lowercase__ = False elif args.student_type == "gpt2": lowercase__ = False def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Tuple: """simple docstring""" if args.student_type == "roberta": lowercase__ = False def UpperCamelCase ( ) -> str: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=__magic_name__ , required=__magic_name__ , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=__magic_name__ , required=__magic_name__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=__magic_name__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__magic_name__ , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=__magic_name__ , required=__magic_name__ , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=__magic_name__ , type=__magic_name__ , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__magic_name__ , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=__magic_name__ , required=__magic_name__ , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=__magic_name__ , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=__magic_name__ , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=__magic_name__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=__magic_name__ , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=__magic_name__ , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=__magic_name__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.1_5 , type=__magic_name__ , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=__magic_name__ , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=__magic_name__ , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=__magic_name__ , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=__magic_name__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=__magic_name__ , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=__magic_name__ , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=__magic_name__ , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.0_5 , type=__magic_name__ , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__magic_name__ , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=__magic_name__ , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__magic_name__ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__magic_name__ , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.0_2 , type=__magic_name__ , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=__magic_name__ , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=__magic_name__ , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=__magic_name__ , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=__magic_name__ , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=__magic_name__ , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=__magic_name__ , default=4000 , help="""Checkpoint interval.""" ) lowercase__ = parser.parse_args() sanity_checks(__magic_name__ ) # ARGS # init_gpu_params(__magic_name__ ) set_seed(__magic_name__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(__magic_name__ ) , __magic_name__ , indent=4 ) git_log(args.dump_path ) lowercase__ , lowercase__ , lowercase__ = MODEL_CLASSES[args.student_type] lowercase__ , lowercase__ , lowercase__ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowercase__ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowercase__ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowercase__ = tokenizer.all_special_tokens.index(__magic_name__ ) lowercase__ = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) lowercase__ = special_tok_ids lowercase__ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , """rb""" ) as fp: lowercase__ = pickle.load(__magic_name__ ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , """rb""" ) as fp: lowercase__ = pickle.load(__magic_name__ ) lowercase__ = np.maximum(__magic_name__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowercase__ = 0.0 # do not predict special tokens lowercase__ = torch.from_numpy(__magic_name__ ) else: lowercase__ = None lowercase__ = LmSeqsDataset(params=__magic_name__ , data=__magic_name__ ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) lowercase__ = student_config_class.from_pretrained(args.student_config ) lowercase__ = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) lowercase__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__magic_name__ ) else: lowercase__ = student_model_class(__magic_name__ ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # lowercase__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__magic_name__ ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__magic_name__ , __magic_name__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__magic_name__ , __magic_name__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowercase__ = Distiller( params=__magic_name__ , dataset=__magic_name__ , token_probs=__magic_name__ , student=__magic_name__ , teacher=__magic_name__ ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
15
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" @register_to_config def __init__( self , _lowercase = 1_2_8 , _lowercase = 2_5_6 , _lowercase = 2000.0 , _lowercase = 7_6_8 , _lowercase = 1_2 , _lowercase = 1_2 , _lowercase = 6_4 , _lowercase = 2_0_4_8 , _lowercase = 0.1 , ) -> Dict: '''simple docstring''' super().__init__() snake_case_ : Optional[Any] = nn.Sequential( nn.Linear(_lowercase , d_model * 4 , bias=_lowercase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowercase ) , nn.SiLU() , ) snake_case_ : Any = nn.Embedding(_lowercase , _lowercase ) snake_case_ : Union[str, Any] = False snake_case_ : List[Any] = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) snake_case_ : Union[str, Any] = nn.Dropout(p=_lowercase ) snake_case_ : Tuple = nn.ModuleList() for lyr_num in range(_lowercase ): # FiLM conditional T5 decoder snake_case_ : Union[str, Any] = DecoderLayer(d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase ) self.decoders.append(_lowercase ) snake_case_ : List[Any] = TaLayerNorm(_lowercase ) snake_case_ : Optional[Any] = nn.Dropout(p=_lowercase ) snake_case_ : List[Any] = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ , snake_case_ , snake_case_ : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. snake_case_ : Optional[int] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) snake_case_ : int = self.conditioning_emb(_lowercase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) snake_case_ : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. snake_case_ : Dict = torch.broadcast_to( torch.arange(_lowercase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) snake_case_ : Tuple = self.position_encoding(_lowercase ) snake_case_ : Optional[Any] = self.continuous_inputs_projection(_lowercase ) inputs += position_encodings snake_case_ : List[Any] = self.dropout(_lowercase ) # decoder: No padding present. snake_case_ : Tuple = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. snake_case_ : int = [(x, self.encoder_decoder_mask(_lowercase , _lowercase )) for x, y in encodings_and_masks] # cross attend style: concat encodings snake_case_ : Optional[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) snake_case_ : str = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: snake_case_ : int = lyr( _lowercase , conditioning_emb=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , )[0] snake_case_ : int = self.decoder_norm(_lowercase ) snake_case_ : Union[str, Any] = self.post_dropout(_lowercase ) snake_case_ : int = self.spec_out(_lowercase ) return spec_out class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=1E-6 ) -> Union[str, Any]: '''simple docstring''' super().__init__() snake_case_ : Any = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , dropout_rate=_lowercase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , dropout_rate=_lowercase , layer_norm_epsilon=_lowercase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase , layer_norm_epsilon=_lowercase ) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = self.layer[0]( _lowercase , conditioning_emb=_lowercase , attention_mask=_lowercase , ) if encoder_hidden_states is not None: snake_case_ : Tuple = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) snake_case_ : str = self.layer[1]( _lowercase , key_value_states=_lowercase , attention_mask=_lowercase , ) # Apply Film Conditional Feed Forward layer snake_case_ : Any = self.layer[-1](_lowercase , _lowercase ) return (hidden_states,) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' super().__init__() snake_case_ : Any = TaLayerNorm(_lowercase ) snake_case_ : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowercase ) snake_case_ : Union[str, Any] = Attention(query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , out_bias=_lowercase , scale_qk=_lowercase ) snake_case_ : List[Any] = nn.Dropout(_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase=None , _lowercase=None , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = self.layer_norm(_lowercase ) if conditioning_emb is not None: snake_case_ : str = self.FiLMLayer(_lowercase , _lowercase ) # Self-attention block snake_case_ : List[Any] = self.attention(_lowercase ) snake_case_ : List[str] = hidden_states + self.dropout(_lowercase ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' super().__init__() snake_case_ : List[Any] = Attention(query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , out_bias=_lowercase , scale_qk=_lowercase ) snake_case_ : Union[str, Any] = TaLayerNorm(_lowercase , eps=_lowercase ) snake_case_ : Optional[Any] = nn.Dropout(_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase=None , _lowercase=None , ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = self.layer_norm(_lowercase ) snake_case_ : Optional[Any] = self.attention( _lowercase , encoder_hidden_states=_lowercase , attention_mask=attention_mask.squeeze(1 ) , ) snake_case_ : Any = hidden_states + self.dropout(_lowercase ) return layer_output class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' super().__init__() snake_case_ : Tuple = TaDenseGatedActDense(d_model=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase ) snake_case_ : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowercase ) snake_case_ : Optional[int] = TaLayerNorm(_lowercase , eps=_lowercase ) snake_case_ : Tuple = nn.Dropout(_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase=None ) -> str: '''simple docstring''' snake_case_ : List[Any] = self.layer_norm(_lowercase ) if conditioning_emb is not None: snake_case_ : Optional[int] = self.film(_lowercase , _lowercase ) snake_case_ : int = self.DenseReluDense(_lowercase ) snake_case_ : Optional[Any] = hidden_states + self.dropout(_lowercase ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase ) -> Optional[int]: '''simple docstring''' super().__init__() snake_case_ : Optional[int] = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) snake_case_ : Optional[int] = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) snake_case_ : Any = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) snake_case_ : int = nn.Dropout(_lowercase ) snake_case_ : Optional[int] = NewGELUActivation() def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' snake_case_ : str = self.act(self.wi_a(_lowercase ) ) snake_case_ : Dict = self.wi_a(_lowercase ) snake_case_ : Any = hidden_gelu * hidden_linear snake_case_ : List[Any] = self.dropout(_lowercase ) snake_case_ : Tuple = self.wo(_lowercase ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1E-6 ) -> str: '''simple docstring''' super().__init__() snake_case_ : Union[str, Any] = nn.Parameter(torch.ones(_lowercase ) ) snake_case_ : int = eps def UpperCAmelCase__ ( self , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_lowercase ) snake_case_ : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: snake_case_ : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def UpperCAmelCase__ ( self , _lowercase ) -> torch.Tensor: '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(_lowercase , 3.0 )) )) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' super().__init__() snake_case_ : List[Any] = nn.Linear(_lowercase , out_features * 2 , bias=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = self.scale_bias(_lowercase ) snake_case_ , snake_case_ : Any = torch.chunk(_lowercase , 2 , -1 ) snake_case_ : Optional[Any] = x * (1 + scale) + shift return x
58
0
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if not isinstance(__A , __A ): snake_case: List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: snake_case: int = f"""Input value of [number={number}] must be > 0""" raise ValueError(__A ) elif number == 1: return 3 elif number == 2: return 5 else: snake_case: int = int(math.log(number // 3 , 2 ) ) + 2 snake_case: str = [3, 5] snake_case: List[str] = 2 snake_case: List[Any] = 3 for block in range(1 , __A ): for _ in range(__A ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __UpperCAmelCase = 0 try: __UpperCAmelCase = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
1
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if index == r: for j in range(_SCREAMING_SNAKE_CASE ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __UpperCAmelCase = arr[i] combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 , _SCREAMING_SNAKE_CASE , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , 0 ) if __name__ == "__main__": # Driver code to check the function above A_ : List[str] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
303
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _lowerCamelCase = logging.getLogger(__name__) @dataclass class _snake_case : __A : str =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __A : Optional[str] =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __A : Optional[str] =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __A : Optional[str] =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether tp freeze the encoder."}) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to freeze the embeddings."}) @dataclass class _snake_case : __A : str =field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}) __A : Optional[str] =field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __A : Optional[int] =field( default=10_24 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __A : Optional[int] =field( default=1_28 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __A : Optional[int] =field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __A : Optional[int] =field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __A : Optional[int] =field(default=-1 , metadata={"help": "# training examples. -1 means use all."}) __A : Optional[int] =field(default=-1 , metadata={"help": "# validation examples. -1 means use all."}) __A : Optional[int] =field(default=-1 , metadata={"help": "# test examples. -1 means use all."}) __A : Optional[str] =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Source language id for translation."}) __A : Optional[str] =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Target language id for translation."}) __A : Optional[int] =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "# num_beams to use for evaluation."}) __A : bool =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , F'''{split}_results.json''' ) ) def a__ ( ) -> Any: """simple docstring""" UpperCAmelCase_ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = parser.parse_args_into_dataclasses() check_output_dir(_SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ : List[Any] = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_SCREAMING_SNAKE_CASE , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCAmelCase_ : Dict = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Dict = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCAmelCase_ : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_SCREAMING_SNAKE_CASE ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCAmelCase_ : Dict = SeqaSeqDataset # Get datasets UpperCAmelCase_ : Tuple = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCAmelCase_ : Dict = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCAmelCase_ : int = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCAmelCase_ : Optional[Any] = ( build_compute_metrics_fn(data_args.task , _SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None ) UpperCAmelCase_ : List[str] = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ : List[Any] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCAmelCase_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCAmelCase_ : int = train_result.metrics UpperCAmelCase_ : Dict = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ : Union[str, Any] = trainer.evaluate(metric_key_prefix="val" ) UpperCAmelCase_ : Optional[Any] = data_args.n_val UpperCAmelCase_ : Union[str, Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCAmelCase_ : List[Any] = trainer.predict(test_dataset=_SCREAMING_SNAKE_CASE , metric_key_prefix="test" ) UpperCAmelCase_ : List[str] = test_output.metrics UpperCAmelCase_ : int = data_args.n_test if trainer.is_world_process_zero(): UpperCAmelCase_ : Optional[Any] = round(metrics["test_loss"] , 4 ) handle_metrics("test" , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate: UpperCAmelCase_ : Optional[int] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = lmap(str.strip , _SCREAMING_SNAKE_CASE ) write_txt_file(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def a__ ( _SCREAMING_SNAKE_CASE : str ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
71
0
import os from datetime import datetime as dt from github import Github a : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def lowercase_ ( ): '''simple docstring''' __lowercase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowercase = g.get_repo('''huggingface/diffusers''' ) __lowercase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowercase = sorted(issue.get_comments() , key=lambda _UpperCamelCase : i.created_at , reverse=_UpperCamelCase ) __lowercase = comments[0] if len(_UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[str] = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
527
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a_ = '__DUMMY_TRANSFORMERS_USER__' a_ = 'Dummy User' a_ = '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' a_ = 'https://hub-ci.huggingface.co' a_ = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' a_ = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' a_ = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def __lowercase ( lowerCamelCase : List[Any] ): monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , lowerCamelCase ) @pytest.fixture def __lowercase ( lowerCamelCase : List[str] ): monkeypatch.setattr('datasets.config.HF_ENDPOINT' , lowerCamelCase ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , lowerCamelCase ) @pytest.fixture def __lowercase ( lowerCamelCase : Dict ): monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , lowerCamelCase ) @pytest.fixture def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : int ): HfFolder.save_token(lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def __lowercase ( ): return HfApi(endpoint=lowerCamelCase ) @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : HfApi ): UpperCamelCase_ : Tuple = HfFolder.get_token() HfFolder.save_token(lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCamelCase ) @pytest.fixture def __lowercase ( lowerCamelCase : List[str] ): def _cleanup_repo(lowerCamelCase : Tuple ): hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def __lowercase ( lowerCamelCase : int ): @contextmanager def _temporary_repo(lowerCamelCase : Optional[int] ): try: yield repo_id finally: cleanup_repo(lowerCamelCase ) return _temporary_repo @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : HfApi , lowerCamelCase : Optional[int] , lowerCamelCase : str ): UpperCamelCase_ : Dict = F"repo_txt_data-{int(time.time() * 10e3 )}" UpperCamelCase_ : Tuple = F"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type='dataset' , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo='data/text_data.txt' , repo_id=lowerCamelCase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowercase ( lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : HfApi , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] ): UpperCamelCase_ : List[Any] = F"repo_zipped_txt_data-{int(time.time() * 10e3 )}" UpperCamelCase_ : Union[str, Any] = F"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type='dataset' , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo='data.zip' , repo_id=lowerCamelCase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : HfApi , lowerCamelCase : Any , lowerCamelCase : str ): UpperCamelCase_ : List[Any] = F"repo_zipped_img_data-{int(time.time() * 10e3 )}" UpperCamelCase_ : Optional[Any] = F"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(lowerCamelCase , token=lowerCamelCase , repo_type='dataset' , private=lowerCamelCase ) hf_api.upload_file( token=lowerCamelCase , path_or_fileobj=str(lowerCamelCase ) , path_in_repo='data.zip' , repo_id=lowerCamelCase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase , token=lowerCamelCase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str ): return hf_private_dataset_repo_zipped_img_data_
417
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowercase ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ : Optional[Any] = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Tuple = self.dummy_uncond_unet UpperCamelCase_ : List[Any] = ScoreSdeVeScheduler() UpperCamelCase_ : int = ScoreSdeVePipeline(unet=snake_case , scheduler=snake_case ) sde_ve.to(snake_case ) sde_ve.set_progress_bar_config(disable=snake_case ) UpperCamelCase_ : Union[str, Any] = torch.manual_seed(0 ) UpperCamelCase_ : int = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=snake_case ).images UpperCamelCase_ : List[Any] = torch.manual_seed(0 ) UpperCamelCase_ : Optional[Any] = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=snake_case , return_dict=snake_case )[ 0 ] UpperCamelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_ : Tuple = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Dict = 'google/ncsnpp-church-256' UpperCamelCase_ : Dict = UNetaDModel.from_pretrained(snake_case ) UpperCamelCase_ : List[Any] = ScoreSdeVeScheduler.from_pretrained(snake_case ) UpperCamelCase_ : Any = ScoreSdeVePipeline(unet=snake_case , scheduler=snake_case ) sde_ve.to(snake_case ) sde_ve.set_progress_bar_config(disable=snake_case ) UpperCamelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCamelCase_ : Any = sde_ve(num_inference_steps=1_0 , output_type='numpy' , generator=snake_case ).images UpperCamelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) UpperCamelCase_ : List[Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
417
1
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = """MCTCTFeatureExtractor""" lowerCAmelCase_ = """AutoTokenizer""" def __init__( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ) -> Optional[int]: super().__init__(UpperCamelCase__ , UpperCamelCase__ ) _UpperCamelCase =self.feature_extractor _UpperCamelCase =False def __call__( self : Tuple , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Optional[int] ) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _UpperCamelCase =kwargs.pop('''raw_speech''' ) else: _UpperCamelCase =kwargs.pop('''audio''' , UpperCamelCase__ ) _UpperCamelCase =kwargs.pop('''sampling_rate''' , UpperCamelCase__ ) _UpperCamelCase =kwargs.pop('''text''' , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _UpperCamelCase =args[0] _UpperCamelCase =args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _UpperCamelCase =self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None: _UpperCamelCase =self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: _UpperCamelCase =encodings['''input_ids'''] return inputs def UpperCamelCase__ ( self : int , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ) -> int: return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase__ ( self : Dict , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : int ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*UpperCamelCase__ , **UpperCamelCase__ ) _UpperCamelCase =kwargs.pop('''input_features''' , UpperCamelCase__ ) _UpperCamelCase =kwargs.pop('''labels''' , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _UpperCamelCase =args[0] _UpperCamelCase =args[1:] if input_features is not None: _UpperCamelCase =self.feature_extractor.pad(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if labels is not None: _UpperCamelCase =self.tokenizer.pad(UpperCamelCase__ , **UpperCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCamelCase =labels['''input_ids'''] return input_features def UpperCamelCase__ ( self : Optional[Any] , *UpperCamelCase__ : Dict , **UpperCamelCase__ : int ) -> List[Any]: return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @contextmanager def UpperCamelCase__ ( self : List[Any] ) -> Tuple: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _UpperCamelCase =True _UpperCamelCase =self.tokenizer yield _UpperCamelCase =self.feature_extractor _UpperCamelCase =False
704
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Optional[int] = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
271
0
'''simple docstring''' from math import loga def UpperCamelCase__ ( __magic_name__ : int ) -> int: '''simple docstring''' if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
38
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class a : """simple docstring""" lowerCamelCase :str lowerCamelCase :str = None @staticmethod def UpperCAmelCase ( ) -> List[str]: raise NotImplementedError def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Dict: raise NotImplementedError def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: raise NotImplementedError def UpperCAmelCase ( self ) -> List[str]: if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def UpperCAmelCase ( cls ) -> List[str]: return F'''`pip install {cls.pip_package or cls.name}`''' class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Any = '''optuna''' @staticmethod def UpperCAmelCase ( ) -> Tuple: return is_optuna_available() def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: return run_hp_search_optuna(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> str: return default_hp_space_optuna(lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Tuple = '''ray''' lowerCamelCase :int = '''\'ray[tune]\'''' @staticmethod def UpperCAmelCase ( ) -> Dict: return is_ray_available() def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: return run_hp_search_ray(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: return default_hp_space_ray(lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Any = '''sigopt''' @staticmethod def UpperCAmelCase ( ) -> Optional[int]: return is_sigopt_available() def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Union[str, Any]: return run_hp_search_sigopt(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return default_hp_space_sigopt(lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Any = '''wandb''' @staticmethod def UpperCAmelCase ( ) -> int: return is_wandb_available() def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return run_hp_search_wandb(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: return default_hp_space_wandb(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def snake_case ( ) -> str: _A = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case__) > 0: _A = available_backends[0].name if len(snake_case__) > 1: logger.info( F'''{len(snake_case__)} hyperparameter search backends available. Using {name} as the default.''') return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()))
401
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCAmelCase__ ( __snake_case ): def __init__( self ,A__ ,A__ ): _A : str = params _A : Tuple = np.array(A__ ) _A : Dict = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self ,A__ ): return (self.token_ids[index], self.lengths[index]) def __len__( self ): return len(self.lengths ) def A__ ( self ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def A__ ( self ): _A : List[str] = self.params.max_model_input_size _A : List[Any] = self.lengths > max_len logger.info(f"""Splitting {sum(A__ )} too long sequences.""" ) def divide_chunks(A__ ,A__ ): return [l[i : i + n] for i in range(0 ,len(A__ ) ,A__ )] _A : Dict = [] _A : Optional[Any] = [] if self.params.mlm: _A : Optional[int] = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: _A : str = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids ,self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _A : str = [] for sub_s in divide_chunks(seq_ ,max_len - 2 ): if sub_s[0] != cls_id: _A : Optional[int] = np.insert(A__ ,0 ,A__ ) if sub_s[-1] != sep_id: _A : List[Any] = np.insert(A__ ,len(A__ ) ,A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) _A : Union[str, Any] = np.array(A__ ) _A : List[str] = np.array(A__ ) def A__ ( self ): _A : str = len(self ) _A : str = self.lengths > 11 _A : str = self.token_ids[indices] _A : Dict = self.lengths[indices] _A : Optional[int] = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def A__ ( self ): if "unk_token" not in self.params.special_tok_ids: return else: _A : Any = self.params.special_tok_ids['''unk_token'''] _A : Dict = len(self ) _A : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _A : Union[str, Any] = (unk_occs / self.lengths) < 0.5 _A : Dict = self.token_ids[indices] _A : List[Any] = self.lengths[indices] _A : List[Any] = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def A__ ( self ): if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def A__ ( self ,A__ ): _A : List[Any] = [t[0] for t in batch] _A : int = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings _A : Optional[int] = max(A__ ) # Pad token ids if self.params.mlm: _A : List[Any] = self.params.special_tok_ids['''pad_token'''] else: _A : Optional[int] = self.params.special_tok_ids['''unk_token'''] _A : Dict = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) _A : List[Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) _A : str = torch.tensor(A__ ) # (bs) return tk_t, lg_t
702
from ...configuration_utils import PretrainedConfig _UpperCamelCase : Tuple ={ 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class UpperCAmelCase__ ( __snake_case ): __snake_case : List[Any] = "tapas" def __init__( self ,A__=30522 ,A__=768 ,A__=12 ,A__=12 ,A__=3072 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=1024 ,A__=[3, 256, 256, 2, 256, 256, 10] ,A__=0.02 ,A__=1E-12 ,A__=0 ,A__=10.0 ,A__=0 ,A__=1.0 ,A__=None ,A__=1.0 ,A__=False ,A__=None ,A__=1.0 ,A__=1.0 ,A__=False ,A__=False ,A__="ratio" ,A__=None ,A__=None ,A__=64 ,A__=32 ,A__=False ,A__=True ,A__=False ,A__=False ,A__=True ,A__=False ,A__=None ,A__=None ,**A__ ,): super().__init__(pad_token_id=A__ ,**A__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _A : int = vocab_size _A : Dict = hidden_size _A : List[str] = num_hidden_layers _A : Tuple = num_attention_heads _A : Any = hidden_act _A : str = intermediate_size _A : List[str] = hidden_dropout_prob _A : List[Any] = attention_probs_dropout_prob _A : Tuple = max_position_embeddings _A : Optional[Any] = type_vocab_sizes _A : List[Any] = initializer_range _A : Optional[Any] = layer_norm_eps # Fine-tuning task hyperparameters _A : Optional[Any] = positive_label_weight _A : List[Any] = num_aggregation_labels _A : Union[str, Any] = aggregation_loss_weight _A : Optional[int] = use_answer_as_supervision _A : Tuple = answer_loss_importance _A : Dict = use_normalized_answer_loss _A : Union[str, Any] = huber_loss_delta _A : Union[str, Any] = temperature _A : Optional[Any] = aggregation_temperature _A : Optional[int] = use_gumbel_for_cells _A : List[str] = use_gumbel_for_aggregation _A : int = average_approximation_function _A : Union[str, Any] = cell_selection_preference _A : List[str] = answer_loss_cutoff _A : List[Any] = max_num_rows _A : List[str] = max_num_columns _A : Union[str, Any] = average_logits_per_cell _A : Optional[Any] = select_one_column _A : List[str] = allow_empty_column_selection _A : int = init_cell_selection_weights_to_zero _A : Dict = reset_position_index_per_cell _A : Dict = disable_per_token_loss # Aggregation hyperparameters _A : Tuple = aggregation_labels _A : Dict = no_aggregation_label_index if isinstance(self.aggregation_labels ,A__ ): _A : Dict = {int(A__ ): v for k, v in aggregation_labels.items()}
332
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[str] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Any = 'deformable_detr' lowercase__ : Tuple = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=3 , lowerCamelCase__=3_0_0 , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=6 , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=8 , lowerCamelCase__=6 , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=8 , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=2_5_6 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1.0 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="sine" , lowerCamelCase__="resnet50" , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=False , lowerCamelCase__=3_0_0 , lowerCamelCase__=False , lowerCamelCase__=1 , lowerCamelCase__=5 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=1 , lowerCamelCase__=5 , lowerCamelCase__=2 , lowerCamelCase__=0.1 , lowerCamelCase__=0.2_5 , lowerCamelCase__=False , **lowerCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _lowerCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = backbone_config.get('''model_type''' ) _lowerCamelCase = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase = config_class.from_dict(lowerCamelCase__ ) _lowerCamelCase = use_timm_backbone _lowerCamelCase = backbone_config _lowerCamelCase = num_channels _lowerCamelCase = num_queries _lowerCamelCase = max_position_embeddings _lowerCamelCase = d_model _lowerCamelCase = encoder_ffn_dim _lowerCamelCase = encoder_layers _lowerCamelCase = encoder_attention_heads _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_attention_heads _lowerCamelCase = dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = activation_function _lowerCamelCase = init_std _lowerCamelCase = init_xavier_std _lowerCamelCase = encoder_layerdrop _lowerCamelCase = auxiliary_loss _lowerCamelCase = position_embedding_type _lowerCamelCase = backbone _lowerCamelCase = use_pretrained_backbone _lowerCamelCase = dilation # deformable attributes _lowerCamelCase = num_feature_levels _lowerCamelCase = encoder_n_points _lowerCamelCase = decoder_n_points _lowerCamelCase = two_stage _lowerCamelCase = two_stage_num_proposals _lowerCamelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _lowerCamelCase = class_cost _lowerCamelCase = bbox_cost _lowerCamelCase = giou_cost # Loss coefficients _lowerCamelCase = mask_loss_coefficient _lowerCamelCase = dice_loss_coefficient _lowerCamelCase = bbox_loss_coefficient _lowerCamelCase = giou_loss_coefficient _lowerCamelCase = eos_coefficient _lowerCamelCase = focal_alpha _lowerCamelCase = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def snake_case__ ( self ): return self.encoder_attention_heads @property def snake_case__ ( self ): return self.d_model def snake_case__ ( self ): _lowerCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _lowerCamelCase = self.backbone_config.to_dict() _lowerCamelCase = self.__class__.model_type return output
661
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def lowerCAmelCase_( lowercase_ : int = 2_00_00_00 ) -> int: _lowerCamelCase = [0] _lowerCamelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowerCamelCase = 0 # the area corresponding to the grid that gives the product closest to target _lowerCamelCase = 0 # an estimate of b, using the quadratic formula _lowerCamelCase = 42 # the largest integer less than b_estimate _lowerCamelCase = 42 # the largest integer less than b_estimate _lowerCamelCase = 42 # the triangle number corresponding to b_floor _lowerCamelCase = 42 # the triangle number corresponding to b_ceil _lowerCamelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowerCamelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowerCamelCase = floor(lowercase_ ) _lowerCamelCase = ceil(lowercase_ ) _lowerCamelCase = triangle_numbers[b_floor] _lowerCamelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowerCamelCase = triangle_b_first_guess * triangle_a _lowerCamelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowerCamelCase = triangle_b_second_guess * triangle_a _lowerCamelCase = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
661
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _UpperCamelCase = logging.get_logger(__name__) @dataclass class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self ,**A ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase = deprecated_arg[3:] UpperCAmelCase = not kwargs.pop(A ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase = kwargs.pop("""tpu_name""" ,self.tpu_name ) UpperCAmelCase = kwargs.pop("""device_idx""" ,self.device_idx ) UpperCAmelCase = kwargs.pop("""eager_mode""" ,self.eager_mode ) UpperCAmelCase = kwargs.pop("""use_xla""" ,self.use_xla ) super().__init__(**A ) SCREAMING_SNAKE_CASE = field( default=snake_case , metadata={'''help''': '''Name of TPU'''} , ) SCREAMING_SNAKE_CASE = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) SCREAMING_SNAKE_CASE = field(default=snake_case , metadata={'''help''': '''Benchmark models in eager model.'''} ) SCREAMING_SNAKE_CASE = field( default=snake_case , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _UpperCamelCase ( self ): requires_backends(self ,["""tf"""] ) UpperCAmelCase = None if self.tpu: try: if self.tpu_name: UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase = None return tpu @cached_property def _UpperCamelCase ( self ): requires_backends(self ,["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,"""GPU""" ) UpperCAmelCase = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] ,"""GPU""" ) # disable GPU UpperCAmelCase = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def _UpperCamelCase ( self ): requires_backends(self ,["""tf"""] ) return self._setup_tpu is not None @property def _UpperCamelCase ( self ): requires_backends(self ,["""tf"""] ) return self._setup_strategy @property def _UpperCamelCase ( self ): requires_backends(self ,["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _UpperCamelCase ( self ): requires_backends(self ,["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _UpperCamelCase ( self ): return self.n_gpu > 0
74
"""simple docstring""" import argparse import struct import unittest class lowerCamelCase__ : def __init__( self ,A ): UpperCAmelCase = data # Initialize hash values UpperCAmelCase = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants UpperCAmelCase = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] UpperCAmelCase = self.preprocessing(self.data ) self.final_hash() @staticmethod def _UpperCamelCase ( A ): UpperCAmelCase = b"""\x80""" + (b"""\x00""" * (63 - (len(A ) + 8) % 64)) UpperCAmelCase = struct.pack(""">Q""" ,(len(A ) * 8) ) return data + padding + big_endian_integer def _UpperCamelCase ( self ): # Convert into blocks of 64 bytes UpperCAmelCase = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCAmelCase = list(struct.unpack(""">16L""" ,A ) ) # add 48 0-ed integers words += [0] * 48 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCAmelCase = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) UpperCAmelCase = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) UpperCAmelCase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression UpperCAmelCase = self.ror(A ,6 ) ^ self.ror(A ,11 ) ^ self.ror(A ,25 ) UpperCAmelCase = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) UpperCAmelCase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 UpperCAmelCase = self.ror(A ,2 ) ^ self.ror(A ,13 ) ^ self.ror(A ,22 ) UpperCAmelCase = (a & b) ^ (a & c) ^ (b & c) UpperCAmelCase = (sa + maj) % 0x1_00_00_00_00 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) UpperCAmelCase = [a, b, c, d, e, f, g, h] # Modify final values UpperCAmelCase = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] UpperCAmelCase = """""".join([hex(A )[2:].zfill(8 ) for value in self.hashes] ) def _UpperCamelCase ( self ,A ,A ): return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ): import hashlib UpperCAmelCase = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(A ).hash ,hashlib.shaaaa(A ).hexdigest() ) def _a ( ): """simple docstring""" import doctest doctest.testmod() UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: UpperCAmelCase = f.read() else: UpperCAmelCase = bytes(_snake_case , """utf-8""" ) print(SHAaaa(_snake_case ).hash ) if __name__ == "__main__": main()
74
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__magic_name__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__magic_name__ ) , 0 ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoConfig.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) # Check that tokenizer_type ≠ model_type UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , config=__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase_ ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__magic_name__ , """vocab.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""bert""" , use_fast=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__magic_name__ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__magic_name__ , """merges.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""gpt2""" , use_fast=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) @require_tokenizers def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__magic_name__ , """vocab.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""bert""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__magic_name__ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__magic_name__ , """merges.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""gpt2""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" with pytest.raises(__magic_name__ ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCamelCase = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(__magic_name__ , __magic_name__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __magic_name__ ) else: self.assertEqual(tokenizer.do_lower_case , __magic_name__ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase_ ( self : Dict ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __magic_name__ , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): UpperCamelCase = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = TOKENIZER_MAPPING.values() UpperCamelCase = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__magic_name__ ) @require_tokenizers def lowerCamelCase_ ( self : Any ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__magic_name__ ) , __magic_name__ ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , __magic_name__ ) @require_tokenizers def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=__magic_name__ ) UpperCamelCase = """Hello, world. How are you?""" UpperCamelCase = tokenizer.tokenize(__magic_name__ ) self.assertEqual("""[UNK]""" , tokens[0] ) UpperCamelCase = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=__magic_name__ ) UpperCamelCase = tokenizer.tokenize(__magic_name__ ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(__magic_name__ ) , __magic_name__ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = get_tokenizer_config("""bert-base-cased""" ) UpperCamelCase = config.pop("""_commit_hash""" , __magic_name__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__magic_name__ , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCamelCase = get_tokenizer_config(__magic_name__ ) self.assertDictEqual(__magic_name__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = get_tokenizer_config(__magic_name__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" try: AutoConfig.register("""custom""" , __magic_name__ ) AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__magic_name__ ): AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) UpperCamelCase = CustomTokenizer.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" try: AutoConfig.register("""custom""" , __magic_name__ ) # Can register in two steps AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__magic_name__ , fast_tokenizer_class=__magic_name__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __magic_name__ , slow_tokenizer_class=__magic_name__ , fast_tokenizer_class=__magic_name__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__magic_name__ ): AutoTokenizer.register(__magic_name__ , fast_tokenizer_class=__magic_name__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = BertTokenizerFast.from_pretrained(__magic_name__ ) bert_tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = CustomTokenizerFast.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , use_fast=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" with self.assertRaises(__magic_name__ ): UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__magic_name__ ): UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , trust_remote_code=__magic_name__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" class UpperCAmelCase ( __snake_case ): lowercase = False class UpperCAmelCase ( __snake_case ): lowercase = NewTokenizer lowercase = False try: AutoConfig.register("""custom""" , __magic_name__ ) AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) AutoTokenizer.register(__magic_name__ , fast_tokenizer_class=__magic_name__ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCamelCase_ ( self : Any ): """simple docstring""" with self.assertRaisesRegex( __magic_name__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" with self.assertRaisesRegex( __magic_name__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
386
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __snake_case = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def _lowercase ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _lowercase ( SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase = _TestCommandArgs(dataset=SCREAMING_SNAKE_CASE_ , all_configs=SCREAMING_SNAKE_CASE_ , save_infos=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = TestCommand(*SCREAMING_SNAKE_CASE_ ) test_command.run() UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , """README.md""" ) assert os.path.exists(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_351_563, """num_examples""": 10_000, }, { """name""": """validation""", """num_bytes""": 238_418, """num_examples""": 1_000, }, ] , download_size=3_940_680 , dataset_size=2_589_981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCamelCase , UpperCamelCase = getattr(dataset_infos["""default"""] , SCREAMING_SNAKE_CASE_ ), getattr(expected_dataset_infos["""default"""] , SCREAMING_SNAKE_CASE_ ) if key == "num_bytes": assert is_apercent_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif key == "splits": assert list(SCREAMING_SNAKE_CASE_ ) == list(SCREAMING_SNAKE_CASE_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
386
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _a = logging.getLogger(__name__) class __A : '''simple docstring''' def __init__( self ): '''simple docstring''' lowerCamelCase__ = False def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' if not self.initialized: lowerCamelCase__ = RagRetriever( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) lowerCamelCase__ = True def __lowerCamelCase ( self ): '''simple docstring''' self.retriever.index.init_index() def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = self.retriever._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return doc_ids, retrieved_doc_embeds class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): '''simple docstring''' if index is not None and index.is_initialized() and len(__lowerCAmelCase ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) lowerCamelCase__ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ): '''simple docstring''' logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowerCamelCase__ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] lowerCamelCase__ , lowerCamelCase__ = ray.get(random_worker.retrieve.remote(__lowerCAmelCase , __lowerCAmelCase ) ) else: lowerCamelCase__ , lowerCamelCase__ = self._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCAmelCase ) @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ): '''simple docstring''' return super(__lowerCAmelCase , cls ).get_tokenizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = kwargs.pop('''config''' , __lowerCAmelCase ) or RagConfig.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = RagTokenizer.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase ) lowerCamelCase__ = rag_tokenizer.question_encoder lowerCamelCase__ = rag_tokenizer.generator if indexed_dataset is not None: lowerCamelCase__ = '''custom''' lowerCamelCase__ = CustomHFIndex(config.retrieval_vector_size , __lowerCAmelCase ) else: lowerCamelCase__ = cls._build_index(__lowerCAmelCase ) return cls( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , retrieval_workers=__lowerCAmelCase , index=__lowerCAmelCase , )
29
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _a = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
29
1
def UpperCamelCase( __UpperCamelCase : str ): lowerCAmelCase_ : int = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) lowerCAmelCase_ : Dict = hex_num[0] == '''-''' if is_negative: lowerCAmelCase_ : Union[str, Any] = hex_num[1:] try: lowerCAmelCase_ : List[Any] = int(__UpperCamelCase ,16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) lowerCAmelCase_ : Any = '''''' while int_num > 0: lowerCAmelCase_ : List[str] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
171
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A__ : Tuple = TypeVar('''KEY''') A__ : List[Any] = TypeVar('''VAL''') @dataclass(frozen=UpperCamelCase_ ,slots=UpperCamelCase_ ) class __snake_case ( Generic[KEY, VAL] ): _a = 42 _a = 42 class __snake_case ( _Item ): def __init__( self : Union[str, Any]): super().__init__(A_ , A_) def __bool__( self : int): return False A__ : Optional[int] = _DeletedItem() class __snake_case ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[Any] , A_ : int = 8 , A_ : float = 0.75): lowerCAmelCase_ : Optional[Any] = initial_block_size lowerCAmelCase_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCAmelCase_ : str = capacity_factor lowerCAmelCase_ : Union[str, Any] = 0 def UpperCAmelCase__ ( self : str , A_ : KEY): return hash(A_) % len(self._buckets) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : int): return (ind + 1) % len(self._buckets) def UpperCAmelCase__ ( self : Tuple , A_ : int , A_ : KEY , A_ : VAL): lowerCAmelCase_ : str = self._buckets[ind] if not stored: lowerCAmelCase_ : Optional[int] = _Item(A_ , A_) self._len += 1 return True elif stored.key == key: lowerCAmelCase_ : Union[str, Any] = _Item(A_ , A_) return True else: return False def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : List[Any] = len(self._buckets) * self._capacity_factor return len(self) >= int(A_) def UpperCAmelCase__ ( self : List[Any]): if len(self._buckets) <= self._initial_block_size: return False lowerCAmelCase_ : Any = len(self._buckets) * self._capacity_factor / 2 return len(self) < limit def UpperCAmelCase__ ( self : Optional[Any] , A_ : int): lowerCAmelCase_ : List[str] = self._buckets lowerCAmelCase_ : str = [None] * new_size lowerCAmelCase_ : Optional[Any] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val) def UpperCAmelCase__ ( self : int): self._resize(len(self._buckets) * 2) def UpperCAmelCase__ ( self : Dict): self._resize(len(self._buckets) // 2) def UpperCAmelCase__ ( self : List[str] , A_ : KEY): lowerCAmelCase_ : str = self._get_bucket_index(A_) for _ in range(len(self._buckets)): yield ind lowerCAmelCase_ : Tuple = self._get_next_ind(A_) def UpperCAmelCase__ ( self : List[Any] , A_ : KEY , A_ : VAL): for ind in self._iterate_buckets(A_): if self._try_set(A_ , A_ , A_): break def __setitem__( self : int , A_ : KEY , A_ : VAL): if self._is_full(): self._size_up() self._add_item(A_ , A_) def __delitem__( self : Tuple , A_ : KEY): for ind in self._iterate_buckets(A_): lowerCAmelCase_ : Tuple = self._buckets[ind] if item is None: raise KeyError(A_) if item is _deleted: continue if item.key == key: lowerCAmelCase_ : Dict = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : List[str] , A_ : KEY): for ind in self._iterate_buckets(A_): lowerCAmelCase_ : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(A_) def __len__( self : Dict): return self._len def __iter__( self : Dict): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any]): lowerCAmelCase_ : List[Any] = ''' ,'''.join( F"""{item.key}: {item.val}""" for item in self._buckets if item) return F"""HashMap({val_string})"""
171
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _lowercase ( __lowerCAmelCase="" ) -> int: SCREAMING_SNAKE_CASE__ : str = tempfile.mkdtemp() return os.path.join(_lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = torch.rand(12 , dtype=torch.floataa ) - 0.5 SCREAMING_SNAKE_CASE__ : str = AgentAudio(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_lowercase , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(_lowercase ) ) # Ensure that the file contains the same value as the original tensor SCREAMING_SNAKE_CASE__ : str = sf.read(_lowercase ) self.assertTrue(torch.allclose(_lowercase , torch.tensor(_lowercase ) , atol=1E-4 ) ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = torch.rand(12 , dtype=torch.floataa ) - 0.5 SCREAMING_SNAKE_CASE__ : Optional[int] = get_new_path(suffix=""".wav""" ) sf.write(_lowercase , _lowercase , 16_000 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = AgentAudio(_lowercase ) self.assertTrue(torch.allclose(_lowercase , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , _lowercase ) @require_vision @require_torch class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = torch.randint(0 , 256 , (64, 64, 3) ) SCREAMING_SNAKE_CASE__ : Dict = AgentImage(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_lowercase , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowercase ) ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" SCREAMING_SNAKE_CASE__ : List[str] = Image.open(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = AgentImage(_lowercase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowercase ) ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" SCREAMING_SNAKE_CASE__ : List[str] = Image.open(_lowercase ) SCREAMING_SNAKE_CASE__ : str = AgentImage(_lowercase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowercase ) ) class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = """Hey!""" SCREAMING_SNAKE_CASE__ : int = AgentText(_lowercase ) self.assertEqual(_lowercase , agent_type.to_string() ) self.assertEqual(_lowercase , agent_type.to_raw() ) self.assertEqual(_lowercase , _lowercase )
718
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __a : '''simple docstring''' def __init__( self , _a , _a=99 , _a=13 , _a=7 , _a=9 , _a=True , _a=True , _a=False , _a=32 , _a=5 , _a=4 , _a=37 , _a=8 , _a=0.1 , _a=0.002 , _a=1 , _a=0 , _a=0 , _a=None , _a=None , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : Tuple = encoder_seq_length SCREAMING_SNAKE_CASE__ : str = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[int] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Tuple = is_training SCREAMING_SNAKE_CASE__ : Dict = use_attention_mask SCREAMING_SNAKE_CASE__ : List[str] = use_labels SCREAMING_SNAKE_CASE__ : str = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : Any = d_ff SCREAMING_SNAKE_CASE__ : Any = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate SCREAMING_SNAKE_CASE__ : List[str] = initializer_factor SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = pad_token_id SCREAMING_SNAKE_CASE__ : Any = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : str = decoder_layers def _a ( self ) -> Tuple: """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""" ) def _a ( self , _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> Any: """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : int = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE__ : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_a ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_a ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE__ : Tuple = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() SCREAMING_SNAKE_CASE__ : List[str] = config.num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_inputs_dict(_a , _a , _a ) return config, input_dict def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() return config, inputs_dict def _a ( self ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _a ( self ) -> List[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = UMTaModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model( input_ids=_a , decoder_input_ids=_a , attention_mask=_a , decoder_attention_mask=_a , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(input_ids=_a , decoder_input_ids=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = result.last_hidden_state SCREAMING_SNAKE_CASE__ : Dict = result.past_key_values SCREAMING_SNAKE_CASE__ : Any = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_a ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).get_decoder().to(_a ).eval() # first forward pass SCREAMING_SNAKE_CASE__ : str = model(_a , use_cache=_a ) SCREAMING_SNAKE_CASE__ : str = model(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )["""last_hidden_state"""] SCREAMING_SNAKE_CASE__ : Tuple = model(_a , past_key_values=_a )["""last_hidden_state"""] # select random slice SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) ) def _a ( self , _a , _a , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).to(_a ).half().eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_a )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(_a ).any().item() ) @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :Optional[int] = (UMTaForConditionalGeneration,) if is_torch_available() else () _SCREAMING_SNAKE_CASE :List[str] = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Union[str, Any] = True _SCREAMING_SNAKE_CASE :Tuple = False _SCREAMING_SNAKE_CASE :Optional[Any] = False _SCREAMING_SNAKE_CASE :List[Any] = True _SCREAMING_SNAKE_CASE :List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests _SCREAMING_SNAKE_CASE :Union[str, Any] = [0.8, 0.9] def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Dict = UMTaModel(config_and_inputs[0] ).to(_a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_a ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : List[Any] = config_and_inputs[0] SCREAMING_SNAKE_CASE__ : Tuple = UMTaForConditionalGeneration(_a ).eval() model.to(_a ) SCREAMING_SNAKE_CASE__ : List[str] = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_a ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), } for attn_name, (name, mask) in zip(_a , head_masking.items() ): SCREAMING_SNAKE_CASE__ : List[str] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": SCREAMING_SNAKE_CASE__ : str = torch.ones( config.num_decoder_layers , config.num_heads , device=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_a , return_dict_in_generate=_a , **_a , ) # We check the state of decoder_attentions and cross_attentions just from the last step SCREAMING_SNAKE_CASE__ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _a ( self ) -> Dict: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __a (unittest.TestCase): '''simple docstring''' @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_a ).to(_a ) SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_a , legacy=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_a , return_tensors="""pt""" , padding=_a ).input_ids # fmt: off SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_a , _a ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(input_ids.to(_a ) ) SCREAMING_SNAKE_CASE__ : int = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(_a ) self.assertEqual(_a , _a )
12
0
'''simple docstring''' from typing import Any def lowerCamelCase__ ( a__ , a__ , a__ , a__ , a__ , ) -> list: """simple docstring""" _validation( a__ , a__ , a__ , a__ , a__ , ) # Creates data structures and fill initial step _snake_case : dict = {} _snake_case : dict = {} for state in states_space: _snake_case : int = observations_space[0] _snake_case : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) _snake_case : Optional[Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(a__)): _snake_case : Any = observations_space[o] _snake_case : Union[str, Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _snake_case : Optional[Any] = '' _snake_case : List[Any] = -1 for k_state in states_space: _snake_case : Tuple = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _snake_case : List[str] = probability _snake_case : Optional[Any] = k_state # Update probabilities and pointers dicts _snake_case : str = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _snake_case : Union[str, Any] = arg_max # The final observation _snake_case : List[Any] = observations_space[len(a__) - 1] # argmax for given final observation _snake_case : Any = '' _snake_case : Tuple = -1 for k_state in states_space: _snake_case : Any = probabilities[(k_state, final_observation)] if probability > max_probability: _snake_case : Dict = probability _snake_case : int = k_state _snake_case : List[Any] = arg_max # Process pointers backwards _snake_case : str = last_state _snake_case : Union[str, Any] = [] for o in range(len(a__) - 1 , -1 , -1): result.append(a__) _snake_case : Dict = pointers[previous, observations_space[o]] result.reverse() return result def lowerCamelCase__ ( a__ , a__ , a__ , a__ , a__ , ) -> None: """simple docstring""" _validate_not_empty( a__ , a__ , a__ , a__ , a__ , ) _validate_lists(a__ , a__) _validate_dicts( a__ , a__ , a__) def lowerCamelCase__ ( a__ , a__ , a__ , a__ , a__ , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError('There\'s an empty parameter') def lowerCamelCase__ ( a__ , a__) -> None: """simple docstring""" _validate_list(a__ , 'observations_space') _validate_list(a__ , 'states_space') def lowerCamelCase__ ( a__ , a__) -> None: """simple docstring""" if not isinstance(_object , a__): _snake_case : int = F"""{var_name} must be a list""" raise ValueError(a__) else: for x in _object: if not isinstance(a__ , a__): _snake_case : Dict = F"""{var_name} must be a list of strings""" raise ValueError(a__) def lowerCamelCase__ ( a__ , a__ , a__ , ) -> None: """simple docstring""" _validate_dict(a__ , 'initial_probabilities' , a__) _validate_nested_dict(a__ , 'transition_probabilities') _validate_nested_dict(a__ , 'emission_probabilities') def lowerCamelCase__ ( a__ , a__) -> None: """simple docstring""" _validate_dict(_object , a__ , a__) for x in _object.values(): _validate_dict(a__ , a__ , a__ , a__) def lowerCamelCase__ ( a__ , a__ , a__ , a__ = False) -> None: """simple docstring""" if not isinstance(_object , a__): _snake_case : Optional[int] = F"""{var_name} must be a dict""" raise ValueError(a__) if not all(isinstance(a__ , a__) for x in _object): _snake_case : List[Any] = F"""{var_name} all keys must be strings""" raise ValueError(a__) if not all(isinstance(a__ , a__) for x in _object.values()): _snake_case : int = 'nested dictionary ' if nested else '' _snake_case : Tuple = F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(a__) if __name__ == "__main__": from doctest import testmod testmod()
517
from __future__ import annotations def A__ ( lowercase: int | str ) -> bool: A : int =str(lowercase ) return n == n[::-1] def A__ ( lowercase: int = 1_000_000 ) -> Any: A : str =0 for i in range(1, lowercase ): if is_palindrome(lowercase ) and is_palindrome(bin(lowercase ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
305
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None _SCREAMING_SNAKE_CASE : str = "utf-8" _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : bool = True # deprecated _SCREAMING_SNAKE_CASE : Optional[int] = None # deprecated _SCREAMING_SNAKE_CASE : int = 10 << 20 # 10MB _SCREAMING_SNAKE_CASE : Optional[bool] = None class UpperCAmelCase__ ( datasets.ArrowBasedBuilder ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = JsonConfig def lowerCAmelCase__ ( self ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) a =self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self , _lowerCAmelCase ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) a =dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): a =data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): a =[files] a =[dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] a =[] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): a =[files] a =[dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def lowerCAmelCase__ ( self , _lowerCAmelCase ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): a =self.config.features.arrow_schema.field(_lowerCAmelCase ).type a =pa_table.append_column(_lowerCAmelCase , pa.array([None] * len(_lowerCAmelCase ) , type=_lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example a =table_cast(_lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self , _lowerCAmelCase ): for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: a =json.load(_lowerCAmelCase ) # We keep only the field we are interested in a =dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCAmelCase , (list, tuple) ): a =set().union(*[row.keys() for row in dataset] ) a ={col: [row.get(_lowerCAmelCase ) for row in dataset] for col in keys} else: a =dataset a =pa.Table.from_pydict(_lowerCAmelCase ) yield file_idx, self._cast_table(_lowerCAmelCase ) # If the file has one json object per line else: with open(_lowerCAmelCase , """rb""" ) as f: a =0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small a =max(self.config.chunksize // 32 , 16 << 10 ) a =( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: a =f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": a =batch.decode(self.config.encoding , errors=_lowerCAmelCase ).encode("""utf-8""" ) try: while True: try: a =paj.read_json( io.BytesIO(_lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=_lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCAmelCase ) or block_size > len(_lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(_lowerCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: a =json.load(_lowerCAmelCase ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # list is the only sequence type supported in JSON try: a =set().union(*[row.keys() for row in dataset] ) a ={col: [row.get(_lowerCAmelCase ) for row in dataset] for col in keys} a =pa.Table.from_pydict(_lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(_lowerCAmelCase ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCAmelCase ) batch_idx += 1
321
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCAmelCase__ : '''simple docstring''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase = 13 , _lowerCAmelCase = 64 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3 , _lowerCAmelCase = 3 , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 128 , _lowerCAmelCase=[16, 32, 64, 128] , _lowerCAmelCase = 7 , _lowerCAmelCase = 4 , _lowerCAmelCase = 37 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 10 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 128 , _lowerCAmelCase = [2, 2, 2, 2] , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , ): a =parent a =batch_size a =image_size a =patch_size a =num_channels a =is_training a =use_labels a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =type_sequence_label_size a =initializer_range a =encoder_stride a =num_attention_outputs a =embed_dim a =embed_dim + 1 a =resolution a =depths a =hidden_sizes a =dim a =mlp_expansion_ratio def lowerCAmelCase__ ( self ): a =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a =None if self.use_labels: a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): a =TFEfficientFormerModel(config=_lowerCAmelCase ) a =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): a =self.type_sequence_label_size a =TFEfficientFormerForImageClassification(_lowerCAmelCase ) a =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a =1 a =TFEfficientFormerForImageClassification(_lowerCAmelCase ) a =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a =model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self ): a =self.prepare_config_and_inputs() a , a , a =config_and_inputs a ={"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE : Any = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : int = False def lowerCAmelCase__ ( self ): a =TFEfficientFormerModelTester(self ) a =ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(_lowerCAmelCase ) a =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self ): def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): a =model_class(_lowerCAmelCase ) a =model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) a =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a =getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): a =self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: a =seq_length * self.model_tester.chunk_length else: a =self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: a =outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) a =getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) a =getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): a =super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase__ ( self ): a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def lowerCAmelCase__ ( self ): a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def lowerCAmelCase__ ( self ): a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self ): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase__ ( self ): a , a =self.model_tester.prepare_config_and_inputs_for_common() a =True a =getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) a =getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) a =getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) a =getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): a =encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: a =True a =False a =True a =model_class(_lowerCAmelCase ) a =model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) a =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a =True a =model_class(_lowerCAmelCase ) a =model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) a =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase__ ( self ): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model a =model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes a ={ key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } a =model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase ( )-> str: """simple docstring""" a =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self ): return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self ): a =TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) a =self.default_image_processor a =prepare_img() a =image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass a =model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits a =tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) a =tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): a =TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) a =self.default_image_processor a =prepare_img() a =image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass a =model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits a =tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) a =tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
321
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def a__ ( _UpperCamelCase : int ): __lowerCamelCase = int(number**0.5 ) return number == sq * sq def a__ ( _UpperCamelCase : int ,_UpperCamelCase : int ,_UpperCamelCase : int ,_UpperCamelCase : int ,_UpperCamelCase : int ,_UpperCamelCase : int ): __lowerCamelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __lowerCamelCase = x_den * y_den * z_den __lowerCamelCase = gcd(_UpperCamelCase ,_UpperCamelCase ) top //= hcf bottom //= hcf return top, bottom def a__ ( _UpperCamelCase : int = 35 ): __lowerCamelCase = set() __lowerCamelCase = 42 __lowerCamelCase = Fraction(0 ) __lowerCamelCase = 42 for x_num in range(1 ,order + 1 ): for x_den in range(x_num + 1 ,order + 1 ): for y_num in range(1 ,order + 1 ): for y_den in range(y_num + 1 ,order + 1 ): # n=1 __lowerCamelCase = x_num * y_den + x_den * y_num __lowerCamelCase = x_den * y_den __lowerCamelCase = gcd(_UpperCamelCase ,_UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase = add_three( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=2 __lowerCamelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __lowerCamelCase = x_den * x_den * y_den * y_den if is_sq(_UpperCamelCase ) and is_sq(_UpperCamelCase ): __lowerCamelCase = int(sqrt(_UpperCamelCase ) ) __lowerCamelCase = int(sqrt(_UpperCamelCase ) ) __lowerCamelCase = gcd(_UpperCamelCase ,_UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase = add_three( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=-1 __lowerCamelCase = x_num * y_num __lowerCamelCase = x_den * y_num + x_num * y_den __lowerCamelCase = gcd(_UpperCamelCase ,_UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase = add_three( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) unique_s.add(_UpperCamelCase ) # n=2 __lowerCamelCase = x_num * x_num * y_num * y_num __lowerCamelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_UpperCamelCase ) and is_sq(_UpperCamelCase ): __lowerCamelCase = int(sqrt(_UpperCamelCase ) ) __lowerCamelCase = int(sqrt(_UpperCamelCase ) ) __lowerCamelCase = gcd(_UpperCamelCase ,_UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCamelCase = add_three( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) unique_s.add(_UpperCamelCase ) for num, den in unique_s: total += Fraction(_UpperCamelCase ,_UpperCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
175
from __future__ import annotations from math import ceil, floor, sqrt def a__ ( _UpperCamelCase : int = 2_00_00_00 ): __lowerCamelCase = [0] __lowerCamelCase = 42 for idx in range(1 ,ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowerCamelCase = 0 # the area corresponding to the grid that gives the product closest to target __lowerCamelCase = 0 # an estimate of b, using the quadratic formula __lowerCamelCase = 42 # the largest integer less than b_estimate __lowerCamelCase = 42 # the largest integer less than b_estimate __lowerCamelCase = 42 # the triangle number corresponding to b_floor __lowerCamelCase = 42 # the triangle number corresponding to b_ceil __lowerCamelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] ,1 ): __lowerCamelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowerCamelCase = floor(_UpperCamelCase ) __lowerCamelCase = ceil(_UpperCamelCase ) __lowerCamelCase = triangle_numbers[b_floor] __lowerCamelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowerCamelCase = triangle_b_first_guess * triangle_a __lowerCamelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowerCamelCase = triangle_b_second_guess * triangle_a __lowerCamelCase = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
175
1
from __future__ import annotations def UpperCamelCase ( snake_case__ : Dict ): '''simple docstring''' return len(set(lowerCamelCase__ ) ) == len(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
715
import glob import os import random from string import ascii_lowercase, digits import cva lowerCamelCase__ = """""" lowerCamelCase__ = """""" lowerCamelCase__ = """""" lowerCamelCase__ = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase ( ): '''simple docstring''' __snake_case , __snake_case :List[Any] = get_dataset(snake_case__ ,snake_case__ ) print("""Processing...""" ) __snake_case , __snake_case , __snake_case :Tuple = update_image_and_anno(snake_case__ ,snake_case__ ,snake_case__ ) for index, image in enumerate(snake_case__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __snake_case :str = random_chars(32 ) __snake_case :Optional[Any] = paths[index].split(os.sep )[-1].rsplit(""".""" ,1 )[0] __snake_case :List[str] = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' ,snake_case__ ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(snake_case__ )} with {file_name}''' ) __snake_case :Optional[int] = [] for anno in new_annos[index]: __snake_case :str = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(snake_case__ ) with open(f'''/{file_root}.txt''' ,"""w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def UpperCamelCase ( snake_case__ : str ,snake_case__ : str ): '''simple docstring''' __snake_case :List[str] = [] __snake_case :Dict = [] for label_file in glob.glob(os.path.join(snake_case__ ,"""*.txt""" ) ): __snake_case :Tuple = label_file.split(os.sep )[-1].rsplit(""".""" ,1 )[0] with open(snake_case__ ) as in_file: __snake_case :Optional[int] = in_file.readlines() __snake_case :Any = os.path.join(snake_case__ ,f'''{label_name}.jpg''' ) __snake_case :List[str] = [] for obj_list in obj_lists: __snake_case :int = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(snake_case__ ) labels.append(snake_case__ ) return img_paths, labels def UpperCamelCase ( snake_case__ : list ,snake_case__ : list ,snake_case__ : int = 1 ): '''simple docstring''' __snake_case :Dict = [] __snake_case :Any = [] __snake_case :int = [] for idx in range(len(snake_case__ ) ): __snake_case :Optional[int] = [] __snake_case :List[str] = img_list[idx] path_list.append(snake_case__ ) __snake_case :Union[str, Any] = anno_list[idx] __snake_case :List[Any] = cva.imread(snake_case__ ) if flip_type == 1: __snake_case :Optional[Any] = cva.flip(snake_case__ ,snake_case__ ) for bbox in img_annos: __snake_case :Union[str, Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __snake_case :Union[str, Any] = cva.flip(snake_case__ ,snake_case__ ) for bbox in img_annos: __snake_case :Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(snake_case__ ) new_imgs_list.append(snake_case__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase ( snake_case__ : int = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __snake_case :Optional[Any] = ascii_lowercase + digits return "".join(random.choice(snake_case__ ) for _ in range(snake_case__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
291
0
"""simple docstring""" import os def __UpperCAmelCase ( ): """simple docstring""" with open(os.path.dirname(lowerCAmelCase__ ) + """/p022_names.txt""" ) as file: _UpperCAmelCase = str(file.readlines()[0] ) _UpperCAmelCase = names.replace("""\"""" ,"""""" ).split(""",""" ) names.sort() _UpperCAmelCase = 0 _UpperCAmelCase = 0 for i, name in enumerate(lowerCAmelCase__ ): for letter in name: name_score += ord(lowerCAmelCase__ ) - 64 total_score += (i + 1) * name_score _UpperCAmelCase = 0 return total_score if __name__ == "__main__": print(solution())
277
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Optional[Any] = """linear""" SCREAMING_SNAKE_CASE_: Dict = """cosine""" SCREAMING_SNAKE_CASE_: Tuple = """cosine_with_restarts""" SCREAMING_SNAKE_CASE_: Dict = """polynomial""" SCREAMING_SNAKE_CASE_: Optional[int] = """constant""" SCREAMING_SNAKE_CASE_: str = """constant_with_warmup""" SCREAMING_SNAKE_CASE_: Optional[int] = """piecewise_constant""" def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ = -1 ): return LambdaLR(lowerCAmelCase__ ,lambda lowerCAmelCase__ : 1 ,last_epoch=lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1.0 ,lowerCAmelCase__ ) ) return 1.0 return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = -1 ): A__ = {} A__ = step_rules.split(',' ) for rule_str in rule_list[:-1]: A__ , A__ = rule_str.split(':' ) A__ = int(lowerCAmelCase__ ) A__ = float(lowerCAmelCase__ ) A__ = value A__ = float(rule_list[-1] ) def create_rules_function(lowerCAmelCase__ ,lowerCAmelCase__ ): def rule_func(lowerCAmelCase__ ) -> float: A__ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCAmelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ = create_rules_function(lowerCAmelCase__ ,lowerCAmelCase__ ) return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=-1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 ,lowerCAmelCase__ ) ) return max( 0.0 ,float(num_training_steps - current_step ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = 0.5 ,lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 ,lowerCAmelCase__ ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * float(lowerCAmelCase__ ) * 2.0 * progress )) ) return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = 1 ,lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 ,lowerCAmelCase__ ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * ((float(lowerCAmelCase__ ) * progress) % 1.0) )) ) return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=1E-7 ,lowerCAmelCase__=1.0 ,lowerCAmelCase__=-1 ): A__ = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 ,lowerCAmelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ = lr_init - lr_end A__ = num_training_steps - num_warmup_steps A__ = 1 - (current_step - num_warmup_steps) / decay_steps A__ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ,lowerCAmelCase__ = 1 ,lowerCAmelCase__ = 1.0 ,lowerCAmelCase__ = -1 ,): A__ = SchedulerType(lowerCAmelCase__ ) A__ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCAmelCase__ ,step_rules=lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCAmelCase__ ,num_warmup_steps=lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCAmelCase__ ,num_warmup_steps=lowerCAmelCase__ ,num_training_steps=lowerCAmelCase__ ,num_cycles=lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ,) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCAmelCase__ ,num_warmup_steps=lowerCAmelCase__ ,num_training_steps=lowerCAmelCase__ ,power=lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ,) return schedule_func( lowerCAmelCase__ ,num_warmup_steps=lowerCAmelCase__ ,num_training_steps=lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ )
260
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( _lowercase , unittest.TestCase ): A__ = DebertaTokenizer A__ = True A__ = DebertaTokenizerFast def __magic_name__( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCAmelCase__ : Dict = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : str = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCAmelCase__ : str = {'''unk_token''': '''[UNK]'''} lowerCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def __magic_name__( self , **__UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : Any = '''lower newer''' lowerCAmelCase__ : Optional[Any] = '''lower newer''' return input_text, output_text def __magic_name__( self ): lowerCAmelCase__ : int = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = '''lower newer''' lowerCAmelCase__ : Any = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCAmelCase__ : Optional[Any] = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : str = tokens + [tokenizer.unk_token] lowerCAmelCase__ : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : List[str] = self.get_tokenizer() lowerCAmelCase__ : Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCAmelCase__ : List[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __UpperCAmelCase ) @slow def __magic_name__( self ): lowerCAmelCase__ : Any = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCAmelCase__ : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = tokenizer.encode( '''sequence builders''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ : List[str] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) lowerCAmelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __magic_name__( self ): lowerCAmelCase__ : List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCAmelCase__ : List[str] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCAmelCase__ : Union[str, Any] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCAmelCase__ : int = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = [tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) for seq in encoding['''input_ids''']] # fmt: off lowerCAmelCase__ : List[str] = { '''input_ids''': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCAmelCase__ : Optional[Any] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __UpperCAmelCase ) for expected, decoded in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
470
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _lowerCAmelCase : def __init__( self , __UpperCAmelCase ): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowerCAmelCase__ : Union[str, Any] = deepcopy(__UpperCAmelCase ) elif os.path.exists(__UpperCAmelCase ): with io.open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : int = json.load(__UpperCAmelCase ) else: try: lowerCAmelCase__ : Union[str, Any] = baseaa.urlsafe_baadecode(__UpperCAmelCase ).decode('''utf-8''' ) lowerCAmelCase__ : Optional[int] = json.loads(__UpperCAmelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) lowerCAmelCase__ : Optional[Any] = config self.set_stage_and_offload() def __magic_name__( self ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowerCAmelCase__ : Optional[Any] = self.get_value('''zero_optimization.stage''' , -1 ) # offload lowerCAmelCase__ : Dict = False if self.is_zeroa() or self.is_zeroa(): lowerCAmelCase__ : Dict = set(['''cpu''', '''nvme'''] ) lowerCAmelCase__ : Optional[Any] = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowerCAmelCase__ : List[Any] = True def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : int = self.config # find the config node of interest if it exists lowerCAmelCase__ : Tuple = ds_key_long.split('''.''' ) lowerCAmelCase__ : int = nodes.pop() for node in nodes: lowerCAmelCase__ : int = config.get(__UpperCAmelCase ) if config is None: return None, ds_key return config, ds_key def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase=None ): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.find_config_node(__UpperCAmelCase ) if config is None: return default return config.get(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase=False ): lowerCAmelCase__ : Dict = self.config # find the config node of interest if it exists lowerCAmelCase__ : str = ds_key_long.split('''.''' ) for node in nodes: lowerCAmelCase__ : Dict = config lowerCAmelCase__ : List[str] = config.get(__UpperCAmelCase ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = self.get_value(__UpperCAmelCase ) return False if value is None else bool(__UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = self.get_value(__UpperCAmelCase ) return False if value is None else not bool(__UpperCAmelCase ) def __magic_name__( self ): return self._stage == 2 def __magic_name__( self ): return self._stage == 3 def __magic_name__( self ): return self._offload class _lowerCAmelCase : def __init__( self , __UpperCAmelCase ): lowerCAmelCase__ : int = engine def __magic_name__( self , __UpperCAmelCase , **__UpperCAmelCase ): # runs backpropagation and handles mixed precision self.engine.backward(__UpperCAmelCase , **__UpperCAmelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _lowerCAmelCase ( _lowercase ): def __init__( self , __UpperCAmelCase ): super().__init__(__UpperCAmelCase , device_placement=__UpperCAmelCase , scaler=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = hasattr(self.optimizer , '''overflow''' ) def __magic_name__( self , __UpperCAmelCase=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __magic_name__( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __magic_name__( self ): if self.__has_overflow__: return self.optimizer.overflow return False class _lowerCAmelCase ( _lowercase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=0.001 , __UpperCAmelCase=0 , **__UpperCAmelCase ): lowerCAmelCase__ : Any = params lowerCAmelCase__ : str = lr lowerCAmelCase__ : List[str] = weight_decay lowerCAmelCase__ : Dict = kwargs class _lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=0 , **__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = optimizer lowerCAmelCase__ : Optional[Any] = total_num_steps lowerCAmelCase__ : str = warmup_num_steps lowerCAmelCase__ : Dict = kwargs
470
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = FunnelTokenizer __magic_name__ = FunnelTokenizerFast __magic_name__ = True __magic_name__ = True def _SCREAMING_SNAKE_CASE ( self : str ) -> str: super().setUp() UpperCAmelCase_ : Optional[int] = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : Dict , **lowerCAmelCase_ : List[Any] ) -> Any: return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , **lowerCAmelCase_ : Any ) -> Dict: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str ) -> Dict: UpperCAmelCase_ : Union[str, Any] = "UNwant\u00E9d,running" UpperCAmelCase_ : Optional[Any] = "unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: UpperCAmelCase_ : str = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ : List[str] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: UpperCAmelCase_ : Union[str, Any] = tokenizer("UNwant\u00E9d,running" ) UpperCAmelCase_ : List[Any] = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) UpperCAmelCase_ : Union[str, Any] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
95
"""simple docstring""" def _lowerCamelCase ( lowerCamelCase__ : str ): assert column_title.isupper() lowercase__ : int = 0 lowercase__ : Optional[int] = len(lowerCamelCase__ ) - 1 lowercase__ : int = 0 while index >= 0: lowercase__ : List[str] = (ord(column_title[index] ) - 64) * pow(26 , lowerCamelCase__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
200
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __snake_case : __lowerCamelCase = XGLMConfig __lowerCamelCase = {} __lowerCamelCase = """gelu""" def __init__( self , __UpperCamelCase , __UpperCamelCase=14 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=0.0_2 , ) -> List[Any]: '''simple docstring''' snake_case__ : List[str] = parent snake_case__ : List[Any] = batch_size snake_case__ : Any = seq_length snake_case__ : Union[str, Any] = is_training snake_case__ : Optional[int] = use_input_mask snake_case__ : Any = use_labels snake_case__ : List[str] = vocab_size snake_case__ : Tuple = d_model snake_case__ : List[Any] = num_hidden_layers snake_case__ : Dict = num_attention_heads snake_case__ : Dict = ffn_dim snake_case__ : Optional[Any] = activation_function snake_case__ : Any = activation_dropout snake_case__ : Tuple = attention_dropout snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : List[Any] = initializer_range snake_case__ : str = None snake_case__ : Union[str, Any] = 0 snake_case__ : str = 2 snake_case__ : Any = 1 def __a ( self ) -> Optional[int]: '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Any = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) snake_case__ : Optional[Any] = None if self.use_input_mask: snake_case__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : str = self.get_config() snake_case__ : int = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __a ( self ) -> Dict: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCamelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCamelCase , ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : int = config_and_inputs snake_case__ : Any = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () __lowerCamelCase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> int: '''simple docstring''' snake_case__ : List[Any] = TFXGLMModelTester(self ) snake_case__ : int = ConfigTester(self , config_class=__UpperCamelCase , n_embd=37 ) def __a ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @slow def __a ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFXGLMModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __snake_case ( unittest.TestCase ): @slow def __a ( self , __UpperCamelCase=True ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) snake_case__ : Optional[int] = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off snake_case__ : str = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on snake_case__ : int = model.generate(__UpperCamelCase , do_sample=__UpperCamelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCamelCase ) @slow def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : List[Any] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) snake_case__ : int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) snake_case__ : Any = tokenizer('Today is a nice day and' , return_tensors='tf' ) snake_case__ : List[str] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): snake_case__ : Any = model.generate(__UpperCamelCase , do_sample=__UpperCamelCase , seed=[7, 0] ) snake_case__ : List[str] = tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCamelCase ) snake_case__ : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) @slow def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) snake_case__ : List[str] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) snake_case__ : str = 'left' # use different length sentences to test batching snake_case__ : Tuple = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] snake_case__ : Optional[Any] = tokenizer(__UpperCamelCase , return_tensors='tf' , padding=__UpperCamelCase ) snake_case__ : str = inputs['input_ids'] snake_case__ : List[Any] = model.generate(input_ids=__UpperCamelCase , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) snake_case__ : Dict = tokenizer(sentences[0] , return_tensors='tf' ).input_ids snake_case__ : Tuple = model.generate(input_ids=__UpperCamelCase , max_new_tokens=12 ) snake_case__ : List[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids snake_case__ : Optional[Any] = model.generate(input_ids=__UpperCamelCase , max_new_tokens=12 ) snake_case__ : Optional[int] = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) snake_case__ : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCamelCase ) snake_case__ : Dict = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCamelCase ) snake_case__ : int = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [non_padded_sentence, padded_sentence] )
699
def UpperCamelCase__ ( A__ , A__ , A__ ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case__ : Dict = _modexpt(A__ , exponent // 2 , A__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(A__ , exponent - 1 , A__ )) % modulo_value def UpperCamelCase__ ( A__ = 1777 , A__ = 1855 , A__ = 8 ) -> int: snake_case__ : Tuple = base for _ in range(1 , A__ ): snake_case__ : Any = _modexpt(A__ , A__ , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
699
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase =logging.get_logger(__name__) lowercase ={ 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="git_vision_model" def __init__( self , snake_case=7_6_8 , snake_case=3_0_7_2 , snake_case=1_2 , snake_case=1_2 , snake_case=3 , snake_case=2_2_4 , snake_case=1_6 , snake_case="quick_gelu" , snake_case=1E-5 , snake_case=0.0 , snake_case=0.02 , **snake_case , ) -> str: '''simple docstring''' super().__init__(**snake_case) _UpperCAmelCase : Any =hidden_size _UpperCAmelCase : Optional[int] =intermediate_size _UpperCAmelCase : Dict =num_hidden_layers _UpperCAmelCase : Optional[Any] =num_attention_heads _UpperCAmelCase : Dict =num_channels _UpperCAmelCase : Optional[Any] =patch_size _UpperCAmelCase : Tuple =image_size _UpperCAmelCase : int =initializer_range _UpperCAmelCase : Any =attention_dropout _UpperCAmelCase : str =layer_norm_eps _UpperCAmelCase : Union[str, Any] =hidden_act @classmethod def lowerCAmelCase ( cls , snake_case , **snake_case) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(snake_case) _UpperCAmelCase , _UpperCAmelCase : Tuple =cls.get_config_dict(snake_case , **snake_case) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type') == "git": _UpperCAmelCase : List[str] =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(snake_case , **snake_case) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="git" def __init__( self , snake_case=None , snake_case=3_0_5_2_2 , snake_case=7_6_8 , snake_case=6 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1_0_2_4 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=0 , snake_case="absolute" , snake_case=True , snake_case=False , snake_case=1_0_1 , snake_case=1_0_2 , snake_case=None , **snake_case , ) -> Tuple: '''simple docstring''' super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , pad_token_id=snake_case , **snake_case) if vision_config is None: _UpperCAmelCase : Union[str, Any] ={} logger.info('vision_config is None. initializing the GitVisionConfig with default values.') _UpperCAmelCase : Tuple =GitVisionConfig(**snake_case) _UpperCAmelCase : Optional[int] =vocab_size _UpperCAmelCase : str =hidden_size _UpperCAmelCase : List[Any] =num_hidden_layers _UpperCAmelCase : Optional[Any] =num_attention_heads _UpperCAmelCase : int =hidden_act _UpperCAmelCase : List[Any] =intermediate_size _UpperCAmelCase : str =hidden_dropout_prob _UpperCAmelCase : Union[str, Any] =attention_probs_dropout_prob _UpperCAmelCase : Dict =max_position_embeddings _UpperCAmelCase : str =initializer_range _UpperCAmelCase : Optional[Any] =layer_norm_eps _UpperCAmelCase : str =position_embedding_type _UpperCAmelCase : Optional[Any] =use_cache _UpperCAmelCase : Any =tie_word_embeddings _UpperCAmelCase : Union[str, Any] =num_image_with_embedding _UpperCAmelCase : int =bos_token_id _UpperCAmelCase : List[str] =eos_token_id def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : str =copy.deepcopy(self.__dict__) _UpperCAmelCase : Any =self.vision_config.to_dict() _UpperCAmelCase : str =self.__class__.model_type return output
446
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCamelCase__ ( __lowerCamelCase : List[str] ): '''simple docstring''' _UpperCAmelCase : int =[] for line in lines: _UpperCAmelCase : Dict =re.sub(R'#.*' , '' , __lowerCamelCase ) # remove comments if line: filtered_lines.append(__lowerCamelCase ) _UpperCAmelCase : str ='\n'.join(__lowerCamelCase ) # Make a hash from all this code _UpperCAmelCase : str =full_str.encode('utf-8' ) return shaaaa(__lowerCamelCase ).hexdigest() # get importable module names and hash for caching lowercase ={ 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowercase ={ '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowercase ={'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowercase ={} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
446
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Tuple = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( __snake_case , unittest.TestCase): _lowerCAmelCase : Optional[Any] = SpeechTaTokenizer _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : List[Any] = True def _snake_case ( self : Any ): super().setUp() # We have a SentencePiece fixture for testing snake_case_ : int = SpeechTaTokenizer(__UpperCamelCase ) snake_case_ : int = AddedToken('''<mask>''' , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) snake_case_ : Any = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : List[str] , lowercase_ : Any ): snake_case_ : List[str] = '''this is a test''' snake_case_ : str = '''this is a test''' return input_text, output_text def _snake_case ( self : str , lowercase_ : Tuple , lowercase_ : Dict=False , lowercase_ : Union[str, Any]=20 , lowercase_ : Any=5 ): snake_case_, snake_case_ : Dict = self.get_input_output_texts(__UpperCamelCase ) snake_case_ : List[Any] = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) snake_case_ : Union[str, Any] = tokenizer.decode(__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) return text, ids def _snake_case ( self : Optional[int] ): snake_case_ : Dict = '''<pad>''' snake_case_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def _snake_case ( self : Optional[int] ): snake_case_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(__UpperCamelCase ) , 81 ) def _snake_case ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def _snake_case ( self : str ): snake_case_ : List[Any] = self.get_tokenizers(do_lower_case=__UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): snake_case_ : List[str] = tokenizer.vocab_size snake_case_ : Dict = len(__UpperCamelCase ) self.assertNotEqual(__UpperCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case_ : Any = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] snake_case_ : Tuple = tokenizer.add_tokens(__UpperCamelCase ) snake_case_ : int = tokenizer.vocab_size snake_case_ : str = len(__UpperCamelCase ) self.assertNotEqual(__UpperCamelCase , 0 ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , len(__UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , all_size + len(__UpperCamelCase ) ) snake_case_ : Union[str, Any] = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__UpperCamelCase ) self.assertGreaterEqual(len(__UpperCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case_ : Any = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} snake_case_ : Dict = tokenizer.add_special_tokens(__UpperCamelCase ) snake_case_ : str = tokenizer.vocab_size snake_case_ : Dict = len(__UpperCamelCase ) self.assertNotEqual(__UpperCamelCase , 0 ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , len(__UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , all_size_a + len(__UpperCamelCase ) ) snake_case_ : int = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__UpperCamelCase ) self.assertGreaterEqual(len(__UpperCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def _snake_case ( self : str ): pass def _snake_case ( self : Any ): pass def _snake_case ( self : List[Any] ): snake_case_ : Optional[int] = self.get_tokenizer() snake_case_ : Tuple = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(__UpperCamelCase , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) snake_case_ : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) snake_case_ : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) # fmt: off self.assertListEqual(__UpperCamelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case_ : Dict = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def _snake_case ( self : Dict ): snake_case_ : Optional[Any] = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off snake_case_ : Union[str, Any] = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=__UpperCamelCase , )
702
"""simple docstring""" def __lowercase ( _a , _a ): snake_case_ : str = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ : int = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ : Any = min(_a , _a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
485
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __lowerCamelCase :Optional[Any] = logging.get_logger(__name__) __lowerCamelCase :Optional[int] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class A__ ( __lowercase): """simple docstring""" snake_case__ : Union[str, Any] ='''imagegpt''' snake_case__ : Dict =['''past_key_values'''] snake_case__ : Dict ={ '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self: Any , __a: int=512 + 1 , __a: Dict=32 * 32 , __a: Union[str, Any]=512 , __a: List[Any]=24 , __a: Dict=8 , __a: Optional[Any]=None , __a: Union[str, Any]="quick_gelu" , __a: List[str]=0.1 , __a: List[str]=0.1 , __a: List[Any]=0.1 , __a: Any=1e-5 , __a: int=0.02 , __a: Any=True , __a: Union[str, Any]=True , __a: Any=False , __a: str=False , __a: Any=False , **__a: str , )-> List[Any]: lowerCamelCase : int = vocab_size lowerCamelCase : Union[str, Any] = n_positions lowerCamelCase : Optional[int] = n_embd lowerCamelCase : int = n_layer lowerCamelCase : Tuple = n_head lowerCamelCase : List[Any] = n_inner lowerCamelCase : Optional[int] = activation_function lowerCamelCase : str = resid_pdrop lowerCamelCase : Any = embd_pdrop lowerCamelCase : Any = attn_pdrop lowerCamelCase : Any = layer_norm_epsilon lowerCamelCase : List[str] = initializer_range lowerCamelCase : List[Any] = scale_attn_weights lowerCamelCase : Union[str, Any] = use_cache lowerCamelCase : Tuple = scale_attn_by_inverse_layer_idx lowerCamelCase : int = reorder_and_upcast_attn lowerCamelCase : Union[str, Any] = tie_word_embeddings super().__init__(tie_word_embeddings=__a , **__a ) class A__ ( __lowercase): """simple docstring""" @property def a__ ( self: Union[str, Any] )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def a__ ( self: Union[str, Any] , __a: "FeatureExtractionMixin" , __a: int = 1 , __a: int = -1 , __a: bool = False , __a: Optional["TensorType"] = None , __a: int = 3 , __a: int = 32 , __a: int = 32 , )-> Mapping[str, Any]: lowerCamelCase : str = self._generate_dummy_images(__a , __a , __a , __a ) lowerCamelCase : Optional[Any] = dict(preprocessor(images=__a , return_tensors=__a ) ) return inputs
222
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase :Union[str, Any] = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class A__ ( __lowercase): """simple docstring""" snake_case__ : Optional[int] ='''deit''' def __init__( self: Optional[int] , __a: Optional[int]=768 , __a: int=12 , __a: List[Any]=12 , __a: List[Any]=3_072 , __a: Any="gelu" , __a: Optional[Any]=0.0 , __a: Dict=0.0 , __a: Dict=0.02 , __a: int=1e-1_2 , __a: int=224 , __a: Tuple=16 , __a: List[Any]=3 , __a: Union[str, Any]=True , __a: Union[str, Any]=16 , **__a: int , )-> Union[str, Any]: super().__init__(**__a ) lowerCamelCase : List[str] = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : Dict = num_attention_heads lowerCamelCase : List[str] = intermediate_size lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : int = hidden_dropout_prob lowerCamelCase : Tuple = attention_probs_dropout_prob lowerCamelCase : List[str] = initializer_range lowerCamelCase : str = layer_norm_eps lowerCamelCase : List[str] = image_size lowerCamelCase : int = patch_size lowerCamelCase : Dict = num_channels lowerCamelCase : Tuple = qkv_bias lowerCamelCase : Tuple = encoder_stride class A__ ( __lowercase): """simple docstring""" snake_case__ : str =version.parse('''1.11''') @property def a__ ( self: Optional[int] )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self: Union[str, Any] )-> float: return 1e-4
222
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase__: Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: List[Any] = self.dummy_uncond_unet lowercase__: int = KarrasVeScheduler() lowercase__: Dict = KarrasVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Dict = torch.manual_seed(0 ) lowercase__: List[str] = pipe(num_inference_steps=2 , generator=lowerCAmelCase__ , output_type='numpy' ).images lowercase__: List[str] = torch.manual_seed(0 ) lowercase__: str = pipe(num_inference_steps=2 , generator=lowerCAmelCase__ , output_type='numpy' , return_dict=lowerCAmelCase__ )[0] lowercase__: Union[str, Any] = image[0, -3:, -3:, -1] lowercase__: str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__: Union[str, Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: List[str] = 'google/ncsnpp-celebahq-256' lowercase__: Optional[int] = UNetaDModel.from_pretrained(lowerCAmelCase__ ) lowercase__: Dict = KarrasVeScheduler() lowercase__: str = KarrasVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Optional[int] = torch.manual_seed(0 ) lowercase__: str = pipe(num_inference_steps=20 , generator=lowerCAmelCase__ , output_type='numpy' ).images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__: List[str] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
719
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : int = PegasusTokenizer __lowercase : int = PegasusTokenizerFast __lowercase : Dict = True __lowercase : Union[str, Any] = True def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__: Dict = PegasusTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = '</s>' lowercase__: Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(lowerCAmelCase__ ) , 1_103 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: Any = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowercase__: Any = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] lowercase__: str = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Optional[int] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__: Optional[int] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowercase__: Any = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] lowercase__: int = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Union[str, Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 lowercase__: Tuple = 'To ensure a smooth flow of bank resolutions.' lowercase__: Tuple = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] lowercase__: Tuple = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Optional[Any] = ['This is going to be way too long.' * 150, 'short example'] lowercase__: Optional[int] = ['not super long but more than 5 tokens', 'tiny'] lowercase__: str = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) lowercase__: Tuple = self._large_tokenizer( text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask. @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' # fmt: off lowercase__: Union[str, Any] = {'input_ids': [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : Union[str, Any] = PegasusTokenizer __lowercase : Union[str, Any] = PegasusTokenizerFast __lowercase : int = True __lowercase : Union[str, Any] = True def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__: Optional[Any] = PegasusTokenizer(lowerCAmelCase__ , offset=0 , mask_token_sent=lowerCAmelCase__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__: List[Any] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowercase__: Tuple = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] lowercase__: str = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Optional[Any] = ['This is going to be way too long.' * 1_000, 'short example'] lowercase__: Optional[Any] = ['not super long but more than 5 tokens', 'tiny'] lowercase__: Optional[int] = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) lowercase__: Tuple = self._large_tokenizer( text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask. def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowercase__: int = self._large_tokenizer(lowerCAmelCase__ ).input_ids self.assertListEqual( lowerCAmelCase__ , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
335
0
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if openai_config_file == "": SCREAMING_SNAKE_CASE_ = OpenAIGPTConfig() else: SCREAMING_SNAKE_CASE_ = OpenAIGPTConfig.from_json_file(lowercase_ ) SCREAMING_SNAKE_CASE_ = OpenAIGPTModel(lowercase_ ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model SCREAMING_SNAKE_CASE_ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME SCREAMING_SNAKE_CASE_ = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , lowercase_ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) A : Optional[Any] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
140
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) _lowerCamelCase : str = 299792458 # Symbols _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = symbols("""ct x y z""") def SCREAMING_SNAKE_CASE ( lowercase_ ) -> float: """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def SCREAMING_SNAKE_CASE ( lowercase_ ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(lowercase_ ) ** 2 ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(lowercase_ ), -gamma(lowercase_ ) * beta(lowercase_ ), 0, 0], [-gamma(lowercase_ ) * beta(lowercase_ ), gamma(lowercase_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = None ) -> np.ndarray: """simple docstring""" if event is None: A__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(lowercase_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: _lowerCamelCase : Tuple = transform(29979245) print("""Example of four vector: """) print(F'''ct\' = {four_vector[0]}''') print(F'''x\' = {four_vector[1]}''') print(F'''y\' = {four_vector[2]}''') print(F'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values _lowerCamelCase : int = {ct: c, x: 1, y: 1, z: 1} _lowerCamelCase : Any = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'''\n{numerical_vector}''')
87
0
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers __magic_name__ = float("""nan""") class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Any ): lowerCamelCase__ = sys.stdout lowerCamelCase__ = open(_A , """a""" ) def __getattr__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ): return getattr(self.stdout , _A ) def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): self.stdout.write(_A ) # strip tqdm codes self.file.write(re.sub(r"""^.*\r""" , """""" , _A , 0 , re.M ) ) def _A ( __lowercase=80 , __lowercase=False ): """simple docstring""" lowerCamelCase__ = [] # deal with critical env vars lowerCamelCase__ = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: lowerCamelCase__ = os.environ.get(UpperCAmelCase__ , UpperCAmelCase__ ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) lowerCamelCase__ = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(UpperCAmelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCamelCase__ = [] lowerCamelCase__ = """""" while len(UpperCAmelCase__ ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(UpperCAmelCase__ ) == 0 or len(UpperCAmelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCAmelCase__ ) lowerCamelCase__ = """""" return "\\\n".join(UpperCAmelCase__ ) def _A ( __lowercase , __lowercase ): """simple docstring""" lowerCamelCase__ = re.sub(r"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own lowerCamelCase__ = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir lowerCamelCase__ = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _A ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) lowerCamelCase__ = subprocess.run(UpperCAmelCase__ , capture_output=UpperCAmelCase__ , text=UpperCAmelCase__ ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams lowerCamelCase__ = variation.replace(""" """ , """-""" ) with open(Path(UpperCAmelCase__ ) / f"""log.{prefix}.stdout.txt""" , """w""" ) as f: f.write(result.stdout ) with open(Path(UpperCAmelCase__ ) / f"""log.{prefix}.stderr.txt""" , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = json.load(UpperCAmelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _A ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): """simple docstring""" lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = f"""{id}: {variation:<{longest_variation_len}}""" lowerCamelCase__ = f"""{preamble}: """ lowerCamelCase__ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCAmelCase__ ) , desc=UpperCAmelCase__ , leave=UpperCAmelCase__ ): lowerCamelCase__ = process_run_single( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase__ = single_run_metrics[target_metric_key] if not math.isnan(UpperCAmelCase__ ): metrics.append(UpperCAmelCase__ ) results.append(UpperCAmelCase__ ) outcome += "✓" else: outcome += "✘" lowerCamelCase__ = f"""\33[2K\r{outcome}""" if len(UpperCAmelCase__ ) > 0: lowerCamelCase__ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowerCamelCase__ = round(mean_metrics[target_metric_key] , 2 ) lowerCamelCase__ = f"""{outcome} {mean_target}""" if len(UpperCAmelCase__ ) > 1: results_str += f""" {tuple(round(UpperCAmelCase__ , 2 ) for x in results )}""" print(UpperCAmelCase__ ) lowerCamelCase__ = variation return mean_metrics else: print(UpperCAmelCase__ ) return {variation_key: variation, target_metric_key: nan} def _A ( ): """simple docstring""" lowerCamelCase__ = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f""" Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def _A ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): """simple docstring""" lowerCamelCase__ = pd.DataFrame(UpperCAmelCase__ ) lowerCamelCase__ = """variation""" lowerCamelCase__ = """diff_%""" lowerCamelCase__ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowerCamelCase__ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCAmelCase__ ): # as a fallback, use the minimal value as the sentinel lowerCamelCase__ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCAmelCase__ ): lowerCamelCase__ = df.apply( lambda __lowercase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns lowerCamelCase__ = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCamelCase__ = df.reindex(UpperCAmelCase__ , axis="""columns""" ) # reorder cols # capitalize lowerCamelCase__ = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible lowerCamelCase__ = df.rename(lambda __lowercase : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) lowerCamelCase__ = df.rename(lambda __lowercase : c.replace("""_""" , """\n""" ) , axis="""columns""" ) lowerCamelCase__ = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCAmelCase__ , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCAmelCase__ , floatfmt=""".2f""" )] print("""\n\n""".join(UpperCAmelCase__ ) ) def _A ( ): """simple docstring""" lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=UpperCAmelCase__ , type=UpperCAmelCase__ , nargs="""+""" , required=UpperCAmelCase__ , help="""Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'""" , ) parser.add_argument( """--base-variation""" , default=UpperCAmelCase__ , type=UpperCAmelCase__ , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=UpperCAmelCase__ , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=UpperCAmelCase__ , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=UpperCAmelCase__ , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=UpperCAmelCase__ , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.output_dir Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) lowerCamelCase__ = get_base_command(UpperCAmelCase__ , UpperCAmelCase__ ) # split each dimension into its --foo variations lowerCamelCase__ = [list(map(str.strip , re.split(r"""\|""" , UpperCAmelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCamelCase__ = list(map(str.strip , map(""" """.join , itertools.product(*UpperCAmelCase__ ) ) ) ) lowerCamelCase__ = max(len(UpperCAmelCase__ ) for x in variations ) # split wanted keys lowerCamelCase__ = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCamelCase__ = f"""benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) lowerCamelCase__ = Tee(UpperCAmelCase__ ) print(f"""\n*** Running {len(UpperCAmelCase__ )} benchmarks:""" ) print(f"""Base command: {' '.join(UpperCAmelCase__ )}""" ) lowerCamelCase__ = """variation""" lowerCamelCase__ = [] for id, variation in enumerate(tqdm(UpperCAmelCase__ , desc="""Total completion: """ , leave=UpperCAmelCase__ ) ): lowerCamelCase__ = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , args.target_metric_key , UpperCAmelCase__ , args.repeat_times , UpperCAmelCase__ , args.verbose , ) ) process_results(UpperCAmelCase__ , args.target_metric_key , UpperCAmelCase__ , args.base_variation , UpperCAmelCase__ ) if __name__ == "__main__": main()
714
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : # Public class to implement a graph def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[list[bool]] ): lowerCamelCase__ = row lowerCamelCase__ = col lowerCamelCase__ = graph def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[list[bool]] ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[list[bool]] ): # Checking all 8 elements surrounding nth element lowerCamelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowerCamelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowerCamelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : int ): # And finally, count all islands. lowerCamelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowerCamelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += 1 return count
258
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _a ( a :int ) -> bool: a = int(number**0.5 ) return number == sq * sq def _a ( a :int , a :int , a :int , a :int , a :int , a :int ) -> tuple[int, int]: a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den a = x_den * y_den * z_den a = gcd(a , a ) top //= hcf bottom //= hcf return top, bottom def _a ( a :int = 35 ) -> int: a = set() a = 42 a = Fraction(0 ) a = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 a = x_num * y_den + x_den * y_num a = x_den * y_den a = gcd(a , a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( a , a , a , a , a , a ) unique_s.add(a ) # n=2 a = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) a = x_den * x_den * y_den * y_den if is_sq(a ) and is_sq(a ): a = int(sqrt(a ) ) a = int(sqrt(a ) ) a = gcd(a , a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( a , a , a , a , a , a ) unique_s.add(a ) # n=-1 a = x_num * y_num a = x_den * y_num + x_num * y_den a = gcd(a , a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( a , a , a , a , a , a ) unique_s.add(a ) # n=2 a = x_num * x_num * y_num * y_num a = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(a ) and is_sq(a ): a = int(sqrt(a ) ) a = int(sqrt(a ) ) a = gcd(a , a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( a , a , a , a , a , a ) unique_s.add(a ) for num, den in unique_s: total += Fraction(a , a ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
117
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = KandinskyVaaInpaintPipeline __snake_case = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] __snake_case = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] __snake_case = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __snake_case = False @property def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" return self.time_input_dim @property def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" return 100 @property def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" torch.manual_seed(0 ) a = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } a = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) a = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.dummy_unet a = self.dummy_movq a = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__UpperCAmelCase , ) a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : int=0 ) ->Optional[int]: """simple docstring""" a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCAmelCase ) # create init_image a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) a = image.cpu().permute(0 , 2 , 3 , 1 )[0] a = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create mask a = np.ones((64, 64) , dtype=np.floataa ) a = 0 if str(__UpperCAmelCase ).startswith('''mps''' ): a = torch.manual_seed(__UpperCAmelCase ) else: a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" a = '''cpu''' a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) a = output.images a = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] a = image[0, -3:, -3:, -1] a = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) a = np.array( [0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) a = np.ones((768, 768) , dtype=np.floataa ) a = 0 a = '''a hat''' a = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) a = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) a = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) a = torch.Generator(device='''cpu''' ).manual_seed(0 ) a , a = pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() a = pipeline( image=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
117
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = tempfile.mkdtemp() # fmt: off _snake_case : Optional[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _snake_case : str = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _snake_case : List[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _snake_case : Optional[Any] = {'unk_token': '<unk>'} _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) _snake_case : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _snake_case : str = os.path.join(self.tmpdirname , lowerCamelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **lowerCamelCase_ : int ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , **lowerCamelCase_ : Tuple ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _snake_case : int = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizer() _snake_case : Dict = self.get_rust_tokenizer() _snake_case : List[Any] = self.get_image_processor() _snake_case : Dict = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case : str = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase_ ) _snake_case : Tuple = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case : Tuple = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Dict = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _snake_case : Any = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) _snake_case : str = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = self.get_image_processor() _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : int = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Optional[int] = self.prepare_image_inputs() _snake_case : Tuple = image_processor(lowerCamelCase_ , return_tensors='np' ) _snake_case : List[str] = processor(images=lowerCamelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_image_processor() _snake_case : List[Any] = self.get_tokenizer() _snake_case : str = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Optional[Any] = 'lower newer' _snake_case : List[str] = processor(text=lowerCamelCase_ ) _snake_case : str = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_image_processor() _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : Any = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Dict = 'lower newer' _snake_case : Optional[Any] = self.prepare_image_inputs() _snake_case : Dict = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_image_processor() _snake_case : int = self.get_tokenizer() _snake_case : List[Any] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case : Optional[Any] = processor.batch_decode(lowerCamelCase_ ) _snake_case : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Tuple = self.get_image_processor() _snake_case : List[str] = self.get_tokenizer() _snake_case : Dict = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : List[Any] = 'lower newer' _snake_case : Optional[int] = self.prepare_image_inputs() _snake_case : List[str] = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
652
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
1
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = 0 if start < end: SCREAMING_SNAKE_CASE__ : Any = randint(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = a[end] SCREAMING_SNAKE_CASE__ : Union[str, Any] = a[pivot] SCREAMING_SNAKE_CASE__ : Optional[int] = temp SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ : Dict = randint(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = a[end] SCREAMING_SNAKE_CASE__ : Dict = a[pivot] SCREAMING_SNAKE_CASE__ : Tuple = temp SCREAMING_SNAKE_CASE__ : int = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value SCREAMING_SNAKE_CASE__ : List[str] = new_pivot_index + 1 SCREAMING_SNAKE_CASE__ : List[str] = a[new_pivot_index] SCREAMING_SNAKE_CASE__ : Optional[int] = a[index] SCREAMING_SNAKE_CASE__ : Any = temp SCREAMING_SNAKE_CASE__ : Optional[Any] = a[new_pivot_index + 1] SCREAMING_SNAKE_CASE__ : Optional[int] = a[end] SCREAMING_SNAKE_CASE__ : Dict = temp return new_pivot_index + 1, count a :List[Any] = TemporaryFile() a :Tuple = 100 # 1000 elements are to be sorted a ,a :Tuple = 0, 1 # mean and standard deviation a :Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array a :str = np.load(outfile) a :Any = len(M) - 1 a :Tuple = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
680
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = data def __iter__( self ) -> Tuple: """simple docstring""" for element in self.data: yield element def _lowercase ( __lowerCAmelCase=True ) -> str: SCREAMING_SNAKE_CASE__ : str = Accelerator(even_batches=__lowerCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> Optional[int]: if iterable: SCREAMING_SNAKE_CASE__ : int = DummyIterableDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = TensorDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE__ : str = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = accelerator.prepare(__lowerCAmelCase ) return dl def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Tuple: SCREAMING_SNAKE_CASE__ : Tuple = create_dataloader(accelerator=__lowerCAmelCase , dataset_size=__lowerCAmelCase , batch_size=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _lowercase ( ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _lowercase ( ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] = create_accelerator(even_batches=__lowerCAmelCase ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _lowercase ( ) -> str: SCREAMING_SNAKE_CASE__ : List[str] = create_accelerator(even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE__ : int = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ddp_model(batch[0].float() ) SCREAMING_SNAKE_CASE__ : List[Any] = output.sum() loss.backward() batch_idxs.append(__lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]: with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def _lowercase ( ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Any = create_accelerator(even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerator.prepare(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE__ : List[Any] = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = train_dl.batch_sampler.even_batches SCREAMING_SNAKE_CASE__ : str = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _lowercase ( ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : int = create_accelerator(even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ : str = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Any = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _lowercase ( ) -> List[str]: SCREAMING_SNAKE_CASE__ : str = create_accelerator() SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def _lowercase ( ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) SCREAMING_SNAKE_CASE__ : Dict = accelerator.state.distributed_type SCREAMING_SNAKE_CASE__ : Optional[int] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = original_state if __name__ == "__main__": main()
680
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase :str = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :str = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :List[Any] = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __UpperCAmelCase :int = _LazyModule(__name__, globals()["__file__"], _import_structure)
702
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _a ( _lowercase : Any ): '''simple docstring''' if hor == 128: __UpperCAmelCase : Optional[Any] = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') __UpperCAmelCase : Union[str, Any] = (32, 128, 256) __UpperCAmelCase : str = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 32: __UpperCAmelCase : Optional[Any] = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') __UpperCAmelCase : Any = (32, 64, 128, 256) __UpperCAmelCase : Optional[int] = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') __UpperCAmelCase : Any = torch.load(F'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) __UpperCAmelCase : str = model.state_dict() __UpperCAmelCase : int = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 14, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 65536, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } __UpperCAmelCase : Optional[Any] = UNetaDModel(**_lowercase ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) __UpperCAmelCase : Union[str, Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) hf_value_function.load_state_dict(_lowercase ) torch.save(hf_value_function.state_dict() , F'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(F'hub/hopper-medium-v2/unet/hor{hor}/config.json' , '''w''' ) as f: json.dump(_lowercase , _lowercase ) def _a ( ): '''simple docstring''' __UpperCAmelCase : str = { '''in_channels''': 14, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (32, 64, 128, 256), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 65536, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } __UpperCAmelCase : str = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) __UpperCAmelCase : Optional[Any] = model __UpperCAmelCase : Optional[int] = UNetaDModel(**_lowercase ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) __UpperCAmelCase : Union[str, Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __UpperCAmelCase : Dict = state_dict.pop(_lowercase ) hf_value_function.load_state_dict(_lowercase ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(_lowercase , _lowercase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
266
0
from __future__ import annotations def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =0.0_0 __magic_name__ : Tuple =0 for resistor in resistors: if resistor <= 0: __magic_name__ : Optional[int] =F"Resistor at index {index} has a negative or zero value!" raise ValueError(lowerCamelCase ) first_sum += 1 / float(lowerCamelCase ) index += 1 return 1 / first_sum def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[int] =0.0_0 __magic_name__ : Optional[Any] =0 for resistor in resistors: sum_r += resistor if resistor < 0: __magic_name__ : Optional[int] =F"Resistor at index {index} has a negative value!" raise ValueError(lowerCamelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __magic_name__ : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=6 , snake_case_=17 , snake_case_=23 , snake_case_=11 , snake_case_=True , ): lowercase =parent lowercase =batch_size lowercase =seq_length lowercase =act_dim lowercase =state_dim lowercase =hidden_size lowercase =max_length lowercase =is_training def _A( self ): lowercase =floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase =floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase =floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase =floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase =ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) lowercase =random_attention_mask((self.batch_size, self.seq_length) ) lowercase =self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _A( self ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): lowercase =DecisionTransformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() lowercase =model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _A( self ): lowercase =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) =config_and_inputs lowercase ={ '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = (DecisionTransformerModel,) if is_torch_available() else () UpperCamelCase__ = () UpperCamelCase__ = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids UpperCamelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def _A( self ): lowercase =DecisionTransformerModelTester(self ) lowercase =ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def _A( self ): self.config_tester.run_common_tests() def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) @slow def _A( self ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase =DecisionTransformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _A( self ): lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase =model_class(snake_case_ ) lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase =[*signature.parameters.keys()] lowercase =[ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def _A( self ): lowercase =2 # number of steps of autoregressive prediction we will perform lowercase =10 # defined by the RL environment, may be normalized lowercase =DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) lowercase =model.to(snake_case_ ) lowercase =model.config torch.manual_seed(0 ) lowercase =torch.randn(1 , 1 , config.state_dim ).to(device=snake_case_ , dtype=torch.floataa ) # env.reset() lowercase =torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=snake_case_ ) lowercase =torch.tensor(snake_case_ , device=snake_case_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase =state lowercase =torch.zeros(1 , 0 , config.act_dim , device=snake_case_ , dtype=torch.floataa ) lowercase =torch.zeros(1 , 0 , device=snake_case_ , dtype=torch.floataa ) lowercase =torch.tensor(0 , device=snake_case_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case_ ): lowercase =torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case_ )] , dim=1 ) lowercase =torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case_ )] , dim=1 ) lowercase =torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase , lowercase , lowercase =model( states=snake_case_ , actions=snake_case_ , rewards=snake_case_ , returns_to_go=snake_case_ , timesteps=snake_case_ , attention_mask=snake_case_ , return_dict=snake_case_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) lowercase , lowercase , lowercase , lowercase =( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case_ , dtype=torch.floataa ), 1.0, False, {}, ) lowercase =action_pred[0, -1] lowercase =torch.cat([states, state] , dim=1 ) lowercase =returns_to_go[0, -1] - reward lowercase =torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase =torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case_ , dtype=torch.long ) * (step + 1)] , dim=1 )
72
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __lowerCAmelCase ()-> List[str]: """simple docstring""" snake_case_ , snake_case_ = 9, 14 # noqa: F841 snake_case_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] snake_case_ = defaultdict(snake_case__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) snake_case_ = mst(snake_case__ ) snake_case_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: snake_case_ = tuple(answer[:2] ) snake_case_ = tuple(edge[::-1] ) assert edge in result or reverse in result
717
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __lowerCAmelCase (SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None )-> Tuple: """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class lowerCAmelCase_ : '''simple docstring''' __snake_case = field( metadata={"help": "The csv file to plot."} , ) __snake_case = field( default=lowerCamelCase__ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) __snake_case = field( default=lowerCamelCase__ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) __snake_case = field( default=lowerCamelCase__ , metadata={"help": "Disable logarithmic scale when plotting"} , ) __snake_case = field( default=lowerCamelCase__ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) __snake_case = field( default=lowerCamelCase__ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) __snake_case = list_field( default=lowerCamelCase__ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Optional[Any]: """simple docstring""" try: int(SCREAMING_SNAKE_CASE ) return True except ValueError: return False def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" try: float(SCREAMING_SNAKE_CASE ) return True except ValueError: return False class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase ): snake_case_ = args snake_case_ = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: snake_case_ = csv.DictReader(_UpperCAmelCase ) for row in reader: snake_case_ = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None snake_case_ = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None snake_case_ = float(row['''result'''] ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = plt.subplots() snake_case_ = '''Time usage''' if self.args.is_time else '''Memory usage''' snake_case_ = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): snake_case_ = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) snake_case_ = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) snake_case_ = self.result_dict[model_name]['''result'''] ((snake_case_) , (snake_case_)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) snake_case_ = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: snake_case_ = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_UpperCAmelCase , ) else: snake_case_ = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((snake_case_) , (snake_case_)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) snake_case_ = np.asarray(_UpperCAmelCase , _UpperCAmelCase )[: len(_UpperCAmelCase )] plt.scatter( _UpperCAmelCase , _UpperCAmelCase , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(_UpperCAmelCase , _UpperCAmelCase , '''--''' ) title_str += F''' {label_model_name} vs.''' snake_case_ = title_str[:-4] snake_case_ = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(_UpperCAmelCase ) plt.xlabel(_UpperCAmelCase ) plt.ylabel(_UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __lowerCAmelCase ()-> int: """simple docstring""" snake_case_ = HfArgumentParser(SCREAMING_SNAKE_CASE ) snake_case_ = parser.parse_args_into_dataclasses()[0] snake_case_ = Plot(args=SCREAMING_SNAKE_CASE ) plot.plot() if __name__ == "__main__": main()
531
0
'''simple docstring''' from jiwer import compute_measures import datasets _snake_case : Dict = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' _snake_case : List[str] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' _snake_case : List[str] = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[Any]=False ) -> str: """simple docstring""" if concatenate_texts: return compute_measures(lowerCAmelCase_ , lowerCAmelCase_ )["wer"] else: _a = 0 _a = 0 for prediction, reference in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _a = compute_measures(lowerCAmelCase_ , lowerCAmelCase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
22
'''simple docstring''' def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): a__ : List[str] = len(lowerCAmelCase__ ) a__ : int = [[0] * n for i in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): a__ : Dict = y_points[i] for i in range(2 , lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
688
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : Any=3 , __UpperCamelCase : Dict=18 , __UpperCamelCase : Optional[Any]=30 , __UpperCamelCase : Any=400 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[Any]=True , ) -> Dict: """simple docstring""" snake_case__ : Dict = size if size is not None else {'''height''': 18, '''width''': 18} snake_case__ : int = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Tuple = num_channels snake_case__ : int = image_size snake_case__ : List[Any] = min_resolution snake_case__ : int = max_resolution snake_case__ : Tuple = do_resize snake_case__ : List[Any] = size snake_case__ : Dict = do_normalize def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE (lowerCAmelCase__, unittest.TestCase ): A__ = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" snake_case__ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''clusters''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" snake_case__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) snake_case__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) snake_case__ : List[Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Optional[Any] = os.path.join(_lowerCamelCase , '''image_processor.json''' ) image_processor_first.to_json_file(_lowerCamelCase ) snake_case__ : int = self.image_processing_class.from_json_file(_lowerCamelCase ).to_dict() snake_case__ : int = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCamelCase ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCamelCase ) snake_case__ : Tuple = self.image_processing_class.from_pretrained(_lowerCamelCase ).to_dict() snake_case__ : Tuple = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCamelCase ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" pass def __UpperCAmelCase ( ) -> Optional[Any]: snake_case__ : Any = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) snake_case__ : Dict = Image.open(dataset[4]['''file'''] ) snake_case__ : Optional[int] = Image.open(dataset[5]['''file'''] ) snake_case__ : Union[str, Any] = [imagea, imagea] return images @require_vision @require_torch class _SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" snake_case__ : Any = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) snake_case__ : Optional[Any] = prepare_images() # test non-batched snake_case__ : int = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) snake_case__ : Any = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowerCamelCase ) # test batched snake_case__ : Any = image_processing(_lowerCamelCase , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) snake_case__ : Optional[Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowerCamelCase )
712
'''simple docstring''' def __UpperCAmelCase ( UpperCamelCase__ :int ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
574
0
def __UpperCAmelCase ( __a : Optional[Any] ) -> Any: """simple docstring""" _a : List[str] = [0] * len(__a ) _a : Union[str, Any] = [] _a : Dict = [1] * len(__a ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__a ) ): if indegree[i] == 0: queue.append(__a ) while queue: _a : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _a : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__a ) print(max(__a ) ) # Adjacency list of Graph a__ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
'''simple docstring''' class _lowercase : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCAmelCase = size __lowerCAmelCase = [0] * size __lowerCAmelCase = [0] * size @staticmethod def a ( SCREAMING_SNAKE_CASE__ : int ) -> int: return index | (index + 1) @staticmethod def a ( SCREAMING_SNAKE_CASE__ : int ) -> int: return (index & (index + 1)) - 1 def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCAmelCase = value while index < self.size: __lowerCAmelCase = self.get_prev(SCREAMING_SNAKE_CASE__ ) + 1 if current_left_border == index: __lowerCAmelCase = value else: __lowerCAmelCase = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.get_next(SCREAMING_SNAKE_CASE__ ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: right -= 1 # Because of right is exclusive __lowerCAmelCase = 0 while left <= right: __lowerCAmelCase = self.get_prev(SCREAMING_SNAKE_CASE__ ) if left <= current_left: __lowerCAmelCase = max(SCREAMING_SNAKE_CASE__ , self.tree[right] ) __lowerCAmelCase = current_left else: __lowerCAmelCase = max(SCREAMING_SNAKE_CASE__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
427
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def snake_case (__lowercase ) -> Optional[int]: '''simple docstring''' _snake_case : Optional[int] = np.inf def set_batch_size(__lowercase ) -> None: nonlocal batch_size if isinstance(__lowercase , __lowercase ): _snake_case : Dict = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__lowercase , __lowercase ): _snake_case : str = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__lowercase , __lowercase ) and feature.dtype == "binary": _snake_case : Any = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__lowercase , __lowercase ) return None if batch_size is np.inf else batch_size class lowercase_ ( __snake_case ): def __init__( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = None , **lowercase_ , ): super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) _snake_case : int = path_or_paths if isinstance(lowercase_ , lowercase_ ) else {self.split: path_or_paths} _snake_case : Optional[int] = _PACKAGED_DATASETS_MODULES["parquet"][1] _snake_case : Optional[Any] = Parquet( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , ) def UpperCamelCase ( self ): # Build iterable dataset if self.streaming: _snake_case : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _snake_case : Union[str, Any] = None _snake_case : Optional[Any] = None _snake_case : Any = None _snake_case : Tuple = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) _snake_case : int = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory ) return dataset class lowercase_ : def __init__( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): _snake_case : Optional[int] = dataset _snake_case : List[str] = path_or_buf _snake_case : Optional[Any] = batch_size or get_writer_batch_size(dataset.features ) _snake_case : int = parquet_writer_kwargs def UpperCamelCase ( self ): _snake_case : Any = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: _snake_case : Union[str, Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs ) else: _snake_case : int = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs ) return written def UpperCamelCase ( self , lowercase_ , lowercase_ , **lowercase_ ): _snake_case : List[str] = 0 _snake_case : List[Any] = parquet_writer_kwargs.pop("path_or_buf" , lowercase_ ) _snake_case : str = self.dataset.features.arrow_schema _snake_case : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , lowercase_ ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): _snake_case : Dict = query_table( table=self.dataset._data , key=slice(lowercase_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowercase_ ) written += batch.nbytes writer.close() return written
580
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class lowercase_ ( datasets.BuilderConfig ): _lowerCamelCase = None class lowercase_ ( datasets.ArrowBasedBuilder ): _lowerCamelCase = PandasConfig def UpperCamelCase ( self ): return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase ( self , lowercase_ ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _snake_case : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowercase_ , (str, list, tuple) ): _snake_case : str = data_files if isinstance(lowercase_ , lowercase_ ): _snake_case : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _snake_case : Optional[Any] = [dl_manager.iter_files(lowercase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _snake_case : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowercase_ , lowercase_ ): _snake_case : Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _snake_case : int = [dl_manager.iter_files(lowercase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={"files": files} ) ) return splits def UpperCamelCase ( self , lowercase_ ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _snake_case : str = table_cast(lowercase_ , self.config.features.arrow_schema ) return pa_table def UpperCamelCase ( self , lowercase_ ): for i, file in enumerate(itertools.chain.from_iterable(lowercase_ ) ): with open(lowercase_ , "rb" ) as f: _snake_case : Dict = pa.Table.from_pandas(pd.read_pickle(lowercase_ ) ) yield i, self._cast_table(lowercase_ )
580
1
__lowerCAmelCase : Tuple ='\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __lowerCAmelCase : Optional[int] =[{'type': 'code', 'content': INSTALL_CONTENT}] __lowerCAmelCase : Union[str, Any] ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
696
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __lowerCAmelCase = object() # For specifying empty leaf dict `{}` __lowerCAmelCase = object() def _UpperCAmelCase ( __A : List[str] , __A : Tuple ): a_ : List[Any] = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(__A ) - len(__A ) + 1 ): a_ : Union[str, Any] = [x.match(__A ) for x, y in zip(__A , ks[i:] )] if matches and all(__A ): return True return False def _UpperCAmelCase ( __A : List[str] ): def replace(__A : int , __A : Union[str, Any] ): for rule, replacement in rules: if _match(__A , __A ): return replacement return val return replace def _UpperCAmelCase ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , __A )), (("transformer", "wte", "embedding"), P('''mp''' , __A )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__A , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , __A )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__A , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , __A )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = _get_partition_rules() a_ : Tuple = _replacement_rules(__A ) a_ : Optional[Any] = {k: _unmatched for k in flatten_dict(__A )} a_ : Optional[Any] = {k: replace(__A , __A ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__A ) )
466
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ : int = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
701
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __a ( __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any]=0 ) -> Tuple: """simple docstring""" if name is None: lowerCamelCase_ : Dict = None else: lowerCamelCase_ : Any = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" lowerCamelCase_ : Dict = fmt.format(__UpperCAmelCase ) # Print and recurse (if needed). if isinstance(__UpperCAmelCase , __UpperCAmelCase ): if msg is not None: print(__UpperCAmelCase ) for k in val.keys(): recursive_print(__UpperCAmelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCAmelCase , torch.Tensor ): print(__UpperCAmelCase , ":" , val.size() ) else: print(__UpperCAmelCase , ":" , __UpperCAmelCase ) def __a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Tuple = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCamelCase_ : Dict = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCamelCase_ : Optional[Any] = param.view(*__UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = param.transpose(0 , 2 ) lowerCamelCase_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCamelCase_ : Optional[int] = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCamelCase_ : Optional[Any] = param.view(*__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = param.transpose(0 , 1 ).contiguous() lowerCamelCase_ : Union[str, Any] = param.view(*__UpperCAmelCase ) return param def __a ( __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ : Tuple = {} # old versions did not store training args lowerCamelCase_ : Optional[Any] = input_state_dict.get("args" , __UpperCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCamelCase_ : List[str] = ds_args.padded_vocab_size lowerCamelCase_ : Optional[int] = ds_args.max_position_embeddings lowerCamelCase_ : Union[str, Any] = ds_args.hidden_size lowerCamelCase_ : Tuple = ds_args.num_layers lowerCamelCase_ : List[str] = ds_args.num_attention_heads lowerCamelCase_ : List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCamelCase_ : List[Any] = config.n_head # The hidden_size per head. lowerCamelCase_ : Tuple = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCamelCase_ : Any = input_state_dict["checkpoint_version"] else: lowerCamelCase_ : int = 0.0 # The model. lowerCamelCase_ : int = input_state_dict["model"] # The language model. lowerCamelCase_ : Dict = model["language_model"] # The embeddings. lowerCamelCase_ : Optional[int] = lm["embedding"] # The word embeddings. lowerCamelCase_ : Union[str, Any] = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. lowerCamelCase_ : int = word_embeddings[: config.vocab_size, :] lowerCamelCase_ : int = word_embeddings # The position embeddings. lowerCamelCase_ : List[str] = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCamelCase_ : List[Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. lowerCamelCase_ : Optional[int] = pos_embeddings # The transformer. lowerCamelCase_ : List[str] = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. lowerCamelCase_ : Optional[int] = re.compile(R"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. lowerCamelCase_ : Optional[Any] = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCamelCase_ : Optional[int] = layer_re.match(__UpperCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCamelCase_ : str = int(m.group(1 ) ) # The name of the operation. lowerCamelCase_ : Optional[int] = m.group(2 ) # Is it a weight or a bias? lowerCamelCase_ : int = m.group(3 ) # The name of the layer. lowerCamelCase_ : Optional[Any] = f"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): lowerCamelCase_ : Optional[int] = "ln_1" if op_name.startswith("input" ) else "ln_2" lowerCamelCase_ : int = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCamelCase_ : Union[str, Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : str = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCamelCase_ : Any = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCamelCase_ : Union[str, Any] = masked_bias lowerCamelCase_ : Union[str, Any] = fix_query_key_value_ordering(__UpperCAmelCase , __UpperCAmelCase , 3 , __UpperCAmelCase , __UpperCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCamelCase_ : Dict = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCamelCase_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCamelCase_ : Union[str, Any] = fix_query_key_value_ordering(__UpperCAmelCase , __UpperCAmelCase , 3 , __UpperCAmelCase , __UpperCAmelCase ) # Store. No change of shape. lowerCamelCase_ : Dict = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCamelCase_ : Union[str, Any] = megatron_to_transformers[op_name] lowerCamelCase_ : int = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCamelCase_ : Optional[int] = megatron_to_transformers[op_name] lowerCamelCase_ : Dict = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCamelCase_ : List[Any] = transformer["final_layernorm.weight"] lowerCamelCase_ : List[Any] = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. lowerCamelCase_ : Union[str, Any] = word_embeddings # It should be done! return output_state_dict def __a ( ) -> int: """simple docstring""" lowerCamelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=__UpperCAmelCase , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=__UpperCAmelCase , help="An optional config json file describing the pre-trained model." , ) lowerCamelCase_ : str = parser.parse_args() # Extract the basename. lowerCamelCase_ : Tuple = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: lowerCamelCase_ : int = torch.load(__UpperCAmelCase , map_location="cpu" ) else: lowerCamelCase_ : int = torch.load(args.path_to_checkpoint , map_location="cpu" ) lowerCamelCase_ : Any = input_state_dict.get("args" , __UpperCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCamelCase_ : Optional[int] = "gelu_fast" elif ds_args.openai_gelu: lowerCamelCase_ : List[str] = "gelu_new" else: lowerCamelCase_ : int = "gelu" else: # in the very early days this used to be "gelu_new" lowerCamelCase_ : Any = "gelu_new" # Spell out all parameters in case the defaults change. lowerCamelCase_ : int = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__UpperCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.0_2 , summary_type="cls_index" , summary_use_proj=__UpperCAmelCase , summary_activation=__UpperCAmelCase , summary_proj_to_labels=__UpperCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCAmelCase , use_cache=__UpperCAmelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCamelCase_ : Dict = GPTaConfig.from_json_file(args.config_file ) lowerCamelCase_ : Tuple = ["GPT2LMHeadModel"] # Convert. print("Converting" ) lowerCamelCase_ : Dict = convert_megatron_checkpoint(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCAmelCase , __UpperCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCamelCase_ : List[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCamelCase_ : Union[str, Any] = "gpt2" elif tokenizer_type == "PretrainedFromHF": lowerCamelCase_ : Union[str, Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}" ) else: lowerCamelCase_ : List[Any] = "gpt2" lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = type(__UpperCAmelCase ).__name__ lowerCamelCase_ : Dict = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(__UpperCAmelCase ) # Save tokenizer based on args print(f"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(__UpperCAmelCase ) # Store the state_dict to file. lowerCamelCase_ : List[str] = os.path.join(__UpperCAmelCase , "pytorch_model.bin" ) print(f"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
253
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) enable_full_determinism() class _UpperCAmelCase ( lowercase , lowercase , unittest.TestCase ): lowerCamelCase_ : Dict = UNetaDModel lowerCamelCase_ : List[Any] = """sample""" @property def _snake_case ( self : Dict): SCREAMING_SNAKE_CASE_ :Dict = 4 SCREAMING_SNAKE_CASE_ :int = 3 SCREAMING_SNAKE_CASE_ :Any = (32, 32) SCREAMING_SNAKE_CASE_ :int = floats_tensor((batch_size, num_channels) + sizes).to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Tuple = torch.tensor([10]).to(UpperCAmelCase) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self : Any): return (3, 32, 32) @property def _snake_case ( self : str): return (3, 32, 32) def _snake_case ( self : List[Any]): SCREAMING_SNAKE_CASE_ :Optional[Any] = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } SCREAMING_SNAKE_CASE_ :Tuple = self.dummy_input return init_dict, inputs_dict class _UpperCAmelCase ( lowercase , lowercase , unittest.TestCase ): lowerCamelCase_ : str = UNetaDModel lowerCamelCase_ : str = """sample""" @property def _snake_case ( self : int): SCREAMING_SNAKE_CASE_ :Dict = 4 SCREAMING_SNAKE_CASE_ :List[str] = 4 SCREAMING_SNAKE_CASE_ :Tuple = (32, 32) SCREAMING_SNAKE_CASE_ :int = floats_tensor((batch_size, num_channels) + sizes).to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = torch.tensor([10]).to(UpperCAmelCase) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self : Any): return (4, 32, 32) @property def _snake_case ( self : int): return (4, 32, 32) def _snake_case ( self : Optional[int]): SCREAMING_SNAKE_CASE_ :Any = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } SCREAMING_SNAKE_CASE_ :Any = self.dummy_input return init_dict, inputs_dict def _snake_case ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[int] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Any = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU") def _snake_case ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :str = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase) model.to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU") def _snake_case ( self : List[Any]): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :int = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase) model_accelerate.to(UpperCAmelCase) model_accelerate.eval() SCREAMING_SNAKE_CASE_ :Dict = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0) , ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = noise.to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = torch.tensor([10] * noise.shape[0]).to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Union[str, Any] = model_accelerate(UpperCAmelCase , UpperCAmelCase)["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :str = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase , low_cpu_mem_usage=UpperCAmelCase) model_normal_load.to(UpperCAmelCase) model_normal_load.eval() SCREAMING_SNAKE_CASE_ :List[Any] = model_normal_load(UpperCAmelCase , UpperCAmelCase)["sample"] assert torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-3) def _snake_case ( self : int): SCREAMING_SNAKE_CASE_ :Optional[Any] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update") model.eval() model.to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0) , ) SCREAMING_SNAKE_CASE_ :int = noise.to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[str] = torch.tensor([10] * noise.shape[0]).to(UpperCAmelCase) with torch.no_grad(): SCREAMING_SNAKE_CASE_ :List[Any] = model(UpperCAmelCase , UpperCAmelCase).sample SCREAMING_SNAKE_CASE_ :Tuple = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ :Union[str, Any] = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800]) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-3)) class _UpperCAmelCase ( lowercase , lowercase , unittest.TestCase ): lowerCamelCase_ : Tuple = UNetaDModel lowerCamelCase_ : List[str] = """sample""" @property def _snake_case ( self : List[str] , UpperCAmelCase : Dict=(32, 32)): SCREAMING_SNAKE_CASE_ :Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ :List[Any] = 3 SCREAMING_SNAKE_CASE_ :int = floats_tensor((batch_size, num_channels) + sizes).to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :str = torch.tensor(batch_size * [10]).to(dtype=torch.intaa , device=UpperCAmelCase) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self : Tuple): return (3, 32, 32) @property def _snake_case ( self : Union[str, Any]): return (3, 32, 32) def _snake_case ( self : Any): SCREAMING_SNAKE_CASE_ :int = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1E-6, "mid_block_scale_factor": math.sqrt(2.0), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } SCREAMING_SNAKE_CASE_ :int = self.dummy_input return init_dict, inputs_dict @slow def _snake_case ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Any = self.dummy_input SCREAMING_SNAKE_CASE_ :str = floats_tensor((4, 3) + (2_56, 2_56)).to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[str] = noise SCREAMING_SNAKE_CASE_ :int = model(**UpperCAmelCase) assert image is not None, "Make sure output is not None" @slow def _snake_case ( self : Optional[int]): SCREAMING_SNAKE_CASE_ :Any = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256") model.to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = 4 SCREAMING_SNAKE_CASE_ :List[str] = 3 SCREAMING_SNAKE_CASE_ :str = (2_56, 2_56) SCREAMING_SNAKE_CASE_ :str = torch.ones((batch_size, num_channels) + sizes).to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Tuple = torch.tensor(batch_size * [1E-4]).to(UpperCAmelCase) with torch.no_grad(): SCREAMING_SNAKE_CASE_ :List[str] = model(UpperCAmelCase , UpperCAmelCase).sample SCREAMING_SNAKE_CASE_ :List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ :Union[str, Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608]) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-2)) def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :Tuple = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update") model.to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = 4 SCREAMING_SNAKE_CASE_ :List[Any] = 3 SCREAMING_SNAKE_CASE_ :List[Any] = (32, 32) SCREAMING_SNAKE_CASE_ :Tuple = torch.ones((batch_size, num_channels) + sizes).to(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Union[str, Any] = torch.tensor(batch_size * [1E-4]).to(UpperCAmelCase) with torch.no_grad(): SCREAMING_SNAKE_CASE_ :int = model(UpperCAmelCase , UpperCAmelCase).sample SCREAMING_SNAKE_CASE_ :int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ :str = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256]) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-2)) def _snake_case ( self : Optional[Any]): # not required for this model pass
631
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowercase ( a , a ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer SCREAMING_SNAKE_CASE_ :List[Any] = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE_ :Any = torch.permute(a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(a ): # linear layer SCREAMING_SNAKE_CASE_ :str = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE_ :Optional[int] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: SCREAMING_SNAKE_CASE_ :Union[str, Any] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def lowercase ( a , a , a ): '''simple docstring''' if "metadata" in layer: SCREAMING_SNAKE_CASE_ :Dict = layer.split("metadata" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "".join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ :str = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: SCREAMING_SNAKE_CASE_ :str = layer.split("kvstore" ) SCREAMING_SNAKE_CASE_ :str = "".join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ :str = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: SCREAMING_SNAKE_CASE_ :Union[str, Any] = layer.split("/" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "/".join(split_layer[:-1] ) SCREAMING_SNAKE_CASE_ :int = (split_layer[-1],) if "kvstore/path" in layer: SCREAMING_SNAKE_CASE_ :Union[str, Any] = F"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: SCREAMING_SNAKE_CASE_ :Tuple = "file" else: SCREAMING_SNAKE_CASE_ :str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = rename_keys(a ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = {} for k, v in current_block.items(): SCREAMING_SNAKE_CASE_ :List[str] = v SCREAMING_SNAKE_CASE_ :Optional[Any] = new_current_block torch.save(a , a ) def lowercase ( a , a , a , a , a = WEIGHTS_NAME ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Optional[int] = convert_file_size_to_int(a ) SCREAMING_SNAKE_CASE_ :int = [] SCREAMING_SNAKE_CASE_ :str = {} SCREAMING_SNAKE_CASE_ :List[str] = 0 SCREAMING_SNAKE_CASE_ :Optional[int] = 0 os.makedirs(a , exist_ok=a ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: SCREAMING_SNAKE_CASE_ :int = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] SCREAMING_SNAKE_CASE_ :Any = flatten_dict(a , sep="/" ) SCREAMING_SNAKE_CASE_ :Optional[Any] = {} for layer in checkpoint_info.keys(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[Any] = get_key_and_tensorstore_dict( a , a , a ) if curr_real_layer_name in all_layers: SCREAMING_SNAKE_CASE_ :str = content else: SCREAMING_SNAKE_CASE_ :Optional[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file SCREAMING_SNAKE_CASE_ :Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() SCREAMING_SNAKE_CASE_ :List[Any] = torch.tensor(a ) SCREAMING_SNAKE_CASE_ :str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , a ) SCREAMING_SNAKE_CASE_ :Any = "/".join(a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: SCREAMING_SNAKE_CASE_ :str = os.path.join( a , weights_name.replace(".bin" , F"-{len(a )+1:05d}-of-???.bin" ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) del current_block SCREAMING_SNAKE_CASE_ :Tuple = {} SCREAMING_SNAKE_CASE_ :Dict = 0 SCREAMING_SNAKE_CASE_ :Optional[int] = raw_weights.to(getattr(a , a ) ) current_block_size += weight_size total_size += weight_size # Add the last block SCREAMING_SNAKE_CASE_ :Dict = os.path.join(a , weights_name.replace(".bin" , F"-{len(a )+1:05d}-of-???.bin" ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index SCREAMING_SNAKE_CASE_ :Optional[int] = {} SCREAMING_SNAKE_CASE_ :int = {} for idx, shard in enumerate(a ): SCREAMING_SNAKE_CASE_ :Optional[Any] = weights_name.replace( ".bin" , F"-{idx+1:05d}-of-{len(a ):05d}.bin" ) # len(sharded_state_dicts):05d} SCREAMING_SNAKE_CASE_ :Any = os.path.join(a , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(a , os.path.join(a , a ) ) SCREAMING_SNAKE_CASE_ :List[Any] = shard for key in shard: SCREAMING_SNAKE_CASE_ :str = shard_file # Add the metadata SCREAMING_SNAKE_CASE_ :List[str] = {"total_size": total_size} SCREAMING_SNAKE_CASE_ :Optional[int] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(a , a ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ :Optional[int] = json.dumps(a , indent=2 , sort_keys=a ) + "\n" f.write(a ) return metadata, index if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowercase ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer SCREAMING_SNAKE_CASE_ :Dict = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) SCREAMING_SNAKE_CASE_ :str = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) SCREAMING_SNAKE_CASE_ :List[Any] = TaTokenizer.from_pretrained("t5-small" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." SCREAMING_SNAKE_CASE_ :List[Any] = tokenizer(a , return_tensors="pt" ).input_ids SCREAMING_SNAKE_CASE_ :List[str] = model.generate(a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
631
1
'''simple docstring''' import argparse import json import subprocess def lowerCamelCase_ ( lowercase__ , lowercase__): lowerCamelCase__ = [] lowerCamelCase__ = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) lowerCamelCase__ = subprocess.run(lowercase__ , shell=lowercase__ , stdout=subprocess.PIPE) lowerCamelCase__ = output.stdout.decode("utf-8") lowerCamelCase__ = json.loads(lowercase__) lowerCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowercase__) # save the result so we can report them on Slack with open("offline_runners.txt" , "w") as fp: fp.write(json.dumps(lowercase__)) if len(lowercase__) > 0: lowerCamelCase__ = "\n".join([x["name"] for x in offline_runners]) raise ValueError(F'''The following runners are offline:\n{failed}''') if __name__ == "__main__": def lowerCamelCase_ ( lowercase__): return values.split(",") __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) __A : Optional[Any] = parser.parse_args() get_runner_status(args.target_runners, args.token)
710
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Tuple = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowercase ( _lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = "gpt_neo" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Optional[int]=50257 , __lowerCamelCase : Optional[int]=2048 , __lowerCamelCase : Optional[int]=2048 , __lowerCamelCase : Any=24 , __lowerCamelCase : List[Any]=[[["global", "local"], 12]] , __lowerCamelCase : Any=16 , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[Any]=256 , __lowerCamelCase : List[Any]="gelu_new" , __lowerCamelCase : Any=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Dict=1E-5 , __lowerCamelCase : List[Any]=0.0_2 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=50256 , __lowerCamelCase : Tuple=50256 , **__lowerCamelCase : Optional[int] , ) -> str: '''simple docstring''' lowerCamelCase__ = vocab_size lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = hidden_size lowerCamelCase__ = num_layers lowerCamelCase__ = num_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = window_size lowerCamelCase__ = activation_function lowerCamelCase__ = resid_dropout lowerCamelCase__ = embed_dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = classifier_dropout lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = use_cache lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id lowerCamelCase__ = attention_types lowerCamelCase__ = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def a__ ( __lowerCamelCase : int ) -> str: '''simple docstring''' lowerCamelCase__ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__): import torch lowerCamelCase__ = input.size() lowerCamelCase__ = len(lowercase__) lowerCamelCase__ = shape[dimension] lowerCamelCase__ = torch.arange(0 , lowercase__ , lowercase__) lowerCamelCase__ = torch.div(sizedim - size , lowercase__ , rounding_mode="floor") + 1 lowerCamelCase__ = torch.arange(lowercase__) + low_indices[:min_length][:, None] lowerCamelCase__ = [slice(lowercase__)] * rank lowerCamelCase__ = indices lowerCamelCase__ = input[s] lowerCamelCase__ = list(range(0 , rank + 1)) perm.append(perm.pop(dimension + 1)) return sliced.permute(lowercase__) def lowerCamelCase_ ( lowercase__ , lowercase__): import torch lowerCamelCase__ = torch.arange(1 , lowercase__) lowerCamelCase__ = torch.remainder(lowercase__ , lowercase__) lowerCamelCase__ = remainders == 0 lowerCamelCase__ = candidates[divisor_indices] lowerCamelCase__ = torch.max(lowercase__) return largest_divisor, torch.div(lowercase__ , lowercase__ , rounding_mode="floor") class lowercase ( _lowerCamelCase ): '''simple docstring''' @property def a__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCamelCase__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) lowerCamelCase__ = {0: "batch", 1: "past_sequence + sequence"} else: lowerCamelCase__ = {0: "batch", 1: "sequence"} return common_inputs @property def a__ ( self : Any ) -> int: '''simple docstring''' return self._config.num_heads def a__ ( self : Optional[Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' lowerCamelCase__ = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] lowerCamelCase__ = common_inputs["attention_mask"] if self.use_past: lowerCamelCase__ = ordered_inputs["attention_mask"].dtype lowerCamelCase__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def a__ ( self : Optional[Any] ) -> int: '''simple docstring''' return 13
187
0